AD-A	037 741	I MON INT MAR	SANTO ERNAL 77	RESEARC	OF FI	DAYTO	ON OHIO	D CONCI	ETE. (U	DACA88	-75-M-1	F/6 13/	3
	AD AD A037741									and the second second	The second secon		
										-TOTA-	Anna anna anna anna anna anna anna anna	an a	
$\label{eq:states} \begin{split} & \mathbf{E} = \frac{\mathbf{E} + \mathbf{E}}{\mathbf{E}} \\ & \mathbf{E} = \mathbf{E} + \mathbf{E} + \mathbf{E} + \mathbf{E} \\ & \mathbf$	Res. Mar.			La del La condición La del La del La del La del				END DATE FILMED					
											•		
-*													
14													

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official indorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

> DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED DO NOT RETURN IT TO THE ORIGINATOR

4

.

(49) REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
REPORT MOMBER 2. GOVT ACCESSION N	0. 3. RECIPIENT'S CATALOG NUMBER
CERLASE-M-204	19)
TITLE (and Subtitio	5. TYPE OF REPORT & PERIOD COVERED
INTERNAL SEALING OF FIBER-REINFORCED CONCRETE	FINAL Test.
	6. PERFORMING ORG. REPORT NUMBER
AUTHOR(e)	B. CONTRACT OR GRANT NUMBER(.)
P	14 Grand 1
e	DACA 88-75-M-0555
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
MONSANTO RESEARCH CORPORATION	AREA & WORK UNIT NUMBER
DAYTON, OH	44762719AT414T7-003
1. CONTROLLING OFFICE NAME AND ADDRESS	P. REPORT DATE
CONSTRUCTION ENGINEERING RESEARCH LABORATORY	March 13//
Champaign IL 61920	32 3333
A. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)) 15. SECURITY OLASS. (of this report)
	Unclassified
	154 DECLASSIFICATION DOWN CRADING
	SCHEDULE
Approved for public release; distribution unlimit	from Report)
Approved for public release; distribution unlimit	from Report)
Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, 11 different 18. SUPPLEMENTARY NOTES	from Report)
Approved for public release; distribution unlimit 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Inf	from Report)
Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the ebstrect entered in Block 20, 11 different 18. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Inf Springfield, VA 22151	from Report)
Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different 18. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Inf Springfield, VA 22151	from Report)
Approved for public release; distribution unlimit 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Inf Springfield, VA 22151 19. KEY WORDS (Continue on reverse aids if necessary and identify by block numb	from Report) Formation Service 236 450
Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different 18. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Inf Springfield, VA 22151 19. KEY WORDS (Continue on reverse side if necessary and identify by block numb steel-fiber-reinforced concrete	from Report) Formation Service 236 450
Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different 18. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Inf Springfield, VA 22151 19. KEY WORDS (Continue on reverse side if necessery and identify by block numb steel-fiber-reinforced concrete salt corrosion	from Report) Formation Service 236 450
Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Inf Springfield, VA 22151 19. KEY WORDS (Continue on reverse side if necessary and identify by block numb steel-fiber-reinforced concrete salt corrosion internal sealing	trom Report) Formation Service 236 450
Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different 18. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Inf Springfield, VA 22151 19. KEY WORDS (Continue on reverse side if necessary and identify by block numb steel-fiber-reinforced concrete salt corrosion internal sealing	from Report) Formation Service 236 450
Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different 18. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Inf Springfield, VA 22151 19. KEY WORDS (Continue on reverse side if necessery and identify by block numb steel-fiber-reinforced concrete salt corrosion internal sealing	trom Report) Formation Service 236 450
Approved for public release; distribution unlimit TO DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different TO DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different TO DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different TO DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different TO DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different To DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different To DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different Supplementary NOTES Copies are obtainable from National Technical Inf Springfield, VA 22151 Steel-fiber-reinforced concrete salt corrosion internal sealing The effects of salt corrosion on steel-reinford	from Report) Formation Service 236 450 (er)
Approved for public release; distribution unlimit T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different Supplementary notes Copies are obtainable from National Technical Inf Springfield, VA 22151 T. KEY WORDS (Continue on reverse elde if necessary and identify by block number salt corrosion internal sealing The effects of salt corrosion on steel-reinfor then chlorides are absorbed in amounts sufficient	trom Report) Formation Service 236 450 Her) Her rced concrete can be predicted to reduce the pH of the con-
Approved for public release; distribution unlimit T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different Supplementary NOTES Copies are obtainable from National Technical Inf Springfield, VA 22151 T. KEY WORDS (Continue on reverse side if necessary and identify by block numbers salt corrosion internal sealing The effects of salt corrosion on steel-reinfor then chlorides are absorbed in amounts sufficient rete to the reaction threshold. In this study, co	from Report) Formation Service 236 450 er) rced concrete can be predicted to reduce the pH of the con- oncrete strength and chloride
Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Inf Springfield, VA 22151 19. KEY WORDS (Continue on reverse elde if necessary and identify by block number steel-fiber-reinforced concrete salt corrosion internal sealing 10. Astract (Continue on reverse elde if necessary and identify by block number The effects of salt corrosion on steel-reinfor then chlorides are absorbed in amounts sufficient irete to the reaction threshold. In this study, co bsorption were used to evaluate the effect of int	from Report) Formation Service 236 450 er) rced concrete can be predicted to reduce the pH of the con- oncrete strength and chloride ernal sealing on steel-fiber-
Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Inf Springfield, VA 22151 19. KEY WORDS (Continue on reverse elde if necessary and identify by block numb steel-fiber-reinforced concrete salt corrosion internal sealing 10. Astract (Continue on reverse elde H necessary and identify by block numb The effects of salt corrosion on steel-reinfor then chlorides are absorbed in amounts sufficient rete to the reaction threshold. In this study, c bsorption were used to evaluate the effect of int print print of the concrete. Replicate concrete specimens steinforced concrete. Replicate concrete specimens	trom Report) formation Service 236 450 and proced concrete can be predicted to reduce the pH of the con- oncrete strength and chloride ernal sealing on steel-fiber- were prepared from four mix .
Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Inf Springfield, VA 22151 19. KEY WORDS (Continue on reverse elde if necessary and identify by block numb steel-fiber-reinforced concrete salt corrosion internal sealing 10. Astract (Continue on reverse elde H necessary and identify by block numb teres of salt corrosion on steel-reinfor the effects of salt corrosion on steel-reinfor then chlorides are absorbed in amounts sufficient rete to the reaction threshold. In this study, co bsorption were used to evaluate the effect of int penforced concrete. Replicate concrete specimens esigns: control; internally sealed; steel-fiber ealed, steel-fiber reinforced	trom Report) formation Service 236 450 er) reced concrete can be predicted to reduce the pH of the con- oncrete strength and chloride ernal sealing on steel-fiber- were prepared from four mix - reinforced; and internally -
Approved for public release; distribution unlimit TO DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different TO DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different TO DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different TO DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different TO DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different TO DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different Supplementary NOTES Copies are obtainable from National Technical Inf Springfield, VA 22151 S. KEY WORDS (Continue on reverse olde if necessary and identify by block numbers steel-fiber-reinforced concrete salt corrosion internal sealing O ASTRACT (Continue on reverse olde if necessary and identify by block number The effects of salt corrosion on steel-reinfor then chlorides are absorbed in amounts sufficient rete to the reaction threshold. In this study, control is stored to evaluate the effect of int pinforced concrete. Replicate concrete specimens esigns: control; internally sealed; steel-fiber ealed, steel-fiber reinforced.	from Report) formation Service 236 450 er) rced concrete can be predicted to reduce the pH of the con- oncrete strength and chloride ernal sealing on steel-fiber- were prepared from four mix - reinforced; and internally -
Approved for public release; distribution unlimit Approved for public release; distribution unlimit Distribution STATEMENT (of the obstract entered in Block 20, if different Distribution STATEMENT (of the obstract entered in Block 20, if different Supplementary NOTES Copies are obtainable from National Technical Inf Springfield, VA 22151 S. KEY WORDS (Continue on reverse side if necessary and identify by block numb steel-fiber-reinforced concrete salt corrosion internal sealing Stract (Continue on reverse side if necessary and identify by block numb The effects of salt corrosion on steel-reinfor then chlorides are absorbed in amounts sufficient rete to the reaction threshold. In this study, co bsorption were used to evaluate the effect of int einforced concrete. Replicate concrete specimens esigns: control; internally sealed; steel-fiber ealed, steel-fiber reinforced. D (JAN 3 1473 EDITION OF 1 NOV 65 IS OBJLETE	from Report) formation Service 236.450 er) reced concrete can be predicted to reduce the pH of the con- oncrete strength and chloride ernal sealing on steel-fiber- were prepared from four mix - reinforced; and internally -

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Block 20 continued

Primary test specimens, $6 \times 6 \times 24$ in. (15.2 x 15.2 x 60.8 cm) flexural beams, were prepared for four testing intervals. To obtain maximum information, secondary or gage specimens of 1.5 x 3 x 12 in. (3.8 x 7.6 x 30.4 cm) were prepared for daily inspection and frequent screening tests to detect early stages of decay and enable selection of the primary exposure periods.

The specimens were exposed to a 3 percent saline mist spray in a tent enclosure. The spray was operated 8 hours per day, 5 days per week. During the first 41 days, the tent enclosure was left in place continuously; high humidity retained by the enclosure prevented drying, and the specimens remained moist from day to day. This continuous saturation of the surface may have blocked oxygen entry and retarded corrosion. After 41 days, the sides of the enclosure were rolled up for free air circulation and drying when the spraying was not in operation.

Total testing time was 110 days. Two primary tests and two screening tests were made at exposure times of 0, 3, 41, and 110 days.

No chloride penetration of the sealed concrete was observed during the testing. Measured chloride contents of these specimens remained essentially at baseline levels, i.e., the chlorides introduced by the aggregates, cement, and mixing water.

By contrast, the nonsealed specimens rapidly absorbed the saline solution. Measured chlorides at the 0.5-in. (1.27 cm) sampling depth were \sim 0.1 percent after 3 days and >0.4 percent at the conclusion of testing.

Active internal corrosion was seen only in the nonsealed specimens and, at the end of the study, had progressed to a depth of ~ 0.25 in. (0.63 cm). No significant effect of corrosion on the strength of the concrete specimens was observed in the flexural or compressive tests.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

FOREWORD

This study was conducted for the Directorate of Military Construction, Office of the Chief of Engineers (OCE) under Project 4A762719AT41, "Design, Construction, and Operations and Maintenance for Military Facilities"; Task T7, "Materials Research and Development for Military Construction"; Work Unit 003, "Corrosion Behavior of Cracked Fibrous Concrete." The applicable QCR number is 1.03.007. Mr. S. Gillespie was the OCE Technical Monitor.

The work was performed under Contract No. DACA 88-75-M-0555 by Monsanto Research Corporation, Dayton, OH. The work was performed for the Construction Materials Branch (MSC), Materials and Science Division (MS), U. S. Army Construction Engineering Research Laboratory (CERL), Champaign, IL.

Mr. P. Howdyshell is Chief of MSC, and Dr. G. Williamson is Chief of MS. COL J. E. Hays is Commander and Director of CERL, and Dr. L. R. Shaffer is Technical Director.

Maanig H	torite Section	2	r
BRANNOBUCED			1
IUSTIFICATION.			1
			1
BY DISTRIBUTION	ATT BALABILITY	GOBES PEDIAL	

CONTENTS

	DD FORM 1473 FOREWORD LIST OF FIGURES AND TABLES	1 3 5
1	INTRODUCTION	7
2	DETAILS OF TESTING	9
3	CONCLUSIONS AND RECOMMENDATIONS	23
	APPENDIX: Mix Proportioning Data	24
	DISTRIBUTION	

FIGURES

Number		Page
1	$0.010 \times 0.022 \times 1.0$ in. ($0.025 \times 0.055 \times 2.54$ cm) Steel Ribbon Reinforcement	11
2	Typical Sealing Additive Sphere Size Distribution Obtained From Spray Process	12
3	Average Ratio of Cement to Mix Volume (Cement Factor) for Four Mix Designs	13
4	Average Slump (In.) for Four Mix Designs	13
5	Average Ratio of Water (Gal) to Portland Cement (Sacks) in Four Mix Designs	13
6	Average Ratio of Water (Gal) to Mix Volume for Four Mix Designs	13
7	Test Specimens in Salt Spray Chamber	16
8	Glass Jets Provided Corrosion-Free Spray System	16
9	Spray Chamber With Elevated Reservoir and Pump	17
10	Specimens During Exposure to Saline Mist	17
11	Absorbed Chloride at 0.5 In. (1.27 cm) Depth vs. Exposure Time for Gage Specimens	20
12	Absorbed Chloride vs. Sampling Depth for Flexural Specimens Exposed 110 Days	20

TABLES

1	Chloride Content of Cement and Aggregates	10
2	Chloride Absorption of Four Mix Designs	19
3	Compressive Strength Tests of Four Mix Designs	22
4	Flexural Strength Tests of Four Mix Designs	22

INTERNAL SEALING OF FIBER-REINFORCED CONCRETE

1 INTRODUCTION

Background

Chloride-induced steel corrosion and the resultant cracking and spalling are major problems in reinforced concrete structures. The vulnerability of steel-reinforced concrete to corrosive salt atmospheres is seen as (1) deterioration of physical properties caused by oxide-pressure-induced spalling of the concrete matrix and (2) weakened or severed reinforcing fibers. Earlier research by Monsanto Research Corporation has shown that an internally sealed concrete can be made by mixing small discrete wax particles with the normal components of Portland cement concrete. After cure, warming the structure to the fusion point of the additive transforms the continuous capillary system in the concrete to a discontinuous one so that penetration of water and corrosive chemicals is effectively blocked.

In the Monsanto tests, concrete was internally sealed by adding a blend of 25 percent montan and 75 percent paraffin wax to the initial mix and subsequently heating it. The concrete produced from this mix was completely resistant to chloride penetration after extended periods of continuous ponding in a salt solution. Under identical conditions, a typical conventional concrete without the additive absorbed large quantities of chloride and approached saturation within 7 days. Work is currently underway with the Federal Highway Administration (FHWA) to apply this technology to highway and bridge construction.¹

New processes and fabrication techniques developed by the U. S. Army Construction Engineering Research Laboratory (CERL), Champaign, IL are establishing steel-fiber-reinforced concrete as a viable and promising construction material. One drawback is that the small-diameter steel fibers have higher surface-area-to-volume ratios than conventional reinforced rods and are therefore more vulnerable to corrosion damage; however, combining internal sealing and fiber reinforcing could eliminate the concrete's vulnerability to corrosive atmospheres and expand the areas of its application. Extending the service lives of fiber-reinforced concrete structures by internal sealing could significantly reduce their costs.

Purpose

The purpose of this report is to evaluate the effect of internal sealing

PRECEDING PAGE BLANK-NOT FILMED

¹ G. H. Jenkins and J. M. Butler, *Internally Sealed Concrete*, Research Report FHWA-RD-75-20 (Federal Highway Administration, January 1975).

on the service life of steel-fiber reinforced concrete in highly corrosive environments.

Approach

This work compared the chloride ion resistance of plain fibrous concrete to that of fibrous concrete internally sealed with the 25 percent montan and 75 percent paraffin wax. Chloride absorption and concrete strength were used to evaluate the effects of the internal sealing. Exposure time was from 0 to 110 days.

2 DETAILS OF TESTING

Mix Design

Replicate concrete specimens were prepared from four mix designs:

1. Control: a standard concrete mix design without reinforcement or internal sealing. (This mix design was provided by CERL.)

2. Internally sealed: same as mix number 1 in cement factor, slump, etc., but modified to include sealing additive.

3. Steel-fiber reinforced: the cement factor was the same as that of mix number 1 but included approximately 1.4 volume percent of steel fibers. (This mix design was provided by CERL.)

4. Internally sealed, steel-fiber reinforced: same as mix number 3, but modified to include internal sealing.

A typical fiber-reinforced concrete mix design was a model for the four mixes:

Cement, type I, non-air-entraining	750	16	(340	kg)
Concrete sand	1500	16	(680	kg)
Coarse aggregate (3/8 in 1/4 in. [0.95 cm - 0.63 cm])	330	16	(150	kg)
Coarse aggregate (<1/4 in. [0.63 cm])	670	16	(304	kg)
Steel fibers minimum	175	1ь	(79	(g)
Water for slump5 $^{+2}$ in. (12.7 $^{+5.0}_{-2.5}$ cm)	375 (9.5	to to	400 i	n. 2 m)

The mix designs (see Appendix) use a constant cement factor (8 sacks per cubic yard [10.5 sacks per cubic meter]) and are adjusted to compensate for fiber and sealing additive volumes by varying the quantities of coarse aggregate. A ratio of 1 to 2 of the large to small size coarse aggregate was maintained in all mix designs.

Materials

Aggregates

Coarse aggregates used in this study were crushed limestone from the Phillipsburg, OH, plant of American Aggregates Co. The aggregates were screened to obtain the two size categories (3/8 in.-1/4 in. [0.95 cm-1/4 in.])

0.63 cm]) and (<1/4 in. [0.63 cm]). Concrete sand, also obtained from American Aggregates Co., had a fineness modulus of 3.16. All aggregates were air dried to a constant low moisture content and stored in sealed drums until used.

Since the proposed method of measuring the rate and amount of chloride absorbed during salt exposure reflects only the total concentration in the sample and does not distinguish between bound chlorides in the aggregates and absorbed sodium chloride, chloride tests of the aggregates and cement were necessary (Table 1).

Table 1

Chloride Content of Cement and Aggregates

Materials	Percent of Material in Category	Percent Chloride Content
Cement, Portland, type I, non-air-entraining	100	0.004
Coarse aggregate, gray, nonporous	70	0.069
Coarse aggregate, gray, porous	25	0.071
Coarse aggregate, brown, porous	5	0.083
Fine aggregate, concrete sand	100	0.030

Portland Cement

The cement used in this study was type I non-air-entraining and was taken from a single lot from the Southwestern Portland Cement Co., Fairborn, OH. To insure uniformity, the cement was thoroughly blended in a rotating drum and then packed and sealed in polyethylene-lined fiber sacks.

Admixtures

Approximately 20.0 mL per mix of Vinsol single-strength resin from Protex Industries was the air-entraining agent. The air-entraining efficiency of this material varied from mix to mix, but all air contents were within the desired 6 + 2 percent designated by CERL.

Steel Fibers

Fibers used were 0.010 x 0.022 x 1.0 in. ribbons $(0.025 \times 0.055 \times 2.54 \text{ cm})$ (Figure 1) produced by U. S. Steel Corp., Pittsburgh, PA.

Internal Sealing Additive

A mixture of 25 percent montan crude grade ester wax and 75 percent paraffin (melting point--148°F $[63^{\circ}C]$) was sprayed in the mixture to

Figure 1. 0.010 x 0.022 x 1.0 in. (0.025 x 0.055 x 2.54 cm) steel ribbon reinforcement.

produce the additive spheres (Figure 2). All particles were spherical and ranged from 20 to 80 mesh, with 70 percent between 30 and 40 mesh. An FHWA publication provides a detailed description of the additive's manufacturing process.²

Sample Preparation

Mixing

Concrete used in this study was mixed in a 3 cu ft (0.08 m^3) rotary drum mixer. Each mix design used two separate 3 cu ft (0.08 m^3) batches.

The mixing time, temperature, and relative humidity were approximately constant for all mixes. The sealing additive was distributed rapidly and uniformly in either a dry mix form or after addition of the water. The steel fibers tended to agglomerate into tight tangles or balls unless carefully sifted through a screen to separate the fibers entering the rotating dry mix. The time required to add the fibers to the reinforced mixes was compensated for in the sealed and control mixes, so that the actual dry mix time for all formulations was equal.

Wet mixing times varied slightly by sample. After 6 minutes of wet mixing, samples were taken for air content and slump. Air content did not deviate from the desired 6 + 2 percent, but several mixes required additional water to develop the 6 + 1 in. (15.2 + 5.0 - 2.5) cm) slump required. These mixes then received an additional 2 minutes of mixing.

Figure 2. Typical sealing additive sphere size distribution obtained from spray process.

Figure 3 shows the average cement factors (ratio of cement to total mix volumes). Cement factors varied with the water used to produce the required slump range of 6^{+2}_{-1} in. (15.2+5.0 cm).

Steel fibers significantly reduced the slump and "workability" of these mixes (Figure 4). The control mix, which had the highest cement factor and slump, had the lowest ratios of water to cement (Figure 5) and water to total mix volume (Figure 6).

The sealing additive spheres tended to reduce the mix's slump but not its workability. With a constant water-to-mix volume, the measured slump of sealed concrete was lower, but working and finishing characteristics were approximately equal to a similar, higher-slump, nonsealed concrete. This effect was not considered in this study. Water addition for all mixes was based on slump.

²G. H. Jenkins and J. M. Butler, *Internally Sealed Concrete*, Research Report No. FHWA-RD-75-20 (Federal Highway Administration, January 1975).

GALLONS WATER/SACK SEALED (LITERS/SACK) 6 CONTROL (23) (19)

Figure 5. Average ratio of water (gal) to Portland cement (sacks) in four mix designs.

Figure 6. Average ratio of water (gal) to mix volume for four mix designs.

45 (223)

Specimen Compaction and Molding

Conventional rodding cannot be used with short-fiber reinforcement, because it orients the fibers parallel to the rod direction. To achieve compaction, an electric motor with a 1 lb (0.45 kg) elliptical flywheel was bolted to a small table mounted on spring foot pads. At 1600 rpm, vibrations from the elliptical flywheel efficiently compacted the concrete within 1 to 2 minutes. This technique was applied to all specimens.

Molds were constructed of a plywood base and 3×6 in. (7.6 x 15.2 cm) angle iron rails. A thin film of motor oil was the release agent. Strike-off and surface finishings were complicated by fibers at or near the surface. This was largely compensated for by the high mobility (slump), which made repair easier. Finishing would probably be no more difficult than for a nonreinforced concrete with 2 to 3 in. (5.0 to 7.6 cm) slump.

Curing

Specimens were cured in the molds at $75^{\circ}F$ (23.6°C), 50 percent relative humidity (RH) for 48 hours. After this initial cure, they were immersed in a saturated calcium oxide solution for 14 days, followed by 14 days at $75^{\circ}F$ (23.6°C), 50 percent RH.

Heat-Treating

A programmed oven was used for heat-treating the sealed specimens. The mechanical program control insured that all specimen sets were subjected to duplicate time/temperature exposure. Heat-treating was done in groups of two flexural, ten gage, and three compression specimens. The heating cycle was determined by monitoring thermocouples in several locations within a set of test blocks prepared from an unused control mix.

Salt Exposure

Primary test specimens, $6 \times 6 \times 24$ in. (15.2 x 15.2 x 60.8 cm) flexural beams, were prepared for four testing intervals. To obtain maximum information, secondary or gage specimens of 1.5 x 3 x 12 in. (3.8 x 7.6 x 30.4 cm) were prepared for daily inspection and frequent screening tests to detect early stages of decay and enable selection of the primary exposure periods.

The specimens were exposed to a 3 percent saline mist spray in a tent enclosure. The spray was operated 8 hours per day, 5 days per

week. During the first 41 days, the tent enclosure was left in place continuously; high humidity retained by the enclosure prevented drying, and the specimens remained moist from day to day. This continuous saturation of the surface may have blocked oxygen entry and retarded corrosion. After 41 days, the sides of the enclosure were rolled up for free air circulation and drying when the spraying was not in operation.

Total testing time was 110 days. Two primary tests and two screening tests were made at exposure times of 0, 3, 41, and 110 days.

The specimens were supported over a $2 \times 4 \times 8$ ft (0.6 x 1.2 x 2.4 m) brine storage tank with 2 in. (5.0 cm) clearance between each, as shown in Figure 7. The saline solution was pumped from the storage tank to a reservoir 4 ft (1.2 m) above the specimens and then gravity fed to ten spray heads constructed of glass tubing jets (Figure 8) located to cover all areas of the chamber. The saline solution was fed through the center of the jets and atomized by two converging air jets. These spray heads provided a corrosion- and maintenance-free system which filled the chamber with a finely divided mist and maintained constant spraying conditions. All areas within the chamber were uniformly wetted during the 8-hour operation cycle. Figure 9 shows one end of the spray chamber, the gravity reservoir, and the pump. Figure 10 shows some flexural (gage) and compression specimens during mist exposure.

Testing

The rate and extent of chloride penetration, flexural strength, and compressive strength were monitored at selected intervals. Visible corrosion progress was observed daily.

- Baseline: After completion of 30-day cure and heat treatment and before salt mist exposure
- 72 hours: Significant oxide staining had occurred, and surface-exposed fibers were embrittled by corrosion
- 3. 41 days: Oxide stains from interior fibers of the nonsealed specimens were bleeding to the surface
- 4. 110 days: First spall, apparently due to oxide buildup on interior fiber.

Compressive strengths were determined using 3×6 in. $(7.6 \times 15.2 \text{ cm})$ molded cylinders with asbestos/sulfur caps for uniform load distribution. Flexural strength was determined by four-point loading of the 6×6 in. $\times 2$ ft (15.2 $\times 15.2$ cm $\times 0.6$ m) beams. These tests, conducted by the Bowser-Moerner Co., an independent testing laboratory in Dayton, OH, followed standard ASTM methods.

Figure 7. Test specimens in salt spray chamber.

Figure 8. Glass jets provide corrosion-free spray system.

Figure 9. Spray chamber with elevated reservoir and pump.

The rate and extent of chloride penetration were determined by removing core samples from the exposed concrete and sectioning them at depths of 0.5, 1.0, and 1.5 in. (1.27, 2.54, and 3.81 cm). These sections were powdered and analyzed for total chloride content by the method described in an FHWA staff research study.³

Chloride Penetration

Table 2 provides data from chloride penetration tests. Measured chloride contents before salt spray exposure (baseline) range from 0.033 to 0.053 percent and average 0.039 percent. This value agrees closely with the 0.037 percent predicted by analysis of the component materials.

Absorption by the nonsealed specimens was rapid and probably exceeded the corrosion reaction threshold at the 0.5 in. (1.27 cm) sampling depth within the first 3 days. At this sampling depth, measured chlorides were ~ 0.1 percent after 3 days and > 0.4 percent at the conclusion of testing. After 110 days, measured chloride contents ranged from 0.346 to 0.516 percent for the gage specimens and were consistently higher in the fiber-reinforced mixes than in the controls.

With one exception, all sealed specimens remained essentially at baseline levels throughout the exposure, which indicated no chloride penetration of these specimens. No difference was observed between the reinforced and nonreinforced sealed specimens.

One fiber-reinforced sealed gage specimen tested at 41 days had a 0.074 percent chloride content. While this value is 0.011 percent higher than the baseline range, it is believed to reflect aggregate rather than absorbed chloride. Tests of the same mix after 110 days were all within the baseline chloride range for both gage and flexural specimens. Figure 11 shows absorbed chloride data for the 0.5 in. (1.27 cm) samplings of the gage specimens. This graphically shows two consistently observed phenomena: (1) the rapid absorption of chloride by nonsealed specimens rapidly results in free chloride levels in excess of the corrosion reaction threshold; and (2) chloride absorption is more rapid and more extensive in steel-fiber-reinforced concrete than in nonreinforced concrete, probably because the fiber/concrete interface provides additional entries.

Figure 12 shows the relationship between absorbed chloride content and sampling depth after 110 days exposure. The figure shows that chloride content decreases with sampling depth. At all levels, chlorides were present in the nonsealed steel fiber concrete in amounts sufficient to

³H. A. Berman, Determination of Chloride in Hardened Portland Cement Paste, Mortar and Concrete, Report No. FHWA-RO-72-12 (Federal Highway Administration, September 1972).

Table 2

Chloride Absorption of Four Mix Designs

.

				Contro	-		Fibers			Sealed		Sea	led/Fib	ers
Exposure Period (days)	Spectmen Type	Sample Depth (in.)	x Cl ⁻	Avg	* CI-	* C1	Avg	Abs	* C1_	Avg	* C1-	* C1_	Avg	AC.
Baseline	flex	1.0 (2.54 cm)	0.041 0.037 0.053 0.039	0.042	0	0.048 0.041 0.037 0.033	0.040		0.038 0.033 0.037	0.036	0	0.042 0.033 0.037 0.037 0.037	0.037	0
m	gage	0.5 (1.27 cm)	0.117 0.152	0.135	0.085	0.167 0.139	0.153	0.103	0.036	0.036	.0	0.041	0.039	•
÷	gage	0.5 (1.27 cm)	0.214 0.160	0.187	0.137	0.299 0.402	0.351	0.301	0.039	0.038	0	0.048	0.061	0.01
011	gage	0.05 (0.127 cm)	0.396	0.396	0.346	0.516	0.514	0.464	0.033 0.038 0.044	0.038	0	0.043	0.042	•
	flex	0.5 (1.27 cm)	0.515 0.357 0.500	0.457	0.407	0.564 0.648 0.796	0.669	0.619	0.039 0.061 0.050	0.050	0	0.052 0.048 0.062	0.054	0.0
		1.0 (2.54 cm)	0.144	0.192	0.142	0.309	0.271	0.221	0.022	0.035	0	0.040 0.037	0.035	•
			0.076	0.092	0.042	0.124 0.042 0.137	101.0	0.051	0.034 0.034 0.034	0.037	0	0.035 0.037 0.033	0.035	•

.

19

•

initiate corrosion. Again it was apparent that absorption levels are higher for the steel-fiber-reinforced concrete than for the control. At all levels, the sealed mixes remained essentially at baseline, showing no penetration by the saline solution.

Specimens broken in flexural testing were carefully examined for internal corrosion. No internal corrosion was observed in any of the sealed specimens, but in the nonsealed specimens, internal corrosion progressed much more slowly than had been predicted after examining chloride concentrations. Through the 41-day tests, corrosion seemed to progress only a short distance into the concrete and only along fibers which extended to the surface. After 110 days, nonsurface fibers generally indicated corrosion, but only to a depth of 0.2 to 0.3 in. (0.50 to 0.75 cm).

Two factors may have limited oxygen ingress and thereby retarded corrosion. First, the samples were compacted by an eccentric fly-wheel vibration table. This technique was effective in removing entrapped air and produced high-intensity, low-porosity concrete. The low porosity may have limited oxygen access. Second, during the first 41 days of exposure, the polyethylene tent was not opened during the 16 hours per day that the spray was not operating. High humidity within the chamber prevented evaporative drying. Since samples remained damp from day to day, the retained moisture probably limited oxygen entry. After 41 days, the procedure was changed so that the tent was open and a fan circulated dry air over the specimens.

Compression and Flexural Strength Tests

Tables 3 and 4 provide compressive and flexural strength test data. These tests were proposed as screening methods to monitor concrete damage induced by corrosion progress. The actual active corrosion rate observed was much lower than what was predicted and had just begun when this work was concluded. Corrosion had progressed only 0.2 to 0.3 in. (0.50 to 0.75 cm) into the specimens, and only one minor spall could be attributed to oxide formation. No significant degradation of compressive or flexural strength could be seen in these data. However, visible active corrosion was occurring in the nonsealed specimens, and it must be concluded that with continued exposure, corrosion damage would degrade the concrete strength.

	Con	trol	Fibe	ers	Sea	led	Sealed/I	Fibers
Period	Values	Avg	Values	Avg	Values	Avg	Values	Avg
Baseline	6140 5940 6280	6120	4250 4070 4380	4230	5070 5610 5900	5530	4090 3810 3960	3950
110 days	7040 6980 6720	6910	5610 6450 5820	5960	5610 5660 5970	5750	4110 4740 4400	4416

Table 3

Compressive Strength Tests of Four Mix Designs

Table 4

(

Flexural Strength Tests of Four Mix Designs

	Cont	rol	Fibe	ers	Seal	led	Sealed/F	ibers
Period	Values	Avg	Values	Avg	Values	Avg	Values	Avg
Baseline	580 620	600	970 775	870	690 630	660	780 770	770
110 days	770 780 1000	850	1050 1070 1150	1080	840 800 825	820	820 820 900	870

3 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Both the rate and the extent of chloride penetration were greater with steel-fiber-reinforced concrete than with the control. This suggests that fibers extending to the surface may create entryways for the chloride in addition to the normal capillary system and make fiber reinforcement more vulnerable to corrosion damage than conventional rod reinforcement.

Internal sealing completely blocked salt penetration in all test specimens. Both the ordinary capillary network and the steel fiber interfaces were successfully sealed.

Although these tests were concluded before measurable structural damage to the nonsealed fiber concrete occurred, active corrosion, probably limited by lack of available oxygen, was in progress and with additional time would have degraded the reinforcing system and weakened the concrete.

Recommendations

Testing should be continued for a period sufficient to produce severe corrosion and a significant degradation of the concrete's physical properties. While this program has qualitatively demonstrated the applicability of internal sealing to steel-fiber-reinforced concrete, extended testing to the point of corrosion failure of the nonsealed material would provide a quantitive measure of the benefits to be attained. **APPENDIX:**

MIX PROPORTIONING DATA

The data sheets in this appendix provide information about the mix designs used in this study. Two batches of each design were used to prepare the test specimens, and the run preparation sequence was randomized.

Mix Design No. 1	Specimens Prepared:	
Run No. 1 Control	Flex (6 in. x 6 in. x 24 in.)	4
Cement Content: 8	Gage	20
Water Content: ~5	Compression	3
Admixture - Air Content: Vinsol,	6%+2%	

Item	Specific Gravity	Wt/Cu F	t Solid	
Cement	3.15	196.6	Type 1	
Fine Aggregate	2.65	165.4	F.M. 3.16	
Coarse Aggregate	2.68	167.2	Wt. D.R. 107 1b	

Item	Solid Volume of Materials Required/Cu Yd	Cu Ft Solid	Batch Ft.	Wts. D Batch,	ry/3 Cu 1b
Cement	753	3.83		83.7	
Polymer	-	-		-	
Water	376	6.03		41.8	
Fine Aggregate	1540	9.31	1	71.1	
Coarse Aggregate	1038	6.21	۱	15.3	
Air	-	1.62		-	
Fibers		-		-	
Total	3707	27.0	4	11.9	
Item	Batch Wts (wet), lb	Concr	ete Det	erminations
Cement	(.890)	83.7	Slump	6.0	in.
Polymer	-	-	Meas. air	5.9	x
Concrete Sand		171.0	Wt.	138.5	lb/cu ft
C.A. No. 4		38.3	W/C	0.474	
C.A. No. 5		76.5		43.48	gal/cu yd
Water	(4.757)	39.7		5.34	gal/sk
Total Batch Weight Admixture		409.2 20 ml		8.14	sk/cu yd

Remarks: V_T=1.094 cu yd

Mix Design No. 1Specimens Prepared:Run No. 4 ControlFlexCement Content: 8GageWater Content: ~ 5 CompressionAdmixture - Air Content: Vinsol, 6%+2%

Item	Specific Gravity	Wt/Cu F	t Solid	
Cement	3.15	196.6	Type 1	
Fine Aggregate	2.65	165.4	F.M. 3.16	
Coarse Aggregate	2.68	167.2	Wt. D.R. 107 1b	

Item	Solid Volume of Materials Required/Cu Yd	Cu Ft Solid	B	atch Wts t. Batc	. Dry/3 Cu h, 1b
Cement	753	3.83		83.7	
Polymer	-	-		-	
Water	376	6.03		41.8	
Fine Aggregate	1540	9.31		171.1	
Coarse Aggregate	1038	6.21		115.3	
Air	-	1.62		-	
Fibers	-	-		-	
Total	3707	27.0		411.9	
Item	Batch Wt	s (wet), 1b	C	oncrete	Determinations
Cement		83.7	Slump	6.5	in.
Polymer		-	Meas.	air 7.7	x
Concrete Sand		168.0	Wt.	138.2	lb/cu yd
C.A. No. 4		38.3	W/C	0.46	6
C.A. No. 5		76.6		42.99	gal/cu yd
Water	(4.673)	39.0		5.25	0 gal/sk sk/cu yd
Total Batch Weig Admixture Vinsol	ght	405.6 20 ml		*	

Remarks: V_T=.1087 du yds

Mix Design No. 2	Specimens Prepared:	
Run No. 3 Sealed	Flex	4
Cement Content: 8	Gage	20
Water Content: ~5	Compression	3
Admixture - Air Content: None		

Item	Specific Gravity	Wt/Cu F	t Solid
Cement	3.15	196.6	Type 1
Fine Aggregate	2.65	165.4	F.M. 3.16
Coarse Aggregate	2.68	167.2	Wt. D.R. 107 16

Item	Solid Volume of Materials Required/Cu Yd	Cu Ft Solid	Batch Ft.	Wts. Dry Batch, 1b	/3 Cu
Cement	753	3.83	83	.7	
Polymer	116	1.89	12	.9	
Water	376	6.03	41	.8	
Fine Aggregate	1485	8.98	165	.'o	
Coarse Aggregate	1003	6.00	111	.4	
Air	-	0.27		-	
Fibers	-			-	
Total	3733	27.0	414	.8	
Item	Batch Wt	s (wet), 1b	Concr	ete Deter	minations
Cement		83.7	Slump	4.3	in
Polymer		12.9	Meas. air	4.2	x
Concrete Sand		168.3	Wt.	134.5	lb/cu ft
C.A. No. 4		37.1	W/C	0.523	
C.A. No. 5		74.3		45.37	gal/cu yd
Water	(5.249)	43.8		5.90	gal/sk
Total Batch W Admixture: None	leight	420.1		7.69	sk/cu yd
Remarks: VT=.1157	cu yds				

Water Content: ~ 5 Admixture - Air Con	ntent: None	Gag	ex ge npression	•	5 10 3	
Item Cement	Specific Grav	ity I	t/Cu Ft	Solid		
Fine Aggregate	2.65		165 4	F.M.	3.16	
Coarse Aggregate	2.68	1	167.2	Wt. D	.R. 107	16
Item	Solid Volume of Materials Required/Cu Yd	Cu Ft Solid		Batch Ft.	Wts. Dr. Batch, 1	y/3 Cu b
Cement	753	3.83		83.	7	
Polymer	116	1.89		12.	9	
Water	376	6.03		41.	B	
Fine Aggregate	1485	8.89		165.	D	
Coarse Aggregate	1003	6.00		111.	4	
Air	-	0.27		-		
Fibers	-	-		-		
Total	3733	27.0		414.	в	
Item	Batch Wts	. (wet), 11	b	Concr	ete Dete	rminations
Cement		83.7	Slur	np	4.8	in.
Polymer	- 184 P	12.9	Meas	s. air	3.8	x
Concrete Sand		168.3	Wt.		135.1	lb/cu ft
C.A. No. 4		37.1	W/C		520	
C.A. No. 5		74.3			45.29	gal/cu yd
Water	(5.213)	43.5			5.86	gal/sk
Total Batch W Admixture: None	eight	419.8			7.73	sk/cu yd

Mix Design No. 3	Specimens Prepared:
Run No. 2 Fibers	Flex (6 in. x 6 in. x 24 in.) 4
Cement Content: 8	Gage 20
Water Content: ~5	Compression 3
Admixture - Air Content: Vinsol, 6	<u>%+2%</u>

Item	Specific Gravity	Wt/Cu F	t Solid	
Cement	3.15	196.6	Type 1	
Fine Aggregate	2.65	165.4	F.M. 3.16	
Coarse Aggregate	2.68	167.2	Wt. D.R. 107 1b	

Item	Solid Volume of Materials Required/Cu Yd	Cu Ft Solid	Batch Ft. 1	Wts. Dry Batch, 11	/3 Cu
Cement	753	3.83	8	33.7	
Polymer	-	-		-	
Water	376	6.03		41.8	
Fine Aggregate	1505	9.10	16	57.2	
Coarse Aggregate	1005	6.01	1	11.7	
Air	-			 Magnetic 	
Fibers	199	0.41	:	22.1	
Total	3838	27.0	4:	26.5	
Item	Batch Wts	. (wet), 1b	Concre	ete Deter	rminations
Cement		83.7	Slump	4.0	in.
Polymer			Meas. air	6.5	x
Concrete Sand		167.2	Wt.	139.7	1b/cu ft
C.A. No. 4		37.2	W/C	0.56	,
C.A. No. 5		74.5		49.67	gal/cu yd
Steel Fibers		22.1		6.40	gal/sk
Water	(5.692)	47.5		7.77	sk/cu yd
Total Batch Admixture	Weight	432.2 20 ml			

Remarks: V_T=.1146 cu yds

Slump increased from initial 1.0" by addition of 9.5 lb water. Fibers shaken into mix through #8 screen to prevent agglomeration and "balling." This process will be used in future fiber mixes.

Mix Design No. 3		Specimens Prepared:
Run No. 8 Fibers		Flex (6 in. x 6 in. x 24 in.)
Cement Content: 8		Gage
Water Content: ~5		Compression
Admixture - Air Content:	Vinsol, 6%+2%	

Item	Specific Gravity	Wt/Cu F	t Solid	
Cement	3.15	196.6	Type 1	
Fine Aggregate	2.65	165.4	F.M. 3.16	
Coarse Aggregate	2.68	167.2	Wt. D.R. 107 16	

Item	Solid Volume of Materials Required/Cu Yd	Cu Ft Solid	Batch Ft. 1	Wts. Dr Batch, 1	y/3 Cu	
Cement	753	3.83	83.7			
Polymer	-	-	-			
Water	376	6.03	41.8			
Fine Aggregate	1505	9.10	10	57.2		
Coarse Aggregate	1005	6.01	111.7			
Air	-	1.62				
Fibers	199.0	0.41	22.1			
Total	3838	27.00	426.5			
Item	Batch Wts.	. (wet), 1b Concrete Determinat		minations		
Cement		83.7	Slump	5.0	in.	
Polymer	-		Meas. air	5.9	x	
Concrete Sand		170.8	Wt.	139.7 1	b/cu ft	
C.A. No. 4		37.2	W/C	.550)	
C.A. No. 5		74.5		47.89	gal/cu yd	
Steel Fibers	•	22.1		6.19	gal/sk	
later	(5.512)	46.0		7.73	sk/cu yd	
Total Batch W Admixture: Vinsol	eight	434.3 20 ml				
Remarks: V_=.1151	cu vds			-	•	

Mix Design No. 4	Specimens Prepared:	
Run No. 5 Sealed/Fibers	Flex	4
Cement Content: 8	Gage	20
Water Content: ~5	Compression	2
Admixture - Air Content: None		

Item	Specific Gravity	Wt/Cu F	t Solid	
Cement	3.15	196.6	Type 1	
Fine Aggregate	2.65 ·	165.4	F.M. 3.16	
Coarse Aggregate	2.68	167.2	Wt. D.R. 107 1b	

Item	Solid Volume of Materials Required/Cu Yd	Cu Ft Solid	Batch Wts. Dry/3 Cu Ft. Batch, 1b
Cement	753	3.83	83.7
Polymer	116	1.89	12.9
Water	376	6.03	41.8
Fine Aggregate	1446	8.74	160.7
Coarse Aggregate	975	5.83	108.3
Air	-	0.27	-
Fibers	198.6	0.41	22.1
Total	3864.6	27.00	429.5

Item		Batch Wts (wet), 1b	Concrete Determinations			
Cement		83.7	Slump	4.0	in.	
Polymer		12.9	Meas. air	4.0	x	
Concrete Sand		162.7	Wt.	137.0	lb/cu ft	
C.A. No. 4		36.1	W/C	.61	5	
C.A. No. 5		72.2		51.73	gal/cu yd	
Steel Fibers		22.1		6.93	gal/sk	
Water	(6.171)	51.5		7.46	sk/cu yd	
Total Batch Admixture: None	Weight	441.2				
-						

Remarks: V_T=.1193 cu yds

• • •

Mix Design No. 4 Run No. 6 Sealed/Fibers Cement Content: 8 Water Content: ~5 Admixture - Air Content: None

Specimens	Prepared:	
Flex		5
Gage		10
Compress	ion	4

.

Item	Specific Grav	ity I	t/Cu Ft	Solid		
Cement	3.15		196.6	Type 1		
Fine Aggregate	2.65	1	165.4	F.M. 3.	16	
Coarse Aggregate	2.68	1	167.2	Wt. D.R	. 107 16	
Item	Solid Volume of Materials Required/Cu Yd	Cu Ft Solid		Batch Wts Ft. Batch	. Dry/3 C , 1b	:u
Cement	753	3.83		83	.7	
Polymer	116	1.89		12	.9	
Water 376 Fine Aggregate 1446 Coarse Aggregate 975 Air -		6.03		41.	41.8	
		8.74 5.83 0.27		160	.7	
			108.3			
Fibers	198.6	0.41	22.1			
Total	3864.6	27.00 429.		.5		
Item	Batch Wts	. (wet), 1t	o Cor	ncrete Dete	erminatio	ns
Cement		83.7	Slu	Imp	4.8	in.
Polymer		12.9	Mea	s. air	3.5	x
Concrete Sand		162.7	Wt.		137.3 16	/cu ft
C.A. No. 4		36.1	W/C	:	.615	
C.A. No. 5	72.2			51.86 gal/cu yd		al/cu yd
Steel Fibers	22.1				6.93 g	al/sk
Water	(6.171)	(6.171) 51.5			7.48 s	k/cu yd
Total Batch Weig Admixture: None	iht .	441.2				
Remarks: V_=.1190 cu	yds					

CERL DISTRIBUTION

Chief of Engineers ATTN: DAEN-MCE-D ATTN: DAEN-ASI-L (2) ATTN: DAEN-RDL Dept of the Army WASH DC 20314

Defense Documentation Center ATTN: TCA (12) Cameron Station Alexandria, VA 22314

