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M&GNETIC -F~~LD-INDUCED

OF RElATIVISTIC-ElECTRON-BEAM ENERGY DEPOSITION

An Important area of research associated with the goal of

relativ stic -electron -beain-initiated fusion In pellet target s has been

the Investigation of techniques to reduce the ener~ r-deposition length

of the beam In dense matter.2 Attention has been devoted to this

question because the long deposition lengths of ~deV-energy electrons

require beam po~~rs for fusion2 which are technologically difficult to

achieve • A reduction in deposition length in the target plasma might

be affected by the presence of a strong self- or external-magnetic

field transverse to the beam-current direction.3

Here , a perturbation procedure4 is used to solve the relativistic

Boltzmann equation with a Fokker-Planck collision term5 in order to

characterize the collisional transport of relativistic electron beams

in magnetized, higb-atcmic-rnu~~er plasmas. The anal.ysis is valid for

arbitrary magnetic -field and pl ~sn~ -paramater va.riaticais provided that

macroscopic scale lengths axe large c~~pe.red to either a beam-electron

scattering length or gyrorad.tua. The ~rdering of ms’llrieas parameters

results in a diffusion-like equation for the ener~ r distribution func-

tion of beam electrons involving the electric field aM dynamic fric-

tion. ~ cplic1t one-dimensional solutions are then used to determine

Not. : Manuscript submit$.d January 4, 1077.
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the manner in which the deposition of electron energy changes with

transverse magnetic field strength. Finally, the applicability of this

mechanism to current experiments and fusion systems is discussed .

The equation describing the mcanentum distribution function of

relativistic electrons interactin g with a high-atcmiic-ntuflber plasma

may be written5

+ ~~~~~~~~~~~~~~~~~ = ~~ ~~~~~~~~~~~~~~~ +V I V E(P)Pf]

(1)

where y2 = 1+ p2/ (mc) 2• The quantities v~ and 
~‘E are scattering and

energy-loss frequencies:

= c~~v/ ( ~Y~ _ 1 )312
, E v v s , (2)

where C~~= 2lT nir e(Z2 + Z)lnA and E = 2/ ( Z+ l )  <<1. Here , 
~i 

is the

plasma ion density , r0 is the classics), electron radius, c is the veloc-

ity of light , Z is the plasma atomic number , and m A  is of order 10.

Since electron diffusive-re laxation times thrc*igh the dense plasma are

much shorter than the time over which macroscopic beam parameters vary,

the time-derivat ive term may be neglected. In keeping with the diffu-

sion ordering, the end electric-field terms are considered to be of

order E~v8. The magnetic-field term is taken as ccm~ arab1e to V
8 

for

generality .

With the ordering just diacue~ed, the zero-order equation takes

the form

- = ~~ r (~ 2 ~ - ~~
) .  

~~~

1: 2



where f = f + f + f + ... , f1 is of order E
1f0, f2 of order El0,

etc. Equation (3) is satisfied only by a function which is isotropic in

momentum space , i.e. f0(~
,
~) = f 0 ( p, x ) .  To see this, ~ is written in

terms of the spherical coordinates (p,e,~ ) with the polar axis parallel

to ~~. Expanding f in terms of the surface harmonics Y~ (e,p) and

substituting to Eq. (3) results in a. solution only for m = L = 0.

Thus, 10 is isotropic. Isotropic f 0 is confirmed by sophisticated

particle codes which’ have demonstrated that tightly-pinched electron

beams have this character.6

The first-order equation then is

P (
~
, 
~~ 

~~~~ 

= ~~~~~~~~~ [(pa! ~~ 
. V~,f1] + .

(4)
where = and = eB/m. The non-relativistic form of Eq. (4) has

been solved ..4 The solution follows frcan inspection of reference ~.

= - k ~4(~ ~~~~~~~ 

- 

~~~~~

where
.~~ AA 1 ~ a A (6
M=bb+—( I-bb ) + b x l

l+a2 l+o2

and a = Q(J2Vv8. The equation for f1,(p,~) is determined by integrating

Eq. (1) over the momentum-space solid angle and keeping terms to lowest

significant order. 4 This procethire results in

3



+~~~
.
~~~(vEP3fo) = o  (7)

In the limit of = 0, Eqs. (5) and (7) reduce to published results.7

The interesting macroscopic quantities derivable from solution of

Eqs . (5) and (7) are the particle flux and heat flux ~
j . These are

defined by

~ 1 = f ) 1 

- 

f1d
3p . (8)

mc2(V 1)

Taking the divergence of Eq. (8), substituting from Eq. ( 7) , and

integrating by parts over p results in the relations

V = -4 r ~E C ~8(mc)~ f0(o ,~ ) (9)

Q = -
~~~~

‘ 
~~ 

= e~ • + 4wE C~5(mc )3. mc2$v2f0dv . (10)

The particle “sink” in Eq. (9) represents the merging of beam elec-

trons with the plasma background once they have been slowed by dynamic

friction to low energies. The quantity Q is the volumetric heating

rate of plasma due to both oheic and collisional beam-energy losses .

One -dimensional solutions in a slab geometry from which ~ and

Q can be determined explicitly are now considered • A. monoenerget Ic

(v  = V )  electron beam of’ particle flux is assumed incident on a

uniform plasma occupying the half-space x � 0. A uniform magnetic

field of arbitrary strength aligned parallel to the plane x = 0 is

Imbedded in the plasma.

~1.



Equation (9)  in one dimension states that the beam flux decays

with x so that in order to maintain charge conservation , a plasma-

electron current-density j(x ) = e(~ -~0) must flow. An electric field

E(x) flj, ~] being the plasma resistivity, must then exist . The

importance of E to evaluation of 10 is determined by comparing the

mgnitude of the and electric-field terms in Eq. (4). It is now

shown that E is negligible for problems of interest, i.e. that

eE <<m0c~~0x
’3 , where x is the scale over which f0 varies. Since

E ~ e1~ 0, and x ‘~ 
c/Ek~5 for electron energies of interest8, the above

condition is satisfied if e1~0 << E~n0c
21V
0

ç~3/e. Substituti ng numerical

values and assuming classical resistivity it is found that the electric-

field is negligible when

e~ <<3 x lOb0(~i~
) 

e~~i’z1 Ampw’cm2 . (ii)

In this expression, n~/n5 is the ratio of plasma-ion to solid density,

8 is the plasma temperature in eV and is It’s ionization level • The

numerical coefficient is appropriate for a gold plasma. This condition

is satisfied for electron beams of interest so that the electric field

can be ignored for determination of f0.
With the simplifications discussed, Eq. (7) reduces to

a2 I~_~~~2 f )  + + L(~21) 0 (12)

where a2 = c2/6E O~ . This relation takes the form of a sisple diffusion

equation with the change of variable

5



V 2 -1.r ° r c~ 1¶(Y) = I I ~ - + —
~~

•--
, dY . (13)

J L(v~-i)3 
-

V
for which the second term In Eq. (12) reduces to
The solution corresponding to monoenergetic 10 at x = 0 is~

= 

(2,t)*a.r~~ 
ex~(_ x

2)

with determined from the solution of Eq. (9)  and the oondit j.on that

~~o) =
In the limit of large c~ / 4c~~, ~ can be approximated by

¶ 4c~(v 0-V)/O~ for which Eq. (10) can be integrated to give the

deposition profile in a strong 3flagnetic field

Q(x) 
= A.erfc(k~c) ; k = 

0 
- (14)

This form Is accurate for ~ 8V~/ (y _1)3/2. For lower magnetic

fields,Q(x) is determined by numerical integrations of Eqs . (lo) and

(13). Results are displayed in Fig. 1 for = 3. The case =

results in a profile Indistinguishable from Eq. (14).

The magnetic-fie].d-induced enhancement in peak heating rate (or

reduction in deposition length ) above that due to dynamic friction

alone can be estimated from Eq. (12) by identifying the character-

istic deposition length t~

f y 4
~( O ) = a I  ~ 3 +

~~~~~~~ 
. (15)

° [(Y~_1) 4o~J

1
T~~T. ~~~~~~~~~~ 



Then ,

2 3

S 1 = (1-i-A) ; A = ° ° . (16)
~M’~°’ ~‘~o’

The numerical results show that this relation is valid to within about

lCY~ for all values of for 1 Me’! incident electrons.

It is of interest to determine whether magnetic enhancement of

energy deposition Is operational in current experiments and scalable to

fusion conditions. This is best accomplished by numerically solving Eq.

(7) with determined from the azimuthal self-field of the pinched beam

or by employing W nte -Car lo techniques .~~ However , when the beam radius

R exceeds ~~, Eq. (16) with determined by Be can provide an estimate.

Iv~gnetic enhancement is important when A ~ 1. This condition is satis-

fied in the ta rget -plasma blow-off when Be ~ 2 x 108n1/n5 gauss for a

1 !.~V beam incident on gold. In this case, R exceeds ~ when the beam

current exceeds 50 kA. The condition A >  1 is then satisfied in current

experiments9 “° provided that the plasma is sufficiently resistive to

allow Be to diffuse a distance ~ into it. Thus, a necessary condition

for deposition enhancement due to self-fields is T > =

where T is the beam duration. For A >  1 in gold, this condition may be

written i > 1289~’2/z1B~. Evaluating for ~ = 10 eV, Z1 = 5, and

Be = 2 X lO~ g results in a value of 20 ns • Note that although the

diffusion -time condition is satisfied in current experiments, it is not

sufficient to insure B-field penetration since plasma expansion can

convect field lines away from the dense region where enhanced deposi-

tion Is desired. Simultaneous solution of the plasma MMD, deposition,

7



and magnetic -diffusion equations in a realistic geometry Is required for

a definitive answer to the role of magnetic enhancement in current

experiments . However , at the elevated temperatures required for fusion-

pellet targets , these considerati cns indicate that it is unlikely that

sufficient self-fields would penetrate the plasma unless anomolous

resistivity were present or unless a significant fraction of the field

could be made to penetrate before plasma heating occurred. This last

situation might occur if the beam were focussed onto the pellet only

after its current has risen close to the maximum value, as is done In

certain experimental configurations.’ In that case , the unpenetrated.

portion of the field must confine the bested pla~~~ in a way which does

not disrupt symnetric implosion of the pellet.

8
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Fig. 1 — Energy deposition profiles of a 1 MeV electron bears incident
on a gold plasma slab for various values of transverse magnetic-field
strength . The quan tity q is the integral of Q over x.
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