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MINMAX CONTROL OF SYSTEMS WITH UNCERTAINTY IN THE
INITIAL STATE AND IN THE STATE EQUATIONS1

W. E. Schmitendorf
Mechanical Engineering Department
Norcthwestern University
Evanston, Illinois 60201

Abstract

In this paper, optimal control problems
where there is uncertainty in the initial state
measurement or where there are uncertain
parameters in the state equations are investi-
gated. It is assumed that nature will choose
the uncertainty to maximize the cost which the
controller is attempting to minimize. Thus a
minmax control is sought.

Sufficient conditions for a control to be
a minmax control are presented. These condi-
tions suggest methods for finding the minmax
control and such techniques are described. The
application of these methods is illustrated by
example problems.

1. Introduction

In an optimal control problem, only uncertain
measurements of the initial staie may be available
rather than knowledge of the exact initial state.
One approach to this problem is to obtain a sto-
chastic description of the uncertainty and choose
the control to minimize an expected value. Here
the problem is treated in a different fashion. It
is assumed that from the measured initial state it
is only possible to conclud: that the true inftial
state belongs to some subset of the state space.
The objective is to choose a coutrui, based on this
measurement, which minimizes the maximum value of
the cost over all possible initial states in the
subset. Thus it is assumed that nature is perverse
and chooses the uncertainty to maximize the cost
which the controller is attempting to minimize.
For each control there is a guaranteed performance
(which is determined by assuming nature maximizes
against this control) and the optimal control is
the one which achieves the best guaranteed per-
formance.

I1f Q is the set of possible values for the
uncertainty, M the set of admissible controls and
J(u(+),q) the cost functional, then the problem is

<
to find a u (+) €M satisfying for all u(:) el
*
sup J(u (*),q) < sup J(u(:),q)
q€Q q€Q
The first sufficient condition, Theorem 1, is

1The research was supported by the Air Force Office
of Scientific Research under Grant AFOSR-76-2923
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applicable when the cost function has a saddle
point. However, examples show that often this is
not the case and the second sufficient condition,
Theorem 2, can be used when there is nc saddle
point solution.

In obtaining the second sufficient condition,
the initial state uncertainty problem is trans-
formed into a problem with known initial state but
having uncertainty in the state esquations. Thus
the result is also applicable to problems where
the mathematical model contains uncertainiy in the
differential equation describing the cvoluticu ol
the state. Both sufficient conditions suggest a
method for constructing a minmax control and these
procedures are described.

Initial state uncertainty problems have been
studied in [1] where a general result for the
linear quadratic case is obtained. Our results
are not limited in applicédtion to such problems.
The minmax approach to uncertainty has also been
investigated in [2])-[8]. The results presented
here are different and appear to be applicable to
a wider class of problems than those considered
in most of these papers since the assumption of
the existence of a saddle point solution is not
required in Theorem 2 nor are the results limited
to linear quadratic problems.

2, Problem Formulation

Consider a system which can be modeled by
ordinary differential equations

k(t) = £(x(t),u(t)), tele ,t.] (¢

where x(t) €Rn is the state, u(t) eR™ is the con-
trol and the time interval [to,tfl is prescribed.

A measurement o1 the initial state, tom, is avail-
able and is related to the true initial state,
x(to), by

x(to) X T Y (2)

where q t-:QCRrl and Q is known. If q were known
exactly, then we would have the usual optimal con-
trol problem. Here, however, we assume that q is
not known exactly but is chosen perversely by
nature,

A control u(+) will be called admissible if
it is piecewise continuous and u(t) € U for all

te[to,cf] where UCR™ is a given set. The set of
admissible controls will be denoted by M. We

Approved fcer lic ieleuse;
distributicn unlimited.




shall assume throughout that for every u(-) €M and
q €Q there is a solution of (1) and (2) on [to,tf].

The cost or criterion depends on the choice of the
control u(+) and the parameter q.

%*
* ?C.(q )
iy BMEL. T o i .

3q i 3gq

iel
1= {1:¢,@" =0}

tf a2 2
| -— s
J@(),0) = Be(t)) + | Lex(e),u(e)de (3 gty (hw + & PO @) 50V qeR
to and if there exists an absolutely continﬁg?s*( )
P (x (t,.)
‘ ~ The problem is to find the optimal control, Banctbon B4 :Lto’tf] Rl Bty =—=3 £

e e . . o

£
i
i
b

u (+), based on the measurement xom when the opti-

mality criterion is minmax, i.e., find an admissi-
*

ble control u (+) satisfying

*
sup J(u (+),q) S sup J(u(+),q) (4)
qeQ q€Q

for all u(.) eMm,

One approach to the problem would be to deter-

mine q(u(-)) satisfying for every admissible u(.)

J(u(+),qCu())) 2 Ju(+),q) V¥ qeQ

and then determine the admissible control which
minimizes J(u(+),q(u(+))). This approach, however,
is not feasible because of the difficulty in deter-
mining q(u(+)).

Alternatively, one can assume q is fixed and
find G(.,q) satisfying for all qeQ

J(@(,q9),9) S Ju(+),q) ¥ u(-) el

1f q° ¢ Q maximizes J(G(*,q),q), then d(-,q°) is a
candidate for the minmax control, While it may be
possible to perform the above steps, the resulting

control, 4(-,q°), can only be the minmax control if
J(u(+),q) has a saddle point solution, i.e., there

is a (u°(-),q°) satisfying

I’ (), £ JW’(+),q%) 5 Ju(+),q%

for all u(+) €0 and q€Q. This will not always be
the case for these initial state uncertainty prob-
lems., Judging from the examples, what will usually
occur in a problem is that for some values of Xom

there will be a saddle point solution while for
others there will not.

In the next section, we present a sufficient
condition for a minmax control when there is a
saddle point solution and in Sec. 5 a sufficient
condition which applies when a saddle point solu-
tion does not exist. In both cases, the sufficient
conditions suggest a constructive method for find-
ing the minmax control.

In the following,we assume f(-,-) : R® xR®~RM,

9(+) :R" = R and L(+,*) :R" xR™ ~ R are C1 func-
tions and that Q = (q :C(q) S 0} where C(+) : R™-RP

is also Cl.
3. The First Sufficient Condition

Theorem 1. Suppose @(+) is convex on R". Let
* %
u (+) be admissible and h(q) = J(u (+),q). If

%*
there exists a q €Q and a non-positive vector p
such that

such that
A T %, .
iii) A4 = L(y,v) + B (t)f(y,v) - L(x (t),u (t))

T * * s T %*
-B()E(x (B),u (v) + BT (E)(y-x (£))20

v yeR", V veU and for almost all te[to,tf]

where x*(t) is the solution of
Lk %* * * *
x (&) = £(x (c),n (), x (to) = xomi-q

*
then u (+) is a minmax control.
Proof. Conditions (i) and (ii) imply h(q) s

* %* %* %*
h(q ) V q¢Q or J(u( (*),q) < J(u (-),q ) V¥ qeQ.
Following [9], condition (iii) implies

* * * * *
Ju (+),q ) = J((*),q ). Thus (v (*),q ) is a
saddle point solution and, since all pairs

*

(u(+),q) with u(+) €M and qeQ are playable, u (-)
is a minmax control. a
Condition (iii) of Theorem 1 is used to show

* * *
that J(u (*),q ) < J(u(+),q ) for all u(-) em.

Rather than using a simple sufficiency approach
one could use a field theorem such as [10,11] to

show that J(u*(-),q*) < J(u('),q*). If this is

done, the assumption that ¢(.) is convex can be

dropped.
This theorem suggests the following procedure
for finding a minmax control.

1. Solve the necessary conditions for the optimal
control problem (1)-(3) assuming q is known.
This yields G(+,q).

2. Evaluate J(u(+,q),q).

3. Maximize J(u(+,q),q) subject to C(q) < O.

Call the maximizing solution qo.
¥ ~
4, Let u (*) = u(-,qo) and evaluate h(q) =

*
J( (+),q).
5. Check the sufficient condition of Theorem 1

w
with u (.) as the candidate. This involves

*
finding a q and p satisfying (i) and (ii).
In (iii), B(+) can be taken as the multiplier
from the optimal control problem of Step 1

*
with q = q .
This procedure often works when there is a
saddle point solution for the particular X o under

consideration but will not work when there is no
saddle point solution, A simple example illus-
trates this technique. 1

1
J(u(*),q) = % xz(l) + % j uz(t)dt ) '
o
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k(e) = u(t) , x(t) = x_+q (6

Q={q:lq| s1} €))

From Step 1 we obtain ﬁ(t,q) = - % (xon + q) and
from Step 2 J(u(-,q),q) -% (xm+ q)z. The
adjoint variable in Step 1 is A(t) = % (xom + q).
The maximization problem in Step 3 yields q° =1
*
1f x_ 20 and Q= -1 if X,y < 0. Then u (t) =
~ o 1 *
u(t,q ) =- 2(x‘mﬂ.) if xmio while u (t) =
e 1 2
- 2(xom 1) if xm<0. Also h(q)-l.(xm+1) +
1 2 1
2 (X pt) " -5 (x +1)(x +q) if X 20 and h(q) =
1 2.3 2 1
a(xom-l) +2(xm+q) - 2(xm-l) (xom+q) if xm<0.
If Xom 2 1, the sufficient condition of
Theorem 1 are satisfied with the above u*(-) and
* 1 1
q =+1, p = - % (xm+1), B(t) =g (xm-l-l) while
if x < -1, they are satisfied with u*(-) and
o 1O 1 1
qQq = -1, p= % (xom-l),B(t) = (x°I|I -1). For
-1 < Xom < 1, the sufficient conditions cannot be

satisfied and we suspect that there is no saddle
point solution when -1 < X <1, In the next

sections we present a method for treating such
situations.
4, A Transformation

We shall derive sufficient conditions for
minmax control when there is no saddle point solu-
tion by considering an equivalent problem.

Let z(t) = x(t)-q and

k(z(t),u(t),q) = £(z(t) + q,u(t))
W(z(tf).q) = ¢(z(tf) + q)

M(z(t),u(t),q) = L(z(t) + q.u(t))
Now consider the optimal control problem
z(t) = k(z(t),u(t),q) (8)

z (to) X 9)

t
f
K(u(*),q) -V(Z(tf).q)+I M(z(t),u(t),q)dt (10)
t
o

The original problem has been transformed from
one with initial state uncertainty to one with ini-
tial state known, but with an uncertain parameter
in the state equations and cost. For any u(-) €M

and q€Q, K(u(:),q) = J(u(-),q). Thus if u*(-) is

a minmax solution to (1)-(3) then u*(-) is also a
minmax solution to (8)-(10),

In the next section, a sufficient condition
for a control to be a minmax control for the prob-
lem (8)-(10) will be pregented. Since any initial

state uncertainty problem can be transformed to

In Sec. 5,we show that this suspicion is confirmed,
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this form, the condition will also be a sufficient
condition for the initial state problem. Unlike
Theorem 1, this sufficient condition is applicable
when there is no saddle point solution. Of course,
the sufficient condition also applies to problems
which can be formulated as (8)-(10) and we also
have a sufficient condition for optimal control
problems where there is parameter uncertainty in
the state equations. Results for problems with
time varying uncertainty in the state equations
are given in [12,13].

5. The Second Sufficient Condition
Consider the problem (8)-(10).

Theorem 2. Suppose Y (°,q) is a convex function

*
of z on Rn for all q and let u () €M, If there
exists
a) a positive integer Y

b) vectors q", i= 1,000,y
c) absolutely continuous functions

i : - r" -
A e [to,tf] R, 1= 1,2,:0-,Y

Y
d) scalars a1>0, i=1,¢¢¢,Y with Zai =1
i=1
such that 1% {
‘ 3 (2" (te),q)
i) k(cf)-ai 32 y 4= 1,000,y

where zi*(-) is the trajectory corresponding
to (" (),qh
1) *e€@ (), 1= 1,000,y where £(u(-)) =
{q:qeQ and J(u*(-).q) = sup J(u*(-).p)l
peQ

v v
111) ZaMiyt,wdh) + = A @ketweh
jul * gl

Y
T a MM (),0"(®),qY
=1 1

Y
£ ok ©,0" ®,dh
i=1

+

¥,
£ i@yt en 2 0
=1

v yiskn: i=1,2,..-,Y,

V weU and for almost all tﬁ[to,tf]

then u*(-) is a minmax control.

Proof. Consider any u(-) and let zi(-) be the
trajectory corresponding to (u(-).qi) satisfying
z (to) = Xom Then

weatianes

= -

|
|
|
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VR BN A

Y Y
0s T (XiM(zi(t),u(t),qi) + = aboxeEt ) ,uw ,qh)

i=1 i=1
¥ %* *

-fa M(zi (t),u (t).qi)
=] *

Y A
- £ M eonet )o@, qh+ 2itater -+ @)
1=1 1=1

Y Y
= La M(zi(t),u(t),qi) - Za M(Zi*(t).“*(t).qi)
=1 1 =1 1

N *
v St oei®-T )
t
i=1
Integrating the above inequality from to to tf,
using (i) and the fact that zi(to) = zi*(to), the

above inequality becomes

¥ 1 i
(0 5 J aiM(z (t),u(t),q )dt
i=1 "c_
€t
Y 7t ix % i
- L] e MET (), (0) 9
i=l 't

o

yavneteg,0 &
* iil = (z (tf) =& (tf)) (11)

From the convexity assumption and the fact that
@, =0 4 & L a00N

Y Y
g i i 4 i* i
Tap(z (t)sq) - Zoy(z" (t)=q)
o1 1 f fay 1 £
\ Bu(zi*(tf).qi) . g%
2z 1:101 7 (z (tf)-z (tf)) (12)

Combining (11) and (12) leads to
t
¥omiog 3. FY %
) cxi‘.(z (tf),q )+ | M(z (t),u(t),q )dt |
i-l “ ut ]
o

¥ & %* f * *
: talvetey). el net @0 (t).qi)dt]
gk 1 £ I
(8]

Since at >0, i = 1,eee,Y, there exists an
tetl,---,v} such that
.

,(zi(tf).ql) + f Mzt (0),u() ,qhrae 2

t
o

g

.
v ep,ah + [ et o, @,qha
t(’
or,
i * i
J(u(s),q ) 2 J(u (+),q)
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or,

sup J(u(*),q) 2 J(u*(-).q1>
qeQ

* *
since q'ef” (1)), 3 (+),q") = sup 3" () ,qh
q€Q
and the theorem is proved. O
This theorem suggests the following method
for finding a mimnmax solution when there is no
saddle point solution.
1. Transform the initial state uncertainty prob-
lem into the form (5)-(7).

2, Choose a number Y 2 2 and vectors qieq,
1= 1,000y,

3. For this choice of Y and qi, consider the
optimal control problem

t

& b f
Ku()) s T ai[w(zi(tf).qi)+r M(z‘(:).u(t).q‘)dc}
i=1 Sl -
o

5 8,4 T v SO
z (t) = k (2 (t),u(t),q ), z (to) xom'i 1,e00,Y

where the ai are as yet undetermined.

4. Use the necessary conditions for this optimal
sontrol problem to determine a candidate
U(t;al’.."ay).

5. 1f possible, choose (x

all i,je{l,...,v]

t
£
v@tep,ah + [ et um,qha

t
o

1,---,cuv\() so that for

t

r

£
(t),qj) + J

M(zd (0) ,u(e),qd)ae

t
o

= W(zj

6. If such 011,---,GY) exists with o, > 0,

X *
= v N ogad 2 o, = 1, let u (t) =
i=1
---aY) and check the sufficient con-

i

:(t;dly
ditions of Theorem 2. The functions Xi(-) can

be taken as the adjoint variables from the
problem in Step 3. To verify (ii), one must

%*
evaluate h(q) = K(u (+),q) and show that q',
i=1,+++,Y maximizes h(q) subject to C(q) 0.

7. 1f no oy, i = 1l,¢¢¢,Y can be found with ai>0,
b4
i=1,-++,Yand Z By o 1, return to
i=1

Step 2 and choose a new set (Y,qi).
What makes this technique difficult to apply
is that there is no apparent technique for making

a good choice of Y and the vectors q1 in Step 2.
It may be necessary to try many combinations
before the method will be successful. Neverthe-
less, the method is a possible one for finding
minmax controls and, except for a special linear
quadratic case, the only one known to the author.
We next apply this technique to the simple
example of Sec. 3. After applying the transfor-
mation to the problem (5)-(7), we have
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1
K(u(+),q) = % (z (1) + q)2 + -% {' uz(t)dt
o

z2(t) =u, z(0) = R {q:lql s 1}

2 1 and

Here we consider -1<x <1,
om

In Sec. 3, the minmax control for Xom
x_ S -1 was found.
om

Since q is chosen to maximize K(u(:),q), we expect
q to be on the boundary of Q. Thus we choose Y=2,

q1 =1, q2 = -1, With this choice, the optimal

control problem in Step 3 becomes
1
r uz(t)dt

v

o

1
V uz(t)dt
‘o

= 1 1 2 .0
K(u(')’alsaz)t_z' al(z (1) +1) +'5 al

1

1 2 2
+ 2(zz(z (1)-1) +t3 0,

il =u, %,
‘From the optimal control necessary conditioms,
o, -

3 o R 2
2 “om 2

G zl(o) = zz(o) =X

and then

we obtain z(t;a az) = -

1'

1+ i 1-x

from Step 5, 01 ==, 0=
*

the minmax candidate is u (t) = - xom'

this can only be a candidate when |x°ml < 1 since

om

« Thus,

N

Note that

u(t) is constrained to satisfy |u(t)| <1,
Using Theorem 2 with

2

* 1
u (t) = =X N=2,q =1,:q ==1

1 1+ Xom .2 xm-l 1+ Xom 1-x0m
b e b et e el e

conditions (i) and (iii) are readily satisfied.

Condition (ii) is also satisfied since h(q) = % q
P 2
+’§xom =1, q

subject to |q| <1,
Combining this result with that of Sec. 3, we

can conclude that the minmax control is

2

and ql # = -1 both maximize h(q)

1
- - 2
2 (x_+1) 1if x 1
*
u (t) = - X if sf <x_ X1
om om

3
- » <
2 (x 1) if x 1

The results presented above are illustrated
further with the examples in the next section.

4, Example Problems

1,2 2 e
Example 1. J(u(-),q)--z- (x1(1)+x2(1))+: u (t)dt
o

X =%, xl(o)-q1+x10m, ky=u, x2(o)'q2+x20m

O-(q=qf-150.q:-1‘01

While this is a linear quadratic problem, it
cannot be solved by the methods of [1] since Q is
not in the form required there. If q is known,
the optimal control is

24»()(1Oln + ql) + 18(x20m + q2)

u(t,q) = 75 (t~1)
. 6(xlom + ql) - 10(xzom + q2)
29
and

~ 12 2 14 2
J(*,q9),q) = _23 (xlom + ql) * -2_9 (xzom ik qz)

18
+ 729 (xmm tqp) (xpq + qz) (13)

Consider first Xlom = 10, X50m = 10 and use the
procedure outlined after Theorem 1. The q which
-
maximizes (13) subject to qeQ is q° = r ii and
and minmax candidate is
* - 4
u'(t) = G(t,q°) = 2—83 - g;;"
With this control,
* 1 .15 2
h(q) = J(u (*),q9) =75 (G§+ q,)
1 404 2
+ 2 (29 + q; + qz) + 55.536

*
This u”(+) and h(q) along with q) = 1, q, = 1,
21 253 462

e P PR e gy mibe) -

- %%2 t + %%9 satisfy the sufficient conditions of
*

Theorem 1 for X0m = 10, X50m = 10. Thus u (t) =

462 506

29 t - 53— is the minmax control.

Nexggconslder the case when the measured
initial state valuves are X 0m = ) X20m = 0. If

one applies the Theorem 1 technique, no infor-
mation is obtained since the solution obtained
this way fails to satisfy the sufficient con-
ditions of Theorem l. Thus we approach the prob-
lem through Theorem 2. The transformed problem is

2, (t) =2z,(t) +q2,zl(0) =1, 2,(t) =u(t), z,(0) =0

1
1 2 - 35

K(u(+),q) =5 (2, (1) +q))"+ (2,(1) +q,) _[+.ou (t)dt
It is expected that the q vector will be on the
boundary of Q and thus we try some combination of
the four vectors

N _Flj B _Fl"
it 5 P RN il L Sl 8 Rl U
2 _ =11
el
(Other possibilities include v = 2, 3 or 4 and a
corresponding number of vectors from the above set
of four vectors.) For this choice, the optimal
control prublem of Step 3 in Sec. 5 is

e i
We choose Y= 2 and q = L1, a
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- g

i

=1

A A

e 2 2
k(u(-),al,az) = % alr(z1(1)+-1) + (12(1)4-1) }

1
T O 2
+ 2 o, "ou (t)dt+2 aZL(yl(l) -1)
+ (-1 Nsd e rt 2(¢t)ae
Y2 g3 z.;o" &

2 (e)=z,() +1, z,(0) =15 ¥, () =y,(t)-1, y,(0) =1

2, (t) =u(t) » 2,(0) =05 J,(t) =u(t) , y,(0)=0
Following Step 4 the solution of this optimal con-
trol problem is

Lo 1 2
u(t,al,az) = 9% (9&11-321 -18x -3sz12)(c-1)

i 2

1 2
T (4801-50u1-10u2-500102)
and from Step 5, al = %, 02 = % Since al>0,
@, >0, 01 + 02 = 1, a minmax candidate is
- ~( 99 15 36 34
i st IRkl "0t T

We now apply the sufficient condition of .
»

%*
Theorem 2 with the above u (+) and

B o ol G gt [N g 6
o Sl s L Tl v R et e RS R 1_-1]
1 27,324
A (e) = -
(114) -27,324(t-1) + 1782
3 2700
AT(t) = 3
(114) 700(t-1) - 3150
& %3
2 Bt gt tre2
z (t) =
49 2 3
o lih et
& 3 1.2
0 - =t -t
- 19 19
g (¢) =
18 2 3%
v i A

It is straightforward to verify that conditions
(1) and (iii) of Theorem 2 are satisfied. To

¥
verify (ii), J(u (+),q) is needed.

2
* 1 /8 S 16 A\
J(u (-).q)-2 \19+q1+q2/ +3 ( 19+q2/ + .504
s ol bl
To verify (i1) it must be shown that q = | 1] and
«] 9 * =
= r_: maximize J(u (*),q) subject to q€Q. This
. -
can be done by noting that this nonlinear program-
ming problem satisfies the conditions guaranteeing
the existence of a solution, finding candidates
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from the necessary condition for nonlinear pro-

*
gramming problems and evaluating J(u (¢),q) for
these candidates.

Thus alt the conditions of Theorem 2 are

*

satisfied and u (t) = %% t - %% is a minmax solu-
tion when X ™ 1, X90m = 0.

This result was obtained by guessing Y = 2,

N o 2 _ =17
S =iyt =) 54 If instead we choose

iy -l T i S\ e RN T o B |
¥eZ o m| slev = jlord =], |,

(=
e find that . and @, d tisf
q L+1J,we n a lan Zonotsa sty
o, >0, 02 >0, oy + 02 = 1. Thus the choice of

Y and qi is crucial and several choices may have
to be tried before the minmax solution can be
found.

Suppose one assumes the measured value of the
initial state is exact and finds the optimal con-
trol uopt(') under this assumption. Then, when

X10m = *20m = 10, :zg J(uopt(-),q) = 184,55 while

the minmax value is 183.59. When Xlom = 1 and
Xo0m = 0, :zg J(uopt(-),q) = 4,362 while the min-
max value is 3.447., 1In the latter case a reduc-
tion in cost of over 20% may be obtained by using
the minmax control as opposed to using the opti-
mal control with the assumption that the measured
state is exact.

Example 2. Consider a spring mass system where
values of the spring constant lie in a known range
but the exact value of the constant is unknown.

A force is applied to the mass and the objective
is to choose the force to maximize the position of
the mass at the final time when the system starts
from a known initial state with zero initial
velocity. The optimal control problem is

J(u(+),k) = -x1<ﬂ)

. 1

X, (8) = x,(t) , xl(O) o

iz(t) = -k xl(t) + u(t) , xz(o) =0

K=f{k:1sks4} , U= {u(t) :uz(t) -150}

Here we have assumed the mass is unity, t_= T,

f
and k is the spring constant. An optimal control

*
u (+) is a control satisfying for all admissible

u(+), sup J(u*(-),k) < sup J(u(+),k). If k=1,
kekK keK

the optimal control is u(t) = +1, te[0,m]. While

if k = 4, it is

-1, tc[o,g)
u(t) =
+1, te,m

However since k is unknown, neither of these con-
trols has the minmax property. Since the problem
is of the form (8)-(10), Theorem 2 can be used.
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Following the procedure outlined after Theorem
2, a minmax candidate is

-1, ceﬂo,tl)

*
u (t) =
+1, te(e,,m]
= m
where t is defined by cos t, = 3 -1, 0<t1<§.
Using this candidate in Theorem 2 with
1 1
Y=2, k. =1, k, =4, 0 =1-"—, o ==
1 2 i ﬁ 2 J3
. al cos t 3 412 cos 2t
A (t) = s A(E) -
2 i
-al sin t 7 sin 2t

it can be shown that the above u*(-) is a minmax
control, Condition (ii) is the most difficult to
verify since it required showing that k = 1 and

k = 4 are solutions to the nonlinear programming
problem of maximizing

2 B e = 1
X cos vi (tl-ﬁ) - (2 + k> cos #/k T = *
subject to 1 < k s 4,

7. Concluding Remarks

The optimal control of systems with uncertain
initial state measurements or with parameter uncer-
tainty in the state equations has been considered.
The optimality criterion was taken to be minmax.

For probiems with initial state uncertainty,
the initial state mcasurement space can be divided
into two regions. In one region, the problem has
a saddle point while in the other there is no
saddle point solution. Theorem 1 is applicable
when the initial state measurement is in the first
region and Theorem 2, while applicable for both
regions, is more useful when there is no saddle
point solution. At present, there is no simple way
to determine a priori if there is a saddle point
solution for the measured initial state under con-
sideration.

For situations where there is no saddle point
solution, the initial state uncertainty problem was
transformed into a problem with initial state known
but with uncertain parameters in the state equa-
tions. This allowed us to derive Theorem 2, and,
in so doing, also obtain results which are appli-
cable to problems that are modeled with uncertain
parameters in the state equations.
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