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SUMMARY

ESTIMATION OF A LINEAR TRANSFORMATION: LARGE SAMPLE RESULTS

The present paper provides large sample strong consistency and
distributional results for the maximum likelihood estimators § and o° of
the regression slope matrix B and error variance in the multivariate "errors
in variables" regression model introduced by Gleser and Watson (1973), and
generalized by A. K. Bhargava (1975). In Bhargava's model, n independent
observations 5{ = (fii’ féi) are taken on pairs of random vectors X5t px1
and Xp5t rxl, r < p. It is assumed that for each i = 1,2,...,n,
i?(§2i) = B#(x,;) and that x, has a (p+r)-variate normal distribution with
covariance matrix °2£p+r' We wish to estimate E, 02, and jfoli),
i=12,...,n. Under a reasonable assumption concerning the sequence
{5foli)}, we show that § and r'l(p+r);2 are strongly consistent estimators
of § and 02, respectively, as n ~ ®. We also obtain the limiting distributions

% li(r'l(p+r)02-02). Using these asymptotic distributions,

of n (E-B) and n
approximate confidence region procedures for estimating B and o? are suggested.
In the course of our derivations, we establish large sample strong convergence

and distributional results for the noncentral Wishart distribution.

AMS 1970 subject classifications. Primary 62H10, 62E20; Secondary 62F10,
6 s 5 15, 62P20.

Key words and phrases. Linear functional relationship, regression with
errors in variables, asymptotic distributions, strong consistency,

approximate confidence regions, principal components, noncentral Wishart
distribution.
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ESTIMATION OF A LINEAR TRANSFORMATION:

LARGE SAMPLE RESULTS

by

Leon Jay Gleser
Purdue University

1. Introduction. It is well known that the presence of errors of
measurement in the independent variables in univariate linear regression
(i.e., one dependent variable) makes the ordinary least squares estimators
inconsistent and biased. Models of regression which incorporate '"errors
in variables" have been studied, and an extensive literature exists which
deals with maximum likelihood and generalized least squares estimators of
the parameters of univariate "errors in variables' regression models
[Madansky (1959), Moran (1971), Sprent (1966), Williams (1955)]. Less is
known concerning the estimation of the parameters in multivariate '"errors
in variables'" regression models, although Gleser and Watson (1973) have
considered maximum likelihood estimators (MLE) of the parameters in a
multivariate "errors in variables'" regression model in which the number of
dependent variables equals the number of independent variables. Recently,
A. K. Bhargava (1975) has found the MLE of the parameters in a multivariate
"errors in variables'" regression model in which the number r of dependent
variables is no greater than the number p of independent variables (r < p).

It should be noted that many of the papers dealing with "errors in
variables" regression models speak instead of "estimating linear functional
relationships" or, in the case of Gleser and Watson (1973) and Bhargava
(1975), of "estimating linear transformations'". Because the present paper

is concerned with the model discussed by Bhargava, we have adopted his




terminology for the sake of continuity. The refercnces at the end of this
paper, particularly Moran (1971), should be sufficient for the reader to
track down related papers.

The model which we adopt in the present paper is the following. We
observe n independent pairs of random vectors fi = (fii’ féi)’ where X1 is

px1l and X9 is rxl, r <p, i = 1,2,...,n. We assume that

! £ e,.
(1.1) x; = fh) 2 -1i . -11) = Ei ‘e,
X1 £2i €
where
(22 €21 = B &p50

i=1,2,...,n. We also assume that the vectors e At an] G200 s ,Nn, are

~

i.i.d. with

(1.3) #e;) = 0, Fleel) = 0’1,

i=1,2,...,n. For the purpose of inference, the common distribution of the
ei's is assumed to be multivariate normal. The parameters B: rxp, 02 > 0,

and Eli: pxl, i = 1,2,...,n, are assumed to be unknown, and are to be

estimated.

Now let us adopt a more compact notation. Let

X X X eve X
o & W LR ‘In)
) X291 X33 °*c Xgp
o §1) L W TR §1n>
- »
) S S22 00t &g

and




ST .

E) B Gz v
E = = 5
E, %1 %22t ®m

where Xl, 51, E. are pxn; xz, Ez, EZ are rxn; and r < p. In terms of these

matrices, our model becomes

(1.4) X =

-~

+ E,

~

In

(1.5) B

e N

where the columns of E are i.i.d. with mean vector 0 and covariance matrix

021 o
~p*r
Let
(1.6) W = XX'.
Let d1 :-dZZf":gp :-dp+123"3gp+r > 0 be the (ordered) eigenvalues of
W, and let
Dmax 0
(1.7) ? = ? ; = d1ag(d1,d2,...,dp*r),
% ~min

where Pmax = d1ag(d1,d2,...,dp), ?min = diag(dp+1""’dp+r)'

Finally, let

G G
S ~12
9 = ((;u Gl ): (p+r)x(p+r), Gu: PXP,
satisfy ~21 .22
.8 il =
(1.9) W = GDG'.

That is, G is an orthogonal matrix whose ith column is the eigenvector

corresponding to di' i=1,2,...,prr.
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Theorem 1.1 [Bhargava (1975)]. Under the assumption that n > p+r and that

the common distribution of the columns of E is multivariate normal, the MLE

~

of B, 51, and 02 are respectively:

Bl i T o) I Vet 1 (]
(1.10) B =G, 61 = -(63) G1ps
(1.11) g =G, .G'.X, + G, .GL.X

) (SEes) 10 B D Bl ERNERs) L L) 0

' g '
= (I, - 615819)%; - 613655%5

and
a2
g

n-l(p+r)-1tr [ O

(1.12) D i

In Section 2, we show that B and r'l(p+r)c2 are sequences of strongly
consistent estimators of B and 02, respectively. Cur results are obtained
without assuming that the common distribution of the columns of E is the

multivariate normal distribution. All that is needed is that

(1.13) A = lim n~
= ey

exists and, in the case of the strong convergence of ﬁ, is positive definite.

Interestingly, nl

¢
t

i is not a sequence of consistent estimators of A.

-~

1

However, at least one sequence of strongly consistent estimators of A does
exist, as we show in Section 2.
Section 3 considers large sample distributional results for n%(ﬁ-B) and

nl’(r°l(p+r)82 -

). If the elements of any column of E have finite fourth
moments, both n%(g-g) and n&(r'l(p+r)32 - 02) are asymptotically normal.

The covariance matrix of the asymptotic multivariate normal distribution of
nk(g-g) is determined in the special case when the columns of E have a common

multivariate normal distribution; and a strongly consistent sequence of

estimators of this covariance matrix is established. These results lead to




an approximate large sample 100(l1-a)% elliptical confidence region for g.
In Section 3, we also obtain an approximate large sample 100(1-a)%
confidence interval for 02.

The method of proof that we use in Sections 2 and 3 (particularly
Section 3) makes use of explicit representations of our estimators in terms
of weighted matrix sums of the elements of !, and thus requires us to
establish strong consistency and large sample distributional results for
the elements of this matrix. We do this both under general assumptions
about the common distribution of the columns e e of E, and under the
particular assumption that the columns of E have a common multivariate
normal distribution. In the latter case, ! has a noncentral Wishart
distribution, and our results in Sections 2 and 3 provide large sample
strong consistency and distributional results for the noncentral Wishart

matrix.

2. Strong Consistency. We begin by investigating the strong convergence

of W.

Lemma 2.1. Assume that €15 €50 are i.i.d. with common mean vector 0 and

~

common covariance matrix ozl . Let

p+r
2 AW A2}
(2.1 @ =0t _+[~P)af-
= “p+r B J]-~\3s ?

where A is defined by (1.13), and is assumed to exist. Then

(2.2) lim n"lw = @, a.s.

N->c

Proof. From (1.4) and (1.6),

ly = nlggr o n'IEE' + n'lEs' + n'IEE'.

~ - ~ o

(2.3) n




Since the n columns of E are i.i.d. with common mean vector 0 and common

covariance matrix 021p+r, we have from the SLLN that

~1 2

2.4 lim n EE' = 1 a.s.
( ) s o ~p+r’ &
From (1.5) and (1.13),
3 I i G
(2.5) limn 'zs' = [ P) a [ -P
e <" B ~ B
Thus, (2.2) holds if
T ) Sl
(2.6) lim n "E'E' = lim (n "EE")' = 0, a.s.
e S48 n> = >
Z = = = -1:’1 = (n) :
Let = ((Eij)). E ((gij)). A(n) =n "E'E ((aij )). Finally, let
h(“) - [ ) (Egs) 2)-% Then for all (i,j), i, j = 1,2,...,p+T,
0 S 2 A 2 % -l (n)
My T kzl tiktkj = [ 21 & § ik %k

By (2.5), n'l z E x converges to a finite nonnegative number. But by

2

Lemma 2 of Gleser (1966) , noting that Z (h(n)) = 1, we have

lim o~ 8 Z h{M o

= 0, a.s.
ne k=1 ik

kj

Thus for all (i,j), i,j = 1,2,...,p+r, lim agg) = 0, a.8:,

n-ee

proving (2.6), and thus (2.2).0

Remark. If €128y have common covariance matrix I: (p+r)x(p+r) and if

e
lim n "EE' = T exists, then a proof identical to that of Theorem 2.1 can be
ot e b
used to demonstrate that lim n'1 W=ZI+ T, a.s.

n+e




Let ¥y 2 723:-°31p > 0 be the eigenvalues of (IP+B'B)¥A(IP+B'B)k,
where (I]:;O-B'B);i is the symmetric square root of ({p*g'g). Let

DY = diag(Yl, YZ,...,YP) and let ¥ be a pxp orthogonal matrix satisfying

@D e Basnn e .
Note that if
(1_+B'B)" % B'(Ir'fBB')'15
(2.8) paiil R i B et o
©o\BEEERTY -(1pem80)

where (Ir+BB')li is the symmetric square root of (Ir+BB'), then

F: (p+r)x(p*r) is orthogonal, and

CII+DY 0
(2.9) @r =T P . i
R i 0 o Ir

We conclude that the columns of I' are eigenvectors of ©, and that the

eigenvalues 6, :-62:"':9p+r > 0 of © are:
o, = 0%+ v,, T T AN
(2.10) i o s g
P"‘j ’ 9&yeeejyde

Lemma 2.2. Under the conditions of Lemma 2.1,

(2.11) 1im n"1p = p

n->e

= diag(el.ez,...,e Yo RS

) p*r

Proof. Under our assumptions about the vectors fl’ fZ""’ we know that
n'1! is positive definite for all n > p+r [Perlman and Eaton (1973)]. The
ith eigenvalue of a positive definite matrix is a continuous function of
the elements of that matrix. Since n'ly a.s. converges to a positive

definite matrix @ by Lemma 2.1, the result (2.11) immediately follows. O




In the following argument, we will need to notationally indicate the
dependence of our sample quantities on the sample size n. Thus, for

sample size n, let N("), D(n), Dﬁz, D(n), and

min
(n) (n)

MO <Gn) ‘3%2))
= (n n
6 S22

be the quantities defined by (1.6), (1.7), and (1.9) respectively. Further,
let ﬁ(n) be the estimator of B for sample size n given by (1.10).
Lemma 2.3. Under the assumptions of Lemma 2.1, plus the additional

assumption that A is positive definite, we have

(2.12) 1in 8™ . B, a.s.,
e [ B
(2.13) lim n~ (G(n))(D,f:!)‘)(G(n))' . (1 +BB")  SESEE N
e
(2.14) im0 (c(“))(D(“))(c(“))' =4+ o (1 +n-s) s
n-h

Proof. Note that the columns of (E(“) are orthogonal and of length 1 for all
n > p+r. Let

el L A
be a fixed point in the underlying probability space. For fixed w such that
(2.2) and (2.11) hold, the sequence {(j(n)} lies in a compact subspace of
(por)z-dilonsioml Euclidean space. Thus, each subsequence of {9(")) has

a convergent sub-subsequence. Suppose that the limit of this sub-subsequence
is
Q Q
Q- ( a1 Y2 ) ;
L1
Then since for all n,

(" @, ff?) ” .f?) -1 (n)
21 .21




this equality and obtain [see (2.2), (2.10) and (2.11)]

8(911) t <911) (ozlpmy).
"\, o3 %

we can take limits over the indices of the sub-subsequence on both sides of

Thus, (gil, 951)' is in the eigensubspace corresponding to the largest p

roots of 8. Since our additional assumption (that A is positive definite)

implies that ep = ozoyp > 02 = ep+

1’ this eigensubspace is unique. Hence,

from (2.8) and (2.9) there exists a nonsingular matrix T such that

-k
Q (I_+B'B) *y
(2.15) (-“) i ( P -~ = )'5.
W1 SUE Y

Again, since

’

=(n) (n) .(n),-1
BY = G5 (61

taking limits on both sides of this equality over the indices of the sub-

subsequence results, by (2.15), in the limiting value B. Thus, we have

shown that for every value w such that (2.2) and (2.11) holds, every

subsequence of {‘(n)} has a subsubsequence converging to B. It then follows

from facts about limits of sequences in Euclidean space that lim §(n) =B

nre

for all w such that (2.2) and (2.11) hold, and thus that (2.12) holds.

The results (2.13) and (2.14) foilow by similar arguments using the

identities [see (1.9) and (1.10)]

2.16)  (8,-1) (" W) p,-1 )
= 8™-m ) 0GP @™ -p¢

~min

AP Ny

o @0 ) () ) (1,0
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(2.17) CIN DICR AP TCM DY
= (I ¢§(n)'B) (G(n))( )(G(n)) (I *B'B(n))

. (5‘“) s)'(c‘“’)(n )(c("’) (B‘“’ -B),

.min

respectively. O

From (1.11), (1.6), and (1.9), we see that

= G,,D___G}

(2.18) 1§i G)1Pnax811°

t (1>

It thus follows from (2.14) that {n~ § § } is not a consistent sequence of
estimators for e. Since e helps to determine the covariance matrix of the
asymptotic distribution of n (§‘§)' we will need a consistent sequence of
estimators for e in order to construct an approximate large-sample confidence
region for E' The following theorem, which follows directly from Lemmas 2.2
and 2.3, both summarizes our strong consistency results for § and r'l(pér)az.
and provides us with a strongly consistent sequence of estimators for e.

Theorem 2.1. Under the conditions of Lemma 2.1,

(2.19) 1im r'l(p+r);2 = 02, ey

nbe
so that r'l(p+r)32 is a strongly consistent (sequence of) estimator(s) for

az. Under the conditions of Lemma 2.3,

(2.20) lim B = B,  a.s.,
e - -
and
(2.21) lil n (.11 H - r'l(p¢r)32(1p¢i'§)'l) = A, a.s.,

so that § is a strongly consistent (sequence of) estimator(s) for B, and

(2.22) A on” (cu__“c11 v r'l(p»r)n32(£p¢§'§)'l)




il

AT e T T
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is a strongly consistent (sequence of) estimator(s) for e.

Remark I. Weak consistency results (i.e., convergence in probability) for

é and r'l(p+r)82 have been obtained previously by Gleser and Watson (1973)
when r = p, and by Bhargava (1975) in the general case r < p. Their proof
of consistency for r'l(pfr)c;2 is given under slightly weaker conditions
[n'zflgi = 0(1)] than the conditions of Lemma 2.1, but their proof of the
consistency of i requires the condition (1.13), and also has a theoretical
gap [noted in Gleser and Watson (1973)]. The full strength of the almost
sure convergence results given in this section are not really needed for
deriving the large-sample distributional results of the next section.
However, the methods and conclusions in this section are of interest in
their own right (particularly Lemma 2.1 and the proof of Lemma 2.3), and
Theorem 2.1 may be of use in future work concerning the construction of
asymptotically consistent and efficient fixed-diameter sequential confidence
regions [see Gleser (1965)] and asymptotically optimal Bayesian sequential
regional estimators [see Gleser and Kunte (1976)] for 9.

Remark II. We once again call attention to the fact that no argument in the
present section requires us to assume that the common distribution of

o Uy is multivariate normal.

3. Asymptotic distributions. We begin by finding the large sample

distribution of n'k(w -FN)). Let e' = (°1’°2""’°p+r) be a random
vector having the same distribution as €1» €precese (the columns of E).

We assume that jfte:) <w, i=1,2,,..,psr. Let
(3.1) ’ijk’. = y"i'j’lﬁ,)’ i,j,k,2 = 0,1,2,...,p*r,

with the understanding that e = 1. Thus, %0iii " jfTei) and so forth. Now,

let
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1 tx1

e = | °x2 e T Do Wt e
e' E.
k(p+r) k(p+r)

Note from (2.3) that

FM =@, + 0z,

and thus that

n'li(w -$W)) = n" ‘S(EE'-nazlp+r+SE'+EE')

-~ -~

n
(3.2) s Z

where .Z'k - ((-z-kij))’

(3.3) z - ot

kij = ®ki®kj " 9 %15 * Ski®kj * °hibkje
and 61 3 is the Kronecker delta. The matrices Zl’ ZZ’"" are mutually
statistically independent (but not identically distributed) with

.H’(Ek) = 9, k=1,2,...,n, and

4

cov(z -0gé

kij*2kityr) = *iji0 0 1381050 * Skirtoijj

* Exsr®oizir * xifoirgry * Skitoivyi

2
M T T P T L T TIR L P LRL IR R WUWIL AT
Let
n

-1
(1,30, (0,50 MR L coviay g

(3.5)




<
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Then for all (i,j), (i',j'); i,j,i',j' = 1,2,...,p+r; we have

4 =5 -
1,3, G530 T Hagarge T 9 8558050 ¢ %5550 * E5edps440
- = 2
(3.6) AU TR U PR TIL

6

* Tiilcjjl . T5i0%50 * Tij"i'j)’

where the existence of

= .1 B .1 B
3.7 € = limn" ] Eqr Ty Mmn ] ¢

£, -
me kel 1 e k=1 KK

is guaranteed by (1.13).

Theorem 3.1. Under the assumptions that (1.13) exists (and is finite) and
that jf(eg) <=, i=1,2,,..,ptr, the elements on and below the diagonal
(the subdiagonal elements) of n'%(! - jf(g)) have a limiting joint

(p+r) (p+r+1)/2-dimensional normal distribution with mean vector 9 and

(1,3),(3",3"2)"
Proof. Let W = (("ij))' Consider any linear combination

covariance matrix $¥¢= ((x

-% -k T
n C,.(w,. - #(w..)) =n CLatis
iy % - WOy oLy oLy a5
(3.8)

ol 8
% )] e
k=l i<

1j%kij)

of the subdiagonal elements of n"‘(w - $$(W)). We recognize this as a
normalized sum of independent random variables. Using (3.3), (3.4), (3.5)
and the assumption that the fourth moments of e exist, it is straightforward

to prove that

n n n :




R
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It then follows from Raikov's Theorem [Gnedenko and Kolmogorov (1954; p. 143)]
that

i B L
3.9 = k§1(i§j ©35%kij) * N0 i_EJ 1% 354050 X, ), G50
Since (3.9) holds for all linear combinations (3.8), the conclusion of the
theorem follows. (]
Remark. Our implicit assumption that the covariance matrix of e is °2£p+r
is unnecessary for the proof of asymptotic normality. If the covariance
matrix of e is E = ((oij)), then the same conclusion holds, except that
E replaces 021p+r in the formula for jfT!), and in the formula for

K(i,j),(i',j') in (3.6) we have

i, 350, (7,57 = ®ijivgr T %1% 050 * Eie%oij50 * &0 %0454
(t.

* Ei%0ivgry * S5%050508 ¢ (5509540

* Y3395 * T5i1% 50 * Tij'oi'j)'

Corollary 3.1. If €15 5500, are i.i.d. multivariate normal with mean

vector 0 and covariance matrix I, and if (1.13) exists (and is finite),
then the subdiagonal elements of n'k(w - nf - EE') have a limiting joint

(p+r) (p+r+l)/2-variate normal distribution with mean vector 0 and covariance

lntrixJE?- (("(i,j),(i',j'))) given by

“(1,5),(1"3") T %4ir%550 T 94500505 ¥ T550%40

+ JTOUTL + MTUS D + tij'°i'j'

- E 5 °2£p+r‘
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+ Tii'cjj' + Tji'sij' + ’15'61'1)'

Proof. Because €;s ©ys... are i.i.d. N(0,Z), we have

0, ifi=o0,i'=0,j=0,0rj'=0,
iji'j

+ 0, J°i g0 otherwise.

oii'ojj' 5 oij'oi'J
The result of the Corollary now is a direct consequence of Theorem 3.1. 0
We note that Corollary 3.1 gives the asymptotic distribution of the
noncentral Wishart matrix in cases where the noncentrality parameter is
o(n).
To find the asymptotic distribution of n (i-B), it is sufficient to
note that (1.9) and (1.10) yield the representation:
(1,B') [0 (H-#N) ] (B,-1)"
(3.11) LK Rk TR

(s-5) !

= (I +B'h)(n 61PnaxS11)n

i n*(s-ﬁ) ren" L6 1) (1+BBY).

22.m1n-

Assuming that A is positive definite, and using (2.13), (2.14) and (3.11),

we conclude that nk(i-B)' and
(3:12)  F e a7 (1088 (1,8 [0 001 (B -1

have the same asymptotic distribution. Since the elements of E are linear
combinations of the subdiagonal elements of n'k(w-iftl)), we conclude that
when the assumptions of Theorem 3.1 hold and 4 is positive definite, the

elements of n (i—l)' have a limiting gg:variato normal distribution with 0

mean vector and a covariance matrix that can be calculated using (3.6) ggg

(3.12). Since the covariance matrix of the limiting distribution of
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ng(ﬁ-s) under the general conditions of Theorem 3.1 involves fourth-order
cross moments of e, and thus is both complicated and hard to estimate, and
since we are primarily interested in the case where ;s ©ys... are i.i.d.

2

N(o o°1 ), we content ourselves with the following.

~p*r
Theorem 3.2. If €1» €ys... are i.i.d. N(O,ozlp*r), and if (1.13) exists
and is positive definite, then the elements of ng(ﬁ-B)' have a limiting
joint rp-variate normal distribution with zero means and covariance between

the (i,j)th and (i',j')th elements given by:

(3.13) o?[o? @ (1 s'a)’lA'l) Y by il em,

Proof. The asymptotic normality follows from the preceeding arguments. The
formula (3.13) may be obtained from (3.10), (3.12), and straightforward
calculation. In the computation, it is helpful to note that if ! = ((tij))
is defined by (3.7), then

I Ta%
(3.14) r= |-~ ) A ( ~P) : a
% B/ ~ \B

~ -~

We note that from (2.14) and (2.22),

lim 2~ (n G

l)A « 871ca ¢+ A epmy Hal, a.s.
n“ e -~ ~p~~ -~

11 ~max. 1

and from (2.12),
lim (I_+BB') = (I_+BB').
noe =T = S

It then follows from Theorem 3.2 that an asymptotic 100(1-a)% elliptical

confidence region for B is:
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{B: tr[n(l +BB' (B-B)A(n G

1) 7 1BB-8)']
(3.15)

11~max 1
-1 a2 2
1-a]},
<r “(p*r)o er[ a]

where xip[l-a] is the 100(1-a)th percentile of the xip distribution.

Turning next to the question of the asymptotic distribution of

nk(r'l(pﬂ)az-oz), we note from (2.16), Lemma 2.3, and Theorem 3.1 that

-1 -1 & - <1 a o -1 -
N Dpin = C22(1,*BB') "(B,-1)(n "W)(B,-I )" (I +BB') "(G},) ’°M“5°

Since it also follows directly from Lemma 2.3 that

lim (I +BB')" (c i

L 37 (S
nbe

Gyp) (Ir‘fg')

=+t as.,

we conclude that

w7y = B 1) N B -1 e ) o (7Y,
or that
Y -1 A2 2. 2} -

W (o) %0ty o e (1,488) (B, 1) [n”F - 900 ) (B, L)', 0380 7 4 0 ).

It now follows directly from Theorem 3.1 that the limiting distribution of
nk(r'l(por)az 02) is univariate normal with zero mean, and a variance
involving B and the fourth-order moments of e. [Note. To obtain this result
we need no; only the assumptions of Theorem 3.1, but also the assumption
that A is positive definite.] In the case when the e1's are i.i.d.

N(o.g .p#r)’ the variance of the asymptotic distribution greatly simplifies,
and we obtain the result:

Theorem 3.3. Under the assumptions of Theorem 3.2,

(3.17) 0%~ (por) - o) »N(o.Za‘r 3
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Thus, an approximate 100(1-a)% confidence interval for 02 is

)

(3.18) to?: |0 - @n) e, | < (2 [1-a)/n) (nr)‘ltrgmm}.

Remark. The methods of proof used in this section differ from those
usually used to prove asymptotic normality of principal components [see
Anderson (1963)] or of factor loadings [see Anderson and Rubin (1956)].
There is, of course, considerable resemblance between the model (1.4) used
in this paper, and the kinds of estimators derived, and the models and
estimators of principal component analysis and of factor analysis. Indeed,
a first step in computing § and 32 is to obtain a principal components
breakdown of the cross-product matrix !; but we must note that in our model,
! is noncentral Wishart with covariance matrix parameter °2£p+r’ while
principal components analysis deals with a central Wishart matrix with a
general covariance matrix {. The analogy of our model to factor analysis
with fixed factor values [see Anderson and Rubin (1956) and Lawley (1953)]
is much closer, although our model makes very restrictive assumptions about
the form of the factor loadings and error covariance matrix. Even though
it is probably possible to obtain our large sample results by specializing
the more general results of Anderson and Rubin (1956), our approach in this
section has the advantage of directness. Further, the representations which
we have used may yield information about the accuracy of our large sample

approximations in finite samples.
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