AD=AO37 738. PARKE MATHEMATICAL LABS INC CARLISLE MASS F/8 /2
A COMPUTER STORAGE AND RETRIEVAL SYSTEM FOR SCIENTIFIC DATA.(U)
SEP 76 T B BARRETT, I B JARVIS F19628-74=C=0031
RADC=TR=76-344

ADAO377 38

l‘i) .“l..;._a..___;
DBC ALE copy

RADC-TR-76- 34k
Technical Report
September 1976

A COMPUTER STORAGE AND RETRIEVAL SYSTEM
FOR SCIENTIFIC DATA

Parke Mathematical Laboratories, Inc.
One River Road, Carlisle, Mass. Ol7hl

Approved for public release
distribution unlimited.

&

COPY AVAUARLE TO NG DOES RO
PERMIT FULLY LECIZLE PROCICTIOR

AIR FORCE SYSTEMS COMMAND
GRIFFISS AIR FORCE BASE, NEW YORK 13LLl

—_———

Pe

Drs. Theodore B. Barrett and Stanford P. Yukon are the
co-responsible investigators for this contract. Carl A.
Pitha (ETSS), is the RADC Project Engineer.

This report has been reviewed by the RADC Information
Office (OI) and is releasable to the National Technical In-
formation Service (NTIS). At NTIS it will be releasable to
the General public, including foreign nations.

This technical report has been reviewed and approved
for publication.

APPROVED:

Ll off]t

CARL A. PITHA
Project Engineer

APPROVED:

Solid State Sciences Division

'FOR THE COMMANDER: %AJ‘J 7«/‘/’4«1/

Plans Office

Unclassified
S!CURIYVHSI'ICAYION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE e T s

/ 2. GOVT ACCESSION NO. RECIPIENT'S CATALOG NUMBER

$. TYPE OF REPORT & PERIOD COVERED

Final Report
A 'COMPUT“‘R S'l‘ORAGE AND RE'I'RIEVAL SYSTEM 9/73 - 7/76 o

FOR SCIENTIFIC})ATA " 6. PERFORMING ORG. REPORT NUMBER

G CONTRACT OR GRANT NUMBER(s)
:9 S
£ | F19628-Th-C -g831 |

J4. TITLE (and Subtitle)
T SR

- AUTHOR(s)

O Theodore B./Barrett
Ingrid b./Jarvis

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WOR UMBE
Parke Mathematical Laboratories, Inc. b 1 6 F /'7 74
v 4 ; o
One River Road - Carlisle, Mass. 0l74l 801*
1. CONTROLLING OFFICE NAME AND ADDRESS 2. REPORT DATE =]
Deputy for Electronic Technology (RADC/ETSS) / Se p souber 6 |
Hanscom AFB, Massachusetts 01731 g
Contract Monitor: Carl Pitha 176

ONITORING AGENCV NAME & ADORESS(If different from Controlling Office) | 15. SECURITY CLASS. (of thia report)
Yeop .
FI 4 a - }-’t Unclassified

P I) r} 3 3(4 7() 15a. 2g§éesz.£‘c‘f|o"/ DOWNGRADING

|. DISTRIBUTION STATEMENT (of this Report) -

Approved for public release: distribution unlimited)

the abatract entered in Block 20, if different from Report) '

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side Il necessary and identify by block number)

DATA STORAGE SCIENTIFIC DATA
DATA RETRIEVAL

/

1%$TRACT (Continue on reverse side It y and | ly by block ber)

computer storage and retrieval system for use with a CDC6600 computer
as it is configured at AFGL, Hanscom AFB was developed. The information
stored and retrieved falls into three categories: source citation (bibliographic),
data category (keyword) and scientific data (usually quantitative measure-
ments on various properties of a selected class of materials). This report
gives a general and specific description of this system which consists of
computer subroutines, files and operational procedures. In addition it

ides a detailed user's guide for operating the system.,

DD ':2:‘;, 1473 EDITION OF 1 NOV 68 IS OBSOLETE

assified
= 1 = SECURITY CLASSIFICATION OF TNI“Y("M Data Entered)

R TE Hod | A

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- {1 -

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

EVALUATION

1. This report is the Final Report on the contract. The effort carried
out under this contract was in support of an extensive program by the
Air Force Weapons Laboratory on the development of high power infrared
lasers. The contractor provided expertise in particular aspects of math-
ematical theory, the mathematical analysis of the optical properties of
dielectric and semiconductor materials, the development of computer
programs in support of in-house portions of the program, and the develop-
ment of a computer storage and retrieval system for scientific data.
Contractor supplemented in-house capabilities in crucial areas and made
possible the development of an adequate output window for the AFWL high
power infrared laser.

2. Since this contract was devoted to AFWL work only and predates the
establishment of RADC/ET, no RADC TPO exists with which it may be associated.

Al

Project/ Engineer

-iii-

Preface

This final report provides a description and user's manual of

the data storage and retrieval system which was started under contract

F19628-71-C-0142 and continued under contract F19628-TL-C-0031. For

an overview of this system refer to Chapter I. Chapters II and III

provide technical details for system users and for those who may

wish to modify the system.

Additional work performed under this contract included the following:

1)

Multiphonon infrared absorption - basic theory; testing of the
correlation function theory for various '"model'" crystalline and

amorphous materials; development of a soluble Hamiltonian model.

This work is summarized in Tech. Memorandum 25, "Multiphonon
Infrared Absorption in Ionic and Semiconducting Solids', S. Yukon,
August 1976. This report also includes reprints of journal
articles which were a partial outgrowth of work done under this

contract as well as the predecessor contract.

Selected data reduction - computer reduction of calorimetry
data from dotted temperature ris¢ and fall curves; computer
reduction of plotted spectfometer data; computer reduction of

"computer produced'" spectrometer data.

This work is summarized in Tech. Memorandum 26, '"Various
Computer Subroutines for Data Reduction of Calorimetry and
Spectrometer Data", T. Barrett, August 1976. This work includes
user's guides to various subroutines used in the data reduction

and various procedures which should be followed in doing the

data reduction. e — ——

PRECEDING PAGE gBLANK-NOT FILMZD

- —— T —————

LA

———————

=

3) Thermal lensing in infrared windows - solution of the heat
equation with source in cylindrical coordinates; intensity of

a Gaussian source through a thermally stressed window.

This work, which involved the development of several computer
subroutines is summarized in RADC report RADC-TR-T76-269,
""Computer Solutions to the Heat and Diffraction Equations in
High Energy Laser Windows'", P. Gianino, B. Bendow, N. G. Parke,

T. Barrett, - November 1U76.

The following individuals at Parke Mathematical Laboratories, Inc,

have contributed to results produced under contract F19628-Tk-C-0031:

T. B. Barrett

L. Calabi

B. M. Langworthy
I. B. Jarvis

N. G. Parke

N. Quinn

-vi-

TABLE OF CONTENTS

Preface

Chapter I - Introduction to the BIBDIS System
Section 1 -~ Overview and History
Section 2 - Capabilities

Section 3 - Additional Desiderata

Chapter II - Technical Description
Section 1 ~ Modus Operandi of the System
File Descriptions
Section 2 ~ Program Description

Interaction of Programs and Files

Chapter III - Users' Guide

Section 1 » Bibliographic Storage and Maintenance
Source Citation Comments
Preparation and Verification of Bib. Entries
Creation of Journal Word Abbreviation File
Creation of Journal Abbreviation File
Processing of Bibliographic Entries

Section 2 - Keyword Storage and Maintenance
Processing of Keyword Entries

Section 3 - Creation and Maintenance of the Data File
Processing Data Entry Cards

Creation of Data Standards File

Section 4 - Bibliographic Display Operating System (BIBDIS)

Files
Directives

Control Deck
Appendix A - Data Entry and Maintenance Notes

Figures:
1.1 256 Character Print Chain Qutput
1.1 Programs Use of Files

-vii=

18
6L

Figures: (continued)

11I.1
I11.2
1I1.3
IIT.h4
115
111.6
I11.7
I11.8
I111.9

References

Bibliographic Entry Cards

Sample Bibliographic Entry Cards
Journal Word Abbreviation Cards
Journal Abbreviation Cards
Keyword Cards

Data Input Sample

Data Cards Sample

Sample BIBDIS Output

Data Standard Cards

-viii-

o e e

CHAPTER I INTRODUCTION TO THE BIBDIS SYSTEM

Section 1 -~ Overview and History

In spite of the recent proliferation in computer abstracting
services, it is still useful for the individual scientist or group
of scientists to be able to store, retrieve and manipulate informa-
tion for which they have a particular need or expertise. Consider
the following quotation from Reference 7 (page 2):

"The other type of component is the individual scientist
(or small group of collaborators) who produces a "one-shot" compila-
tion or critical review as a part of what he regards as his normal
scientific activity. Many valuable data compilations have been
produced in this way. Such individuals do not consider themselves
part of a formal data center, and there is generally no commitment
for continuity or updating. The rapid growth of the scientific
literature makes it increasingly difficult for an individual to do
this type of compilation. However, the continuing data centers can
serve a useful function by providing bibliographic back-up for indi-
vidual scientists in other locations who wish to write critical

reviews or do critical compilations of limited scope."

The system of data storage and retrieval (which is called
BIEDIS) described hemin grew from such a need. The origins of this
need go back to the experience of compiling, "by hand" so to speak,

a compendium of useful physical properties of a restricted class of

of materials (see Reference 1).

The initial phase of this work was one of merely generating
and maintaining a computer file of bibliographic entries (author,
Journal, title) selected by the user. These entries referred to
articles, books, etc. which contained information on specific
quantitative data germaine to the compendium. A set of Fortran
subroutines was written to sort this file in various ways specified
by the user so that it could be displayed in various forms such as
"oy journal" or "by author". These subroutines proved to be quite
time consuming so the CDC utility package sort-merge was finally used

for the task.

The next phase of the task was to code each bibliographic
entry (or actually some of the entries) with "key words" which
described briefly the contents of each entry. These key words were
put into a separate camputer file. Subroutines were subsequently

written to list the bibliography "by material" and/or “by property", etc.

The final phase of the task was one of including provisions
for storing quantitative data from the journals, etc. referred to in
the bibliography. This task included, of course, that of retrieving
the data and properly displaying it. Again another file was added
to the set of files which constitute the "data base"” of the system
Thus a "bibliographic file", a "keyword file" and "data file" were

succeseive ly brought into the system.

Some of the initial work was started under contract F19628-
T1-C=0142. The effort for the most part has been "low level" and
initially at least one without much formal structure to it €.Bey

the task at hand was accomplished as expeditiously as possible with

ol e

s

little corcern for the development of the most efficient system for
the "overall" task. In fact the overall task has changed according

to changing needs of the user.

An attempt was made during the closing phases of the original
contract (0142) to formalize the quantitative data storage and re-
trieval problem (see Reference 2). In fact a trip was made to the
National Bureau of Standards Office of Standard Reference Data,

Data Systems Design in an attempt to obtain data storage and retrieval
"standards" and perhaps subroutines which would ease the writing of
the necessary storgge and retrieval programs. It became apperent
that such standards did not exist and that the available subroutines
were either too general or specialized to be of muchuse in our work.
Thus we continued to make our own rules of operation and, more or
less intuitively, gradually assembled together a system of files,
subroutines, standards, rules of operation, etc. which together
constitute the present data storage and retrieval system reported
herein. As mentjonad previously this system has grown as the need for
various capabilities of the system arose; it also has grown and
become more sophisticated with increased knowledge of the capabilities
of the CDC "operating system" a system, by the way, which has grown

considerably in accessibility and utility to the non-systems programmer

This effort has culminated in what is referred to in T™1S (Ref-
erence 3) as the "BIBDIS Operating System" which,more or less,consists
of a set of general purpose and specialized subroutines which can

easily be added onto as the need arises and which together provide

B

the retrieval part of the task. Implicitly this system includes a
set of general rules which govern some of the structure of subroutines
within the YBIBDIS set".

The overall system of storage and retrieval which has been put
together is far frip optimum or perfect. It has evolved with need,
knowledge, system changes and time and, like most things which do
not blossom forth in an instant, retains vestigal elements of its
evolution. It works, however, and seems to perform its required
duties reasonably well and with a ninimum of help from the user

(assuming the computer is working as advertised).

Section 2 - Capabilities

With this brief historical introduction we next briefly outline
the major elements of the system (which are, in fact, common to many
computer information storage and retrieval systems) and how we have
implemented these elements. The major constraint has been, of course,
that the system must work on the CDC 6600 as it is presently configured
at AFGL including the usual user I/0 devices, which include punched
card input, teletype input, output, and high speed printer (64 charac-

ter) output.

The first logicel element is that of data entry. As mentioned
before, for one reason or another, the data base consists of three
separate, but inter-related files: bibliographic, keyword and quanti-
tative data (or, for convenience, quantity). Data entry into all
files is by punched card; the cards themselves become (or should become)
the primary back up "files". Corresponding to each file is a set of

two subroutines which are used to preprocess the data and to add entries

ol -

|
|

to the files. Much of the data can be punched on the cards in field
free form. The usual procedure is to produce a sizeable number of
cards, store them on "permanent" disc file by using a utility copy
program, then run the card images through the preprocessor which does
as many validity checks on the data as possible. Data correction is
then usually dcne on line through INTERCOM and EDITOR. The presumably
correct data is then restructured and added to its appropriate file
using the second preprocessor. One of the features of this data
entry scheme is a "Standards" = file or files which is used to
check certain data elements. For example, for the bibliographic file,
the standard includes a list of standard journal abbreviations

to which journal entries must conform.

The second logical element is the set of working files which
constitute the data base. As mentioned above, three separate
"main" files are used in the system, partly because of historical
reasons, but partly because they can serve as independent useful files.
For example the bibliographic file can be sorted and displayed in
various ways to produce useful information about the sources of quanti-
tative data. These main files are frequently used in some secomdary
form by the BIBDIS retrieval system; for example the bibliographic
file which' i "basically" a sequential file, is most often stored and
used as a word addressable file. The quantitative data file is the

"decode" files to translate code words in the master files and "stand-
ards" files for data entry checks. File form or type (such as
sequential, word addressable, indexed sequential)is dictated by
various factors such as where the data is to be stored, storage
efficiency, speed of data access, how the data is to be accessed.
Among other considerations is the fact that CDC Sort-Merge will
only work on sequential files thus intermediate files must often be
created in sequential form. In addition, for back up purposes files

mist usually be stored on megnetic tape in sequential form.

The third logical element is that of data base "maintenance"
which here means corrections (:anluding deletions) and protection
from catastrophic loss. At present, not much warkhas been done on
this element. Some speciel purpose subroutines have been written
from time to time to make massive corrections such as one to standard-
ize jowrnal abbreviations (prior to this some journals appeared in
half a dozen variants). Standard techniques can of course be utilized
such as the periodic creation of a "transaction file" to amend the
"master" file. The quantity file, incidentally, is an indexed
sequential file which is amenable to more direct methods ?f correction.

The fourth element, and perhaps the most important is that of
information retrieval since this really tells what the system does.
Basically it does what any good information retrieval system does:
it produces lists of assoclated data fram the data base which fall
into certain categories specified by the user. Perhaps the best way
of indicating exactly what this means for this system is to give a
table of LISTB directive parameters. The LISTB directive is one of

several which can be used to control the BIEDIS "operating system'.

It is the principal directive for information retrieval.

Table I - [ISTB. Parameters

1. "Order"Parameter (N) see note 2
Value Meaning
N accession number
A author
J Jjournal
M material
Q quantity
PM property - material
MP material - property
PQ property - quaentity
MQ material - quantity
AY author - year
AJ author - journal
JA Jjournal ~ author
JY journal ~ yeaxr
2. First Lower Delimiter (first possible)

¢ & character string of up to 10 characters appropriate
to the first "order" parameter
/ See note 1
3. First Upper Delimiter (last possible)
¢ a character string of up to 10 characters appropriate
to the first "order" parameter

L. Bibliographic Citaiion Code (#)
Value Meaning
F full entry
N accession number only
AJY author, jowrnmal, year
AY author, year

-7 =

o

5« Contenis Code ()
Value Meaning
N none
M material
P property
1P material - property
P property - material
D all data
6. Second Lower Delimiter (first possible)

¢ a character string of up to 10 characters appropriate
to the second "order" parameter

7. Second Upper Delimiter (1ast possible)
¢ a character string of up to 10 characters appropriate

to the second "order" parameter
liote 1 - if / is inserted for the first lower delimiter of an "order"
parameter, all entries are listed which do not include the
"order" parameter. This is used mainly to determine what
data needs to be added to the data base.
Note 2 - a question mark (?7) may be used in place of any parameter
value causing a default value to be used. This default value

is indicated in parenthesis beside each parameter.

In general the “order" parameter controls the order in which
data is listed while all other parameters control the amount of data

listed. In words LISTB will: (numbers refer to parameter number in
table 1)

List the contents of the data base by 1 ({irst part) then by

1 (second part) from 2 to 3 and from 6 to 7. The amount of

"source" is given by 4 while the amount of "data" is given by 5.
It may be possible to recover the same information using dilferent
perameters but, in general, this information will be displayed in

slightly different forms.

To give some examples:
LISTB,, A, BALILARD, BALIARD, N, D

Lists all data published by authors named Ballard (or more
exactly authors whose last names start with Ballard). The
bibliographic citation is by accession number only.

LISTB,, PM, EIA, EIA, F, D, GASE, GASE

Lists data on the elastic properties of GaSe, full biblio-

graphic citation.
LIS, MP, GASE, GASE, F, D, ELA, EIA

Same as above.

LISTB, MP
The entire data base is listed alphabetically by material
(actually matecrial code), and under each material by property
(actually 'prouperty code). A full bibliographic citation is

given but no quantities (or quantitative data is listed.

The technical details of the system are given in the following
chapters. However it should be stressed that this system was designed
for use by the individual scientist wherein he can collect his own
data from any sources whatsoever (including his own laboratory),
store it in a data bank and later retrieve it in various useful forms.

Of primary importance to such an individual is the way physical data

is entered, stored and treated for display purposes. This is done

below briefly. Of secondary importance is the way source-of-data
(bibliographic citation) and keyword(s) are handled. This will also

be done below in a samewhat abstract form since "source" and "keyword(s)"

can be considered to be abstract quantities apart from the way they

- 0 =

are used in the particular data base which is presently used with the
system described.

The physical data (quantitative data, quentity) is assumed to
have some or all of the following characteristics. The system will
display these characteristics in a "nice" format.

(1) it has a name (quantity code)

(2) it applies to a specific physical material and can be
categorized as having the attributes of a specific "physical
property" - in general this physical property is not as
specific as the quantity itself but they may be identical.

(materials code, property code)
(3) it has physical units (units code)

(4) it comes from some source (accession number)

(5) it may be associated with other quantities from the same
source. (Thus each quantity from a fixed source is given
a reference number which may be used to establish its inter-
dependancy).

(6) it 1s categorized as being an "independent" or "dependent"
quantity. In other words "wavelength" or "temperature"
which are usually "independent quantities are treated in
the same way as "dependent" quantities such as "index=
of-refraction”.

(7) 1t 1s associated with an environmental condition.

(8) the quantity itself is either a descriptor (an alpha numeric

character string) or a list of one or more "numbers".

(9) the "numbers" may appear in one of several forms; e.g. [,
fxe, ~f, f,«f<1,, etc. vhere is in general a real
number in "scientific notation". On occasion we might also
find abs (quantity)e f.

(10) the numbers may have a multiplier associated with them.

The actual format for entering data into the system is given
in Chapter 111 , section 3 . There are a few important facts
however, which are worthwhile to stress here.

(1) Every code word (quantity, material, property, units) is
limited to a maximum of 10 characters. Every code word
mst appear in a code word file along with its translation
before other data referring to this code is entered. For
display purposes the full translation is used.

(2) In general inter-related quantities are displayed together.
In particular tables of values are printed in adjacent
colums with appropriate headings. The order in which they
are printed out is governed by the reference numbers (see (5)
above). A place has been left to store a "display code"
which can be used to specify a particular fo:;m of display
where the "usual" form cannot apply.

(3) It 1s possible to access the data base by "quantity".

This may not make sense in some instances, for example, all
sources which contain the quantity "temperature" could be
listed even though temperature is usually an independent

variable or "condition" under which another physical quantity

e« 31 -

was obtained.

The "source" (e.g. bibliographic source as represented by a
bibliographic entry and associatea accession number) is assumed to be
entered in a particular form which permits various orders of presenta-
tion e.g. by "author", by "jowrnal", etc. More specifically data entry
of each source is done by prepering exactly 4 cards (some of which may
be blank except for card no.) with card number as the last item on the
card. (See Chapter 111, section 1 for the exact format). Card 1
cantains "author";for search purposes the first 10 characters only of
author are used. Card 2 contains journal code, journal volume, pages, and
year, Journal code must be the first item on the card and year the next
to last item (card number is last). Jowrnal volume and pages are not
used for search purposes but if they exist must appear in a certain
order (see Chapter 111, section 1). Note that journal code, etc. may
actually be a report or book citation. Cards 3 and 4 contain the title
of the source: usually the title of some article or as much of it as
can appear in two 80 column cards. Fach source is coded by "accession
number", an integer between 1 and 99999 inclusive. This code is not
provided by the user, rather it is appended to each entry by a computer
subroutine as the entry is added onto the master bibliographic file.
(Accession number is the same as sequence number in the master rile.)

Although "key words" are important elements o the system, they

' are added to

need not concern the user if "source" and "quantities'
the data base more or less simultaneously since "key words" are obtain-
ed by the system from the "quantity cards" and added to the key word

file. The key word file cuntains the codes: accession number, property,

_—

neterial, quantity. Its primary purpose is to provide a succinct
description of the "content" of its source. The user may, of course,
add to the contents o the keyword file without creating entries for
the quantity file. The rules for doing so are given in Chapter 11,

section 2.

Althoush LISTB is the primary directive of the BIBDIS system
other directives are available. For example the directive "SIZE, rile"
will give the current size of any file in the data base. ror a complete
list of current directives see Chapter III, section 4 .

In concluding this summary ol the BIEDIS system we give below

a Tew comments on same of the technical aspects of the system.

1. The "executive" portion of BIBDIS consists of a very simple main
progran (calkd MAIN) which is made up of an "introduction", a
"computed go to" statement, calls to major task entry points (see
below) and a closing statement. In addition to these executable
elements, the main program is used to declare several common
storage areas and four files (INFUT, OUTRUT, DATST and PRINT)
which are referenced by the usual Fortran READ, WRITE statements.

(all other files are referenced through Record Manager calls - see
below). The introductory part of MAIN is a call to subroutine
INTERP which reads each BIBDIS directive from INPUT and interprets

this directive.

2. The directives of BIBDIS are carried out by calling one or more
task entry points corresponding to directive numbers. These entry

points are referred to below as BIBSUBs.

3. The structure of BIBDIS will allow for segmentation (see reference 4)

“«]18 -

5e

70

8.

in that each BIBSUB can be overlaid on top of any other BIBSUB
during execution. At the present stage of development it is not
necessary to use segmentation, but by providing for it, BIBDIS

can essentially become infinitely large and still be executable on
a finite sized computer. All commmications among various BIBSUB's

must be done through common storage blocks.

The root segment (including MAIN) contains several "utility" sub-

routines which can be called by all BIBSUB's and MAIN.

File INPUT is used only for feeding directives into BIBDIS. See

Chapter II, section k4 for the form of these directives.

File OUTRUT is used by BIBDIS only for outputting informative
messages such as error messages, having to do with the state of
BIBDIS. It is also used by the Scope operating system to inform

the user of troubles.

File PRINT is reserved for use as the major working output file of

BIBDIS.

Files used by BIBDIS (not incluaing program files) can be put

into one of three major classes (within a class there may be a
further subdivision of file types).

Class I - consist of the "utility files" INPUT, OUTFUT, DATST,
and PRINT. These are Fortran standard "formatted" files mentioned
above.

Class II - consists of the files which contain all information

o 1k -

required by BIBDIS. These are called "primary" Iiles and must
conlorm to certain rules listed below. They are assumed to reside
on a private dislt packe.

Class III - consists of all other data files such as "tag" riles
or word addressable i'iles which may be required for the easy
extraction of inlormation from the other iles. These files are

called "secondary" and may or may not be stored between jobs.
(The number of secondary [iles which can be stored depends on the

amount of space available.)

9. All files in Class II and Class III are accessed through Record

Manager calls.
10. Directives are put an cards (or card images in tile INPUT (or a

file equivalentto INPUT) using the rules given in Chapter 117,

section L,

« 15 =

11.

Any number of directives may be placed in INFUT. BIBDIS will

terminate under one of the following conditions:

a) when a fatal error is detected by BIBDIS in interpreting or
carrying out a directive. At the present time mis-punched
directive codes are not considered fatal, BIBDIS merely goes
to the next directive.

b) when a fatal error is detected by the operating system;

c) when the last directive has been completed;

d) when CP time 1limit is reached.

Parameters are passed to each BIBSUB in character string form
through common storage area /PARAM/. One of the first tasks of
each primary subroutine is to interpret these parameters. Various
utility subroutines are available in the root segment to assist
in this interpretation. For example subroutine INT translates

a character string to binary integer form or returns a code
indicating that such a translation cannot be made. Parameters
are left Jjustified A ? indicates that the default is to be
used except when a blank parameter is found, this and all follow=-

ing are default.

A list of the present BIBSUBs and other "utility" subroutines

along with a brief description of their functions are given in Chap-

ter 11, section 2 .

Besides the structure of the BIBDIS system, its most noteworthy

feature is the extensive usage of Record Manager calls (see Reference 9

Reference €) for file manipulation rather than the standard Fortran I/0

o 16 -

statements. Although more care must be exercized in using this
"non-standard" I/0 procedure there are several benefits not the
least of which is the ability to save considerable storage space by

overlaying FIT and buffer areas.

Section 3 - Additional Desiderata

At present, the BIBDIS system merely stores and retrieves

information without doing much of anything else. It would be desir-
able to be able to perform various operations on the stored information
in the process of retrieval. For example one should be able to

convert numerical data to a common standard set of units. Once

so converted, it should be possible to "collate" the data e.g.,

collect the similar data from all sources and display it altogether

in some "nice"form.

The ultimate desiderata might be such a Ycollated" set of data
by material and property which is displayed in a form which could
go directly to print. This means that the present limitation of 64
characters framprint out of information should be increased to a
number which at least can embrace upper and lower case letters in
addition to sub and superscripts. An example of such an output
(done with 256 character IBM print chain) is shown in Fgure I.1.
It is still an awkward presentation in that greek letters and some

other commonly used symbols are not available.

-7 e

BRIEF
AUTH:
TITLE

> =N
e omree

n <>

Iy

(%3]

<

720900465 PRLAA-1972~-327-481

M. Filsher; G, Ramme; S, Claesson; M, Szwarc F.R.S.

Capture of Solvated Electrons and the Collapse of Solvated
Electron-Sodium Cation Palr into Sodium Atom, Studied by Flagh
Photolysis

Proc., Roy. Soc. A vol 327 481 (1972)

MPJAAC; MPBDAF

rate coustants

Flash photolysis of sodium pyrenide (pl)-(center-dot), Na., in
THF depmonstrated that three transients are formed In the process:

solvated electrons, e , their lon pairs with Na® cations, e”,

.
Na , and sodium atoma, Na degree , The rate constauts of the
following reactlions were determined: e,

Na.’(pl)(arrow-rlgh\)(pl)-(center-dotb, Na
k3'I.7(times)10‘o 1 rnol.l 8.l

e *(pi)arrow=right)(pi) (center-dot) k“'7(times)lolo l mol”!

s-l, Na degree ’(pl)(urrow*rlght)(pl)-(center-dot), Na

K1 times)10'% U wol™! a7!', e”, Na'(arrow-right)Na

.

degree k6'a(times)lo3 s-l. The dissociation constant of e ,

> - -
Na pair into e arrd Na was estimated to be 0.3 times)10 ’
wmol/l in THF at about 20 deygree C, and the rate constant of

association of e with Na. cations was estimated as a(tlmes)loll
L mol.l s-l.

Figure 1.1 250 Character Print Chain Output

- 18 =

CHAPTER II TECHNICAL DESCRIPTION

The bibliographic entry and display system has been written in Fortran

for theCDC 6600. It has been developed in such a way as to require a minimm amount

of camputer know-how for the user. This was accomplished in part by simplifying

input perameters and by using the sort-merge package within the Fortran
routines rather than requiring the user to supply the sort-merge pearameters
himself. Also Record-Manager calls are used extensively in the system to
allow the many different files which may be needed to share the same buffer
area and record blocke as well as File Information Table. Use of Record-

Manager also precludes the need to specify files needed on the Program card.

An overall description of this system is given in the First Section of
this chapter. This is followed by a description of all the files used by
the system.. The final section of this chapter gives a detailed description
of each program and subroutine written and the interrelationship of the

programs and files.

Section 1.- Modus Operandi of the System

Establishment of a Bibliographic Display System first requires an
easy and logical method of entering information. This has boen

accomplished by dividing the information to be entered into 3 parts:

1) bibliographic entry itself,
2) keywords from the article and,
3) physical data.

-19 -

After deciding that information from an article will be entered
into the system, one would first want to enter on punched cards the
author(s), journal, page(s), and title. Each such entry originates as

a set of four &0 column cards as follows:

card 1
Authors

card 2
Journal, month/issue no. (optional), vol. no.,
First page, Last page, Year

card 3 - card 4

Title

Each card contains a card number (1 - L) in column 0. An entry will
always consist of 4 cards even though 1 or more of these cards might be
blank except for the card number. The last 10 characters of card L are
ignored except for the card number, so the title should end by column 70
of this card. A detailed description of the format of these cards can

be found in Chapter III, Figure III.1.

Since it is important for retrieval of information that the same
journal name always be entered with the same spelling and abbreviations,
a standard Journal Abbreviation File has been established according to
guidelines in '"Bibliographic Guide for Editors and Authors" (Reference).
A Journal Word Abbreviation File has also been established which is used
by the system to abbreviate particular words within the Journal name,

so that theywill agree with the words in the

- 20 =

Journal Abbreviation File. Consequently it is not necessary for the user
to enter the Journal name exactly as it is in the Standard Journal
Abbreviation File as the system will attemptto abbreviate it properly.
Two programs, CRJWA and CRJAB, have been written to create the Journal
Word Abbreviation File and the Journal Abbreviation File, respectively.
The structure of these 2 abbreviation files can be seen in the next
section of this Chapter, pages 31 and 32. The card format used to
produce these files, and the current list of standards in the files can

be found in the User's Guide, i.e., Chapter I11I, pages 80 thru 9l.

Program BREAD1l has been written to check the bibliographic entry cards.
This program corrects as many inconsistencies as possible and flags all
cards with errors. Program BREADZ is then used to add the corrected set
of cards on to the Primary Bibliographic File. When adding these new cards

to the file, BREAD2 assigns an accession number to each bibliographic

entry, i.e. each entry will be given a unique, successive number. The
Primary Bibliographic File is an unformatted sequential file of 32 words/

record as described on page 25.

Keywords which describe the content of any bibliographic entry by
property and/or material may be entered next. Again it is necessary
to set up standard codes for these keywords so that any property or
material will always be abbreviated in the same manner. These codes
have been put in a Data Standards File (DATST) along with codes for
quantities and units which will be discussed later. This file is des~-

cribed and listed in the User's Guide, page 125.

w 2] =

Keyword cards, see Figure III.5., contain an accession number,
property code and up to © material codes. Continuation cards with the
same accession no. and property code may follow, with up to 29 material
codes for the same accession no. and property. Program CREADlI checks
these cards for validity and, when they are corrected, program CREADZ
adds then to the PK File as described on page 28. Program CREAD3 reads
this Primary Keyword File and breaks it into records which include
accession no., property code and material code. These records are sorted
in increasing order of accession no., property code and material ccde
and any duplication is eliminated. This program writes the final File
called the DIR which will later become a directory File pointing to the

Index Sequential Data File. The File is described on page 29.

-

The last set of information to be entered is the physical data
presented in the article. In forming the data base, articles previously
entered into the bibliographic system are reviewed by the problem
originator and quantities of importance are red-penciled. For identifi-
cation purposes each set of data to be entered must include the accession
no. of the article from which it came and the property, material and
quantity (physical property) to which the data applies. A data type code
must also be entered to identify the data as numeric, absolute value, or
alpha, etc. These data type codes are detailed in the User's Guide,
page 111. String data, environmental conditions, units code, multipliers,
and data in singular or tabular form may be entered. Once again, it is
necessary to standardize codes. Consequently, acceptable quantity and
units codes have also been stored in the Data Standards File. All this

data information is punched on cards, in field free format, separated by

. 00 e

semi~colons, as described in the User's Guide.

Program DREADl checks these cards for errors and program DREADZ
accepts the corrected cards, and adds the information to both the
directory file (DIR) and the indexed sequential sorted data file (ISD)
as described on pages 29 and 30. This program eliminates any duplication
in the DIR file which may occur due to keywords previously entered from
the same article as the data now entered. Since one must always enter
the apnropriate keywords along with the data, it is not necessary to
enter keywords alone with programs CREADI and CREADZ if one intends to

also enter data.

The final part of this system is referred to as the BIBDIS Operating
System. It allows the user to easily retrieve and display, i.e. print,
any information previously entered into the system by means of simple
directives. Since many of the files created are quite large, they have
all been stored on a private device set. Because of this and the size of
the programs involved, especially the sorting program, BIBDIS must be
run in the batch mode. This program consists of a main program to read
and interpret input cards and pass control to one of the many subroutines
which actually implement the input directives. Thes subroutines are

explained in detail in pages 45 thru 63.

Several secondary files may be needed during execution of certain
directives. These include a Word-addressable Bibliographic File, (PBR),
page 26, Tag files pointing to the PBR in many different orders such as
Author or Journal, page 27. The Directory File may also need to be
sorted in many different orders such as by property or material. The

contents of these files is described in the User's Guide, page 127.

-23-

As many of these secondary files as will fit on the device set, may
be stored there, so that they will not need to be created whenever
they are needed. (The system checks first to see if they exist and

creates them only if they do not.)

The lnllSwing pages give a detailed description of all the files
used by the system. The abbreviations used in these tables are defined
as follows:

FO (File Organization);
SQ (Sequential);

WA (Word-addressable);
1S (Indexed Sequential);
RT (Record Type);

W (Control Word);

U (Undefined);

RL (Record Length).

Further information on Iile structuresmmy be found in the Record Manager

Manual, Reference 5.

"Word" refers to each 60 bit word within the record. 'Type" refers
to the method of converting the data from input to storage, i.e.
A (10 characters, each in 6 bit display code) and I (integer). Further

information on word storage may be found in the Fortran Manual, Reference 13.

o 2l «

PB - Primery Bibliographic File

FO = 5Q (sequential)
RTs W (control word)
RL = 32

Order: By accession no.

Hord Type
) Accession no. A
2-9 Author A
1¢-14 Journal A
15-163 Volume & Pages A
165- Year A
17-32 Title A

-25 -

FBR -~ Word-addressable Bibliographic File

FO = WA (Word-addressable)

RT = W (Control word)

RL = 32

Order: By accession no.

Same Record structure as PB

PBxxT - Tag Files

FO = 5Q (Sequential)
RT = W (Control word)
RL = 63

Order: By xx

Word
1-€3 Tag name (5 chars.)
repeated
Accession no.(5 chars.)

-27 -

K - Primary Key Word File

70 = 5Q (Sequential)
RT = W (Control word)
RL = 32

Order: By accession no. property

Word Type

1 Accessianno. A

2 Property Code A
3-31 Material Codes A

32 Record MNumber I

- g0 -

[R (NPM)-Sorted Keyword and Directory File

FO = SQ (Sequential

RT =W (Control Word)

Order: By Accession no., Porperty, Material

Word Type

1 Property code (5 chars.) A
Accession no. (5 chars.)

2 Material Code A
Quantity Code A

(= ¢ if no data entered)

Index no. (Acc. no. *¥1000 +
Ref. no.) I

Pes. to file 1ISD

(= ¢ if no data entered)

-;_)()-

FO =
RT =U (Undefined)
RL = Variable

Order: Index

Word
1

&

w

L-end

)
&

556 c « « NR4+L

NR+5

NR+6s ¢ =«
NR+NI+5

NR+NI+6

NR+NI+7 ¢s e
NR+NI+NLE+6

NR+NI+NLE+7
NR+NI+NLE+E
NR+NI+NLE+9
NR+NI+NLE+1¢

NR+NI+NLE+1ll....
NR+NLE+NLD+1¢

ISD - Sorted Data File

IS (indexed Sequential)

Mnem.
Index (Acc.no¥1000+Ref.) KEY
Quantity Code QUAN
Data Type

String (if Data Type = 5)
All other Data Types

of associated references NR
List of assoc. references
of independent variables NI
(or * if independent var.)
List of independent var.

Length of environmental cond. NLE

Environmental condition
Display Code

Units Code

Multiplier

Length of data NLD

Data (1 word/item)

- 30 -

Type

I or

A

JWABRE - Journal Word Abbreviation File

FO = SQ (Sequential)
RT =W (Control Word)
REL = 12

No.of records = 127

Word Format
1 4 letters of word Al
2 No.of abbreviations yij B

3-12 List of abbreviations 1PA

‘_j].'

JABREV - Journal Abbreviation File

FO = 5Q (Sequential)
RT = W (Controi Word)
RL = 4

No.ofrecords = 256

Word Format
1-4 Journal Abbreviation Larg

-32-

———

DATST - Data Standards File

Formatted File

Record Characters Description Format
1 1-4 No. of material codes (m) L4
2,3,etc, 1-9 lst 9 chars. of mat, code AlC
10 "$" if to be continued
11-29 Continuation of code
30-80 Explanation if needed
m42 1-4 No. of property codes (p) 14
m+3, m+l,ete. 1-¢ Property code BA10
6-10 Ignored
11-30 Translation of code
31-80 Any other explanation if needed
P4+ - 1-4 No. of quantity codes (q) Ih
m-p+it,
m+p+5,etc. 1-10 Quantity code ALC
1E=30 Translation of code
31=-80 Any other explanation
m4+p+q-+i 1-4 No. of units codes (u) T4
m+p+q+5,
m+p+q+6,etc. 1-10 Units code BA10
11-30 Translation of code
31-80 Any other explanation
- 33 -

Section 2. - Program Description

CRIWA
This short program creates the Journal Word Abbreviation File. It
reads the word abbreviations from cards, attached as TAPEl, and copies them to
an intermediate file named AB. Records with all words equal to zero are added
to this file to make 127 records. The last card reed fram TAPEl is printed
on OUTRUT. The main program then calls BIBSUBl to sort the intermediate

file is ascending numerical order on the first 4 characters of each record.
Since the display code for the alphabet is in ascending numerical order, this

results in an alphabetical sort. The output file of the sort is JWABRE.

CRIAB

This program creates the Journal Abbreviation File in a similar

fashion. A 256 record file, 24 words each, is written on AB consisting

of the journal abbreviation cards from TAPE1l followed by O word records.
AB is then sorted by BIBSUBL in ascending order on character positions 1y 43,

21, and 31 with 10 characters each. The output sorted file is called JABREV.

EREADL
The purpose of program BREAD1 is to verify original bibiiographic

entries on punched cards. By using this program it is possible to enter
data in field free format (essentially this applies to the journal card).
It also attempts ©o abbreviate journal titles and checks to see if the result-
ant is a correct title by searching a journal abbreviation table. There
are three output files,two of which are print files for user information.
The third is a corrected bibliographic entry file which may be further modi-

fied in EDITOR or transferred directly into the primary bibliographic file

-31‘,-

using BREAD2. The following is a list of the functions which BREAD] performs:

1)

2)

3)

L)

5)

6)

7)

It searches for a card number (1 through 4) as the last item on

a card (not necessarily in colurm 80). Cards with missing numbers
are flagged.

It attempts to put author cards in correct form. The correct
form is best explained by an example:

LOESCHER, DH, DETRY, RJ, CLAUSER, MJ

i.e. Ilast name followed by camma followed by initilals with

no blanks or periods.

The program will abbreviate first names and put other abbreviation
forms into the correct form.

It attempts to find correct abbreviations for all words in a
journal title.

It searches a journal file for a match with the resultant
abbreviated journal.

It checks for journel number, first and last page number including
a check to make sure that the first page number is less than the
last page mumber. It also checks for year and makes sure that
1800 < year < current year.

It lists the original input data as it was punched along with a
card sequence number so that the user can locate bad cards easily
if corrections are to be made to the original deck.

It liststhe corrected entries along with the ariginal card sequence
mumber, a mumber the card will have in EDITOR, a flag indicating

-35-

S——

missing card numbers (1-4), a “change made" flag, and a code number
beside cards which may still have errors.
8) It outputs a corrected file which may be further modified or fed

directly into BREADZ2.

The algorithm for abbreviating journal words is worth mentioning.

First the word is tested for length. If greater than or equal to four,
the first four letters are used to form an element which is used in a binary
search of a file (JWABRE) for a matching element. This file is arranged
in ascending numerical order by display code equivalence to 4 letter abbrevia-
tion codes. If a match is found the correspanding record is searched for a
possible abbreviation as follows. (Actua.‘l_'l.y a sort by integer is done in
arranging the code file).

Each record in JWABRE consists of the 4 letter search code mentiocned
above followed by a number indicating the number of possible abbreviations
corresponding to the code, followed by the abbreviations in descending order
by length. The word to be abbreviated is then matched letter by letter to
abbreviation words until all letters match (up to the end of the abbreviation).
When (or if) such a match is found, the abbreviation is accepted. There
are sore instances where this procedure does not work. For example ELEC
may lead to the abbrevistion ELECTRON. (for ELECTRONICS) or ELECTRON. To
handle this situation, the abbreviation word ELECTRONI$ is used. The
symbol $ signifies replace the preceeding symbol with a period. There are
other examples (few) where abbreviation is not so straight forward and a
speclal convention is used for these. For example, JAPANESE is abbreviated

- 36 -

JAP. while JAPAN is abbreviated JPN. For this the series JAPANE$$S
JAPAN*JPN. is used where $$$ means place the period 3 characters back
and * means use the abbreviation that follows. A list of records in

JWABRE as it currently stands isshown on pages 84 thru 86.

If the word is less than L letters long it is tested for a match
in an "article'" list. 1If a match is found the word is removed, otherwise
it remains the same. Words which are one letter long are automatically
removed unless they are letters and beyond position 2. (This allows

for SER A or PHYS. REV. B)

BREADZ2

This program adds on to the Primary Bibliographic File (PB),
(page 25), up to L boxes of bibliographic entries. It is assumed that
the boxes (TAPES 1 thru 4) of cards, (page T4), have previously been
checked by BREAD1 and any errors have been corrected. The present PB
is attached as TAPE9 and the new PB should be.requested as a permanent
file on TAPE1O. This file should be stored on the private device set.
TAPES is used to list the new bibliographic entries and the number of
records in the original and new files. It should be copded to OUTPUT
after execution. Subroutine BREADl only checks that the cards are
numbered repeatedly from 1 to L4 in column 80. 1If not, the program stops.
Subroutine ADDE removes thic card number and adds the accession number

as the first word of the record.

-37-

CREAD1

This program performs the initial check of a 'box' of keyword
cards (TAPE4), (page 102). The Data Standards File, (page 125), is
attached as TAPEll. Each card is checked for an accession no. between
1 and 99999 and acceptable property and material codes. Three output
files are produced. TAPES contains a list of all bad cards (by sequence
number + 1). TAPE3 contains a list of all cards with bad cards flagged
by asterisks. TAPE7 is a copy of the input tape, TAPEL, except for the

first card which is an update directive.

CREADZ2

This program adds on to the Primary Keyword File (PK), (page 28),
up to L boxes of keyword cards (TAPE1-TAPEL). The present PK must be
attached as TAPE9 and the new PK should be requested as a permanent
file on TAPE1lO. Sburoutine CREAD1 does a check fo the input cards
in the same way as program CREADl but only writes TAPE5, a list of bad
cards. If any bad cards are found, the program stops. Subroutine
ADDK reads the input cards putting all those entries with the same
accession no. and property into one record and adding the record no.
asthe last word. TAPES is used to list all the records added, the number
of cards read, the last accession no. and the total number of records in

the new keyword file. TAPElO is usually stored on a magnetic tape.

CREADS

This program uses Record Manager for all I/0 except for the
OUTPUT file. The Primary Keyword File (PK) as created by CREAD2 is
read and each record in broken up into 4 word records containing
accession no., property code (packed into 1 word) and material code

and O in words 3 and 4 of
-38-

each record. These records are written to an intermediate file called

PKl which is then sorted by subroutine BIBSUBlL in accession no., property
and material order. This sorted file, named PKlS, is then read, any
duplicate records are eliminated and the final file NPM is written. This
file should be made permanent, and catalogued on the private device set.
OUTPUT contains the no. of records read, the no. of L word records created
from them, the no. of duplicate entries and the no. of records in the

final file.

DREADL

This program performs the initial check of a 'box' of data
cards (TAPEL) as described in the USER'S GUIDE, page 109. The Data
Standards File is attached as TAPEl. Each card is checked for an accession
no. between 1 and 99999, index no. between O and 9999, valid material,
property, quantity and units codes, data type code between -6 and 6, number
of associated references less than 51, environmental condition of up to
4O characters, multiplier that is decodable by an E10.0 format, either an
* or an integer less than 10 for the number of independent variables,
independent variable index numbers that are included in the list of
associated reference numbers and an ampersand to end the entry. Subroutine
NXCRD saves the last wor; of the previous card if it is to be continued,
reads a new card and separates each character into a computer word. Sub-
routine WORDSEM finds the starting position and length of each "word'" on
the card where a "word" is defined as any number of characters separated by
semi-colons. The last 'word" on a card is assumed to continue to the next
card unless it ends with a semi-colon or $ sign. Trailing blanks on a card
are ignored if they follow immediately after a semi-colon or §$ sign. A §

sign is used to end the information for each data entry.

- j9-

DREAD2

This program reads the data cards previously checked by DREAD1
and corrected from TAPE4, This program also needs the Data Standards
Iile attached as TAPEl. A permanent file named DIR should be requested.
The existing Directory File must be attached as ODIR (old directory).
This file is copied onto IDIR (intermediate directory) so that new
records may be added to it. The program first reads fram INPUT
the option 'C' or 'U' meaning "create" or "update". If no data file
vet exists, this option should be 'C' and a permanent file named ISD
should be requested. If the data file already exists and should be added
to, this option should be 'U' and the existing data file should be
~attached as ISD. OSubroutine DREAD1 is called to re-check the data
cards. If an error is Tound the program stops.

Subroutine SETREC is called to read the data cards and set
up irom theee cards both a directory record and a data record as
described on pages 29 and 30 « If only the keywords were entered but no
data, then no data record is written. The directory record is written to
rile IDIR. The data record is written to file SDFI (intermediate
sequential data rile) under the create option, and is put directly on
’ile ISD under the update option. ISD is an Indexed Sequential rile
with the lst word ol each record used as its index. Program ESTMATE
was previously run .or an Indexed Sequential rile of 10000 records,
key size of 10 characters, minimum record size or 3 words, maximum
record size of 512 words and it suggested a builler size ol 286¢ words
which is used in this progrem. The system default values ol 5110
characters, 5% padding lor the index block size, 2 average size records

ifor the data block size and 1 index level are used.
- 4O -

fter this program has been run many times and several thousand
data records have been put in the file, it might be advantageous to
write a small program to copy ISD to a new indexai sequential file
with a larger index block size. This could bring the number of index

levels back to 1, thergy decreasing the random access retrieval tinme.

Aiter all the cards have been read, the intermediate directory
(IDIR) is sorted with subroutine BIBSUBL by accession mo., property and
material. This sorted file (IDIRS) is then read and all duplicate
records or keyword records which have been supplanted by their corres-
ponding data pointer record, are eliminated while copying this file

to the final directory file (DIR).

During an "update" run, the program is now finished. However,
for a "create" run, the intermediaté sequential data file (SDFI) is
sorted with subroutine BIBSUBL by index no. This sorted file (SDFIS)
is then read and copied to create the Index Sequential File (ISD).

This file must be catalogued with FO=IS.

TAPES containe the no.of records in the original directory,
the no.of records added to the directory, themo. of duplicate entries,
the no. of records in the new directory, and the . of records created in
or added to the data file. TAPES5 should be copied to OUTRUT after

execution,

1/0 on TAPEl, TAPE4, TAPES, INPUT, and OUTFUT is done with
FortranRead /Writes while I/0 on all other files is done with Record
Manager in this program. A flow~chart of this program follows.

I

10PT

et "y

L or

open
files

ODIR
and

IDIR

NDIR = (

¢S5

NDIR =
NDIR + 1

Flowcharting Worksheet

directory

NDIR'",

is

subrout ine
DREAD]

(checks
data cards)

2

IEXIST = 1

1sp
(indexed=-
equent ia

da\ta(il

s s Date: 32176

Program Name:__

'no. of recr
added to
directory

% NDIR

BIBSUBL
(sort IDIR
by acc.no.,
prop.,material
into IDIRS

1IEXIST = O

el

rewind
data
rards

NDIR1
NISEQ
NSEQ = ¢

4

O

SETREC

(sv(s up

record)

data record
and director

42 -

Taun] PAaNop e 1PN pro§ ——P

write
lirectory

‘Ql R

NDIRI

NDIRL + 1

NCHAR

IEXIST
=0 7

write
data
record

. \Klsn
15

NISEQ =
NISFQ + 1

Flawcharting Worksheet

NSEQ =
NSEQ + 1

into
MREC

SKW(l) =

any PP \ /
records left N ml’““'ﬂvl.l‘l/ | SKW)
(o IDIRS RBEO(E X, * (

eywor
Or data pointe

record
,

data pointer

SKW(1,e
PMREC(1,2

NELIM =
NELIM + 1

NFREC

NFREC + 1

ekl

Flowcharting Worksheet

Q
=3
) <

|
A |
R e i asid

(P‘.MFT =1

'‘no. of record
added to
18D is

NISEQ".

- Ll =

No.

Lrite t
indexed-
quent ial
file

BIBDIS

3

This is the main program ol the BIBDIS Operating System.

)

The size of all COMMON storage areas are defined here. The File
Information Table for the indexed sequential data file (1sp) is
initialized here. Subroutinc RDCOD is called to read the data inventory
codes into an array. Subroutine INTERP reads cards from INPUT, inter-

-y
|

o)

]

prets the directive code and stores the directive parameters.
, MAKER, the mein program calls BIBSUB2 to make the requested
random-access Tile. ~For the other directives, subroutines LISTB,

SIZE & LISTF are called respectively. When all directives are completed,
the indexed sequential data file is closed, if it has been opened by
another routine, and execution stops. All the following program descrip-

tions are for subroutines used by BIBDIS. A flow chart of BIBDIS is included.

RDCOD

This subroutine recads the data inventory Tile into arrays
Tor use by the other subroutines. Only those codes that hawa translation
o o

are saved.

This subroutine calls BIBSUBl to sort the direckory file, IFl,
by accession no.and material if the auxillary output parameter is M or
MP. This new file is called NMP. If the output order parameter is I,
BIBSUB2 is called to create a word=-addressable bibliographic file (PBR).
This file is read Irom the starting parameter value requested until the
last value requested and calls WRBBN to print the requested output.

Since there is 1 more word per record (the control word) than is given

RSV Flowcharting Worksheet

1 Programmer:

Program No.:___

Daote:

0/1/76 Poge: 1 of 2

["'-mv 10: _____ Chart Nome _ Program Name: BIBDIS
BIBDIS
RDCOD
(reads data
standards)
i: Directive?
MAKER "LISTB" "LISTF" “SIZE" None
r 3 A4
BIBSUB LISTB L1ISTF SIZE STOP
1 1 1
y(“h
BIBSUBL
(sort NPM
to NMP)
output = no no out put noserror
yffﬁ
B1BSUB TAL
(create {creates { list ntries
\ 8 \ s 5 e ie
PBR) TAG file \\ with no
— keywords)
no
/ /

1 more output
to print

e
~

WRBBN
‘writes
line of
output)

___.L___T
BIBSUBS
(vllnt: in
wrder of

tag

file)

W6 -

LSTPM
(lists file
in approp.

order)

1® sapim plog ——p

SERUNTE

auy

Flowcharting Worksheet pidere

‘pUY| POTIOP JE JAPUN PO 4

print

property

auxillary
itput = D

(create WRBBN

sort PB 'RBBN gl
W 1

{

|

{

|

M —

[| sissuss

" (create ‘ A RETURN
I tag file] '

- 47 -

by the record length, and since the records are written in unique

accession no.order, the starting record can be found by the formula:

IRFC=IACC*(IRI#1)-IRL
where IACC is the accession no.

and IRL is the record length (32)

IT the output order parameter is A,J,AJ,JA, or JY, subroutine

PAG is called to create the requirea IAG s1le and BIBSUBS is called to

op]

print the requested entries.

IT entries with no keywords are requested LSTNK is called.
IT the output is requested in P,M,Q,P,MP,PQ or MQ order, then SRTKW
is called to sort the keyword file in the required order and LSTPM

is called to list the bibliography in the requested order.

WRBBI
This subroutine prints one entry of the bibliography in the

requested form. The record to be printed is assumed in the COMMON
storage area named OREC. The arguments to this subroutine are the
primary and secondary output parameters. If the secondary output
parameter is "D" (data), then the page is ejected before printing.
The accessionno.only, the author, journal and year, the author and
year only, or the full bibliographic entry is printed, depending
on the value of the primary output parameter (N,AJY,AY or 7). If the
secondary output parameter is not equal to "I" for none, then subroutine

VRPM is called to finish printing.

- 48 -

T e
) bl
—————

e arguments to this subroutine are the order of output and
the primary and secondary output parameters. If the order of output is
P "M1" or "P" all bibliographic entries for which no keyword
exdst are printed. I the order of output is "Q", "D", "RQ" or "MQ",
then all bibliographic entries with no associated data are printed to accomplish
this, both the primary bibliographic file, PB, and the directory file,
I'P1f, are opcned. Both files are read sequentially and any accession no.
vithout an entry in IiPlf is printed for output order P, M or Pli. Any
accession m.without an entry in NPM that includes a pointer to the
indexed sequential data file is printed if the order of output is

@y, D, PQ or MQ. WRBBN is again used to do the actual printing.

This subroutine sets up the parameters to create a needed
TAG file. The input argument to the subroutine is the order of output,
either A, J, JI, JA, AJ or AY. The output argument is the name of
the TAG rile created. A word-addressable bibliographic rile (PER) is
created, il it does not already exist, by calling BIBSUB2. This file
would be required whenever a TAG file is used. Parameters are ﬁhen
set-up for BIBSUBl to sort the Primary Bibliographic File (PB) in
the appropriate order. BIBSUBL is then called to read the sorted file

and create a TAG file of accession nos. in the sorted order.

RBIBSUBL
This subroutine, called from TAG, produces a "TAG" file which

allows a word-addressable file to be read in TAG order, i.e. a sequential

- h9 -

read of the TAG file produces a sorted read of the word-addressable file,
The parameters required in COMMON storage area named PARAIL are:
1) sorted sequential file name
2) output TAG file name (default is input Tile name concatenated
with T)
3) word location in each record for the tag word (default is
word 1 for the accession no.)
4) word location in each record Tor the key origin of the
sort (default is word 2 for the author' name)
The sorted sequential file and the tag file are opened. If the tag file
already exists nothing is done. The input file is read sequentially
end o one word tag is created for each record. This word consists of
he first Cive characters of the key origin (usually either the author
or journal namc) followed by 5 characters of the tag word (the accession no.).
Sixty-three of these words are written $n each record. The last record

could be rilled with @#'s.

- r)o -

BIBSUBS

This subroutine is called by LISTB after TAG has been called.
It is used to print the bibliography in author or journal order.
COMMON storage area PARAM rust contain:
1) name of lile created by TAG
2) blank or PER
3) "rron" o the lst delimiter
L) "to" of the lst delimiter
5) "rfrom" of the 2nd delimiter, if there is one,and
€) "to" of the 2nd delimiter.
The arguments to this subroutine include the order of output and the
primary and secondary output parameters. The program first prints the
appropriate heading on a new page. Then files PBR and the TAG file are
opened for input. The TAG file is read sequentially and whenever the
tag name falls within the limits requested<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>