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SUt44ARY

r ESTIMATION OF A LINEAR TRANSFORMATION : LARGE SAMPLE RESULTS

The present paper provides large sample strong consistency and

distributional results for the maximum likelihood estimators B and of

the regression slope matrix B and error variance in the multivariate “errors

in variables” regression model introduced by Gleser and Watson (1973) , and

generalized by A. K. Bhargava (1975) . In Bhargava ’s model , n independent

observations = (x~1~ x~~) are taken on pairs of random vectors x1~ : pxl

and x21: rxl , r < p. It is assumed that for each i = l ,2 ,.. . ,n ,

and that x. has a (p+r) -variate normal distribution with

covariance matrix ~~~~~~ We wish to estimate B, a~ , and

i = 1,2 ,.. ,n. Under a reasonable assumption concerning the sequence

we show that B and r~~ (p+r) a2 are strongly consistent estimators

of B and a2 , respectively, as n ~~
. 

~~. We also obtain the limiting distributions

of n½(~ _B) and n½(r
_ 1

(p+r) a2_ a 2).  Using these asymptotic distributions ,

approximate confidence region procedures for estimating B and are suggested.

In the course of our derivations , we establish large sample strong convergence

and distributional results for the noncentral Wishart distribution.
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errors in var iables, asymptotic distribu tions, strong consistency,
approximate confidence regions , principal components , noncentral Wishart
distribution.



EST IMAT ION OF A LI NEAR TRANSFORMATI ON:
LARGE SAMP LE RESULTS’

by

Leon Jay Gleser
Purdue University

1. Introduction. It is well known that the presence of errors of

measurement in the independent variables in univariate linear regression

(i.e., one dependent variable) makes the ordinary least squares estimators

inconsistent and biased. Models of regression which incorporate “errors

in variables” have been studied , and an extensive literature exists which

deals with maximum likelihood and generalized least squares estimators of

the parameters of univariate “errors in variables” regression models

[Madansky (1959) , Moran (1971), Sprent (1966) , Willi ams (1955)]. Less is

known concerning the estimation of the parameters in multivariate “errors

in variables” regression models , although Gleser and Watson (1973) have

considered maximum likelihood estimators (MLE ) of the parameters in a

aultivariate “errors in variables” regression model in which the number of

dependent variables equals the number of independent variables . Recently,

A. K. Bhargava (1975) has found the MLE of the parameters in a multivariate

“errors in var iables” regression model in which the number r of dependent

vari ables is no greater than the number p of indepen dent var iab les (r < p).

It should be noted that many of the papers dealing with “errors in

var iab les” regression models speak instead of “estimating linear functional

rela tionsh ips” or , in the case of Gleser and Watson (1973) and Shargava

(1975) , of “estimating linear transforma tions”. Because the present paper

is concerned with the model discussed by Bhargava, we hav e adopted his
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terminology for the sake of continuity. The references at the end of this

paper , particularly Moran (1971), should be sufficient for the reader to

track down related papers.

The model which we adopt in the present paper is the following. We

observe n independent pairs of random vectors = (xli, x~~) , wher e x11 is

pxl and xj2 is rxl, r < p, i = l,2 ...,n. We assume that

(1.1) x1 = (~~ i\ — (~~li ’\ + (~
li~ = + e.,

- 

\~ 2iJ  \~~2iJ \!2i 1 
-

where

(1.2) 
~2i 

= 
~ ~li’

i = l,2,...,n. We also assume that the vectors e.., i = 1,2,...,n, are

i.i.d. with

(1.3) M’(e1) 0 ..~ ‘(ejej) =

I = l,2 ...,n. For the purpose of inference, the coninon distribution of the

is assumed to be multivariate normal. The parameters B: rxp, ~v
2 

> o,
and F 1~ : pxl, I • l,2,...,n, are assumed to be unknown , and are to be

estimated.

Now let us adopt a more compact notation. Let

~ •(~~i.~~ — (~~ii ~ 12 “ 

~ ln ’
~

\~ 2 J  \~~21 ~22 “ ‘~2nJ

and 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~

_ _  -~~~~~~
- —-—-. — - -

~~
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E = (~~i\  = (!ii ~l2 ~~
“ 

~ln
’
\

\~2) \!2l !22 ~~
“ 

~2n)

where 
~~~~
, 

~~~
‘ ~l are n; 

~2’ :2’ ~2 
are rxn; and r < p. In terms of these

matrices , our model becomes

(1.4) X =

(1.5) 2 • B

where the columns of E are i.i.d. with mean vector 0 and covariance matrix

a21

Let

(1.6) W = XX ’ .

Let d1 ~~ d2~. . .1% 1 d~+11. .i’1p+r > 0 be the (ordered) eigenvalues of

W, and let

(1.7) D = 

(

~max ~ . 
) = diag(d 1, d2 3 .  ~~i dp+r) i

..min

where = diag(d11d2,...,d~) ,  
~min 

= dia~ (dp+1~ ...~ dp+~).

Finally, let

G 2\G • I .11 ~1 ) : (p+r)x(p+r) , G : pxp ,
- \ G  G / 11

satisfy .21 .22

(1.8) G’G • GG’ • ‘
~~r’

(1.9) IV - GDG ’.

That is, G is an orthogonal matrix whose ith column is the eigenvector

corresponding to d1, i - l ,2 ,...,p+r.

I 
_  -
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Theorem 1.1 [Bhargava (1975)]. Under the assumption that n 1p+r and that

the cotunon distribution of the columns of E is multivariate norma l , the MLE

of B , E 1, and a2 are respectively:

(1.10) B = G21 G~~ = 

~~ 22~~~~i2’

(1.11) l ~l1~il~l 
+ 

~l1~2l~2
—~~I G G’ )X - G  G ’ X— ‘..p .12..12 .1 .11.22.2’

and

(1.12) ~2 = n ’(p+r)
4tr 

~min

In Section 2 , we show that B and r~~ (p+r) a2 are sequences of strongly

consistent estimators of B and a2 , respectively. Our results are obtained

without assuming that the common distribution of the columns of E is the

multivariate normal distribution . All that is needed is that

(1.13) = lim n ’ E 1Ej

exists and , in the case of the strong convergence of ~~, is positive definite.

Interestingly, n 1 
~~~ is not a sequence of Consistent estimators of t~.

However, at least one sequence of strongly consistent estimators of t~ does

exist, as we show in Section 2.

Section 3 considers large sample distributional results for n½(fi_B) and

n½(r
_1
(p+r)02 - a2). If the elements of any column of £ have finite fourth

moment s , both n½(B_B) and n½(r~~ (p+r)~
2 

- 02) are asymptotically normal.

The covariance matrix of the asymptotic inultivariate norma l distribution of

n½(B..B) is determined in the special case when the columns of £ have a coninon

ailtivariate normal distribution; and a strongly consistent sequence of

estimators of this covariance matrix is established. These results lead to
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an approximate large sample lOO (l- cz )% elliptical confidence region for B.

In Section 3, we also obtain an approximate large sample lOO(l-ct)%

confidence interval for

The method of proof that we use in Sections 2 and 3 (particularly

Section 3) makes use of explicit representations of our estimators in terms

of weighted matrix sums of the elements of IV, and thus requires us to

establish strong consistency and large sample distributional results for

the elements of this matrix. We do this both under general assumptions

about the common distribution of the columns 
~l’ ~~ 

of E, and under the

particular assumption that the columns of E have a common multivariate

normal distribution. In the latter case, IV has a noncentral Wishart

distribution, and our results in Sections 2 and 3 provide large sample

strong consistency and distributional results for the noncentral Wishart

matrix.

2. Strong Consistency. We begin by investigating the strong convergence

of W.

Leema 2.1. Assume that e1, e2,... are i.i.d. with common mean vector 0 and

common covariance matrix 2i . Let

(2.1) = 021P+L. 
+ 

(P)A(P)
.

where ~ is defined by (1.13), and is assumed to exist. Then

(2.2) liiti n ’W = 9, a.s.

Proof. From (1.4) and (1.6),

(2.3) n~~W — n~’EE ’ + n~~~E ’ + n 1EE’ + fl~~~E ’.
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Since the n columns of E are i.i.d. with common mean vector 0 and common

covariance matrix °
2

~p+r’ 
we have from the SLLN that

(2.4) u r n  n~~EE ’ = ~
2i , a.s.

From (1.5) and (1.13),

(2.5) Urn n~~EE ’ = (
~
) 1~ (p) 

‘

.

Thus , (2.2)  holds if

(2.6) liin n~~E ’E ’ = lim (n ’E!’)’ = 0, a.s.
- - - -

Let E = ((~ .~ ))~ E = (( e
n
)), A(n) = n~~E’E = ((a!~~)). Finally, let

= [ )
~ (~ )

2
]~

½~~•~ Then for all (i,j), i , j = l,2,...,p+r,
k=1 ~ 1)

-l 

~~~ ~~~~~

1 

k=l ~~k
ek~ 

= [~~
l 

k=l ~~~~~~ k=1 
h~~ ek).

By (2.5), n 
~ik 

converges to a finite nonnegative number. But by
k=l n

Lemma 2 of Gleser (1966), noting that ~ (h~~~)
2 

= 1, we have
k= 1

liin n~~ ~ h~9~ ek . = 0 , a.s.
k=l

Thus for all (i,j), i,j = l,2,...,p+r, u r n  ~~~ = 0, a.s.,

proving (2.6), and thus (2.2).D

Remark. If 
~l’~2’” 

have common covariance matrix E: (p+r)x(p+r) and if

u r n  n ’EE ’ = T exists , then a proof identical to that of Theorem 2.1 can be

used to demonstrate that u r n  n ’ IV = E + T, a.s.
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Let ‘r1 ì~’21”1~
’p 10 be the eigenvalues 

of ~~~~~~~~~~~~~~~~

where (I~+B~B) ¼ is the sylmnetric square root of (I~+B~B). Let

diag(y1, ~~~~~~~~~~~~~ and let * be a pxp orthogonal matrix satisfying

(2.7) (I +B,B)~~(I +B~B) ½ _ 
~~~~~~~~~

Note that if

1(1 +B’B)~~~~l’ Bt (I
r
+BBI)_½ \

(2 .8)  r = ( -P - - - - -½ J’- \B(r +B~B) 
~± ~~~~~ I

where 
~~~~~~ 

is the symmetric square root of 
~ r~~~

’
~ ’ 

then

r : (p.r)x(p+r) is orthogonal, and

/2 +D 0
(2.9) = r ( ‘~~~ ~~~~ 

2-.

We conclude that the columns of I’ are eigenvectors of 9, and that the

eigenvalues 01 1 02
1. . •1°p+r 1 0 of 8 are:

o . = ~
2 

+ ~~ i = l,2,...,p,
(2.10) 2

= a , j l,2,...,r.

Leema 2.2. Under the conditions of Lemma 2.1,

(2.11) lUn n~~D — D0 = ~~~~~~~~~~~~~~~~~ a.s.

Proof. Under our assumptions about the vectors e1, e2,..., we know that

n~~W is positive definite for all n > p+r [Perlrnan and Eaton (1973)]. The

ith eigenvalue of a positive definite matrix is a continuous function of

the elements of that matrix. Since n~~W a.s. converges to a positive

definite matrix 9 by Lemma 2.1, the result (2.11) immediately follows. 0
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In the following argument, we will need to notationally indicate the

dependence of our sample quantities on the sample size n. Thus , for

sample size n let ~~~~~ D
(n) 

~~~~ ~~~~ and

,G (n) 
~

(n)
~(n) 

~ 
Jl .12

- ‘G~~ G\..2l .22

be the quantities defined by (1.6), (1.7), and (1.9) respectively. Further,

let be the estimator of B for sample size n given by (1.10).

L e a  2.3. Under the assumptions of Lemma 2.1, plus the additional

assumption that i is positive definite, we have

(2.12) u r n  aC”) = B, a.s.,
n~~~ 

-

(2.13) ~~~~~~~~~~~~~~~~~~~~~~~~ = 02(Ir+BB’)
4
~ 

a.s.,

(2.14) 11* ~~~~~~~~~~~~~~~~~~ = A + a2(I +B’B)~~, a.s.

Proof. Note that the columns of are orthogonal and of length 1 for all

“1  p+r. Let

W =

be a fixed point in the underlying probability space. For fixed w such that

(2.2) and (2.11) hold , the sequence lies in a compact subspace of

(p+r) 2-dimensional Euclidean space. Thus, each subsequence of (G~”~ } has
a convergent sub-subsequence. Suppose that the limit of this sub-subsequence

is

f~ll 912Q —  I
- 

\~2l ~22

Then since for all n,

(n) (n)

~~~~~~~~~~~~~ 
/~ ii \ - f~1l \ -l (n)

C Dmax)a
\~ 2l / \_ 21 I
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we can take limits over the indices of the sub-subsequence on both sides of

this equality and obtain [see (2.2), (2.10) and (2.11))

2

~ 1 — 
-L 1 ~ I +D ) .

\..2l/ \ .21/

Thus, (Q~1 Q~1
)’ is in the eigensubspace corresponding to the largest p

roots of 0. Since our additional assumption (that A is positive definite)

implies that o~, — a
2+’~~ > ~2 = 0p+l’ this eigensubspace is unique. Hence,

from (2.8) and (2.9) there exists a nonsingular matrix T such that

/Q11\ 1(1 +3IB) ½
* \

(2.15) ( - — ( ~ — - — )T.
\92l/ \B(I +B’BY $/

Again, since

~(n) — 21 ~ ll ’

taking limits on both sides of this equality over the indices of the sub-

subs.quence results, by (2.15), in the limiting value B. Thus, we have

shown that for every value w such that (2.2) and (2.11) holds , every

subsequence of has a subsubsequence converging to B. It then follows

from facts about limits of sequences in Euclidean space that Urn ~(n) 
-

for all w such that (2.2) and (2.11) hold, and thus that (2.12) holds.

The results (2.13) and (2.14) follow by similar arguments using the

identities [see (1.9) and (1.10)]

(2.16) (B,-I3,) ~~~~~ ~!‘!r~
• ($~“~-B) (G~~ ) (n~~D~~ ) (~~~) ) I(~~(fl) $).

+ 
~!~‘!!~~ 

‘)~~~~~~~~~~~) 
( n D ~~ ) (~~~~) ‘
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(2.17) (I .B’)(n~~W~”~)(I~.B’)’

— (I+~~fl) ‘B) (G~’~ ) (n
~~
Damx) (G~~~) ‘(I +B’ã~”~)

+ ~~n)_~~ (~~~~) ) 
~“~~~min~ ~~~~~ ‘(~~

“~-B),

respectively. 0

From (1.11), (1.6), and (1.9), we see that

A A

f~~ 1Q~ ~~‘ • “ D G’:i:i .ll max.lr

It thus follows from (2.14) that (n~~E1E~
} is not a consistent sequence of

estimators for A. Since A helps to determine the covariance matrix of the

asymptotic distribution of n½(B_B), we will need a consistent sequence of

estimators for A in order to construct an approximate large-sample confidence

region for B. The following theorem, which follows directly from Lemmas 2.2

and 2.3, both summarizes our strong consistency results for Ô and
and provides us with a strongly consistent sequence of estimators for A.

Theorem 2.1. Under the conditions of Lenina 2.1,

(2.19) lim r ’1(p+r)ci2 — ~
2,

fl4~~

so that r4(p.r)~
2 is a strongly consistent (sequence of) estimator(s) for

~
2. Under the conditions of Lemma 2.3,

(2.20) lii ~~ — 8, a.s.,

and

(2.21) ii. n (Giu~~~ Gji — r4(~.r)a
2(I~ia’8)’) — A , a.s.,

so that ~ is a strongly consistent (sequence of) estimator(s) for B, and

(2.22) A s n 1(G1~~,~G~1 -



11

is a strongly consistent (sequence of) estimator(s) for A.

Remark I. Weak consistency results (i.e., convergence in probabil ity) for

B and r~~(p+r)a
2 have been obtained previously by Gleser and Watson (1973)

when r - p, and by Bhargava (1975) in the general case r c p. Their proof

of consistency for r~~(p.r)a
2 is given under slightly weaker conditions

[n 2E1E~ = 0(1)1 than the conditions of Lemma 2.1, but their proof of the

consistency of B requires the condition (1.13), and also has a theoretical

gap [noted in Gleser and Watson (1973)]. The full strength of the almost

sure convergence results given in this section are not really needed for

deriving the large-sample distributional results of the next section.

However, the methods and conclusions in this section are of interest in

their own right (particularly Leinna 2.1 and the proof of Lemma 2.3) , and

Theorem 2.1 may be of use in future work concerning the construction of

asymptotically consistent and efficient fixed-diameter sequential confidence

regions [see Gleser (1965)] and asymptotically optimal Bayesian sequential

regional estimators [see Gleser and Kunte (1976)] for B.

Remark II. We once again call attention to the fact that no argument in the

present section requires us to assume that the common distribution of

~l’ !2’•~~’ 
is multivariate normal.

3. Asymptotic distributions. We begin by finding the large sample

distribution of n~~(W -~~~W)). Let e’ - (ei,e2,...,ei,ir) be a random

vector having the same distribution as •l’ !2’~’~’!n 
(the columns of E).

We assume that .~ te~) c ., i — l,2,...,p+r. Let

(3.1) •ijkt • .~~
(eiejekeL), i,~,k,t — 0,l ,2,...,p ir ,

with the understanding that 1. Thus, oii i - and so forth. Now,

let
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/ekl \ /~ kz \
— ( j(2 ) ‘ ~k ( ~k2 ), k — l,2,...,n.

\ e~((~,+~.)/ \ 
~k(p+r)/

Note from (2.3) that

— n(a2I
~~r 

+

and thus that

n -~~‘O~)) —

(3.2) = ~-½ 
~k=l

where 
~k 

—

(3.3) Zkij = eklekJ - a 6 . .  + 
~k~

e
kJ 

+

and is the Kronecker delta. The matrices Z1, Z21..., are mutually

statistically independent (but not identically distributed) with

— 0, k — l ,2,...,n, and

cov(zki~Izki,J,) = ,iji’j, - a
4

6
~~j

6
~~,j ,  + 

~ki’ 0ijj’

+ 
~kj’ 0iji’ + 

~ki 0i’j’j + 
~kj 0i’j’i

+ a2(
~k~,~kj.

6ii, + 
~ki~ki’~Jj’ 

+ 
~kj~ki’

6
iJ’ 

+

Let

n
(3.5) K ., • lirn n 1 

~ 
cov(zkj ‘2ki’ ~~~~~‘( ‘~~~( ,~~) n-... k— i
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Then for all (i,J), (i’,j’); i,j,i’,j’ — l,2,...,p+r; we have

4 — —K
(i j) (i, j,) — iji’j’ — 0 6ij6i’j’ + 

~j,t+Øjjy 
+

(3.6) 
+ 

~i 0 i’j ’j  
+ 
~j 0i’j’i ~~

+ + TJ j , öiJ ,  +

where the existence of

(3.7) — lirn ~-l ~ 
, r = his n 1 

~ ~
1 n-” k—i n-’~ k—i

is guaranteed by (1.13).

Theorem 3.1. Under the assumptions that (1.13) exists (and is finite) and

that W(e~) < ~~~, i — l,2,...,p+r, the elements on and below the diagonal
(the subdiagonal elements) of n~~(W - ~ ‘(W)) have a limiting joint
(p+r) (p+r+l) /2-dimensional normal distribution with mean vector 0 and

covariance matrix Se’. ((Ic (i j) (i’,j
Proof. Let W - ((W

jj
)) .  Consider any linear combination

~~~~ 
~~~ 

c~~(w~ - .WCw~~)) — ~-½ 
~~ k~l 

ci, zkij
(3.8) 

n

k— i i~,j

of the subdiagonal elements of n~~(W - W’(W)). We recognize this as a

normalized sum of Independent random variables. Using (3.3), (3.4), (3.5)

and the assumption that the fourth moments of ~ exist, it is straightforward
to prove that

n n
p h .  [ 

~ 
var ( ~ Cj zkj )J 1 

~ C ~ 
Cj z ) 2 1.n..~ k—i ij j  ~ k.l i~) 

j kij
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It then follows from Raikov’s Theorem [Gnedenko and Kolmogorov (1954; p. 143)]

4 that

n L
(3.9) n~~ ~ ( ~ c1 Zki ~ + P4(0, ~ ~ 

c~ c~ ,4, ~~~~ 
. , 

~~~
,

k—l i~) ~ i~ji’~j’ ~ .‘

Since (3.9) holds for all linear combinations (3.8), the conclusion of the

theorem follows. 0

Remark. Our implicit assumption that the covariance matrix of e is

is unnecessary for the proof of asymptotic normality. If the covariance

matrix of e is E = then the same conclusion holds, except that

E replaces 021p+r in the formula for .i’(W) , and in the formula for

in (3.6) we have

— 
jj j h j t  — °ij0i’j’ + 

~

•

i’~~0ijj ’ + 
~j’ 0iji’

+ 1i~0i’j’j 
+ 
~j
•Oi’j’i + (Tjj,aii,

+ t~~•a~~. + ~~~~~~ +

Corollary 3.1. If !i.’ !2’•~ ’ 
are i.i.d. multivariate normal with mean

vector 0 and covariance matrix E, and if (1.13) exists (and is finite),

then the subdiagonal elements of n~~(W - nE - EE’) have a limiting joint
— (p+r) (p.r+1)/2-variate normal distribution with mean vector 0 and covariance

matrixie’— (Oc(i,j) (i’ j’)~~ 
given by

K (j j ) (j

~~~

j

~~

) 
0ii’°jj’ + aij,ai,j +

+ r iit aj j .  + t j j e Oj j i +

2When g — a I
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(3.10) K
(i j) (i, J , )  

a ( & ii,6~j~ 
+ ~~~~~~~~ + a2 (t j j~ 6j i~

+ r j j , 6
j y  

+ Tj i~~
6ij~ 

+

Proof. Because ~~ 
are i.i.d. N(0,E), we have

(0, if i — 0, i’ — 0, j — 0, or J’ — 0,
, —

~~~U i  3 1 °ii’°jj’  + °ij’°i’j + °ij0i’j’’ otherwise.

The result of the Corollary now is a direct consequence of Theorem 3.1.  0

We note that Corollary 3.1 gives the asymptotic distribution of the

noncentral Wishar t matrix in cases where the noncentrality parameter is

0(n).

To find the asymptotic distribution of n½(B_B), it is sufficient to

note that (1.9) and (1.10) yield the representation:

(I ,B’) [n~~(W-~ ’(W))] (B,_I~)’(3.11) — — — —
— (I +B’%) (fl’.’lG D G ~~)n½(B_B)~

- n’~(B-ft) ~
“ 

~22~min~22~ ~!r~~!’~~

Assuming that A is positive definite, and using (2.13), (2.14) and (3.11),

we conclude that n½(~-B)~ and

(3.12) ~ —

have the same asymptotic distribution. Since the elements of F are linear

co~~inations of the subdiagonal elements of n~~(W- ~~(W)), we conclude that

when the ass~~~tions of Theorem ~ j  hold ~~~ A j j  positive definite. . ~~~
•l nts of n’~$j~B) ’ have a iimit~~g rp-variate normal distribution wAh 9
mean v.ctor and a covariance matrix that can be calculated usini (3.6] ~~~
(3. l.~~ Since the covariance matrix of the limiting distribution of

~
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fl½(i_B) under the general conditions of Theorem 3.1 involves fourth-order

cross moments of e, and thus is both complicated and hard to estimate, and

since we are primarily interested in the case where eL. !2’” are i.i.d.

N(0, O2Ip+r)
~ we content ourselves with the following. 

-

Theorem 3.2. If e1, 
~2’~~

•
~ 

are i.i.d. N(0
~
c12Ip+r)~ 

and if (1.13) exists

and is positive definite, then the elements of fl½(g_ ~)I have a limiting

joint rp-variate normal distribution with zero means and covariance between

the (i,j)th and (i’,j’)th elements given by:

(3.13) 
~~~~~~~~~~~~~~~~~ 

+

Proof. The asymptotic normality follows from the preceeding arguments. The

formula (3.13) may be obtained from (3.10), (3.12) , and straightforward

calculation. In the computation, it is helpful to note that if T - ((r
13

))

is defined by (3.7), then

II ~~~’(3.14) T = f -P~ ~ 
( -P

~ • 0- -
We note that from (2.14) and (2 .22) ,

liii n G 1iD~~~Gj1
)
~~
’ ~ A 1(A + a2(I +B’B)~~)à~~, a.s.

and from (2.12),

~~~ ‘!r’!!~ ~~~~~~

It then follows from Theorem 3.2 that an asymptotic lOO(l-a)% elliptical

confidence region for B is:
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(B: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(3.15) 

-

< r4 (p.r) a2
x~ ,[l-a]},

where 4~,[1-a] is the 100(l-a)th percentile of the x~ distribution.

Turning next to the question of the asymptotic distribution of

n½(r~•l (p+r)&2_a2), we note from (2.16), Lemma 2.3, and Theorem 3.1 that

n
~~~~ n 

— ~~~~~~~~~~~~~~ (n 
~~~~~~~~~ 

‘)~
1(G~2)~

1 
+

Since it also follows directly from Lemma 2.3 that

~~~~~~~

(I +8B ’)~~ , a.s.,

we conclude that

n ’trD
~i 

— tr[(Ir+BB’)~~ (B,_Ir) (n~~W) (!1~~r !r + o~(n~~).

or that

n½(r~~ (J~Pr) ;2_Ø 2) “1~ tr{ 
~
1r ’~~

’
~ 

-½(B, ‘r~ ~“
‘

~~~! ~~~~~~ (~‘~ !r~
’
~!r’ f!” + o~(l) .

It now follows directly from Theorem 3.1 that the limiting distribution of
is univariate normal with zero mean, and a variance

involving B and the fourth-order moments of e. [Note. To obtain this result
we need not only the assumptions of Theorem 3.1, but also the assumption
that a is positive definite.] In the case when the e”s are i.i.d.

the variance of the asymptotic distribution greatly simplifies,
and we obtain the result:

Theorem 3.3. Under the assumptions of Theorem 3.2,

1.- i ~‘ 2 L 4-1(3.17) n~(r (psr) a -a ) +N(0,2ar ).
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Thus, an approximate l00(l-a)% confidence interval ~~~ ~,2 is

(3.18) (02 : 1a 2 
- (nrY’trD

~jnI ( (2x~[l_~]/rn) ½(nr)
_ l
trD~j~}.

Remark. The methods of proof used in this section differ from those

usually used to prove asymptotic normality of principal components [see

Anderson (1963)] or of factor loadings [see Anderson and Rubin (1956)].

There is, of course, considerable resemblance between the model (1.4) used

in this paper, and the kinds of estimators derived, and the models and

estimators of principal component analysis and of factor analysis. Indeed ,

a first step in computing B and ~2 is to obtain a principal components

breakdown of the cross-product matrix W; but we must note that in our model,

N is noncentral Wishart with covariance matrix parameter O2Ip+r~ 
while

principal components analysis deals with a central Wishart matrix with a

general covariance matrix E. The analogy of our model to factor analysis

with fixed factor values [see Anderson and Rubin (1956) and Lawley (1953)]

is much closer , although our model makes very restrictive assumptions about

the form of the factor loadings and error covariance matrix . Even though

it is probably possible to obtain our large sample results by specializing

the more general results of Anderson and Rubin (1956), our approach in this

section has the advantage of directness. Further , the representations which

we have used may yield information about the accuracy of our large sample

approximations in finite samples.
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