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Minimax Estimation of a Multivariate Normal Mean with Unknown Covariance Matrix

by

Leon Jay Gleser
Purdue University

ABSTRACT

Let x be a p-variate (p>3) vector, normally distributed with un-
known mean 8 and unknown covariance matrix I. Let W:pxXp be distributed
independently of x, and let W have a Wishart distribution with n degrees
of freedom and parameter I. It is desired to estimate 6 under the
quadratic loss (6-6)'Q(6-6), where Q is a known positive definite matrix.
Under the condition that a lower bound for the smallest characteristic

root of Q I is known, a family of minimax estimators is developed.

AMS 1970 Subject classification: Primary 62 C 99; secondary 62 F 10,
62 H 99.
Key words and phrases: Multivariate normal distribution, unknown covariance

matrix, estimation of mean vector, quadratic loss, minimax estimator.




Minimax Estimation of a Multivariate Normal Mean with Unknown Covariance Matrix

by
Leon Jay Gleser
Purdue University
1. INTRODUCTION
Let x:pxl be a normally distributed random vector with unknown mean
6 and unknown covariance matrix I. Assume that we have an independent

1

estimator £ = n~~ W of I, where W: pxp has a Wishart distribution with

n degrees of freedom and parameter I = n'lE(W). In the usual notation,
x =~ N(6,Z) , W ~ ﬂb(n,Z). (1)

We wish to estimate 6 with an estimator &§(x,W) subject to the quad-
ratic loss function

L(5,6,8) = (6-8)'Q(8-6)/tr(QL) (2)

Here, Q is a known pxp positive definite matrix, and tr(A) denotes
the trace of the matrix A. Note that tr(QZ) is just a normalizing constant,
chosen to give the estimator Go(x,W) = x constant risk. It is well known
that 60 is a minimax estimator for this problem.

The limiting case of this problem where I is completely known (cor-
responding here‘to n ==) has recently received a good deal of attention.
[See Berger [1] for references.] The problem with I unknown and Q =
z'l (which is not a special case for our problem because Q = 2'; cannot
be known) has also been studied by James and Stein [5], Lin and Tsai
(6], Bock [2], and Efron and Morris [3,4], among others. However, the
assumption that Q = z'l is rather artificial (it seems to be motivated

only by invariance arguments), and does not seem to be of practical im-

portance. A possibly more reasonable assumption to make relating Q and I is

SRR




that something is known about the characteristic roots of QI. [Note that
if Q = Z'l, all of the characteristic roots of QI are equal to 1.] In the
present paper, we assume that there exists a known constant K > 0 such
that

chp(QZ)‘Z K, allf >o, (3)

where

chl(A) 2 chy(A) 2.... > chp(A)

denote the ordered characteristic roots of the pxp symmetric matrix A.
We consider estimators of the form

8, (x,W) = (Ip-h(x'w'lx)q'lw'l)x, 4)

where h(u) is an absolutely continuous function on [0,~). Our main result,
which is proven in Section 2, is the following.

THEOREM 1. If (3) holds, then any estimator of the form (4) for which

(i) u h(u) is nondecreasing in u,

(ii) 0 £h(uw S_2§2-2“n-2)l(‘2{n-1), all u >0,

dominates Go(x,W) = x in risk, and hence is minimax.

It is clearly of interest to determine what happens to estimators
of the form (4) when the bound (3) can be violated. In Section 3 it is
shogn that when (3) does not hold, no estimator of the form (4) can be
minimax. [Bock [2] has previously shown that for Q = Ip, no estimator
of the form h(x'W-lx)x can be minimax.] It is conjectured that members
of a certain family (Qee (36)) of estimators closely resembling the
estimators (4) in form may be minimax, but no proof of this result is

given.

2. PROOF OF THEOREM 1
Let




A(ﬂ,z) - tr(QZ)E[L(Gh.e,Z) = L(Gorenz)]' (5)

Clearly if A(6,Z) < 0, all 6, all I satisfying (3), then 6h is minimax
for our problem.

Using the fact that a'Qa - b'Qb = (a-b)'Q(a+b),the fact that Go(x,W) =
x, and (4), we obtain

8(8,%) = E(? (e W hx W ig W Ix-2E [ x w ) x'W L (x-0)1. (6)

Note that for any functions g(x,W) for which Eg(x,W) exists, we may write
Elg0M] = ByfE(s0um]] = BfE, [ecom]), %

where Exlw[g(x,W)] denotes expectation over the conditional distribution
of x given W, and Ew and Ex denote expectations over the marginal
distributions of W and x respectively. The last equality in (7) holds
since x and W are statistically independent. Further, using integration
by parts term by term in the elements of x (with W treated as a fixed
matrix), it can be shown (see Berger [1]) that

E i oWl (x-0)] = E hexw ) eow? +26 (WD x*w1x)
1

Wi lx], (8

where h(l)(u) = dh(u)/du. [Note: We are assuming that h(u) is
differentiable; if not, a similar argument, using Riemann integration,
produces a corresponding result; see Berger [1].]

From (6), (7). and (8), we have

A(8,I) = E[hz(x'w'lx)x'W-IQ-lw-lx-Zh(x'W‘lx)trw'12-4h(1)(x'W-lx)

xwW iz 1y, 9)

We now find a cgnonical representation for (9). Make the change

of variables

y = £V, Ve z'l/zwz'l/z, (10)

1/2

where I is any square root of I. Then
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= ’ ’ ~ ¥ ’ ’ 11
y ~ N(n Ip) v p(ﬂ Ip) (11)

-1/2

where n = I ®. Further, y and V are statistically independent. From

(9) and (10), with
Q* 2 z1/2 QEI/Z,
and using arguments and notation analagous to that used to obtain (7), we

have

a(8,1) =E B’V ly) yv @)y v et

1 -1 -2
B ywvlyyvdy . az
Let ry be pxp orthogonal with first row equal to (y'y)-l/zy'. Let
* *
WP VE o =T QT "'. 13
D Gl QY YQ e LD

Then, given y, U'~J$(n, Ip), so that U and y are statistically indepen-

dent. Partition U as

1
o il
Uy U22 s u,_:1x1, U22:(p-1)X(p-1),

11
and let
¥ Sy - ~1/2
FEaialatyy f RN il
where U221/2 is any square root of Uy,- It is well known that s, t, and

U22 are statistically independent, with
2

S~ Xpeperr T T NI ), Upy = ¥ yny T ). (15)
Further, viepmulr and
y y
-y < f? ‘t'UE;/z
U~ =35 (16)
aadf3 . alf -1/
uzg' 03,7 (1 e, :
so that
y'V-ly = s'ly'y, y'V'zy ='s'2y'y(i+t'U5;t), (17)




s

trv ! = tru? - (1+t U t) + trUzé, (18)
and
Yy = s hyae g H @ amergh. a9

Under the distributional assumptions given in (15), it is known that

olle o o)
E(Uzz) = (n-p) Ip-l’ so that

-1 -1 -1
EtrU22 = tr EU22 = (n-p) " (p-1). (20)
For any constant matrix A,

-1/2
22

K

']

1 -t'u
1/2

E[(1,-t'U 1/2

JA(L,-t! U
-1/2
22

1/ztt'u

n
l'ﬂ
rn

tr{ A

[(°

0

= tY Y (21)
0 (n- P) p-1

-1/2

t U 22

Taking A Ip’ the result (21) allows us to verify that

E(1

+

tUlt) = (n-p) (-1, (22)

Taking A

* .
Q) 1 the result (21) yields

E[(l,-t'u"’z)(qy) .-t/ 3

0
= tr@)"} -1
QY 0 (n-p) Ip-]'>. (23)

If in (12) we make the change of variables (13) and (14), and take
account of the identities (17), (18), and (19), then by taking our ex-

pected values in the order EyE Et U’ and using (20), (22), and (23),
22

we obtain




80,1 = (-p) EE N7y STy 10,0

2h(s"ly'y)s (n-1)-2h(s"y"y) (p-1)

- sy sy y 1)), (24)
where
® * =] n-p O
t(y,Q) = tr(Q)
Q Q, < 0 Ip_l)
= (-p-1(y'y Yy @7y +tr (@) (25)

Finally, integrating by parts in s, we can show that
- - -1 -2 1), -1
Eh(s !y ) = (n-p-DE[s (s 7y - 26 sy v syt 20)

which, when substituted in (24), yields the expression

8(e,1) = (n-p)—lEyEs[hz(s'ly'Y)s'zy'yr(y,Q*J - 2p(n-p)s (s 7ty 'y)
4-ph D sly syl @

where

2
A n-p+1:

U2y o o ;H2s102

-.Nn,I’s..
y ( p)

y and s are independent, n = , and 1(y,Q ) is given

by (25). The expression (27) is the desired cononical form.
Now, we are ready to complete the proof of Theorem 1.
Let
r(u) = uh(u), (28)

and note that
n ) = zféligl . IL%J, (29)
where r1) (u) = dr(u)/du. :ubstituting in (27), we obtain
8(0,1) = (n-p) ES (y ) x5y W x(,Q) - 260-2) (n-p)T(s TNy W)
am-ps e W sy

o i ‘
< o-p B EEHETA (e, Qris 7y - 2(p-2)cn-p){].
Y
(30)




since, by assumption (i) of Theorem 1, r(u) is nondecreasing in u. Note

from (3) and (25) that

Q) < (-Deh (@) < (-1 [eh @17

(n-1) L. (31)

IA

Thus, applying assumption (ii) of Theorem 1, (30), and (31), we conclude
that for all satisfying (3),

A(0,Z) <0, all e.
This cbmpletes the proof of Theorem 1.1.

We remark that our proof actually demonstrates the following.

THEOREM 2. Let an estimator gh(x,wz of the form (4) satisfy

(i) u h(u) is nondecreasing in u,
(i) 0 2 h(w 2 2(p-2)(n-p)Lu, all u2 0,
where L > 0 is a given constant. Then if I satisfies
(n-p-1) (ch (@0 + eren)”! <17t (32)
we have
A(8,5) £ 0, all 6,

and Gl(x.W) is minimax.

Although Theorem 2 is more general than Theorem 1, the additional

generality is unlikely to be of practical importance.
3. THE CASE WHERE I IS COMPLETELY UNRESTRICTED
When I is unrestricted, and (3) need not hold, then Go(x,W) is
essentially the only estimator of the form (4) that can be minimax.

THEOREM 3. When I is unrestricted, no estimator of the form ghgx,W) =

— — ———— — — —

Llp-h(x'ﬂ’lx)q'lw';)x can be minimax unless h(u) = 0 for almost all u > 0.

Proof. Note from (25) that

Q) > tr@@)L, for all y. (33)
Now from (33) and (27),




* . - -
ae,0) > tr(@ ) EP(s"lyry)s oy
o e = - :
-2m-pE[ps n(s”ly' y)-ah D (sl sty (3e)
where the expected values in (34) are easily shown to depend only on

) | A
8L "6. Thus, if we choose a sequence {(ei,zi)} of parameter values

such that 0'2;%6. = ¢, all i, and
s o | 1

g o :
tr@) 7! = tr(z) I s, as i+,
we see that unless

E[hz(S'ly'y)S°2y'y] = 0, all orz]

6= c, (35)

we will have A(ei,zi)+w. Thus, for some parameter points A(6,I) will

be positive (indeed, infinitely large), and hence Gh(x,W) cannot be

minimax. On the other hand, it is easy to show that (35) holds if and

only if h(u) = 0 for almost all u > 0. This completes the proof.
Estimators of the form (4) do not perform well when any linear

combination of the elements of x has low variability (implying that chp(z)

is small). To find a class of minimax estimators when I is un-
restricted, we might think of modifying members of the class (4) to
produce new estimators of the form

6;(x,W) . (1. - chp(n'IQW)h(x'w‘lx)q‘lw‘l)x. (36)

P
Assuming that chp(n'IQN) and chp(Qt) are close in value (which should

be true at least when n is large), any member of the class (36) will
behave like the minimax estimator x when chp(z) is small, and will behave
like sch (Q2)h otherwise. Thus, we have good intuitive reasons for
conjectuiing that a member of the class (36) of estimators is minimax
provided that (i) uh(u) is nondecreasing in u, and (ii) 0 < h(u) < 2(p-2)u,
all u > 0. Unfortunately, we have not yet been able to prove this
conjecture. One can follow the steps used in Section 2, but unlike the
result (24) obtained for the class (4), integration over t and U22 does

not lead to any simplification. This lack of simplification is due to




10

the fact that chp(n'lqu), after the change of variables from (x,W) to

(y,s.t,Uzz), is a complicated and nonlinear function of y, s, t, and

U

(1]

(2]

(3]

(4]

(5]

(6]

22°
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