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SECTION I

INTRODUCTION

At present there is an intense interest among many re-

search groups in learning more about charges and currents

induced on metallic surfaces of objects by incident electro-

magnetic waves. One object of major interest is the aircraft.

Of course , even the simp lest aircraft is an extremely complex

bod y when viewed in the context of a scatterer in an electro—

magnetic boundary value problem. In an effort to obtain at

least a cursory understanding of the behavior of charge and

current induced on an aircraft surface , several research

workers have replaced the actual aircraft by a wire model

configured after the general shape of an aircraft. Then the

current on the model is calculated by means of presently

available techni ques , with the hope that the current and

charge on the model bear a global semblance of those on the

actual aircraft.

Numerous methods [1—8] for calculating currents and

charges induced on thin—wire structures by incident electro-

magnetic waves have been developed in recent years. These

methods are all , of course , based upon Maxwell ’s equations

but they incorporate a variety of approximations to achieve

results. Obviously, the exact boundary conditions of

7
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electromagnetic theory are well known but , in dealing with

complex thin—wire structures , one emp loys appropriate simpli—

fications to reduce his problem to one which is practicall y

tractable. For a wire ensemble with no intersecting wires

(no junctions), the traditional assumptions of thin—wire

theory suffice and lead to accurate solutions. But the

question of what boundary conditions to impose to account for

the confluence of two or more wires remains partially un-

answered. The conditions which are imposed by present

researchers are not mutually consistent.

Since all junction conditions suggested to date are

more or less approximate , the goals that one seeks to achieve

by the application of a given junction condition should be

delineated. Aside from ease of implementation and incor— 3

poration into the solution method , the conditions should at

least ensure accurate axial linear charge and current densities

on all parts of a given structure which are remote , in terms

of numbers of wire radii , from junctions of wires. With this

met , possibl y the next most important objective is to satisf y

the electromagnetic boundary conditions in some sense in the

junction region. At the present time it is not known to what

extent these two goals can be achieved simultaneousl y nor is

it known whether or not exact conditions can be found.

This report describes a research project which is an

initial investigation of the junction conditions. Within

thin—wire limitation , the correct approximate boundary

8
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conditions are developed and are subjected to various theo-

retical and experimental test , but this work should not be

looked upon as final. More experimental verification is

highly desirous.

The purpose of the study described in this report has

been to investigate the thin—wire junction conditions and

the distributions of current and charge on wire structures.

Included in the report are analytical , numerical, and

experimental investigations of the behavior of current and

charge on a wire with a discontinuous radius——the so—called

stepped—radius problem. Measured currents and charges on

wire structures with bends and junctions are given , and an

iterative analysis of the bent—wire scatterer is included.

In Section II is described an analytical investi gation

of the fundamental junction created by the confluence of

two coaxial wires of different radii. Based on theoretical

considerations of this model , the two correct conditions

which must obtain at such a junction are developed. In

Section III , a numerical procedure is presented for analysis

of the stepped—radius wire both as a scatterer and as an

antenna. Experimental results of Section VI serve to support ,

in a preliminary fashion , both the junction conditions set

forth in Section II and the numerical results of Section III.

Section V is devoted to a complete description of the

measurement facility and apparatus as well as to pertinent

construction details of experimental models. As a vehicle

9 
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in which to apply the junction conditions proffered in II ,

an iterative solution pro cedure is developed In Section IV

for the bent—wire scatterer. With the above—mentioned

conditions incorporated in the analysis , the calculated zero—

order current distributions on the bent wire are shown to

be almost identical in shape with measured currents. Not

only does the iterative solution provide a means for ~ending

additional credence to the boundar y conditions but , also ,

of importance as well , it is an analytical techni que from

which one can determine the correct current distributions on

the bent—wire in a direct and simp le manner.

Section VII is a thorough report of first measurements

of current and charge on a bent wire illuminated by a plane

electromagnetic field. Also in this section are found first

measurements on a rather complex structure having a junction

formed by the joining of four non—perpendicular wires. Thls

latter structure , dubbed the V—cross scatterer by the

investigators , is intended to be a crude but useful model

of a swept—wing aircraft.

Lastly, to assess the influence of junction geometry

on currents and charges remote from the junction , measure-

ments are given for the case of a bent wire with a small

sp here at the bend. These data show the effect which a

protuberance , e.g., engine pod , tank , on an object mig ht

cause. Also , they are somewhat indicative of what factors

one must consider in a complete electromagnetic representation

of a prescribed junction geometry.

10
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SE CTI ON I I

JUNCTION CONDITIONS FOR ELECTRICALLY THIN CONDUCTORS

1. INTRODUCTION

An important step in the determination of the distribution

of current at all points on the surfaces of metal radiating

structures that include confluent or intersecting wires is

the correct specification of the currents and their derivatives

at the junctions. Examples of such junctions are (a) the point

of confluence of two straight conductors at an arbitrary ang le

including the straight ang le when the conductors have different

radii; (b) the junction of a vertical antenna with the radial

wires of a top load; (c) the point of intersection of two crossed

antennas that make an arbitrary angle; (d) the junctions in a

fish—bone—like configuration of conductors; (e) the apex of an

umbrella antenna. The antennas that include junctions may be

driven elements or parasitic antennas that act as receivers or

scatterers. Of particular interest are the parasitic crossed

conductors that have been used to simulate an aircraft exposed

to a periodic or transient electromagnetic field of hig h inten—

sity. An accurate knowled ge of the surface densities of current

and charge on the conductors permits the specification of the

tangential magnetic and the normal electric fields. These are

F needed in the evaluation of the fields that penetrate into the

11 
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interior of an aircraft throug h an imperfectl y conduct ing metal

s k i n  o r t h r o u g h  c r a c k s  and a p e r t u r e s .

The co n d i t i o n s  imposed  in the  l i t e r a t u r e  on t h e  c u r r e n t s

at the  j u n c t i o n s  of e l e c tr i c a l l y thin conductors are numerous

a nd v a r i e d .  There  is a g en e r a l  a g r e e m e n t  that Kirchho ff ’s

cu r r e n t  law on the sum of the  i n w a r d l y  d i r e c t e d  c u r r e n t s  m u s t

be e n f o r ced , t h a t  is

~~~
Ij k  = 0 ( 1)

This follows from the fact that for electrically thin conductors

( w it h  k a . < < l  f o r  a l l  r a d i i  a1 of the confluent wires) the charge-

able surfaces belonging specificall y to the junction——as a

region distinct from the wires——are neg ligibly small since they

are of the order of (ka)2. As a consequence , the conservation

of electric charge requires the total current into the junction

to be zero. But (1) provides only one of the n conditions

required if there are n conductors that meet at a junction.

The n—l additional conditions that are needed to specif y the

n currents are given by Miller et al. [1] and Tesche [2] to be:

I’ I ’ I ’  I’
l 2 _ 3 

= 
n

a a a a1 2 3 n

where the prime denotes differentiation in the direction of the

wire and a. is the radius of wire i. These conditions are

justified by their proponents with the statement that the “sur-

face densities of charge must approach the same value as an

12
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observer moves along a wire towards the junction regardless of

which wire he is on. ” Note that the equation of continuity for

co n d u c t o r i i s ,

— i w q ~ — — j w 2 ~ra~ r11 (3)

whe r e q~ is the  cha rge  pe r  u n i t  l e n g t h , fl~ t he  c h a r g e  per  u n i t

su r f a c e  a r e a .  It f o l l o w s t h a t  ( 2 )  is e qu i v a l e n t  t o :

= = fl 3 = = 
~ n

whe re r i .  is the  su r f a c e  d e n s i t y  of c h a r g e  on c o n d u c t o r  i at the

junction. Note also that approximate rotational s y m m e t r y  about

each conductor has been assumed. Other writers [3—6] impose

no condition on the derivatives of the currents at the junction

but state that continuity of scalar potential along the surfaces.

of all conductors at the junction is to be used instead of (1).

This is carried out exp licitly in the work of Butler [5], whereas ,

as pointed out by Logan (7], continuity of scalar potential is

“inherent in the integral formulation of Chao and Strait ” [6].

King and Wu [8]note that the scalar potential is in any case

continuous everywhere except across a double layer as in a

delta—function generator. They impose the conditions :

— I~ — I = = I~ (5)

which differ from (2) whenever the a~ s are not all the same .

Specifically , (5) is equivalent to:

q 1 
= q

2 q 3 
— q

~ 
(6)

13
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and not (4). In (6) q1 
is the charge per unit length on conduc-

to r  i at the junction. Actual computations by Tesche [2] and

King and Wu (8] have been limited to the junction of conductors

with equal radii , in which case (5) is equivalent to (2). The

conditions (5) have been verified exper: mentally by Burton and

King (9] but only for conductors with equal radii.

In a comp l e t e l y  anal y t i c a l  app roach  such  as t h a t  of K ing

and Wu [8]  a s o l u t i o n  canno t  be obtained without the explicit

app l i c a t i o n  of a c o n d i t i o n s  at t h e  j u n c t i o n  of n c o n d u c t o r s ,

viz., (1) and (5). When numerical techni ques such as the method

of moments are used , a rigorous treatment of a junction is not

possible and various artifices are emp loyed. Some of these

enforce Kirchhoff’ s law (1) explicitl y, others do not. In

ge n e r al , the current entering the junction from each conductor

is obt ained by e x t r a p o l a t i o n  and t he  e x t r a p o l a t e d  c u r r e n t s  then

s a t i s f y ( 1) mo r e o r l e s s  accu ra t e l y .  Mo st of the  n u m e r i c a l

p r o cedu r es a c t u a l l y  i m p o s e  n o ex p l i c i t  co n d i t i o n  on t h e  deri-

v a t i v e s  of the  c u r r e n t s  as the  j u n c t i o n  is a p p r o a c h e d  so that

i t  is not  su r p r i s i n g  t h a t  c o n d i t i o n  (5)  is u s u a l l y v i o l a t e d .

T h a t  t h i s  is the  case is ev i d e n t  f r o m  many of the  g r a p hs of

cu r r e n t  d i s t r i b u t i o n  g iven  by L o g a n  [ 7 ] ,  i n wh ich  the s l o p e s o f

both the real and imaginary parts of the currents in the con-

fluent conductors differ greatl y at the junction. Since dis—

continuities in the slopes of the components of current can

occu r o n l y  ac r oss  a delta—function generator , and since such

gene r a t o r s  are n o t  a s sumed  to  be p r e s en t , t he  l oca l  d i s t r i b u t i o n s

of c h a r g e  pe r  u n i t  l e n g t h  and t he  a s s o c i a t e d  r a d i a l  e l e c t r i c

f i e l d s  ca n n o t  be c o r r e c t  nea r  t h e  j u n c t i o n .

14
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The explicit application of (1) and n—l additional conditions

at the junction of n electrically thin conductors is required in

order to obtain correct solutions for the currents and the asso-

ciated charges. Evidence will be presented in the following

sections to show that conditions (5) or (6) but not (2) or (3)

should be applied at the confluence of conductors with unequal

rad i i . C o n d i t i o n s  of continuity imposed on the scalar potential

-i r c o m p o n e n t s  of t h e  v e c t o r  p o t e n t i a l  are o b v i o u s l y r e d u n d a n t

and no s u b s t i t u t e  f o r  ( 5 ) .

2 .  CHANGE IN THE RADIUS OF A COAXIAL L I N E

T he d i s t r i b u t i o n s  of c u r r e n t  and cha rge  per  u n i t  l e n g t h  on

the inner conductor of a coaxial line resemble those aiong a

dipole or monopole antenna in the sense that both are approxi-

mately sinusDidal in their leading terms. This suggests that

the local properties of the current and charge per unit length

at and near a discontinuity in radius should be comparable at

least so long as the cross—sectional dimensions are electrically

small. Such a discontinuity is shown in Fig. 1. Specificall y,

line 1 consists of an inner conductor with radius a1 and shield

with inner radius b in the range of negative values of the

coordinate z; line 2 extends from z=O to positive values of a

with an inner conductor with radius a2>a 1 and the same shield.

Thus , there is an annular step in the inner conductor at z=O

from radius a
1 to radius a2 while the shield continues smoothl y.

15
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Figure 1. (a) Zero—Order , (b) Approximate Actual Distributions
of Charge per Unit Length and Radial Electric Field in a
Coaxial Line.
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The properties of the line with this change in radius of

the inner conductor have been determined by variational methods

(101. Each line is characterized by the conventional par ameters

and a corrective lumped susceptance B connected across the line

at the junction , z0 . The parameters of the line are :

C~~ £n(b/a~ ) 
(7 a)

2ir ( 7b)

Zci i
~~i~

1’
~~i 

(~~0 /2 7r ) ~Qn (b/a~ ) (7 c )

ki w’/~~.~ i = k0 
(7 d )

where i=l ,2. For a line with a1
0.5 cm , a2 1.5 cm and b— 5 .5 cm ,

c1’23.2xl0
12 f a r a d / m , c2— l5.2xlO~~~

2 farad/rn , 2..
1
=4.8xl0 7 henry/rn ,

2~.2 .2.6x1O
7 henry/rn , Zcl=l43~

9 ohms , and Zc2=78~
O ohms .

The general formula for the shunt susceptance B is given

by Marcuvitz (10]. When (a2—a 1
)<< (b—a

1
) ,  which is of interest

here , i t  ha s the  f o r m :

B = 

2A1(a 2 — a 1) 2 
~ ( b — a 1) 

(2
(b_a~ )

Z 1X ( b — a 1) 
~ 

( b — a 2 ) \ a 2 — a 1

(8a)

17
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With B—w C and the use of (7a) and (7c), the shunt capacitance

C at z 0  is:

A1(a2 -a 1) 2 f (b-a 1) (2 (b-a 1)
C c1 iT (b-a 1) ~ ( b — a 2 ) ~~~~~~ a 2 —a 1

+ + ~~~(b _ a
l)

2 
+ ( 8b)

w h e r e  c
1 

is the capacitance per unit length of line 1. In (8a ,b)

(b—a 2)
2 2.n(b/a1

)
A1 a 2 (b -a 1) ( L n ( b / a 2 ) ] 2

A 2 is d e f i n e d  in gene ra l  on page  230 of M a r c u v i t z  ( 1 0 ] .  For

p resen t p ur poses the r an ge of interest is given by:

( b/ a1) > ( b / a 2 ) > > l  (10)

In t h i s  r ange ,

b 9..n ( b / a 1)
A 2 < < l ;  A 1 = 

2 (11)
a 2 [2~n ( b / a 2 ) ]

W i t h  t he se  values and the use of ( 1 0 ) ,  ( 8 b )  b e c o m e s :

a 2 f a1 \
2 9~n ( b / a 1) I

C = cl 
.—
,~
- (1— _ ) 2 ~ Z n ( b / a D )

2 /  a 2 ( 9 . .n ( b / a2)] ~ 
-

+ £ n ( 2 ~~~
]) 

+ 4 + ~~ (b)21 (l2a)

18 
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When b/a 1 
and b/a 2 

are sufficiently large , the leading term is:

2

C — c1 ~~ ( l_  -
~

) ( 12b )

In g e n e r a l  t h i s  is a very  smal l  c a p a c i t a n c e  t h a t  can be n o —

g l e c t e d  in a z e r o — o r d e r  a p p r o x i m a t i o n . For  examp le , with

a 1 O . 5  cm and a 2 = l .5  cm , C/ c 1 as g iven by (l2b) has the value ,

C/c 1 
= 2.1 x l0~~ m (l2c)

whe re c1 is the  cap a c i t a n c e  per  m e t e r  of l ine  1.

If a st an din g wave is maintained on the line with a maxi-

mum voltage at z=O ,

V1
( z )  = V1 ( O ) cos kz , z<O (l3a)

V2
( z) = V

2 (O)cos kz , z>O (l3b)

With the condition ,

V
1

( O )  = V 2 ( O )  ( 14)

and the basic transmission—line equation ,

q~~(z) = c . V . ( z ) ,  i 1, 2 (15)

the following relations are found to obtain: -5

q 2(0) c2 
2,n (b/a

1) 11
= 

C
1 

= 
Zn (b/a 2) 

= 

~n 3.67 
= 1.84 (16)

where the numerical values appl y to the case of a
1=O .5 cm ,

a2=1 .5 cm , b—5 .5 cm. Thus , in zero—order approximation , the

19
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charge per unit length is discontinuous across the junction .

This condition is illustrated schematically in Figs. Ia and 2a

where the charges and the associated radial electric fields

change their values abruptl y at z0 .  Actuall y, of course , the

change from q 1
(z) to q2

(z) is not discontinuous but occurs

over very short distances on each side of the junction with

magnitudes of the order of b . In this range the capacitance

per unit length is not constant , i.e. c1
( z )~~c1 and c2(z)~~c2.

Also , the charges per unit length vary rap idl y but continuousl y

from the value q1
( z )~~q 1(Q) at z~ —5b to the value q 2(z)~~q2 (0)

at z~ 5b. Since kb<<l , it is evident that

q 2 (51 ) c2 Ln (b/a 1)
_______ — = ( 17)
q 1(—5b) c1 £n(b/a 2)

The continuous distributions q 1
(z) and q 2(z) and the associ-

ated electric fields are shown schematicall y in Figs. lb ,2b.

Note that outside a narrow range on each side of z 0 , the

distributions of q 1(z) and q 2(z) are the same as in Fig. la.

Inside this range they differ.

In both Figs. la and lb the small corrective capacitance

C has been neglected. If it were included in Fig. lb , a small

additional charge would be located on the flat annular surface

at z=0 w i t h  a c o n s e qu e n t  ve ry  small shift in the entire standing—

wave pattern toward z=0. The actual distributions of current

and charge on the inner and outer conductors of the coaxial line

are shown schematically in Fig. 2b. Note that q(z) varies

continuously along the inner surface of the shield , changing

20
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Figure 2. (a) Zero—Order , (b) Approximate Actual Charge per Unit
Length on Inner and Outer Conductors of Coaxial Line Near
Change in Radius.
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from q
1
(z) c

1
V
1
(z) to q7 (z) c2V 2(z) in a very short distance

on each side of the junction p lane . On the inner conductor

q(z) drops to zero at the sharp inside corner , builds up along

the annular surface to reach a sharp and hi gh peak at the out-

side corner , and then tapers off rap idly to reach the value

q 2(z) c2T2
(z). On the inside surface of the shield the change

from q
1
(z) to q 2(z) is also rap id but smooth. The magnitude

of the total positive charge in the range _5b~~z�5b on the inner

conductor equals that of the negative charge on the outer

c o n d u c t o r .

The s i g n i f i cant  c o n s e q u e n c e  of t h i s  i n v e s t i g a t i o n  is the

co n d i t i o n :

q (0 )  In b — in a1
q 1(O) 

= 
Zn b — 

~~~~~ 
i— -

~~ 1; Zn b >> in a2 (18)

As t he  ou t e r  c o n d u c t o r  r e c e d e s  f r o m  the  i n n e r  one w i t h  i r i c r e a s —

ing b , t he  c h a r g e s  per  u n i t  l e n g t h  on each s ide  of t h e  j u n c t i o n

become  e q u a l .  A l t h o u g h t h i s  r e l a t i o n  has  bee n o b t a i n e d  w i t h

a TEM mode , t he  d i s t r i b u t i o n s  of c u r r e n t  and c h a r g e  pe r  u n i t

le n g t h  a long  an a n t e n n a  are s u f f i c i e n t l y  s i m i l a r  to  t h o s e  a long

the  inner  c o n d u c t o r  of a coaxia l  l ine , that it seem s r eason able

to  co n c l u d e  t h a t

q 1( O )  = q 2~~J )  (19)

f o r t h e  a n t e n n a  w i t h  a d i s c o n t i n u o u s  r a d i u s . This  is , of

cou r se , a ze r o — o r d e r  r e p r e s e n t a t i o n  f o r  e l e c t r i c al l y  t h i n

co n d u c t o r s .

22
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3. CHANGE IN THE CROSS SECTION OF A SPHEROIDAL ANTENNA

C o n s i d e r a l i ne  s o u r c e  of l e n g t h  2h t h a t  e x t e n d s  f r o m

z — — h  to  z=h a l o n g  w h i c h  a s u i t a b l e  d i s t r i b u t i o n  of g e n e r a t o r s

mai n t a i n s  a s i n u s o i d a l  c u r re n t  of t h e  f o r m :

I(z , t )  = I CO S~~Z coswt  ( 2 O a )

when  t h e  e l e c t r i c a l  h a l f  l e n g t h s  a re ~h =n i i / 2 w i t h  n odd and

I(z , t )  = I m 51fl
~~

Z cos wt  ( 2 O b )

when  n is ev e n .  The a s s o c i a t e d  d i s t r i b u t i o ns  of c h a r g e s  pe r

u n i t  l e n g t h  are  o b t a ined  w i t h  t he  e q u a t i o n  of c o n t i n u i t y

~I ( z , t )  
+ ~ Q~~~, t )  

= 0 (21)

They ar e:

q ( z , t )  = (I / c )  s i n~~z s in wt  , n odd ( 2 2 a )

q(z , t )  = (I / c )  cos~~z s in w t .  ii e v e n  ( 22 b )

whe re c~~w/~~= 3xlO 8 r n / s e c  is t h e  v e l o c i t y  of e l e c t r o m a g n e t i c

w a v e s  i n a i r .

The ex a c t  e l e c t r o m a g n e t i c  f i e l d  at all p o i n t s  ge n e r a t e d

b y t h e s e  d i s t r i b u t i o n s  of c u r r e n t  and c h a r g e  has  t he  f o l l o w i n g

c o m p o n e n t s  i n the  cy li n d r i c a l  c o o r d i n a t e s  r ,~~, z for n odd

w i t h  t h e  u p p e r  si gn , n even  w i t h  t h e  l o w e r  si gn :

23 
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B~~(t) 
- 

O m [S .(~~ — 

~
Rjh ) ± s in (~~t — 

~
R
2h
)) (23a)

Er
(t) = - ~O

1rn [
(Z

~~
h) 

in (wt - 

~R lh ) ± s i n ( wt  - 
~
R2h )] (23b)

E
~~
(t) = 

CO
Im 

~~~~ 
sin(u t - 

~
R lh) ± ~~~ sin (wt - ~

R2h )] (23c)

In thes e formulas ~i0
=4itxl0

7 
henry/rn , C 0 =,JI~0 / c 0 = l2 O7r  ohms ,

R lh = j(z_h)2 + r2 , R2h = j(z+h)
2 + r 2 ( 2 4 )

This field can also be expressed in the sphero idal coor-

d inates k ,kh 
and ~ with the ends of the line source at z=±h

as the foci of a family of prolate sphero ids with semi—major

axes a
e
=hk

e 
and a family of orthogonal hy p e r b o l o ids of two

shee ts with semi—conjugate axes a
h
=hk

h . These are def ined as

follows in terms of the distances R lh and R2h from any po int

P to the foci:

R2h + R lh = 2a
e ( 2 5 a )

R2h — R lh 2ah ( 2 5 b )

The sphero idal coordinates

ke 
= a

e /h  = l/ e  ; kh ah / h  = l/ e h ( 2 6 )

2-4
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are  i l l u s t r a t e d  in F i g .  3. The e c c e n t r i c i t i 2 s  are  e e f o r t h e

spheroids , eh 
f o r  the h yperbolo ids. The coordinates ke and k

h

have  the  f o l l o w i ng r a ng e s :

1 
~ k ~ ; — l  ~ k~ ~ 1 ( 2 7 )

The cyl indrical radial coordinate r can be expressed in terms

of t h e  sphe r o id a l  c o o r d i n a t e s  k e and kh as follows:

r = hj (k 2 — 1)(l — k~~) ( 2 8)

W ith (25a ,b )  — ( 2 8 ) ,  the cy l i n d r i c a l  c o m p o n e n t s  in ( 2 3 a — c )

can be transformed into the following sp heroidal components:

~‘o’~ 
cos(nlrk

h
/2)

B
~~

(k ,kh,t) — 

2 rr h I 2 2 
sin(wt — nITk

e
/ 2 )  ( 2 9 a )

,J(k — l )  ( l_ k h )

C 0 1 cos( nlt k h / 2 )
Ee

(k , k~~, , t )  = — 
, sin (wt — n7r k / 2 )  ( 2 9 b )

e , 2  2 2 e

~~
‘ e 1

~t) 
( 1—k 11)

C0
1 sin (nrr k

h
/2)

E (k ,kh , t) = 
m 

_____________ cos(wt — n7r k / 2 )  ( 2 9 c )

I (k _ k
b ) (k e

_ l )

for n odd. The corresponding expressions for n even are:

25
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1.1 0
1 sin (nlIk

h
/2)

B
~~

(k ,kh~~
t) = — 

27T h 
2 

cos (~~t — nrk /2) (30a)

J (k~~—l) (l_k h
)

C0
1 sin (nhr k

h
/2)

E ( k ,k h , t )  = — 27T h 
~~~2 2 2 

cos (wt — n?Tk /2 )  (3Db)
.J (k _ k

h ) _k
h )

C0
I c o s ( n 7Tk / 2 )

E ( k ,kh , t) = 2ir h r 2 
h 

2 2 
— nirk / 2 )  . (30c)

-J (ke
_ l) (k _ k

h )

In these formulas E
e

(k
e~~
kh~~

t) is the component of the electric

f ield tangen t to the sphe r oi d d e f i n e d  b y k0=cons tant; E(k
e~~
k
h~~

t)

is the componen t of the elec tr i c  f i e l d  perpend icular to the

s p h e r o i d  and , hence , tangent to the hy p e r b o l o i d  def ined by

kh=cons tant . Graphs showing the ellip tica l ly p o l a r i z e d  e lec tr i c

f i e l d  f o r  n 1 ,2, and 3 are in Fi gs. 8.4, 8.5,and 8.6 of Theory

of Linear An tennas (11]. A detailed descri p t ion of the f ield

is on pages 540—546 of (11]. Of importance here are the facts

that B
~~

(k ,kh , t ) and E e (k
e~~

k
h~~

t) are always and everywhere in

phase  wi th each o t h e r  and in p hase  q u a d r a ture  w it h E
p

(k
~~~

kh~~
t).

Each spher0 id , k cons tant , is a surface of constant phase or

wave fron t that exp ands so that its intersection with the z

ax is travels with the velocity of lig ht.

Exac tly the same field (29a—c) or (30a—c) mainta ined

b y a li n e s o u r c e , k = l , with the current (20a) or (20b) can

be ma intained by suitab le currents on a spheroid k =k
e el

27
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for all values of k5 greater than k 1. The required currents

and t h e  a s s o c i a t e d  c h a r g e s  can be o b t a i n e d  b y -requir ing them

to satisfy the boundary conditions:

ax~ = (3 1a)

= f l / C e (3lb)

wh e r e  and ri a re  t h e  s u r f a c e  d e n s i t i e s  of c u r r e n t  and c h a r g e ,

r e s p e c t ivel y ,  on the s u r f a c e  of th e hi ghl y condu ct ing  sp heroid

def in ed by k
e
k
e1~ 

fl is the externally directed normal to the

+
sp hero idal surface , and B and E are the fields with components

given in (29a—c) or (30a—c). Spec ifically ,

I ( k l, kh , t) = 21T r
1
K (k l, k h , t )  = 27Tr

l
B
~~

(k l, kh , t)/1.1O (32 )

2lTr
lTl

e
(k a l, kh , t) 2Tr r

l
E
p (k el~ kh~~t)cO (33)

whe r e

r 1 = hj (k~ 1_ 1)( 1_k
~ )

is t h e  r a d i a l  d i s t a nc e  f r o m  the  axis  to  the s u r f a c e  of the

sp heroid ke=k ei at each va lue  of k h . When (2 9a , c) and (30a , c)

are substitute d into (32) and (33), the required currents on

the sp heroidal surface are :

n o d d :  
~e
(
~~el~

l(
h~~

t) = _ I  c o s ( n l r k h / 2 ) s i n ( w t  — n l T k
1
/2) (35a)
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a even: I(k l,kh,t) — _ I
m sin (n1tkh /2)cos(wt 

— ntr k
1/2) (35b)

The associated charges per unit length along the sp heroidal

surface are:

n odd:

I / 1—k
2

sin(nlrkh/2) cos(~~t 
— nTT k

ei
/ 2 )  (36a)

a even:

= ~~~~~~~~~~~~~cos (n7Tk~~/2) sin(wt — n7Tkei/2) (36b)

A spheroidal antenna is electricall y thin when its semi—

minor  axis b =bJk 2 — l s a t i s f i e s  the  s ame c o n d i t i o n as t he  r a d i u s

of a c y l i n d r i c a l  a n t e n n a .  T h a t  is , co r r e s p o n d i n g  to  t he  con-

dition ~a<<1 for the cy lindrical antenna the spheroidal antenna

must obey the following condition :

8b ~h , J k 2 — l (n ir / 2 ) j k 2
— l << 1 (37a)

This is equivalent to:

j k~~ _ l ~~~~O . 1 /n

or

~ 3. + 0.01/n ; ke ~ 1 + 0.005/n (37b)

29
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I t  is ev i d e n t  t h a t  f o r  e l e c t r i c a l ly t h i n  sp he r o i d s  the  q u a n t i t y

diffe r s ver y l i t t l e  f rom 1 so t h a t  the  f a c t o r  in (36a ,b )

I 1 - k 2

2 = 1. — c (k ~~) (38)
- kel h

i s also near  1. The q u a n t i t y  E ( h k ) is shown g rap hic ally in

Fig .  4.  I t  is seen t o  be very  smal l  e x c e p t  nea r  t he  ends of

th e sp he r oid whe r e kh = ± l .  The t ri gonome t r i c  f u n c t i o n s

si n (a l r k h / 2) and cos(n l r k h / 2 )  are  n o t  ab le  t o  t a k e  f u l l  a c c o u n t

of the  d i s t r i b u t i o n s  of c h a rg e  as the  ends of the  a n t e n n a  are

a p p r o a c h e d .  The q u a n t i t y  j(l_k~~) / ( k 2_k~~) — l_
~~

(k h) is a

w e i g h t i ng f a ct o r  t h a t  i n c r e a s e s  w i t h  d e c r e a s i n g  r a d i u s  of

cu r v a t u r e  of the s p h e r o i d .  In c o m b i n a t i o n  w i t h  the  t r i g o n o r n —

et r i c  f a c t o r s  i t  p r o v i d e s  an a c c u r a t e  r e p r e s e n t a t i o n  of the

cha rge d e n s i t y  on the  s p h e r o i d a l  a n t e n n a  i n c l u d i n g  the  hi gh

co n c e n t r a t i o n s  at the e n d s .

The currents and charges per unit length on a confocal

spheroid with surface defined by k
e=k f-k ~ 

are given by (35a ,b)

and (36a ,b) with kel replaced by ke2• For all values of ke
>k

e2
the fields of the two spheroids with different k ’s are identical.e

The amplitudes of the currents and charges on the two

spheroidal antennas with different k’s are :

= — I (n7Tkh /2) (39a)

I ‘
• -

e \ke2~
kh) = — I Si (nirkh /2) (39b)
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I 1 1 — k
2

cJ~~2 —4 ~~~ (n7r kh
/2) (4Oa)

~~ 
- k 2

= 

°Jk ~~2 — k~ 
~~

11(n 7T k h / 2 )  ( 4 O b )

whe re the  upper  t r i g o n o m e t r i c  f u n c t i o n  is f o r  a odd , t he  lo wer

f o r a even .  At  c o r r e s p o n d i n g  v a l u e s  of k h on the tw o sph e r o i d a l

a n t e n nas the r at i o  of t he  c u r r e n t  a m p l i t u d e s  is

I e (kei ,k h)

e e 2 ’  h

On t he  oth er hand , t he  co r r e s p o n d i n g  r a t i o  of the  c h a r g e s  per

u n i t  s u r f a c e  l e n g t h  is

::~:~~ =h : ~~ 
= 1 +  d ( k h ) ( 4 2 )

The function S(kh) is also shown in Fig. 4. It is very small

except near the ends where it rises rap idly as kh approaches ±1.

This is a consequence of the fact that the charge per unit sur-

face length increases most quickly where the radius of curvature

of the thinner sp heroid decreases most rap idly. It follows

that the ratio of charges per unit surface length on the thinner

to the charges on the thicker antenna rises steep ly near the

ends. At the center of the antennas (kh
=O) the ratio of the

charges per unit surface 1~ ngth is
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q ( k  ,0) k 2 ae e]. = = —~~~~~ = 1.00033 (43)q (k ,O) k ae e2 el el

where the numerical value applies to spheroids with k 1—l.000166 ,

k 2=l.000S. At the ends

[:~ 
= = 1.732 (44)

which is significantly greater than one. The rapidity of the

rise near the end can be seen from the fact that at k
h

O .99S
~

q (k ,O.995) 1k
2 

- 0.990025

~~ (k :2~ O 99S) 
J k~~ - 0.990025 

1.065 (45)

Evidentl y most of the increase occurs within 0.005 of the ends.

In order to study the behavior of the charge near a dis-

continuity in radius , it is convenient to select the spheroid

with n=2 , i.e., ~h—; for which the maximum of charge occurs

at the center , kh O. The currents and charges are given by

(39a ,b) and (40a ,b) with n=2 for two spheroids with different

k~ s. The comp lete electromagnetic field is g iven by (30a—c)

with n=2; it is shown graphically in Fig. 8.5 of [11]. The

fields of the two antenn~’s are identical when k >k . Thee e2

local amplitude of Ep (ke l k h) near kh
=O is shown in Fig. 5a

where the upper half of the diagram app lies to the thinner

antenna with k =k , the lower half to the thicker antennae el
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w i t h  k =k  . Note that E (k ,k )=O at k =0 and is very smalle e2 e e h h

near k
h
=O. For clarity the values of k

3. and k 2 actually

u s e d  in t h e  d i a g ram a r e  m u c h  g r e a t e r  t h a n  p e r m i t t e d  by t h e

condition for electrical thinness. The electric field lines

and t h e  c h a r g e s  f r o m  w h i c h  t h e y  e m a n a t e  a r e  s h o w n  schema t -

ically. The charge per unit surface length , ~~ (k ,k~ ). is

also shown along each surface.

Although Fig. Sa was drawn to illustrate the electric

field and the charges near the point of maximum for one

spheroid with surface defined by k
1 in the upper half of the

diagram , and for a second spheroid with surface defined by

k 2 in the lower half , the representation is actuall y a zero—

order approximation of the fields and charges of a single

spheroidal antenna with surfaces defined by different values

of ke in the upper and lower half spaces and a step at the

junction where k
h=O. The diagram in Fig. 5a for the sp her-

oidal antenna with discontinuous cross section at its center

corresponds to Fig. la for the coaxial line with a change

in radius of the inner conductor at z=0. At short distances

from the junction the electric fields are unaffected and have

the form and magnitude characteristics of an unperturbed

conductor. Near the junction the charges rearrange them-

selves near the step in the sense that their magnitudes are

reduced at the inside corner , increased at the outside corner

with appropriate gradual changes along the adjacent surfaces.

These are indicated schematically for the spheroid in Fig. 5b

in a manner that is analogous to that used for the coaxial

35
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line in Fi g .  2 b .  Note that at short distances from the junc-

tion the fields in Figs. 5a and 5b are the same , just as are

t h o s e  in F i g s .  la and l b .  The m a g n i t u d e  of t he  c h a r g e  per

unit surface length is shown along the surfaces in Figs. 5a

and 5b in a manner similar to that in Figs. 2a and 2b .

The important observation to be drawn from a study of

Figs. 5a and 5b is that the ratio of the zero— order charges

per unit surface length on the two sides of the junction bet-

ween electrically thin half sp heroids with different eccen—

tricities is very nearly unity. This confirms the conclusions

drawn in conjunction with (19) for a similar junction in a

coaxial line.

4. REFINEMENT OF THE THEORY

The discussion of the junction in the coaxial line and

the spheroid is hig hly simp lified and somewhat unrealistic.

In the coaxial line the conclusions depend on allowing the

radius of the outer conductor to approach infinity while

preserving the purely TEN character of the field. This implies

that the cross section of the line remains electrically small ,

so that the limit is valid only at zero frequency. Clearly,

while b should become large compared with a
1 

and a2, it should

not exceed a wavelength. If it is noted that (18) is equiv—

alent to:

q 2(°~ Z~ 1
q 1 (O) 

(46)
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and if it is recalled that in coaxial line theory the char-

acter istic impedance Z~ p lays the same role as the expansion

param eter ~‘=2 [9~n(2/Ba)—O .5772J in an tenna theory, the indi-

cation is that b should approach the large value b=2/~ instead

of inf inity. In this case (46) becomes:

q
2
(O) i’

1 
9.n(2/~~a1

)
= = R~n ( 2 / ~~a2)

If the radii of the coaxial lines at the junction are made

eq ual to the semi—minor axes of the spheroids used in (43)

i.e., ~a2
=~3b 2

=O .O99 , ~a1
=I3b

1
O .O57 , ( 4 7 )  g i v e s :

q
2

(0 )  q
1

( O )  
-= 1.18; = 0.85 (48)

q
1

(0 )

These are mere realist ic values than exactly one.

T h r o u g hout the discussion of the sphero idal antenna it

has been assumed that a suitable excitation exists along the

antenna to maintain currents of the form (39a ,b) with the

ass oci a t ed c h a r g e s  ( 4 0 a ,b). Ac tually, if two an t e n n a s  w it h

d ifferent semi—major axes a =hk and a =hk but the sameel el e2 e2
dis tances between foci , viz., 2h, are excited by identically

distrib uted fields of equal amplitude along their respective

axes , the amplitudes of the currents will not be the same .

S p e c i f i c a l l y , as s h o w n  b y Ryd er [12J

m
n e i

ki) ~[~~
h2 k

1
Y ( k

1
) / Y ’ ( k

1
) ]  X ( k

h
) ( 4 9 )
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for an exci tation of the form

I X (k h )
E(k h ) = 2 (50)

l
~~~~

k h

In these formulas X ( k
h
) is the dis tribution of current along

the antenna and Y (k ) and its derivative Y ’(k ) are func—
n el n el

tions of X (k
h
). Y’(k

1
) has the form

Y ’( k 1) = d ~~ + c ( 51)

In ( 5 1) ,  d and c a re  c om p a r a b l e  in m a g n i tude in g e n e r a l  w h e r e a s

the logari thm is quite large when k
1 

is near one. However ,

d is a function of frequency and goes to zero at the reso-

na nces d e f i n e d  by ~h nir/2 wh ile c remains finite. At resonance ,

Y ( k
1
)=exp(inirk /2) , X (k

h
)=±cos (n1r k

h
/ 2 )  when  n is odd ,

X ( k
h
)=±sin(niT k

h
/2) when n is even. It follows that at reso-

nance and when exposed to identical fields of the form in (50)

alo ng their respective axes , the amp litudes I in (39a ,b )

and ( 4 0 a ,b )  f o r  the an tennas  mus t be r e p l a c e d  b y 1 (k
1
)

such that with I a constant ,n O

I ( k  ) = k  I ; I ( k ,, ) = k  I ( 5 2 )m el el m O m e- e2 nO

It follows further that (41) and (42) must be rep laced b y :

I (k  ,k ) ke el h _~J ( 53)
1e~~~e2 ’~~h~ ~e2
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k
1 
Jk

2 - 
k~

q~~(k~ 2~ k~) k 2 k 1 
- k h

In p a r ti cu l a r , the sp heroid wi th n=2 , $h=iT , that is discon-

tinuous at k
h
=O as shown in Fig. 5 , will have zero—order

currents g i ven  b y

I ( k l, kh) = _I
O
kel sinlt kh (55a)

I ( k 2 , kh) = _ I
O
k
ec

SifllTk
n 

( 5 5 b )

wh ich vanish at the junction , kh
O . The corresp onding

c h a r g e s  per  u n i t  l eng th a r e :

I / 1 — k
2

q~~(k~~1,k~~) = —a k
1~
j 

2 2 
cos7tk

h 
( 5 6 a )

-

I T 1 — k
2

q~~ (k~~2 , k~~) = —
~~~ k~~~
j k

2
2 

— k~ 

cosTr k
h 

(56b)

w h e r e  c is the  v e l o c i t y  of lig ht. At the junction , kh
=O and

I ( k
ei~~

O) = 1e~~~e2 ’~~ 
= 0 ; q~~(k~~1~~O) = q~~(k~~2~~O) = 10/ c

( 5 7 )

T h u s , in the resonant antenna with the junction at a charge

m aximum and current zero , with each half identically excited

40
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in on l y the single resonan t mode , the charges per unit length

at the junction are equal.

With the same excitation but not at resonance the loga-

rithmic term in (51) dominates so that (52) must be replaced

by:

I ( k e1) k 1
I/Z.n[k 1 + l ) / ( k e1 — 1) ]  (58a)

1 ( k
2) 

= k 2 1/ Z n [ ( k  2 + 1)/(k 2 
— 1) ]  ( 5 8 b )

w h e r e  I is a c o n s t a n t  and Z n [ k e+ l ) / ( k e_ l ) ]  co r r e s p o n d s  to

the e x p a n s i o n  p a r a m e t e r  ‘1’ of a cy lindr ical antenna. It

f o l l o ws t h a t

I ( k l, kh) 
— 

k
ei 

Zn[(k e2 + l ) / ( k
2 — 

1)] 
5 9 )I ( k 2 , kh) 

- k e2 k
ei+ l ) / ( k

ei 
— 1)]

and

= 

1
~~1 /k

2
2 - 

k~ ~
n{(ke2 + l ) / ( k e2 - (6 0 )

~~~~~~~~~~~ k 2 J k 2
1 

— k
h 

2~.n[ (k 1 
+ l ) / ( k e1 — 1)]

In par ticular , at the junction ,

~~~(k~~1~~O ) ~n[(k 2 
+ l ) / ( k

2 
— 1)1 

61
q~~(k~~2~~O) = 

Zn[(kej + l)/(k 1 
- 1) ]  ( )

With ke2 =l
~~

OO OS
~ 

k
ei

=l
~~

O O O l 6 ô
~ 

(61)  g iv e s :
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~~(k~ 1~ O) 
-

q (k ,O) — 0.88 (62)
e e2

N o t e  t h a t  t h i s  v a l u e  is in good a g r e e m e n t  w i t h  ( 4 8)  f o r  an

app r o x i m a t e l y  e q u i v a l e n t  c y l i n d r i c a l  c o n d u c t o r .

When the sp heroidal an tenna is not excited by the very

s p e c i a l l y  dis tributed field (50) which excites onl y the

mode , b ut is immersed in an incident p l ane  wave , the total

induced current is the sum of the modes ,

I
t

(k
h
) a I ( kh) (6 3)

where the a are amp li tude coefficients. Even when the fre—a
qu ency  is t u n e d  to  r e s o n a n c e  w i t h  one  of t h e  m o d e s , many

h igher modes will also be present but with much smaller

ampl itudes. It is to be expected , th e r e f o r e , tha t the i d e a l

cond itions leading to (53) will not obtain and that (58a ,b )

will be good approximations . This means that the condition

(61) on the charges per unit length at a junction should be

generally useful.

5. CO~~C L U S I 0N

A caref ul stud y of the p r o p e r t ies of c u r r e n t s and  c h a r g e s

in a coaxial line with a step in its inner conductor and of a

s p h e r o idal  an t enna  w it h a s im i l a r  s t ep leads to the conclusion

that the behavior of the charges per unit length near the

junc tion of two cylindrical conductors with different radii

42
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is no t s i m p l e  even  f o r  e l ec t r i c a l ly thin conductors. How-

ever , a good approxima tion is given by the c o n d i t ion

q 1~~1 q2
1Y
2 = = q~~

’11
~ 

( 6 4 )

where is the expansion parameter for conductor i treated

as an an tenna. The definition of the expansion parameter is

somewha t a r b i tr a r y , but is always a logari thmic function.

Useful values for conduc tors that have lengths h that satisfy

~h~~rr/2 are given by :

‘I’ — 2[9.n(2/~~a) — 0.57721 (65)

For shorter an tennas the appropriate parameter is

= 2 2 . n ( 2 h / a )  ( 6 6 )

where a is the radius of the conductor. The conditions (64)

and the Kirchhoff condition (1) apply to junctions of elec—

trically thin conductors. There is no justification for a

condi tion of the form (2) or (4). The conditions (5) or

( 6 )  may be adequa te approximations of (64) for junctions of

conductors tha t are sufficiently thin and not too different

in cross—sec tional size.

Since in thin—wire theory the surface area of a junction

is n e g l ig i b l e , and each conduc tor is treated as if its charges

were concentrated at an average position on the axis , the

ang le at wh ich two conductors meet is irrelevant. This is

true provided the diagonal distance across a junction is

electricall y s m a l l , and no t on l y the d iameter of the thicker

43
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wire. With this sharpening of the condition for electrical

smallness of the junction , the conditions (1) and (64) may

be app lied in general.
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SE CTI ON I I I

ANALYSIS OF STEPPED—RADIUS WIRE

1. INTRODUCTION

In this section is presented an analysis of the stepped—

radius wire structure shown in Fig. 7. This structure , with

its confluence of two coaxial wires of different radii , is

perhaps represen tative of the simplest thin—wire configura-

tion possessing a junction. For this reason , the b e h a v i o r

of the stepped—radius wire must be understood before more

complica ted junction problems are undertaken. A numerical

p r o c e d u r e  is d e v e l o p e d  f o r  s o l v i n g  f o r  the c u r r e n t on the

stepped—radius wire. The procedure is applied to both a

stepped—radius scatterer and an antenna , and represen tative

resul ts are provided.

In the present investigation of the stepped—radius struc-

ture of Fig. 7 , the wire radii , a and b , a r e  l o o k e d  upon as

be ing very small relative to the wavelength A as well as to

the wire length L. These restrictions , common in thin—wire

theory , ass ure one that the current on each cy lindrical sur-

face is circumferentia ll y independent and that it ma” be

a c c o u n t ed f o r  b y the total axial current , deno ted ‘a on the

cy linder of radius a and on that of radius b . These

q uantities are shown in Fig. 7 , w h i c h  s e r v e s  t o d e f ine

45
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Figure 7. Stepped—R adiuS Wire
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geome tric quantities of interest.

I n the a n a l y s i s  w h i c h  f o l l o w s , the boundary condition

that total tangential electric field be zero on the conducting

surface is enforced on cylindrical surfaces but not on the

small annular surface loca ted where the wire radius is dis—

contin uous at z=s. This annulus is a very small portion of

the total surface area of the stepped—radius wire structure

and , therefore , whe n the wires satisf y thin—wire conditions ,

the accuracy of a solution for current should not suffer

s e r i o u s l y  from a failure to enforce the boundary condition

on the annulus. Experience with thin—wire analyses supports

this simplification , since excellent solu tion accuracy is

ob tainable for problems involving solid wires even though

the boundary condition mentioned above is seldom enforced on

the disks at the wire ends. -

A fur ther simplification employed here is that one

a s s u m e s  he may i g n o r e  the s m a l l  f r a c t ion of to tal f i e l d  d ue

to the induced charge and current which reside on the annulus.

The chargeable ann ular surface is , indeed , s m a l l  compa r ed w it h

the  cy linder surfaces , and  o n l y  a r e l a ti vel y small fract ion

of the total charge on the structure could reside on the

annulus . Ignoring the charge on the annulus or , equ~~valent 1 y,

approximatin g its small value by zero , is tantamount to

requir ing the total axial current to be continuous at the

po int z s  (junction) where the two wires of different radii

join. If the axial current were discontinuous at the step,

charge wo uld be deposited on the annulus in order that the

47
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continuity equation be honored. Therefore , under the assump-

tions set forth , one  cons id e r s  o n l y the ind u ced c h a r g e  and

curren t on the cylindrical surfaces and enforces the boundary

condi tion E =0 only on these two surfaces.
tan

In a sca ttering problem , one requires the sum of the

p r e s c r i b e d  i n c i d e n t e lec tr i c  f ield and the sca tt e red

e lec tr i c  f i e l d  E 5 , due to induced sources , to have zero

tangential component evaluated on the perfectly conducting

cy l in d r i cal su r f a c e s  of the s t r u c tu r e :  (~~
5+~~

1
) G = 0  on the

surfaces. In an antenna problem , one may view the tangential

inc iden t f ield as b e i n g  localized at the emf generator and ,

again , he requ ires this specified field and the tangential

sca ttered field to add to zero on the structure: E
5.
~

I
~
+V5 (z_ z

5
)=0

on the surfaces , where Vô (Z_ Z
g
) is a del ta function of strength

V at Z=Z
g 

due to a slice generator of V volts located at Z
g

•

Due to the thin—wire assumption and the rotational symmetry

in bo th the scattering and antenna problems , the scattered

ele ctric field is independent of ~ and has no component in

the ~ direc tion. Hence , to sa tisf y the bo un d a r y  cond iti on

that the total tangential field be zero on the two cy lindrical

surfaces , one needs only to calcula te E (r ,z ) ,  the axiall y

d i r e c ted sca tt ered  f i e l d , and to require E~~+E~~=O on the surfaces.z z
From bas ic electromagnetic theory applied to the

structureof Fig. 7, one  may r ead i ly calc ulate ES ( r ,z )  f r o m

= — jwA — ~—4~’ ( 6 7 )z z
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w h e r e  A ( r ,z) is the z—componen t of the magnetic vector poten-

t i a l  and t (r ,z) is the electric scalar potential , both of wh ich

a r e  r e a d i l y de termined from the induced current and charge

on the structure. The harmonic time variation of angular fre-

q u e n c y  ~ is suppressed in (67). In view of the assumptions

and sim plifications discussed above , A
~ 

and ~ a r e  c a l c u l a t ed

from the current and charge , r e s p e c t ive l y ,  wh ich res ide w h o l l y

on the cy lindrical surfaces; the contributions to ~ f r o m

charge induced on other surfaces are ignored. The boundary

condi tion discussed above now can be written

ES (a ,z )  + E 1 (a ,z)  = 0 , zc (s ,L / 2 )  (6 8a)

and

E
S (b ,Z) + E 1

(b , z) = 0 , z c (— L /2 ,s) ( 6 8b )

for the scattering problem and

ES (a,z) + V6 (Z—Z ) = 0 z~~(s ,L / 2 )  ( 6 9 a )  —

and

E~~(b ,z) + VS (Z—Z ) = 0 ze (—L/2 ,s) ( 6 9 b )

for the antenna problem.
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2. NUMERICAL SOLUTION PROCEDURE

From Eqs. (67) and (68) or (69), with A
~ 

a n d  ~ w r i t t e n

as f u n c t i o n s  of current , one nay readil y obtain an integro—

differential equation c h a r a c t e r i z i n g  the current on the

step p ed—radius structure. Then , of course , this i n t e g r o —

differential e q u a t i o n  m a y  be  s o l v e d  f o r  t h e  u n k n o w n  c u r r e n t .

The solution t r - - c edure em p lo y ed here is e s s e n t i al l y  the moment

me tI~od [13 1 bu ~~~m h I c h i n g e  ir~ t h e  u s u a l  se q u e n c e  of  s t e p s

of this me :hod .h ich enables one to g a i n  i n t e r e s t i ng  i n s i g h t

into t~~~e nat~~~. e t~~~e numerical procedure. The alte ’at ion

alluded to is that one per ”orms the testing [13] o f  t h e  e q u a -

tion to be solved before the unknown current is  aonroxim ated

as a linear combination of the basis set. The testing pro-

cedure leads to a system of linear equations which represents

a discretized equivalent of the original integro—differential

equation. The numerical solution proc edure is described below ,

in general , for a representative segment of wire beginning at

2
1 

and extending to 2M’ and , subsequently, the method is

app lied to the stepped—radius structure.

a. Testing

Pursuant to the establishment of a linear system of

equations from which one m ay  ultimatel y obtain a S O i u t I O f l  t~~

E-~. ( b 7 ) ,  one equates the corresoonding pro l ec t ions of The

two su es of Eq . (67) onto the space spanned by the :estTh-:

-;et. In other words , i f  T is an element of the te st ir.e set ,
m

o n e  e q u a t e s  t h e  s c a l ar  p r o d u c t  o f  T a n d  t h e  1 e f t — ~~~ n d  s f d e
m

50



- - - - ~~~~~~~~~~~~~~~~~~~~~~~~~ — -- - -~~~~~~~~~~~~~~~
- - - - —

~ 
-— 

— ---~~~
-- 

-— - -

of (67) to that of T
m and  the  r ig ht—ha nd side:

- ~~~~ T >  = <E
s

, T
m> 

, ( 7 0 )

m =

where the scalar product is defined

L / 2

<~ ‘ g> 
= ff g *dz (71 )

z — L/2

Because they are particularly amenable to numerical solutions

of (67) and lead to stable linear systems , the set of piece-

wise linear functions is selected for testing; the m
tlt 

element

A (z) of th is testing set is defined

(A — lZ~
Zm I ) zE(z 1, z~~ 1)

A Z
(z) = ( 7 2 )

0 , z t ( z 1, z~~~~1
)

whe r e

A = ( z  — z
1
) ( 7 3 )

Impl icit in the above , and de picted in Fig. 8 , is the parti-

t ioning of the segment of wire of length z\~~z1 
into ~4—l

s u b i n t e r v a l s , e a c h  of l e n g th A = ( z M
_ z

l
)f(M—l ) .
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Since the testing function A ’ ts zero outside the sub—

doma in zC (z l, z +l
)
~ 

one sees immediat el y that (70), subject

to  ( 7 1 )  and (7 2 ) ,  r e d u c e s  to  ( T = A Z )

~~~~~~~ 
+ juA (r~~z))A~~( z ) d z  = 

f E

S ( r , z ) A ~~( z ) d z  , (74a )

( m = l )

Zm+l Z
m+l

+ j w A  ( r , z )  A~~(z)dz = 
f E

S (r ~~z)A
Z ( z ) d z  , ( 7 4 b )

m = 2 ,3 ,... ,M—l

and

Z
M

_ f (~~~~~~~
( r ~~~z )  + 1 ~~A (r 1 z))A~~(z)dz = 

fE

5 (r ~~z ) A ~~( z ) a z  , ( 7 4 c )

Z Z
M 1  

Z Z
M 1

(m=N)

One integration b y parts aop lied to the portion of each of the

integrands in (74) involving ~ red uces the above to
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~ ( r ,z1) 
_
~~~~
f

~~( r~~z)dz _ jw
fA z

(r ~~z)A~~( z ) d z

z=z
l 

z=z
l

= 
f E~~(r~~z ) A .~~( z dz , ( 7 5 a )

z=z
l

(m=l)

Z Z
m m+l m+ 1

— _ i w
J

’

~~~~( r~~z ) A ~~ ( z ) dz

zm+ 1

= , (75b)

m = 2 ,3 ,4,... ,M—l

and
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~~
(r,zM) +~~~

f
~ (r~~z)dz _ iw

fA~~
(r,z)A

~~
(z)dz

Z Z M 1  z z
M l

= 
fE

S ( r~~z)A~~( z ) d z  , ( 7 5 c )

Z Z
M 1

(m=M)

The testing functions , often called triang le functions , are

ill ustrated in Fi g .  8 . For m=2 ,3 ,.. . ,M— 1 , the testing functions

a re  in te r i o r  f ull t r i a n g les and are assoc iated with Eq. (75b).

On the other hand , due to the integration limits on (71),

testing with is equivalent to testing with a half—triang le

on the lower end while use of yields the same results as

would a half— triangle on the upper end (Fig. 8 )

The vec tor po ten t ia l  A
~ 

due to currents on a wire is

r e a s o n ab l y  s l o w l y v a r y ing with z. Therefore , wi th A suffi-

ciently small relative to wavelength , the approximations below

are q uite good , and they significantl y lessen the computa-

ti onal comp lex ity of the present anal y s i s :

JA
(r~ z)~~~(z)dz ~~A ( r ,z

1
) , ( 76a)

z=z
l
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Zm+l

~ AA (r ,z )  , ( 7 6 b )

f A ( r ,z)A~~(z)dz ~ 
A ( r ,zM

) , ( 7 6 c )

= 2
M— 1

The same type approximation can be applied to the right—hand

sides of (75), but is usually unnecessary because the indicated

integration can almost always be performed analytically. How-

ever , in the interest of notational convenience , the following

definitions are employed:

V5 (r,z1
) = 

JE
S (r,z)A~~(z)dz (77a)

z=z
l

Zm+l

V5(r,z )  = , m=2 ,3 ,...,M-l (77b)

V5 (r ,zM
) = 

JE
S (r~~z)A~~(z)dz ( 7 7 c )

Z Z M 1
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With the appro :~imations (76) and defini tions (77), the

three equations of (75) can be writ ren in the form

~ (r,z1
) - ~ f ~~( r~~z ) d z  - j w  ~ A ( r ,z1

) V9(r,z1) (78a)

1

( m = l )

z z

~~
f

~~(r~ z)dz — 
~ 
f

~ (r~ z)dz _ jwAA
z(r,zm) = V

5 (r ,z )  , ( 7 8 b )

z Z z=z
m-l m

m 2 ,3 ,. . . ,M—l

_
~

(r ,zM) + ~ 
J

~~(r~~z ) d z  — j w  
~ 

A ( r , z M ) = V 5 (r , z M ) , ( 7 8 c )

Z Z M 1

(m=M)

b . Curren t Approximat ion

The nex t step in the numerical solution procedure is to

app r o x i m a t e  t h e  u n k n o w n  c u r r e n t  1( z )  in a ser ies of the f o r m

1(z) ~~~~I i ( z )  (79)

n l
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‘

where each i (z) is a known element of a basis set selected

for representing the current , and I is the unknown complex

coefficient of the ~th term in the series (79). It is the

set of coefficients f I }  that one seeks to determine in the

numerical procedure. A 2 and ~ are wri.tten .as f~’nc tions of

the terms in (79) and then are substituted into (78), which

leads to a system of linear equations that , subjec t to bound-

ary conditions , can be solved for j~I }

A very useful basis set in terms of which to r e p r e s e n t

the current on the stepped—radius wire is that comprising

the so—called pulse functions (i =p ):

1 ZE (Z — A /2 , z + A/2)

= ( 8 0 )

0 z~~(z — A /2 , Zn 
+ A/2)

where Z
n locates the center of the ~~~ pulse. A represen-

tative pulse is shown in Fig. 9 together with half—pulses

on the ends of the  in te r v a l  (z l , zM). The number of pu lses ,

includ ing the two half—pulses , is c h o s e n  t o be eq ual to M ,

the number of testing triang les.

c. A and ~ in T e r m s  of I
Z n

The vec tor potential A
~ 

due to the approximation given

in ( 7 9 )  is c o n v e n i e n t l y  w r i t t e n

A 2
( r ,z) =~~~~~ I A ( r ,z ,R) (81)
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In (81) A is the contribution to the total vector potential

thA 2 from the n pulse:

z
1+ A / 2

A 1 (r ,z ,R) = ~~ 
f

~(z_z
1
~~r~ R)(1z

1 (82a)

Z ‘ = Z
1

z +A /2

A ( r ,z ,R) =~~~~~f:(
z_ z ’~~r~ R)dz ’ , ( 8 2 b )

Z ’ Z —A /2
n

n .2 ,3 ,. . . ,M —1

AM(r,z,R) =~~~~fg (z_z~~~r~ R)dz
? (82c)

z =Z~~~tX /2

where R is the radius of the wire on which resides the current

I be ing approximated by the given pulse and where 1.i is the

permeabil ity of the medium in which the wire resides. In

(82) the kernel is given by

Tt
2 ) 2

1 “ 
—jk [~ +r +R —2rR cos~~’]

g (~~,r ,R) = — 

j  

e 
2 2 2 ½ d~~’ ( 83)

f ~ +r +R —2rR cos~~’J

where k is 2~r/X . By a suitable change of variables in each

expression of (82), these integrals can be converted to the

f o l l o w ing , wh ich are far better suited for computation than

a r e  those  o f ( 8 2 ) :
60

_ _ _ _ _ _ _ _ _  

~~~~~~~~~~~ — - 5 -



~~~~~~~~~~~~~~~~~~~

A 1
(r,z ,R) =~~~~~~~ 

f~~( z _ z ’ _ z
1~~r~~R ) d z t ( 8 4 a )

z ‘=0

A ( r ,z ,R) =~~~~~~~ 
f

~~(z_z
t _ z

~~i r~~R ) d z ’ ( 8 4 b )

Z ’ -A /2

n=2 ,3 ,. . . ,M—l

AM ( r ,z ,R )  =~ f g (z_ z ’_ z~~~r~~R ) d z ’ (84c)

z

The scalar potential ~ due to the charge associated with

the current approximation (79), with the pulses of (80), is

to be calculated as a sum of partial potentials ,

M

~ (r,z) ~~~~I~~~~(r ,z ,R) , ( 8 5)

where , of c o u r s e , ~ is that contribution to ~ due to the
a

charge rela ted to 
~~~ 

As suggested in Fig. 9 , c u r r e n t on

a cylinder in the form of a pulse “deposits ” a discrete ring

of charge at the upper and lower ends of the pulse, where it

is discontinuous. Since the derivative of the pulse is zero

other than at the points of discontinuit y, no other charge ,

e.g., l in e a r  c h a r g e  d e n s it y ,  is associated with the current
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pulse. The total charge deposited at the ~ th p u lse ’s up p er

end—poi n t , z
M +~

I2 , is — -
~~~

-- and that at its lower end—point ,

Z
M

A / ,  is + —
~~~ . The current on the wire surface is a s s u m e d

to be uniform around the wire circumference so each ring of

ch arge is of constant linear density: 
~ 

at z
n
±A /2 .

Now , each partial potential 
~ 

is seen  to be

= — 

~~~~~ 
[g (z_z

1
_A /2 ,r ,R) _g (z_ z

1~~
r~~R)] (86a)

= — 
j 4~~~t 

[g (z_z~~_A /2 ,r ,R) _g(z_ z +A /2~~r~~R)J , (86b)

n=2 ,3 ,. . . , M — l

= - 

j4~~~C [S
z_ z

M~~
r
~~
R _ g (z_ z~1

+ A / 2 i r~~R)] (86c)

where t is the permittivity of the medium surroundin g the wire

st r u c t u r e .

d .  L in e a r  Sys tem of Eq uations for Stepped—Radius Scatterer

If  A of (81)  and ~ o~ (85) sub ject , respectivel y , to

( 8 2 )  and  ( 8 6 ) , are substituted into ( 7 Q ) , one obtains a sv5tem

of linear algebraic equations hav in-~ t1 ~e c u r r c — t  co~~fficie r.t s

l ’ s as unknowns. This system of er, u~i t i o n s  c m es from te s ti:~c
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(67) w ith the triangle testing functions , and it contains the

sante information as does (67).

At this point we adapt the system of equations to the

stepped—radi us wire scatterer. The scheme for app ly ing the

above to the stepped—radius problem is suggested g r a p h i c a l l y

in Fig. 10 . In this examp le , the po rtion of the stepped—

rad ius wire between z=— L/2 and z=s (step l oca ti on) is div ided

into six subintervals of length A
b =[s+L72]/6 , and the remaining

port ion is divided into three subintervals of length

Nex t ( 7 8 )  is app lied individually to the in-

terval zc(—L 12 ,s) and to z~~(s ,L / 2 ) , and the c u r r e n ts 1
b and

‘a are approxima ted by pulses in the re c-~ec tive intervals.

The testing triangles and the pulses are observed in Fig. 10 - ;

wh ere one  sees tha t the c o e f f ic ien ts I~ a n d I~~ of the end

half—pulses are made equal to zero so that I
b
(_L/2)=O and

I
a
(L/2)=0__curren t boundary conditions at free wire ends. With

b a .1
1
=1 10 =0 , the number of unknowns is reduced by two , and , thus ,

( 7 8 a )  app lied in (—L/2 ,s) and (78c) ap plied in (s,L / 2 )  a r e

d e l e t ed to r e d u c e  co r r e s p ond ing ly the number of equations in

the linear system . Also , no tice that the current is made

continuous at the step by the composition of the 7
th 

pulse;

t his pulse occupies an interval of length ½ (
~~a

+
~
lb ) and is the

combination of the upper half—pulse on the larger—radius wire

and the lower half— pulse on the smalle r—radius wire. Corn—

bi~~ing the t~~o half—pulses at the step into -~~ sing le puls e

a
(H= ~~~= I~ red uces the number of unknowns by one , and a corre—
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sponding reduction is achieved in the linear system b y a d d i n g

( 7 8 c ) , app l ied in (—L/2 ,s ) ,  t o ( 7 8 a ) , applied in (s,L/2) .

W ith the current represented by pulses and with the

tes ti ng of ( 6 7 )  ( le a d ing t o ( 7 8 ) )  sugges ted b y the triangles

in Fig. 10 , one applies (68) to E in (77) and enforces (78)

on the surface of the larger—radius wire and on the surface of

the smaller—rad ius wire. The linear system resulting from

the above appl ications of (78) to the two wires in the struc-

t ure of Fig . 10 can be readily solved for the current coef—

f ic ien ts and I~~.

For a general stepped—radius scatterer , one wo u ld d iv ide

(s+L/2) into N
b 

segments of length A
b

( s + L / 2 ) / N
b and (L/2—s)

into N
a segments of length A a=(L/2_S)/N a~ 

Then , app lying

the sche me described above for the examp le of Fi g.lO ,he wou l d

establish the following system of linear algebraic equations :

Nb N + N b

+ IZ b + I aZba 
= , ( 8 7 a )

n = 2

m=2 ,3 ,.. . ,Nb

N N + N

+ iz 5 + ~~~~

b

i:z:a = V 5 ( 8 7 b )

n 2
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‘I’

Nb N + N b

~b~~ab + + 
‘ç-~ 

,a~~
aa 

= ~
a (87 c )

a nn m fl mn in

n 2  n N
b+2

~
Na+Nb

where I~ and are the weighting coefficients of the pulse

approximations for ‘a and ‘b’ respectively. The elements in

the above linear system are defined in (88).

2
m+l

= (88a)

VS = - 

~f E
1 (b ,z) [A b s+2] dz

z= s_A
b

- ~~~~~~~
1(a z) [A a

_z +s]  dz (88 b )

66

____________ - 
———-~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



- - 5 — — - - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

-J -
~~ a

0)
N

It -p -

S

L

3!c - -~N 3.. -
• N

I c--i ~0
-S -S

N .~~ -~~
0

- -S +
N S

N N N

a C c--I

L..... 1 
N ~~—.

a c ~~ -

N 3

N ‘ ‘
~~

‘
~ ~ 

5 
~~~~~~~

•‘
~~~~ 

N

I 
:~.

I.. 3.1
•

I N I

N 

~~~~~~~~ 

-‘ N 

E

“—5------
,  

~~ -

~~ ‘—-5..- ~~
-~~~ ~~~~~~ fl

SI
II __

~I _ o - w

r, 7

~au ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



N
-p

a

N -
N N
-p I

S
C’J N

a - It
- a

-o - + S
- c—I ci:

-
—5- Ct N

cci

I S
ci) I +
I 3.3 -~
N ‘—5 -
‘—5 no N

C I

.0
50

.0 - 50- a -

.0 -
- c--I N

50 5 c--I
.0 N 5-s.

-~~~ + ‘ .0

68



For a specified incident field having a z component E~~,

the system of equations (87), with the definitions of (88),

can be solved for ~1a} and {1 b
1 from which a pulse approximation

for current on the scatterer is readil y available.

e. Reduced Kernel

Although the exact kernel of (83) can be calculated b y

means of elli ptic integrals and can be emp loyed in the coin —

putati on of quantities above , an approximation of (83) lessens

the computer time required in calculations.

The distance from a point (r,0) on the inner circle of

Fig. 11 to (R,4’) on the outer circle is , from the law of

cosines , [r2+R2— 2rR cos~~’] . The maximum value of this dis—

1 1

2 2  2 2 2tance is [r +R +2rR] and the minimum is [r +R —2rR ] from

r 2 +R 21
which one determines the median distance to be 

~~ 2 ]

Hence , one replaces (r2+R2—2rR cos~~’) in (83) by (r 2+R 2 )12

and arrives at a reduced or average kernel for the stepp e d—

radius wire:

-jk(~~
2+½ (r2+R2 ) ]  

2

K(~~,r ,R) e (89)

[~~
2+½ (r 2+R2 ) ]

The viewpoint above leading to (89) is precisel y that in thin—

wire theory from which the usual approximate kernel stems , and ,

indeed , for a constant—radius wire , (39) reduces to the usual
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Inner {r2+R 2_2rRcos~ ’J
CyIinder ~ ’-—~~, j/

(

r

Outer
(
~yUnder - 5.--.—

- Figure 11. Distance in Transverse Plane between Points
• on Coaxial Cyl inders

g_~s~ 
Stepped-Radius

4Z G n d

Figure 12. Stepped—Radius Wire Above Ground
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kernel. Selected sample calculations employing (89) yield

results which exhibit no signif icant error compared with re-

s u l t s  b a s e d  u p o n  t h e  e x a c t  k e r n e l  ( 8 3 ) ,  and , t h e r e f o r e , in t h e

in te res t of e f f i c iency ,  calc ulations reported here are based

upon (89).

f. Stepped—Radius Antenna

If one w i s h e s  to  d e t e r m i n e  t h e  c u r r e n t  on a s t e p p e d —

rad ius antenna , driven at Z Z
g 

by an emf source of V volts ,

he s imp ly r ep l aces  E 1 of (88 )  by V I S ( Z ~~Z
g

) as sugges ted in

(69). Wi th this rep lacement , the linear system (87) can be

solved for the antenna current.

g. Sca tterer or Antenna above Ground

To analyze a stepp ed—radius structure above and perpendic-

ular to a perfectl y condu cting ground screen as depicted in

Fig. 12 , one on ly  has to a p p e a l  to sy mme t ry and to m o d i f y the

kernel , (83 )  or ( 8 9 ) ,  in the usual way.

3. SAMPLE RESULTS

In Figs. 13—24 are pr esented selected results of currents

on stepped—radius wires. In all cases the presence of the

step influences the magnitude of current relative to wI~at it

wo uld have been on a constant—radius wire , b ut the effect on

the shape of the distribution depends upon length and certain

fea tures of the excitation .

N e a r  r e s o n a n c e , w h e r e  the f o r c e d  r e s p o n s e  is do m ina t ed

b y the  r e s o n a n t r e s p o n s e , the d istribution is 1~~ttie affected
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by the presence of the step or its position on the wire. This

is supported by the data of Figs. 13— 15 where are disp layed

currents on wires which have steps in various locations and

wh ich are illuminated by a normally incidemt plane wave.

Those  k n o w l e d geable in thin—wire theory are aware that the

forced current is dominant on a lX wire which is symmetrically

exc ited and they know that this response is essentially a

sh ifted cosine function. Only, i f the  f o r c ing function

possesses an odd—function component , can the resonant cur-

rent respond on a lX wire of constant radius. On the other

h a n d , in the case of a iX stepped—radius wire having, of

co u r s e , th e odd symmetry within the structure itself , one

does expec t a component of resonant current. This is vividly

exhibited by the data of Fig. 16 w h e r e  one sees  a sign i f ican t

change in the real current on a stepped—radius wire over that

on a cons tant—radius wire.

F i g .  17 shows the current on a stepped—radius scatterer

ca used by plane wave illumination impinging upon the wire at

angles U (w.r.t. z axis). Fi gs. 18 and 19 prov ide infor-

mation on the variation of peak current on stepped—radius

scatterers of lengths below and above X /2 .

Figs. 20—23 give comparative data for lX antennas excited

symmetrically and antisymm etrically. Again one observes

little influence on current due to the presenàe of the step

at s=0 when the exc itation is an odd function ,but a marked

effect is seen itt the case of even—function excitation.
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L a s t l y , show n in F i g .  24  is t h e  c u r r e n t  on a s t e p p e d —

r a d i u s  m o n o p o l e  above  a g r o u n d  p l a n e .  The i n h e r e n t  s y m m e t r y

of such an antenna suggests that no major change in shape

of current is to be expected , and this is corroborated by the

r e s u l t s  of Fi g .  2 4 .
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SECTION IV

AN ITERATIVE—SOLUTION ANALYSIS OF THE BENT-WIRE SCATTERER

1. INTRODUCTION

In this Section , a theory is developed b y means by

wh ich one may de termine the current induced on a bent—wire

sca tt e r e r  i l l u m ina ted b y a s p e c i f ied i n c i d e n t elec t r o m a g n e t ic

f i e l d  (~~
1
,H

1
). The solu tion procedure is of the iterative

type and , in g e n e r a l , f o l l o w s  the p r i n c i p les set forth in

r e c e n t w o r k  b y K i n g  and Wu [8 ,14]. However there is a sig-

nificant difference in the iterative procedure applied to

the bent—wire problem compared with that applied to either

a stra ight wire or perpendicular crossed wires. This analys is

is app lied to the problem of a bent—wire scatterer in free

space , as depic’ed in Fig. 25, as well as tha t of a bent—

wire scatterer above an ide al g r o und p l a n e  (F ig. 26).

Calc ulated results are presented for several cases of interest.

The stra ight wire elements of the bent—wire structure

are treated as perfect cond uctors and the usual simplifi—

ca tions of thin—wire theory are emp loyed in the analysis.

Pr inc ip a l l y ,  the el ement radii are assumed to be very small

compared with the wavelength X , and the current density is

considered to be essentially uniform around the perip h e r y  of

an element.
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In the analyt ical solution procedure which follows , an

e x p r e s s i o n , suitable for iteration , is derived for the total

a x i a l  c u r r e n t  on e a c h  e l e m e n t .  In F i g .  2 5 , one sees the bent

wire located in a Cartesian coordinate system with the bend

at the origin. One wire is coaxial with the z axis , and the

o t h e r  e x t e n d s  f r o m  t h e  o r i g i n  r a d i a l l y o u t w a r d  in t h e  yz

p l a n e  a l o n g  a l i n e  w h i c h  is d e c l i n e d  f r o m  t he  z a x i s  b y an

ang le 6. Tne d irection of the axis of the latter wire is

designated the s direction. I~ is the total axial current

on the z—d irected wire , and I is that on the s—directed
5

wire as shown in Fig. 25 which serves to define other geom-

etr ic quantities of interest.

2 .  A N A L Y S I S

In the p r e s e n t anal ys is , e x p r e s s ions f o r  I and I

a re  f o r m u la ted and a re  used  to ob t a in z e r o  and f i r s t o r d e r

s o l u t ions  b y iteration. The above—mentioned expression for

is developed below from consideration of the magnetic

vector poten tial A and the partial differential equation which

this quantity satisfies.

Since the current on the bent wire is in the yz p lane ,

one ca n read ily show [ ]  that

+ k2 A = j -
~~

--- E — -
~~

---- (~~~~
— A (9(fl

I 2 z z o z \ ~~v v)
L~~Z 

- -

where A and A are the and v components of the vectorz y -
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potent ial , E is the z component of  the electric field result-

ing from currents induced on the scatterer , ~ is the angular

freq uency of the suppressed harmonic variation in time , and

k is 2ir/X . Cons id e r now tha t E ,A , and A are evaluat ed onz z y

the surfaces of the z—directed wire in Fig. 25 along the

line (a ,O ,z) for zc(—h ,O). In order to satisf y the b oundary

condition that total electric field tangential to , and eval-

uated on , the perfectl y conducting wire surface , one req ui res

E ( a ,O ,z ) + E 1 (a ,O ,z)=O , zc (—h ,O) w h e r e E 1 is the z component

of E 1. Equation (90) is a well—known inhomogeneous differ-

ential equation , and one can demonstrate [ 5 1 that , on the

7—d irected wire ,

A ( a ,O ,z) = 
~~~~~~ [~~~

cos kz + B s in kz + V~~( z )  + U 2(z)] (91)

where C and B are arbi trary constants of integration , wher e

,i is the permeability of the medium , and w h e r e  V~ and

are  de f ined

V~~( z )  = - j ~~ fE
1 (a ,O ,~~)sin k(z-~~)dç (92a)

w ith n the intrinsic impedance of the m edium and

U ( z )  = - ~f [~ A (a ,y~~~)].c33 k(z-~~)d~ ( 9 2 b )



The z—dir .~cted ve ctor potential A in (91) is

A ( a ,O ,z)  = 

~~ JI (z K ( z ~~z ’ ,a )dz ’

+ cosS~~~~ fI (s ’ ) G ( z ~~s ’~~a~~~ds ’ ( 9 3 )

s ’=O

w h e r e

-jk [~~
2
+a

2
} 
2

K (~~,a)  = 
e 

(94a)

~.2 2 2
[; +a

and

2 2 2
—jk[a + 

~~ 
s in 6 + (~~— Ycos9r1= e (9~~b )

‘ 2 2 2
[a’ + Y s in e +(~~— -~,‘cosa )

At a point in space (a~~~y~~z), A is

2.

-jkR

A ( x ,v ,z) = -
~~~~~ sine f I ( s ’ )  e 

R ds ’ ( 9 5 )

5 ‘=0
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wh e re

R = [a + (y-s ’ sinO ) + (z-s ’ cosO )
2
] (96 ,

The der ivative of A appearing in (92b) is seen to be

3-s—— A ( a ,y, z )  =

- - I y=0

~ c 1 k i  
— jkR

- - ~~~~ s in 8  J s ’ I ( s ’) ~ —
~~

- + j —

~
-j  e 

~
‘ ds ’ ( 9 7 )

s ’=O ~
‘

H e n c e , sub ject to interchange in order of integration in (97),

U of  ( 9 2 b )  b e c o m es

2. z

-sin 2e fs
h l ( s I ) f  [ —+- + -_

~
_ -j e~~~~

R
;5 eQs k(z-;)d ds ’

s ’=O ~=0 (98)

w ith

R~ 
= [a

2 
+ s c 2sin

2
~ + (a-s ’ cos~~)H (99)

The do uble integral of (98) can be reduced [151 to the single

integral ,
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-sin
2
~ fs

’ I ( s ’)[ 2 [(~~
_s ’ cose) cos k(z-;)

R . [a + s ’ sin 9]
, ~ss =0

j R si~ k ( z -~~) ] 
} ç =0

d 5
1 ( 1 0 0 )

which enables one to exp ress U~ in the form of (101), which is

U ( z )  = — s in
2
O fI (s ’)  ( 2 2 2 ) ~~(z-s ’ co s 9 ) G ( z ,s ’ ,a

s ’ =O 
[a + s ’ s in 6]  L Z

—jk [a
2 

+

+ s ’cosOK(s ’ ,a ) c o s  kz  + j e Z 
sin kz } ds ’

( 101)

computationally much more manageable than is (92b). At :=0 ,

U
~ 

is seen from (92b) to be zero and , for z less than zero by

a few radii (a), the integrands of (101) are quite easy to

i n t e g r a t e.

W ith the kernel K defined in (94a) partitioned into real

a n d  im ag inary parts ,

K (~~,a) = K ( , a) + 1K. (~~,a) (102)

A r i

w h e r e
93
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K r (
~~, a) cos kJ~

2 + a 2 
( 103a)

+ a 2

and

/ 2  2 ’
K (~~, a)  = — 

sin k~i~ + a ( 103b)
j~~2 + 2

Equ a t i o n  (91) can be r e a r r a n g e d :

I z (z ’ ) K r
( z _ z ’ , a z )dz ’ = C cos kz + B sin kz + V~~( z ) + U ( z )

+ U~~~
( z )  + U~~i

( z )  (10 4 )

w here

U~~5
( z )  = — c o s O  fI s (s ’ ) G ( z~~s ’~~a~~)ds~ 

( 105a)

S ‘ — 0

and

U~~~( z )  = _ i
fI~~

(z ’ ) K j (z _ z ’
~~

a
~~

)dz ’ (105b)
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Now , without approximation , (104) yields

‘F (z)I (z) C cos kz + B sin kz + Vi(z)z z z z z

+ U
~~

( z) + U ( z) + U
~~
.(z) (106)

subject to the definition ,

‘F (z) = I)~~~~ fI2 (z ’)K (z_ z ’~~a )dz ’ (107)

z

A procedure parallel to that leading to (104) for the z—

directed wire can be applied to the s—directed wire to obtain

C cos ks + B sin ks + V1 ( s ) + U
5(s)

+ U (s) + U .(s) (108)

where C5 and B are arbitrary constants peculiar to the s—

directed wire and where the remaining terms in (108) are

defined below.
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a 
I (s) fIs

(8 ’ ) K r
(s_8 ’

~~
as)ds ’ ( lO 9a )

s’aO

S

Vt (s) -j ~~~~~~~~~~~~~~~~~~ k(s-~~) d~ (109b)

U5~~
(s) = _cosO

fI~~
(z ’)G(s

~
Z’i a5)dz

’ (lO9c)

U5~~(s) = -j f15
(s ’ ) K i

(s_s ’ ,a5)ds
’ (lO9d)

s ‘=0

U (s) = — sin 2O ft (z’)( 2 
~~~
‘ 

2 ) ~(s—z ’cose)G(s ,z’,a )
S Z \ [a + z’ sin 8] L

z’ —h

-jk(a 2 +
+ z’cosOK(z ’ ,a5)cos ks + je 

sin ks~ dz ’
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a. ‘F—Functions

When a<<A , which is true for thin wires , the real part

of the kernel of (94a) is highl y peaked for small ~/X and

decays very rapidly for ~>>a. These properties are evident

from the approximations below:

K (~~,a) = 
cos ki~~ + a

2 
= 

cos 27ri(~~/A )
2 + (a/A ) 2

r 
j~ 2 + a2 AJ (~~/ A ) 2 + (a /A ) 2

K (~~,a) ~ 
1 

— ~~ ~~~~~~~~~ + (a / A ) 2

Aj(~~/X ) + (a/A)

~ /X <<1 and a / A  <<1 (110)

and

Kr(~~
,a) 

cos k~ , a/A <<1 and ~>>a (111)

Due to the sharply peaked behavior of Kr near ~=0 and the

fast decay for ~>>a , Kr exhibits the selecting property of a

delta function. The ‘F—functions defined in (107) and (lO9a)

may be represented by
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‘F(w) = f ( w )  
~~

2

f ( w !)K
r
(w_w ~~,a)dw t

which , for a<<A , is reasonably well approximated by

w2

‘F(w) ~ f i  
+ 

dw ’ , wc (w1,w2)

c (w-w)~~ + J1
~~~_w )2 + a2 1

~ 2n~ ____________  
(112)

L (w_w 2) 
+j(w_w 2)

2 + a2 ~

The ‘P—function is almos t constant f o r  w remote , in terms of

numbers of a, from end points w1 
and w2 but varies quite rap—

idly within a few radii of either end; its value at w1 and w2

is approximately one—half its value at (w1
+w2)/2 for (w2—w 1

)>>a.

One may obtain a good approximation of ‘I’’(w) at w1 
and w2:
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a 
f() ff(w

v ) 
~~ 

Kr
(w_ w ’ ,a) dw ’

w ’

- (f~~~ ]Zff(w
t)K

r(
w_w ’

~~
a)dw ’

w ’

f ( w )  ff(w~ ) ~~ 
Kr

(w_ w ’ ,a)dw ’ - f’(w)’F(w)/ f(w) (113)

w ’

At w w 1, the first term in (113) can be well approximated by

w2

1 ~~
‘ (w -w ’)

— f ( w ) j  f ( w ’)  
3/2 dw ’

1 

~
‘=
~ 1 

[ ( w
1
-w ’) 2 + a 2 1

r (w
l
_w ’)

— J 2 2 3/2 
dw ’

~~~~~~~~~~~ 
[ (w

1
-w~ ) + a ]

which reduces to
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1 1— —  a t w wa w2—w 1 1

and

1 1
— — + 

— 
at wawa w2 w 2

For reasonable values of (w2—w 1
)>>a but not exceeding roughly

100 , ‘F(w) is not significantl y greater than 2 R.n (~ 7. Hence ,

for f’(w) typical of the derivative of current on a thin wire——

not at a free end——the second term in (113) 4~~ very small com-

pared with the first at w1 or w2, and one has a 
simp le but

good approximation of ‘F’ at w1 
and w2:

( l l 4 a )

‘I ’ ’ ( w 2 ) — (114b)

It is worth noting that the value of ‘F or ‘F’ at either w1 
or

is highly sensitive to a but is insensitive to (w 2—w 1) so

long as (w2—w 1 )>> a.

In view of the properties of the ‘F—function given above ,

‘F (z) and ‘F (s) are seen to be almost constant except near

the upper and lower ends of the individual wires. The values

of ‘F and ‘F5 may be obtained from (112) with appropriate

interpretation of w
1
,w2, and a , and the derivatives of these
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‘F—functions at the wire junction (bend) are , from (114),

‘P~~( 0) — ( l l 5 a )
z

‘F~~(O) = 
~~~~

— ( l lS b )

b. Outline of Iterative Procedure

The large value of the ‘F—functions for thin wires and the

observation that some terms in (106) and (108) are far more

significant than others suggest that these expressions may be

amenable to an iterative solution procedure for determining

and I In such a procedure , one identifies a so—c alled

zero—order solution which comprises only terms that themselves

are not direct functions of the currents.

The zero—order currents, 1° and 1°, from (106) and (108)

are

I°(z) = ~~~~— [C° cos kz + B°sin kz ÷ V~~(z)] (ll6a)

I:(s) = 

~ 
[ C cos ks + B: sin ks + V

t
(s)] (ll6b)

• where the ‘F—functions , defined in (107) and (109a) , are

approximated by (112). One observes that in (106) and (108)

the U—functions, each of which depends upon current on the bent

wire as is seen exp licitl y in (101), (105), and (109), are
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ignored in the zero—order solutions. Expressions (116) are

subjected to boundary conditons and the zero—order coefficients ,

C°, B°, C:, and B , are thereb y determined.

Finally, returning to (106) and (108) and using the zero—

order currents as approximations to the exact currents in the

integrands of the U—functions , one forces I~ and Is to satisf y

boundary conditions and thereb y calculates C~~, B~~
, C5 , and

B8. With these coefficients in (106) and (108), one has what

are called first—order solutions for I~ and I~~.

In a procedure like that described above , the influence

of the zero—order currents upon the first—order is proportional

to the factor 1/’F ; hence , the Importance of a large ‘F—function

is clearly evident.

The boundary conditions which one enforces are (1) that

the current vanish at the two free ends of the bent wire and

(2) that both the current and its first derivative be con—

tinuous at the bend. In summary, these boundary conditions

are

I2 (—h) = 0 (ll7a)

1 (Z) = 0 (ll7b)

1 (0) = 1 (0) (ll7c)
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[h 1 (z)] 
z 0  

= I’(O) = [h I (s)] 
s=Q 

=

c. Current and its Derivative at the Bend

If the structure under study here were a straight wire

(bent wire with O i 0 °) or even the complex structure compris-

ing two wires which cross at 900 [8,14], it would be found that

an iterative solution could be formulated in such a way that

the ‘F—functions would be essentially constant even at the

confluence of wires. Howeve r , in sharp contrast to analyses

of the structures above , the iterative solution method for

the bent wire must fully account for effects of the large

derivative of the ‘F—functions at the bend. In addition , and

of paramount bearing on the present analysis , one cannot

relegate to a secondary role the contributions from one wire

to the value of current on the other when the point of eval-

uation is at the bend——a point common to both wires. In

other words , the determination of I~ and its derivative at

z=0 cannot be made without cognizance of I~ at s O .  Hence ,

before the first order coefficients are calculated from

boundary conditions (117), a thorough investi gation of cur-

rent and its derivative is in order.

From (106) ‘F (O)I
~~
(O) is

‘F (O )I (O) = C + U (O) + U~~~(O) (118)

since U
~~
(O) is seen from (92b) to be zero. Notice from (lO5a),
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(94b), and (94a) that U25 (O) is

U
~ 5

(O) = —cosO fI (s ’)K(s ’
~~
az)ds ’

s ‘=0

and , even though the integration above is over the s—directed

wire , it reduces to

Uzs (O) = -cose ‘F (O)I~~(O) -j cose fI
(s’)Ki

(s ’~~az)ds
’ (119)

s ’ O

Since I
~~
(O)=I

~~
(O) as required by (ll7c), (119) and (118)

yield

‘F~~
(O)[l + cos8]1 5(O) 

= C~ —j cos8 fIs(s’)Kj
(s ’ ,a )ds ’

s ’=O

-j fI~~
(z’)Ki

(z’
~~
az

)dz ’ (120)

z

By a similar procedure , one obtains the following for

104



r

‘F (O)[l + cosO ll (0) = C -j cosC 
fI~~

(z ’)K .(z’ ,a )dz ’

-j  f1(s ’ ) K j (s ’~~a ) ds ’ (121)

5

Subject to the definitions of the constants ,

= —j cose f15 (s ’)K.(s’,a )ds ’ + U JO) (l22a)

5

and

= — j cosU fI~~
(z ’)K . z ’

~~
a
5)dz

’ + U ~~~(O) , ( 12 5)

which are clearly not zero—order contributors , (120) a r c  ( 1 2 1 )

lead to

1 (0) = 
Z 

~
Z
cosej (123a)

and

I~~(O) = 
‘F (O)[i + cose] (123b)
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Next , in order that boundary condition (ll7d) may be

enforced , it is necessary to investi gate the derivatives of

each term on the right—hand sides of (106) and (108). Onl y

U and U of (106) and U and U5~ of (108) require special

attention; ~ence the derivative of U (z)+U (z) at z—0 is

investi gated in detail.

From the definition of U
~~
(z) in (92b), the desired deriv-

ative of this function is seen to be

U~~(O) = [.

~~ 
U2(z)~ z=O 

= — 

~~ Lh~ 
A
y
(a

z,Y~ 0)] y O

or

U ’(O) = -sine

s’=O z=O

Since

I —jkR —jkR
J~~ /e J~~ /e Y

~~~~~~ R
y 

~“I ::~ 
= - s i ne c~j—r~~ R~

= —sin 8 -

~~

- -

~

- K(s ’ ,a )  ,

U~~(O) becomes
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U~~(O) = sin
2
8 fIs

(s ’)  ~~~ K(s ’ ,a )ds ’ . (124)

S ‘=0

At this point , attention is turned to the derivative of

U (z), which can be writtenzs

U ’
5 (O) 

= U~ 5(z) 
~ z=O 

-cose fI (s’) [f G(z ,s’ ,a )  
~ z=O 

ds ’

s’=O

One can show that

[f G (z,s T ,a ) J 
z=O 

= _eose [ ~~~ G(z ,s ’ ,a )  
z=O

which leads to

U ’ (O) = cos 2OfI (5 ’)  ~~~~~ G ( O ,s ’ ,a )ds ’

Recognizing that G(O ,s ’ ,a )aK(s ’ ,a ) ,  one obtains

U ’ (O) a cos 2O fI (s ’ )  ~~~ K(s ’ ,a )ds ’ (125)

s ‘=0
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Now , the sum of (124) and (125) is simpl y

U ’ ( O )  + U ’ (O) = fi (st ) 
~~~ 

K(s ’ ,az)ds ’ (126)

S ‘=0

The portion of the integra’~d of (126) involving Kr~ 
the real

part of K , can be integrated by parts and (126) can thereb y

be converted to

cos kZ cos ka
U~~( O )  + U~ 5 ( O )  = 1

5
(L) Z 

— 1 (0) az 

Z

— 

f 
~~~ I(s ’) Kr (s’,a~

)ds ’

s ‘=0

+jfI (st )~~~~~~Ki (s
?
~~az)ds~

5 ‘=0

in which the excellent approximation Kr (Z ,az)~ 
COS kZ is

utilized. Now , in view of the selecting property of the ‘F—

cog ka
fiinction andSince a 

Z — ‘F’(O) as indicated in (114),

one arrives at

108
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‘

U~~(0) + U~ 8
(0) 1 (Z )  + I

~~(0)’F’(0) - I’(O)’F (O)

+j fi5~~s ’~ ~~~ K~~(s’ 1 a )ds ’ ( 127 )

8 ‘=0

With (127) available , the derivative of (106) is readily seen

to be

~~~~ 

( ‘ F~~~~
z I

~~~~Z ) ) ]  = [‘F~~~
2 I

~~
(z) + ‘F’(z)I (z)] 

z=O

‘P(0)I’(O) + ‘F’(O)I (O) = kB
~ 

+ U~~( 0) + TJ~~~ ( O )  + U ’1(0)

kBz 
+ 1 (2 , )  C O S  kZ 

+ I (0)’F’(O) — I~~(0)’F (0)

+~~fIs(s ’ )~~~~~~Ki(s ’~~a )ds ’ +J fI (z’)~~~~~~Kj(z’ ,a )dz ’

(128)

Since I~~(O)=I (0) and I~~(0)=I (0), the above reduces to
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2’Y (O)I~~( O )  = kB~ 
+ 1 ( Z )  C O S  kZ + ~ (129)

where

W~ = j JI~~
(z ’)  

~~~~ 
K~~

(z ’~~a~~
) d z ’ +j f I ( s ’)  ~~~~ K1(s’a )ds ’

z ’ =—h
(130)

Similarl y,

2’F~~( 0) I ’(0) = kB
5 

- I
~~
(-h) C O S  kh + W (131)

where

w = j fI (z’)  ~~~ K~~(z’~~a )dz ’ +j fi5~~s
’~ ~~~ K .(s’,a )ds ’

z’=—h s ’=Or (132)

From (123) the requirement that current be continuous at

the bend (117c) is equivalent to the following relationship

between C
~ 

and C :

‘P (0)
C3 

= 
‘F:( 0 )  [c~ 

+ P
z] 

— P 5 (133)

Similarly, continuity of derivative (117d) requires
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a :~ 
[B + 

1 cos kZ + 
~ 

w~~]

+ 
~~~ 

‘z~~~ ’~ 
— ~ W (134)

Now the need to consider the derivative of the ‘F—functions

is evident. If , for example , ‘F’(O) were ignored , and , hence ,

did not exist on the left—hand side of (128), the term

I~~(O)’F’(0) on the right—hand side of (128) would have remained

and wou ld  appea r  in ( 1 3 4 ) .  S i m i l a r l y ,  a t e r m  i n v o l v i n g

Iz(O)’F’(O) would appear in (134), and the two together would

contribute a term proportional to

1 (0) 
[

‘i’’~~o) — ‘P1 (O)] = _ I
z

(O) [
~

— + i—] .

Cle ar l y , a ver y large term like the above would incorrectl y

“uncoup le ” the coefficients B
~ 

and B
3 

and would cause B
~ 

to be

prohibitively large in magnitude.

d. Zero—Order Currents

The zero—order coefficients are determined from the ap—

plication of the boundary conditions (117) to Eqs. (116)

which , since V , V , — V , and — V are zero at the bend ,
z s dz z ds s

r e s u l t s  in

c° cos kh — B° si n kh = — V~~(—h ) (l35a)
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C~ cos k2, + B: sin kZ —V~~(~~) (135b)

. c° = 

~
}— C: (l3Sc) *

B° = 
~~~~

— B: (135d)

where the ‘F—functions are treated as constants calculated from

the approximations (112) evaluated at the midpoint of the ap-

propriate wire. Equations (135) Can be solved for the zero—

order coefficients :

‘F
~~~~~

- V~~(Z)sin kh + V1(-h)sin kZ

Z 
= — s in  k (h+Z ) (l36a)

‘F

— 

j~
-
~~ 

V
1(Z)cos kh — V 1(—h)cos kZ

B — — 
sin k(h+Z) 

(136b)

where (h+Z )~~qA /2 , nal ,2 When C and B° are determined ,

c° and B° follow from (135c) and (l35d) or

• ‘F
c — 

~~ 
C° (l36c)

‘F
B° = —~ B° (136d)
5 ‘F zz
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Equation (l35d) follows from boundary condition (llld) which

equates the derivatives of the currents at the bend. In the

computation of these derivatives for determination of the

• zero—order coefficients , the ‘F—functions are treated as

constants even though this is clearly not the case near the

bend. However , Eq. (135) is exact within thin—wire approx-

imations and supports the treatment of ‘F as a constant even

at the bend.

e. First—Order Currents

Returning to (106) and (108) and using I and 1 of the

zero—order solution in the U—functions where I~ and I

appear , respectively, one has first—order currents. These

first—order solutions are improvements based upon the zero—

order approximations. The first—order coefficients C~~, B~~
,

C5, and B 3 are determined from requiring (106) and (108) to

satisf y the boundary conditions (117). To fully account for

the fact that the ‘F—functions possess appreciable derivatives

at the bend , the enforcement of (117c) and (ll7d) is achieved

through (133) and (134). Equating I~~(Z) and I
~~
(_h) of (106)

and (108) to zero and eliminating C5 and B by means of (133)

and (134), one finds that C~ and B
~ 

satisf y

cos kh — B
~ 

sin kh = 
~
Fz

(_h) (l37a)

C~ cos kZ + B
~ 

sin kZ T (137b)
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where

‘F (0) 1
T — 

‘F:
(0) [~5 cos kZ + j~ 

W
8 sin kZ — F (Z ) ]

cos kZ - sin kZ (138a)

F ( z) = V 1(z) + U
z
(Z) + U ( z) + U zi (Z) (l38b )

F (s) = Vt (s) + U (s) + U (s) + U .(s) (138c)

The solutions of (137) are

—F (—h) sin kZ + T sin kh
C = sin k(h+Z) (l39a)

T cos kh + F (—h) cos kZ
B = sin ~ (h+Z ) 

(139b)

Knowing C~ and B2 from (139) and , subsequently~ C~ and B~ from

(133) and (134), one can calculate ‘z and from (106) and

(108).

114



3. ZERO-ORDER CURRENTS FOR BENT-WIRE
SCATTERER ABOVE GROUND PLANE

The c u r r e n ts 1z and I~ on the bent—wire scatterer above

a g r o u n d  p l a n e , dep ic ted in Fig. 26 , can be calculated in a

way similar to that described in IV—(ld). The single dif-

ference is that the boundary condition (ll7a) is replaced by

I’(—h) = 0 (140)

Subject to (140) and (ll7b)— (ll7d), the coefficients C° and

B° for the zero—order currents on the structure of Fig. 26

a r e  f o u n d  to be

‘F .
— ~~

-
~~

- V~~( Z ) co s kh + V~ (—h) sin kZ
C
~ 

= 
cos k(h+Z) (141a)

‘F
— V

1 
(— h) cos kZ + ~~

-
~~

- V 1( Z ) s in  kh

B = 
k(h-I-Z ) ( l4 l b )

The coefficients C° and B: follow from (141) in (136) and ,

w i t h  t he  f o u r  c o e f f i c i e n t s  known , one may c a l c u l a t e  t h e  z e r o —

order currents for the bent wire above a ground p lane from

(116).
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4. RESULT S

a. Bent Wire in Free Space

Shown in Fig. 27 are curves of zero—order current on the

ben t wire of Fig. 25 for various values of bend ang le 0. The

radii are equal as are the lengths of the two wires

(az=as
aO .OO 1A , Z=h A/8). The plane—wave incident field is

z— directed , the direction of propagction is parallel to the

x axis , and the magnitude of the incident electric field is

adjusted so that E~ A=1 volt. In Fig. 28 is displayed current

calcula ted for the same structure and illumination by means

of an accurate numerical technique. Attention is called to

the good agreement even thoug h the data of Fig. 27 are only

zero—order solutions .

b. Bent—Wire above a Ground Plane

In Figs. 29 and 30 are shown zero—order current distrib-

utions on the bent—wire scatterer of Fig. 26. The radii and

lengths are equal (a2=a =0.OOf j35A and ~=h=X/2), and the incident

field is that described above. Numerical techni que solutions

for the current on this scatterer are provided in Fi g. 31 ,

where again one observes very good agreement. The flatness of

the current for 0— 60° is remarkable as is its sensitivity to

small changes in e about 60 (Figs. 30 and 31). Notice also

in Figs. 30 and 31 , for the 0=90° case, that the top—loading

element (s—directed wire) bears very little current—— zero

zero—order curre~lt (Fig. 29)——a nd , hence , is an ineffective

top load.
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The ?ero—order solutions presented here are good ap-

proximations to actual currents and such would be true for

numerous cases. However , the goodness of the zero— order

solution is highly dependent upon wire lengths. One should

not expect the zero—order results for the bent wire in free

space to be acceptable for Z+h fairly near odd multi ples of

A /2 or near odd multi ples of A /4 in the case of the bent

wire above ground. Of course , the first—order solutions should

provide accurate results except at odd multi ples of X/2 in

the free space case and at odd multi ples of A/ 4 for the struc-

ture above ground.

117

•~~~ - -—•~~~~~.• - •—~~~~~~~~•- —~~~~~~~~~ ••~~



(31VJS ~AI1V1~~
) !N]UUflJ

118 

—• —~~~~ - . - - -~~~~~- • — •~~~~~~~~~~ • • - -  ..-~~---~~ A



n — r i o  I

—— 9z300 i
9=600

- ——— 8=90° i 0
0.3 - —-— 8=120° ‘ -h

a~=a~=OO~~~~~~~~~~

Ti.i - ‘i Imag.

i”/ ~~~~• 0.I

-

, 

=

~~~ ~~~~~~~~~~~~~
Figure 28. Current on Bent—Wire Scatterer Illuminated by

Normally Incident Plane Wave
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SECTION V

MEASUREMENT FACILITIES AND APPARATUS

The experimental measurem ents reported here consist of

current and charge distribut ions on thin wire structure s. The

first set of measurements were made on scattering elements ,

the second on a driven antenna. Both types of structure utilize

an image plane geometry, since this geometry allows comp lete

separation of the test structure and the instrumentation. The

facilities and apparatus used for the measurements are described -

in this Section.

The frequency at which the measurements were made was

determined by three factors~ (1) the size of the image p lane ,

(2) the requirement that the test structures be compatible

with thin wire theory, and (3) the physical size of probes

and associated apparatus which could be accurately constructed .

Requirements 2 and 3 above indicated that a frequency

range from 300MHz to 600MHz was desirable. However , the

then existing 12 ft. x 13 ft. image plane was too small for

measurements in this frequency range and an enlargement of

this facility was necessary.

An 18 ft. x 28 ft. image p lane was cor~structed by

extending the original plane to the fullest extent possible
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in the antenna laboratory building. The new portion was

constructed of 4 ft. x 12 ft. x 0.032 in. aluminum sheets

cemented to 5/8 in. thick particle board backing. The joints

between the aluminum sheets are backed by aluminum strips and

10/32 flat head aluminum bolts are counter sunk along the edges

at a spacing of about 6 in. The joints and bolt heads are

covered with 0.002 in. thick silver backed tape. The final

structure deviates from a plane by less than O.02X overall

at 600MHz and less than O.007X over short distances at the

same frequency. Mounting for the test antennas is provided

at a point 8.2 ft. from the lower edge and 10 ft. from one

side. A cross sectional view of the antenna laboratory showing

the position of the image plane is provided in Fig. 32.

Panels of 24 in. high pyramidal absorber can be placed around

the image plane to reduce reflections.

b. Instrumentation

The techni que used for measurement of current and charge

distributions was basically the same as that used by many

researchers (see for example Mack (16]). Charge density was

measured by a very short monopo le perpendicular to the surface

of the test structure. The accuracy to which the response of

this probe corresponds to charge density depends primaril y on

the constancy of the normal component of electric field over

the length of the probe. Errors may therefore be expected

very near changes in the surface of the test structure such
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as bends , junctions , or ends of the tubular structures. The

current distributions were measured by a small , center—loaded ,

image p lane loop. The probe is mounted with its plane in

an axial plane of the tubular antenna . The ioop thus responds

to the H~ component of magnetic field. The accuracy to which

the response of this probe corresponds to current density

depends on several fac~tors . Since the electric field is

essentially perpendicular to the surface , the amount of elec-

tric field , or di pole mode , response which is added to the

magnetic field response , is dependent on the accuracy to which

the load is centered at the top of the loop. This location

of the load , however , cannot discriminate against response

to tangential components of electric field and , hence , errors

similar to those of the charge probe may be expected near

changes in the surface of the test structure. Finally, the

finite size of the loop results in errors at points where the

current is chang ing rapidl y with distance along the surface ,

or where the tangential magnetic field changes rap idly in a

direction perpendicular to the surface. Probes of the type

used here have been analyzed by Whiteside (17] . The design

of the probes and probe carriages are shown in Fig. 33.

The test structures , both scatterers and driven antennas ,

were constructed of cylindrical brass tubing. A slot 1/16 in.

wide was cut axiall y in this tubing to allow movement of the

probes along the structure. The probe carriage was desi gned

to slide inside of the tubes and extend through the slot to

the surface of the tube. The charge probe was constructed
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o n t h e  p r o b e  c a r r i a g e  f r o m  0 . 0 3 4”  O . D .  s e m i — r ig id coa x ial

c a b l e .  The o u t e r  conductor of the cable is soldered to the

p r o b e  c a r r i a g e  and c u t  a t  the  s u r f a c e .  The inner  c o n d u c t o r

c o n t i n u e s  beyond  t he  s u r f a c e  to f o r m  the  m on o p o l e  a n t e n n a .

The c u r r e n t  p r o b e  was c o n s t r u c t e d  f r o m  0 . 0 2  in .  s e m i — r i g id

coax ia l  c a b l e .  The cable  was f i r s t  f o r m e d  in to  a semi c i r c l e ,

and t hen  the  c e n t e r  c o n d u c t o r  was removed f o r  a d i s t a n c e  of

abo u t  0 . 0 2 0  in .  s t a r t i n g  f r o m  a p o in t  e x a c t l y  a t  t h e  top  of

the  loop .  T he cab le  on one s ide of the  loop is shor t  cir-

c u i t e d , the other side is joined to the signal cable. The

load fo r t he  loop an t enna  is thus  the i n p ut  i m p e d a n c e  of the

coa x i a l  c a b l e .

Sig n a l s  f r om t h e  p r obe s a r e ca rr ied b y coaxial cables

pass i ng i n s i d e  of the  t u b u l a r  t e s t  s tr u c t u r e s  to  t he  m e a s u r i n g

in s t r u m e n t s  l oca ted  beh ind  t he  image p l a n e .  A b l o c k  diagram

of the  s y s t e m  is shown in F ig .  34. P r e l i m i n a r y  to actual

measurements , the entire system including probes was tested

in a coax ia l  l ine  hav ing  a s l o t t e d  t u b u l a r  i nne r  c o n d u c t or .

The comme r i c a l  i n s t r u m e n t s  used in t h e  s y st e m  a r e  l i s t e d  be-

l o w:

Powe r S o u r c e  — General Radio Model 1209 B O s c i l l at o r

Hug hes  Mode l  1401 H Amp l i f i er

B o o n t o n  Mode l  230 A — — . -— — Amp l i f i e r

Measu r e m e n t  — H e w l e t t  P a c k a r d  M o d e l  840 5A V e c t o r  V o l t m e t e r

Hewlett Packard Model 5345A Counter

Recording, Processing and Plotting of Data— Hewlett

Packard Model 9820 Calculator with Model

9862A Plotter
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The p r i m a r y  p u r p o s e  of this measurement program is to

o bt a i n d a t a  f o r  c o m p a r i s o n  w i t h  t h e o r e t i c a l  s o l u t i o n s  of

wi re m o d e l s  ( i d e a l i z e d )  of a i r c r a f t .  In t he  cases  of t h e

s c a t t e r i n g  m e a s u r e m e n t s , it is therefore very desirable for

the  i l l u m in a t i o n  to c o r r e s p o n d  as n e a r  as p o s s i b l e  to t h a t

of a p la ne w a ve .  For  the  s t r u c t u r e s  s t u d i e d  he re , t h i s  re-

quirement reduces to having the component of electric field ,

which lies in the plane of the scatterer , perpendicular to

the  image p l a n e  and c o n s t a n t  in b o t h  m a g n i t u d e  and phase over

the  a rea of the  s c a t t e r e r .  In the  a c t u a l  e x p e r i m e n t a l  s y s t e m

the  t r a n s m i t t i n g  a n t e n n a  was  o n l y  11 w a v e l e n g t h s  away f r o m  t he

t e s t  st r u c t u r e  at  6 0 0 M H z .  The s p h e r i c a l  wave f r o n t  pro-

duced  by a short dipole at this distance creates a 15° p has e

cha nge a long  a 1 w a v e l e n g t h  long  s c a t t e r e r .  Calculations

show t h a t  a c o ll i n e a r  a r r a y  fo r m e d  by m o u n t i n g  a one—wavelength

element above the image plane and driving it  a t  i t s c e n t e r

should produce a phase deviation of only 5
0 over a one wave-

length long test scatterer. The transmitting antenna actuall y

used consisted of this collinear type element mounted in a

900 corner reflector. In addition to the direct wavefront of

the transmitting antenna , additional distortion of the ilium—

m ating field may be caused by reflections from the ed ges

of the image plane and surrounding objects. As a test of the

illuminating field two monopole scatterers were measured ,

one of length h = X and the other of length h = l .5X. The
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comparison of the current and charge distributio ns measured

with theoretical results of Burton and King L18] are shown in

F i g .  35. The a g r e e m e n t  Is seen to  be r e a s o n a b l y  good f o r

the h a X case , but significant deviation is seen for h = l.5A. .

This may be taken as evidence of near plane wave illumination

to a distance of one wavelength from the image plane. For

scattering elements greater than one wavelength long , errors

due to non—plane wave illumination may be expected.

Two types of scatterers were measured , the bent wire and

V cross shown in Fig. 36. Each of the structures was con-

structed from brass tubing 0.25 in. in diameter with a wall

thickness of 1/32 in~ The bends and junctions were formed by

soldering the tubes together with a miter joint. Since the

current and charge distributions were measured at all points

ex c e p t  nea r  the  j o i n t s , i t  was n e c e s s a r y  to des i g n a s y s t e m

to control the probe position past the joints as shown in

Fig. 37. A small Teflon pulley was mounted inside of the tube

a t  t h e  en d .  A p r e — s t r e t c h e d  and t r e a t e d  n y l o n  d i a l  cord  was

attached to each end of the probe , the portion attached to

the forward end of the probe passed around the pulley and

b ack t h r o u g h  t he  t u b e  to a c o n t r o l  m e c h a n i s m  b e h i n d  t he  g r o u n d

p lane. The coaxial cable carrying the signal from the probe

was a 0.023 in. O.D. semi—rigid cable capable of bending

around the joint inside of the tube. Initially, a small Teflon

piece was inserted at the bend to protect the coaxial cable.

Later it was found that a small build —up of solder at this
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point provided satisfactory prot ection for the cable. The

probe carriage could not pass through the junction; thererore

it was necessary to insert the probe from the image plane

end and measure up to the junction. The probe was then re-

moved and inserted in the outer end of the antenna , cables and

control lines being inserted throug h the slot , after which

measurements were made from the end back toward the junction.

This measurement pro cedure was somewhat time consumin 0 and

it was necessary to insure that the system remained constant

during each set of measurements. Although frequency drifts

were observed , they were Less than 4 parts in lO s .

Measurements of the current and charge distributions

were made on a thin cylindrical monopole antenna containing

a step in radius. The ratio of radii of the two parts i~f

the antenna was ori g inall y intended to be about 2 to 1.

The diameter of the smaller portion was restricted by probe

size to be at least 0.25 in., thus the larger portion was

required to be at least 0.5 in. in diameter. Availability

of materials governed the final choice of 0.625 in. for the

larger diameter and 0.25 in. for the smaller diameter. In

order for the larger radius to be compatible with thin—

wire theory, it was necess ary to make measurements at a

frequency of 300MHz. Scattering m easurements were not con—

s~ dered to be reliable at this requen cv with the image plane

size available. A coaxia lly driven mo~~opole ~-i s therefore

used for these measurements.
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The construction details of the coaxial line antenna

sys tem are shown in Fig. 38. C u r r e n t  and c h a r g e  m e a s u r e m e n t s

w e r e  d e s i r e d  a long  bo th sides of the step in radius. For

correla tion of the data , it is essen t ia l  tha t the same p r o b e

sys tem be used throughout. The larger—radius portion of the

• antenna was therefore placed at the image plane so that the

probe could be withdrawn from this portion and inserted into

the smaller—radius tube from behind the image plane. The

0.625 in. tube forms bo th the larger—radius part of the mono—

pole  and t h e  inne r c o n d u c t o r  of t he  coax i a l  l i n e .  The t u b e

is slotted axially over its ent ire length. Measurements can ,

therefore , be made inside of the coaxial line for determination

of an t e n n a  a p p a r e n t  i m p e d a n c e  and n o r m a l i z a t i o n  f a c t o r s

needed  f o r  d e t e r m i n a t i o n  of a b s o l u t e  v a l u e s  of c u r r e n t  and

charge on the antenna . The 0.25 in. diameter tube is mounted

coaxially through the larger tube and extends beyond it a

d i s t a n c e  o f 25 cm.  to f o r m  t he  s m a l l e r — r a d i u s  p o r t i o n  of t h e

antenad . Provisions were made for adding unslotted sections

of 0. 25 in t u b e  to e x t e n d  t he  l e n g t h  of the  s m a l l e r — r a d i u s

portion of the antenna. The outer conductor of the coaxial

l i ne  has  a n i n s i d e  d i a m e t e r  of 1 .020  i n . ,  and t h e  s p a c e  b e —

tween the two conductors is filled with a high density

styrofoam , c = 1.12. The characteristic impedance of this

l i n e  is , t h e r e f o re , 2 7 . 8  o h m s .  The c o a x i a l  l i n e  has  an o v e r —

a l l  l e n g th of 1 meter (lx at 300MHz) and is short circuited

at the end opposite the antenna. Signal is app lied to the
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li n e b y a T con n e c t i o n  a t  a d i s t a n c e  of 25 c m .  f r o m  t h e

sho r t  c i r c u i t .  The s y s t e m  b e f o r e  and  a f t e r  a s s e m b l y  is shown

in Fig.  39 .

T h e p r o b e s  used for these antenna measurements are

i d e n t i c a l  to t h o s e  desc r i b e d  in the previous section. The

p r o b e  c a r r i a g e  d i f f e r s  however , s i n c e  onl y st r a i g h t  l i ne

movement of the probe is necessary. A 0.125 in. dia m e te r

brass tube is attached to the rear of the probe carriage and

extends beyond the rear of the coaxial line. A pointer

attached to this tube provides for measurement of probe

location. The 0.020 in O.D . semi—ri gid coaxial line from the

probe passes throug h this 0.125 in. diameter tube.

The instrumentation for the antenna system was the same

as that shown for the scatterer measurements.
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SE CTION VI

EXPERIMENTAL MEASUREMENTS--STEPPED-RADIUS

The apparatus described in Section V was used to obtain

current and charge distributions on a thin stepped—radius

monopole . The measured data is presented in this Section.

For interpretation of the data the calibration and normali-

zation factors which were used are of considerable importance

and these will be discussed first.

The coaxial line/antenna system provides for continuous

movement of the probes into the coaxial line portion. Measure-

ments within the coaxial line make possible an absolute cali-

bration of the probe measurement relative to the voltage

across the line at the image plane.

A calibration factor , Nq~ 
for the charge probe is deter-

mined to satisfy the equation.

NqQm
(Z) a q(z) covlombs/mete r—volt (142)

where Q (z) is the meter reading of the charge probe signal ,

and q(z) is the linear density of charge on the antenna .

Within the coaxial line the charge density is related to the

voltage by

q ( z)  a V(z)C0 
(143)
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where

c c 2-ri
C 1b 1) 

f a r a d s/ m e t e r  (144)

is the  c a p a c i t a nce  per  l e n g t h  of t he  coax ia l  l i n e .  The m o s t

c o n v e n i e n t  l o c a t i o n  f o r  d e t e r mi n i n g  q ( z )  is z = — X / 2  w h e r e

v ( — A / 2 )  a V ( 0 ) e J~
r ( 145)

From E q s .  (142)  and (143) we t h e n  have

j  rr~
N q 

a 
Qm~~~~~

2) ( 146)

w h e r e  V ( 0 )  = 1 vo l t  has been a s sumed . The c a p a c i t a n c e  of t h e

coax ia l  l ine  in th i s  s y s t e m  is C = 1 . 2 7 2  x io~~~~ f a r a d / m e t e r .

Th e c a l i b r a t i o n  f a c t o r  was a p p l i e d  to  a l l  m e a s u r e m e nt s  on

the  a n t e n n a .

The c a l i b r a t i o t  f a c t o r  N
1 f o r t h e  c u r r e n t  p r o b e  measure-

ments was obtained in a manner similar to N
q~ At any point

within the line

1(z)  a V ( z ) Y ( z )  (147)

The most convenient point for computing N1 is z—— X /4 , where

y (— X/4) a Z(O), and

V ( — A / 4 ) z ( o )N 1 a 
Im

( _ A / 4 ) Z c
2 ( 148)
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where Im
(_A/4) is the meter reading of the current probe

signal. The voltage V(—A /4) may be related to V(0) by

V ( - A / 4 )  = 
z~~o~ 

V ( 0 ) e~~~~
2 (149)

where Z is the characteristic impedance of the coaxial

l ine .  C o m b i n i n g  148 and 149

jlT / 2
N1 

= 
Im

(_X /4)Z 
(150)

where V(0) = 1 v o l t  is assumed . The calibration factor

determined by eq. 150 depends only on knowledge of Z .

The factor could be computed from measurements at any point

within the line , but knowledge of the antenna impedance

would  then be n e c e s s a r y .  The d i s a d v a n t a g e  of e q .  150 is

th at when the  a n t e n n a  i mp e d a n c e  is h ig h , as occu r s  f o r  one

of the test antennas, the measurement of 1 must be made

near a current minimum.

The probe calibration factors discussed above provide

for absolute normalization of measurements on that portion

of the antenna which is a smooth continuation of the coaxial

line. Measurements on the smaller radius portion of the

antenna require additiona l correction factor. If it were

assumed that the probes respond to the fields at the surface

of the antenna , the signal from the probes would then be

142 
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proportional to the surface density of current or charge.

The calibration factors N and N convert the measurementsI q

to t o t a l  cu r r e n t  and l i nea r  d e n s i t y  of c h a r g e  r e s p e c t i v e l y .

He n ce , th e a s s u m p t i o n  t h a t  a p r o b e  s i g n a l  is p r o p o r t i o n a l

to surface density leads to a correction factor which is

simply the ratio of the two radii , a/b
1
. Unfortunately,

th e s i t u a t i o n  is no t  t h i s  s i m p l e .  The p r o b e s  b e i n g  of

f i n i t e  d imens ions  r e spond  to f i e l d s  away f r o m  the  s u r f a c e

of the antenna , and this must be considered in the cor-

rection factor.

The charge probe , being a very short monopole , responds

to the integral of the E
r over its length. At points along

the antenna which are not too near the step or end , th e Er

field varies l/r near the surface of the antenna. Hence ,

the charge probe response is proportional to

R+h

f  ~~ dr = Z n [ ( R  + h ) / R ]  ( 151)

whe r e R = b , or a , t h e  r a d i u s  of t h e  a n t e n n a , and h = the

le n g t h  of t h e  c h a r g e  p r o b e .  The c o r r e c t i o n  f a c t o r , M , to

be applied to measurements of charge on the small radius

portion of the antenna is therefore

M
q 

a ~~~~~~~~~~~~~~~ (152)
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For the two radii used M
q 

= 0 . 4 6 9  w i t h  a p r o b e  h e i g h t  h a

0.1 i n .

The correction factor M
1 for the current probe is ob-

tained in a similar manner. The probe response in this

case is proportional to the integral of H
4, over the area

of the loop probe. As for E
r 

we may assume that H
4, 

varies

as h r  near the surface of the antenna except near the

s tep  and end .  Thus t he  s i gna l  f r o m  the  p r o b e  is p r o p o r t i o n a l

to

F = ds (153)

For evaluation of this integral the coordinate system of

Fig. 40 is used and eq. 153 becomes

R+h /h2_ (y_a)2

F a  2 

~ 

dxdy (154)

y R  x 0

Integrating with respect to x and introducing the change

of va r iab le , y — z + R , we obtain

F = 2 ,‘Q~~~ z
2 dz (155)

Expanding the factor lf(z+R) in a power series , and inte—

grating term by term a series solution is obtained.
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~~~~~~~~~ 

) = — + . (156)

Taking the ratio of F(R b) to R(R=a) and us ’ng a probe

r a d i u s  h . 0 6 2 5  i n .  t h e  c o r r e c t i o n  f a c t o r  is f o u n d  to  be ,

— 0 . 4 4 6 .

c. Measured Data

The current and charge distributions for two stepped—

radius monopoles have been measured. The measurements were

conducted at a frequency of 300MHz , and the electrical radii

at this frequency are kb
1 = 0.05 and ka — 0.02. Fig. 41

gives the data for h
1 

= x/4 , h2 
a X/4. Fig. 42 gives the

data for h
1 

= X/4 , h2 
= X/2. These two cases were choosen

to illustrate the behavior for charge minimum and charge

maximum at the position of the step. Some irregularities

in the data , particularly the charge distribution of Fig. 42

are related to equipment problems which had not been over

come at the time of this report. The behavior of the

charge data near the step shows the expected edge behavior

of exterior and interior 90 0 corners.

Probe errors are significant near the step where the

fields depart from the simple behavior assumed in computing

the probe resp~ nse. The departure of the current distribu-

tions from a smooth curve near the step is believed to be

en~~ire1 v cais ed by probe error. it is difficult to deter—

mi - ~e a~ r hIs zime the legree to which the observed charge

bth i •r .ar the s :ep is ~nf iuenced by probe error. The
146
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measured data demonstrate s contin uity of current across the

step. However , until the probe errors can be determined

no definite conclusion can be reached concerning continuity

of charge per unit length at the step.

Figs. 43 and 44 show a comparison between the mea sured

current and the numerical solution for the case h
1 

= h
2 = X /4.

The agreement is seen to be very good except for a small

difference which may be the result of errors in the probe

calibration.
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SECTION VII

EXPERIMENTAL DATA-BENT WIRE AND V-CROSS

The experimental data obtained on the scattering elements

described in Section V are presented in this Section. The

princi pal use of thesedata is expected to be comparison with

theoretical solutions. For this purpose the shape of the

distribution curves is the mo~~ important information. No

attempt has been made to obtain absolute normalization factors

for the amplitude or phase of the measured data. It is ,

therefore , suggested that , in any future use of these data ,

normalization can be made at any appr opri a.~e point on the

curves .

The geometries and coordinate systems used for presentation

of the data are those shown in Fig. 26 and Fig. 45. The

actual structures upon which measurements were made are

shown in Fig. 36.

The measured current and charge distributions for bent

wire scatterers are given in Figs. 46, 47 , 48, 49. The

current distributions for the case h1 
— h2 

= X,2 were measured

using a frequency of 600MHz , at which the electrical radius ,

is ka = 0.04. These results are shown in Fig. 46, and it is

see n t h a t  t h e  c u r r e n t  on t h e  8 = 300 case  is ve ry s i m i l ar

to the 9—0 , i.e. strai ght wire , case. The pr incipal difference
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between these two distributions occurs near the image plane ,

together with a small shift in the position of the maximum .

Increase of the bend angle to 0 — 620 results in a very

significant change in the distribution of current on the z — 0
to —h 1,portion . It is somewhat surprising that the current

distribution on the z—O to + h2 portion retains essentially

the same shape as for the 0 — 00 and 300 cases. A comparison

with Figs. 29 and 30 shows very good agreement with the pre-

dictions of the zeroth order solution as well as the numerically

solutions given in Fig. 31. The curves shown across the junction

region in Fig. 46 are of course only estimates of the behavior

in this reg ion. In addition to the mechanical problem of moving

the probes into the junction region , measurement errors

become significant near the junction where the fields are

no t slowly varying over the dimensions of the probe. These

errors are evident in the 8 = 620 data of Fig . 46 where the

two data points nearest the junction have been excluded from

the estimated curve.

The charge distributions given itt Fig. 47 show many of

the same features as discussed above for the current. The 0 a 00

and 9 — 300 distributions are seen to be very similar with

only a shift in the position of the minimum . The 9m62° data ,

however , shows even greater differences from 9 = 00, than

were evident in the current distribution. In fact the entire

nature of the charge distribution is changed , with the minimum

which occurs at the junction for 9 00 and 3Q 0 being

replaced by a maximum.,
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Figs. 4~ and 47 g ive the m e a s u red  c u r r e n t a n d  c h a r g e

distributions for bent wires with h
1 = h 2 = X/4. These

measurements were made at a frequency of 300MHz and an

electrical radius of ka — 0.02. Althou gh not shown here it

may be seen that the distributions for 0 ~.~30
0 are very similar

to the known distributions for a straight wire , 8~ 0
0. As for

the longer element the Ga 620 distributions for this case

show significant changes , particularly in the charge , a

contrast between the h = X/2 and h X/4 charge distributio ns

for 0 = 62° is partiuclarly evident in the charge minimum

which occurs at the bend for h = X/4 whereas the h = case

shows a maximum of charge.

All of the bent wire structures discussed above were

constructed with a sharp mitered junction. A different

junction geometry was obtained by placing a brass sphere of

1 in. diameter around the junction. It must be pointed out

that this is a rather large sphere and does not satisfy the

conditions of thin wire theory at the frequencies used. The

data are shown in Figs. 50 and 51 for distributions of current

and charge with and without the sphere. Examination of these

data shows that for the case of charge minor ch~tnges in the

distributions occur. However , for the case which has a charge

maximum at the junction very significant changes occur when

the sphere is placed over the junction. For junction regions

having an electrical size ka = 0.16 , the geometry of the junction

region is therefore of considerable importance. Further in—
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vestigation will be necessary before conclusions can be reached 
-

concerning junctions of small electrical size.

The V cross structure is perhaps the most important in

relation to theoretical studies of aircraft. The experi’n~ ntal

data which has been obtained for current and charge distribution s

on this structure is given in Figs. 52 , 53 , 54 , and 55.

These measurements were made over an image p lane as described

in Section V. The two cases studied wereintended to be examp les

of the behavior when a charge minimum occured at the junction ,

and when a charge maximum occured at the junction. As seen

in Fig. 53 the h
1 — h2 

X/2 , £1 = £2 X/4 case achieved a

very deep charge minimum at the junction. However , as seen

in Fig. 55 the h
2 — A/2 , h1 

3X/4 case , while having a significant

charge density at the junction , did not produce a real maximum

desired. The two cases , however , do provide examples which

show significantly different behavior.

Probe response errors exist near the junction , but do not

appear to be significant factors in the measured data. A

much more significant error is believed to be caused by the

fai1~ re to achieve a planar wave front illumination. It is

not possible at this time to evaluate the amount of error

caused by the unknown incident field ; however , the shape of th~

distribution on each arm is believed to be accurately

represented in the measured data. Some changes may be expected

in the relative magnitudes of these currents with changes in

the incident field. Additional studies of these structures

will be necessary before definite conclusions can be reached.

160

_ _ _ _ _ _ _ _ _ _  ---~~~~~~~~ _ ---- - •



• ~~~~~~~~~~~~~~~~~ -- -- - - • -~~ -- - - - - - -- ~~~~~~~~~~~~~~~~~~

I I I I I

Without With Sphere
— 

Sphere

-0.25 z/X 0 S/X — 0.25

1.0 
1~~~~~~~~~~~~~ I I I 

I 
_ _ _

Wit hout

I

9?’
I I I

-0.25 Z/ X — 0 S/X — 0.25

Figure 50. Bent Wire Scatterer Current and Charge
= h2 ~ X 1 4 , ka = 0.02, wi th and without

Sphere at Junction

161



-I -- - _
~

_
~~~~~~

_ j __
_
~ - -

~~~~~ -~~~~~~~~~~~~~~ -- - --~~~~~~ -

1.0 
oeeo9~~~*ITH ‘SPHE

1
RE I I I I I

I I I

-0.5 Z/X —
~~ S/X — 0.5

1.0 I I I I I I

- Iqi

I-.
4 WITH SPHERE ‘

I I I I I 

—

-0.5 Z/ X — 0 S/X — 0.5

Figure 51. Bent wire Scatterer Current and Charge
— I

~2 
— X/2 , ka 0.04 with and without

Sphe re at Junction

162 



- — — - ‘ - - -—  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • : _ ~~ 

—- 
~~~~~~~~~~~~~~ • — - - - --- -.- ----

~~
-
~~~

—-- -- — ---

I I I I I I I I I 180

PHASE(z) .

LU
Ui LU

• PHASE (z )
- 

II(z)I

I I I I

-0.5 Z / X  — 0 Z/X —’~ 0.5

1.0 1 I I I I I 180
kq-=0.04

Ge~ COO~~~~~
- PHASE (s ) . U,

LULU

I I I I I I I  I I .180
-0.5 0 S/X— 0.5

F i gur e  52. V Cross Current , h
1 

h~ = 2 , =
a 60°



I I Iy ’
~~41~ 

I I I I I 180°

~‘ I q z I

-

- Phase
LU 890 099

I LU
0• I ‘~ U,— 1  ‘tI 4- 

~~.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-0.5 Z/X ~ 0 Z/X ~~- 0.5

I I I I I I I 180°

~ Phase -

LU
> -

/

- 

,
,
/~I~(s ) I

I I I I I I i 1 I —180°
-0.5 S/X ~~ 0 0.25 0.5

Figure 53. V Cross Charge h1 h2 ~/2 , — ~~~~

8 — 60°

164 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ - -



—-_- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--

~~~~~

- - ----- - •--- — -

~~~~~~~

----

~~~~~ 

--

1.0 I I I I I I I I~~ I 1 I i ISO

- II(z)I JI(z)I

-0.75 Z/ X 0 Z / X —  0.5

1.0 I I I I I I I I I I I i 180

=
LU -

— UJI- - 
-~~~~~~4 CD

-
LU

a —

- Lii
H II(s)I -

O I I I I I I I I I  I I I 
~~ -180

S/X — 0 0.25 0.5

Figure 54. V Cross Current , h
1 = 3)/4, h

2 =
= 

~2 
= ~~~ 0 = 600

16 5

- -_ -

~

--

~

-— • - - - -

~

• ---- --“——

~

-- -- _- --- - •



~~~~~~~~~~~~~~~~~~~~~ I I I/ l ’kj I ~80
— Phase .,\

~ 
—

_ _ _ _  

/

fI~ (z) I

_

\ - .

LU - I (z )I ~~~axo -

o 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-180
-0.75 Z/ X -~ 0 0.5
1.0 1 I I I I I I I I I I I 190

LU
> - - 

CD
- 

- U i
Phase~s

\

~
/
~(z)l

0 I I I I I I I I I~~~~~~~I I 1 -t90

S/X— 0 0.25 0.5

Figure 55. V Cross Charge , h1 — 3A/4 , h
2 

a A /2
Z1

=~~2 — X /4, 9 = 6 0°

I 66 

- — - - -— • - ----~~~~~~~~--—-~~- -~~----- - • -~~~~-- -~~~~~- • 44



S E C T I O N  V I I I

C O N C L U S  IONS

Results of the theoretical and experimental investiga-

tions are presented for current and charge distributions on

thin—wire scatterers. Insofar as the investi gators are

a w a r e , these ar e the first experimental data available for

the structures studied in this project. The study of wire

• junctions is far from complete but this initial work , bo t h

theory and experiment , certa inl y addresses the ma jor question

of what the appropriate thin—wire junction conditions should

be. The exper imental investi ga tion of structures with junc-

t i o n s  is in i t s  i n f a n c y  and  n u m e r o u s  f a c e t s  d e s e r v e  f u r t h e r

r e f i n e m e n t , y et , w i t h i n  l i m i t a t i o ns of a c c u r a c y  a n d  expe r i -

mental error , the correlation between measured and theoretically

pr edicted results is both gratif ying and encourag in g .

A careful study of the properties of currents and charges

in a coaxial line with a step in its inner conductor and of

a sp hero idal antenna with a similar step leads to the conclu-

sion that the behavior of the charges per unit length near

th e junction of two cylindrical conductors with differe n t

radii is not simple even for electrically thin conductors.

H o w e v e r , a g o o d  a p p r o x ima ti on is g iven by the condition (See

Eq.  (64), p. 43)
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— q
2
V 2 — . =

is the expansion parameter for conductor I whose definition

is s o m e w h a t  a r b i t r a r y ,  b u t  always  i n v o l v e s  a l o g a r i t h m ic

f u n c t i o n .

F r o m  t h e  analysis of a stepped—radius wire scatterer

p r e s e n t e d  in Section I I I , o n e sees that the presence of the

s t e p  in f l u e n c e s  t h e  m a g n i t u d e  of cu r r e n t  relative to what

I t  w o u l d  have  b e e n  o n a c o n s t a n t — r a d i u s  w i r e , b u t  t h e  e f f e c t

on the shape of the distribution depends upon length and

certain features of the excitation.

Near resonance , where the forced response is dominated

by t h e  r e s o n a nt  r e s p o n s e , the  d i s t r i b u t i o n  is l i t t l e  a f f e c t e d

by the presence of the step or its position on the wire.

Howeve r , o n a a n t i r e s o n a n t  ( l X )  w i r e  of c o n s t a n t  radius sub-

ject to even—function excitation , the current is essentially

the shifted cosine forced response . Only, if the forcing

function possesses an odd—function component , can the resonant

cu r r e n t  r e s p o n d  on a lÀ w i r e  of c o n s t a n t  r a d i u s .  On t h e  o t h e r

hand , in t h e  ca se  of a lÀ  s t e p p e d — r a d i u s  w i r e  h a v i n g ,  o f

c o u r s e , t h e  odd sy m m e t r y  w i t h i n  the  s t r u c t u r e  i t s e l f , a s t rong

a n t i r e s o n a n t  c u r r e n t  is p r o d u c e d  by an e v e n — f u n c t i o n  e x c i t a t i o n .

Measu red c u r r e n t  and c h a r g e  on a s t e p p e d — r a d i u s  s t r u c -

tu re a re  p r e s e n t e d  in Fi g s .  43  and 44 w h e r e  one  sees good

correlation between experiment and theory. However , measure—

ment of the condition on charge at the junction , discussed

168

——~~~~~• • - - —~~~~~~~~ - - —~~~- - - - • - •



r ~~~~~~~~~~

- - - - - - - -

~~~~~~

-

~~~~ 

- - -

~~~~~~~~~

- -

~~~~~~~~~~~

- -

~~~~~

in Section II , is not entirely satisfactory. The investi-

gators do not judge the accuracy of their data to be sufficient

to en a b l e  t h e m  to c l a i m  u n d e n i a b l e  c o r r o b o r a t i o n  of t he  s m a l l

di s c o n t i n u i t y  p r e d i c t e d  in l i n e a r  c h a r g e  d e n s i t y  f o r all

c a s e s  c o n s i d e r e d .

In  t h e  b e n t — w i r e  s c a t t e r e r  a b o v e  a g r o u n d , the investi-

gators fou nd far greater sensitivity of current upon bend

angle than expected. A ctually, in an attempt to uncover rea-

sons for d isagreement between experimentally and theoretically

determined currents , a 2 degree error was found in the angle

of t h e  f a b r i c a t e d  be n t  w i r e .  C o r r e c t i o n  f o r  t h i s  b r o u g h t

t h e o r y  and e x p e r i m e n t  i n t o  good  a g r e e m e n t  ( s h a p e )  as can be

seen f rom c o m p a r i s o n s  of  Fi gs. 29— 31 with Figs. 46 and 4 8 .

A sma l l  c o n d u c t i ng  s p h e r e  (ka  = 0 . 1 6 )  was  p l a c e d  a t

the  j u n c t i o n of t h e  b e n t — w i r e  s t r u c t u r e s  f o r  t h e  p u r p o s e  of

o b s e r v i n g  e f f e c t s  of j u n c t i o n  geome t r y .  The m e a s u r e d  c u r r e n t s

d i s t r i b u t i o n  shows  l i t t l e  c h an g e  when  a c h a r g e  m i n i m u m  o c c u r s

at  t h e  junction. However when a charge maximum occurs at

the  j unc t ion  v e r y  si gnif icant changes in the current d i s t r i -

b u t i o n  a r e  o b s e r v e d .
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