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1 SECTION I

INTRODUCTION

High intensity, pulsed electron beams are widely used to study the

P——

dynamic response of materials and structures subjected to rapid, in-depth

heating. When performed effectively, such experiments can be of considerable
value in studies relating to the nuclear hardness assessments of reentry
vehicle systems.

The manner in which the beam energy is distributed throughout the
depth of a sample target is dependent upon the electron beam current and the
voltage which accelerates the electrons. In general, the energy deposition
is nonuniform, decreasing with depth into the sample. The time required
for this deposition to occur is variable, but is nominally 50-200 nanoseconds.

For any electron beam experiment to produce meaningful results, it is
necessary to know the thermal loading conditions of the sample. These
loading conditions have traditionally been determined through calorimetric
measurements made on separate beam ''diagnostic'" shots. On such a shot,

a calorimeter block, or an array of such blocks, is used to measure the
total energy in the beam at the sample location.

A typical calorimeter block is shown in Figure 1. The block is
generally constructed of graphite because of the high vaporization energy
of that material. The energy deposited in the calorimeter is deduced from
a measurement of the block temperature. This temperature is generally
measured by means of a thermocouple attached to the rear surface of the

block, or placed inside of the block by means of a hollow screw.
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Figure 2. Typical Temperature History Given by Thermocouple Attached
to Rear Surface of Calorimeter
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Shown in Figure 2 is a typical temperature history as given by a
thermocouple attached to the rear surface of a calorimeter block. Because
the beam energy is initially deposited in a nonuniform manner, some time
must elapse before it is uniformly distributed throughout the block by
means of thermal conduction. As shown in Figure 2, the back surface
temperature rapidly rises with time until the energy is uniformly distributed,
and then slowly decreases as energy is lost from the calorimeter block to
the surroundings.

Because the thermocouple measures the temperature at a given point
in the depth of the block, there is considerable uncertainty involved in
detecting the total energy deposited unless the block is at a uniform
temperature. For the case presented in Figure 2, it is generally assumed
that the block is at a uniform temperature when the maximum back surface
temperature is achieved. The total energy in the block at that time is
then obtained using the specific heat of graphite at that temperature.

To obtain the energy initially deposited in the calorimeter block, various
extrapolations of the '"cooling curve' are employed. The most common
extrapolation, a linear one, is shown in Figure 2. This extrapolation
assumes that the block cools at a constant rate and that the initial
energy in the block can be given by the initial temperature obtained from
such an extrapolation.

It is the purpose of this study to analytically model the thermal
behavior of a graphite calorimeter block subjected to an initially non-

uniform temperature profile. This model will allow prediction of the amount
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of energy lost from the block by the time a uniform temperature profile

is achieved. 1In addition, it will determine the validity of the assumption
that the bleck is at a uniform temperature when the maximum back surface
temperature is reached. Then, through parametric variations, the model
will be used to determine in what electron beam environments graphite
calorimetry can be used with confidence.

For this study, the simplified calorimeter model of Figure 1 is
employed. It is assumed that the only means of energy loss to the sur-
roundings is that of thermal radiation; the effects of convection and thermal
conduction to the surroundings are neglected. 1In addition, it is assumed
that the calorimeter is exposed to a uniform beam with an area equal to
that of the calorimeter face. Thus, conduction in the lateral directions
is neglected. Finally, it is assumed that the beam energy is deposited
instantaneously, with the resultant temperature profile being taken as an
initial condition.

In Section II, a mathematical model is developed for a calorimeter
block subjected to these conditions and constraints. In Section III, the
model is applied to a graphite block through specification of the thermal
properties of that material. Section IV describes the manner in which
a computer model is developed to determine the effectiveness of graphite
calorimetry. Section V presents the results of a parametric study in which
the radiation losses are quantified for a variety of electron beam environ-
ments. In addition, Section V presents an evaluation of the manner in
which calorimetry data are presently reduced to yield information about
the loading environment. Finally, Section VI presents conclusions and

recommendations arising from this study.
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SECTION II

DEVELOPMENT OF MATHEMATICAL MODEL

1. INTRODUCTION

For the problem of one-dimensional heat conduction into a graphite
calorimeter block, proper account should be taken of the variation of
thermal conductivity and specific heat with temperature. For this
reason, the one-dimensional heat conduction equation cannot be reduced
to the common Laplace equation. Rather, it must be written in its most

general form:

3T L 3 3T
S e e = 1
E pC 9x ( ax) (1)

For the problem being addressed, the initial and boundary conditions
imposed upon equation (1) prevent it from being solved through analytical
methods. The radiation heat transfer at the free surfaces provides a
nonlinear boundary condition, while the initial temperature profile is
generally nonuniform. For these reasons, the problem being considered is
best analyzed through the use of finite difference techniques.
2. DEVELOPMENT OF FINITE DIFFERENCE EQUATIONS

Rather than apply finite difference approximations to equation (1),
these approximations should be applied to the First Law of Thermodynamics
for the calorimeter block. This approach allows consideration of radiative

losses from the sides of the block without resorting to a two-dimensional

formulation.




Consider the calorimeter block shown in Figure 3. If this block
is divided into M differential elements, each Ax thick, an energy balance
can be developed for each element. By choosing Ax to be small, the ith
element can be considered to be at a uniform temperature Ti' Because of
geometrical similarity, the development will be identical for each internal
element. To account for the front and rear free surfaces, however, a
separate development is necessary for the lst and Mth elements.

a. Internal Elements

Figure 4 illustrates the various mechanisms by which energy is
transferred into and out of the ith internal element. Since this element

is at a uniform temperature T,, conduction terms for the y and z directions

i
can be neglected. The conduction into the left face of the ith element,
given by Q?(x)’ results from a temperature difference between element i-1

and element i. Similarly, represents conduction out of the right

k
Qi(x+Ax)
face of the ith element. The energy loss to the surroundings, assumed to
occur through thermal radiation only, is given by QE.

The First Law of Thermodynamics, as written for the ith internal

element, is

9E
4 o <K _ Ak . -
it - Y T U T YU s

With i denoting position and n denoting time, the left hand side of

equation (2) is approximated with the following fully implicit finite

difference scheme:
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Note that the subscript n denotes a known quantity, while the subscript

n+l denotes an unknown quantity at the next time step. Using the same

difference scheme, the energy conduction terms are approximated by

R —kAT
Uy = Y- ( i )(x)

& [ “i,n +2ki—;£] [Ti-l,n+l " Tian ] (4)
Ax

k e -k 9T
Qi(x+Ax) o < 3x)(x+Ax)

: Yz[ki,n e T ][Ti,n+l ¥ Ti+1,n+l] (5)

2 Ax

For the sake of simplicity, without any loss of accuracy, the thermal con-

ductivity of the ith element is calculated using the known temperature,

Ti " The radiation loss from the sides of the element is given by
’
QF = oe 24x(Y+2) T, - (6)
| i,n+l a

Putting equations (3) through (6) into equation (2) and rearranging

yields the following implicit finite difference equation:
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Ti,n+l b Ti,n =

{
&= At p
E | k, +Kk — T
| i = e
k| ( i,n i l,;) 20C sz i-1,n+l
: fyn
At
-k, + 2k, + k —_——} T.
( i+l,n s I i-l,n) 20C. AXZ i,n+l
i i,n
At
+<%i,n W ki+1,n) 7 Ti+1,n4
2pC.\ Ax
i,n
’ At oe 4Ax2(Y+Z) 4 4
{ - xz ( et > Ti,m_1 g Ta (7

2pCi,nA

Equation (7) is a noniinear difference equation because of the radiation

term involving Ti n+l4' By using the common radiation approximation [1],
’

4 4 3 4
: Tiaer =58 o Toawt ™ g (8)

equation (7) can be linearized*.

1. Gaumer, G. R., '"Stability of Three Finite Difference Methods of
Solving Transient Temperatures," ARS Journal, Vol. 32, No. 10, October 1962,

pp 1595-1597.
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*T2e radiation approximation is obtained by taking the time derivative
of T
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: Equations (7) and (8) can be combined in a considerably simplified
fv‘ form if the following terms are defined:
; 2 1
£ ] _ 4AxT(Y+2Z)
§, = 9
YZ
S, =h4oe T, > (10)
21 i,n
S3i = UE[ 3Ti,n = Ta ] (ll)
- (12)
41 2pC sz
i i,n
SSi % ki,n * ki+1,n A
LT P S R S e Y i
& Sy ™ B T Rae i
. [}
.1
b |
‘j Each of these quantities are known, being labeled with the subscript n.
;ﬁ These definitions allow equations (7) and (8) to be combined in the
n(
i following form:
b !
B )
.
/-
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This equation is the final form of the finite difference approximation
to the First Law of Thermodynamics for the ith element. It can be used
to describe each of the internal elements depicted in Figure 3. To

completely describe the calorimeter block, additional equations must be

developed for the first and Mth elements. These developments are presented
in the following subsection.

b. Elements at Front and Rear Free Surfaces

Figure 5 illustrates the mechanisms by which energy is transferred
into and out of the first element. This element, at a uniform temperature
Tl’ experiences conduction through the right face only. Energy transfer
by radiation occurs at the front surface as well as from the free side

surfaces of the element.

The First Law of Thermodynamics, as written for the first element,
[

T TP O T —




P

o~ gl . v
B B AT e M Bt .

e~
PR,

|
]

Lt A 0 5 e A NS L N e L, 5 Lﬂk;.a"q.k,;-_w;-..-,‘;.,u‘. s e AR R Rl T h T s

r

JE
1k .
3t - Y eeax) Q

17)

Using the same finite difference approximations employed for the internal

elements, the components of equation (17) are given by

3E, (BTl)
-;T = pClAXYZ _a_t— = pCl,nAXYZ

-

At

5 ol = Tl,n] (18)

K 3 T .
U (=ax) T Y2 <_k3_x)(x=Ax) ek

o0 k2,n] [ T TZ,n+l] 1%)
Ax

) N 4 ¥ 4
Q = oe 20x(Y+2Z) + YZ[ Tl,n+l T, ] (20)

Putting equations (18) through (20) into equation (17) yields a relation

which is similar to equation (7)

At
o (kl,n i kz,n) 26C i T1,n+1
P 1,n
At
* (kl,n . k2,n) 2 T2,n41
2pC Ax
Lyn
At o€ 4 sz(Y+Z) + 2YZ Ax 4 4 (21)
- ) s - T
2 Y7 1,04l a
2pC, _Ax
i,n
13

M——
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After introducing the radiation approximation of equation (8), the

following definitions are introduced to simplify equation (21):

3

2 821 4G€Tl,n (22)
; | |
: e 4 4
1 84, = 0€ [ 3Tl,n A0 ] (23)
E
- §. .. At (24)
k 41 2
: 29Cl,nAx
:
3
§ 851 = 1,0 * Eoyn (25)
E |

Note the similarity between these definitions and those employed for the 1
f internal elements. Putting equations (22) through (25) into equation (21)
3
4 yields the following final form of the finite difference equation for

the first element:

S SRS

Ty, 1 = 8417551 ~ Sg1° (51 * 280)°8yy)
+T) n+1 5417 551) _
- 'Tl,n + 841'(51 + 2Ax)-s31 (26)

14
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Using a development which parallels that for the first element, the

difference equation for the last element (i = M) can be written as

Ty-1, nt1 S S

+T (-1

M,n+1 Sum’ (51 + 28x)-8,\)

~ Sum™Sm T
= _TM,n + SAM'(Sl + 2Ax)'S3M

where

3

S = AOaTM’n

2M

-

4 4
3M g [—3TM,n oy Ta ]

0
[}

At

4M 2
ZpCM’nAx

™" e Nl

3. SOLUTION OF FINITE DIFFERENCE EQUATIONS

27)

(28)

(29)

(30)

(31)

Equations (16), (26), and (27) constitute a set of M equations which

can be used to describe the thermal behavior of the calorimeter block

depicted in Figure 3. Note that each of the equations is of the form
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1Ll T 5% e * Cilemi o ™ P

where
foxr 1 = 12
Al =0
By = -1 = §,°S5; = §,,°(5) + 28%)-5,,;
By 4100
Dl = _Tl,n + 341-(81 + 2Ax)-s31

for 1<i<M:

G T T
By = =1 = 8,091 = S54"%1" 0t
Gy = 5449y

e TR T

S 5 ¢

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)




A il BB it .

e T A e S T T R T

;
I

for i = M:

A = S Som (41)
BM = -1 - S4M.S7M - S4M°(Sl + ZAX)‘SZM (42)
Gy = 0 (43)
By = Ty o + Sy (5y + 2828, (44)

Because equations (16), (26), and (27) can be written in the form of
equation (32), with coefficients described by equations (33) through (44),
they constitute a tridiagonal matrix. Use of these equations to predict
the temperature profile history for the calorimeter block requires that
this matrix be solved at each new time step. The matrix is easily solved
through use of the Thomas Algorithm [2].

For each new time step, solution for Ti b is performed as follows:
’

A1
Bi = Bi o Tt where Bl = Bl (45)
i-1
D, - Ay, D
o B i=]1 w» Lk
Yy Bi , where Yl Bl (46)

2. Von Rosenburg, D. U., Methods for the Numerical Solution of
Partial Differential Equations, pp 113, American Elsevier Publishing
Company, Inc., New York, 1969.

At ch




After computing Bi and Y for all i (called the First Half of the Thomas

Algorithm), one then computes the new temperatures by

TM,n+1 = Yy (47)
G. T
= sl nl
Ti,n+l b B (48)

i

(called the Back Half of the Thomas Algorithm).

4. SUMMARY

In this section, the First Law of Thermodynamics has been applied
to each of the M difference elements represented in Figures (3) through
(5). This has resulted in a mathematical model which is to be used to
predict the thermal behavior of graphite calorimetry under a variety of
conditions. Before such use can be made of this model, information is
required regarding the material properties of graphite. This information

is given in the following section.

18
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SECTION III

MATERIAL PROPERTIES OF GRAPHITE

Before the mathematical model developed in Section II can be applied
to the specific case of a graphite calorimeter, values must be assigned

to certain material properties. These properties are the density, o,

the emissivity, €, the thermal conductivity, k, and the specific heat, c.
Graphite is produced in different forms through various means.

3 For this reason, different values of density are quoted in the literature.

The value used in this study is 1.8 g/cm3.
The total hemispherical emissivity for graphite is nominally 0.70

to 0.95. For this study, a value of 0.85 was chosen.

3 As mentioned in Section II, the thermal conductivity of graphite

- is a function of temperature. For the range of temperatures encountered

by graphite calorimeters, the variation of the thermal conductivity can

be quite significant. Reference 3 gives values of k versus T for various

diea o

forms of graphite; for each case, k was measured in the direction of the

] grain axis. A bilinear relationship was found to well describe the

behavoir of k, which varies from 0.40 cal/cm sec °K at 0°K to 0.05 cal/cm

sec °K at 4000°K. This relationship is shown in Figure 6 and is represented

E mathematically as

0°K < T < 1000°K k = 0.400 - 2.50x10"* T (cal/cm sec °K) (49)

; 3. Goldsmith, A., Waterman, T. E., Hirschnorn, H. J., Handbook of
k! Thermophysical Properties of Solid Materials, Vol I, pp 115-121, The
! MacMillan Company, New York, 1961.

1Y
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1000°K < T < 4000°K k = 0.183 - 3.33x10-5 T (cal/cm sec®K) (50)

The specific heat of graphite is also a function of temperature,
primarily in the range of 0°K < T < 1000°K. Reference 4 presents a specific
heat versus temperature relationship for graphite. Again, a bilinear
relationship was found to well describe the thermal behavior. Shown

in Figure 6, this relationship is
0°K < T < 1000FR. G = 5.0x10—4 T (cal/g°K) (51)
1000°K < T < 4000°K C = 0.50 (cal/g°K) (52)

Using the definition of specific heat, the internal energy of graphite

can be expressed as a function of temperature aliso:

u(T) = G AT 53)

where u(T) is calculated relative to some arbitrary temperature To'
Taking To to be the ambient temperature, Ta’ equations (51)~(53) yield

the following relationships for u(T):

0°K < T < 1000°k u = 2.5x10™* (1% - Taz) (cal/g) (54)

4. Hultgren, R., Selected Values of the Thermodynamic Properties
of the Elements, American Society for Metals, Metals Park, OH, p 91, 1973.

21
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1000°K < T < 4000°K u = 0.50T - 250(1.0 + 1.0x10~° Taz)(cal/g) (55)

These equations can be written in terms of T versus u:

3 2)1/2

0 cal/g < u < 228.5 cal/g T = (4.0x10” u + - % (°K) (56)

228.5 callg < T = 2u+ 500 (1 +1x107°1 %) (°K) (57)

A
(=4

When these material property relationships are combined with the
mathematical model of Section II, the result is a calculational tool for
predicting the thermal behavior of a graphite calorimeter. How this

calculational tool is incorporated into a computer model for performing

such predictions is the subject of the following section.
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SECTION IV

COMPUTER MODEL

As stated earlier, combining the mathematical model developed in
Section II with the material property relationships defined in Section III
results in a calculational tool for predicting the thermal behavior of a
graphite calorimeter. This calculational tool has been incorporated into
a computer model to allow for rapid solution of a large number of problems.

The computer model used for this study is presented in the following
pages. The model is fairly straightforward and should be self-explanatory.
For convenience, all symbols employed in the model are defined. In addition,
various sections of the model have been identified with regard to their
function.

The following section presents the results of utilizing this model

for a variety of system dimensions and initial thermal loading conditions.
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PROG~AM MACI(INPUT,OUTPUT)
INENTIFTCATION NF SYM30LS USED IN COMPUTER CODJE

W = THICKNESS OF CALQORIMETEZR BLOCK.CM

Y - HZIGHT OF CALORIMETZR BLOCK.CZH

7 - WINTH OF CALORIMETER 3LONK.CM

PHO = DEMSITY OF CALOSIMETER BLOZK MATECIAL.G/CM®**3

£M1 - TOTAL HZMISPHERICAL EMISSIVITY OF CALOFIMETERP SURFACE

TA - AM3IEMT TEMPERATUREZ. K

SIG = STEFAN 30LTZMANN CONSTANT, CAL/CM*¥2SEC K**4

I - SUBSCRIPY NENOTING POSITION IN CALOSIMETER THICKNESS

x(I) - LOCATION OF ITH ELZMENT, CM

9% - THICKNESS OF EACH DIFFERENCE ELEMENT,CM

M - TOTAL NUMBES OF DIFFETENCE ELEMENTS

N = SUSSCRIPY DENOTING TIME

TIME = YIME ZLAPSZD SINGE ENERPGY DEPOSITIONs SEC

DT - DUFATION OF TIME STEP (VARIABL:-)«S7C

K = TOTAL NUMBEX NF TIM= STEPS ALLOWEN

A3 = VAPIASLE USED TO ADJUST NEXY TIME STEP

A3T = YARIARLFE USEN TO ANJYUST NEXT TIME STEP

Ti(I) - TFEMPEQATURE OF ITH ELEMENT AT OLO TIME (N)

T2(I) = TEMOEDATUYRE OF ITH SLEMENT AT NZW TIME (Né&i)

UL(I) = SPFSIFIC ENFRGY OF ITH SLEMENT AT OLD TIME (N),CAL/GM
U2(I) = SPEGIFIC ZNERGY OF ITH ELEMENT AT NEwW TIME (N+1) ,CAL/GM
CPUI) - SPECIFIC HEAT OF ITH ELEMENTLCAL/G-K

CX(T) = THFIMAL CONRUCTIVITY OF ITH ZLEMENT.CAL/CM**2-SEC-K

UTATL - TOTAL ENZSGY IN CALORIMETER AT 2LD TIMEJ.CAL

UTOT2 = TOTAL ENSPGY IN CALORIMETER AT NEW TIME,CAL

ELNSS = PSRCENT ENZRGY LOS3T AT NG OF GIVEN TIME STEP

S1 - FINITF QIFFZRINCE COSFFICIENT CEFINED IN TEXT

S2(I) THOOUGH S7(I) - FINITE DIFFE-ENCE COSFFICIENTS CEFINEC IN TEXT
A(I) THEOUGH D(I) = FINITZ NIFFE?SNCF CNEFFICIENTS DEFINED IN TEXT
BB(I)«GH(I) - VARIABLES USED IN SOLUTION OF M SIMULTANEOUS FQUATIONS

OIMENSION T1(100)
JOIMENSION T2(1013)
DIMENSION Uutl(iCg)
DIMENSION U2(14G1])
NIMENSTON CP(1CI)
JIMENSION CK(1C3)
DIMZNSION x(100)

NIMENSTION S2(1CJ)
DIMENSION S2(1L2)
NIMENSTON <4(100)
DIMENSION S5¢1CQ)
DIMENSION S€(103)
JIMENSION S7(1C))
DIMENSION A(100)

NIMZINSICN 3(10C)

OIMFNSTCN G (14d6)

NIMENSION D(10C)

JIMENSION Ra2(1453)
NIMENSION GG(10Q)

é"' N=FINF SYSTEM DIMINSIONSMATSCIAL PPOPERTIFES, AND APPEOPRIATE CONSTANTS

W=1.7
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PSSR S

Y=1.
Z=1.
*RH0=1,.80
SIG=1,356€-12
FM1=,85
TA=293.
c
C*¥*#¥)EFINE CCUNTZRSeSIZE FACTORS
K=2
M=133
Mi=M-1
M2=M/2
IX=W/M
T=1 «E=6
C
C¥**SEY INITIAL SPECIFIC ENERGY PROFILE
DATA U1/1800.0l789.01H597 44166640 159%4a1543 4914914914 LCe91389.41337
0090128600123 40e1133401131442080001023¢0977449264487040,y823447710an
07260067.’9.0617-!5660' 51‘00 '“6300“110 ’36G0' 3(:900?.570'2060 '15‘0.9'
01520051001 24060L%0,/
()
C***CALCULATS INITIAL TEMPESATURE PROFILE AND TOTAL ENERGY FROM SPECIFIC
G EENERGY PROFILE
uToT1=C.
07 & I=1.M
X(I)=0x*(I-1)
1 IF(ULLT) «GT.228.5)G0 TO 2
TLUI)=(L2E3%UL(TI)¢+TAR*2) *»,5
G0 70 3
- TI(I)=2.%UL(I) +50C0.%(1.+41,0F-6%TA**2)
3 UTOT1=UTOT14UL (TI) *RHO¥DX*Y*7
4 GCONTINUE
C
C

*»¥DPINT INITIAL VvALUES
OOTINT CgWeYeZePHOGEML sTAIM K

5 FOPMAT (1H14/e1IXe¥W= ¥ E10  Le® CM¥ 15X, %Y= *,ElJelo* CM¥,1LX,
1%7= #,610.06¢% CU¥ /010X *FHO= ¥4T10eGe¥ G/CMZ¥ 10X EML= ¥, E10 oy
215X« *TA= ¥, C10¢4¢% K¥o/ 10X o¥Mx ¥,ILe24Xe*K= *,IL,y//)
PRINT 6

6 FOFMAT(1CX«*LISTING OF INITIAL TEMPFPATURE AND ENEFGY PROFILES®./)

PO INTY 7

FAPMAT (10X 201X ¢ ®*I*e2Xe*DISTANCI(CM)* (2N *TEMPERATURE(K) * 42X, *ENER

*GY(CAL/G)*.2%))

N0 9 I=1.MZ

I12=1¢M2

PATINT BeTaX(I)eTHIC(I) qULII) ¢T2eXx(I2)4T21(I2)UL(I2)

FOPMAT(C10Y a2 (T3 e 3XaF1ia3a3XaE1)etltebYeC1Calke3X)))

CONT INUE

=~

***CALCULATE VARIATION OF TEMPERATYRE D20FILE AS A FUNCTION OF TIME

OO0 O™

TIME=G.
ND 2063 M=1.K
TIME=TIME+DY




C**2CALCULATZ THCRMAL CONDUCTIVITY AND) SPECIFIC HEAT FOR EACH NOCE
N0 12 I=1.M
IF(T1(I).6T7.,1000.)G0 70 11
CK(I)=o4C=-2.55-L%T1(])
CPII)=C.05-4*T1(T)

] GO TO 12
b, | 11 CK(I)=,1833=3,3335=5%¥T1(I)
- CP(I)=.50
¥ 12 CONTINUE

c
C***CALCULATF yA2I0US FINITF DIFFSRENCF COFFFICIENTS DFFINED IN TEXT
S1=(74Y) *L , ¥ (DX**2) /(Y*7)
S2(1) =L *SIG¥TMLI*(T1(1) *¥*3)
SI(L)=(=3,%T1(1) ¥*4=-TAY*4) *SIG*EML !
SGIL1)=NT/ (2., #RHO*CP (1) * (DX **2))
SE (1) =CK(2) +CK (1)
A(1)=00
; (1) ==1.~S4(1)*S5(1) -SL(1) *(S1+2,%0X)*S2(1)
3 C(1)=S4(1)*S5(1)
§ 0(1)==-"1(1) +S6 (1) *(2.¥NX+S1)*S3(1)
N3 23 T=2.i41
S28I)=4, *SIG¥EML*¥(T1(I)**3)
SI(IN=(=3,¥TL(I)*¥L=TA¥¥L) *STGHIM]
S+ (I)=NT/ (2., ¥RHO*CP(I)*(DX**2))
S5(IV=CK(I+1)+CK(T)
SAIIN=CK(I+1)+2.*CK(I)+CK(I-1)
S7T(I)=CK(I)+CK(I-1)
ACT)=S7(I)*S6(I)
B(I)==1.~Su(I)*SA(T)-S1%¥S4L(I)*S2(T)
C(IN=S4(I)*S5(T)
D(I)==TL(I)+SL(I)*S1¥S3(I)
20 CONTINUE {
S2(M) =4 *STIGXEML* (T1 (M) **32)
: SIAMIZ (=2, *TLIM) **4-TA*¥L) *SIG¥SML |
4 S& (M) =NT/ (2,%RHO YCP (M) * (DX **2)) i
g S7(M)=CK (M) +CK (M=1)

o

A(M) =S4 (M) *S7 (M)
! FIM)==2 =S4 (M) ST (M) =SL(M) *¥(S1+2.%DX) *S2 (M)

: C(M)=0.

1 DIM)==T4 (M) +SL (M) *(2,%0x+S1)*S3(M)

. 1
- C***PESFNOM SOLUTION OF M SIMULTANEOQOUS EJUATIONS 8Y THOMAS ALGORITHM
¥ | 33(1)=3(1)
R 66(1)=C(1)/72(1)
€ A N0 35 I=2.M1
" £ 39(I)=2(I)-A(I)*C(I-1i)/BR(I=-1) 1
E i GGLI)=(D(T)=A(I)*56(I-1))/83(T)
g | i 20 CONTINUE
s | i B3 (M)=2(M)=A(M)*C(M=1)/83(M=1) ‘
k| % GG (MY=(D (M) =A(MI*GG(M=1))/BR(M) '
k| ! T2(M) =66 (M) :
o b N0 3 I1=1.M1
s I=M=I1

- : T2(I1=6GG(I)=(C(I)*T2C(I+1))/33(])

3 0 COMT INUE

3 c

?i z RE¥¥CALCULATT SPECIFIG FNE2GY PROFILE ANO TOTAL ENERPGY AT NEW TIME

g ¥
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u2
43
50

C

utToT2=C,

D0 53 I=1.M

IFET2(I).GT.10G0.)G0 TO 42
U2(1)=2,56=4%(T2(TI)**2-TA*%2)

G2 70O u*
U2(I)=.5%T2(I)=255.,%(1.+1.CE-B*TA*¥2)
UTOT2=UTOT24U2 (I) ¥*RHO*DX*Y*Z
CONTINUE
ZLOSS=(UTOTL1-uyTOT2)*102.,/UTOT1

C**¥DRINT OQUTPUT FOR SFLECTED TIMES

97
98

39

10¢
101

102
r

FRAINT QR TIMEGNGOT

FORMAT (1HL1 4 /710X *TIMEI=*4E10e3¢* SZC*45Xe*N= ¥,1I5,5%,¥DT= *,E10.4
es® SEC*®.//)

PAINT 99

FORMAT (10X e2(1X e ®*I* 42X« *DISTANCE(CM) *42X,*TEMPERATURE(K) ¥ 42Xe *ZNER
¥GY(CAL/G) *.2X))

00 171.I=1.M2

I2=1e¢M2

PAIINT 120«ToX(I)oT2(I) ¢U2(I)¢I24x(I2),72(I2),U2(I2)

FORPMAT ((10Xe2 (T34 3XeF10a3a3XeF10elbabXeEL100tbe3X)))

CONTINUE

PRINT 102.ZLOSS

FORMAT(/ 10Xe*PTACENT ENEPRY LOST= *,£10.4)

C***STOP PROGPAM WHEN T2(1) REACHES SPECIFIEC LEVEL

105

c

TOIF=(T2(1)-TA)
IF(TDIF.LT.50.)(0 TO 330

C*¥**SI7F OT (ADJUST MAGNITUDE OF TIME INCREM=ZNT) SUCH THAT MAXIMUM TEMPERATURE
C**¥CHANGFS WITHIN 3LOCK IS 1 DIGREF K.

106

C

A3=C.

03 136 I=1.V
A3T=ARS(T2(I)=-T1(I))
IF(ASTYLTLAGO TO 1C¢
A3=A3T

COMTINUE

pDT=NT/L3

C**%3FSTT TEMPECATYRE OOFILE FOQ NEW TIME STEP

109

110
[

G

I

300

00 110 I=1,M
TI(I)=72(1)
CONTINUE

CONTINUE
STOP
£ND
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SECTION V

RESULTS

It was desired to investigate the thermal behavior of graphite
calorimetry for the range of electron beam environments encountered in material
and structural response testing. To accomplish this, the calorimeter system
dimensions were fixed and the developed computer model was exercised for
a variety of initial thermal loading conditions. The calorimeter block
was taken to be square, 2 cm x 2 cm, and 1 cm in depth. These dimensions
were later varied over a small range to study the effect of such variation.

As stated in the Introduction, the initial energy deposition profile
is dependent upon the electron beam current and the voltage which accelerates
the electrons. Frequently, however, the thermal loading conditions are
described in terms of mean electron beam voltage and front surface specific
energy (cal/g). For this study, linear energy deposition profiles were
chosen to represent a range of electron beam environments. A total of
twelve profiles were used; these profiles are shown in Figure 7.

Given the system dimensions and an initial energy deposition profile,
the computer model provides calculation of the temperature profile history.
An example of such a profile history is shown in Figure 8. The calculations
are based upon a "1 MeV'" electron beam with a front surface specific
energy of 1200 cal/g. Through thermal conduction into the graphite block,

the energy which was initially deposited in a non-uniform manner quickly
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becomes more uniformly distributed. During this equilibration period,

the front surface temperature is rapidly decreasing while that of the rear
surface is rapidly increasing. Soon the energy becomes uniformly distributed,
and the block then cools slowly through radiative losses to the surroundings.

For the example of Figure 8, the back surface temperature reaches a
maximum value at a time of 3.07 seconds. This point in time corresponds
to the peak in the cooling curve of Figure 2. As discussed in Section I,
experimenters generally assume that the calorimeter block is at a uniform
temperature when this maximum back surface value is attained. For the
case presented in Figure 8, this is seen to be true. This trend was
observed for all calculations performed under this study; at the time of
maximum back surface temperature, the maximum and minimum temperatures within
the block always differed by less than 0.5 percent. Thus, for the range of
electron beam environments presented in Figure 7, the assumption of a
uniform block temperature at the time of maximum back surface temperature
is shown to be valid. This is considered a significant finding.

Shown in Figure 9 are continuous temperature histories for the back
surface of a calorimeter block subjected to a '"500 keV'" beam. For front
surface specific energies of 600, 1200, and 1800 cal/g, the peak back
surface temperature occurs at 2.08, 2.19, and 2.56 seconds, respectively.
Note that the temperature increases at the same rate for each case, but
that the '"cooling curve'" becomes steeper as the front surface specific
energy is increased. Thus, for a given mean electron energy, one would

expect that as the front surface specific energy is increased, the total
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radiative losses at the time of maximum back surface temperature also
increases.

In determining the total energy initially deposited in the calorimeter
block, various extrapolations of the cooling curve are employed by
experimenters. Given a back surface thermocouple measurement as shown in
Figure 9, the most common correction involves a linear extrapolation of
the cooling curve to time equal zero. The temperature obtained by this
extrapolation is taken to be that which would result if the calorimeter
block thermally equilibrated without any radiative losses to the surroundings.
To obtain the total energy deposited in the block, this temperature is
multiplied by the mass of the block and the specific heat of graphite at
that temperature. The linear extrapolation is based upon the assumption
that the calorimeter block cools at a constant rate. Much of the block,
especially the front surface, actually radiates at a decreasing rate since
the temperature is decreasing with time. For this reason, the linear
extrapolation should underestimate the amount of initially deposited
energy.

To quantify the error involved in such an extrapolation, the amount
of energy actually lost through radiation at the time of maximum back surface
temperature was investigated. These results are shown in Figure 10 for
each of the environments of Figure 7. It is seen that the worst case for
this energy loss is the "1 MeV,'" 1800 cal/g electron beam; at the time of
peak back surface temperature, 9.5 percent of the initially deposited

energy is lost.
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Shown in Figure 11 is the back surface temperature history for the
"1 MeV," 1800 cal/g electron beam. The 2mount of energy in the calorimeter
block at the time of peak back surface temperature is given by that tempera-
ture to be 522 cal. Adjusting this value for the amount of energy lost
through radiation, the energy initially deposited is calculated to be
577 cal. 1If a linear extrapolation of the cooling curve is employed, the
temperature obtained yields an initially deposited energy of 546 cal.

This amount is 5.4 percent below the correct value. Thus, although the
linear extrapolation provides a partial correction for the radiative losses,
it does indeed underestimate the initial energy in the block. Shown in
Figure 11 is the extrapolation required to give the correct value for

the initial energy.

It is seen that for the cases presented in Figure 10, the error
involved in using the maximum back surface temperature to calculate the
initially deposited energy is never more than ten percent. Furthermore,

a linear extrapolation of the cooling curve reduces this error to a maximum
of around five percent. Based upon these results, it is concluded that for
a calorimeter of dimensions 2 cm x 2 cm x 1 cm, energy lost through
radiation is not a significant problem, and a linear extrapolation of the
cooling curve is an adequate means of accounting for such energy losses.

To investigate the effect of calorimeter dimensions on the amount of
energy lost, the calorimeter area was varied from 1 cmz to 25 cmz. It
should be noted that to maintain conditions for one-dimensional heat
conduction the size of the beam was always taken to be equal to the area

of the calorimeter. Shown in Figure 12 are the results of this parametric
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variation. It is seen that as the calorimeter area is increased above
the 4 <:m2 used for the previous calculations, the effect of radiative
losses becomes even less significant.
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SECTION VI

CONCLUSIONS AND RECOMMENDATIONS

A computer model has been developed which provides calculation of the
temperature profile and total energy within a graphite calorimeter block
subjected to rapid energy deposition by an electron beam. The model is
based upon an assumption of one-dimensional heat conduction with radiative
energy transfer occurring at all free surfaces of the calorimeter block.

Through a series of parametric variations, the effectiveness of
conventional graphite calorimetry has been investigated. Results indicate
that for the range of electron beam environments typically employed in
materials and structural response experiments, the problem of thermal
radiation is not significant. For the worst case investigated, only ten
percent of the initially deposited energy is lost before the calorimeter
block reaches a uniform temperature. By means of a linear extrapolation
of the cooling curve, the initially deposited energy can be computed to
within five percent of the actual value.

The developed computer model can be used to further reduce the error
involved in estimating the total deposited energy. Given information
regarding the diode voltage and current histories, the peak back surface
temperature measurement can be utilized to yield an initial energy
deposition profile which does not provide any correction for radiative
energy losses. Using this deposition profile in the developed computer

code, the amount of energy lost through radiation at the time of maximum
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back surface temperature can be calculated. Because the percent energy

lost for the actual deposition profile and that obtained by the means
described above will not differ considerably, the deposited energy given
by the peak back surface temperature need only be adjusted by that amount.
These conclusions may contradict the actual experiences of some
experimenters . It should be noted that the developed model assumes that
the only mechanism for energy loss is through radiation to the surroundings.
In real experimental configurations, there are always some paths for
energy to leave the calorimeter through thermal conduction. An effort
should be made towards more adequately thermally isolating tie calorimeter
system from its surroundings. If this could be done, then radiation would
be the only energy loss mechanism. This study has shown that for such
conditions, the problem of thermal radiation can be adequately accounted

for.
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LIST OF SYMBOLS

C Specific heat, cal/g°K

E Energy, cal

k Thermal conductivity, cal/cm sec®K

M Total number of differential elements

L Time, sec

T Temperature, °K 2

Q Energy flux, cal/cm sec

W Thickness of calorimeter block, cm

X Location in calorimeter thickness, cm

¥ Height of calorimeter block, cm

Z Width of calorimeter block, cm

Ax Thickness of differential element, cm

At Duration of calculational time step, sec
€ Total hemispherical emissivity 4
o Stefan Boltzmgnn constant, cal/cm” sec®K
0 Density, 8/cm

B,y Factors for solution of simultaneous equations
Subscripts

i Evaluated for i th differential element
n Evaluated at n th time step

X At the location x=x

x+AxX At the location x=x+0x

a Evaluated at ambient conditions

o Evaluated at some arbitrary value
Superscripts

k Conduction

r Radiation
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