
I I.- - - _ _ _

II AD—An? 641 CORNELL UNIV ITHACA N V DLPT OF COMPUTER SCIENCE F/G 9/2
AN EVALUATION OF PROCESS AND EXPERIMENT AUTOMATION REALTIME LAN——ETC (U)
JAN 17 4 H WILLIAMS

UNCLASSIFIED NL

A~~~~~~ 84~ ___ ________________________

H a

An Evaluation of(~~ ARL_-~
I Proce ss and Experiment Automation Realtime• Langua ge (PEARL)

CoiiI~uter Science Department

Cornell University /) J
(~anuar~~~~~~J

—~

Ii ~~

---•

D D~• x~r~n~t
APR

-~~~~~~~~~~~~ ~~~~~~~~~~~ ,• U LIi~ ~~t~I1~
_ _ _ _ _ _ _ _ _ _ _

A
1Th~ST.~

BUTICN STATEMENT A

• Appzov.d for public relecase;
Distibution Unlimited

This report was prepared for the U.S. Army Electronics Command al

Fort Monmouth, New Jersey with the financial support of the

Scientific Services Program.

~
) 7 ,~~ ‘7

--

C

1. Overview of the language

2. Language features

a) Data types

b) Data Structures

c) Control structures

d) Declarations

e) Program structure

f) Special or unusual features

3. Language characteristics

a) Machine independence

b) Separate compilation

C) Language efficiency and size -

4. The impact of PEARL on the DoD common language effort

5. References

111$
~t’~e Secilol
lOll SgIJol

UPANN OUI CEI a
Jl$TIFICATWN

NY
IIS1NISIITTON, AVAIIANILIfl COD(*

~~~~ AvAlCii o ,o~ sPFciii  ,
~ij~~i

_Ti

_ _ _  —~~~~~~ . ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~



__________

-1-

ii

1. Overview of the language

of the information about PEARL which is used in this

report was obtained from the PEARL Language Description [ESG-76].

Work on PEARL (Process and Experiment Automation Realtime

Language) was begun iii 1968. ‘
\
The first description of it was

published in 1970. Since th,4 time the language has undergone

revisions, has been impley~~ted on eight different process

control computers, an5A(~s been subsetted for specific appli-

cation to embedd~~’~~mputer systems with realtime constraints.

It is this~,~i~~~t language which is described in [ESG—763 and

whic~)I~iscussed in this report.

The language was designed to provide systems engineers

with a high level means of specifying programs for embedded

applications. For that reason it emphasizes the areas of

input—output specification and realtime processing and avoids

many of the more complex and powerful constructs and capabilities

of high level programming languages. In this latter, algorithmic

aspect it has the appearance of a severely restricted dialect of

PL/I. ~~ -—
~~~
—-.—

~~~~~~..

____________________ ____ a



—2—
C’

It is the conclusion of this report that PEARL is not a

viable candidate for the DoD common programming language effort,

but that the experience gained from its unique approach to input-

output specification and realtime control should prove valuable

to the forthcoming design efforts.

~~~ In this..zeport, we attempt to po~i’i~ out some of the weaknesses

w)~ich make the language ill-suited for m~dification or adoption as

the DoD common high level algorithmic ia4uage. At the same time

we hope to encourage its further study by~ the eventual language

design teams.

i

• 1

--- .~~~~~ .-- ~~~~~

~
-

—3—

2. Language features

Perhaps the most striking feature of PEARL is its method

of factoring a program into two pieces, one hardware dependent

and one hardware independent. These are called the system division

and the problem division respectively. Within the system division

the programmer specifies the particular connections between the

input-output devices and their data paths. A rather elaborate

formalism is developed for making these specifications, including

the ability to use mnemonic names for particular bits, bytes,

signals, devices,~~~ . Then in the problem division the program-

mer can use these mnemonic identifiers to control the input—

output activity. This allows an unusual degree of machine incle-

pende~ce in the input-output sections of the program; it is

conceivable , that one could change the hardware configuration and

not have to make any modifications at all to the problem division

of a running program.

The language of the problem division of a PEARL program is

essen:ially a PL/I derivative. We describe its features in the

remaiflder of this section, in particular its data-types, data

structures, control structures, declarations, program structure,

and ~~me of its unique features.

-

~~~~~~~~~~ ~~~.. .

—4—
C’

a) Data Types

There are six basic data types with the normal accompanying

arithmetic and relational operators.

i) FIXED for integer numbers

ii) FLOAT for floating point numbers

iii) BIT(n) for bit strings ’

iv) CRAR(n) for character strings

v) CLOCK for time of day

vi~ DUR for interval of time

It is possible to denote constants of any of these types,

14:21:06 and 2 HRS 31 MIN being denotations of CLOCK and DUR

constants respectively.

In addition, there are five other data types associated

with input-output and task control. They differ from the above

six types in that there are no operators in the language which

manipulate these types. They are:

DEVICE-MODE

FILE-MODE

INTERRUPT-MODE

SIGNAL-MODE

SEMA



C’ 

I
More will be said about these types in the discussion on decla-

rations and program structure.

14 Data Structures

It is possible to form collections of the basic data types

using either arrays or structures, the former being homogeneous.

The array mechanism is essentially that of PL/I with the important

difference that all array bounds must be constants. This is true

of formal parameter specifications as well, seriously limiting

the usefulness of procedures with array parameters. There are no

provisions for manipulating sub-arrays or slices. Except for

input—output,, there are no operators which manipulate entire arrays.

The structure mechanism allows the programmer to create

collections of non—homogeneous simple types.

DCL ST STRUCT (Ni FLOAT,N2 BXT(3)) creates a structure called

ST which consists of a floating part Ni and a 3-bit string N2 .

Components of structures cannot themselves be arrays or structures,

nor can a structure have a varying composition as with PASCAL

records.

There is no mode declaration facility in PEARL. Basically

each STRUCT definition creates a new “mode”. However it is possible



— -- ‘ ‘~ --~ .-—.—-—. - -- — -—— “- —— —— — - --‘—‘--- “—,“~~~~~~‘“~~- - - “ - - --.---~~-~~~~~‘~- ---,‘=‘ -- - -‘c.-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— 6--
C’

to use the LIKE attribute as in PL/ I to overcome some of the

inconvenience caused by the lack of explicit mode declarations.

C) Control structures

These are essentially PL/I with some restrictions and the

addition of a case statement.

i) Goto—statement

It is not permitted to use a GOTO statement to exit

a task or procedure.

ii) Conditional—statement

This is the usual IF statement with an optional ELSE

and a required delimiter FIN. The conditional expres-

sion is of type BIT(l) with ‘l’B representing true as

in PL/I.

iii) Case—statement

This is a generalization of the IF statement wherein

the conditional expression is of type integer, and the

appropriate statement is executed. There is no provi-

sion for case statements with conditional expressions

of other data types.

•

Ii

—7--.

iv) Iteration-statement

This statement is of the form:

FOR i FROM . a BY b TO c WHILE d

REPEAT

stmts -

END; -

v) ~Procedures and tasks. -

The procedure mechanism is similar to PL/I but with

some rather severe restrictions. Parameters can be

passed by value or by reference. Neither procedures

nor labels may be passed as parameters. The type of

the actual parameter must match that of the formal

parameter exactly. Thus, procedures cannot be written

which will work for arrays of differing sizes. These

restrictions imply the need for rather clumsy and

inefficient error handling mechanisms in programs.

Since procedures can neither exit to indicate abnormal

conditions nor call error handling procedures passed

to them, some global or parametric flags will need to

be raised and interrogated to accomplish error handling.

This will lead to run time inefficiences.

.
‘

‘ ~~~ - -

-

~ ~‘-- -
~

— -:~. ~~

—8--

The task mechanism is very much simpler than that

of PL/I , due to the restrictions on program structure

which are discussed below. What remains when one

removes the complications of dynamic environments and

requires all tasks and procedures to be declared at

level zero is a rudiinentary.but’ effective mechanism

for describing actions associated with real time con-

ditions in the embedded computer system environment.

It is possible to schedule tasks AT real times, AFTER

particular events or durations of time, WHEN external

interrupts occur, ALL some duration UNTIL some clock

time , etc. This capability is, of course, greatly

enhanced by the basic types, CLOCK and DUR and the

ability to manipulate them. Tasks can be suspended,

reactivated, and terminated and can be synchronized

via the semaphore data types as in many languages.

d) Declarations

The declaration mechanism is that of PL/I with some changes.

It suffers the same non-orthogonality conditions as does PL/I.

In addition, variable names can be of any length, but only the

first six characters have any significance. This is an unnecessary

Concession to implementation shortcuts which can lead to disastrous

_ _ _ _ _ __ _ _ __ _ _ _ . , __ -.

~~~~~~~~~~~~~~

-

~~~~~~~~~~~~~~

~ .

C’

consequences in program clarity. There is a modifier to indicate

constant declarations. (Curiously a “variable” can be declared

INV or invariable!) There is also a mechanism for specifying

the attributes of a variable which has been declared in some other

program module and is to be considered “common” to this module.

Ifl addition, -variables can be initialized with the INIT attribute.

This initial value is used every time the block is re—entered.

e) Program structure

PEARL programs consist of modules which are separate entities

connected only through the common (or SPC for specification) mech-

anism of their declarations. They can thus be separately compiled.

Each module consists of a problem division and a system division

as discussed earlier. A module is made up of declarations of vari-

ables, tasks and procedures. Tasks and procedures consist of

declarations of restricted types of variables and blocks of state—

inents. The only syntactically self-nesting program construct is

the block. We illustrate this pictorially in the following diagram.

The arrow relationship is read “can contain an instance of.”

1
—10—

Module

task procedure signal device file semaphore in errupt

variable, or

array or structure of

fixed , float , bit, char , dur , or clock

The most significant restriction of this program structure

is the lack of nested procedure definitions.

f) Miscellaneous language features

A variable may be declared “global” and shared with another

module. However, any variable so declared must be declared at

the module level. Thus if one procedure (or task or nested block

within a module) iá tó’ be able to share a declaration with some

i11_
C’

other module, all tasks, procedures and blocks in that module

will also have access to the shared object.

It is possible to specify the length of integer and floating

variables. This is done at the module level.

It is not permitted to perform the usual mixed mode arithmetic

operations. Fbr example, if A’ is FLOAT then A+l is illegal.

It is possible to do a few operations of mixed mode, for example,

DUR+CLOCK-’CLOCK. There are a number of explicit conversion routines,

~~ A+FLOAT(1) would be legal.

It is possible to declare a procedure to be reentrant “in case

several tasks wish to use the procedure simultaneously.” The manual

gives no other hint of whether procedures can be recursive. This

question will be considered more completely in the next section.

_ ~~~~~~~~~~~~~~~~~~~~~~

—12—

3. Language characteristics

a) Machine independence

The language has been designed to be very much machine

independent. This is accomplished in large part by the separate

system division of p~ograin modules. There are other design

features which’coatribute to this independence, such as the

provision for declaring the lengths of integers and floating

point numbers rather than a mechanism such as DOUBLE for extended

precision which is inherently machine dependent. Unfortunately,

there are some small machine dependencies built into the language;

~~ the implicit conversion which takes place during an assignment

of the form, FIXEDi-FLOAT, depends on the wordsize of the machine

for its definition. All in all however, the problem division of

a PEARL module is highly machine independent, which is rather

remarkable for a language designed specifically for realtime

control of embedded computer systems.

b) Separate compilation

This was evidently one of the design criteria of PEARL.

Because of its simple static storage made possible by the program

structure and its independent modules, it is completely separately

compilable with almost no work left for the loader.

____________ _______

-

—13—
C

c) Language efficiency and size

Again, because of the program structure, the limited

type—declaration facility, and the compile time typing of all

variables, PEARL compilers should produce very efficient object

code. As mentioned earlier, the Spartan nature of the language

could . lead- -to a somewhat inefficient -expression of algorithms

at the source level. The language is small enough to allow a

compiler to operate efficiently on a small machine. Ease of

implementing seems to have been a goal of the language design,

sometimes leading to extremes as in the case of variable identi-

fier lengths.

:~‘1
_ _ _ _ _ _ _ _ ~ L4

- . - - — ‘ ‘~~~~~~~~~~~~~ — ---- ~~~~~~~~
- - -— -‘---- - -- -—— —

- ‘ - ‘ “~~ -- ‘ ‘ ‘ “ ‘

-

~~~~~~~~~~~~~~~~~~ 
- - ‘~~‘~~~~~‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

--

—14—

4. The impact of PEARL on the DoD common language effort

PEARL does not come close to satisfying the many requirements

of the Tinman document [Fi-76]. It would take a great amount of

modification and enhancement to make it a viable candidate for the

DpD’s common language. Indeed , .it is essentially a derivative of

PL/I with many of the more powerful (and sophisticated) features

removed. As such it is not nearly as rich or modern a basic langu-

age as, for example, Pascal or Algol—68.

However, the PEARL language experience should have a decided

impact on the DoD effort. Since the language was designed specif-

ically for embedded computer systems, the experience gained from

its use, particularly the use of its system division, should be

valuable to any team attempting to adapt an existing language to

meet the Tinman requirements. This language is unique in its

approach to specifying input-output hardware in a high order language.

This is not to suggest that the actual syntax of PEARL is the best

that can be done and should be adopted by the forthcoming design

efforts. In fact, at the recent language workshop held at Cornell

University, Professor Eberhard Wegner indicated that work is cur-

rently underway to radically revise the input-output handling and

specification mechanisms of PEARL [Weg—76]. However, the

I



‘~ ‘~ ‘~ 

—15—
C.

experience gained from the use of this language and the reasons

for the current revisions should prove to be useful input to

those design efforts. -



—16—
C’

5. References

(ESG—76 1 -

ESG Elektronik-SyStefl%-Gesellschaft m b  H , PEARL Subset for
Avionic Applications , Munich, Germany, June 1976.

(Fis—76 J

Fisher , D.A. , NA common programming language for the
Department of Defense - background and technical require-
ments” , IDA report number P-ll9l , June 1976 .

fW eg—763

Wegner, E., comments made at the Department of Defense
Language Workshop, Cornell University, October 1976.

_______ 

I  
-~~‘ ____


