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§1. If we apply several principles such as superposition,
symmetry, equivalency and reciprocity, then by utilizing the solution
to known problems it is possible to solve a large number of complex
heat conductivity problems in a relatively simple way and at the same
time with complete rigor.

The proposed problem solution method, as presented by us, is
distinguished by simplicity and by accessibility to persons in various
specialties and makes it possible to reanalyze phenomena and discover
their physical essence, and the practical use of this method for
calculation purposes requires relatively little time.

In work [1] primary attention was devoted to the application of
the superposition principle, and article [6] was specially devoted
to the application of the reciprocity principle. In this article
we will demonstrate possibilities for applying the equivalency
principle to solving heat conductivity problems.

§2. The essence of the equivalency principle is that the
replacement of one of the similarity conditions which determines
the event under consideration with another similarity condition
causes no change in the course of the event at any point involved
in the given phenomena; this substitution leads to equivalency of
the problems, but does not make it possible to model the event.
It is necessary, however, to point out that identity may not include
all the qualitative characteristics, but simply one under study, for
instance, that of heat; the other characteristics, for instance
magnetic or mechanical ones, may change in this process.

The equivalency principle is applied in various areas of
science, in particular in electronics.

Thus, L. R. Neyman and K. S. Demirchyan ([2], p. 137) write:
"... for the sake of convenience in designing electrical circuits
it is extremely useful to replace the electromotive force source
with an equivalent source of current or to carry out their reverse
substitution, to replace the current source with an equivalent
EMF source, ...", and also "sources of EMF and current are equivalent
if they possess the same external characteristic... in other words,
the regime in the receiver should not change when the EMF source is
replaced by an equivalent source of current, and vice versa."

As applied to thermal problems, the equivalency principle
states that replacing some identity condition has no influence on
the thermal conditions of the body under consideration: the course of
temperature remains the same at all points.

The equivalency principle indicates the possibility of making
an equivalent exchange between heat sources and heat resistances,
as well as thermophysical characteristics, geometric form and body
dimensions.
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t
temperature and Is -- sources of a given heat flow intensity. Sources Is

§3. There exists two types of heat sources: I_ -- sources of a given

can be both external and internal. Sources It are only external.

Therefore we can only examine the problem of making equivalent exchanges
between external heat sources of one type and external heat sources of
another type or external heat sources for internal sources, and vice
versa, replacing internal sources with external sources. It is
impossible to make an equivalent change of external sources for

internal sources since internal sources can only be of one type (Is).

In the general case the action of external heat sources on the body
body is inhibited by thermal resistance at the body surface. Let us
recall that two types of thermal resistance are distinguished: temperature
resistance Rt and resistance to a heat flow (heat capacity resistance)

Rs. Resistance Rt "extinguishes'" the action of only temperature sources
It and does not inhibit the action of sources Is’ where

1
i ¢))

ik
;

.\l'—‘

On the other hand, resistance Rs "suppresses' only the action of
sources Is; it is equal to

R,=c"sk. @)

The relationship between heat sources and resistances can be
clarified by examining the heat balance equation and the boundary of
the body (boundary condition). If at the body surface there is a
layer of well agitated liquid, then by setting the origin of the
coordinates on the body surface and by directing the x axis into
the body perpendicular to the surface, we will have

ot ! Jot’
. =2 —t') -S4+ 8 —cp'h'i—, (3)
€x K 4 O ) lm >
ot \
-l L 4
)_5}.;.“0 - (t t‘-+°). ( )

The physical essence of equation (3) is the following. The amount
of heat which passes into the body is equal to the algebraic sum of
the terms which express the convection between the surface of the liquid
and the surrounding medium, the external sources of heat flow including
sources located within the liquid layer and finally the change (reduction)
in the liquid's heat content.

Equation (4) supplements equation (3) and expresses the law of heat
exchange between the liquid and the body when a' is not equal to w=.
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In equation (3) the temperature source is characterized by the
temperature of the surrounding medium ¢, and the sources of heat flow
are characterized by values S and S'.

Equation (3) can be represented schematically in the following
form:

ot (1t T
- R e B (" L7 (s)

The values of the heat sources and resistances are usually given.
Equivalency is expressed by replacing one combination of values It'
I;, Rt and Rs by another set in such a way that the left-hand portion
of equation (5) remains unchanged. Subsequently we will examine certain
cases for which we know how to carry out such an equivalent exchange.

=40

§4. The simplest example of an equivalent exchange is the
switch from the case where Rt >0 and Rs = 0 and external sources

of both types act to the case in which the heat resistances remain
the same but Is = 0; equivalent compensation for removing source Is

will be a change in I_, for which instead of & it is necessary to adopt

tl
(Figure 1)
: S
3e=d—¢—-;~. (6)
.
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Figure 1. Equivalent Replacement of a Temperature Source and
a Heat Flow Source Which Act Simultaneously With One Temperature
Source.

Thus, equation (6) expresses an equivalent replacement of sources
of two types which act simultaneously on one surface by one temperature
source. In the more general case replacing 9 and S with other equivalent
sources should satisfy the relationship

aﬁ. + Se= 20 + S:
from which

“Se
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Equation (7) shows the possibility of making an equivalent
repldcement of one pair of sources by another pair. It is obvious
that in the special case where Se = 0, instead of (7) we have

relationship (6). During these transitions the thermal resistances
remain unchanged: Rs = 0 and Rt = 1/a.

§5. We will now show the transitions during which not only
equivalent sources, but also equivalent resistances are introduced.
Our examples will be problems with semi-limited bodies.

Assume that at the surface of a semi-limited body there acts
only heat source Is, where Rs = 0:

ot (8)

—-ka- x“o-—'s.

A source of type Is can be replaced by a source of type It’ and in this

case instead of Rs = 0 it is necessary to assume that Rt = 0 (Figure 2).
Thus, if

S =k " (9)

then the equivalent transition will occur if instead of S a temperature
source acts which, when ty = 0°C, is equal to [3]:

where

i 1
S (‘m+-§-) (11)

' Vie TmEn

r(z) is a gamma function.

. 3
% : 1
s s 7 s L, Bamg=dT™”
7] ] ¢
&y a4 c.ot.
2 ‘1

Figure 2. Equivalent Replacement of a Heat Flow Source by a
Temperature Source.




§6. Let us now examine the case where at the surface of a semi-
-limited body there is a layer of liquid (Rs > 0) of thickness h'

and external sources of type Is act (Figure 3). The boundary condition
will have the form:

.t | iy B
i B S’ —c'v'h — :
; 3%, -0 S+ A - (12)

We will call (12) a fifth-order boundary condition (BC-V). We
first replace the liquid with a volumetric heat capacity c'p' with
a liquid with a volumetric body heat capacity cp; then, in order for
the heat resistance Rs to remain unchanged, the thickness of the liquid

layer should change:
hy= b ——. (13)

In addition, it is convenient to represent external sources of
type Is in the form of volumetric sources located in the liquid; their

intensity should be equal to:

q,= 1% ?/;7 (14)

By making allowance for (13) and (14), it is possible to write
boundary condition (12) in the following form:

ot gt | (15)
e TBhn g

The solution to such problems can be obtained as follows. First
it is necessary to divide the problem into two component problems,
and then to transform these problems into problems with I and III-order
BC with the aid of the equivalency principle. The solutions to the
latter are usually known and their sum is the solution to the initial
problem.

The means of dividing the initial problem into two components and
their equivalent transformation are shown in Figure 3. In both component
problems the thickness of the liquid layer at the body surface is
very (infinite) great. In the first component problem the sources are
located throughout the liquid (- » < x <0).

Since in the initia1<?robleu (the one to be solved) the sources
act only in the area -hs x < 0, then in the second component problem

the sources of the reverse sign (- qv) are located in the area - » < x <
< hs' We will now complete the equivalent transitions in each component

problem after répllcing in them the heat flow sources with temperature
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sources and the heat capacity resistances with temperature resistances.
In both problems the equivalent temperature sources are the same with
regard to absolute value and are equal to:

1 : F 1 J ’
0
1 fex vy N
A e §1 ] 2=
y /S '.-.-]—‘! !1-2 !"
i o A
!!:‘1 /\'_.,, t ' 3 “'_w 2 -.zi i|"$
[ ri 57 AR
4 " ) I‘:‘ ;
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Figure 3. Equivalent Replacement of Heat Sources and Thermal
Resistances.

The equivalent temperature resistances can be determined on the basis
of the necessity for observing the equality

hl = h.u (17)
where
A
e (18)

Considering (1), (2), (13), (17) and (18), we find the condition
for shifting to the equivalent problem

Ri=2e (19)

or according to (13), (17) and (18)

a= ..L == 2oy A (20)
r, e

In the first component problem Rs = 0 and hs = 0, and therefore
according to (19) and (20) after the equivalent trznsition Rt = 0,
a = o, and consequeptly ht = 0, i.e., I-order BC occur.

e
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In the second component problem R_ >0 and hg > 0, and therefore
Rt >0, a <« and ht > 0, which corresponds to III-order BC.

Thus, a solution to the problem for a semi-limited body with
a layer of agitated liquid on its surface and with external sources
of heat flow (IV-order BC) is found as the algebraic sum of the
solutions to the two component problems of which one is the course
of the surface temperature (I-order BC) and the other gives the
temperature course of the medium (III-order BC)

t{'afl'r L. (21)

The temperatures of the surface and the medium are equal in absolute
value, but they have different signs (16).

Let us examine two special cases.
First case: S + S' = const. According to (16), it is necessary

to assume the surface temperature of the body and the temperature
of the medium change linearly:

t.A‘—'O == b-'y ! (22)
8 = 5 b (23)
where
e a8
i hlcl,l (24)

The value of the factor of heat emission from the body surface
is determined from formula (20). The solutions for the two component
problems are known, and for each of them there are computation graphs
([1], pp. 113 and 122); according to (21) their sum is a solution to the
problem at hand.

Second case: S + S' = 0, the initial temperature in the body is
equal to 0 but in the liquid layer h' differs from zero, t = 0 =

=t67‘0.

The initial heat content of the liquid may be represented as the
result of the action at moment t = 0 of an instantaneous source Is

which emits (per unit of body surface area) a quantity of heat equal to

W= Cphstb. It is obvious that the integral in (16) is equal to W and

consequently in the given special case

tx—ﬂ - tl)’
25
0=—t. =
Therefore t; and tipp ore solutions to component problems at constant
body surface t. = 0= tb and medium ¢ = -t temperatures.

-7
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As in the first case, the solutions to both component problems are
known (see, for instance [1], pp. 103 and 110, or [4], pp. 76 and 183),
and therefore according to (21) the solution to this second case can also
be regarded as known.

We have selected these two special cases since solutions have already
been found for them, and this makes it possible to determine whether
our formula (21) is correct. Solutions for both cases are given in
[5] (p. 301, formulas 4.11 and 4.12). A careful examination makes it
possible to determine that each solution actually is the sum of the
solutions of the two problems and completely coincides with solution
(21).

However, if the method of solving the thermal conductivity problems
of semi-limited bodies covered with a layer of water is correct whzn
Is = const and when there is instantaneous emission of heat, then it is

obvious that according to the superposition principle it is also correct
with any law of IS change. Thus, the correctness of solution (21)

is confirmed for more general cases as well.

Example. The following are given: on the surface of the ground
(A = 1.49 kcal/m'hr-deg; ¢ = 0.321 kcal/kg-deg; p = 1960 kg/m3; a = 2.37-1073
mZ2/hr) there is a layer of well agitated water (A' = », c' = 1 kcal/kg-deg;
p' = 1000 kg/m2) of thickness h' = 0.5 m. The initial temperature of the

ground and the water is ty = tb = 6°C. A heat flow, the intensity of

which is equal to S = 20 kcal/m?/hr, enters the water.

Find the temperature of the water and the temperature of the ground
at depth x = 1.0 m after t = 1 month.

Solution. According to the equivalency principle this task with
II-order BC and with a layer of liquid can be represented as the sum
of two problems with I and III-order BC, but without liquid (see formula
21). The intensity of the temperature sources of heat in the equivalent
problems is found from formulas (22) and (23):

S= 0=
L= T = T-1000-05

= 0.0:x,

S
$ = ——F.—P?'F = --001=;

according to (20):

s 149.0.521.160

t= ey =~ G5 TT00 = 197 keal/m®.hr-deg.

With regard to conditions the component (equivalent) problems coincide
with problems no. 4 and no. 7 according to [1], and therefore for practical
calculations it is possible to utilize computation graphs on other
materials given in [1] on pages 113-115 and 122-124.

-8-
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The computation formula for the temperature of the grourd
surface has the form:

t=t,—bz(1--9),

and the initial argument for determining temperature parameter 6 is

M= az e (1.37)’-?.37'\0_3'750 =é68. "
M= 1492 ;

We find 6 = 0.57 and we calculate the desired temperature:
= 64001.720(1— 057 = 184C.

The ground tempeiature at depth x = 1.0 m is found according to the
formula

f=to+ bx(0 =),

and the initial arguments for determining temperature parameters Bl and
6., are equal to:

2
for value 91
Fow &1 o B3-1073720 _ 7,
S—g——=17
for value 92
TR e e W WY
Fo=— 17L; Bl = o= = — = 1,3.
Finding that 91 = 0.4 and 6, = 0.2 from the computation graphs,
. we calculate the required temperature:

2 =6 + 0,04-720 (0,4 — 0,2) = 11,8°C.

If beginning at t = 7, = 0.5 months, S = 50 kcal/mz'hr had occurred,

then the solution would have to have been sought as follows. It is
necessary to divide the problem into two components. One completely
coincides with the solution of the above-given problem. In the second
it is necessary to begin calculating time from Tes i.e., to accept

instead of t the value (7 - ‘l’l) and to assume that the initial temperature

is ty = t) = 0°C and S = 50 - 20 = 30 keal/m?-hr.

§7. Solution (21) was obtained above based on general considerations
of the possibility of dividing a complex problem into the sum of two
simple problems and then the possibility that equivalent conversions
could be carried out. However, from the methodological point of view
it would be equally correct to obtain solution (21) in another way,

-9-
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specifically by making a structural analysis of one of the available
solutions to the special cases and by subsequently generalizing

the solution obtained. The first method can probably be regarded

as the deduction method, and the second as the induction method.

To solve the following more complex problem, we will utilize

this second investigation method.

§8. We will examine a problem which is distinguished from the
one examined above in §6 by the fact that between the liquid and the
semi-limited body there is temperature resistance R,, i.e., the

factor of heat emission from the liquid to the body surface a is not
infinitely great. The boundary condition in this case is expressed
by the above-described system of equations (3) and (4).

An analytical solution to this problem is known for the simplest
case where S + S' = 0 and the initial temperature of the body is

equal to zero, while the temperature of the liquid is equal to tb

(see [5], pp. 301 and 302, formulas 4.17 and 4.18). In our writing
system this solution after very simple transformations has the
following form:

t=t L [exp(‘:x—%—ﬁx?Fo)eric(2

1 =y
- — X } Fo|—
i } Fo el )

(26)
— exp (Bx + 2*x*Fo) erfc (——-l—:-_ + Bx ]/F—o) .
: 2V Fo
here the values B and y are the roots of the quadratic equation
Peslig (27)

1 e s
gt 7 i (-~ 1) (g-+23)*

5

q

We will compare solution (26) with the solution to the problem of
heat propagation in a semi-limited body with a zero initial condition
and a constant ambient temperature which, as is known, has the following
form (see [5], p. 77):

| (28)

i X x* X o o
£ Coniish (o Spo)ae fadu o £V ES)
" erc21/Fo exp(h‘-l'-h‘~ o)erfc 2].'Fo+"t‘ FO)

We note that the first right-hand term describes the temperature
change in the case of I-order BC, and the second term is a correction
equal to the retardation of the heating (cooling) process due to the
fact that III-order BC occur, i.e., at the surface there exists
temperature resistance. It is easy to see that solution (26) is the

*In [5] there is a misprint: instead of (q + y) there stands (q - v);
in the English-language original there is no misprint.

-10-
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arithmetic differernce between solutions (28) for the two problems;
in these two problems

1/,

=, 29
=t e (29)

and consequently in the first problem

b
p *

’lt, =

(30)

and in the second problem

h,’al. (31)
1
Thus it is proven that solution (26) can be expressed as:

tv = tuia — tin g, (32)

where ti 1 and tirr, 2 are correspondingly solutions (28) to problems

with zero initial comditions, constant and uniform ambient temperatures

and various heat emission factors a, and ay. According to (18), (30)

and (31) values a, and a, are equal to

2, = A s

% = ;.T.

(34)

We still have to find what B and y are equal to; for this purpose
we will utilize equation (27).

It is obvious that

| TR
_’;;'—_T+l"' (35)
o e
% At (36)
Consequently
e | A
SEeC T el N e T 5
’l‘. ’lg‘
AR PP TG4 w0 R
G P s ( B a.) (38)
from which we find an equation system which determines the values @,

and ay:

«11-
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2’ = 24 4 T, (39)

ot d
A %y Ay (40)
substituting (39) into (40):
nﬁnfy-%;fuo, (41)
from which we finally find
/ — (42)
2’ ] 4)
()
and
a’ / 4). \
n=gt-Vi-7) (43)
The value of the ambient temperature is found by substituting
(18), (23) and (34) into (29):
b= tu, : (44)

Xy — 2,
or, by determining the values of the heat emission factors we obtain
PG Frletet
sy 3 (45)
l/ 1— ;’—/T;

From the superposition principle it follows that when S + S' # 0
and ;0 # 0, it is necessary to assume that the ambient temperature for

0=t

the two component problems is equal to
b 8= ok s § (5 S
N R M e S > -+ §7) dx .
\_ h'c’s \( ) ) 4);_ (46)

§ Vq“ﬂﬁ

2

R

Thus, the solution to the problem concerning the temperature conditions
in a semi-limited body covered with a layer of agitated liquid, in the
presence of temperature resistance between a liquid and the body surface
(a' # ) and at given thermal flows from the outside and within the
liquid can be expressed as the difference between the solutions to two
problems with III-order BC and the temperature of the medium is determined
by equation (46), while the heat emission factors are determined
by functions (42) and (43), (Figure 4).

Y W
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Figure 4. Diagram of the Solution to the Problem of the
Temperature Regime of a Semi-Limited Body, Covered with a
Layer of Agitated Liquid.

Example. The following are known: the conditions of the problem
are the same as in §6, but the heat emission factor from the water to
the ground is not infinitely great, but equals a' = 14 kcal/m2?<hr-deg.

Find the temperature of the ground at depth x = 1.0 m after
T = 1 month.

Solution. In accordance with §8 above the solution to the problem
under consideration with IV-order BC can be presented as the difference
between the solutions to two problems with III-order BC. The boundary
conditions in the component problems can be found from formulas (46),
(42) and (43). We will determine the equivalent thickness of the heat
capacity resistance from formula (13):

»

f

S-.H 1 >
9= c??lhl V t s 1A = bt == 0.0588..
'Ry
: , ¢’ 05.10-1000 .
I hxs h cp = 0,\1 l'h}&) = 0.7"4 M
o =7 (1 +0681) = 1,77 keal/m? hr-deg,

U2 =7 (1 —0681) =223 keal/m® ehre deg.

With regard to conditions the component problems are identical to
problem No. 7 [1], and therefore in solving the problem it is possible
to utilize the computation graphs and other materials given in [1] or
pages 122-124.

The initial arguments of the I problem are:

.ﬁglﬂ"iﬂ’_-m.

Foy = -

a _ 11771 _
B".‘ - -———;. —'_—'49 7,9.

The dimensionless temperature parameter is 6. = 0.35.

1
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Ther initial arguments of the II problem are

HJ-.%%==IJL

o nax _ 223.1
Biy . o =15

The dimensionless temperature parameter is 92 = 0.23.

Finally, we write the solution to the problem in the form:

fy = to— (g — tyg oh
iy = 0b=,

tyyp = abs,
ty = fu + bx (0 — 0,) = 6 + 0,0388.720.0,12 = 6 = 5,08 = 11.08°C.

§9. It is possible to make an equivalent replacement of one body
with some thermophysical characteristics by means of the same body having
other thermophysical characteristics.

An examination of known analytical solutions presented in criterional
form makes it possible to readily perceive the equivalent exchanges which
are possible. For instance, problem solutions (see, for example [1],

problem no. 16) which have the form '9=%—t")=f(po) make it possible

to state that we can make an equivalent transition from a body with
Al to a body with Az, but on the condition that there is a corresponding

change in the values of S at which 6 = idem occurs, while of course
keeping the temperature conductivity value a constant by changing the
factor of volumetric heat capacity cp.

§10. An equivalent exchange of a body of one form with a body of
another form or other dimensions can be carried out by arbitrarily
changing (reducing, increasing, deforming) that portion of the body
which in practical terms is not reached by the action of heat sources.
For instance, if the action of heat sources located at the surface of the
plate x = 0 penetrate only to x = X, and if there are no other heat

sources, then thickness of the plate can be changed arbitrarily within
the limits X < x €, and the adiabatic surface of the plate can be

deformed as desired, but no point should come closer than distance Xy
to surface x = 0.

None of these changes should influence the thermal conditions of the
plate.
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Conclusions

The concept of equivalency is utilized successfully in various
areas of science. The equivalency problem has become widely utilized,
for instance in electronics. In heat conductivity theory and especially
in its practical application (in design) unjustifiably little use is
made of equivalent transitions. It is necessary to direct attention
to the broader utilization of already known equivalent transitions,
as well as to the discovery of new laws. Equivalent replacements
of some identity conditions by means of others may prove to be
extremely useful not only for new problems and for analyzing the
physics of phenomena, but also in establishing experimental
investigations.

Designations

X -- coordinate;

T -- time;

A -- heat conductivity factor of body;
c -- specific heat capacity of body;
(4 -- body density;

A' -- heat conductivity factor of agitated liquid (A' = =);

¢' -- specific heat capacity of liquid;

p' -- density of liquid;

a -- heat exchange factor from air to body surface or to surface of
liquid layer;

a' -- heat exchange factor of body from layer of agitated liquid to
surface of solid;

h -- plate thickness;

h' -- thickness of agitated liquid layer;

ht -- thickness of temperature resistance layer;

h, -- thickness of heat capacity resistance layer;

Rt -- temperature resistance;

Rs -- resistance to heat flow;

t -- body temperature;

to -- initial body temperature; .
t' -- temperature of agitated liquid layer;

tb -- initial temperature in layer of agitated liquid;

0 -- temperature of medium;

b -- constant which is proportional to the temperature at the body surface

or the temperature of the medium;

g . the temperature of a volumetric uniformly distributed source of

' heat (per unit of body surface area);

S -- density of heat flow from the outside;

§' -- total intensity of heat sources in agitated liquid layer (per unit
of body surface area);

k -- constant proportional to the value of heat flow;

t -- adiabatic temperature change under the action of internal heat

2

sources;
amount of heat, heat content;
-- real number;

wife




-- heat source of given temperature;
-- heat source of given intensity;

-- boundary condition.
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