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MAGNETIC-FIELD-INDUCED ENHANCEMENT

OF REIATIVISTIC-ELECTRON-BEAM ENERGY DEPOSITION

An important area of research associated with the goal of
relativistic-electron-beam-initiated fusion in pellet targets has been
the investigation of techniques to reduce the energy-deposition length
of the beam in dense matter.’ Attention has been devoted to this
question because the long deposition lengths of MeV-energy electrons
require beam powers for fusion® which are technologically difficult to
achieve., A reduction in deposition length in the target plasms might
be affected by the presence of a strong self- or external-magnetic
field transverse to the beam-current direction.®

Here, a perturbation procedure* is used to solve the relativistic
Boltzmann equation with a Fokker-Planck collision term® in order to
characterize the collisional transport of relativistic electron beams
in magnetized, high-atomic-number plasmas. The analysis is valid for
arbitrary magnetic-field and plasma-parameter variations provided that
macroscopic scale lengths are large compared to either a beam-electron
scattering length or gyroradius. The ordering of smallness parameters
results in a diffusion-like equation for the energy distribution func-
tion of beam electrons involving the electric field and dynamic fric-

tion. Explicit one-dimensional solutions are then used to determine

Note: Manuscript submitted January 4, 1977,




the manner in which the deposition of electron energy changes with
transverse magnetic field strength. Finally, the applicability of this
mechanism to current experiments and fusion systems is discussed.

The equation describing the' momentum distribution function of
relativistic electrons interacting with a high-atomic-number plasma

mey be written®

o+ B - o(B4BE) s - 9, Lo 0 - T T, 11 47, Ty 0E1)

(1)
where Y2 = 1+p2/(mc)2. The quantities vg and vy are scattering and
energy-loss frequencies:

%2
vg = OSY/(Ya-l) p vg = €Yvg (2)

where Qg = 2nn1r§c(ze+ z)lnA end € = 2/(Z2+1) <<1. Here, n, is the
plasma ion density, T, is the classical electron radius, c is the veloc-
ity of light, Z is the plasma atomic number, and 1nA is of order 10.
Since electron diffusive-relaxation times through the dense plasma are
much shorter than the time over which macroscopic beam parameters vary,
the time-derivative term may be neglected. In keeping with the diffu-
sion ordering, the 3)’ and electric-field terms are considered to be of
order €§vs. The magnetic-field term 1s taken as comparable to Vg for
generality.

With the ordering Jjust discussed, the zero-order equation takes

the form
- —e- p B - v [ v L p2 - pp . v
mY » pf o "s P (=1 ) PfO] (5)




where f = f_+ f:. + f2 ¥ eev a f:L is of order G%fo, f» of order €f,»
etc. Equation (3) i_s satisfied only by a function which is isotropic in
momentum space, i.e. fo(-ﬁ,;:‘) = fo(p,;c.). To see this, D is written in
terms of the spherical coordinates (p,f,p) with the polar axis parallel
to B. Expanding fo in terms of the surface harmonics le(e,p) and
substituting to Eq. (3) results in a solution only for m = £ = O.

Thus, f " is isotropic. Isotropic fo is confirmed by sophigticated
particle codes which have demonstrated that tightly-pinched electron

beams have this chsracter.®

The first-order equation then is

b - E af - = = -y 0 -t -
P (n—,lv o fpﬁ-ﬁ) = g%« [(p%1 -Fp) A AARE 3 ¥ 6. 7,
(%)

eB/m. The non-relativistic form of Eq. (4) has

where b = B/B and Q

been solved.* The solution follows from inspection of reference L.

2 1 = l = eE a‘fo
hooi ﬁ'(m ot *5) (5)
where
M= bb+ 2 (f-$£)+ 2 Qx:]? (6)
1+a? 1+a?

and a = no/ 2W8. The equation for fo(p,;) 1s determined by integrating
Eq. (1) over the momentum-space solid angle and keeping terms to lowest
significant order.* This procedure results in




12 eBa).{p® 2 (1 o2
(av"' D 5'5) [vs“ (m—yvfo'-p'“sp‘ ¢

In the limit of Q = 0, Eqs. (5 ) and (7) reduce to published results.”
The interesting macroscopic quantities derivable from solution of

2 e (1) =0 (D)

Eqs. (5) and (7) are the particle flux 3 and heat flux q. These are

3: =f2 ’ ‘ .E_fldap ¢ (8)
3 me2(v-1)) ™Y

Taking the divergence of Eq. (8), substituting from Eq. (7), and

defined by

integrating by parts over p results in the relations
V. ¥ = -Uneng(me)s, (o,%) (9)

Q=-Yeq=¢E T+ b €ny(me)®s me? [¥2r ay . (10)

The particle "sink" in Eq. (9) represents the merging of beam elec-
trons with the plasma background once they have been slowed by dynamic
friction to low energies. The quantity Q 1s the volumetric heating
rate of plasma due to both ohmic and collisional beam-energy losses.

One-dimensional solutions in a slab geometry from which 7 and
Q can be determined explicitly are now considered. A monoenergetic
(Y = Yo) electron beam of particle flux ¢ is assumed incident on a
uniform plasma occupying the half-space x 2 O, A uniform magnetic
field of arbitrary strength aligned parallel to the plane x = O is
imbedded in the plasma,




Equation (9) in one dimension states that the beam flux decays
with x so that in order to maintain charge conservation, a plasma-
electron current-density j(x) = e(@—éo) must flow. An electric field
E(x) = MJ, M being the plasma resistivity, must then exist. The
importance of E to evaluation of fo is determined by comparing the
magnitude of the ?}o and electric-field terms in Eq. (%). It is now
shown that E 1s negligible for problems of interest, i.e. that
eE << moce'vox'l, where x is the scale over which f_ varies. Since
E<end, and x < ¢/ eﬁns for electron energies of interest®, the above
condition is satisfied if e’ﬂ@o << E’bmoca ‘Yo Qs/e. Substituting numerical
values and assuming classical resistivity it is found that the electric-

field is negligible when
i\ 9
ed <<3 x 10¥9(—=)e'?/z Amps/cm® | (11)
o ns i

In this expression, ni/nS is the ratio of plasma-ion to solid density,

8 is the plasma temperature in eV and Zi is it's ionization level. The
numerical coefficient is appropriate for a gold plasma. This condition
is satisfied for electron beams of interest so that the electric field

can be ignored for determination of !o'

With the simplifications discussed, Eq. (7) reduces to

a2
a2 %}(v"fo) s [(vef%; . m"?] 2v?1g) = 0 (12)

where a2 = ¢2/6€ Og. This relation takes the form of a simple diffusion

equation with the change of variable
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v
for which the second term in Eq. (12) reduces to -a(Yafo)/BT.
The solution corresponding to monoenergetic fo at x = 0 is®

x x?
o Yo Gt exp(- uﬁ)

with ‘Yo determined from the solution of Eq. (9) and the condition that
Q(O) = 'oo

In the limit of large Qg/hfg, T can be approximated by
* = LOZ(Y_-v)/Q2 for which Eq. (10) can be integrated to give the

deposition profile in a strong magnetic field

: 0
-%’—‘L = illeerte(ix) k = ———°—-—£ : (1%)
I Qdx hQS(YO-l)
(s S

This form is accurate for no/ns » 8v§/ (vg-l)s/a. For lower magnetic
ﬁelds,Q(x.) is determined by numerical integrations of Eqs. (10) and
(13). Results are displayed in Fig. 1 for Y, = 3. The case no/ns =3
results in a profile indistinguishable from Eq. (14).

The magnetic-field-induced enhancement in peak heating rate (or
reduction in deposition length) above that due to dynamic friction
alone can be estimated from Eq. (12) by identifying the character-
istic deposition length A

v 2 |-
A(Qo) = 8 _o-——a. + —9—— é . (15)
(Yg-l) hng




Then,

[e}

QM(QO) e i Qg(yg-l)a
Q—(BT“Z%(T%= (THA)% 37 Ao e, (16)
M l&QgV;

The numerical results show that this relation is valid to within about
10% for all values of Q, for 1 MeV incident electrons.

It is of interest to determine whether magnetic enhancement of
energy deposition is operational in current experiments and scalable to
fusion conditions. This is best accomplished by numerically solving Eq.
(7) with M determined from the azimithal self-field of the pinched beam
or by employing Monte-Carlo techniques.® However, when the beam radius

R exceeds A, Eq. (16) with Qo determined by B, can provide an estimate.

]
Magnetic enhancement is important when A 2 1. This condition is satis-
fied in the target-plasma blow-off when By 2 2 X 106ni/ ng gauss for a

1 MeV beam incident on gold. In this case, R exceeds A when the beam
current exceeds 50 kA, The condition A > 1 is then satisfied in current
experiments®s1° provided that the plasma is sufficiently resistive to
allow Be to diffuse a distance A into it. Thus, a necessary condition
for deposition enhancement due to self-fields is T > 7 = kma2/Me2,
where 7 is the beam duration. For A > 1 in gold, this condition may be
s 5, and

By = 2X 10° g results in a value of 20 ns. Note that although the

diffusion-time condition is satisfied in current experiments, it is not

3,
written T > 1289 /2/z B2, Evaluating T for g = 10 eV, Z
ig D

sufficient to insure B-field penetration since plasma expansion can
convect field lines away from the dense region where enhanced deposi-

tion is desired. Simultaneous solution of the plasme MHD, deposition,

7




and megnetic-diffusion equations in a realistic geometry 1s required for
a definitive answer to the role of magnetic enhancement in current
experiments. However, at the elevated temperatures required for fusion-
prellet targets, these consideratims indicate that it is unlikely that
sufficient self-fields would penetrate the plasma unless anomolous
resistivity were present or unless a significant fraction of the field
could be made to penetrate before plasma heating occurred. This last
situetion might occur if the beam were focussed onto the pellet only
after its current has risen close to the maximum value, as is done in
certain experimental configurations.® In that case, the unpenetrated
portion of the field must confine the heated plasma in a way which does

not disrupt symmetric implosion of the pellet.
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Fig. 1 — Energy deposition profiles of a 1 MeV electron beam incident
on a gold plasma slab for various values of transverse magnetic-field

strength. The quantity q is the integral of Q over x.
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