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PREFACE

This final report oresents the results of a study
conducted from March 1975 through February 1977. The pri-
mary objective of the study was to develo, a sound stand-
ardized besis for reliability comparisons of thermochemi-~
cal and electric propulsion concepts applicable to Air
Force satellite, spacecraft, and upper-stage mission re-
quirements. A corollary objective was the identification
of those propulsion system components which currently are
the major contributors to propulsion system failures.
Tris study was performed for the Air Force Rocket Propul-
sion Laboratory, Edwards Air Force Base, under contract
number F04611-75-C-0039 by Booz, Allen Applied Research,
a division of Booz, Allen & Hamilton Inc.
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TECHNICAL APPROACH

The development of reliability estimating techniques
was focused on six generic propulsion systems: ion,
pulsed plasma, colloid, catalytic monoprorcllant, electro-
thermal monopropellant, and hypercvolic bipropeilant. Pre-
liminary review of these systems, their expected apglica-
tions, and the available reliability data has indicated
that the successful approach required the following
characteristics:

P The approach had to be synthesis oriented. It
had to be capable of combining data and pro-
cedures that differed in origin, character,
and degree of credibility.

Py The approach had to take into account the un-
certainties associated with the input data and
estimation procedures. Furthermore, these
uncertainties had to be reflected with the

estimates that resulted. The approach had to

i aveid point estimates alone; it had to yield

distributions or bounds along with central

measures.,

° The approac'. had to be directed toward defining
an explicit, step-by-step methodology and was
to function as a usable data base for use by
designers and system analysts that are not
necessarily reliability specialists.

With these considerations in mind, the study plan as
shown in Figure 1 was developed and executed. This plan
consi.ted of four general phases:

® Data Base Definition

° Electronic Component Reliability and Uncertainty
i Derivation

Py Non Electronic Component Reliability and Uncer-

tainty Derivation

PY Propulsion System Reliability Estimation.

These phases are discussed in the following paragraphs.
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DATA BASE DEFINITION

Principally this phase consisted of the definition
of the propulsion system components, data acquisition, and
data rapresentation. The six generic systems identified
earlier were expanded to seven systems in order to assess
two approaches tc ion thrusters: the electron bombardment
mercury ion thruster utilizing a Kaufman thrust chamber
and the electron bombardment cesium ion thruster employing
a magneto-electrostatic containment (MESC) thrust chamber.
The components to be included in each of these seven sys-
tems are shown schematically with typical interfaces in
Figures 2 through 8. These figures intentionally exclude
multiple thruster and tankage schemes and are intended
merely to identify the component types and the typical in-~
terrelationships.

Data Acquisition. Data source identification and the
literature search were begun simultaneously by reviewing
such data collections as AVCO, FARADA (GIDEP) and NEDCO II
and by the initiation of searches at DDC and Chemical
Propulsion Information Agency (CPIA). A summary represen-
tation of literature sources and the applicability of the
data obtained is shown in Table 1. Review of the results
of the literature search allowed the identification of
those areas pertinent to reliability estimation requiring
further attention. An interview guide addressing those
areas was formulated for use in the technical survey which
followed.

The data acquisition survey included 23 Government
agencies, industrial firms and universities. Over 50 in~
dividual interviews were conducted to supplement informa-
tion available from the literature search. Table 2 sum-
marizes the organizations and applicability of data obtained
from the survey.

Data Representation. The final portion of the data defi-
nition phase involved the categorization and preliminary
analysis of information and data gathered from the litera-
ture search and technical survey activities. This analysis
revealed the following critical characteristics of the data
base that was available for the development of reliability
estimation procedures:

® Actual data was limited and concentrated in two
of the seven systems

° Actual data evidenced wide variability

I-3
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° Component failure mode identification was pos-
sible for the most part, but in a qualitative
sense only

® All reported data was of the constant failure
rate type, and with few exceptions the failure
rate vas based on mission time only

Py Few reliability assessments addressed the ques-
tion of prediction bounds or uncertainty. Models
yielding point estimates were the norm.

It was expected that the amount of data would be limited.
However, its concentration in the catalytic monopropellant
and bipropellant systems posed proklems for the components
of the five remaining systems. A significant amount of
estimation of failure rates by analogy to similar component/
environment situations was thereby required. Despite the
care used in selecting analogs for this purpose, this pro-
cess of necessity introduced a significant amount of uncer-
tainty. Available component failure rate data introduced
its own contribution to uncertainty. Estimates of failure
rates for the seme component type often differed by several
orders of magnitude. The importance of assessing and
tracking, from the outset, the uncertainties associated
with reliability estimation was underscored by the fore-
going assessments of the data base.

The identification of component failure modes was
made possible by the descriptive systems and component in-
formation acquired through the literature search and tech-
nical survey. With the exception of ccrtain valves,
failure rates for each of the idcntified component failure
modes was not ava:ilable from the data isase. For this
reason the principal reliability models were generated at
the component reliability level. Partitioning to the
failure mcde level followed the develorment of system fault
trees. The results of that effort served as a guide in
determining which components required detailed treatment.

Most. sources in the compiled data base approached re-
liability estimation as the determination of point esti-
mates using constant failure rate models with mission time
as the only independent variable. The complete output of
any predictive process is a band of values the parameter
in question is likely to assume. Point estimates such as
the median and expected value are simply central measures
of that predicted band. The size of that band is deter-
mined by the variance in scatter of the input data and the
desired level of confidence in the expected prediction.

I-13




ELECTRONIC COMPONENT RELIABILITY AND UNCERTAINTY
DERIVATION

Electronic parts or components differ from other pro-
pulsion system components in a number of important details
that influence reliability prediction methodology. Elec-
tronic components generally are subject to a relatively
high degree of standardization and respond to application
stresses and requirements in quantitatively predictable
ways. They also possess a high level of maturity and ex-
hibit, with some important exceptions, life distributions
that are well=-approximated by the exponential (constant-
failure-rate) distribution.

These characteristics of electronic components permit
tabulations of failure rates and ad?ustment factors, such
as those contained in MIL-HDBK~217B(l) to be used effec-
tively. Considering the availability of reliability es-
timation data at the parts level for electronics and the
principle that reliakility estimation should be conducted,
when feasible, at the level corresponding to adequate data,
it is recommeznded that reliability prediction be performed
at the parts level for electronic assemblies, such as
power processors and switching units.

Failure rate variability. With rare exceptions, standard
sources of failure rate data, such as MIL-HDBK-217B, pro-
vide only point estimates of failure rates; that is, a
single estimate of failure rate will be obtained for each
fixed combination of a specific part and a defined appli-
cation. It is known, however, that actual failure rates
vary significantly not only from vendor to vendor but also.
from production lot to production lot, under nominally
identical conditions. Usually, it is impossible not on]y
to identify the specific origin of parts that will be used
in a system but also to determine the specific failure

rate of parts having a particular origin. As a resuLt,
uncertainty surrounds the failure rate estimates that are
used. On the basis of experience, however, it is-possible
to assign a specific form and estimate the parateters of

a distribntion characterizing that uncertainty. Because
the failure rate estimates obtained from MIL- -HDBK-217B
reflect a mix of parts' origins, it is appropriate to treat
such estimates as defining the means or. expected values

of the corresponding uncertainty distributions.




By examining the observed failure rates or rejection
rates in screening tests, other lahoratory tests, or
operational experience (e.g., as reported in GIDEP/FARADA
compilations), it is possible to estimate the variance
associated with the uncertainty distribution for specific
parts. Oper~iional experience data need to be viewed
with caution, however, because application differences are
rarely identified sufficiently to permit segregation of
their effects on failure rates. Similar caveats apply to
screening and laboratory data unless test conditions and
failure definitions are known to be consistent. For all
sources except screening test data, many part types pre-
sent problems in that, under realistic use conditions,
failure rates are low enough so that many observations are
"no failures" and at most bounding-type statements can be
made. However, with some exceptions, the coefficient of
variation is sufficiently consistent over a wide variety
of electronic parts to justify a simpler and less time-
consuming approach to uncertainty estimation.

An early examination of lot-to-lot and vendor-to-
vendor variability in failure rates indicated that such
variability could be represented by lognormal distribu-
tiuns with the square of the coefficient of variation,

7% = 2.74 (Gln & 1.15 corresponding to a 100:1 ratio

between the largest and smallest failure rates observed

in a sample of 40,(2) That analysis was based largely on
screening rejection rates for late-1950's transistors,
diodes, resistors, and capacitors. A check on continuing
validity has been conducted using data from the August
1975, revision of GIDEP, volume 1, Summaries of Failure
Rate Data(3). A scan of this document led to ldentifica-
tion of failure rate data having the desired properties
for two electronic part types: quartz crystals and cir-
cuit breakers. The desired properties, in terms of mini~-
mizing extraneous causes of variaticn, were reasonable
sample size, multiple entries for each of several vendors,
consistent environmental conditions, and single reporting
source. Calculated values of o)1 were 0.995 and 0.937,
respectively, indicating that the earlier estimates remain
valid (but may be mildly pessimistic). Aeccordingly, un-
certainty about (constant) electronic part failure rates,
with occasional exceptions, will be represented by log-
normal distributions with expected values corresponding to
estimates from MIL-HDBK-217B, for example, and variances
based on ¢ 1n =~ 1.15. (Examples are provided in Appendix A
of this section.) The follcwing relationships may be use-
ful in evaluating subsequent calculations:
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. Parameters of the (normal)distribution of the
natural logarithms of the variate:

#: mean=median=mode

Ty 0 standard deviation
) Relationships to the (lognormal) distribution

of the variate:
2
Expected value E{A} = exp [/.L + —%l]

Coefficient of 2
variation N = exp (o) -1

Variance viA} = EZ {A}n?

Analyses and c¢raphic displays of the quartz crystal
and circuit breaker data are presented in Tables 3 and 4
and Figures 9 and 10.

Nonconstant failure rate contributions. A substantial
body of literature suggests that semiconductor failure
rates tend to decrease with age, rather than remaining
constant. Some recent analyses of in-orbit experience of
NASA spacecraft appear to confirm this observation and
extend it to some other types of electronic parts.

These observations are consistent with the first
two regimes of the traditional "bathtub" curve depic-
tion of failure rate behavior. The final regime, wear-
out, will be discussed later. In the absence of con-
vincing evidence or theoretical support for the concept
of an intrinsic process that leads to monotonically de-
creasing failure rates, it is unwise toc postulate that
such decreases will prevail beyond the period of ob-
servation reflected in current data. It is suggested
that the observed decreases should be disregarded for
extended-mission reliability prediction purposes for
the following reasons:

) The observed rate of decrease becomes too
small to be of practical significance after a
relatively short period

® The decrease can be viewed as reflecting the
behavior of a relatively small subpopulation
consisting of the "weakest" parts, and, there-
fore, should not be expected to continue




TABLE 3. CRYSTAL FAILURE RATES?
(Ground-Life Test)
(Medium Temperature Stress, Failures per 106 Hours)

CR-18A/U CR-56A/U CR-TTA/U
K® 3.845 K 12.409 W 49,776
H 14.298 E 1.571 M 19.015
W 22.960 Mc 4.366 M 8.643
B 15.293 E 21.999 H  3.218
H 5.957 H 11.357 H 12.872
K 5.127 K 1.551] W 54,754
B 8.496 H 7.098 H 20.455
W 18,785 Mc 1.455 W 41,513
K 6.639 M 57.513 H 17.898
K 3.319 K 7.874 M 18.224
H 13.378 K 62.992 M 15,621
H 16.054 W 59.963
B 6.086
B 8.114
M 5.712
M 7.140

Mean

Logarithm 2.1457 2. 0906 3.0092

Logarithmic

Standard

Deviation .5925 1. 3459 . 8476

TABLE 4. CIRCUIT BREAKER FAILURE RATLS®
(Ground)
(Medium Temperature Stress)

Failures per 108 Hours

. 311
3.62
2.62
1.89
1,05
1.34
. 286
2,35
2.85

Mean Logarithm . 3011
Logarithmic Stand-
ard Deviation . 9366

Source: GIDEP Vol. 1, Rev. August 1975.

The letters indicate mannfacturer dentification,

Source: GIDEP Vol. 1, Rev. August 1875 (on apparently
redundant entry omitted).
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Effective screening of electronic parts, which
is mandatory for extended-duration missions,
results in elimination of the individual parts
whose early failure otherwise may account for
the observation of decreasing failure rates

Failure rate data in standard sources usually
reflect tests or operations of sufficiently
long duration to discount the decreasing
failure rate effects by averaging.

Conversely, processes that may lead to increasing
failure rates must be considered because they may have
substantial influence late in extended miasions., Further-
more, the effects of these processes are unlikely to be
reflected in failure rate data. From shorter-term obser-
vations, candidate failure processes of this kind include:

Aging of organic materials, especially insulation
where dielectric properties of the material,
rather than physical separation, is relied upon;
for example, in coils of electromagnetic devices

Contaminant accumulation; for example, in
lubricants or on electrical contacts

Corrosion; for example, electrolytic corrosion
of electrical connections internal to resistors

Depletion of consumable materials; for example,
evaporation of lubricants, sublimation of heater
elements/filaments, and erosion of electrical
contacts or electrodes

Diffusion; for example, of dopants or metalli-
zation materials in semiconductor devices, or
of metals through insulators

Radiation effects, including induced changes in
bulk or surface properties of semiconductor
materials and chemical changes in organic ma-
terials.

Such processes tend to lead to relatively sharply
defined lifetimes for the affected parts, that is, to uni-
modal life distributions with small (typically, < 0.3)
coefficients of variation. However