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PREFACE

This final report was prepared by Dr. Sergio Panunzio, Dr. Anthony
Agnone, and Mr. Edward Tory, under the direction of Dr. Antonio Ferri,
Director of the New York University Aerospace and Energetics Laboratory.

This report presents research conducted from May 15, 1974 through
October 31, 1975 under Contract F33615-74-C-3071, Project No."iégi
entitled "Investigation of External Flows in Nozzles." This contract
was technically monitored by Capt. Robert C., Lock and Dr. George K.
Richey, Air Force Flight Dynamics Laboratory (AFSC), Wright-Patterson
AFB, Ohio 45433.

The interpretation and conclusions of the data in this report are
those of the authors and do not necessarily imply concurrence by the Air
Force Flight Dynamics Laboratory. They are presented for the exchange

of information.
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SECTION I

INTRODUCTION

Tactical aircraft spend an ever increasing large fraction of flight
time at transonic speeds. Also subsonic aircraft must cruise at flight
speeds close to the drag divergence Mach number to reduce the total
flight time. At these conditions, a large percentage of the total engine
nacelle drag is produced by the nozzle boat-tail. The high external drag
of this region is related to the engine design. Because of the low Mach
number of the flow leaving the turbine and its annular design, the turbine
diameter is much larger than the minimum nozzle area where the flow is
sonic. Also to minimize heating and engine weight, the area reduction
is achieved very rapidly in a converging section at the rear of the engine,
i.e., the boat-~tail.

For a typical turbojet powered aircraft, this internal area reduction
is on the order of 2.5. This rapid convergence tends to produce rapid
local over expansion, in the external flow, followed by flow recompressions
that produce shock waves. Usually the low momentum fluid in the boundary
layer on this external surface does not negotiate the adverse pressure
gradient produced by the shock-recompression system. Depending on the
pressure rise produced by the shock and that associated with the subsonic
pressure recovery, the boundary layer separates and forms either a
separation bubble or a wake-like region. The separation is further
aggravated by an additional pressure rise that is produced by the under-

expanded jet plume. Since the boundary layer cannot tolerate pressure




jumps, it spreads the disturbance so as to make the pressure rise gradual.
A schematic of the flow field produced by this complex interaction
phenomenon is shown in Figs. la and lb for the two separation modes. It
is evident from Fig. 1 that the flow does not transition smoothly from

one configuration to the other, since as soon as the two separation zones
shown in Fig. la, merge, a conflict in the flow directions at the point of
contact of the separation bubbles exists which cannot be reconciled by any
steady flow device. A qualitative description of the flow field structure
is given in Refs. 1 and 2.

Due to the nature of transonic flow, the inviscid flow field is very
sensitive to the equivalent body shape that is produced by the displace-
ment effects of the boundary layer, the flow separation, and jet plume
boundary. 1In particular, the pressure distribution on the boat-tail can
be shown (Ref. 2) to be affected by the shape of the dividing or separa-
tion streamline and by the shear forces acting on the separation zone.
Therefore an accurate analytical description of this flow field must
necessarily consider the coupling between the inviscid and viscous flow
fields. Analytical tools to describe this flow field are presently being
developed, e.g., Refs. 2-6. The modeling, however, requires as input flow
properties not easily amenable to description. For example, an accurate
representation of the eddy viscosity requires a knowledge of the turbulence
produced by the fluctuations of the shock, separation point movement, and
separation zone size and their sensitivity to free stream turbulence,
external and internal flow properties, boundary layer properties, body

geometry and flow asymmetries. Furthermore the understanding of this flow




field is hindered by the inability in transonic testing to simulate the
pertinent similarity parameters and by wall interference effects.

To assist the theoretical modeling of this flow field, and to de-
termine the influence of various parameters on this flow field, a special
transonic facility-was developed at New York University. This facility
is described in Ref. 1. It is shown in Fig. 2. The external flow around
the boat-tail is simulated by bounding it from below with the actual body
and from above with a cylindrical surface, i.e., the tunnel wall. To
alter the upper surface boundary conditions, distributed injection is
used in the porous region of the tunmnel wall so as to reproduce the actual
streamline. This streamline is determined analytically as described in
Section III B.

The internal flow is simulated mainly by using the correct jet flow
Mach number and pressure ratio. For complete simulation , Ref. 2 in-

dicates that the ratio ()\ = /pmuw) of the mass fluxes per unit area

5
of the internal flow to that of the external flow must also be re-
produced. Representative initial velocity and temperature profiles and
turbulence level are also necessary to insure the correct shear distri-
bution along the dividing streamlines and the discriminating streamline
(because of the normal shift), Ref. 6, of the separation zone. The
viscous flow is simulated by the proper ratio of the momentum defect in
the boundary layer approaching the interaction zone to a typical geo-
metrical scale (G/Dmax) and not by the Reynolds number per s¢. This
simulation is achieved in the present facility by injection (or suction)

in the boundary layer on the boat-tail upstream of the interaction zone




and by changes in the unit Reynolds number through a change in the facility
external flow stagnation pressure.

Flow simulation of actual configurations would also require the
correct representation of such things as residual swirl, secondary nozzle
coolant flow, external flow upwash hot jet effects, and other flow
asymmetries in the jet, for example, due to nacelle angle of attack re-
flected waves from wings or adjacent engine interference phenomena. These
additional parameters can best be simulated with the present technique by
shrouding an actual engine.

In the present investigation, an AEDC 15° boat-tail configuration was
used since the flow field over this nacelle has been reported extensively
by several investigators, Ref. 7. Hence it serves to check proper facility
operation and for comparison of the data with other values of the flow
parameters. The objective of the present investigation is to determine
the influence of the boundary layer momentum thickness, nozzle pressure
ratio, and variable external boundary conditions on the boat-tail pressure

distribution and separation point.




SECTION II

FACILITY DESCRIPTION, CHARACTERISTICS AND OPERATION,
NACELLE MODEL AND INSTRUMENTATION

A, CONCEPT

The facility design is based on the following approach. An axially
symmetric tunnel and a co-axially symmetric ducted model as shown in
Fig. 2 are used. The flow is divided into two streams; the stream en-
tering the duct of the model represents the jet flow while the flow
between the model and the tunnel represents the flow over the nacelle
(boat-tail). The transonic test section is slotted as shown in Fig. 2.
High Reynolds numbers are obtained by using a large model which gives a

*
model to tunnel blockage ratio Am of .36. In some cases the

odel/A

supersonic zone around the model extends up to the slotted tunnel wall,

tunnel

The concept of the slotted wall tunnel is to tune the slots to re-
produce the pressure distribution in the regions of interest (in particular
on the boat-tail and on the slotted wall) and the boat-tail boundary layer
characteristics. This may be achieved as follows. Suppose the flow field
around a reference configuration is to be represented. Given the nacelle

pressure distribution for this reference configuration, an analytical

* The large model also allows probing of the separation zone flow details
with minimum probe interference effects.



computer program developed in Ref. 8 is used to determine the external
inviscid flow field characteristics in the absence of tunnel walls. This
flow field is then used to give the pressure distribution and radial
velocity on a cylindrical surface corresponding to the tunnel wall. The
tunnel wall porosity, the porous wall plenum chamber pressure and the
distributed injection in the porous wall region are then regulated until
these distributions are nearly matched. The accuracy and uniqueness of
the theoretical solutions are established by comparing the theoretical
pressure distribution on the tunnel wall corresponding to that of the
nacelle reference pressure distribution. This tunnel wall is assumed to
be far removed from the model so that interference effects are minimum.

Injection in the boundary layer upstream of the model is used to

alter the characteristics (6*,6) of the boundary layer approaching the
interaction zone on the boat-tail. The various controls for establishing
and regulating the flow are shown schematically in Fig. 3. The control
mechanisms are:

1) The plug valve which changes A; to establish an average
upstream free stream Mach number.

2) Plenum chamber pressure control valves to regulate the
pressure in the plenum chamber and the radial mass flow
through the porous wall and permit communication of the
upstream flow with the downstream flow so as to
equilibrate the pressure.

3) Injection through the downstream region of the porous

wall - affects mainly the downstream pressure, P_.




4)

5)

Porosity distribution to regulate the local mass
injection.
Boundary layer injection - to alter the boundary

layer properties.

B. DESCRIPTION AND MODIFICATIONS

The basic facility is described in detail in Ref. 1. It consists of

a blowdown tunnel with a 23.25 inch (59 cm) diameter test section with a

48" long slotted wall. The modifications introduced to obtain the above

flow controls and to establish the internal jet flow are discussed next.

1}

2)

The first modification was made to establish the
internal flow in the nozzle model and control the
NPR = PT./pm. The upstream end of the model support
was connécted, as shown in Fig. 2, through two per-
forated plates to a central pipe running along the
tunnel axis and entering the tunnel wall upstream of
the first screen. This pipe is connected through a
pressure control valve to vary the NPR. This flow is
fed from an independent high pressure air bank.

The injection system in the boundary layer upstream
of the model was modified to introduce controls for
normal injection in the upstream ring and tangential
injection in the middle ring, with independent air

feed lines inside the annular cavity of the model

through one of the three hollow legs of the model

-~




3)

support. The downstream injection ring was used
for boundary layer suction. It was connected with
the model annular cavity and the cavity itself was
connected through one of the hollow legs to a duct
leading through a valve to the vacuum sphere. The
last capability has not been used in the present
experiments.

The straight part of the tunnel upstream of the
model was extended 12 inches to increase the zone
of the porous wall test section exposed to the flow
field around the jet plume up to two diameters
downstream of the nozzle exit plane. The model was
located with the zone of interest in the first half
of the test section so that the slotted wall plenum
pressure was in equilibrium to both the downstream
and upstream static pressure. The static pressure
at the tap location indicated by '"D" in Fig. 2, was
assumed to be the free stream static pressure level
since this is located just upstream of the boat-
tail and of the porous wall. The free stream Mach
number was calculated from this static pressure and
the tunnel stagnation pressure. The boundary layer

pitot rake was also used as a check.




4) The downstream end of the tunnel was modified to permit
exhgusting the air directly into the atmosphere*, A 5°
divergent diffuser** was introduced to permit operation
at a test static pressure below atmospheric.

5) The mixing of the external and internal jet flow in a
constant area section produces a mixed flow with a
stagnation pressure that varies with the NPR. The
critical area associated with the mixed flow depends
therefore on the NPR. Since the plug valve was
originally sized for the no internal flow condition,
it permits an 117 reduction in flow area. This was
found to be inadequate in regulating the downstream
pressure when the converging section was removed.
Therefore two injection systems were installed into
the facility to be able to regulare the slotted wall
plenum chamber pressure and the downstream pressure
recovery. The first was achieved by admitting

atmospheric air into the slotted wall plenum chamber.

* A tunnel stagnation pressure of 30 psia was required to be able to do
so. This was attempted; however, a control valve in the system was
found to be too small to pass the corresponding mass flow (~ 200 1lbm/sec)

*% A convergent-divergent diffuser with a 20" diameter throat was used
initially in the first 30 tests. This produced a back pressure above
the desired level of static pressure and rendered the plug valve in-
effective in controlling the flow. Therefore the convergent section
was eliminated. It is indicated in phantom lines in Fig. 2.




The flow rate was regulated by four 2.5" valves.
The second was achieved by injecting approximately
3 lbm/sec* of air at the downstream end of the
slotted wall. This mass addition compensates for
the difference between the blockage area and the

jet plume area.
G MODEL QOF AGARD 15° BOAT-TAIL GEOMETRY AND INSTRUMENTATION

The model of the AGARD 15° nozzle was fabricated in three elements :
an outer and inner shell from two aluminum castings and the lip. After
assembling the three parts and machining the support junction, the outer
and inner contours were machined according to the profile values given
in Table I. The nozzle lip was made from a stainless steel ring to cbtain
a good finished surface, a sharp lip, and to permit perforation of the
three rings of pressure taps near the lip. The present model has a
larger diameter than the versions of this model tested in the AGARD study,
Ref. 7.

The pressure taps were perforated at 90° to the surface, with the
annulus between the two shells used to connect the stainless steel tub-
ing system leading the pressure taps connection out of the tunnel through
one of the three supporting legs.

A total of 90 static pressure taps were installed on the model

according to Table II. Of these, 54 were installed on the external surface

* The mass flow injected was measured with a venturi flow meter installed
in the injection line.
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of the boat-tail, 14 on the internal surface (to measure the jet internal
tflow), and 22 static pressure taps were located on the tunnel wall as
shown in Fig. 2. Also, 4 static pressure taps were installed in the
straight region of the non-porous tunnel wall in the o = 180° meridional
plane and 4 in the o = 0° meridional planes. These were used to check
flow asymmetries. The pressure at the location indicated by D in Fig. 2
was used as the reference pressure.

The pressure in the plenum chamber of the slotted wall was monitored
by two static pressure taps at both ends of the chamber as shown in Fig. 2.
A pitot dynamic probe was installed on the axis of the jet flow at
x/D = 1.60. This was used to determine the NPR and the jet flow rate. A
pitot rake with ten (10) total pressure heads and one static pressure probe,
(Fig. 4) was installed on the model at x/D = 1.4. This was used to de-
termine the velocity distribution in the boundary layer approaching the
boat-tail. It is located downstream of the boundary layer injection
system. Therefore, the effects of this injection could be determined.

The pressure taps were connected to four multiple pressure scanners*
in groups of 24. Since each scani-valve has 48 ports, two readings per
cycle were obtained. Each reading covered a time interval of about 1.5
sec. The transducers used were Statham model PA 208 with a range of
0-15 psia for all taps except the stagnation pressure for which a range

of 0-50 psia was used. Calibration of the transducers was performed at

the beginning of each series and checked every morning before the tests.

* Type Scanivalve Model 48-J-9
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The recording was done on two Honeywell Visicorders Model 1612 with the

possibility to record 36 outputs on each one. The recorder speed was

4 in/sec.
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SECTION III

NOMINAL FLOW CONDITIONS

The present tests were conducted at a nominal Mach number of M00 as »9
with ambient temperature air in both external and jet flows. The stagna-
tion pressure of the main flow was varied between 8 and 15 psia to give
unit Reynolds number Re; between 2.8 and 5.2 ft-1 v 106. The Reynolds
number based on the maximum nacelle diameter was of the same order. The
present test conditions are compared to previous investigations in Fig. 5.
The present test, without boundary layer injection, are in the same ReD
range as the subscale AEDC 40 mm model in the CFF facility. In the
absence of injection the displacement thickness of the boundary layer
approaching the interaction zone was approximately 6*/D = 17 of the nacelle
maximum diameter. This is in contrast to a 1.85% of the RR* tests (Fig. 23
Ref. 7, p. I-F22). Analogous results were obtained for the ratio of the
momentum thickness to maximum nacelle diameter e/Dmax’ Injection in the
boundary layer can be used to reduce the value of these parameters so as

to simulate Reynolds numbers Re_ on the order of 108 (Ref. 2).

D
The nominal jet flow conditions were obtained with mass flow rates
from zero to 12 lbm/sec and a jet stagnation pressure of 10 to 24 psia.

The actual flow conditions are indicated in the various figures. Ambient

temperature air was used in the external and internal streams and in the

* RR Rolls R-yce
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boundary layer injection system. With these conditions the internal flow

is choked at the trailing edge of the boat-tail.

The exit area of the boundary layer injection slots were nominally
0.88 in;*, 22.5 inz, and 22.5 in2 for the tangential, normal injection
and suction systems respectively. The injection flow rates ranges from
0 to 0.8 lbm/sec. For the normal injection system, the injection Mach

number was approximately O to 0.15. While for the tangential system, the

slot was choked for mass flow rates greater than ~ 0.2 lbm/sec.
A. REFERENCE FLOW CONFIGURATION

The reference flow field was used in the present tests corresponds to
a free stream Mach number of 0.91, an NPR = 3.1, and ReD = 1.2 % 106. At
these conditions, a significant interaction between the external and ex-
haust flows was expected due to the sizable supersonic zone, boundary
layer thickness, and recompression pressure rise. The inviscid flow field
about this configuration was obtained with the aid of a computer program
described in Ref. 8. The boat-tail pressure distribution for this con-
figuration is shown in Fig. 68**. This represents the ''mean'" line of the
data obtained at several facilities (Ref. 7 & 9) with nominally the same
flow conditions. The shape of the dividing (separation) streamline was

determined iteratively (i.e., in the first iteration the actual body

radius was used to evaluate the axisymmetric terms in the governing

* Slot height of .020"

** The RR data was the first data available to the authors
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equations, successive iterations used the calculated dividing streamline).
The pressure variations along the calculation grid (shown in the lower

half of Fig. 6b) used in the program are shown in the upper part of Fig. 6b.
The curves are labeled according to the grid numbers.

The input body pressure distribution (Fig. 6a), the shapes of the sonic
line, shock and dividing streamline are also shown. The pressure distribu-
tion on a cylindrical surface corresponding to the New York University
tunnel wall was determined from this flow field calculation. It is also
shown in Fig. 6b. Several streamlines in the region of interest are shown
in the lower half of Fig. 6c*, The radial flow variation along the tunnel
wall required to simulate free flight is shown in the upper half of Fig. 6b.
The streamline asymptotic to the tunnel wall shown in the lower half of
Fig. 6b is the one which must be reproduced accurately to avoid tunnel
wall interference. Distributed injection, controlled by the porosity distri-
bution and total amount of mass injected at the tunnel wall, analogous to
the radial velocity distribution at the wall was used in the present in-
vestigation to simulate this streamline. Additional injection was used to
insure that the measured tunnel wall pressure reproduced the theoretical
distribution and that the downstream boundary condition (P+® = P_m) was
satisfied. The amount of injection had to be varied for different NPR to

insure that this condition was always satisfied.

* Note the change in flow deviation at the shock is on the order of 1.7
degrees. Also a necking of the flow appears near the body.
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B. EXPERIMENTAL PROGRAM

The experimental program was divided in two phases. In the first
phase, the facility operation and the reference flow configuration de-
scribed above were established. The porosity distribution, amount of
injection in the porous wall region and plug valve position required to
match the theoretical wall pressure distribution as close as possible
were determined. In this phase of the investigation, modifications 4
and 5 described above were introduced.

In the second phase, the characteristics of the boundary layer
approaching the interaction region were varied by injection. The unit
Reynolds number and NPR were also varied by increasing the external air
stagnation pressure from 8 to 15 psia while the stagnation pressure of
the jet flow was held constant. A list of runs conducted in phase one
is given in Table IIT-A. The actual values of the flow parameters
attained (Mach No., Poe' Poi), the wall porosity configuration, the porous
wall plenum chamber pressure coefficient, and porous wall injection flow
rates are given for each run. The list of runs conducted in the second
phase of the program are presented in Table III-B.

The porosity distribution used in the various groups of tests is
presented in Fig. 7. The porosity injection code is indicated at the
bottom of the figure. A closed (0) porosity-injection code signified no
injection in this section. This is achieved by closing the five holes
on the perforations of the 3" wide outer strips (Ref. 1, pp. 19-20). This

produces a porous cavity as in standard transonic wind tunnels. An open
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(1) porosity-injection code signifies injection in the region. This is
achieved by opening the same holes on the 3" wide outer strips so as to
admit air from the plenum chamber of the slotted walls into these regions.
The flow rate of this air depends on the difference in the plenum chamber
pressure to the local wall pressure, on the curvature of the simulation
streamline, and on the pressure drop produced by the strips and porous
wall itself. A porosity injection code of (3) "strip out'" is achieved by
removing the outer perforation strip so as to eliminate the pressure drop
caused by it. This would tend to increase the injection flow rate above
that produced by a porosity code of (1).

A porosity injection code (2) was achieved by connecting the air
injection nozzle placed in these sections to an independent air supply
system as shown in Figs. 2 and 3*. It appears from the development of
the porosity-injection codes presented in Fig. 7 and especially con-
figuration F, that the injection distribution should tend towards a
distribution similar to the radial velocity distribution at the tunnel

wall shown in Fig. 6b.

* In this configuration the outer strips are in a closed position as in
configuration O, However, these sections (labeled 2 in Fig. 7) do not
communicate with the porous wall plenum chamber. Hence they do not
affect the porous wall plenum chamber pressure while air is injected in
the test section with the 30 nozzles distributed in the porous wall.
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SECTION IV

TUNNEL OPERATION & ATTAINMENT OF THE REFERENCE FLOW CONFIGURATION

The tunnel operation and the reference flow configuration described
above were attained in the first phase of the program. The various con-
trols used to regulate the test section flow (Section II A and Fig. 3)
were varied until the tunnel wall pressure distribution approximated the
theoretical one shown in Fig. 6b*. The intended use of this facility is
to explore flow field changes produced by variations in flow parameters
or initial and boundary conditions that have a '"limited'" zone of influence
as opposed to changes that are produced by flow parameters that affect the
entire flow field (e.g., Mach number and Nozzle pressure ratio), It may
also be used to determine flow changed produced by perturbations in the
principal flow parameters (i.e., Mm, NPR) about a reference flow condition
which is assumed given. Therefore, this type of facility does not have
the disadvantages due to tunnel wall interference problems as encountered
in a conventional transonic facility since conceptually the facility can
be used to reproduce the initial and boundary conditions around a transonic

flow region of interest.

* The correct boat-tail pressure distribution is aiso obtained when the
wall pressure distribution is reproduced since the initial and other
boundary conditions (e.g., nozzle exhaust plume) are simulatedsif there
is a "unique'" solution (i.e., the flow is not extremely sensitive to
the boundary and initial data).
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A systematic study of the effect of each flow control separately
was not possible because of the large range and combination of the
parameters involved and because the changes produced by one control are
coupled to that of another. Nevertheless, after a series of exploratory
tests, certain trends in the flow changes produced by the different con-
trols became apparent. A summary of the effects produced by control varia-
tions and tunnel modifications described above is presented next to define
qualitatively the tunnel operation. The tunnel wall pressure distribution
and the variations of the chamber pressure with various control locations
will be used for this purpose.

Referring to Table III A, the first 30 tests were conducted with a con-
verging-diverging diffuser with a minimum section diameter of 20" and the
plug valve was moved forward as shown in phantom lines in Fig. 2. The first
two tests were conducted without internal flow (ﬁi = 0.0). Therefore the
pressure taps on the internal surfaces and the pitot probe inside the jet
flow measured the "base'" pressure of the flow in this configuration. The
base pressure varies between 0.6 to 0.76 of the freestream static pressure
depending inversely with the free stream Reynolds number.

In the first series of tests, the NPR was varied for each of the first
three porosity-injection codes (A, B, C) shown in Fig. 7. The plug valve
was held fixed and the tunnel stagnation pressure,Poe,was nominally 11 psia.
The measured tunnel wall pressure distribution for these three configura-
tions (Tests 6, 24, and 28) is shown in Fig. 8a for a NPR near 2.0 and a

resulting chamber pressure coefficient near zero. The corresponding
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pressure distributions on the boat-tail are shown in Fig. 8b.

Generally the wall pressure distribution for each case compares
favorably with that of the reference configuration, except near the end
(only when mjw = 0) where an over-pressure is observed and upstream at
x/D > 1.6. Nevertheless, the effect of the porosity injection, code 2,
is evident from a comparison of the wall pressure distribution measured
in Tests 6 and 24. The effect of the porosity-injection code B and C is
evident by comparing tests 24 and 28.

The high pressure recovery downstream of the model, shown in Fig. 8a,
was thought to be caused by the choking effects produced by the converging-
diverging diffuser. Therefore the converging section of the diffuser was
removed and the plug valve assembly was shifted back as shown in Fig. 2.
An attempt to exhaust to the atmosphere was also made at this time but
failed due to the inability to attain a high external flow stagnation
pressure. The porosity injection configuration was also changed at this
time as indicated in Table III A,

In the next sequence of tests, the influence of porosity-injection
code, plug valve position, mass injection into the porous wall chamber,

and NPR on the tunnel wall pressure was studied.
A, EFFECT OF PLUG VALVE POSITION

The plug valve location was varied incrementally as shown in Fig. 2
from the aft most position (8"), to the mid position (12"),to the forward
most position (16"). The tunnel wall pressure distribution with these

three plug valve positions is shown in Fig. 8c. The jet NPR and porosity
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codes are indicated in Table IIT A, A significant change in the tunnel
wall pressure distribution due to the end plug valve position is clearly
evident. A downstream motion of the plug valve reduces the back pressure
which causes the porous wall chamber pressure to drop along with the tunnel
wall pressure. The corresponding pressure distributions on the boat-tail
are shown in Fig. 8d. The chamber pressure and the tunnel pressure distri-
bution on the aft end are intimately connected to the plug valve position.
A correlation of the data from all tests of the plenum chamber pressure
with the plug valve position is shown in Fig. 8d. The spread in the data
is due to other parameters. Clearly the chamber pressure drops with down-
stream motion of the plug valve.

To reproduce the simulation streamline indicated in Fig. 6c, there
must be injection at the porous wall, since the streamline deflects down-
ward. This can be achieved only if the chamber pressure is greater than
the maximum tunnel wall pressure indicated by the theoretical curve of the
reference configuration. A chamber pressure below this level causes inflow
into the chamber and a recirculation of the fluid. An allowance must also
be made for the pressure drop produced by the porous screens. Analysis of
the data shows that a ACp of approximately 0.06 is produced by the porous
wall. Adding this value on the theoretical wall pressure peak of
pr as .070 gives a plenum chamber pressure of approximately Cpch ~ .13 for

correct simulation. The porosity of the wall distributes the flow accord-

ing to the radial velocity at the wall.
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B. INFLUENCE OF NOZZLE PRESSURE RATIO (NPR)

The influence of the NPR on the plenum chamber pressure is correlated
in Fig. 8f for the three plug valve positions. Generally an increase in
the NPR causes an increase in the jet plume angle. This causes an increase
in the back pressure that is felt in the plenum chamber pressure.

The influence of the NPR on the tunnel wall pressure distribution is
shown in Fig. 8g when the plug vaive is at the 12" position. A general
increase in the pressure level in the rear is evident with increasing NPR.
This implies an upstream movement of the shock on the boat-tail. The in-
fluence of the nozzle pressure ratio on the boat-tail pressure distribution

is discussed below.
G EFFECT OF INJECTION IN THE PLENUM CHAMBER OF POROUS WALL

The effect of mass addition in the plenum chamber of the porous wall
on the tunnel wall pressure distribution is shown in Fig. 8h for two plug
valve positions. The mass addition was controlled by four (4) gate valves.
By varying the number of open valves and the degree to which they are open,

different flow rates could be attained.
D. ATTAINMENT OF THE REFERENCE CONFIGURATION

The correlations presented above show the difficulty in fixing the
exact flow conditions needed to obtain the reference flow configuration
with the existing hardware. 1In spite of this, a flow pattern close to
the reference configuration was obtained in test 58. The values of the

flow parameters used to obtain this reference configuration are presented
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in Table III B,

The tunnel wall pressure distribution for this configuration is shown
in Fig. 9a. The reference distribution is also shown for comparison. The
difference in the curves is attributable in part to the low chamber
pressure in this test and in part is a misrepresentation of the plume
boundary layer in the analysis of the inviscid flow field (see Section III B
p. 14). The wall pressure distribution in the region following the shock
was subsequently corrected during the second phase as evident from the
data from tests 64 and 68 shown in Fig. 9a. The tunnel wall pressure distri-
bution calculated assuming no separation on the boat-tail and a straight
sting with a diameter equal to that of the jet exit is also shown for re-
ference. This represents the limit case of infinite Reynolds number and an
NPR of about 2.

The pressure distribution on the boat-tail is shown in Fig. 9b for
test 58. The pressure variation used in the analysis, from Ref. 7 and 9
(see Section III B above), the CFF data (Ref. 7 IF 19 Fig. ISb;.taken at
the highest Reynolds number, and the calculated pressure distribution for
the no-separation, straight sting case, are also shown. The present data
agrees with the CFF data and is bracketed by the two cases. The difference
between the analyses and the data is due to the Reynolds number and NPR.
These data tend to imply that an increase in the Reynolds number and a

decrease in NPR cause a downstream movement of the minimum pressure point,

* CFF compressible flow facility at Lockheed Aircraft - Georgia
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i.e., the recompression is delayed. The flow asymmetry evident in the

data can arise from 1) accuracy in the pressure measurements, 2) facility
asymmetries (such as model and tunnel axis mis-alignment, porous wall slot
non-uniformities, etc.), and 3) model support strut wakes that affect the
boundary layer growth. The present data shows a scatter in the Cp of
iACpl= 0.08. A similar variation is observed in the data presented in
Ref. 7 (II-E12 Fig. 15). The error in the pressure measurements is
estimated to produce an error in the Cp of ACp s + .010. The present

data also shows asymmetry in the expansion zone. This is mainly due to
facility asymmetries. It is not immediately evident how much pressure
asymmetry is produced by a given facility mis-alignmeat. A quasi-
axisymmetric analysis, e.g., Ref. 10, might answer this question. A non-
symmetry in the peripheral boundary layer distribution is discussed in
Ref. 7 1I-E with reference to the NASA data. A non-uniform boundary layer
produces an asymmetric equivalent body and causes flow separation to occur
at different axial stations in the different peripheral planes. This
phenomenon is important in the understanding of the boat-tail flow field.

Therefore further investigation in this direction is suggested.

* Asymmetry in the present data is mainly about vertical plane of symmetry.
The data shows symmetry about a horizontal plane to within the accuracy
of the present measurements.
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SECTION V
DATA PRESENTATICON AND ANALYSIS

Having established the basic tunnel operation and approached the
reference flow configuration to the current capability of the facility,
the external flow unit Reynolds number and nozzle pressure ratio
(NPR = Poi/Pm) were varied by changing the free stream stagnation pressure.
Also, the characteristics (6,6*) of the boundary layer approaching the
boat-tail region were altered by injection. The objective of this investi-
gation was to determine the sensitivity of the external flow (e.g., move-
ment of the Cp* and Cpmin points) to these parameters. All other flow

controls were held nominally fixed in this phase (see Table TII B).
A. EFFECT OF BOUNDARY LAYER INJECTION

Both normal and tangential injection modes were used to produce
different boundary layer profiles and characteristics. The injection flow
rate was varied between 0 and 0.8 lbm/sec in both cases.

1. Normal Injection Mode

The boundary layer profiles measured at the rake station x/D = 1.40
with different rates of mass injection are shown in Fig.10. The injection
parameter )\ = pjuj/peue is indicated/:n the figure for reference. (For
normal injection ) = ojvj/oeue = Ei7xi ). The nozzle pressure ratio for
this series of tests was nominally 3,30 and the Reynolds number based on
the nacelle maximum diameter was nominally 4 x 106. The displacement

effect due to normal injection is clearly evident from these profiles. The
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boundary layer displacement and momentum thickness calculated from these
profiles are indicated in the figure and are plotted vs the injection
parameter, )\ = cjuj/ceue, in Figs. lla and 11b respectively. The trends
calculated assuming the thicknesses are the sum of the thicknesses without
injection plus the defects {(or excesses) due to the injection are shown
for comparison. The normal injection case was treated similar to a tan-
gential injection mode with very low injection velocity uj/ue << 1, and
cjuj/oeue finite. 1In view of the ambiguity of the equivalent slot height,
in this case, a family of curves with values of yj/D that lie between

that corresponding to the normal injection (yj/D ~ .033) and that of the
tangential one (yj/D a~ .00167) are shown. The thicknesses are nearly con-
stand for values of ojuj/oeue less than .10, The theoretical momentum
(displacement) thickness increases (decreases) linearly with this parameter.
The lack of a definitive trend in the experimental data is perhaps due to

the complexity of the flow field associated with normal injection and to

insufficient data.
2. Tangential Injection Mode

The boundary layer profiles with tangential injection are shown in
Figs. 12 and 13. The values of the flow parameters are indicated in the
figures. A velocity excess is evident in Fig. 13 for the case of the
highest injection velocity and lowest ReD. The velocity profiles are much
fuller than those with normal injection.

The displacement and momentum thickness variation with the injection

parameters are shown in Figs. lla and 11b respectively. In this case,

26




T

both thicknesses decrease with increasing values of the injection parameter.
The data exhibit the same trend as calculated by adding the thickness due
to the jet and the injection values. The incremental defect due to the slot
mixing is evident from a comparison of the data with the curves. The in-
cremental defect increases with increasing values of the injection para-
meter. A momentum excess is evident for values of ) greater than 3 with
correspondingly sizable reduction in displacement thickness.

The boat-tail pressire distribution, with boundary layer injection
upstream of the interaction zone, are presented in Fig. 14 for normal
injection rates so that the injection parameter is between 0.02 and 0.15.

In spite of the large difference in the velocity profiles (Fig.-lo) with
normal injection, no consistent trend in the pressure distribution could
be ascertained due to the large pressure gradients prevalent on the boat-
tail, the accuracy of the data, and the rather narrow range of the momen-
tum thickness (8/D) parameter used in these tests. To obtain a clear in-
dication of the trends, the momentum thickness should be increased by both
reducing the injection area used in the normal injection case and increas-
ing the injection flow rate; or by possibly injecting a light gas with
diffusion characteristics similar to those of air. Also a tighter con-
trol on the plenum chamber pressure should be exercised.

The boat-tail pressure distributions with tangential injection up-
stream of the interaction zone are gshown in Fig. 15 for values of the
injection parameter ) = p.u

33

trend of the data with increasing values the injection parameter cannot

/peue between 0.46 and 4.6. Again a definite
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be established. However, after correcting the data for the differences
in the chamber pressure (i.e., shifting the data along the Cp ordinate)
and taking only data that follow a uniform trend with variations of the
momentum thickness, a tendency towards the inviscid no separation case;
or equivalently high Reynolds number, can be seen. This is made more

%
evident below when we correlate the locations of the Cp and Cpmin points.
B. EFFECT OF REYNOLDS NUMBER AND NPR

The boat-tail pressure distributions obtained by increasing the
tunnel stagnation pressure from 9 to 15 psia while holding all other
parameters fixed and with the maximum tangential injection flow rate of
0.8 lbm/sec are shown in Fig. 16. In this case, the injection parameter,
unit Reynolds number and NPR varied because the stream static pressure
changed. However a direct comparison of the effect of the unit Reynolds
number only can be obtained by comparing the pressure distributions ob-
tained in tests 58 and 73 (no injection cases). The downstream movement
of the Cpmin point with increasing Reynolds number is evident. Un-
fortunately part of this change is also due to a change in NPR. A com-
parison of the pressure distribution shown in Fig. 16 (after correcting
for the chamber pressure) show little change. This is due to the fact
that while increasing the NPR tends to move the Cpmin point upstream,

increasing the Reynolds number tends to move it downstream (see Ref. 11).
C. CORRELATIONS

In spite of the above difficulties and uncertainties, some correlations

of the characteristics of the flow field structure were attempted. The
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*
locations of the Cpmin and the downstream Cp were correlated with the
o
unit Reynolds number Re , NPR, and 6 /8 . The Cp_, point gives some
D o o min
+
indication of the separation point while the Cp gives an indication of
the shock location. The location of the Cpmin point is correlated in

Figs. 17a, 17b, and 17c with the Reynolds number Re_, NPR and 60/5:

D)
respectively. These correlations show the following trends:
1) The Cpmin point moves downstream, (x/D)min decreases

with increasing values of Re The scatter in the

D"
data is due to different NPR and ReD and in the
accuracy of locating the Cpmin point from the data.
2) The Cpmin point moves upstream with increasing nozzle
pressure ratio. The trend is more clearly defined in
the case of tangential injection than the case of
normal injection.
3) The correlation of the Cpmin point with the momentum
thickness at the start of the interaction zone, eo’
shows a decreasing trend. Additional analysis of the
data is required to remove the influences of the NPR and
ReD.
The correlation of the downstream Cp* point with Reynolds number
ReD is shown in Fig. 18a. This shows that the Cp* point moves down-
stream with increasing values of ReD. The movement of the Cp* point is
greater than that of the Cpmin point. Therefore the distance between

*
these points increases with increasing Re The dependence of the Cp

D’
point on the NPR is shown in Fig. 18b. This shows a clearly defined
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trend which is mainly due to the increased back pressure produced by a

larger plume with increased NPR.
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SECTION VI

SUMMARY, COMMENTS & RECOMMENDATIONS

A new type of transonic wind tunnel facility that uses a shrouding
technique is described here. The operation and characteristics of this
facility have been defined in terms of the various flow controls
necessary to produce a desired flow field. Some facility and control
improvements are indicated from the present results to simulate more
accurately the flow fie'’d and to extend the capabilities of this facility.

The facility has been used here to reproduce the transonic flow field
over the boat-tail of a turbojet nacelle including the effects of the jet
exhaust flow plume. A reference flow configuration (Mco = .9, NER = 3.0,
and ReD - 1.2 X 106) was tentatively established. Then the effects of varia-

tions in NPR, Re_, and the boat-tail initial boundary layer characteris-

D!
: * . . :
tics (8 ,8) on the boat-tail pressure distribution were investigated.
Injection in the boundary layer approaching the interaction region was
*

used to alter its characteristics (8 ,@).

Tentative correlations of the minimum pressure and the downstream
sonic point on the boat-tail with these parameters, indicate a down-

stream movement of these points with increasing Re_. and decreasing NPR,

D
The influence of the boundary layer injection on these points is less clearly
defined probably because the values of the injection parameters were not
varied to sufficiently alter the boundary layer characteristics.

The results presented here can be correlated more accurately for the

present configuration if the individual effects of each parameter can be

established quantitatively. This can he achieved semi-empirically by
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using the present data and the analysis presented in Ref. 8 with
correction for the boundary layer growth on the boat-tail and refined
estimates of the plume shape. These analyses should be conducted for
a range of the pertinent parameters extending over at least one order
of magnitude beyond the present tests.

The analyses can be further refined if the details of the structure
of the separation bubbles are included in the theory. The present facility
is most suited for this purpose since due to the large model size, the
separation zone has sizable dimensions hence probe interference effects
can be minimized. Also additional experiments should be conducted at
free stream Mach number near unity when the influences of the individual
parameters are more pronounced. A capability exists presently to simulate
a hot jet with To = 1200°R and the throat cooling. In this connection,
the jet exhaust flow profiles can be measured to define rigorously the
initial data. The plume boundary, jet boundary layer, and heat transfer
rates at the nacelle wall can be determined accurately. Values of the
injection parameter greater than 5 should be used to obtain a signifi-

cant influence of the injection on the flow field.
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TABLE I ORDINATES OF 15°

AGARD NOZZLE GEOMETRY

EXTERNAL

X/D Y/D X/D Y/D
0 0.2075 0.700 0.4490

0.025 0.2155 0.725 0.4543

0.050 0.2245 0.750 0.4595

0.075 0.2349 0.775 0.4645

0.100 0.2458 0.800 0.4695

0.125 0.2568 0.825 0.4743

0.150 0.2678 0.850 0.4788

0175 0.2788 0.875 0.4828

0.200 0.2888 0.900 0.4863

0.225 0.2988 0.925 0.4898

0.250 0.3085 0.950 0.4928

0.275 0.3180 0.975 0.4953

0.300 0.3275 1.000 0.4978

0.325 0.3368 1.025 0.4990

0.350 0.3458 1.050 0.5000

0.375 0.3545 3.000 0.5000

0.400 0.3630

0.425 0.3718

0.450 0.3800

0.474 0.3880

0.500 0.3958

0.525 0.4033

0.550 0.4108

0.575 0.4178

0.600 0.4248

0.625 0.4313

0.650 0.4375

0.675 0.4435
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INTERNAL
X/D Y/D
0 407
.179 451
.516 .627
1.014 .686
1.124 <731



TABLE I1 EXTERNAL STATIC PRESSURE INSTRUMENTATION
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PROPER TUNNEL AND FLOW CHARACTERISTICS OBTAINED AND

BOUNDARY LAYER CONTROL INTRODUC
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Fig. 7 Configurations of the porous wall
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Effect of plug valve position on tunnel wall pressure distribution
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Effect of NPR on porous wall chamber pressure
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Fig. 14 Boat-tail pressure distribution (v = 0°) with different normal

injection rates in the boat-tail boundary layer
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