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potential distributions are taken into account. Solutions are possible
for wide ranges of the values of the relevant parameters, and are applic-
able to the sheaths and fluxes of emitting spacecraft, and to the current-
voltage characteristics of emitting Langmuir probes. . The formulation for
the orbit analysis is based on the author's (1973, 1975) Turning-Point
function method, as opposed to the method of the Effective-Potential func~
tion exemplified by the work of Laframboise and Bernstein and Rabinowitz.
The two formulations have been shown by the author to be analytically
equivalent and to produce identical numerical resuits. However, in the
author's opinion the Turning-Point formulation is simpler and more effi-
cient than the Effective-Potential formulation.

Solutions are presented for a number of sample problems, using a code
PARKSS based on the analysis of this report. The discussion of these
solutions includes comparisons with previous theories and experimental
data. In these problems the effects are considered of variations of
(a) surface potential, (b) monoencrgetic versus Maxwellian emission
velocity distributions, (c) emission flux relative to ambient fluxes
(Yweak® versus ®strong' emission), and (d) emission temperature
relative to ambient temperatures (*cold® versus "warm® emission), on
potential barriers and net surface fluxes.
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1. INTRODUCTION

This report is concerned with rigorous calculations of the structure
of the charged-particle sheath about a symmetric body immersed in a plasma
and emitting electrons from its surface. The body can be a space probe
and the emission can consist of photoelectrons or secondary electrons. This
becomes an important effect when the ambient plasma is hot and tenuous, Say
about a spacecraft outsice the plasmaspnere, and can influence electric
field measurements (Grard et al, 1973) or low-energy particle experimcnts
(Whipple and Parker, 1969). The model to be discussed is equally apo
ble to the problem of an electrostatic Langmuir probe in a laboratory p.isiia
where the emitted electrons are thermionic or secondaries (Chang and
Bienkowski, 1970).

Spherically-symmetric sheaths have been trzated rigorously in the
absence of emission by Laframboise (1966) and Parker (1975). The effects
of emission on spherical bodies immersed in plasmas have been treatec
anzroximately by a number of workers (cf. Whipple, 1976 and references
cited therein), but very little riqorous theoretical work has been reported.
Schrdder (1973) reports that ne used the method of Laframboise (1966) to
include photoelectrons, but gives no computational details. This is a sig-
nificant omission because the Laframboise method is based on the assumption
that tne potential profile is monotonic whereas Schrdder's results involve
nonmonotonic potential profiles (potential minima), which would require a

significant modification such as that of the present report.

Therc 1s ongoing work on dynamic time-simulation calculations for the

spherical sheath problem (P. Rothwell, A. Wilson, private communications,

1976). These soclutions have been found to agree (after the oscillations
have become sufficiently small) with the author's static solutions (Parxer,
1975 and this report) at sufficiently long times. However, certain di-
culties are encountered with dynamic methods which are absent in static
methods. For example, in seeking steady-state solutions one may find there
are two or more different time-scales in the problem, which can make time-

simulation relatively expensive. One may alsc inadvertently introduce

‘ }”:;:::::::IIIIIII...“




“numerical” collisions so that particles become inadvertently trapped, in
a potential minimum for example. In addition, there may be excessive noise.

A rigorous spherically-symmetric model is needed, to provide relatively
inexpensive but valuable guidance regarding the assessment of sheath struc-
tures in 3-dimensional problems. The present computer model, called PARKSS
(Parker Spherical Sheath), has been developed with this aim. It is an exten-
sion of the author's previously developed computer model (Parker, 1975), but
modified to take any nonmonotonic potential distribution into account. It
should be mentioned that & time-simulation study by Soop (1972) for a con-
ducting sphere illuminated on one side in a vacuum has shown that i.. _-ym=-
metry in the charge distribution is small. Hence, a spherically symmetric
model should be a good approximation for the sheath around a spherical space
probe. In addition, the problem of a long circular cylinder (which has clear
implications for space, e.g., instrument booms, as well as laboratory appli-
cations) is so similar to that of a sphere thatc only slight modifications
are required. Accordingly, the sphere and cylinder are treated on an equal
Dasis in the analysis of this report.

In Section 2 the assumptions and basic foundations of the Vliasov prob-
lem are discussed. Tnhis refers to the evaluation of charged-particle den-
sities and fluxes with arbitrary potential distributions. In Section 3, the
solution of Poisson's equation, and the Poisson-Viasov iteration procedure
to obtain mutual consistency of the distributions of potential and charged-
particle densities, are treated. The kinetic-theoretical probiems of the !
evaiuation of densities and fluxes are discussed in Sections 4 and 5, |
respectively. Here we consider Maxwellian and monoenergetic velocity dis-
tributions, for ambient and emitted particles, and for spheres and cylinders.
The moment integrals are represcnted as integrals over energy and angular
momentum. In Section 6 we consider the orbit analysis required to evaluate
the anguiar momentum integrais. The formulation for this analysis is based
on the Turning-Point function as opposed to the Effective Potential. The
Turning-Point formulation is considered to be much simpler in practice and
more efficient than the Effective-Potential formulation. The equivaience
between the two formulations has been proved analytically and numerically
(Parker, 1975), but is here demonstrated in one of several examples by
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re-ceriving on the basis of the Turning-Point formulation the formulas dersved
earlier by Bernstein and Rabinowitz (1959) who used the Effective Potential.

Section 7 and Appendix A are concerned witn the energy-guadrature
method wherein the moment integrals over energy are approximated by finite
sums over monoenergetic factors. The method of Parker (1975) is here modi-
fied to deal with nonmonotonic potential distributions and arbitrary energy
ranges wnich arise in the emission probliem.

In Section 8, a number of sample spherical solutions obtained with the
code PARKSS are discussed. The effects of (a) emitted electrons witnout
the ambient plasma, (b) ambient plasma without emission, and (c) the co.o -

ation of emitted electrons with the ambient plasma, are compared. When there

is emission there is generally a negative potential minimum (or barrier)
somewhere between the probe and infinity. .ts gqualitative behavior is as
follows. For large positive surface potentials. the minimum has negligible
depth ana occurs at a large radius. As the surface potential is reduced,
the minimum moves inward and becomes significantiy deeper. At a negative
value of surface potential, the minimum occurs at the surface, and at the
surface the field is therefore zero. With more negative surface potentials
the potential profile rises monotonically to zero. For positive surface
potentials, the solutions are similar to those presented by Schrdder (1973).
However, tnere are some differences with Schroder's results. It is shown
also that emission raises the equilibrium potential, as expected. The
effects of strong versus weak emission (based on relative fluxes), and
monoenergetic versus Maxwellian distributions of emission velocity, are
compared. For weak and cold emission from a negative probe, the emitted
electrons “run downhili," and their density falls rapidily and becomes asymp-
totically proportional to the inverse square of the radial distance. In a
sma’ii-Debye-number probe problem, the point of gquasineutrality, beyond wnich
positive and negative charges balance to within a given smail fraction, is
unchanged by adding eiectron emission. Rigorous solutions are also obtained
Tor a probiem treated approximately by whipple (1976) in attempting to inter
pret ATS-6 spacecraft data. The spherically-symmetric model was adopted to
see whether potential barriers indicated by the data could be reproduced.
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At various points throughout Section 8 equilibrium potentials are inaicated.

The Timit of cold emission from a negative probe is derived in Appendix B.

The computer program PARKSS implementing the analysis of this report
is presented in Appendix C.

.
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2. FOUNDATIONS

The spacecraft is modelled by a conducting sphere or cylinder while
the ambient plasma is isotropic, collisionless, and stationary with respect
to the spacecraft. Photoelectrons and secondary electrons are assumed to

be emitted isotropically from the spacecraft surface. In the case o

d
Langmuir probe the emission can consist of either tnermonic electrons or
secondaries due to bombardment. Magnetic field effects are neglected.
Far from the probe or satellite, the distribution functions for elecirons
and ions in the ambient plasma are treated in the present report as €.
Maxwellidans or monoenergetic. The same applies to the distribution func-
tion for emitted electrons at the surface. The probiem 1S assumed t0 be
independent of time. It is desired to caiculate the spatial distributions
of electric potential and of electron and jon densities, as well as the
currents o7 ions and electrons exchanged betweern ine nrobe and the envi-
ronment. The basic problem assumes a fixed potential on the surface, but
it ic a natural extension to find the floating potential by solving &
sequence of problems until current balance has been achieved.

~

In accord with the foregoing assumptions, a particle distribution

function f (which is the density in phase space) satisfies the time-

independent Viasov equation,

-
(|

m

7oy

This states that f, which is a function of the vector positior and

the vector velocity V, is constant along an orbit in an electric fiel«
potential wﬁﬁ), where q and m denote respectively the charqge and mass of
the particie. In Eg. () , /and V,, denote gradient operators with respect

v

to position and velocity space, respectively.

TR




Assuming one has solved Lg. (1) ror f subject to the appropriate
boundary conditions {(the "Vlasov problem" - see Secs. 4-06), onc may then
obtain the particle density N(R) at a point R by integrating f over veloc-
ity space:

5 i s : et

N(R) = ;;f f (R,¥) dPV (2)

where dPV represents a p-dimensional volume element of the velocity space.
For the spherical problem p=3, while p=2 for the cylindrical problem. Thic

integral represents the zero-th moment of the distribution. Similar.

s ONEe

may obtain the flux or current density at a point R by defining Vr as the
i
component of velocity of interest and integrating tne product v, over

velocity space (the first moment):
) 7 > > ey
J(R) = JJ{ f (R,V) v d*V (3)

On a spnerical or cylindrical surface, Vn becomes Vr’ the radial component
of velocity.

< | g -

One may determine the local value of f(R,V) at an arbitrary point =

: |
-

by considering the orbit of a particie arriving at R with the velocity V.

If the orbit is traced backwards and a point is eventually reached where

f is known (namely, the "source" at the surface or at infinity), then tne

+ r
] r

—t

local value of f is identical to the known value at the source.
orbit is found to be ciosed upon itself, its population can consist oni;
of trappec particles which can have arrived there through a co
mechanism. It is assumed here that the closed orbits if any are unpopu-
ated (that is, f=0 for these). This assumption is usually made for

tractability purposes, based on a plausibility argument (lLafravboise,

19665 Whipple, 1976), but its ultimate justification is difficult and
requires a quantitative collisional theory. Such a theory is available
(Parker,1973), but nas not as yet been applied to the present sheath proo-
iem,

Since we have assumed isotropic sources at the surface and i1nfinity,

ana since total energy is conserved along an orbit, the velocity distributions

-f=
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can depend only on the particle energy at the source. Denoting by V tne
particle speed at infinity, and by V¢ the particle speed at the surface, we
may define distinct distribution functions for ambient and emitted p.ir-
ticles, depending on the distributions at the respective sources:

- )
£, (maV) = F_(mv2r2) (4)
£ (=aV ) = F_(av%/2) (5)
£ IR = E il e (6
SaEcnte S e MK Z

Here the subscripis i and e refer to the ambient ions (of mass M) and elec-
trons (of mass m), respectively, wnile subscript s refers to the surface-
emitted electrons. The argquments of Fw and FS are relatea to the total
energy which is constant aiong orbits. Then the distribution function for
the ions at any point R can be written:

s vl = = /D \ /\,_~2 \
£ (V= 6. (R Fa‘u-.\fm/Z) (7)
For the electrons, there are separate distribution functions. one describ-
ing the electrons from infinity (F ), and the other those from the surface
£ .
‘Fs)'

. Rl 2
14 {1 TRRREE S il -
fe \Q,J/ - ve\R,V) |®\mVW/Z) \
lr: - SO e T e
IS \R,\I) = (‘vS\R,V) rs\:.ivb,., ]

with the subscripts e and s referring, respectively, to the electrons fro

infinity (ambient), and those from the surface. The "delta-factors"
(R,V) contain the orbit information, that is, regarding whether the
orbit connects with the appropriate source. Thus, §.=1 if the ion conk
from infinity, while §.=0 if the ion comes from the probe surface. Similarl
.
=
R - PR it




5e=1 and 65=0 if the electron comes from infinity, while 60;0 and 0521 i
the electron comes from the surface. That 1S, a non-zero value for § sig-
nifies that the orbit is "occupied." Since the §'s are step-functions, and
the F-functions are known (to be defined in Sec. 4), it is only necessary
to Tocate the boundaries of tne regions in velocity space associated with
the two different types of particie sources. For the symmetric probicms
of interest (spheres and cylinders), the regions in velocity space will be
found to be further subdivided according to types of orbits, such as tnose
which contribute once due to a single pass through the radius of interest,
and those which contribute twice because the particie reverses direct.o
after passing the radius of interest, and then re-crosses the radius of
interest. Thus, the §-factors which do not vanish can take on the value 2
as well as unity, as will pe shown in Sec. 6.

Finaliy, the relation between the local szeed V and tne speec a

ct
ot
=]
@

source (V_ for ambient particles, and vV, for emitted particles) is given
by tne total-energy relations

1
Ambient Ions
MV2 MV :
2 T e = 2 +e¢ \13)
Ambient Electrons
2
Y mv_ :

—_— 4 = mes
e 5=+ eo, (11)

Emitted Electrons

%
e mv

v '~ A\

—_— S —_— i
7 €9 3 QQS \ P&

where ¢ is the electric potential, e is the electric potential at the sur-
face, and ¢_ is the potential at infinity assumed to be zero; Eq. (10) 15
written for singly-charged ions, and e is the signed eiectron charge.




3. POISSON'S EQUATION (CALCULATION OF POTENTIALS)
AND ITERATION PROCEDURE FOR POISSON-VLASQOV SOLUTION

The electric potentiai ¢ is obtained from the solution of Poisson's
equation, which may be expressed in terms of the ambient-ion number density
Ni’ the ambient-eliectron number density he, and the surface-electron numoer
density NS: ;

2 : R . T
V¢P=4ﬂ'e(n\is*ne-,\) (13)

-

where e denotes the magnitude of tne electron charge. It is convenient to

write this equation in dimensionless form, and in terms of the radial coor-
dinate appropriate to a sphere or cyiinaer, where the radius of the sphere
or cylinder is denoted by o In non-dimensicnalizing, one may choose tne
ambient parameters NO and Te as oasic, wnere “o aenotes tne ambient-pliasma
number density and Te denotes the ambient electron temperature. One also
detines Nso as the surface-electron numper density evaluated at the surface.
Tnen for the sphere Poisson's equation may be expressed in terms of the fol-
lowing dimensionless variapies:

r = radial coordinate divided by S

¢ = electric potential divided by nTe/e
g = ambient-ion density divided by No
n, = ambient-electron density divided by NO
fg = surface-electron density divided by Moo
e :Noeé>ﬁ

Ap = ambient-electron Debye length (kT./4
r a

(that is, tne Debye number)

+
0]

divided by

The resulting equation for the sphericel problem may be written:




Tne form of the left-hand side implies that this aquation is to be soived
for r¢, from which ¢ is obtained by division by r. Alternatively, one may
non-dimensionalize by choosing as basic the emission parameters Nbu and Ta’
where TS is the effective temperature of an emitted Maxwellian distribution.
Then the equation may be expressed in terms of the same dimensionless vari-
ables except the following:

¢ = electric potential divided by kTs/e
= -2l + \ ;‘ _‘2 AK
Aps surface-ciectron Debye length (kTS/Anvsoc )
divided by B {that is, the Debye number
based on the surface emission)
Then the equation may be written:
BT s W e e =
dr ADs L SO S04

Equations (14) and (15) refer to the spherical problem. For the correspond-
ing cylindrical problem, one may write instead of Eq. (14):

where the new variable u is defined by u=In r. Equation (15), based on th
surface emission parameters, may be similarly replaced.

Equations (14)-(16) may be soived by differencing them on a set of gria
points, in r for tne sphere and in u for the cylinder, and solving the aiffer
ence equations. The reason for choosing the forms of Egs. (14)-(16) 1is that

a simpie second-difference operation mayv be empioyed, namely,

\ g o AR -
= 2(ro), + (re)s .y = (ar)7(RHS), (1

centered at the i-th grid point r. for the spherical problem, and

i

11
slvu=

———————



0507 - 205 + 95y = (807 (RHS), (18)

3= 3+l

centered at the j-th grid point uj for the cylindrical problem. In Egs.

(17) and (18), the right-hand-side factors (RHS)i and (RHS)j denote, re-

spectively, the values of the right-nand sides of Eq. (14) and Eq. (16),

for example, evaluated at the center grid point; and Ar and Au denote the
interval of a uniform grid.

The "double-sweep" method of solution for such tri-diagonal systems of
Tinear equations 1s well known (Varga, 1962, for example). Floating ocun-
dary conditions to represent the boundary condition at infinitv, appro.-
for electrostatic probe and sateilite problems, and the solution for non-
uniform grids, are treated in Parker (1975).

Given the method for evaluating the ion and electron aensities (to ve
discussed in the next section), the numerical sclution of the sheath prob-
lem requires that of two fundamental sub-problems, the "Poisson Problerd
(this section) and the "Vlasov Problem” (next three sections). The Pcisson
Proolem is solved to yield the potentials at the grid pcints when tne
charged-particle densities are given, and conversely, tne Viasov Problem is
solved to give the charged-particie densities at the grid points when the
potentials are given. For mutual consistency an iterative process is re-
quired.

A suitabie procedure for the iteration is given by Pirker and Sullivan
{(1974) and Parker (1975). In the procedure, one mixes successive iterates of

the charge density (or alternatively the potential iterates). This means that

one mixes a fraction (a) of the most recently computed charge-density dis

ct
<

bution (RHS in Eqs. (17) and (18)) with the complementary fraction {(l-a) of
the previously used charge-density distribution. For small Debye numbers,
the fraction « must be small. Tnhere is an upper limit for a, and correspond-
ingly a minimum number of iterations, such that convergence is assured.
These depend on the type of boundary condition used to represent infinity,
as well as on the number of Debye lengths between the surface and the outer
grid boundary. It can be shown (a) that for small Debye numbers the number
of iterations required is proportional to the square of the inverse Debye

number, and (b) that no mixing is required for convergence if the boundary




0T the grid is less than about = Debye lengths from the surface (Parker and
Sullivan, 1974).

The boundary condition where the potential floats in accord with an
assumed inverse-square-iaw behavior is physically appropriate (Laframboise,
1966) and is found to be computationally efficient for the purely-ambient-
plasma problem (Parker and Sullivan, 1974). This condition is alsc being
used provisionally in the present program.

(S ]




4, THE VLASOV PROBLEM: CHARGED-PARTICLE DENSITIES

We first consider Maxwellian aistributions, of emitted and ambient
particles, for the spherical problem (subsections Al and A2) and

-+

or the
cylindrical problem (subsections B1 and B2). Then we consider correspond-
ing monoenergetic distributions (subsections C and D). Ambient-particle

examples have been previously derived by Laframboise (1966) and Parker
(1973 and 1975).

A.  MAXWELLIAN DISTRIBUTIONS-SPHERE

We will derive in detail the number-density integral in the spherical

problem for emitted particies. The ambient-particle number density formula

will be shown to foilow easily from tnat of the emitted particles.

Al. Maxwellian Emitted Particlies, Spnerica’ Probliem

]
v

The number-density integral for emitted particies at a radial
R in the spherical problem is conveniently written as a speciaiizaticn of
tne velocity space in £q. (2) with p=3 to spherical-polar velocity coordin-
ates V, 6, and B, where V is the local speed, 6 is the local polar angle

with respect to the radial direction, and 8 is the local azimuthal angle.

& : AR i
The velocity-space volume element is d°V = V-dV d(coss)ds, but because of

the assumed isotropy the integration over 8 1s trivial (yielding the factor |

AL LUl

2n), and Eq. (2) in view of Eqs. (4) and (7) may be written:

1 - / 2. \ ~ / N
NS\R) = 2n | F_(mvo/2)v dV | 6-d(cose)

(sphere)
wnere 8 denotes the "delta-factor"

but here the subscript is dropped), which depends on the nature of the

There are in general three distinct ranges of integration [nese are -
ated with three corresponding types of contributing orbits, "Ty

2," and "Type 3" as are defined in Sec. 6. We defer further discus
tne orbits until Sec. 6.

For a Maxwellian distribution of emitted particles at che surfac

nave




\3/2 ;
s} exp(-mVS/ZkTs) (20)

SURSIT R
Folmig/2) = (Z)NSO{anT

-

where Fe is the Maxwellian emission temperature. The first factor of 2 in
parentheses represents the doubling appropriate to a half-Maxwellian dis-
tribution at the surface. This is consistent with Chang and Bienkowski
(1970) and Schroder (1973). At zero field, the angular integral in Eq.

(19) has contributions from only a hemisphere of directions at the surface
(involving outgoing particles only). This situation is in contrast witn the
ambient plasma in which there is a full Maxwellian at infinity (invoivirg
both outgoing and incoming particles, at zero field); in the ambient dis-
tribution corresponding to Eq. (20) the factor 2 is replaced by unity.

Alternatively, one might wish to consider the surface distribution to
be a full Maxwellian, but in the absence of an infinite external potential
barrier there would be an imbalance of outgoing and incoming particles just
outside the surface, resulting in a discontinuous density function. This
situation could probably be made consistent by applying suitable re-definitions,
but such a procedure seems neither immediately obvious nor physically satis-
fying. In any case, the normalization chosen affects the relationship between
the current and the density. The factor 2 in parentheses will be retained
here for the emitted particles but will be deleted for the ambient particles.

With Eq. (20) for Fo» Eq. (19) becomes
(2)2N 3/2 = L
: § Fens

. ‘ e = 2
iR = —28 0 | exp(-mVS/2kT IVEdY | s-d(cose) (21)
S 07y Zk‘S) Jo P S S ':’_wl

where VS is connected to V by Eq. (12). It is desirable next to make use of
the symmetry of the problem to convert the variables of integration V and ¢
to new variables, nameiy, total energy and angular momentum, both of wnich
are conserved along the orbits. It is also desirablie to nondimensionalize
the variables. We write:

=1




r = R/ro, n N_/N

S s/ Peo
2 2 2 W i o
v o= M 2T, v.” = mV:/2kT_ (22)
s S s S
¢ = 60/.\75, \Pg- = EQS/RTS

and convert to aimensicnless total energy, namely, Eq. (12) nondimension-
alized through divisicn by Ki_:
E 2 A
==+ ¢ = VT o+ >3
¢ g T ¢

V&g,

and the square of the angular momentum, nondimensionalized through division
2
by 2mr, kTS.

2 2 2
L. RN A S S
J- = ”?‘(EETTEHT sin g = rv'sin @ (24
By S

For the sphere the angular momentum is that about the center of the snnere,

while for the cylinder (treated next) it is that about the axis. The advan-

tage of converting to the new velocity-space variables (E,JZ) i

that botn

w

are constants of the motion and completely characterize an orbi

independent

W

1

of the variation of r along that orbit. In an orthogonal r-E-J° space the

r

orbits are thus straight lines paraliel to the r-axis (Parker, 1975), and
the orbit analysis 1s simplified.

Using Eqs. (23) and (24) to eliminate V and & in favor of £ anc J°, we
1

)t

{
\
obtain from £q. (2

{ - Z N i \ oA . Y
NAT) = < EXD\O EeXPpL=EGEia_ Ve
g\ ) el e pL-t ) 'ng \ )
RERGTS Gl
(sphere)
» =\ : o . 1 . i ~ rAantve i - - N
J where ch\L/ 1s the spherical monoenergetic contribution to n due to energy
o

-

E. This monoenergetic factor is given by
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s

(8 to be evaluated in Sec. 6)

which is comprised or the integral over J2 with E fixed.

A2.

Maxwellian Ambient Particles, Spherical Problem

The Maxwellian number-density integral for ambient particles at a

dimensioniess radial position r in the spherical problem is so similar to

that of the emitted particles that the final expression can be obtained

readily from Eqs. (25) and (26). Thus, we set ¢_=0 since it now represents

the pctential at infinity, delete the factor 2 in parentheses, and obtain,

for either the ambient ions or the ambient electrons:

where M
ns

tor is

where we have defined:

n
amb

namb(r)
(E) is the monoenergetic contribution of the energy £. 1his fac-

M (E) =1

—
no
~4

N

r\.o o -
(" exp(-E)dE NnS(E)

=2
(sphere) 7Tjo

g E-¢ i/’)
ns 5-d[E-¢-J2/r2] (28)
(sphere) 0

(6 to be evaluated in Sec. 6)
Ni,e/No for ions, electrons
= e¢/kTi a for ions, electrons
’
= anbient-ion, ambient-electron, temperature
& 2 T 9)
= (MV©E/2 + (e@)/kT; for 1ons R

=2
(mve/2 - jejo)/kT  for electrons
t

AR > )
T - WAL ¢ - . 3
(R™ /v ),Q‘n.’ sin~0)/2kT. for jons |
\ 1

e [ 9 2
= (D8 Fel'y A ALY g
= (K /‘0 ) (V¢ mn‘«"‘,/“.\',k‘ tfor electro
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5.  MAXWELLIAN DISTRIBUTIONS-CYLINDER

We next consider Maxwellian distributions, of emitted and ambient par-
ticles, in the cylindrical probiem.

B1. Maxwellian Emitted Particles, Cylindrical Probiem

The number-density integral for emitted particles at a radial position
R in the cylindrical problem is obtained when one specializes the velocity
space in Eq. (2) with p=2 to cylindrical velocity coordinates V and g¢. Here
V is the speed in the transverse plane perpendicular to the cylinder .»
and 6 is the (azimuthal) angle in the transverse plane, with respect (o Ui
radial direction. The velocity-space volurie element is d2J=VdV06, and
Eq. (2) now becomes

s ~ e
Ng (R) “ 3 ) Fsunv‘s-/zus)vav | 846 (30)
(cylinder) 0 ()

weere the "delta-factor”" is identical to that of Eq. (19) for the sphere.
For a Maxwellian distribution of emitted particles at the surface we have:

P o .
FS\mVS/2¢ = (2)

{ e m \ "_\2 Ly %
‘so(E?fT;‘ exp( ﬂ!S/Z&tS) (31)

(@]

ne ¢

nsiderations of a half Maxwellian versus a full Maxwellian discussed

n
following Eq. (20) apply equally well here. The factor 2 in parentheses

retained here for the emitted particles but will be deleted tor the

ambl 3 an At ) EA [0 340 1 Vi IR
ambient particles. Equation (30), with Eq. (31)

, May be converted to C-

space with variables nondimensionalized as in Eqs. (22)-(24), and we obt

YA (F} 3o i A s a1 me + 3~ : s
where M__(\E} is the cylindrical monoenergetic contribution to n due ta
enerqy t.

This factor is given by




Moo (E) GhrogBh J
(cylinder) 0
= L%l §-d {sin 1[J2/rZ\E—¢)J } (33)
I =
(6 tc be evaluated in Sec. 6)
2
which is comprisea of the integral over J° with E fixed.
B2. Maxwellian Ambient Particles, Cyiindrical Problem
The Maxwellian number-density integral for ambient particles at r i
the cylindrical problem is obtained readily from Egs. (32) and (33). Again,
setting °s=0 and deleting the factor 2 in parentheses as in the spherical

problem, we obtain, for either ambient ions or ambient electrons:

olf e SER e
namb(r) = ] exp(-E)dE-M

(E) (34)

nc
(cylinder)

where Mnc(E) is the monoenergetic contribution given by

G Ll S S i e L
MnC(E; = gedlain [0¢/r<(E-0)] (35)

(cylinder) Y

The dimensionless variables are defined by Eq. (29).

C.  MONCENERGETIC DISTRIBUTIONS-SPHERE
t is sometimes convenient to approximate a Maxwellian distribution

by an equivalent moncenergetic one (Laframboise, 1966) and for this reason
the monocenergetic formulas are of interest.

Ci. Monoenergetic Emitted Particies, Spherical Problem

For emitted particles in the spherical problem, it can be shown that

the appropriate monoenergetic distribution is

-




: (2)N 3/ !
€49) & w30 LY 1amyS 2K ) (36)
FS(mVS/Z) 2 ‘Zko’ g¢ =g

where D(x) is the Dirac delta-function, and KO is the singular value of the
kinetic enerqy at the source. Substitutyhg Eq. (36), in place of the
Maxwellian Eq. (20), into Eq. (19), and hondimensionalizing as in Subsection
Al (Egs. (22)-(24)) but with the normalizing energy kT, replaced by K,
yields:

ng (sphere, monoenergetic)
fV]f¢s-®

Jo

2.

2,027 (37)

« 12} sd[THog-o-d

This expression becomes identical to the monoenergetic factor Eg. (26) when
E is replaced by 1+¢S.

CZ. Monoenergetic Ambient Particies, Spherical Problem

For ambient particles in the spherical problem, the monoenergetic num-
ber density is obtained readily from Eq. (37), by setting 9,=0 anc deleting
the factor 2 in parentheses. Thus:

Namp (SPhere, monoenergetic)

{1 2, 2.k

§°d{1-¢=d /r J (38)

|
N} -

|
‘o

vihere the dimensionless variables are defined by Eq. (29) but with k7. or

¥
i

K

8 replaced by KO.

D.  MONOENERGETIC DISTRIBUTIONS-CYLINDZR

In contrast to the spherical problem, it is doubtful if in the cylin-
drical nroblem it makes sense to approximate a Maxwellian distrit
an equivalent monoenergetic distribution confined to the transverse plane.
Jdoviever, the appropriate formulas dare included here for completeness, with-

out derivation.

-1Y=




n. (cylinder, monoenergetic)

S

oy [T 2 9 i,

= L1 seasinT 21k -0)1 ) (39)

%
.cylinder, mon rgetic)
Aomp \CY er, monoenergetic)

R § 5 v ‘7‘»)
| R e P 2 e A

% = t  &+d{sin ‘Luz/r (1-¢)] 3 (40)

0

where all quantities have been previously defined.
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5. THE VLASOV PROBLEM: CHARGED-PARTICLE CURRENTS (FLUXES)

The order in whicn the various types of currents (fluxes) are con-
sidered will follow that of the previous section on number densities.
hamely, we treat Maxwellian distributions of emitted and ambient par-
ticles for the spherical problem, and then the same for the cylindrical
problem. Following these, the corresponding monoenergetic distributions
will be considered.

A.  MAXWELLIAN DISTRIBUTIONS-SPRERE

\le derive here tne flux of emitted particles in the spherical probien.
The ambient-particie flux will foliow readily.

Al. Maxwellian Emitted Particles, Sphericcl Problem

The current or flux integral for emitted particles in the spherical
problem is given, in accord with Eq. (3) with p=3, by multiplying the inte-
grand of Eq. {19) by V.=Vcosa, the radial component of velocity. Thus,
tne emitted flux may be written:

& Bt 2
i (sphere) = = ; FS(mVS/B)V gl s+d(sin“g) (41)
JO JO

Here, the range of g-integration is reduced by one-haif, namely (o0,r/2),
since flux contributions occur only over a hemisphere of directions.
F_ given by Eq. (20) for the Maxwellian, the analysis proceeds in a manner

S
similar to that for the density. The results are as follows:

jS(SQnere, Maxwellian)

Ki X
= t .-.Sf { oxyrl FYAF s M
= (2).50 7o explog) | exp(-E)dE M, (E) (42
9]

wnere H‘s(i) is the monoenergetic contribution given by

v




GiE
M, (E) = [*"T%s
js

,‘
N
o

(where 1'=1 at the surtace)

where all dimensionless quantities are defined in Sec. 4. The neutral

flux (at zero field) is (2)N_ /KT /2um
SO S

CTmilly

A2, Maxwellian Ambient Particles, Spherical Problem

As in Sec. 4, we obtain the ambient-particle expression from :ie
emitted-particle expression by (a) setting ¢S=O, (b) deleting the factor ¢
in parentheses, and (c) replacing tne emission parameters by the corres-

ponding ambient parameters. Thus we have

Jamp\SPhere, Maxwellian)

VkTi/ZﬂM

0
= N Jot) exp(—E)dE-HjS(E) (44)

| S R T TS

\,,16/2nm }

where the monoenergetic factor H;S(E) is identical to that given by Eq. (43)
v

and the upner and lower square-root factors belong, respective’y, to tn

ambient ions and electrons. The neutral flux (at zero field) is h_/kT/2-m

B.  MAXWELLIAN DISTRIBUTIONS-CYLINDE

B1. Maxwellian Emitted Particles, Cylindrical Problem

For the cviinder, we multiply the integrand of Eq. (30) by V_=Vcosa
the radial comoonent of velocity. Then the cylinder emitted flux may be
written:

gt gl 2 L oy \
j.lcylinder) = 2 F (mvV-/2)V=dV | §-d(sins) (45)
L "‘O > ¥ )
where the range of p-integration is again halved to reflect the restriction
of directions to those contained in a nhemicylinder. With F_ given by

s
vo1 )y We obtain:

r
e e




jS(Cy}inder, Maxwellian)

= (2)N - exp(-E)dEM. _(E) (46)
J Jie
0
where the monoenergetic contribution .iC(E) is given by
/?*
e 12,2 (47)
M. (E) = | s+d(/3%/r?) (47)
JC "[O

(where r=1 at the surface)
The neutral fiux (at zero field) is (Z)ASOJETS/an.

B2. Maxweliian Ambient Particles, Cyiindrical Problem

We obtain the ambient-narticie expression Trom the emitted-particie
expression as in Sec. A2 above. This yields:

(cylinder, Maxweliian)

VekT. /7™M \

Jamb

1 i
= NO : s ol & exp(-E)dE~Hjc(E) (48)
‘0
R S ? |
( gks,./'ﬁ n ‘
e )

s

wnere we take the upper square root for the ions and the lower for the elec-
trons; M;C(E} is given by Eq. (47). The neutral flux (at zero field) is

o
hovxT/Zrm.

C. MONOENERGETIC DISTRIBUTIONS-SPHERE

Using the monoenergetic aistribution Eq. (36) in Tg. (41) re

S VA

the following monoenergetic fiuxes for the spherical problem:




js(Sphere, monoenergetic)

K ./1+‘y -6 ) A
, / § iR =) 2, 2y Fan)
= (2N '8?03 | B (G (49)
‘0

(where r=1 at the surface)

for the emitted particles, and therefore

Jymp(SPhere, monoenergetic)

( \
| RTa | e
= N, 4 S - 1 st ) (50)
J
(0]
l /K0/8m J

(where r=1 at the surface)

“or the ambient ions and electrons, respectively. Tne neutral fluxes (at

zero field) are (Z)Nsor(o78m and NO/KO78m, respectively. Note that for th

sphere the monoenergetic neutral flux is equal to the corresponding Maxwel-
1ian neutral flux if KO=4kT/n.
D.  MONOENERGETIC DISTRIBUTIONS-CYLINDER

We repeat here the statement of Sec. 4D that it seems to make no s

7
(g7

in the cylindrical problem to use a monoenergetic distribution in the trans-

verse plane. However, the formulas are included for completeness.

Js(cylancer, monoenergetic)

Ny [P ST g
= 2N f=e s a2
SO & :

for the emitted particles,




and

jamb(cyiinder, monoenergetic)

( /{zr\o/nzm \ gt
= 84 ) :ol-v'°'°</»32/r2) (52)
l\ /2K0/1r2m }

(where r=1 at the surface)

Tor the ambient ions and electrons. For the cylinder, the monoenergetic

neutral flux becomes equal to the corresponding Maxwellian neutral flux if
i =7
o kT/4.
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6. THE VLASOV PROBLEM: ORBIT ANALYSIS

In Secs. 4 and 5 the monoenergetic contributions involved ranges of
integration over angular momentum represented by "delta-factors" associated
with these ranges. The delta-factors will be defined here in terms of the
contributions of three types of orbits, namely, Types 1, 2, and 3 (Parker,
1973, 1975), as illustrated in Fig. 1.

Type 1

The Type-1 orbit passes from infinity to the sphere, one way, 0~ Trou

the sphere to infinity, one way, with no turning-point. The ingoing orbit
is populated by a particie from the ambient plasma, while the outgoing orbit
is populated by a particle emitted from tne surface. For Type-1 orbits the
delta-factor is unity.

The Type-2 orbit starts at infinity and passes inward, to a minimum
radius (radial turning-point) outside the sphere. It subsequently goes out
again. These are two-way orbits, occupied by ambient particles going in
either direction. For Type-2 orbits, the delta-factor is 2. (It is of

course zero if the turning-point is outside the radius of interest.)

Type 3

The Type-3 orbit starts at the sphere surface and passes outward to a
maximum radius (radial turning-point), subsegquently returning to the spnere,
These orbits, similar and inverse to the Type-2 orbits, are also two-way
orbits; they are occupied by emitted particles going in either direction.

For Type-3 orbits the delta-factor is 2. (It is of course zero if the turning-

point is inside the radius of interest.)

Type &
This closed orbit is populatable by collisions. Examples are Given Dy
Parker (1973).







Consider a typical monoenergetic integral of Secs. 4 or 5. Denote
its value by M(E). Then it nas the form:

M(E)=(const) | §+d6(3%/r°) (53)

‘

where G(X) is a fuaction having various forms:

G(X)=vK-X spherical density
6(X)=sin=T/X7R cylindrical density
G(X)=X spherical flux

G(X)=VX cylindrical flux

where the total range of X is (0,K). Here, X represents J2/r2 while K
represents E-¢.

The analysis of Parker (1973) shows that it is poss.ble to have Type-1
and Type-2 orbits contributing simultaneousiy, or it is possible to have
Type-1 and Type-3 orbits contributing simultaneously; but it is not possidble
to nave Type-2 and Type-3 orbits contributing simultaneously. !Moreover, if
there are any contributions at ail, at least some of these come from tne
vicinity of J2=O in the form of Type-1 orbits. Hence, if the point r can be
reached energetically, there is always a lower range of J2 for whicn there

are only Type-1 orbits, and there may be an upper range of J2 for which

there are either Type-2 or Type-3 orbits. Let JTZ, JZZ, and J32 denote
critical values of J2 as follows fwith O<J]2<J?2 or 0<J]2«J32):
2y :
(O,J1 )=Range of Type-1 orbits
(JIZ,J22)=Rangc of Type-2 orbits (54)
(J]2,J1Z)=Rangc of Type-3 orbits

v

At the surface, the flux and density can have contributions only from
Type-1 orbits.

~

o >
17 & s € £ — i -1 ' 1
In terms of JlL’ Jy7, and J,7, the monoenergetic intearal of Eq. (53)
“ ~

may now be written for density:
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(const) |G6{d,“/r)-6(0)+26{d, /¢*)-26(J, */r?)

>
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(const) |-6(0)+2G(d_2/r¥)-6(3;%/¢?) |

where m=2 (Type-2 orbits) for ambient particles, and m=3 (Type-3 orbits)
for emittea particies. The absolute-value signs take intc account that G
may be either an increasing or decreasing function. If there are only
Type-1 orbits, then Eq. (55) is replaced by

M(E) = (const) |G(d,%/r)-G(0) |

This equation always applies to fluxes. It may be obtained trom Eq. (55)
by setting Jm2=J

T e
i

. . i k 2 :
iNext, we consider how the critical values of J~ are determined.

We write the equation for the conservation of energy in the dimension-
less form

(57)

where L denotes the radial component of velocity (in either tne spherical
or the cylindrical problem). Then along an orbit with fixed total energy E
and fixed angular-momentum-squared J,z the radial velocity vV will remain
finite and will not vanish or change sign as Tong as the followina inequal-
ity is satisfied:

E>ypz=o+ J2/r'2 (58)

Alternatively, the inequality may be expressed by:

JZ <gsz rz(E-o) (59)

Equation (58) may be analyzed to find the maxima in the function y, which
denotes the "effective potential." Alternatively, Eq. (59) may be analyzed

to find the minima in the function g, which denotes the "turning-point

-29-




function." Tnhe analyses of Eqs. (58) and (59) to classify the orbits repre-
sent, respectively, the methods of the trfective-Potential Formulation and
the Turning-Point Formulation. The effective-potential approach is repre-
sented by the works of Bernstein and Rabinowitz (1959) and Laframboise (1966),
while the turning-point approach is exemplified by the works of Bohm e' al
(1949), Allen et al (1957), Medicus (1961), and Parker (1973, 1975). Tie
two approaches are of course equivalent (Parker, 1973, 1975). They involve
} different projections of the same 3-dimensional phase space of the variabies
E r, £, and Jz. From the definition that v,.=0 defines a turning-point, Eq.
; (57) with V=0 defines a 3-dimensional surface representing the locu. o
turning-points. A maximum of ¥ occurring in an r-E projection (at constant
JZ) corresponds to a minimum of g occurring in an r-J2 projection (at constant
£) (Parker, 1975).

5 The Turning-Point Formulation is considcred by the author to be much

' simpler in practice than the Effective-Potential Formulation, and nas been
shown to produce identical results (Parker, 1975). In using the Turning-
Coint Formulation to evaluate monoenergetic contributions (that is, contri-
| butions to the density or flux due to a given energy), one explores the
g-function of Eq. (59) for least values (or minima) occurring in the radial
range r=1 (the surface) to r==. For a fixed energy E there is only a sincle
curve to analyze, such as that of each example in Fig. 2, which is an r-J

projection of the phase space.

Figure 2 shows 3 examples illustrating the use of the turning-point
method, which depends on where and how least values ('negative bumps") occur

in the g-function of Eq. (59). The least values may or may not be analytic
minima. They correspond to "positive bumps" (representing centrifugal
barriers) in the effective potential. In these examples £-¢ is everywnere
positive, but ¢ is otherwise arbitrary and in pacticular may be nonmonotonic.
A1l physically possiolg orbits are horizontal lines constrained to remain
below the function g=rz(E-¢). Orbits terminating on the g-function have
turning-points there.

We consider Case (A) in detail, and summarize all 3 cases in Table |.
There is one principal least value (minimum) in the g-function, at r=a, and

no secondary least values. (This corresponds to an effective-potential

— | ,______J-~—~‘ |
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RANGES OF r AND J2 ASSOCIATED WITH FIG. 2

J]Z, Jzz, J32 = upper limit of range of Type-1, Type-2, Type-3 orbits

TABLE 1.

Range of r d] JZ J32
Case (A) (1,a) 9, - g
(a,=) 9, 9 -
Case (B) () 9y ) 9179
(a,b) 9 . g
(b,“’) gb g &
(*Type-4 orbits for g]<J2<g)
Case (C) (1,a) 9, - g
(a,b) 9, g -
(b,c)* 9, 9. -
(C,m) g 9 a

(*Type-4 orbits for gc<J2<g)




function with a single maximum, at r=a.) At all positions r, the range of
Type-1 orbits is (o0,g

a), where gazg(ra)zJ]L, and J]2 is the upper limit of
J° for Type-1 orbits in accord with Eq. (54)
Type-3 orbits occur for J2 in the range J]2<

2 . For r between r=1 and r=g,
32<g, so that J32=g; there are
no Type-2 orbits. For r>a, Type-2 orbits occur for Jz in the range J}2<J2<g,
so that J22=g; there are no Type-3 orbits. The foregoing may be summarized

as in Table 1.

Cases (B) and (C) nave secondary minima (that of Case (B) is a least
value occurring at r=1), in addition to the principal minimum, In all
cases, Type-3 orbits can cccur only to the left, and Type-2 only to tne
right, of the principal minimum. In Case (B), for r between 1 and a, tie
upper Timit for Type-3 orbits is determined by the secondary minimum g, at
r=1 rather than by the local value of g; in this range of r, values of JZ
above 9 but less than g are associated witn cizsed orbits (Type-4), as
noted by the asterisked note in the table. Simiiarly, in Case (C), for r
between b and c, the upper limit for Type-2 orbits is determined by tne
secundary minimum 9. at r=c rather than by the local value of 3; in this
range of r, values of 02 above S but Tess than g are associated witn
closed orbits (Type-4), noted in Table 1. A blank entry in the ng-b Tumn
of Table 1 means that there are only Type-1 orbits for the ar*1en; particies,
while a blank entry in the 032-coiumn means that there are only Type-1 orbits
for the emitted particles. In either of these cases, Eq. (56) applies
ratner than Eq. (55).

It is evident from Fig. 2 that the existence of closed orbits is asso-
ciated with the existence of secondary minima in the turning-point function
(g).

The cases where g becomes negative in one or more ranges of r will be
treated later.

. ?
2 (Type-2 orbits), and Js”

Table 1 for the example cases of Fig. 2, we next show how they are used in

i : 2 o - S
naving determined J, , J, (Type-3 orbits) in
i &

t e monoenergetic density and fiux factors of Secs. 4 and 5.

Thus, we may now write down the monoenergetic formulas for density and

£
]

lux, for ambient and emitted particles, for the sphere and cylinder. These
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formulas are given by Eqs. (28), (43), (35), and (47), for the spherical
density, spherical flux, cylindrical density, and cylindrical flux, respec-
tively. In the following equations, we set m=1 if there are only Type-]
orbits. Otherwise, we set m=2 if the particies are ambient and there are
Type-2 orbits, and we set m=3 if the particlies are emitted and there are
Type-3 orbits. !Moreover, the factor C is unity for ambient particles and

2 for emitted particles.

Density, Sphere

-

%
DS 2. 9.7
B (E)= ?J §°d[E-¢-d°/r"]

= SIVE - 20 Zr? + Vegea Hred | (60)

Fiux, Sphere
€y 2.2 2,2 2
tislE)s | aralaBret)eny Breteo, (61)

since the flux of interest is at r=1.

Density, Cylinder

P 2
E):%.j 5-d{sin'][32/r2(E-¢)] ﬂ}
o

=%¢2$in']/dm2/r2(E-¢) -sin_]/ﬁjz/rz(E-o)i (62)

an(

Flux, Cylinder

Vo — >
(;.-‘#‘ 4 \ 2
e lE)= | sa( 421y = B, =
0

(63)

Note that the flux formulas are the same for emitied and ambient particles.

w3l




As a well-known examplie of the use of the foregoing formulas, we apply
them to the problem considered by Bernstein and Rabinowitz (1959), namely,
a spherical probe with monoenergetic ambient attracted particies. The
potential falls off rapidly and monotonically, and the turning-point func-
tion has a form similar to that of Case (A) in Fig. 2, namely, a simple
minimum. (Tnis corresponds to a simple maxim''m in the effective-potential
function studied by Bernstein and Rabinowitz.) Using Table 1 and Egs. (60)-
(63), we obtain the foliowing results.

Density, Sphere MnS(E)=:

%-[/E- - /E-¢-ga/r2] for r in (1,a)

, _ (64)
é-[/E-¢ + /ﬁ-¢-ga/r2] for r in (a,=)

Flux,_ Sphere
MJ.S(E)=ga (65)

Density, Cylinder HnC(E)::

% sin']Jga/rz(E-¢) for v an (a0
(66
- @
1 - } sin 1/ga/r"(E-;,) for r in (a,»)

Flux, Cylinder

M. (E)=/g, (

js a

(e )]
~

The foregoing equations for density and flux, Eqs. (64)-(67), are seen to

be identical except for notation to those derived by Bernstein and Rabinowitz
on the basis of the effective-potential formulation. The minimum of g occurs
at r=a, which is the so-calied "absorption radius," within whicn only Type-i

(one-way) orbits contribute to the density (and flux).




Another example which is even simpler 1s the ideal Langmuir Timit

("orbit-limited"), in which the potential falls off less rapidly than the
inverse-radius-squared. In this case, the g-function for an attractive

potential rises monotonica]]y from its value E-¢, at the surface {not shown
in Fig. 2). Then J] —E -9 and 322-9 for ambient particles. The spherical

=

and cylindrical fluxes are £-¢, and Vt-yo respectively; here we have used
Eqs. (65) and (67), respectively, with g, replaced by E-¢ . This value of
g, can be used in the second menber of Eq. (64) or Eq. \66) to yieid tne'
orbit-limited spherical and cylindrical density, respectively. For zero

potentia} we have 9, =t and ¢=0, so that we obtain the familiar for .

vE(1 + Vi-]/r )/2 and o (T/r) for the spherical and cylindrical
neutral density, respective]y. (For the purely monoenergetic case E is
replaced by unity; otherwise, with the factor vE the integral over E gives

unity.)
Finally, a numerical algorithm suitable for the computer to evaluate
J}Z, JZZ, and J32 is the following. We define 95 at a set of discrete grid

2
;
i=1 denotes the surface radius. Then the computer is asked to find three

points at radii ri, where the potentials are 955 by 9;=r (E'¢i)’ Here,

types of least values of the g;-array, namely:

Teast {91}’ all i

least {g

[}
~n
1"

by all gz (68) ]

Js least tgj:, all j<i

The case where g is negative over any range of r, as would occur at low
values of £ with a repulsive potentiai, is treated by setting ul‘ Gl K e
addition, for ambient particles we set M _(E)=0 at r if g vanisnes any here
between r and infinity; while for emitted particles we set M ( 0at r it
g vanishes anywhere between r and the surface. i

Whereas the progran of Laframboise (1966) handles no more than two

bumps in the effective potential, the present program (PARKSS - See Appen- ]
dix C) can treat any number of bumps in the turning-point function. Thus,
the method of this report is completely general, and applies not only to
36
=364
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ngnmonotonic as well as monotonic potential distributions, but te comple
general distributions.
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7. ENERGY QUADRATURES

In order to evaluate numerically the integrals over energy in Secs. 4

and 5, one may employ quadrature formulas in the form:

A

N i
[ exp(-E)dE-M(E)= ) (69)
Jtmin k=1
where M(E) denotes the monoenergetic factor dependent upon energy E, and
the Tower 1imit Emin may be negative. In the sum there are K coefficients
Ck and abscissas (energies) EK, with k=1,2,...,K. The coefficients and
abscissas depend on the order K and nature of the quadrature scheme cnosen;

those used in the present work are derivea in Appendix A.

This section completes the analytical basis for a computer progran.

Numerical results are presented next.
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8. SAMPLE RESULTS AND DISCUSSION

A computer program named PARKSS (for Parker Spherical Sheath) has
been developed tec implement the analysis of this report pertaining to the
spherical problem. This section presents the results of a number of solu-
tions. The numerical parameters (FORTRAN input in PARKSS code) include
(a) RB (=r8) = outer grid radius divided by the probe radius, (b) WMP =
the number of grid pcints including the first and last in the interval
(1, rB), and (c) ME = cone-half the number of energies in the semi-infinite
range. (There are also 2 (NMP-1) additional values of energy in the
range - see Appendix A.) The 3 parameters RB, NMP, and ME must be large
enough to ensure that the solution becomes insensitive to their values.
One also needs to assign the value of ALPHA, the iteration parameter con-
troiling the mixing of successive iterates.

For aimost ail of the runs, RB was set equal to 2, NMP was 21, ME was
5 (resuiting in 50 energy-values), and ALPHA was 0.1. Except for emission-
alone cases (for which the Dirichiet condition ¢=0 was used), the inverse-
square-law floating bcundary condition was employed at the outermost grid
point in all cases. The results wiil be discussed with reference to spe-
cific figures and tables.

A. Figure 3 and Tables 2-4

Figure 3 shows three sets of dimensionless potential (¢) profiles:
ambient plasma alone with no emission (curves labelled "A" on left side of

J» emitted electrons alone witnh no ambient plasma (curves labelied

&

F

s
nen £+ $ £ 3 Y s S mbs 3 + ~ ma 1 0| 4
E" on left side of Fig. 3); and both ambient and emitted (unlabelied
curves on right side of Fig. 3). Tne profiles in

t

-n

ig. 3 are associated
with five values of the surface potential (¢u/, namely, 0.8, 0.4, 0., -0.4,
and -0.8, corresponding to different vertical positions in the fiqure as
indicated by the encircied numbers. Both the ambient and emitted thermal
fluxes (Maxwellian) are assumed equal, corresponding to equal ambient and
photoelectron fluxes, a condition which can occur in the plasmasphere (Grard
et al, 1973). In particuiar, the temperatures of the plasma ions and elec-

trons (74’T93’ of tne emitted electrons (T_), are assumed to be all equal
' )




to one electron-volt; and the density oF piasma ions and electrons (NO) is
equal to the em;gsion density of pnhotoeiectrons (Nso), and both are taken
equal to 400/cm™. Thus, the ambient and emitted thermail currents are both
about 2x10'9 amp/cmz, this being approximately the pnhotoemission current.
Thus, Tor a sphere radius of 100cn, tne Debye number is 0.37.

Referring tc the pure-ambient profiies (A in Fig. 3), we see that ¢ is
always monotone and the profile for curface potential % is the negative of
the profilie for ~9g- Adding emission pushes the ¢-profiles downward toward
negative values, and the profiles are then possibly nonmonotonic. Ffor 95
large and positive, ¢ falis off more rapidly while for % large and -~ _itive,

¢ falls off more slowly, than in the corresponding pure-ambient case.

The pure-emission profiles (E in Fig. 3) are similar to the combined-

case profiles (ambient plus emitted), and both have the following features:

For ¢ large and positive, ¢ is monotone downward, essentially out to
infinily. However, there is always a negative minimum (potential “barrier"),
which moves inward from infinity and becomes deeper as 8, becomzs Jess posi-
tive. Numerically, it is difficult to "see" this barrier until 9 drops
below about unity.

For ¢O=O, we have a "pure" barrier, of height (or depth) about 2 units
for emission only and under 2 units for the conbined case.

There is a critica: negative value of % such that the field vanishes

at the surface. This is associated with the barrier having arrived at the
surface. The critical value is about -0.8 for emission only and about -0

A
ar

-

or the combined case. for % above the critical value, the surface elec-
trons are pushed inward. \lhereas for ¢ below tne critical value, the sur-
face electrons are pushed cutward; in this case, the potential is monotone
upward and electrons emitted from the surface "roll downhill." 1In a sense,
one may think of the barrier as a virtual one which has moved to within the

surface.

Comparing the ambient-alone (A) and emitted-alone (E) prof.les with tne
combined-case profiles, the latter appears roughly to be apnproximable

simply averaging the A and L profiles,

o




Tabie 2 presents dimensionless fluxes of plasma ions (ji and j
and plasma electrons (je) as functions of the surface potential (¢0), in
the Maxwellian ambient-only case. Here:

31 = jon flux normalized to ambient-ion thermal flux
ji = jon flux normaiized to ambient-electron thermal flux,

assuming nycrogen ions and mass ratio M/m=1336

Je

electron flux normaiized to ambient-electron thermal flux

Note that j; (¢o) e (-¢0), and that equilibrium (ji=je) occurs for
%% iess than -2.

’

Tabie 3 presents dimensioniess escaping-electron flux \js) as a func-
ticn of the surface potential (¢0}, in the Maxwcllian emission-only case.
js is normalized by the emitted flux. As % decrecses from +2, j; increases
until it becomes unity (all electrons escaping) when 9, Passes the critical
(zcro-surface-field) value, which is at about -0.8. Also shown is o . .
which denotes the (barrier) potential minimum, while b derotes the posi-
tion of the minimum in sphere radii. One can see that the minimum noves
inward and becomes deeper as % decreases from positive toward negative
values. At ¢0=0, the minimum is -0.28. There is no equilibrium surface
potential for Maxwellian emission-only, as there would be for the monoener-
getic emission~-only case.

I
and j.), of

Table 4 presents dimensionless fluxes, of plasma ions (j.

;
plasma electrons (Je), and of escaping photoelectron flux (j_J, as functions
of the surface potential (QO>, in the combined case. Here, j., j_, and j,
are all normalized by the emitted lux (which in this case is the same as

the ambient-electron thermal fiux). Ji nas the same definition as in Table

no

. Table 4 is qualitatively similar to Table 3. Jo increases as
decreases unti) ¢, passes the critical value, which 1s at about -o.i‘ as
compared with -0.8 in the emission-only case. At ¢,=0, the minimum is
-0.12, as compared with =0.28 in the emission-only case. However, the
radial position of the minimum is unchanged, at 1.35. The equilibrium
surface potential is at Y siightly above zero, compared with less than

-2 in the ambient-only case.




The numbers of iterations required to achieve convergence of the poten-

=
tial-iterates to one part in 10” was 50-60 for the ambient-alone, 70-100
for the emitted-alone,and 40-100 for the combined cases.

B. Figures & and 5, and Tabie 5

Figures 4 ana 5 are for a combined problem with both ambient plasma and
emitted eiectrons, but where the emission is monoenergetic instead of Max-

wellian. The piasma temperatures are Ti=Te=5eV, while the emission temsera-
ture is TS=1eV; the plasma and emission densities are N0=1/cmj and N -211/cm

respectively. The plasma conditions are typical of those in the solar wina

3

3

(Grard et al, 1973), while the emitted current corresponds to photoemission,
- 2 T - Py :
about 10 3 amp/cm-. This is a case of "“strong emission," defined by .\QO/TS

>>NO/Te, that is,the emission flux (jso) is much larger than the ambient-
electron thermal flux (jeo). For ro=100cm, tnc emission Debye number is

ADS=O.51, while tne ambient-electron Debye numoer 1S ADO=I6.6.

In Table 5, ¢0 is the dimensionliess surface potential based on TS

;
whereas the dimensionless fluxes of jons (jf), of plasma electrons (je), and
of escaping photoelectrons (JS), are normalized with respect to the emission
flux. Qualitatively, this table is roughly simiiar toc Table 4, but there
are soie striking differences. The equilibrium b is very slightly below
unity. For this case of strong monoenergetic emission it turns out to be
very difficult to obtain numericai solutians very close to Qo:l, namely,

in the range between the entries ¢0=0.99 and go=}.075 of the table.
For % above unity:
{a) A1l emitted electrons return to the surface, and are

contained within a radius r{n.=0).

<

(b) There is no minimum; the potential 1s strictly monotone.
(c) The position beyond which thera2 are no emitted electrons,

denoted by r(ns=0), within which all emitted electrons are
contained, moves inward toward the surface witn increasing
L above unity.




As % drops below unity, there is a minimum which moves inward from
infinity and becomes deeper. The minimum attains a depth of -.40 at ¢0=O,
and the condition of zero field occurs at ¢, between ¢0=-.5 and ¢O=-1.

Figure 4, where ¢0=0.99 (close to the equilibrium value), shows the
potential profile (dashed curve labelied "¢") and the profiles for dimen-
sionless plasma-ion density (ni), plasma-electron density (ne}, and emitted-
electron density (ns). The density profiles are the solid curves. The
emitted-electron density is 1.99 at the surface, since almost all emitted
electrons return. The plasma-ion and plasma-electron densities remain
close to one another, cross over, and essentially approximate to the rncu.rc
density (density at zero potential), shown as the dotted curve labelled
"NEUTRAL". Hence, the ambient plasma seems to contribute little to the

space charge.

The pot=ntial profile in Fig. 4 actuaily has a minimum of -0.0072 at
r=1.95 (Tabie 5), but this is negligible in the scale of the figure.

Figure 5 shows the same profiies as Fig. &4, but for the larger positive
sdarface potential ¢o=+2.0. Tnis 1s in the regime where all emitted elec-
trons return (ns=2.0 at the surface) and are contained within the radius
r=1.42. This datum is indicated in the second row of entries in Table

w

The interesting feature is that ns(r) approaches zero with infinite slope,
at the position where ¢=1.0 (where the electron speed vanishes). In this
case, n, and n, are somewhat more separated than in the ¢0=.99 case. This
case was used to make comparisons with a time-simulation calculation 1n
which ¢o=+2 was found to occur during a very siow transient following a
rapid one (P. Rothwell, private communication, 1976).

Runs were also made (not shown) in which the emission was Maxwellian
instead of monoenergetic, with quaiitatively similar results. One of the
changes which occur, however, is that finite but negligible potential
occur at large distances for iarge positive 0o

This probiem is related to that of Schrioder (1973) 1in being anpropriate
to a spherically-symmetric photoemissive space probe in the solar wind.
Schrdder computed a number of potential and density distributions, corres-
ponding to different surface potentials and different plasma densities, for

-l 5=




a positively-charged probe. The computational method used is claiimed to
foliow that of Laframboise (1966) but no detaiis are given. (The Lafram-
boise method is designed for monotonic potentials only.) Schroder's

results show the features indicated in Tables 4 and 5, and Fig. 3, in that
the potential minimum moves inward and becomes deeper as tne positive surface
potential decreases. However, whereas Schroder's curves for electron den-

5

sity move monotonicaily downward with increasing 9o it is found in present
calculations that the density at a given r rises to a maximum and then falls
off. Schrdder also implies that the electron density falls off wicr
inverse-square cf the radius at iarge radii. This is not found to be valic
here for positive surface potentials, but it is valid for negative poten-

tials and cold emission, as in the next problem,

The numbers of iterations required for individual sciutions of this
problem were in the range 50-100.

¢. Figure 6

The problem of Fig. 6 again a combined ambient-emitted one, but is
complementary to the previcus problem in that the emission here is "wear"
rather than strong. That is, the emission fiux (jso) is much smaller than
the ambient-electron thermal flux {jeo). Moreover, the ambient-electron
temperature and density are Te=iev and NO=]OOﬂch, wnile the emittea-electron

is infinitesimal

temperature TS i5 vanishingly small in tie sense that T_/T
2

e
Thus, the emission is "cold" as well as weak. The ambient-electron Debye

number is 0.743 for a sphere radius of 100 cm. It is assumed for the pur-
poses of Fig. 6 that the emission fiux is one-tentn of the ambient-electran

thermal flux (jso/jeo=0.1), and that the ions are unperturbed. Thus, the
equilibrium potential for this problem is ¢ =-2.3. (The ion motions were

¢
0
inciuded in similar problems not shown nere, but were excluded for this

problem to allow a comparison with an independent time-sinulation calcula-
tion (A. Wilson, private communication, 1976). Inciuding the jon motior

moves the equilibrium potential up to about -1.8, but
behavior of the curves is the same.) The assumed values of the paranmeters
can occur in the solar wind, but with reduced solar illumination, say at

dawn or dusk.
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In Fig. 6 the ¢-distribution at tne equiiibrium potential iS shown as
a dashed curve (¢ is the potential normaiized by uie/o). The solid curves
are for both types of electron density, with Ne/:n0 denoting the dinensionless
piasma-electron density, and Ns/No demoting the emitted-electron density
normaiized by NO. The emitted-electron density cue to cold emission may be
shown (Appendix B) to be given by the formula

N(r) 4 T (70)
No 2/ ré Jeo ANDEE

which corresponds to electrons roliing downhill. The numerical factor

becomes 1/20vw for jso/jeo=0.1. This formula also indicates that N /N,
b ]

becumes infinite at the surface, which is consistent with the assumption

of cold emission. Asymptotically, the density urops as r'z.

About 70 iterations were reguired for this probiem.

B. Figure 7

Figure 7 shows the effects of adding surface emission to a probe problem
treated earlier by the author (Parker, 1975) which involved cnly the ambient
plasma. In the earlier problem, the dimensioniess potential and Debye number
were ¢0=-10 and XD=0.1, respectively. In Fig. 7 the ambient-only curves of

potential (¢) and density (n

Al

n,) are labelied "A", to be compared with the

T2 e)
uniabelled corresponding curves including emnission (ns), The emission density
and temperature are assumed to be the same as the ambient values (equal emis-
sion and ambient fluxes), and all 3 distributions are Maxwellian.
tion can occur in the plasmasphere if the spacecraft is several meters in
radius. (To bring the equilibrium potential down to -10 would probably also
require the use of an on-board electron gun.) The same situation can also
occur in the laboratory with a small Langmuir probe emitting thermal or
secondary electrons. The curves labelled "A" have been presented in an
eariier report (Parker, 1975). The changes due to emission are character-

ized by the unlabelied curves, as follows:




(1) The ¢-distribution is shifted upward slightly (in the negative

direction).

(2} The ion density is raised about 10 percent near the surface, |
but the effect on the ions is insignificant beyond about 1.4 '
sphere radii.

(3) The plasma-electron density is reduced at all radii.

(4) However, the quasineutraiity point obeyond which the positive
and negative charges balance (ni=ne+n3) To within one
percent is stiil at about the same radius (about 2 radii) -
in the ambient-alone case.

(5) The emitted-electron density (ns) drops off very rapidly at

first, and asymptotically with the inverse square of the radius.
This behavior is associated with clectrons rolling downhill,
and is characteristic of the "cold emission" treated in the
previous problem, where fe¢oi>>kTs.

With RB=3, NMP=41, and ALPHA=0.01, about 500 iterations were required.
(By comparison, about 300 iterations were reguired when RB, NMP, and ALPHA
were 2, 21, and 0.02, respectively.)

E. Tabie 6

In an attempt to interpret data obtained by instrumentation on the ATS-6
spacecraft, Whipple (1976) hypothesized the existence of a potential barrier
due to secondary electrons or photoelectrons. in order to study this effect,
Wnipple assumed a sphericaliy-symmetric model for the sheath as in the pre-

sent report. However, his method was approximate in that (a) simplifications
were assumed for the shapes of the boundaries in velocity space, i.e., the
critical values of angular momentum (see Table 1), and (b) the method searched
only for the most negative values of ¢ such that simultaneousiy de/dr=u.

The latter procedure is not likely to yield physically valid solutions since
the boundary condition at infinity is ignored; however, it may be expected

to provide an upper bound for the depth of the barrier potential. The former
procedure (simplifications in velocity space) should be justified by exact
theory such as the present one.
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Table 6 is concerned with the 4 days (Days 198, 199, 204, and 273) 1
defined in Whipple's paper. The ambient and emnission data for the 4 days
o’Ti’ Te’ TS) in the table.
The plasma-ion and plasma-electron temperatures are not egual. For each
day, the table shows: 1

are given by the dimensional quantities (No, N

<
o)

(1) The relative strength of emission current to plasma current.

(2) The surface potential G negative or zero for all 4 days.

(3) Barrier potential (minimunﬁquq, according to measureiment.
“ 1

(4) Barrier potential if any Yain¥), according to Whipple's
method.

(5) Barrier potential if any Gmin{P), according to the exact

theory of this report (computer program PARKSS).

(6) Barrier position if any rw(w), accordin to Whipple's method.

(7) Barrier position if any rm(P), according to PARKSS.
The results are as follows:

For Days 198, 199, and 204, the Whipple method predicts a barrier,
while PARKSS predicts either no barrier (Day 198) or a smaller barrier
(Days 199 and 204). For Day 273 both theories agree in predicting no
barrier. In all cases, the measurements indicate the existence of a bar-
rier and the depth of this barrier is greater than any of the predictec
values. The discrepancy between theory and measurement is striking for
Day 273, where the emission is cold and weak, and where the enitted elec-
trons would be expected to roli downhill without building up a barrier.

The potential distributions for th

(4%

4 problens are not shown nere, but are

typified by several of the profiles in Fig. 3, for zerc and negative ¢

@

The numbers of iterations required for the 4 problems ranged from 40
to 60.
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TABLE 2.

FLUXES: AMBIENT ONLY (MAXWELLIAN)

Aq = .37

% 35 3 o
2 .135 .0032 2.77
1 .37 0086 1.93
.8 .45 .01 1.76
.6 .55 .013 1.58
.4 .67 .016 1.39
;2 .82 .019 1.20
0. 1.00 .023 1.00
2 1.20 .028 .82
-4 1.39 .032 67
6 1.58 .037 55
-8 1.76 041 .45
o 1.93 .045 .37
-2fa) 2.77 .065 135

(a) Equitibrium ¢, below -2,




TABLE 3.

I ——

FLUXES: EMITTED ONLY (MAXWELLIAN)

Ay = <37
%0 ds Oin ")
2 238 negligible
] .63 -.013 (1.85)
.8 .70 -.041 (1.70)
.6 76 -.082 (1.60)
4 .82 - 14 (1,50}
5 .88 -.20 (1.45)
0 Wae -.28 (1.35)
el .96 -.37 (1.25)
-.4 .99 ~.49 (1.20)
-.6 1.00 -.62 (1.10)
-.B(a) 1.00 monotone
-.99 1.00 monotone

(a) Surface field nearly zero.

d




TABLE 4,

FLUXES: AMBIENT AND EMITTED (MAXWELLIAN)

Ay = 0.37

% I3 ji je Is inn{rm)
2 135 0032 2.61 35 negligible

1 .37 .0086 1.80 .66 negligible

. .45 011 1.64 .74 negiigibic

s 55 .013 1.47 .81 -.009 (1.95)

4 .67 016 31 88 -.033 (1.75)

2 .82 .019 i.15 .94 -.065 (1.55)
0.2 1.00 .023 .98 .98 32 11,38)
el .028 .82 1.00 S22 (1.0
-.4 1.4C 033 67 1.00 monotone

-.6 1.60 .037 .55 1.00 monotone
-.8 .79 .042 .45 1.00 monotone
-.99 1.97 .046 37 1.00 monotone
-2. 2.86 .067 <135 1.00 monotone

(a) Equilibrium % slightly above 0.

(b) Surface field vanishes for 9, about -0.2.
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TARI F &
inolC o,

2.
(Tis T T =5, 5, 1 eV Ng» No, = 1, 211/em”; r_ = 100 cm)
& ‘\G’ \3) ((a) { ’ \
% L) Je Jg ®min' T FiA =0}
3 .000068 .0085 a5 monotone 1.28

2 .000083 .0074 0. monotone 1.42

[ .000092 .0069 0. monotone 1.55
1.075 .00010 .0064 0. monotone 1.80

1
.99t0) .00015 .0063 .01 -.0072 {1.95) =
.5 .00011 .0058 .58 =27 i) E

~,

0. .00012 .0053 1.00 -.40 (1.55) -
-.5 .00014 .0048 1.00 -.55 (1.28) -
- .00015 .0043 1.00 monotone -

(a) Ion mass = 1836 electron masses. A1l fluxes normalized by emission
flux,

y less than +1.0.

(b} Equilibrium ¢_ slight
v




TABLE 6.

ATS & DATA AND THEORETICAL COMPARISONS

" ) . -3
Ny = ambient density (cm 7)
. Lot ‘ ; -3\
| Nso = photoelectron density (cm ~)
i T, = ambient-ion temperature (eV)
Te = ambient-electron temperature (eV)
T = photoelectron temperature (eV)
- = satellite potential (volts)
AT = barrier potential (volts)
m = Dparrier raaius dividea by r0=5m
;ﬁin(w) = barrijer potential, Whipple approximation (1976)
°~1n(P) = barrier potential, Parker exact theory (PARKSS)
i
, rm(w) = parrier radius, Whipple approximation (1976)
| r_(P) = barrier radius, Parker exact theory (PARKSS)
B
|
; Quantity Day 198 Day 199 Day 204 ay 273
' N 0.2 12 90 17
| Al 0 .
| Neo 10.3 90 200 0.4
Ti 7 10 35 65
3 65 82 14.5 320
e
T‘_, 4.9 2 | )
2
Relative strength
of pnotoemission* strong strong competitiv W
QO -20 0 -2 -2000
o _q(reasurej) -60 -10 -10 ~205(
iy
o a (W) -24.5 -6.2 ~3.2
o (P) nore =22 ~2.5 none
e W) 6 4 a9 N0
v (P) none 1.5 T2 non
*

R /T . ~
A YEersus v v




(A) AMBIENT ONLY ———— COMBINED ~-
(E) EMITTED ONLY — . AMBIENT & EMITTED
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APPERDIX A.

ENERGY QUADRATURL FORMULAS

The energy quadrature formulas used in this work have the form, appro-
priate to Maxweiiian energy distributions:

L

(COﬁSC‘} \,/')‘;—E)dE'.”x\E:‘ =

where "const" denotes a constant multiplier, and where M(E} is the monc-
energetic factor depending on the energy E resulting from integration over
Jz. Ck and Ek denote the coefficients and abscissas respectively of the
K-th-order quadrature formula. The coefficients are evaluated by PARKSS
as follows:

Given a potential distribution derined at a se® of radial grid coints

r.. there is an associated set of discrete potentials °i=°(ri)‘ Arrange

the set of Qi-values in order of increasing vaiue. Then, if E_. of Eq.
j f

1
is identified with the least value of the set of ¢.-values, and if E__

this set, we may split the integral

and sum of Eq. (A-1) into two parts, one corresponding to the finite range
‘Em1n’ Emax” and the other to the semi-infinite range (Emax’ ®
,C0 ’[:“‘)( poo
~ 7=\ Ma» ' - T /
exp(-Ejde-M(Z) = | ™" + exp(-E)dE-M(E) (A-2)
k. Sl JE
min Sain “max

where the const factor of Eq. (A-1) has been omitted.

First we consider the seni-finite range (secend intearal), and th

3 g RS [ €3 we 2 pu b ¥\
the finite range (first integral).
A 1] omi - In€ind e
A.1 Semi-Infinite Range
ror the semi-infinite range we may empioy quadrature fornulas develc
e o 4 1 [r1ac0 A b R . { 4 &8 N 10 o A
)y oteen et al \1. '1],, or cy Latramboise and Stauffer {19 e these ari

-Al=




designed for the Maxwellian case where tne integrand contains a Gaussian
function as a weighting function. Let s My denote an e&bscissa-coeffi-
cient pair from the data of Steen et al (1969). Then one transforms the
semi-infinite range integral to

; exp(-E)dE-M(E)
g
max
ro

) exp(-u)dU-M{U+E_
Jo il

)

= exp(-E

fax ax

=z

2
2H ak-M(ak ;

“max

e-—

K

Hnere we have formed the k-th coefficient as CK=2nKak, and the associated

2 ¥ I~ A = T .
" *Emax' The coefficients o and abscissas &

may also be cbtainec frum the "One-Dirensional" table of Laframboise and

~=Tn energy abscissa as Ek=a

Stauffer if one multiplies their coefficients by /7 and their abscissas by
unity. (There is also the option of using the Laframboise-Stauffer "“Two-
Oimensional"” or "Three-Dimensional" abscissas and coefficients as they sug-
gest for a cylindrical or spherical problem, respectively. However, it is
the author's opinion based on experience with both methods that this yielads
no significant gain in practice.)

A

A.2 Finite Range

The finite range of energies (E.. , E__ ) defined by the set of ordered
il

i maX

values of ¢; consists of a number of unequal energy intervals. The number

of such intervals is equal to the number of grid points minus one. Consider
one of these intervals, and assume its energy range is (A,B). Then it

contribution to the energy integral way be written

A2~

UUR—




To obtain a given desired order of the quadrature formuia, one may obtain

from Eq. (A-4) a sequence of moment equations.
PARKSS, we have:

/B-A
f 2y m m m AT
I = | exp(-A-u“)-u «2udu = C,u, +C A-5)
m J. p( u -‘ -‘ 2u2 \
0
where m=0,1,2, and 3. Equations (A-5) constitutc 4 equations for 4 unknowns:
Ups Ups C], and CZ' The solution is as follows:
U] = b = -a
(A-6)
Uy = b + 2-a
fns i oy ) Sl
b b= 0.5(1515-1,1,)/{151,-17)
( (1)
B 2 s
L2 = (I -L15)/ (1 -1gl)
( C] = Zu]exp(-A)(I]—IOuz}/\u)-uz)
(A-8)
| C2 ~ ZUZEXQ(-A)(I1"ACU] )/(q:—,'u])
¢
Jhere
3=

For Order 2 as used 1in




Vi

% '5 erf(vB-A)
I] = 0.5(1-exp(A-B))
(A-9)
I, = O.S(IO-VB-A exp(A-8))
I, = 1,-0.5(8-A) exp(A-8)

It may be noted tnat repiacing B by infinity and A by zero in the above
equations yields the abscissas and coefficients of Steen et al for O~ .~ 2.

For small (B-A), one may expand the foregoing equations to obtain the
lowest order:

Gy = C2 = C = 0.5/8-A

& (1-1/3)¢C (A-10)

o
—
"

(1+1//3)C

[
(123

After computing the u's and C's as above, one forms the coefficients
S

and enersies used in PARKSS by:

rm
-
1]
[ =

mi
fe)
i
e
nN
+
b=

(e}
ki

= (const)C.l

(const)C2

(e}
S}
i

where the const factor is that on the left-hand side of Eq. (A-1).

One may choose an order M higher than 2 for any energy interval, in
. (A-5), are replaced by 2M simultaneous

which case the 4 equations, Eq
tional computer time required may not be

equations. However, the addi

Justified.

-Ad-

R




APPENDIX B.
LIMIT OF COLD EMISSION FROM NEGATIVE PROBE

We first derive the expression for the density of emitted particles
when the potential is repulsive (¢>0) and monotonic. (Here, ¢ denotes the
potential divided by -;kTS/ei; thus, this applies to eiectrons emitted from

i

v

a negative probe having dimensioniess potential +¢~ with reference to elec-
0

D
-t

trons.) If the emission is weax tii ating potential referred to icas
will normally be negative (positive when referred to electrons) and the
profil=2 will be monotonic.

Consider the turning-point function gzr“(E-¢). In the above situation,
¢ is a positive and monotonically decreasing function of r, and E£>¢, sc that
g also rises monotonically. For E\;O, we have <0 at r=1; hence the
can be no emitted contributions. For E-aa we have the least value o

cccuniable by emitted electrons, and so we may use £q. (56) with J, =E-y_.

LV

n view of Eqs. (26) and (33) for the spherical and cylindrical density,

respectively, Eqs. (53)-(56) yield:

e Uy e LR TONE S 3t
M _(E) = VE-¢ - VE-¢=(E-0 ¥r (B-1)

ns o
(sphere)
: S
2 ey & e g U
g = e i T =
e i / ~ 7 \
FCNas \ V r (E=s)
(cylinder) iRt
Substituting Eq. (B-1) into Eq. (25) (where &_ is replaced by ¢_) and inte-
> Vi b
grating from ¢ _ to infinity yields for the spherical density due to a Max-
o
wellian distribution of emitted particles:
' /
N /,-‘——T_ /'h\’ - s
h ? \ 1 L& » ) \
w=— = ER(% _=¢) = /1=1/r" R { =) (B-
o v & 5
SO r -
L
owe ER{w ) il
viere ER(x) = exp(x)-erfcrx.
«Bla




A similar substitution of Eq. (B-2) into Eq. (32) for the cylindrical
probiem results in:

N, S N
' = | exp(-u)du-sin

)

lv’h/r‘ (Uf'.,‘-o-q») \//-o‘r

S0 o)

which cannot De expressed in terms of elementary functions.

For monoenergetic emission, we substitute 1+¢0 for E 1n Egs. (B-1)
and (B-2) so that

/-

(u-u?
and
o S sin”! . (B-6)
e e (=0
) 7 %
NSO £ i (1+¢0-¢)

(monoenergetic, cylinder)

Now proceeding to the limit of cold emission, we let 97 become iarge
compared with unity. Then Eq. (B-3) is replaced by

N_ _
& — (sphere, Maxwellian) (B-7)
o D)
SO ot \
v \P."0)

Equation (B-4) is replaced by

= - (cylinder, Maxwellian) (8-8)
5 .




Equation (B-5) is replaced by

]
5 ] o R et T
Nis s \Sphere, monoenergetic)
SO r g _—0)

S e {cylinder, monoenergetic)

T
assumption of purely radial

is, the electrons roli downhill after essentialiy starting from

“l"

ion, with no initial kinetic energy.

e

(B-9)

hese limitirg formulas are identical to those which would result from tne
mot

g

ina
a

o b

+
L




APPENDIX C.

COMPUTER PROGRAM PARKSS

Tr

e following FORTRAN 7isting 1s for the PARKSS computer program.
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