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INTRODUCTION

Almost every statistician has used simple linear regression
many times; it probably is the most well-used statistical procedure.
If there is more than one dependent variable present, we enter into :
the realm of multivariate regression. In both univariate and f
multivariate regression, we can estimate regression coefficients,
find confidence intervals for the regression coefficients, and test
whether the regression coefficients are equal tc a known matrix.

However another kind of problem exists in muitivariate regression,

Qﬂ? but does not exist in univariate regression. In multivariate j
regression, the regression coefficient matrix may not be of full
row rank, i.e., there may exist unknown linear restrictions on the
regression coefficient matrix. We may want to estimate the
regression coefficient matrix and the unknown linear restrictions
under the hynothesis that the linear restrictions do exist. For
instance, when we estimate one linear restriction, we usually are
trying to find the linear combination of the elements of each
column of the regression coefficient matrix which equal some
unknown quantity.

We now define precisely the model and hypothesis to which we

have been referring:




-

Xs = Efi+ei’ 1= 1,250, 5N,

-,

w0
"
n

0d,

where X; is a p-dimensional vector of observations, = is the unknown
pxk (k > p) regression coefficient matrix, fi is a k-dimensional

vector of dependent variables, €5 is a p-dimensional error vector,

B is a rxp(r<p) matrix of linear restrictions, o is an unknown rxs(s<r)
matrix which provides a basis for thé space spanned by the columns

of Bz, and a is a known sxk matrix. The matrix form of the above

equations is '

(0.0.1) X = =F+E,
(0.0.2) Bz = ca,
where

X =

= ("1"‘2""”‘1\1)'

E it it uent

m
!

= (e1.e2,...,eN).

T. W. Anderson [1951a] found the maximum likelihood estimators
(MLE's) of the parameters B, =, and I when a is the zero matrix.
Later, Villegas [1961] found the MLE's of B, =, £, and a in the
above model when F is the design matrix associated with the MANOVA
model and when B is a 1xp matrix. Villegas's model can be called
the single linear functional relationship model with replications
(Moran [1971], Madansky [1959]). When F is the design matrix

associated with the MANOVA model, each column of = is the mean

kil




vector for a group of observations. In many cases the number of
groups increases when the sample size increases. This situation

is itself a special case of the more general case where the number .
of parameters increases as the sample size increases. Villegas
does discuss the consistency of his estimators when the number of
groups increases with the sample size.

In Chapter 1, we estimate the parameters in the model and
hypothesis specified by (0.0.1) and (0.0.2). We also give several
special cases of our model, including several models which resemble
a model discussed by Gleser and Watson [1973]. Our discussion of
the consistency of the estimators is directed mainly to cases when
the number of parameters does not stay fixed as the sample size
increases.

One of the biggest advantages of getting maximum 1ikelihood
estimators is that we can usually use these estimators in deriving
likelihood ratio tests. For many multivariate problems, the exact
distribution of the likelihood ratio test statistic is exceedingly
complicated. However the asymptotic distribution of -2 log A, where
A is the likelihocd ratio test statistic is;usua11y a chi-square
distribution. In Chapter 2, we use the estimators we derived in

Chapter 1 to get the likelihood ratio test statistic for testing
HO: Bz = aa versus H]: Bz # aa.
Since the exact distribution of this statistic is intractable, we

find its asymptotic distribution. Our resulis show that the

asymptotic distribution of the test statistic depends on how the




’ number of parameters increases with the sample size. It is noteworthy ¢ 1

that in several cases, -2 log A,where A is the likelihood ratio test

statistic,does not have an asymptotic chi-square distribution.

The basic model discussed in the first two chapters is commonly
called the classical multivariate linear regression model. Another
type of linear model, which has been discussed in the literature,
is the "growth curves" model (Cochran and Bliss [1948], Shrikhande
[1954], and Gleser and Olkin [1964, 1969]). In this model we observe

N independent px1 column vectors X i=1,2,...,N, which satisfy

. = F=te.
X; F e,

where F is a known pxq matrix, = is an unknown g-dimensional

vector and e; is a p-dimensional error vector. This model has
° been generalized by Gleser and Olkin [1966] in their discussion !

of k sample growth curves.

A1l these models, the classical multivariate linear model

and the growth curves models, can be generalized tc a model first

discussed by Potthoff and Roy [1964] and later by Rao [1965] and

Gleser and Olkin [1969]. We may write the model which we refer to

as the Potthoff-Roy model in the following way:
(0-0.3) x . F] .‘-:F2+E L

where X is a cxN matrix of observations, F1 and F2 are known
cxp (p < c) and mxN (m < N) matrices respectively, = is an unknown

pxm matrix, and E is a cxN error matrix. Each column of E is

distributed independently with mean vector 0 and unknown covariance

0 matrix L.




Potthoff and Roy [1964] gave ad hoc tests of the hypothesis

(0.0.4) FazFy = £

where F3,F4 and £y are known rxp (r <p), mxk (k <m), and rxk
matrices respectively. F] and F4 are assumed to have full column
rank, and F2 and F3 are assumed to have full row rank. Rao [1965]
found the conditional likelihood ratio test of the hypothesis
stated above, and Gleser and Olkin [1969] showed that Rao's condi-
tional likelihood ratio test is actually the unconditional
Tikelihood ratio test.

In Chapter 3, we work with the Potthoff-Roy model (0.0.3) and
estimate parameters under a hypothesis similar to (0.0.4). The
hypothesis we discuss is concerned with unknown linear restrictions
on the regression coefficient matrix. This hypothesis can be

written the following way:
(0.0.5) U15F4 = ab,

where U] is an unknown rxp (r < p) matrix, F4 is a known mxk
matrix, a is an unknown rxs matrix, and b is a known sxk matrix.

We assume that the unknown covariance matrfx Z has the form 02-1c
where 02 is an unknown. In Chapter 3 we reduce the Potthoff-Roy
model and the above hypothesis (0.0.5) to a canonical form. We
also find the MLE's of the parameters in the general model (0.0.3),
(0.0.5) and in the reduced model. As in Chapter 1, we discuss

consistency of the estimators when the number of parameters is

allowed to increase with the sample size.




Chapter 4 bears the same relationship to Chapter 3 that
Chapter 2 bears to Chapter 1. In Chapter 4, we derive the

likelihood ratio test statistic for testing
Ho: U]EF4 = ab versus H]: U]sF4 # ab.
We find the asymptotic distributions of the likelihood ratio test

statistic; these depend on how the number of parameters increases

with the sample size. In several cases, the asymptotic distribution

is not the usual chi-square distribution.




CHAPTER I
ESTIMATION COF UNKNOWN LINEAR RESTRICTIONS

ON THE PARAMETERS OF THE CLASSICAL
MULTIVARIATE LINEAR REGRESSION MODEL

1.0 Introduction

In this chapter, we discuss estimation of the parameters of
the classical multivariate linear regression model (Anderson [1958;
Chapter 8]) when an hypothesis concerned with unknown linear restric-
tions on the parameters is assumed to be true. Section 1.1 contains
derivation of the maximum likelihood estimators (MLE's) of the
parameters; while Section 1.2 derives consistency properties of the
MLE's. We show that some of the estimators are not consistent when
the number of parameters in the model increases with the sample size.
Several special cases of our model are discussed in Section 1.3
including the multivariate iinear functional model (Madansky [1959],
Moran [1971], Sprent [1969], Viilegas [1961]), and models proposed
by Kristoff [1973] and Rao [1973]. 1In all of our special cases, the

independent variables in the regression model are dummy variables.

1.1 Maximum Likelihood Estimation

Let our model be:

(1.1.1) x, =z f, + e,




where each X; is a p-dimensional vector of dependent variables, each
fi is a k-dimensional vector of independent variables or covariates
(k > p), = is an unknown pxk parameter matrix of regression coeffi-
cients, and toe ei's are p-dimensional vectors of errors.

We assume that the ei's are statistically independent of one
another, and have the same normal distribution with mean vector 0
and unknown covariance matrix L. We will be finding the maximum

likelihood estimators (MLE) of £, = and two other matrices B and o

which satisfy,
1.3.2) B == aa,

where a is a known sxk matrix (s < k) (k-s > p), B is an unknown rxp
(r<p) matrix and o is an unknown rxs(s<r) matrix. We are concerned with
cases in which either a has full row rank or a is the zero matrix,
i.e.,we are testing B = = 0. It shculd be noted that if a is not
the zero matrix and is not full row rank, we can reparametrize so
that our resulting matrix will be full row rank. We derive the
MLE's of the parameters when a is full row rank. Since the proof
is similar (actually easier) when a is the zero matrix, we will
merely state the results in this case. In all of oui special cases
(see Section 1.3), a = (1,1,...,1) or a is the zero matrix.

Anderson [1951a] considered the above problem when a is the
zero matrix. His derivation of the MLE's uses Lagrange multipliers
and differentiation of the likelihood function. A derivation, similar
to the one we give when a hasfull row rank, could be used as an
alternative method of obtaining and verifying the MLE's in Anderson's

problem. We believe that that derivation would be simpler and more
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intuitive than Anderson’s. Since we would not employ differentiation,

we would not have to worry about saddle points, etc. In his paper,
Anderson [1951a] also gives methods of generating confidence intervals
and likelihood ratio tests of various hypotheses.

Our computations will be simplified greatly if we write (1.1.1)

in the following way:

(1.1.3) X

= F +E,
where

x = (xlsxz,-'-»XN):

SR 5 SRR

el N)’

E = (e],ez,...,eN).

We will call X the observation matrix, F the covariate matrix and

E the error matrix. We will assume that F and a have full row rank.
Maximizing the likelihood with respect to many parameters can be

done in several ways. One way is to: 1) fix one of the parameters

(i.e. treat one of the parameters as fixed or given); 2) maximize

the likelihood with respect to the other parameters {note: the derived

MLE's of the other parameters will be functions of the fixed parameter)

3) substitute the derived MLE's of the other parameters back into the

likelihood; and finally 4) maximize the 1ikelihood with respect to

the parameter that had been fixed. We will be following this method,

with B treated as the fixed parameter.

-~




Part I. B fixed or given

We now transform X into a form in which the proper estimators
of the parameters are easy to see. Let C be a p-rxp matrix which
satisfies CC'= Ip-r and CB' = 0. Let
{1.1.49) Z = =

Each column of Z is distributed independently with a p-dimensional

normal distribution having covariance matrix

q) = — : :
¢2] ¢22 CZB" CZC
The mean of Z is
B=F acaF
E(Z) = =
C=F C=F
Let
Y n Y2 Zy
-
Y = = = (F'(FF*)"=,L),
Y2 Y21 Y2 Zy

where L is a NxN-k matrix which satisfies L'L = Iy.g and L'F = 0.

Note that
z )
E(Y) = E[(Z;><r'<w')“:f,u],
aaF 2
&N IRENEFC) L)
CzF

2

aa(FF')E 0
-Q;UFW% 0
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’ Since (F'(FF')-%,L) is an orthogonal matrix, each column of Y is
independently normally distributed with covariance matrix y.
We now have transformed the data X into a form in which it
is easy to find the estimators. Let us write the joint distribution

of Y in the following way:
= [
(].].5) f(Y) = f(Yz]'Y]])f(Y]] 22]Y]2)f(¥]2)

where f(Y21|Y]]) indicates the conditional density of Y2] given Y]],

f(Y]]) indicates the marginal density of Y,;, etc. Since the
columns of Y are independent normally distributed random variables,
all of the densities in (1.1.5) are normal densities.

The parameters in our transformed model are «,Cz, and ¢. An

equivalent parametrization is

) A N L PR PSP
We note that in (1.1.5) only f(Y21)Y11) dépends on C=, and only
f(Y]]) and f(Yz]IY]]) depend on « in their parameterizations.
Thus, we begin by finding the MLE of C= assuming that

a]wZ](w;}), Uypo and Voo 1 ATE fixed. We know that

a3
s i - = '

: TR 1 o B vgp 1 (Vo101 ) (Ypy-upy) )

, 211'11 K72, (BT k]2 ;

; Iwzz ]l (2

i 1

s (1.1.6) < . 5 s

4 lwzz.]lk/Z(zﬂ)(p r)k/d

1 % '] ' %
Where U2] = E(Yz]lez) = CE(FF )” + ¢21w]](Y]]-Oa(FF )ﬁ).

If we pick C= so that

1

~

~ P -
(].].7) YZ] b C’: (FF')” oE w2](W]])(Y]] “a(Fr ) ) = UZ],
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D then it is clear that f(YmIYZZ) attains its maximum (1.1.6). We
may rewrite (1.1.5) to get

1
Yoo 1177 (21)
22.1
with equality when (1.1.7) holds.
We next maximize the right-hand side of (1.1.8) with respect to

a, treating w2]w{},w]],w22.] as fixed. We know that

: -3 try] L0 -aa(FF)3) (Y, -aa(FF)2) ]

flY.:) = e

Using the theory of multivariate regression, we get

-1
=& tryy (Y MY ),
1 2 ARSI
(1.1.9) f(y )_<_ e

11 ,w”!k/Z(Z")Y‘k/Z

3 o 3
where M = I-(FF')% a'(aFF'a") 1 a(FF')=, Equality in (1.1.9) occurs

only when

i (1.1.10) @ = Y (FF)% a'(aFFar) ™).

Substituting (1.1.9) into (1.1.8), we get

s troj (Y %)
(0.1.11) . £(¥) < £(Y55[Y5)-F(Y,,).
,w]]'k/Z(zﬂ)pk/Zszz.],k/2 z2' "2 12

We now maximize the right-hand side of (1.1.11) with respect to
Y13 keeping Voo 1 and wZ](w]])'] fixed. Since

, 3 |
Bty oY,

P .
f(¥y,) = gy, [TRI72 3 TRRTF7Z




(1.1.11) can be written

-3 e (YY)

f(y) < - F(¥oni¥inls
IN/2(2W)(pk+(N E)r)/zlwzz'],k/z A2 2

2%

where f(Y22[Y]2) does not depend on ¥77- Using Lemma 3.2.2 of
Anderson [1958], we have

-2 Nr

e F(YoolYy,)
(1.1.12)  £(Y) < 22 12 p
H’] ,N/Z( 7T)(lilk“‘("i'ﬂ"')/zl11)22 1ik/2
where &]] = (Yp,¥5, * YqqMY3 /N,

Finally, we maximize the right-hand side of (1.1.12) with

respect to ¢2](¢]])'] and Y RE We know that

.‘] i’ ,'1 '
2al¥5) e'i trigy 1 (Y 22'V21¢11 Y120 (Ya5-427417Y72) :

IN/Z( >(N-k)(p—r7/2

f(yY

1995 11

-] 7/ ] ] -
PRy ISP O T PG SPAS PO POATPY

e s
(1.1.13) < !¢22 | /7(??)(N-k)(p-r)/2

A

with equality only when
boa (e )1 = YooY (YY)
¥21'¥11 oAl atl P b LI

Using Lemma 3.2.2 of Anderson [1958],we have

F¥pplY1p) e Np-r)

(].].]4) k/2 —_ IN/Z(Z )(N k) p r)/2 ’

192211

\7781




o -] ' \ -1 [
V22.1 = N (Vo2(I-Y1,0Y1,5Y{5) Y20 Y50).

Combining (1.1.12) through (1.1.14), we get

e

(1.1.15)  f(Y) < ! a2 ip

= (2} PR 1, 1IYE

There will be equality in (1.1.15) if
= =0y (FF) 3 - (uyqu7 )0 (v satrr) B 2(rFe) 2
= TR SR T :
& = Y (FF)% a'(aFF'a’) ],
s ) = oYt
210 A P v U

~

2 = 2\
n T % (YIZYiZ L Y]](Ik'(FF')2 a'(aFf'a’) ] a(FF')‘)Y]]),

o -] ] 1 ‘] ]
V221 = 8 (MoalInoY12(Y12Y10) Yi2)Y30)-

Now we go backwards and express = and & in terms of X. After a

little simplification, using the facts that

(@) = (88" e,

c'c= 1-8'(88")"s,

LL} = Iy = FY{RETTTF,
we obtain
(1.1.16) = = XA - X(I,-AF)X'B' (BX(I-AF)X'B") 'BX(A-G),
(1.1.17) = BX(F'a'(aFF'a’')" 1),

L.A‘..__m.-..__.._pmm.... PP

SRR~ S
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@ where

(1.1.18) A = F'(FF")7,

G=F'a'(aFF'a’') a. |

We can also go backwards and find £. When we do this, we get
2= N(X-5F) (X-5F) .

We may summarize our results so far in the following theorem.

Theorem 1.1.1. When B is fixed, the MLE of a, =, and £ in the model

given by (1.1.2) and (1.1.3) are

BXF'a'(aFF'a')"!,

R)>
"

"o
n

XA-X(IN-AF)XB'(BX(IN-AF)X'B')-]BX(A-G),

N~V (X-2F) (X-2F),

(3e b
"

@ where A and G are given by (1.1.18).

Part II. Substitution of parameters back into the likelihood and
maximization with respect to B.

If we substitute the estimators of a, =, & given in Theorem 1.1.1
(note: they are functions of B) into the likelihood for X, we find
that

(1.1.19)  max Tog f(X) = - + pN log 27- + N log |#] - X pN. f
Cz,a,y 2 H 2 i

Maximizing (1.1.19) with respect to B is equivalent to minimizing |Z|

with respect to B. After simplification we get

= |BTB'
(1.1.20) lz] = EE '”"1Bwe K

0 where i




£1.7.21) W =X(IN'F'(FF')-]F)X',

(1.1.22) T =X(I-F'a'(aFF'a’) TaF)x".

Note that in terms of MANOVA concepts, W can be thought of as the
within covariance matrix and T as the total covariance matrix.

gy
Let U = N % BW=. Then (1.1.20) becomes

2 -2
o B JUW™2 TW2 U |
(1.1.23) 3] = W gy :

For purposes of minimizing (1.1.23), we might as well assume that
uw' = Ir’ for if UU' doesn't equal the identity matrix, there exists
an invertible matrix H such that U* = HU also minimizes (1.1.23)
*! =
and U*U Ir'
If WU = Ir’ Theorem 10, page 129 of Bellman [1970] tells us

that the minimum value of £ is

e eyt s S
0.0.20) 8] =5 Wl -0 hp 2o dp s

il

where A, is the ith largest eigenvalue of W2 TWE Letr bea
matrix whose columns are the eigenvectors associated with the r
smallest eigenvalues of W2 Tw'i. If we choose U to be T, then
the right-hand side of (1.1.23) achieves the minimum value of |§}

as seen in (1.1.24). Thus, if we let
b
(1.1.25) B = N2 W2,

then the likelihood function is maximized. It is easy to show that

1

the columns of B' are themselves eignevectors of W ' T corresponding

to the r smallest eigenvalues of Wl T,




We summarize our results in the following theorem.

Theorem 1.1.2. The MLE of B, a, =, and £ in the model given by

(1.1.2) and (1.1.3) assuming a and F are full row rank are:

& = BXF'a'(aFF'a’)™),
2= x(F (FF') ") -wB(BWE ") "V (BX(F' (FF') '-F'a* (aFF'a’) 1a)),
$=NHx - )X - 5F),

where

W =X(Iy-F* (FF*)TR)x,
T =X(Iy-F'a'(aFF'a’) " 'aF)X',

and the columns of B' are the eigenvectors corresponding to the r

1

smallest eigenvalues of W ' T.

Remark 1. If we multiply £ on the right by any invertible matrix,
the resulting matrix also maximizes the likelihood since if B* = Hé,

[H| # 0, then

1B*TB*'| _ [MBTB'H'! _ [H|.IBTB'[-[H'| _ |BTB'|
[B*WB*'|  |HBWB'H'|  |H|-|BWB'|-|H'|" |BWB'|

Remark II._ A1l matrices which maximize the likelihood are of the

form HB for some invertible H. We will not prove this, since a proof

of the assertion is straightforward.

Remark III. We have been assuming that Fhas full row rank. We now

demonstrate how to reparametrize so that the results in Theorem 1.1.2

can be applied when F is notof full row rank. Assume c(c<k) is the
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‘ rank of F, and c-s > p. Let
- DO
The right-hand side of (1.1.26) is the Eckart-Young decomposition
where U and (r]rz) are orthogonal matrices and D is a diagonal 5
invertible cxc matrix. Now
=F = =(r,7,) (O,
= (EF])(D,O)Ua i
= =%(D,0)U = =*F*, !
where =* = sr] and F* = (D,0)U. Since F* is full row rank, we may
use Theorem 1.1.2 to get the MLE's of the parameters. If =* is the “

MLE of =*, we have

=* = =T,

1
rl

*,p) (N,
)(rz)

">

where P is any finite pxk-c matrix. Usually when F is not of full
row rank there are restrictions on =. We can pick P so that 2
satisfies those restrictions.

We now state a theorem which gives us the MLE's for our model

when a is the zero matrix:

Theorem 1.1.3. The MLE of B, =, and £ in the model given by

(1.1.2) and (1.1.3) when a is the zero matrix,i.e.,(1.1.2) becomes - ]

B= = 0 are:
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">
n

X(F'(FF')™Y) - wB(BWE") T (BX(F' (FF')™ ),

z = NV (X-2F)(X-3F)",
where

W= X(1-Fr(FE) TR,

T=XX',

and the columns of B' are the eigenvectors corresponding to the

.

r smallest eigenvalues of W~
Let us now consider the model of Theorem 1.1.2 with one change -

namely, instead of assuming that each ey is independently normally

distributed with common covariance matrix I, we now allow the e:'s

to be jointly normally distributed with mean vector 0 and

(1.).22) cov(ei,ej) = kij' e

where K = (kij) is a known invertible matrix. The maximum likelihood
estimators of a«, B, =, and ¢ are easy to compute, using Theorem 1.1.2

and the following lemma:

Lemma 1. Let Z = XK'2 (X comes from our new model), then

2l

=
E(Z) = :FK'2 and each colunn of Z is independent with a p-dimensional

normal distribution having covariance matrix £.

Proof. Since Z is a linear combination of normally distributed

random variables, it is itself normally distributed. Further,

b}

E(Z) = E(XK'®) = (E(X))K'2 = =FK™?,

Let (mij) = K2, Then
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° cov(ZaZé) E(Za-Vu)(ZB-VB)' i

i

E( Z(x.-:f.)ma1m8j(x.-zf.)'
e e
z ma1mBJE(xi-Efi)(x.-;f.)
. 4" %
1J
ai Bj, _
Im 'm kij z

= GGB-Z,

where % is the Kronecker Delta function. Q.E.D.

B
If we transform X as prescribed in Lemma 1, the resulting
model exactly corresponds to the model in Theorem 1.1.2. We therefore

have the following result.

Theorem 1.1.4. The maximum likelihood estimators in the model

given by (1.1.2) and (1.1.3) with the following change,

4
3
k
° cov(ei-ej) = kij'z’ |
where (kij) = K is known, are:
o s ‘] [P “-‘ oS e '1
a = BX(K 'F'a')(aFK 'F'a")™',
S xR (R TEY) T - we (8w ) (8-
ke e ey kTR (ark T e ety e l),
£ = NT(X-2F)(X-5F) ",
where
W= x(IN-K"F'(FK'1F')‘7FK'1)X',
T= X(IN—K°]F'a'(aFK']F'a')'1aFK'])X',

the columns of B' are the r eigenvectors associated with the r
1.

smallest eigenvalues of W~




1.2 Consistency of the Estimators

As the number of observations gets large, it is important to
know what our estimators converge to. In most statistical problems
the number of parameters stays fixed as the sample size increases.
However, in this section we will be finding out what our estimators
from Theorem 1.1.2 converge to when the number k of columns of =
is allowed to increase with the sample size. The elements of
our = matrix are what Neyman and Scott [1948] have called
"incidental parameters". When there are incidental parameters
present, some estimators (as in our case) may turn out to be
inconsistent. We will not discuss the consistency of the estimators
in Theorem 1.1.3 or Theorem 1.1.4 since it is clear that we have
analagous results. In our discussion, p (the dimension of the
dependent variable), r (the row rank of B) and s (the column rank

of a) are assumed to be fixed. It is evident that

t = lim N

N->oo

is a measure of how fast the number of parameters increases with the
sampie size, N. We will assume that t is é]ways greater than zero
and less than or equal to one. If the number of parameters stays
fixed, t will equal one. We will be concerned with the consistency
of é, ;, and 5. We will first discuss the consistency of é and &.

In order to make a discussion of the consistency of é,;
meaningful, we will have to place restrictions on B and é which

will make these matrices unique. It should be remembered that if

B,a maximize the likelihood, then so do HB, Hu where H is an

B e e

- o
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invertible matrix. In fact all MLE of B,x will be of the form

Hé, Ha for some invertible matrix H. Similarly (B,a) satisfy
(1.2.1) Bz = ca,

if and only if HB,Ha satisfy HB:= = Ho, where H is an invertible
matrix.

Let B,a be a pair of matrices which satisfy (1.2.1). By
requiring B to satisfy a number of restrictions, (B,a) will be the
unique matrices which satisfy (1.2.71). We will show that if é and a
are MLE of B and «, and i% é satisfies the same restrictions as B,
then é,& converge almost surely to B,a. We will be showing the
above for only one particular set of restrictions. However, it is
clear that if one set of MLE (é],&]) converge almost surely to
B],a], where é] and B] satisfy one group of restrictions, then
any other set of MLE 62’;2 will converge almost surely to 82’“2’
where é2 and 82 satisfy another group of restrictions, provided
the respective restrictions make B] and 82 unique.

Let B,a be a set of matrices which satisfy (1.2.1) and let
3811, = B3 (B1.8,)= B5'(B),

-1

a* = 82 iy

B*_

1
—
{ve)

where B = (81’82)’ By: rxp-r, and B,: rxr. B* is the only matrix
with its last r columns being the identity which satisfies (1.2.1).
Similarly, if é],aare maximum likelihood estimators, we can generate

~

another set of maximum likelihood estimators B*,a* where é* has the

identity matrix as its last r columns:




ey
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B* = B;'(B,,B,) = 85'8
) 2 (BpBy) = 856,
: a* = Bj'a.
Hence, B* is the only MLE of B which has the identity for its
last r columns. We will show that é*,&* converge almost surely
to B*,a*.
Lemma 1. If N-k » « then (N-k)~]w goes almost surely to Z.
Proof. Recall that
W= X(I-F' (FF)TTR)XY,
= (=F+E)(1-F' (FF) TTF)(=F + E),
= E(1-F' (FF)TTF)E".
Each column of E has an independent normal distribution with mean
vector 0 and covariance matrix £. By Theorem 4.3.2 in Anderson
| [1958], W is distributed the same way as
N-k
L e
where u; are independent N(0,z) random variables. We can conclude
that o Nk
(N-K)"" 3w g
] i=1
: converges almost surely to Z. Therefore (N-k}'](w) goes almost
surely to L. Q. E.Ds
Lemma 2. Let 2925 be independent identically distributed random
variables with means 0 and common finite variances. Let bn m be any




array of real numbers m <n n = 1,2,... satisfying

. 92
A
then n™2 ] b -z goes to 0 almost surely.
m=1

Proof. The proof is in Chow [1966]. Q.E.D.

Lemma 3. Assume that

R = Tim N7 EF(IN-F'a'(aFF'a‘)']aF)F'z'

N>

exists and is finite, then

frae) W E(IN-F'a'(aFF'a')']aF)F':'
goes almost surely to zero.

Proof. Consider the i,jth element of (1.2.2). That element is the

X

product of the ith row of N7 E and the jth column of

(1.2.3) Ni(IN-F'a'(aFF'a')']aF)F'z'.

Each element in the ith row of E is independent with mean 0 and
common variance. The sum of the squares of the elements in the

jth column of (1.2.3) is the j,jth element of
i Hia b N -1 ]
N"" =F(I\-F'a'(aFF'a') "aF)F'=".

By our hypothesis, this element converges to something finite as N
goes to infinity. By Lemma 2, the i,jth element of (1.2.2) goes

almost surely to zero. Q.E.Ds




Lemma 4. Assume that R (as defined in Lemma 3) exists and is finite, then

NIr goes almost surely to R+:.

Proof. Recall that

N7 = NI -Fra (aFFrat) TTaR)xe, |
) i
= NV (=F+E) (1, -Fra" (aFF'a") " TaF) (sF4E)
|
(1.2.4) = N']SF(IN-F'a'(aFF'a')‘]aF)F'z’+N']E(IN-F'a'(aFF'a')']aF)F'5'+

1

NV =F(1-Frat(aFFra’) TaR)E N (1 -Fra’ (aFFat) T TaF)E".

[}

E(IN

By our hypothesis the first term in (1.2.4) converges to R. By
Lemma 3, the second and third terms go almost surely to zero. If
we use Theorem 4.3.2 in Anderson [1958], we find that the fourth term
in (1.2.4) has the same distribution as
N-s
5

i L
i=1 AT

where uj has a normal distribution with mean vector 0 and covariance

matrix . u; and Uy are independent if i # j. We know that
-1 N-s
(N-s) ] uau; goes almost surely to %. Since s is fixed as N
i=1
1

goes to infinity we have that N~ E(IN-F‘a'(aFF’a')'IaF)E' S
Using all of the above arguments, we have N']T goes almost surely

to Rt:. (eED,

Lemma 5. The columns of B*' are eigenvectors of Ip-z']R corresponding

to eigenvalue one.

Proof. We know that for every N




NV=F (1 -F'a’ (aFF a’) TaF)F = e

1
o

NV=F(I,-F'a’ (aFF'a’) TaF)Flataxt =

Because of the above RB*' = 0. We therefore have

(Ip-z"R)B*' = B*', Q.E.D.

Theorem 1.2.1. Under the assumptions of Lemma 4 and assuming R is

of rank p-r, B* is a strongly consistent estimator of é*.

Proof. By Lemma 1, we have (N-k)’1w 8;5- 5. By Lemma 4,

NIT 35S peg, Combining these statements we get
(- T 2350 27 eR) = 1R,

Since lim BﬁK =t > 0, we have

N

WoI(T) 8sS- (1/t)(1p+z'7a).

Since the eigenvalues of a matrix are continuous functions of the
elements of that matrix, the eigenvalues of w'](T) coverge almost
surely to the eigenvalues of 1/t(Ip+E-TR).' Since R is positive
semidefinite of rank p-r and £ is positive definite, the smallest
eigenvalue of 1/t(I +Z-}R) is 1/t. It has multiplicity r. The

p
r smallest eigenvalues of W’](T) must go almost surely to 1/t.

Let éﬁ be the estimator of B* if we have N observations. Let éN be

the estimator given in Theorem 1.1.2 (éN satisfies N']

BNNBN = Ir)

used to generate éﬁ, i.e.,

e g
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s » (81275 ~(2)"V ~(1)a el
) BY = (Br(qz) Br(q])’lr) = 8&2) (Blgl)’Bl(f)) e gl

s = (pl1) p(2) S -1
where BN = (BN ,BN ). Because N BNWBN = Ir and N 'W converges
almost surely to t-I, BN is bounded almost surely. Let us pick
any subsequence of éN' Since éN is almost surely bounded, there
must exist a subsequence of this subsequence which converges. Let

~

B denote the convergent subsequence. Let C be defined by
N

limB. = C.
Now N

Every column of C' is the limit of a sequence of eigenvectors of

w'](T) associated with an eigenvalue which goes almost surely to 1/t.
Since w'](T) converges almost surely to 1/t (I+z']R),each column of
C must equal some eigenvector of 1/t(I+Z']R) associated with
eigenvalue 1/t. Since
: -1; s -
Yim €x,) B {W)B: = tCIC* =1,
Hhal N ™ LY P
C is of full row rank. C must span the space of eigenvectors of
(1/t)(I+z']R) associated with 1/t. By Lemma 5, B* also spans this
space. Therefore there exists an invertible matrix V such that
(27"
! B* = (B B\'/,1) = VC.
* 17 ¢ = (¢{M c@) v must equat (¢{2))"T and

pr = ({2 e,
Let ||A|| denote the Tlargest value of any element in A. We

know that
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18 -+11 = 11828, -(c@) Ty,
N N N

18x B[] < (1N TE, -8, 1)+ 1), @) ey,
N N N N N
(1.2:5) : ; A
8% -B*1] < |18, )1 11BENY @)y o 1)y 118, -cl).
N N N N

The first term on the right-hand side of (1.2.5) is arbitrarily small

since |[§n || is almost surely bounded and én differs from C by an
N N
arbitrarily small amount when N is large. The second term vanishes

since (0(2))-1 is bounded'and éﬂ goes almost surely to C. We

B N
therefore have that B; goes almost surely to B*. We have shown that

N.
for any subsequence of B¥, there exists a subsequence of that
subsequence which converges to B* almost surely. é* must converge

almost surely to B*, Q.E.D.

Theorem 1.2.2. If N(aFF'a')'] converges to a matrix with all

elements finite then o* is a strongly consistent estimate of a*.

Proof. Note that

B*XF'a'(aFF'a')”),

*
n

ﬁ*(zF+E)(F'a'(aFF'a')-]),

(1.2.6) B*=FF'a'(aFF'a') 4B*E(F'a' (aFF'a’)"".

Since B* goes almost surely to B*, the first term on the right of

(1.2.6) goes almost surely to

B* = FF'a'(aFF'a’)”) = o*aFF'a'(aFF'a’)”) = 4%,




By applying Lemma 2 in a way similar to what we did in Lemma 3,

we know that N'](aFF'a')'] converging to a finite matrix implies
that E F'a'(aFF'a')'] goes almost surely to zero. We can conclude
-1

that é*EF'a'(aFF'a') converges almost surely to zero. Q.E.D.

We now must discuss the consistency of E. It should be noted
that the MLE's of = and £ are unique; they do not depend on the
choice of MLE of B and a. Because of this, we will use B as the

MLE of B and ;* as the MLE of a«. We have seen that

N~V (X-2F) (X-2F) ',

™
n

NVOX-XF (FF') ~TR+wB*(B*WB* ) T (B*X(F' (FF)"'F -

F'a'(aFF'a') aF)-
(X-XF* (FF*) " TF+uB*(Bxug*") ™1 (BX(F* (FF*)TF -

F‘a'(aFF‘a')']aF)'.

After a little simplification which uses the definitions of W and T,

we get
£ = N WaNTTWB* (B*WB* ' )~ 8% (T-W)B*" (B*WB* ') TB* "W,

From our previous lemmas and theorems we know that

., a.S. ~ @S,

N W > L, B =B,
1. a.s.

N1l = K, RB*' = 0.

Using the above we have
xS 3
S t-z+zB*'(B*xB*')']B*(x+R-tx)B*'(B*xB*') 18*'2

B¥IB* (B*(3+R)B*') 1Bz,

= t-x+(l-t)(x8*(8*x8*')']B*'x).

29
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Since the above expression is valid regardless of which B in the
class of B's which satisfy Bz = aa we take, we have the following

theorem:

Theorem 1.2.3. If we assume the conditions given in Lemmas 3 and 4

and in Theorem 2.2.2, then z goes almost surely to
€1.2.7) t-r + (l—t)zB'(BxB')‘1B'z.

The most startling thing about the above is not that z is not
a consistent estimate; when the number of parameters gets large, the
estimate of the covariance matrix is usually inconsistent. What
makes the above unusual is the fact that the matrix L goes to is a
function of B. The second term in (1.2.7) is very unusual.

We can not discuss the consistency of ;, since it is not a

fixed matrix of parameters. It is interesting to consider to what
N“VZF(1-Fra' (aFF'a') TaF)F' =

converges almost surely. We might expect it to converge almost

surely to R as

N"T=F(1-F'a' (aFF'a’) " aF)F"

does. However, if we went through a proof, we would find it actually

goes almost surely to

R+(1-t)z +-(1-t)B' (BzB') 1B's.




1.3. Special Cases

Special cases of the models we discussed have come up many times
in the literature. We will be discussing cases when the F matrix has

the following form:

bR oaae VB0 B B0, B
(1.3.1) e o BB @ O ST D

SRR R O B

If the F matrix has the above form, our additional information
consists of knowing some of the observations come from the same
mean, i.e.,we have replications at each mean. The model could be

written this way:

(1:3.2) % 5 6 ¥ 8.0 5 0lsnsls 35 1.2, 000t

ij i §° i
= (51352,--”5‘();
E = (ell’e]Z""’ein] ins Bpg )
k
Note: In all of our special cases,
TN S ;i oy = gt ;i
N = A X = n. Yo 5 = in Xos s
=1 gt et gEp Ll

We wilé need the MLE's in the following two cases. The first
case specifies that the set of mean vectors is in a lower (p-r)

dimensional space passing through the origin:

(1.3.3) BE; =0, Y.

The second case specifies that the set of mean vectors is in a




Tower dimensional space which can pass through any point:
(1.3.4) Be, = a, v;.

For the first case, we will apply Theorem 1.1.3 with F as

defined by (1.3.1). Our result is:

Application 1. When our model is

X; s i=1,2,...,k; J = 1,2,...,ni;

1]

BEi = 0;

fitey;s

then the MLE of B, Ei and < are

PR R R
Ei = xi-NB(BNB ) Bxi,
T i \ -
=N 121 jz](xij-gi)(xij-gi) s
where i

k i L _

k \
L5, 121 jzl (x;5) (x50

and the columns of B are the eigenvectors corresponding to the

1,

r smallest eigenvalues of W~
For the second case we can apply Theorem 1.1.2 with a = (1,1,...1)

and F as defined by (1.3.1) to get:

Application 2. When our model is

15 % Eiteiys 17 L2enks 5= 102000y

X 2

BEi 2 o




then the MLE of B, a, gi, and & are

a = Bx,
£, = X,-WB(BWB')™'B(X,-%),

e Lask W -

I=N Z jZ](x]j-gi)(x1J 51) ’
where

ny
= Q--Q .l--o'
e )T R Oy

—
]

k M
L LR
and the columns of é' are the eigenvectors corresponding to the r
smallest eigenvalues of wlT.

The model in Application 2 is the same model Rao [1973]
considers when he talks about a test for dimensionality. His test
of dimensionality is a test of the hypothesis that BEi = a versus
the hypothesis Bgi # a. His test statistic turns out to be similar
to the likelihood ratio test statistic although he neither mentions
nor proves this. He does find the Tikelihood ratio test when I is
known.

Villegas [1961] considers both Application 1 and 2 - the first
of which he calls a homogeneous linear functional relationship. All
of Villegas's results are only valid when we are talking about a
single functional relationship, i.e., B is a row vector. Through
geometrical arguments similar to the techniques used by Max Van Uven

-

[1930] who derived estimates of B and = when T is known, Villegas
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derived maximum 1ikelihood estimatorswhich agree with Anderson's
and ours. é turns out to be the eigenvector associated with

the smallest eigenvalue of Wt Villegas also talks about cases
in which Theorem 1.1.4 applies,i.e.,when K # IN' He shows that
the covariance matrix has the form needed in Theorem 1.1.4 when
it arises from certain experimental designs (mainly incomplete
block designs.) Since our results are valid when B is any rank
(< p-1), our results can be thought of as extensions of Villegas's
results for a single functional relationship.

We can give another application which fits directly into a

one-way analysis of variance. Let our model be

e = WHE 0.
x.|J Ug,l e.IJa

where p is the unknown grand mean. We will make the common
k

assumption that ) Eilty = 0. We will be fitting parameters under
i=1

the hypothesis that,

Béi = 0.

It should be noted that Bgi can not equal anything but zero when

LE.ng = 0. The MLE of u is

=
1]
x1

If we substitute u into the likelihood we have exactly the same
maximization problem that is solved in Theorem 1.1.3 except that

we will use

X* = X-x(1,1,...,1) = (x]1-x, x]z—x,...,xknk-x),
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instead of X. If we use X* and F as defined by (1.3.1) in

Theorem 1.1.3,we get the following application:

Application 3. When our model is

"

xij u+gi+eij; 1 =ML 2,0 000k 3 5 T2 e s
Bgi =0

then the MLE's of u, B, 51 and ¢ are

U=)-(9
= G Al = AI ‘.'A = z
§i - Xi’x = WB (BWB ) B(Xi-x),
el ol Sl : .
=N s i=E s i Bt
iZ] J_Z] (x;5-84) (xg5-54)
where
S
W= Kag=%s Jxse-%:)" 5
T - R N i
R i 4
T = 121 jZ] (xij-x)(xij—x) .
and the columns of é' are the r eigenvectors corresponding to the
r smallest eigenvalues of Wt

The model considered in Application 3 is a generalization of
the model given by Kristoff [1973]. Kristoff gives an ad hoc goodness
of fit test for his model which is actually equivalent to likelihood
ratio test statistic.

In all applications so far, the estimate of B which was given

and which maximizes the likelihood was unique only up to multiplication
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on the left by a nonsingular matrix. By picking a unique member
from the class of maximum 1ikelihood estimators as we did in our
section on the consistency of the estimators, we will show another
class of models can be handled with our method.

Consider the following model:

(1.3.5) Yij = vi+mij; ¥ 2 32,0008 4 = ],2,...,ni;
where yij and Zij are p-r and r dimensional vectors of observations

respectively, v; is a p-r dimensiona]mparameter vector, H is a
unknown rxp-r parameter matrix, and (g:j) is the error term. We will
be trying to estimate Vs and H. The most reasonable assumption
(according to Acton [1959])about the distribution of the errors

is that each (miq) have a joint normal distribution with mean 0

and unknown cov;iiance matrix ©. Errors arising from different
observations are independent of each other. e will now show that

our new model (1.3.5) is just another application of the model in

Theorem 1.1.3.

If we let
Vi ms . v,
s [t - 1Jy g bed 1
X..-—( ), Gae = ( s a2 & ( )s
1] zij 1 gij 1 ij

our new model (1.3.5) can be rewritten as

. = E,4€, .,
xiJ €1+ 1J

We also have a side condition that




(., Pe. =0, ¥,

1 1

This formulation of (1.3.5) is very similar to Application 1, the
only difference being that now we want the last columns of B to
form the identity matrix as we did in the section on the consistency

of the estimators. If we let

~

= (R}
B* = (B,

Byo1) = B (ByB,) = By(B),

where B = (é]’éZ) is the estimate of B from Application 1, then B

is the only matrix with the correct form which maximizes the
likelihood. éz will be invertible with probability one;however

if it is close to being singular (one of its eignevalues is very
small),our results will be misleading. It would indicate that there
is a strong internal relationship between the p-r variables composing

Since é* is the only matrix of the correct form which is a
(é(Z))~1é(1)

Yije

maximum likelihood estimate, - must -be the maximum
likelihood estimate of H. From Application 1 we can also get the
MLE of Ei and . Since Vs is the top p-r rows of 45 We have the

MLE of Vi If we summarize the preceding statements, we have:

Application 4: If our medel is given by

12 bedsenusky J° 1,2,...,ni

¥3 = Gy
s = b0 R
ot e

where Yijr V4o m, H and 95 5 are defined in the paragraph

j’ Zijs
following (1.3.5), then the MLE of H, v. and £ are given by
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Vi = oW é'(éwé')“é(yi)
g ¥ 2,
-~ _1 n Hoeoie. = Foz-Ny
z = z p (N Yot ek g,
1IN S i i
where @ _
k i Y. . ] V.
oo § i Iy B,
Gl A A Zia T Zsto ¥
i=1 3=V 7ij T i
k
T=3 z (, T3y ‘3)
i=1 j=1 13 13
and the columns of B' = (B(}) p(2 ))‘ are the eigenvectors associated
with the r smallest eigenvalues of Wt

®emark: Application 4 is very similar to a model discussed by
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