AD=AO037 558 INDIANA UNIV BLOOMINGTON DEPT OF MATHEMATICS F/6 12/) -
ASYMPTOTICALLY DISTRIBUTION=-FREE ALIGNED RANK ORDFR TESTS FOR C==ETC(U)
1977 M L PURI:» P K SEN AF=AFOSR=2927=76

UNCLASSIFIED AFOSR=TR=77=0167 NL




AFOSR = TR- 77 016 7

ADAO37558

JO6 FILE copy.

Ay w
(3 V)

ASYMPTOTICALLY DISTRIBUTION-FREE ALIGNED RANK
ORDER TESTS FOR COMPOSITE HYPOTHESES FOR GENERAL

*
MULTIVARIATE LINEAR MODELS

by

Pranab K. Sen and Madan L. Puri

University of North Carolina and Indiana University

ABSTRACT

For general multivariate linear models, a composite
hpothesis does not usually induce invariance of the joint
distribution under appropriate groups of transformations,
so that genuinely distribution-free tests do not usually
exist. For this purpose, some aligned rank order statistics
are incorporated in the proposal and study of a class of
asymptotically distribution-free tests. Tests for the
parallelism of several multiple regression surfaces are
also considered. Finally the optimal properties of these

tests are discussed.

AMS 1970 Classification No: 62G10, 62J05

Keywords and Phrases: Alignment, asymptotically distribution-
free tests, asymptotic linearity of rank statistics, asymptotic
relative efficiency, composite hypotheses, general linear models,
parallelism of regression surfaces, robust estimation.

* Work supported by the Air Force Office of Scientific
Research, AFSC USAF, Contract
AFOSR-76-2927. Reproduction in whole or part is
permitted for any purpose of the U. S. Government. :7

ved fer purlic release}
ribution uulimitede




LIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICL OF TRANSMITTAL TO DDC

This tcchnical report has been reviewed and is
approved for public release IAW AFR 190-12 (7b).
Distribution s unlimited,

A. D. BLOSE

Technical Information Officer

}o 4 19% he ;1
o1 he .mu“gq’.

T VT




UNCLASSIFIED

» _.!CU.ITV CLASSIFICATION OF THIS PAGE (When Dcu Entered)
READ INSTRUCTIONS
REP@T DOCUMENTATION PAGE GERORE Corier frrr o
ﬁ L 2. GOVT ACCESSION NO.l 3. RECIPIENT'S CATALOG NUMBER
4 4167/

S. TYPE OF REPORT & PERIOD COVERED

- ﬁgﬂﬂoneanu DISTRIBUTION-FREE ALIGNED gmk RV i e
¥ ER TESTS FOR COMPOSITE HYPOTHESES FOR GENERAL _[Interim >l _oa
#ULTIV IATE LINEAR MODELS » / 6. PERFORMING O1C.
{-:l;;;oi(g & ey 8. CONTRACT OR GRANT NUMBER(s)
//' r? 2 h f /

.// |Madan L. Puri amd B K. Sen 4 /% AFOER g-/2927c / /

9. PERFORMING ORGANIZATION NAME AND ADDRESS = ; 10. PROGRAM ELENENT PROJECT, TAj&

ARE IT NUM
Indiana University
Department of Mathematics Sudﬁﬁ/‘}—tw
Bloomington, Indiana 47401

11. CONTROLLING OFFICE NAME AND ADDRESS
Air Force Office of Scientific Research/NM
Bolling AFB, Washington, DC 20332

T4, MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 1S. SECUR)

18a. DECLASSIFICATION. DOWNGRADING ‘
SCHEDULE

e o

— —
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

402 522

19. KEY WORDS (Continue on reverse side if y and | ity by block ber)

alignment, asymptotically distribution-free tests, asymptotic linearity of rank
statistics, asymptotic relative efficiency, composite hypotheses, general linear {
models, parallelism of regression surfaces, robust estimation ”

I&‘tggACT (Continue on reverse side it and identify by block number)
For general multivariate linear models, a composite hypothe
sis does not usually induce invariance of the joint distributio
under appropriate groups of transformations, so that genuinely
distribution-free tests do not usually exist. For this pur-
pose, some aligned rank order statistics are incorporated in th
proposal and study of a class of asymptotically distribution-
_free tests.. Tests for the parallelism of several multiple

0D , s 1473  eoition oF 1 nov 68 13 ossoLETE

UNCLASSIFIED 0
SECURITY CLASSIFICATION OF THIS PAGE (When Data Ent ‘ /’

.




S Y e ' : e ok . S S .
: UNCLASSIFIED i
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) ;

- - i 'c i

20. Abstract (Continued)

—4—cregression surfaces are also considered.

i properties of these tests are discussed.
4

‘}:\;\A

V]
\
v

g S
|

Finally the optimal '

UNCLASSIFIED

SECURITY CLASSIFICATION OF Tui® PAGE(When Date Entered)

b b e il




s

| S S0

’

li'...'xpi) ’ izl bea

1. Introduction. Let §i = (X
sequence of independent random vectors (i. rvs) with continuous

cumulative distribution functions (cdfs)

(1.1) F,(x) =P[X sx]=F(x-a-gc,) , iz1, x¢R" , p=>1

’

where g= (al....,ap) ’ §_= ((B]k)) ’ q?l are

5 L S o)
k=1_t ... a
’
unknown parameters and ¢, = (¢,.,...,c_.) , i21 are known
~31 1i qi

vectors of regression constants. We partition

(1.2) g = (Elo ‘9‘2 ) . q1+q2=q P qi>0 ; i=1'2
qul qu2

The problem is to test the null (composite) hypothesis

(1.3) Ho : EZ = 0 against Hl : Qz ¥ 0.

We may mention that by the classical canonical reduction
[viz. Anderson (1958), Chapter 8)], a general linear hypothesis
on B can always be reduced to a form similar to (1.3). For a
particular case of q2==q i.e. HO : =0, the problem reduces
to that of testing a simple null hypothesis, the rank order tests
for which have already been studied by Puri and Sen (1969).

However, the technique developed in that paper is not applicable

when 9,<9q . This difficulty is circumvented here by using




aligned rank order tests [as in Sen (1969), and, Puri and
Sen (1973) both dealing with the univariate models] where
the alignment is based on estimates of gl developed in Sen
and Puri (1969) and Jure¥kova’ (1971).

The proposed rank order tests for HO' are considered
in section 3 following the preliminary notions and basic
assumptions in section 2. Section 4 deals with asymptotic
comparison of parametric and rank order tests, and the
asymptotic optimality of the proposed tests. The last

section deals with a special case of (1.3), namely, testing
the hypothesis of parallelism of several multiple regression

surfaces which turn out to be the multivariate multi-

parameter analogue of Sen (1969).

2. Notations and assumptions. Let R,. = ; u(X,, -XxX. )
(where u(t) =1 or O according as t is= e or < 0) be
the rank of xji among le""'xjn s [t RN B B ) oY
Since F is continuous, ties among the observations may be
neglected in probability. For each j (=1,...,p), consider

a set of scores a(j)(l),..., a(j%n) , generated by a function

n n

toj(u) , 0<u<l , in either of. the following ways.

- e @ = »’
g8 BEIIE
: 82 g
T s 8 =
el ¥ £a &
o= : |
W 3 = -
< -— ©“w
peteema—" ! %
|‘.c « H ‘
e 8 ‘
i |




(3)

(2.1) a (3)
n

(1) =cpj(i/(n+l)) or a_

i = ’ 1 i 7 j
(i) Ekpj(Uni) <sisn;lsjsp

where cpj(u) is assumed to be square integrable inside (0,1)

’

and un1< <\.1rm is an order statistic of a sample of size
n from the rectangular distribution over (0,1). Our proposed
procedure is based on the following type of rank ord;er
statistics.

v = . (3)
(2:2) B = (8, oV .8, =iZ o e e

where

& Ay
c. =n Zci R T DU TR T SR
i=

Following Ha"jek (1968) and Hoeffding (1973), we assume

that for every 3j(=1,...,p) ,

(1)

(2.3) ij(u) = tpj (u)

- w;Z) ()

where 0;8) (u) , s=1,2 is absolutely continuous and non-
decreasing in u¢ (0,1) and
L (s) -%
2.4) [ lo "(W|{u(l-u)} "du<wo ;: s=1,2; 3j=1,...,p. |
t.o J |
Denote
= 1
(2.5) ®, = r¢j(u)du b Il ol

J 0
and




B
(e.8) XKy .t = T f @ (P x))e. (B ., . &))EF. .. ,.(x,¥v) -0 o
jj 8 i Al & [ 43 i
where F[j](X) and F[jj,](x,y) are the marginal cdfs of

jth and (j,3j’) the components respectively. Assume
(2.7) A(F) = ((ljj,(F))) is positive definite and finite.

Regarding the &, ¢ we assume that

-1 & = S 3l
(2.8) n S‘(C.-C)(c.-c) =niae 5 C as na e

where for every nzno ’

(2.9) En = ((Cn.kk')) is positive definite and finite
and
(2.10) c, = c.(l) - c.(?') Pl Sl [P
-i =i ~i
where for each k(=1,...,q) and s(=1,2) . c]i:) is non-

decreasing in i . (Note that the assumption (2.7) is

a slightly simplified version of a parallel assumption made by

Juredkova’ (1971). For q=1 , this assumption is not neccssary).
Finally, we assume that for every ¢ >0 , there exists an

integer n0=no(e) such that for nzn,,

-1 - 2
(2.11) n @ >¢ { max ‘cki-cknl £ K®l, .G

n, Kk l<i<n

i




Regarding the cdf F , we assume that for each

j(=1,...,p) , the marginal cdf F has an absolutely continuous

3]

density function f[j](x) with a finite Fisher information

(2.12) Ty = Tl =j {d/dx) log £

Sl i R T
3 5 ( j p

2
(x)1} dFrj

3] ]

-
To explain the alignment procedure, we need the following
notations.
Let B = ((bjk)) be a pxg matrix with real elements
and let

/ ! 4

. .(B) = X, - L N E e o = s 7
(2.13) §l(~) 51 Egl =" n; B (El’ Bp)

n
. w o \B = R.. . = : b. -X b. ’ i < ’ j
(2.14) Ry, (B) = Ry, (b)) uzlu(xji(~3) o)) . lsi<n, 1sj<p

3

so that R..(B) is the rank of X..(b.) among X. (b.)
j1r ~ J& =7 Ja -]
a=l,...,80, L£isn ,
Now replace the R, in (2.2) b R (bR for vl <3 <n
* ji T
l<j<p and denote the corresponding matrix of rank order

statistics by

(2.15) s (B) = ((sn'jk(p_j))) y» J=l,....p: k=1,....q .

Note that by varying B on rPX4

, we obtain a multi-
parameter multidimensional stochastic process which is usoed
in the next section to introduce the proposed aligned rank

order statistics.




3. The Proposed Aligned Rank Order Tests. As in (1.2), we

partition B as

= i s i = n e + =
(3,0 B= (R.B.0 . B, le pxq, 7 i=1,2 7 q *q,=9

¢ = ’ 1 — g =
(3.2) < (Si(l)' 51(2)) . Ei(s) is a q_ vector, s=1,2

Then, under Ho in (1.3), we have

(3.3) Fl(f) =F(x-a-~8-1-si(l)) ' lsi<n

-_— -~

First, we proceed to estimate El for the model (3.3).

For tris, consider the Pxq, matrix

i (1)
R B TR - Ll LTl i
where

’ '
(3.5) B! = (9;1) ; 5;2) ) is a partition of b by (3.1)

Now under (3.3), En(l)(gl) has expectation O , and dispersion

matrix

C C
_[~n(11)’ <n(12)
(3.6) A(F)gsn(ll) where Snﬁ( )

Sh(21)’ Sn(22)

(and ® stands for the Kronecker product) and from the results
of Puri and Sen (1969), it follows that for large n , under

the assumptions of section 2,




g B e, e, )

(3.7) £(n oxa, € 1

where is the q1)<ql minor of € defined in (2.8).

(o4
~(11)
Consequently, by the same alignment procedure as in Sen and

Puri (1969) and Jure¥kova’ (1971), we define

c

p 4
fis e, (1) el
(3.8) b ={8 : Y ¥ 180, 5% ®5 )| = minimum} .
j=1k=1
Our proposed estimator of El (under (3.3)) is then

A

(3.9) El,n = center of gravity of Dn 3

By arguments parallel to those of Jure¥kova’ (1971), it
follows that

(3.10) sup H_B_l eél,n” RO, 88 Bae

D
Elc~n

(3.11) £(n [;B\-l,n - Elj) - Tlpxq(O. I(F) ®S(ll))

where

3.12 T(F) = ,.,F - ..'F .A.,
( ) TP (('rJJ (F))) ((AJJ ( )/AJ j ))

and

_F (x) (x) R
(3.13) A —.:L(d/dx)wj(l“[j] )dF[j] RO 7Y R




~

B

% is a translation-invariant, robust, consistent and
asymptotically normally distributed estimator of _g_l when
(3.3) holds. Our proposed tests are based on the aligned rank

order statistics

(3.14) sn(z) = ((Sn,jk))j=lo""p . k=ql+l'._"q

where

(3.15) ;‘, = ( -c )a(j)(; ) g a, +1l<sksqg
: n, jk &1 ki k,n" n ji x 1 £

(3.16) Rji = Rji(P—l,n' 0 , lsign, 1lsisp

To introduce the proposed test statistics, we first define

(3.17) En = ((m )) where

3350
o sk (3) {3y _={1)=(3")
(3.18) mjj',n (n=1) {zlah (Rji)an (Rj,i) a “'a }

2 1k (MR RN,
where

n
(3.19) ;x(xj) - n-lizl:.x(mj)(i) e 12)5Pp

Also, replacing Rji by Rji vy Lsi<sw , l=£Y¥ecp in

(3.18), we denote the corresponding matrix En by

~

(3.20) M = ((m }) .

3jj‘'.n

Let then,




10.

x -1
=i - C
(3.200 €. =K% 22 T SatencniinSniiz
SR
(3.22) G =M Q®C
~n ~n -~n
Pa, xpa,

~

A3-230 B e Rk =1, ....q
pqszqz

Our proposed test statistic is

-1
. = H
(3.24 :, = TEG

i

In the remainder of the section, we show that under HO
in (1.3) and the assumptions of section 2, xn has asymptotically
a chi square distribution with Pq, degrees of freedom. This

provides an ADF (asymptotically distribution free) test for

Ho -
Lemma 3.1. Under the assumptions of section 2, when HU holds,
N - N
(3.25) ngnl Bylimec *,ae nae
where
(3.26) ¢’ =c C B
} ~ ey =(zi)={li1)=(12)

* *
Proof. By virtue of (2.8), En B €C , as nawo . Thus to prove

(3.25), it suffices to show that




_——

1L

(3.27) Exn BAF) , as nao

~

Also since nm.., = m,
ijj".n jj.n

n 7 .
= (-0 7Y Y ralV ) -al143
; n n
i=l
- xjj(F) = xjj by (2.1) and some routine computations, we
need only to show that for every 3j#3’ ,

(3.28) mjj',n g xjj,(F) when HO holds

By assumption (2.3), (see also Ha'jek (1968), section 5)

for every ¢ >0 , there exists a decomposition

2
(3.29) ®.(u) = wgl)(u) + w{ )(u) - ®!3)(u) 0 b= [
J J J 3
D=l e

where mgl) is a polynomial, wéz) and w;3) are non-
decreasing, and

3 1
(3.30) J [wgk)(u)]zdu Tt v  LEY e .

4y Vg I 3
Using (3.29) we decompose mjj' ¥ into 9 terms. Using the

Cauchy-Schwarz inequality for the eight terms for which at

least one factor is non polynomial along with (3.30), it follows

that to prove (3.28), it suffices to take wj = wfl), =then

Since the wél) are absolutely continuous and are polynomials,

for them, the corresponding m

~

can be written as

33’ .n




12,

[ {' m(n (x)m;})

- =00

~

Hnj is the sample cdf for the aligned observations on the ith

o ~ %
(Hnj'(y))dﬂnjj,(x'y)) + o(l) where

variate, 1<j<p , and Hnjj' is the bivariate sample cdf for
these aligned observations. By (2.6), (2.14) and (3.11), on

*
denoting by H ., H .., the corresponding sample cdfs for

nj njj
~ ~ %
B . it follows that sule - H /| 40, as naoe
~1l,n njj’ n, 33
(i) %Y

Also note that the coj s are bounded, continuous functions.
So first replacing Hn by I-In ’ Hn by Hn , and then using
theorem 4.1 of Puri and Sen (1969), the desired result follows.

In fact, it can be shown that (3.27) holds almost surely.

Lemma 3.2. Under the assumptions of section 2, when H, holds,

X . .
(3.31) na"fs_ Sn) @y 9 +AB,  -BIC 1513

as nao , where
(3.32) A= Dlag(Al,....Ap)

The proof follows as a direct multivariate extension of
Theorem 3.1 of Jurefkova’ (1971), and hence, the details are

omitted.
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By noting that § s

n(1)

the following lemma also follow directly as a multivariate

~1l,n

extension of Theorem 3.1 of Jure¥kova’ (1971).

Lemma 3.3. Under the assumptions of section 2, when H, holds,

-%

B2 o) 18 0,

(3.33) n

By 0 T BBy L ~BC

as N4 ,

Using Lemmas 3.2 and 3.3, we arrive at the following result.

Lemma 3.4. Under H, in (1.3) and the assumptions of section 2,

=% - D
(3.34) n I8, 5) =~ B2 839 *+ 5,18, ,O)Cn(ll) at1zyd > 9
as nNao ,
*
Consider now Ho 1 B = 2 . Then under Ho : 22 = 4y the
statistics S (2)(8 :0), 8 (1)(51,0)] have the same joint

distribution as that of §n under Ho , and since the later is
asymptotically multi-normal with mean vector 0 and dispersion

matrix
(3.35) ANF)®C

it follows that under Ho in (1.3),

(B ,0) = gp(n ) . (see Juretkova’ (1971)),



14.

(3.36) £ (n-!’l' 4

Sn(2) 2109 ~5n(1) €1:2C0(11)Sn(12) Y
= -1 )
" npxqz(g' AF@C a2y = SaSiansSan !
Hence using (3.34) and (3.36), under Ho in (1.3), we find
that
..;i" n P C*
(3.37) £(n *S ;) = pxqz(-q' AF)®C)

From Lemma 3.1, (3.37) and the asymptotic distribution of
quadratic forms associated with asymptotically multinormal

vectors, it follows that (under H in (1.3) and the conditions

0

of section 2),

2
(3.38) £(£N) -+ Ipqz s @88 N9

Thus the proposed ADF test is as follows:
Reject H_  if ¢ 212
J (o) N Pq,.a

Accept H_ if .tN<I.2

0 2,a

where xi 2 is the upper 100a% point of the chi square

distribution with t degrees of freedom.

4. ) c_com ison with rametric test. Consider now

a sequence {Kn} of Pitman-type alternative hypotheses, viz.
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ey N - .
(4.1) Kn : EZ = 32 = n Yo' Yo is fixed and non-null.

Our aim is to make the asymptotic power comparisons
between the proposed rank order test and the normal theory
likelihood ratio test when the underlying cdf is not necessarily
multinormal. Proceeding as in Sen and Puri (1970). (Where the
distribution theory of the normal theory likelihood ratio
test for the general linear hypotheses is considered), it
follows that if F possesses a finite second order moments, then
(i) under Ho . the normal theory likelihood ratio statistic
factually-2 log (likelihood ratio statistic)], denoted by
Ln has asymptotically a chi square distribution with P,
degrees of freedom, and (ii) under {Kn} ., it has asymptotically

a non central chi square distribution with Pq, degrees of

freedom and non-centrality parameter

(4.2) 8, = Tr[F . (m(M ecH ™l ,
where
¥t ((ijyj’k')g,j' &GP k,k'==q2-+1....,q ¢
and
(4.3) T(F) = e ' .20 (F) =C "
T (F) ((OJJ,( ))) OJJ'( ) OV(Xji xj'i)




l6.

*
Consider now a sequence of alternatives {Kn} » where
(404) Kn : E = (0' n Y )

then, (§n(l)(§l'9) s En(Z)(El'Q)) ., under Kn , has the same
*

joint distribution as that of §n under Kn . Noting this

fact and using the results of Puri and Sen (1969), it follows

*
that under Kn s S has asymptotically a multinormal distri-

_~

bution with mean vector A[Q,JZ]C = Ay[C and

(21" 9(22)] '

dispersion matrix A(F) ® C . Thus, under {Kn} , @S nNao ,

- * *
(4.5)  £in Sh(2)) * npqz(gxg » NMF)®C )
Consequently
(4.6) s(s_|K) » 12

‘n'"n pqz,At
where
- * -1

(4.7) by = T[T+ (T(F)@®C ) 7]

where T(F) is given by (3.12).
From (4.2) and (4.7), we conclude that the Pitman
Asymptotic Relative Efficiency (ARE) of sn with respect to

L is

(4.8) 7 = AS/AL = TrrF(g_'(F) ®C*)-l‘]/rrrr-‘(v(p) c*‘ln
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- *
which depends on TI',F and C . If F is a multinormal
cdf and if we use the normal scores, then it can easily be

checked that T(F) = ?(F) and hence At = AL . In such a

case the normal scores test and the normal theory likelihood
ratio tests are asymptotically power equivalent. However,

in general for arbitrary F , is bounded by the

minimum and maximum characteristic roots of T(F)T_I(F) P T

1
£,L

(4.9) Chpr:(F)'}‘_-l(FﬂgL

-1
r .
o 1 FEH IR T (R))

where chi is the ithe largest characteristic root. (The
bounds of Z(F)E—I(F) may be studied as in Sen and Puri
(1967) or Puri and Sen (1969). Because of the similarity of
the work, the details are omitted). In passing we may

also remark that the £N test has asymptotically the best
average power with respect to surfaces in the parameter c=pace;
it has also asymptotically the best constant power on such
surfaces and finally it is asymptotically most stringen! test.

The proof follows as in Theorem 6.2 of Furi and Sen (19G9).

5. B2DF Tests for parallelism of regression surfaces.

(k) = ; 3 L
Let Ki ’ k-—l,...,nk be n, independent 1rvs with

continuous cdfs
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(k) k)

- ( 4
5.3 F W =WNE KAEl=FH-a - foe ),
l<i<nk, kK=1,...,8:2
We desire to test the null hypothesis
(5.2 Ho = p_l O »e—s = B8 (unknown)
Here the _B_k's are pxt matrices and the Sj(_k) are t-vectors

for some t=21 . A special case Ofdi p=t=1 has been studied

*
in detail in Sen (1969). If we let 8 =§1 +_B_k e S

k
*
(so that Bl = 9) » 9=st, then the result follows from the
theory developed in section 3. Therefore, without going into

the details of derivation, we briefly present the theory here.

For the kth sample ({i.e. }_i(k) ’ i=1,...,nk} . define the
pxt matrix S(k) as in (2.2) and for every §CRpt %
Eri]]:) (P_) as in (2.13)-(2.15). Let then
s s
- (k) 5
(5.3) §_(B) = )Z % wm , n=
N 2" kéln"

Under Ho , we estimate the common B as follows: as in

(3.8) and (3.9), we let

& s .
(5.4) D_ = . 8§ . (b,)| = min} ,
~n {~ jél s"‘—-'l‘ n,Jr =j Y

~

(5.5) B, = center of gravity of Pn .
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Let then

1
|
(5.6) %mt=sm)@n), k=1,...,8 , j
% % |
(Rl SN |
(5.7 }‘!“k = ((snk'jr sn.k.j'S'))j.j'=l.--..p e
ny , |
(5.8) c‘k)=z[c(k)—§_ e <5 1

iyt o Ny

S S nk AP o . SR =
s.90 m = (( Y Z LR TR (e "1/ (n=2))
= Ll % " % B O
(5.10) S = ;4n ®S(k) ’ k=l,...,s
b %
el (R (k) = (k) . (k)
where R, is the rank of in - n,jlcil ""'Bn,thit

among the nk aligned observations on the jth variate in the

kth sample, for i:=l,...,nk SR = Sl el e = i L e

The aligned rank order test statistic for testing HO 1SR D1
is then
il oo 8 ;i
(5.11) ' =‘L rer ¥ 72y
_ S N
Under Ho in (5.2), £N has asymptotically chi square

distribution with p(s-1) (t=1) degrees of freedom and under

the sequence of alternatives [Kn} , where

T — TR ok oo
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: = + # = R T =
(5.12) Kot B BTl kel e Y ey S0

it has a non-centrality chi square distribution with

p(s-1) (t-1) degrees of freedom and non centrality parameter

S
= - -1
(5.13) 5= ) TrlT (T(F)®C ) ™)
k=1
where
(5.14) I—‘ = ((y(k) yfl,(),)), 1l <k <SS and € = Lim n—l C(k)
k jr g ‘X .
N+

which we assume to exist.
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