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t4ini.ax Estimation of a Multivariate Normal Mean with Unknown Covariance Matrix

by

Leon Jay Gleser
Purdue University

ABSTRACT

Let x be a p-variate (p>3) vector, normally distributed with un-

known mean 0 and unknown covariance matrix Z. Let W:pxp be distributed

independently of x, and let W have a Wishart distribution with n degrees

of freedom and parameter E. It is desired to estimate 0 under the

quadratic loss (ó-0)’Q(o_e), where Q is a known positive definite matrix.

Under the condition that a lower bound for the smallest characteristic

root of Q £ is known, a family of minimax estimators is developed.

AI4S 1970 Subject classification: Primary 62 C 99; secondary 62 F 10,

62 H 99.

Key words and phrases: Multivariate normal distribution , unknown covariance

trix , estimation of mean vector, quadratic loss, miniinax estimator.
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Minimax Estimation of a Multivariate Normal Mean with Unknown Covariance Matrix

by

Leon Jay Gleser
Purdue University

1. INTRODUCTION

Let x:pxl be a normally distributed random vector with unknown mean

0 and unknown covariance matrix £ .  Assume that we have an independent

estimator 2 n~~ W of Z, where W: pxp has a Wishart distribution with

n degrees of freedom and parameter E = n ~E (W). In the usual notation,

x — N(0,Z) , W •.~P~(n.E). (1)

We wish to estimate 0 with an estimator 6(x,W) subject to the quad-

ratic loss function

L(6 ,0,Z) — (6-9) ’Q(6—e)/tr (Q~) (2)

Here, Q is a known pxp positive definite matrix, and tr(A) denotes

the trace of the matrix A. Note that tr(QE) is just a normalizing constant,

chosen to give the estimator 60(x,W) = x constant risk. It is well known

that is a minimax estimator for this problem.

The limiting case of this problem where E is completely known (cor-

responding here to n z a)  has recently received a good deal of attention.

[See Berger (1] for references.] The problem with £ unknown and Q

(which is not a special case for our problem because Q £~~~ cannot

be known) has also been studied by James and Stein [5], Lin and Tsai

(6], Bock [2], and Efron and Morris [3,4], among others. However, the

assI~~tiDn that Q - E
l is rather artificial (it seems to be motivated

only by invariance argtaents), and does not seem to be of practical is-

portance. A possibly more reasonable assumption to make relating Q and E is
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that something is known about the characteristic roots of QE. [Note that

if Q — E~~, all of the characteristic roots of QE are equal to 1.] In the

present paper, we assume that there exists a known constant K > 0 such

that

ch (QE) > K , all E > 0, (3)

where

ch
1
(A) ‘ ch2 (A) >.... > ch~,(A)

denote the ordered characteristic roots of the pxp symmetric matrix A.

We consider estimators of the form

= (I~ -h(x ’W x)Q~~W~~)x 1 (4)

where h(u) is an absolutely Continuous function on [O,co). Our main result,

which is proven in Section 2, is the following.

ThEOREM 1. If j~~ holds, then ~~~ estimator of the form (4) for which

(1) u h(u) is nondecreasing in U,

(ii) 0 ~~h(u) ~~2(p-2)(n-p)K~~(n-li, all u �.0,

dominates 60(x,W) x in risk, and hence is minimax.

It is clearly of interest to determine what happens to estimators

of the form (4) when the bound (3) can be violated. In Section 3 it is

shoqn that when (3) does not hold, no estimator of the form (4) can be

ainimax. [Bock [2] has previously shown that for Q = I
i,, no estimator

of the form h(x’W~~x)x can be minimax.] It is conjectured that members

of a certain family (see (36)) of estimators closely resembling the

estimators (4) in form may be minimax, but no proof of this result is

given.

2. PROOF OF ThEOREM 1

Let
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~(0,E) = t r (Q E )E[L (6 hI O , E) - L (60, 0,E)]. (5)

Clearly if ~(Q ,~) < 0, all 0, all £ satisfying (3), then 6
h 

is minimax

for our problem.

Using the fact that a’Qa - b ’Qb = (a-b)’Q(a+b),the fact that ~0(x ,W) =

x, and (4), we obtain

A (0,E) = E[h2(x W~~x)x’ W Q W x ] - 2 E[h (x’W ~~x)x’W
4
(x—0)]. (6)

Note that for any functions g(x,W) for which Eg(x,W) exists, we may write

E [g(x ,W) ) = E~fE ~ 1~~[g(x ~w) ]J = EWEEx [8(x~W )]}~ (7)

where E~ 1~
[ g (x ,W)] denotes expectation over the conditional distribution

of x given W, and E
~ 

and E
~ 

denote expectations over the marginal

distributions of W and x respectively. The last equality in (7) holds

since x and W are statistically independent. Further, using integration

by parts term by term in the elements of x (with W treated as a fixed

matrix), it can be shown (see Berger [1)) that

E
~
[h(xtW~~

x)x W ’(x_ O)] = E [h (x’W~~x) trW~~ J +2E [h~~~(x ’W 1x)

x ’W~~EW~~x], (8)

where h W (u) = dh(u)/du. [Note: We are assuming that h(u) is

differentiable; if not, a similar argument, using Riemann integration ,

produces a corresponding result; see Berger [1].]

From (6) , (7) . and (8) , we have

~(0 , Z) — E [h2 (x ‘W 1x)x ‘W Q~~W~~x-2h (x I W ‘x)trW~~E-4h~~ (x ‘W ’x)

x ’W~~EW~~x] . (9)

We now find a canonical representation for (9). Make the change

of variab les

y — E lhl2x, V = E l
~
’2WE~~

/’2, (10)

where £1/2 is any square root of E. Then



y - N(n, I) ,  V 2~~(n, I ) ,  (11)

where ~ = ~
_l/2

~. Further, y and V are statistically independent. From

(9) and (10) , with

Q = ~~~ QE
l
~’2,

and using arguments and notation analagous to that used to obtain (7) , we

have

A (0,E) = E~ E~ [h2(y ’V~~y) y’V
1( Q ) Vy - 2 h (y’V~~y)trV~~ 

~~~ 5)

_4h( (y~V
1y)y~V

2y) . (12)

Let ry be pxp orthogonal with first row equa l to (y ’y)~~~
’2y ’ . Let

U = r~vr~ 0~, = r>,Q r >. 1 . (13)

Then, given y, U -~~~(n , I), so that U and y are statistically indepen-

dent. Partition U as

~ 
fu1~ u~1\
I~u21 U22), u

11
:lxl , U22:(p_l)x (p_l),

and let

s = u11-u~1U~~u21, t = (14)

where U22
1’2 is any square root of U22. It is well known that s, t, and

U22 are statistically independent, with

s - t - N( 0~I~_1)~ U22 
- 

~p-l~~’ 
1p-l~~ 

(15)

Further, V~~ = T’; U~~r~ and

— 
-l f~ _t ’u;~’2

- ~ 
I
\
_U;.l/2t U;~

’2 csI~~1+tt~)u;~/2) 
(16)

so that

y ”f
1y — s~~y ’y, y ’V 2y ~ s 2y ’y ( i+ t ’U~~t ) ,  (17)
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trV~~ = trU~~ = s~
1 (l+t’U~~t) + trU~~, (18)

and

y~V (Q )’4V~~y = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . (19)

Under the distributional assumptions given in (15), it is known that

E(U~~) = (n_P) ’I~...1~ so that

Et rU~~ = tr EU~~ = (~_p~~
]
(p~l)• (20)

For any constant matrix A,

E[ ( 1,-t ’u;~’2)Ac 1~-t ’u ;~’2) ’]

1 1 f ~ 
_t t

U;~
/2 \

= Eu Et (~tr [A~~ 1/2 u;~~2tt tu ;~ ’2,)

= E~~~tr 
[A ( ;

~)1 
1

=tr A( 1 
(21)

\0 (n-p) ‘p-l1 J
Taking A = Ii,, the result (21) allows us to verify that

E(l + t ’u;~t) = (n—p)~~(n-1). (22)

Taking A (Qy) 1i th: result (21) yields

E [(l ,—t ’U 22 ) (%,.) (1 ,— t W 2~ ) ‘)
0

= tr(Q~) ( 10 (n-p) ‘p-i • (23)

If in (12) we make the change of variables (13) and (14), and take

account of the identities (17), (18), and (19) , then by taking our cx-

pected values in the ord e E E Et ~ 
, and using (20) , (22) , and (23) ,

~~~ ‘ 2 2
we obtain
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~(O ,E) = (fl-P) ’E~E5[h
2(s ’Y’Y)5

2
Y’Y r (y,Q )

_2h(s~~y~y)s
1(n_ i)_2h(s

_l
y~y) (p— i)

-4h~
1
~ (s

ly~y)s
2
y ty(n~l)I, (24)

where

t(y,Q) = tr(Q~~~ (n~~ 

~‘)
= (n-p-i) (y’y)~~y ’(Q )~~y +tr(Q )* (25)

Finally, integrating by parts in s, we can show that

E5h(s
1y ’y) = (n-p-l)E 5[s 

1h(s 1y ’y)] - 2E5[s 
2y ’yh~~ (s~~y ’y)}, (26)

which, when substituted in (24), yields the expression

~(0 ,E) = (n-p) 1E~E5 [h
2
(s~~y ‘y)s

2y ‘yt(y,Q ) - 2p(n-p)s~~h(s~~y ‘y)

-4(n-p)h~~ (s
1y ‘y)s 2y ‘y}, (27)

where

- N(n~I~~ s - X~~_~ +1, 
* 1/2 1/2 *

y and s are independent, r~ = ~ 8, Q = ~ QJ , and r(y,Q ) is given
by (25) . The expression (27) is the desired cononical form.

Now, we are ready to complete the proof of Theorem 1.

Let

r(u) = uh(u), (28)

and note that

h~~~ (u) r U) (u) 
- £(~) , (2 9)

where r~~~(u) dr(u)/du. Substituting in (27), we obtain

8(0,E) = (n-~)~~E~{ (y’y~~
1E5 [r

2(s~~y ’y)~ (y,Q ) - 2(p-2)(n-p)r(s~~y ’y)
—1 (1) — l-4(n-p)s r (s y’y)]}

— l r ( s~~ ,tt,~ * —l
< (n-p) E E 5 

‘
~ ‘‘~~ ( T (y,Q )r (s y’ y) — 2(p-2)(n—p))I,y

(30)
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since, by assumption (i) of Theorem 1, r(u) is nondecreasing in u. Note

from (3) and (25) that

* * 1 — lr(y,Q ) < (n-l)ch1 [ ( Q ) ] c ’(n-i)[ch~ ( QZ) ]

< (n-i) ~~1• (31)

Thus , applying assumption (ii) of Theorem 1, (30), and (31), we conclude

that for all satisfying (3),

~(e,E) < 0, all 0.

This completes the proof of Theorem 1.1.

We remark that our proof actually demonstrates the following.

ThEOREM 2. ~
çj ~n. estimator ~~(x.

W) of the form j~j satisfy

(i) ~ h(u) j~. nondecreasin~i j~. ~,
(ii) ~) ~~2~~-2Hn-p)Lu~ ~~~~~~~

~h~re L > 0 j~ a aiven constant. Then if E satisfies

1n-~-l)(ch~[QE))
’ + tr[QE)~~ <j~~

, (32)

~(0.E) IQ, all 8,

~ 4 ~~
(x,W) is minimax.

Although Theorem 2 is more general than Theorem 1, the additional

generality is unlikely to be of practical importance.

3. ThE CASE WHERE E IS COMPLETELY UN RESTRICTED

When E is unrestr icted, and (3) need not hold, then 60(x ,W) is

essentially the only estimator of the form (4) that can be minimax.

ThEOREM 3. When £ is unrestricted, no estimator of the form 
_ _ _ _ _

-h(x’W~
’x)Q~~W~~)x can be minimax unless ~~~ = 0 for almost all u ~ 0.

Proof. Note from (25) that

* * — lr (y,Q ) > tr(Q ) , for all y. (33)

Now from (33) and (27),
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A (0 ,E) > tr(Q )~~E [h2 (s ~~y’y)  s 2y’y]

-2(n-p) E [ps~~h(s~~y’ y) -2h~~~ (s~
1y’ y)s~

2y’ y
~ (34)

where the expected values in (34) are easily shown to depend only on

0’E~~0. Thus, if we choose a sequence ( (0.,Z.)} of parameter va lues
such that 0~E~~8. = c, all 1, and

tr(Q )~~ = tr (E~)~~ Q~~
4co, as i 9~~,

we see that unless

E[h2(s~~y’y)s 2y’y] = 0, all 8’E~~0= c, (35)

we will have A (O.,E.)4a. Thus, for some parameter points A (O,E) will

be positive (indeed, infini tely large) , and hence 
~h

(x,W) cannot be

ainimax . On the other hand, it is easy to show that (35) holds if and

only if h(u) 0 for almost all u > 0. This completes the proof.

Estimators of the form (4) do not perform well when any linear

combination of the elements of x has low variability (implying that ch~ (E)

is small) . To find a class of minimax estimators when £ is tin-

restricted, we might think of modifying members of the class (4) to

produce new estimators of the form

óh (x ,W) = ( Ii, - ch~(n W) h(x ’x)Q~~W~~)x. (36)

Assuming that ch~ (n 4QW) and ch~ (QE) are close in value (which should

be true at least when n is large), any member of the class (36) will

behave like the minimax estimator x when ch~ (E) is small , and will behave

like 6ch~ (QE)h otherwise. Thus, we have good intuitive reasons for

conjecturing that a member of the class (36) of estimators is minimax

provided that (
~) uh(u) is nondecreasing in u, and (a,) 0 < h(u) c 2 (p-2)u

all u ~ 0. Unfortunately, we have not yet been able to prove this

conjecture. One can follow the steps used in Section 2, but unlike the

result (24) obtgined for the class (4), integration over t and U22 does

not lead to any simplification. This lack of simplification is due to
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the fact that ch (n~~QW) , after the change of variables from (x,W) to
(y, s,t ,U22), is a complicated and nonlinear function of y, s, t , and
U22.
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