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SECTION I

INTRODUCTION

At present there is an intense interest among many re-
search groups in learning more about charges and currents
induced on metallic surfaces of objects by incident electro-
magnetic waves. One object of major interest is the aircraft.
Of course, even the simplest aircraft is an extremely complex
body when viewed in the context of a scatterer in an electro-
magnetic boundary value problem. In an effort to obtain at
least a cursory understanding of the behavior of charge and
current induced on an aircraft surface, several research
workers have replaced the actual aircraft by a wire model
configured after the general shape of an aircraft. Then the
current on the model is calculated by means of presently
available techniques, with the hope that the current and
charge on the model bear a global semblance of those on the
actual aircraft.

Numerous methods [1-8] for calculating currents and
charges induced on thin-wire structures by incident electro-
magnetic waves have been developed in recent years. These
methods are all, of course, based upon Maxwell's equations
but they incorporate a variety of approximations to achieve

results. Obviousiy, the exact boundary conditions of




electromagnetic theory are well known but, in dealing with
complex thin-wire structures, one employs appropriate simpli-
fications to reduce his problem to one which is practically
tractable. For a wire ensemble with no intersecting wires
(no junctions), the traditional assumptions of thin-wire
theory suffice and lead to accurate solutions. But the
question of what boundary conditions to impose to account for
the confluence of two or more wires remains partially un-
answered. The conditions which are imposed by present
researchers are not mutually consistent.

Since all junction conditions suggested to date are
more Oor less approximate, the goals that one seeks to achieve
by the application of a given junction condition should be
delineated. Aside from ease of implementation and incor-
poration into the solution method, the conditions should at
least ensure accurate axial linear charge and current densities
on all parts of a given structure which are remote, in terms
of numbers of wire radii, from junctions of wires. With this
met, possibly the next most important objective is to satisfy
the electromagnetic boundary conditions in some sense in the
junction region. At the present time it is not known to what
extent these two goals can be achieved simultaneously nor is
it known whether or not exact conditions can be found.

This report describes a research project which is an
initial investigation of the junction conditions. Within

thin-wire limitation, the correct approximate boundary
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conditions are developed and are subjected to various theo-
retical and experimental test, but this work should not be
looked upon as final. More experimental verification is
highly desirous.

The purpose of the study described in this report has
been to investigate the thin-wire junction conditions and
the distributions of current and charge on wire structures.
Included in the report are analytical, numerical, and
experimental investigations of the behavior of current and
charge on a wire with a discontinuous radius--the so-called
stepped-radius problem. Measured currents and charges on
wire structures with bends and junctions are given, and an
iterative analysis of the bent-wire scatterer is included.

In Section II is described an analytical investigation
of the fundamental junction created by the confluence of
two coaxial wires of different radii. Based on theoretical
considerations of this model, the two correct conditions
which must obtain at such a junction are developed. In
Section III, a numerical procedure is presented for analysis
of the stepped-radius wire both as a scatterer and as an

antenna. Experimental results of Section VI serve to support,

in a preliminary fashion, both the junction conditions set

forth in Section II and the numerical results of Section III.
Section V is devoted to a complete description of the

measurement facility and apparatus as well as to pertinent

construction details of experimental models. As a vehicle




in which to apply the junction conditions proffered in II,
an iterative solution procedure is developed in Section IV
for the bent-wire scatterer. With the above-mentioned
conditions incorporated in the analysis, the calculated zero-
order current distributions on the bent wire are shown to
be almost identical in shape with measured currents. Not
only does the iterative solution provide a means for lending
additional credence to the boundary conditions but, also,
of importance as well, it is an analytical technique from
which one can determine the correct current distributions on
the bent-wire in a direct and simple manner.

Section VII is a thorough report of first measurements

of current and charge on a bent wire illuminated by a plane

electromagnetic field. Also in this section are found first
; measurements on a rather complex structure having a junction
formed by the joining of four non-perpendicular wires. This
latter structure, dubbed the V-cross scatterer by the
investigators, is intended to be a crude but useful model
of a swept-wing aircraft.

Lastly, to assess the influence of junction geometry
on currents and charges remote from the junction, measure-
ments are given for the case of a bent wire with a small
sphere at the bend. These data show the effect which a
protuberance, e.g., engine pod, tank, on an object might
cause. Also, they are somewhat indicative of what factors

one must consider in a complete electromagnetic representation

of a prescribed junction geometry.
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SECTION II

JUNCTION CONDITIONS FOR ELECTRICALLY THIN CONDUCTORS

1. INTRODUCTION

An important step in the determination of the distribution
of current at all points on the surfaces of metal radiating
structures that include confluent or intersecting wires is
the correct specification of the currents and their derivatives
at the junctions. Examples of such junctions are (a) the point
of confluence of two straight conductors at an arbitrary angle
including the straight angle when the conductors have different
radii; (b) the junction of a vertical antenna with the radial
wires of a top load; (c) the point of intersection of two crossed
antennas that make an arbitrary angle; (d) the junctions in a
fish-bone-like configuration of conductors; (e) the apex of an
umbrella antenna. The antennas that include junctions may be
driven elements or parasitic antennas that act as receivers or
scatterers. Of particular interest are the parasitic crossed
conductors that have been used to simulate an aircraft exposed
to a periodic or transient electromagnetic field of high inten-
sity. An accurate knowledge of the surface densities of current
and charge on the conductors permits the specification of the
tangential magnetic and the normal electric fields. These are

needed in the evaluation of the fields that penetrate into the

Ll




interior of an aircraft through an imperfectly conducting metal
skin or through cracks and apertures.

The conditions imposed in the literature on the currents
at the junctions of electrically thin conductors are numerous
and varied. There is a general agreement that Kirchhoff's
current law on the sum of the inwardly directed currents must

be enforced, that is

n

ZIink =4 (1

k=1

This follows from the fact that for electrically thin conductors
(with kai<<1 for all radii ay of the confluent wires) the charge-
able surfaces belonging specifically to the junction--as a

region distinct from the wires--are negligibly small since they
are of the order of (ka)z. As a consequence, the conservation

of electric charge requires the total current into the junction
to be zero. But (1) provides only one of the n conditions
required if there are n conductors that meet at a junction.

The n-1 additional conditions that are needed to specify the

n currents are given by Miller et al. [1l] and Tesche [2] to be:

n
= = v v o = (2)
a2 a an

where the prime denotes differentiation in the direction of the
wire and a; is the radius of wire i. These conditions are

justified by their proponents with the statement that the "sur-

face densities of charge must approach the same value as an




observer moves along a wire towards the junction regardless of
which wire he is on." Note that the equation of continuity for

conductor i is,

' = o = =3
I Juwqy jw2ma n, (3)
where 9 is the charge per unit length, ny the charge per unit
surface area. It follows that (2) is equivalent to:
Ny =Ny =Ng = ..o.n = no (4)

where ni is the surface density of charge on conductor i at the
junction. Note also that approximate rotational symmetry about
each conductor has been assumed. Other writers [3-6] impose

no condition on the derivatives of the currents at the junction
but state that continuity of scalar potential along the surfaces.
of all conductors at the junction is to be used instead of (1).
This is carried out explicitly in the work of Butler [5], whereas,
as pointed out by Logan [7], continuity of scalar potential is
"inherent in the integral formulation of Chao and Strait"([6].
King and Wu [8] note that the scalar potential is in any case
continuous everywhere except across a double layer as in a

delta-function generator. They impose the conditions:

g 15 RO = I; (5)

which differ from (2) whenever the ais are not all the same.

Specifically, (5) is equivalent to:

9; = d4; = d3 = ... = q (6)




and not (4). In (6) ay is the charge per unit length on conduc-
tor i at the junction. Actual computations by Tesche [2] and
King and Wu [8] have been limited to the junction of conductors
with equal radii, in which case (5) is equivalent to (2). The
conditions (5) have been verified exper:imentally by Burton and
King [9] but only for conductors with equal radii.

In a completely analytical approach such as that of King
and Wu [8] a solution cannot be obtained without the explicit
application of n conditions at the junction of n conductors,
viz., (1) and (5). When numerical techniques such as the method
of moments are used, a rigorous treatment of a junction is not
possible and various artifices are employed. Some of these
enforce Kirchhoff's law (1) explicitly, others do not. In
general, the current entering the junction from each conductor
is obtained by extrapolation and the extrapolated currents then
satisfy (1) more or less accurately. Most of the numerical
procedures actually impose no explicit condition on the deri-
vatives of the currents as the junction is approached so that
it is not surprising that condition (5) is usually violated.
That this is the case is evident from many of the graphs of
current distribution given by Logan [7], in which the slopes of
both the real and imaginary parts of the currents in the con-
fluent conductors differ greatly at the junction. Since dis-
continuities in the slopes of the components of current can
occur only across a delta-fuanction generator, and since such
generators are not assumed to be present, the local distributions
of charge per unit length and the associated radial electric
fields cannot be correct near the junction.

14




The explicit application of (1) and n-1 additional conditions
at the junction of n electrically thin conductors is required in
order to obtain correct solutions for the currents and the asso-
ciated charges. Evidence will be presented in the following
sections to show that conditions (5) or (6) but not (2) or (3)
should be applied at the confluence of conductors with unequal
radii. Conditions of continuity imposed on the scalar potential
or components of the vector potential are obviously redundant

and no substitute for (5).

2. CHANGE IN THE RADIUS OF A COAXIAL LINE

The distributions of current and charge per unit length on
the inner conductor of a coaxial line resemble those along a
dipole or monopole antenna in the sense that both are approxi-
mately sinusoidal in their leading terms. This suggests that
the local properties of the current and charge per unit length
at and near a discontinuity in radius should be comparable at
least so long as the cross-sectional dimensions are electrically
small. Such é discontinuity is shown in Fig. 1. Specifically,
line 1 consists of an inner conductor with radius a; and shield

with inner radius b in the range of negative values of the

coordinate z; line 2 extends from z=0 to positive values of z

with an inner conductor with radius az>a1 and the same shield.

Thus, there is an annular step in the inner conductor at z=0

from radius a; to radius a, while the shield continues smoothly.




e o Sl

S g s e |

o~

B e gy

—

-
) + +f—=--- > - -
A e | | S
¢ B ARER o gl iens s 2
———em——— - t+ -~ —-=-4
———e ————— + 5 +f———— ==
st + e R
== —l = = = = = + +h— - — - P —
ffrmm————— -~ + +T ||||| > - ==
e s ] + o e e e
ql + hY [, ST e e b S8

f--———— -~ -

|

e = = = = e e -

-

(e SRR T

»
]
)
!
+ + + + +

a2

|
|
|
|
]
Q
]
{
|
+

+ 4=

(b)

gl T SRS

s e e P - -

Approximate Actual Distributions

(a) Zero~Order, (b)

Figure 1.

of Charge per Unit Length and Radial Electric Field in a

Coaxial Line.

16




The properties of the line with this change in radius of

the inner conductor have been determined by variational methods
[10]. Each line is characterized by the conventional parameters
and a corrective lumped susceptance B connected across the line

at the junction, z=0. The parameters of the line are:

2Te

e, = H—“’_/%i—’ (7a)
Z3 =Jd%le; = (gg/2m) An(b/ay) (7e)
k; = wfT c; = wfigey = kg (7d)

where i=1,2. For a line with a.=0.5 cm,

1
=52 farad/m, c2=15.2x10_12

a2=1.5 cm and b=5.5 cm,

c1=23.2x10

-7
12=2.6x10 henry/m, ch=143.9 ohms, and Zc2=78.0 ohms.

The general formula for the shunt susceptance B is given

by Marcuvitz [10]. When (az-a )<<(b—a1), which is of interest

L

here, it has the form:

2
. 24, (a,-a,) { (b-a ) zn(Z(b-a1)>
chk(b—al) (b—az) a,-a;

2
17 (b-al'\ AZ
5

-

(8a)

+
N

&7

farad/m, 21=4.8x10-7 henry/m,




With B=wC and the use of (7a) and (7c), the shunt capacitance

C at z=0 is:

2
Al(az-al) (b-al) b 2(b-al)
¢ = 3 ﬂ(b-al) (b-az) = a,-a
2
b-a A
il 17 1 2
+7+T<A>"’"8' (8b)

where ¢y is the capacitance per unit length of line 1. In (8a,b)

(b-a)®  fa(b/a))

A, = ~ (9)
12073 n(srap?
A2 is defined in general on page 230 of Marcuvitz [10]. For
present purposes the range of interest is given by:
(b/a;)>(b/a,)>>1 (10)
In this range,
b Qn(b/al)
A2<<1; Al = (11)

a,[2n(b/a,) ]

With these values and the use of (10), (8b) becomes:

2

a a fn(b/a,)
C = cl —TTZ- <1— a—l> 1 3 ln(b/az)
2 a,[&n(b/a,)]

18




When b/a1 and b/a2 are sufficiently large, the leading term is:

2
a a
2 1
C = ¢,y T(l- = ) (12b)
2
In general this is a very small capacitance that can be ne-

glected in a zero-order approximation. For example, with

a.=0.5 cm and a

1 ,=1.5 cm, C/c1 as given by (12b) has the value,

/ey = 2.1 x L (12¢)

where ¢, is the capacitance per meter of line 1.

1

If a standing wave is maintained on the line with a maxi-

mum voltage at z=0,

Vl(z) = Vl(O)cos kz , z<0 (13a)

Vz(z) = V2(0)cos kz , 2z>0 (13b)
With the condition,

¥, (0) = V() (14)

and the basic transmission~line equation,
qi(z) = ciVi(z), i = 1,2 (15)
the following relations are found to obtain:

q,(0) c n(b/a) 0
2——:—23 1 = Zn. 11 =l.84 (16)
ql(O) <1 Zn(b/az) 2n 3.67

where the numerical values apply to the case of a.,=0.5 cm,

il

a2-1.5 em, b=5.5 cm. Thus, in zero-order approximation, the

19




charge per unit length is discontinuous across the junction.
This condition is illustrated schematically in Figs. ia and 2a
where the charges and the associated radial electric fields
change their values abruptly at z=0. Actually, of course, the
change from ql(z) to qz(z) is not discontinuous but occurs

cver very short distances on each side of the junction with
magnitudes of the order of b. In this range the capacitance
per unit length is not constant, i.e. cl(z)#c1 and cz(z)#cz.
Also, the charges per unit length vary rapidly but continuously
from the value ql(z)éql(O) at z=-5b to the value qz(z)éqz(O)

at z=5b. Since kb<<l, it is evident that

q2(5b) ¢y ln(b/al)
el B L e e b (17)
ql(-Sb) c in(b/az)

The continuous distributions ql(z) and q2(z) and the associ-
ated electric fields are shown schematically in Figs. 1b,2b.
Note that outside a narrow range on each side of z=0, the
distributions of ql(z) and qz(z) are the same as in Fig. la.
Inside this range they differ.

In both Figs. la and 1b the small corrective capacitance
C has been neglected. If it were included in Fig. 1b, a small
additional charge would be located on the flat annular surface
at z=0 with a consequent very small shift in the entire standing-
wave pattern toward z=0. The actual distributions of current
and charge on the inner and outer conductors of the coaxial line
are shown schematically in Fig. 2b. Note that q(z) varies

continuously along the inner surface of the shield, changing

20
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Figure 2. (a) Zero-Order, (b) Approximate Actual Charge per Unit
Length on Inner and Outer Conductors of Coaxial Line Near
Change in Radius.
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from ql(z)=clvl(z) to qz(z)=c2V2(z) in a very short distance
on each side of the junction plane. On the inner conductor
q(z) drops to zero at the sharp inside' corner, builds up along
the annular surface to reach a sharp and high peak at the out-
side corner, and then tapers off rapidly to reach the value
qz(z)=c2V2(z). On the inside surface of the shield the change
from ql(z) to qz(z) is also rapid but smooth. The magnitude
of the total positive charge in the range -5b%2zS5b on the inner
conductor equals that of the negative charge on the outer
conductor.

The significant consequence of this investigation is the

condition:

qz(o) &n b - &n a,
ql(O) “ %n b - fn a,

= 1s 2a b >> 4n a, (18)

As the outer conductor recedes from the inner one with increas-
ing b, the charges per unit length on each side of the junction
become equal. Although this relation has been obtained with
a TEM mode, the distributions of current and charge per unit
length along an antenna are sufficiently similar to those along
the inner conductor of a coaxial line, that it seems reasonable

to conclude that

q,(0) = q,(0) (19)

for the antenna with a discontinuous radius. This is, of
course, a zero-order representation for electrically thin

conductors.
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3. CHANGE IN THE CROSS SECTION OF A SPHEROIDAL ANTENNA

Consider a line source of length 2h that extends from
z=-h to z=h along which a suitable distribution of generators

maintains a sinusoidal current of the form:

I(z,t) = ImcosBz coswt (20a)

when the electrical half lengths are Bh=n7m/2 with n odd and

I(z,t) = Imsinﬁz coswt (2.0b))

when n is even. The associated distributions of charges per

unit length are obtained with the equation of continuity

3I(z,t) g€z, £)
B e e
They are:
q(z,t) = (Im/c) sinBz sinwt , n odd (22a)
q(z,t) = (Im/c) cosBz sinwt, n even (22b)

where c=w/6=3x108 m/sec is the velocity of electromagnetic
waves in air.

The exact electromagnetic field at all points generated
by these distributions of current and charge has the following
components in the cylindrical coordinates r,¢,z for n odd

with the upper sign, n even with the lower sign:




B¢(t) e [sin(wt - Bth) + sin(wt - Bth)] (23a)

g

0m .(z=h) (z+h) . =
Er(t) S [E—— sin(wt - Bth) = P sin(wt BRZh)] (23b)

1h 2h
= “o'n = N ( - BR.,.) #* =L sin(ut - BR )] (23c)
Bptrl = i kg ainlut W = F 2h
1h 2h
In these formulas u0=4ﬂx10-7 henry/m, C0=/u07€0=120ﬂ ohms,
2 2 _/ 2 2
th =\/(z-h) + r X R2h = [ (z+h)” + r (24)

This field can also be expressed in the spheroidal coor-
dinates ke,kh and ¢ with the ends of the line source at z=t*h
as the foci of a family of prolate spheroids with semi-major
axes ae=hke and a fgmily of orthogonal hyperboloids of two
sheets with semi-conjugate axes a,=hk,. These are defined as

h h

follows in terms of the distances th and R2h from any point
P to the foci:
on T th = 2ae (25a)

R2h < th = Zah (25b)

The spheroidal coordinates

ke = ae/h = l/ee ; kh = ah/h = l/eh (26)




are illustrated in Fig. 3. The eccentricities are e, for the

spheroids, e, for the hyperboloids. The coordinates ke and kh

h

have the following ranges:

128 S» 3 ~15%k $1 (27)

The cylindrical radial coordinate r can be expressed in terms

as follows:

4 of the spheroidal coordinates ke and kh
& BRI ety (28)
e h
1 With (25a,b) - (28), the cylindrical components in (23a-c)

can be transformed into the following spheroidal components:

uOIm cos(nnkh/Z)
B¢(ke’kh’t) = = Y ¢/ : = ‘sin(wt - nﬂke/Z) (29a)
(ke-l)(l-kh)

S0l cos(nﬂkh/Z)

Eg(k sk t) = - 500 — sin(wt - nmk_/2)  (29b)

20 592 2
J(RG=kp) (1-k)

CoIm sin(nnkh/Z)

2Th
,/(ki-kﬁ)(kz-l)

cos (wt - nﬂke/Z) (29¢)

Ep(ke,kh,t)

for n odd. The corresponding expressions for n even are:




cee e e O
v ©

and kh

e

Confocal Coordinates k

Figure 3.
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uOIm 51n(nﬂkh/2)

" 27h
Jad-n anidy

[}

B (ke,kh,t) cos(wt - nnkeIZ) (30a)

COIm sin(nwkh/Z)

Ee(ke,kh,t) cos(wt - nnke/Z) (30b)

2Th
6ty

;Olm cos(nwkh/Z)

27Th
ﬂkﬁ-u (k2-12)

Ep(ke,kh,t) sin(wt - nﬂke/Z) - (30¢c)

In these formulas Ee(ke,kh,t) is the component of the electric
field tangent to the spheroid defined by ke=constant; Ep(ke,kh,t)
is the component of the electric field perpendicular to the
spheroid and, hence, tangent to the hyperboloid defined by

kh=constant. Graphs showing the elliptically polarized electric

field for n=1,2, and 3 are in Figs. 8.4, 8.5,and 8.6 of Theory

of Linear Antennas [1l]. A detailed description of the field

is on pages 540-546 of [11]. Of importance here are the facts
that B¢(ke’kh’t) and Ee(ke,kh,t) are always and everywhere in
phase with each other and in phase quadrature with Ep(ke,kh,t).
Each sphergid, ke=constant, is a surface of constant phase or
wave front that expands so that its intersection with the z

axis travels with the velocity of light.

Exactly the same field (29a-c) or (30a-c) maintained
by a line source, ke=l, with the current (20a) or (20b) can

be maintained by suitable currents on a spheroid ke=kel




for all values of ke greater than kel' The required currents
and the associated charges can be obtained by requiring them

to satisfy the boundary conditions:
axB = —uoﬁ (31a)

8°F = -n/e, (31b)

where X and n are the surface densities of current and charge,
respectively, on the surface of the highly conducting spheroid
defined by k_=k_;, fi is the externally directed normal to the

spheroidal surface, and S and E are the fields with components

given in (29a-c¢) or (30a-c). Specifically,

Ie(kel,kh,t) = 2nrlKe(kel,kh,t) = ZﬂrlB¢(kel,kh,t)/uo (32)
qe(kel,kh,t) = 2nr1ne(ke1,kh,t) = anlEo(kel,kh,t)eo (33)
where
£, = hv/(kz a1F kY (34)
1 el h

is the radial distance from the axis to the surface of the
spheroid ke=ke1 at each value of kh. When (29a,c) and (30a,c)
are substituted into (32) and (33), the required currents on

the spheroidal surface are:

n odd: Ie(kel,kh,t) = -Imcos(nwkh/Z)sin(wt - nﬂke /2) (35a)

1
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n even: I (kel,kh,t) = -Imsin(nﬂkh/Z)cos(wt - mrke /2) (35b)

e 1

The associated charges per unit length along the spheroidal

surface are:

n odd:
qe(kel,kh,t) = sin(nﬂkh/Z) cos (wt - nﬂkel/Z) (36a)
n even:
qe(k 1°kyot) = cos (nmk /2) siq(mt - nmk_4/2) (36b)

A spheroidal antenna is electrically thin when its semi-
minor axis be=h ki-l satisfies the same condition as the radius
of a cylindrical antenna. That is, corresponding to the con-
dition Ba<<1l for the cylindrical antenna the spheroidal antenna

must obey the following condition:

By, = Bh‘/kz-l - (nv/Z),/ki—l $¢ 1 (37a)

This is equivalent to:

or

ki $1+0.01/n ; kS 1+ 0.005/n (37b)
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It is evident that for electrically thin spheroids the quantity

2

kel

is also near 1. The quantity e(hk) is shown graphically in

differs very little from 1 so that the factor in (36a,b)

(38)

Fig. 4. It is seen to be very small except near the ends of

the spheroid where khail. The trigonometric functions

sin(nﬂkh/Z) and cos(nﬁkh/Z) are not able to take full account

of the distributions of charge as the ends of the antenna are

approached. The quantity~/(1-k§)/(k§-k§) = l-E(kh) is a

weighting factor that increases with decreasing radius of

curvature of the spheroid. 1In combination with the trigonom-

etric factors it provides an accurate representation of the
charge density on the spheroidal antenna including the high

concentrations at the ends.

The currents and charges per unit length on a confocal

spheroid with surface defined by ke=ke2>knl are given by (35a,b)

and (36a,b) with kel replaced by ke2' For all values of ke>ke

the fields of the two spheroids with different k;s are identical.

The amplitudes of the currents and charges on the two

spheroidal antennas with different kés are:

i cos
Ie(kel’kh) Im sin(HNkh/Z)
il 2 cos
Ie(keZ’kh/ Im sin(nnkh/z)

30
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(39a)

(39b)
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-F

sin
cos(nnkh/Z) (40a)
sin
cos(n‘nkh/Z) (40b)

where the upper trigonometric function is for n odd, the lower
for n even. At corresponding values of kh on the two spheroidal
antennas the ratio of the current amplitudes is
Ie(kel’kh)
G0 1 g o e 1 (41)
e > e2? h
On the other hand, the corresponding ratio of the charges per

unit surface length is

2 2

qe(kel’kh) koo = By
7k S T 5 5 L 6(kh) (42)

e e2’h kel - kh

The function 6(kh) is also shown in Fig. 4. It is very small
except near the ends where it rises rapidly as kh approaches #1.
This is a consequence of the fact that the charge per unit sur-
face length increases most quickly where the radius of curvature
of the thinner spheroid decreases most rapidly. It follows

that the ratio of charges per unit surface length on the thinner
to the charges on the thicker antenna rises steeply near the
ends. At the center of the antennas (kh=0) the ratio of the

charges per unit surface léngth is

32




qe(kel’o) i ke2 - 8a2
qe(keZ’O) kel Bal

= 1.00033 (43)

where the numerical value applies to spheroids with ke =1.000166,

1
k

e2=1.0005. At the ends (kh=t1),

[}
"

1.732 (44)

which is significantly greater than one. The rapidity of the

rise near the end can be seen from the fact that at kh=0.995,

2
9 (kg1:0-99%) [k, - 0.990025 e .
qq(ky2,0.995) kil - 0.990025

Evidently most of the increase occurs within 0.005 of the ends.
In order to study the behavior of the charge near a dis-
continuity in radius, it is convenient to select the spheroid
with n=2, i.e. Bh=m, for which the maximum of charge occurs
at the center, kh-O. The currents and charges are given by
(39a,b) and (40a,b) with n=2 for two spheroids with different
k;s. The complete electromagnetic field is given by (30a-c)
with n=2; it is shown graphically in Fig. 8.5 of [1l1l]. The
fields of the two antennas are identical when ke>ke2. The
local amplitude of Ep(ke,kh) near kh=0 is shown in Fig. 5a

where the upper half of the diagram applies to the thinner

the lower half to the thicker antenna

antenna with k_=k
e e

l’
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with k =k Note that E (k_,k, )=0 at k,=0 and is very small
e e e e’ h

2

near kh=0. For clarity the values of ke

h

and ke actually

1 2
used in the diagram are much greater than permitted by the
condition for electrical thinness. The electric field lines
and the charges from which they emanate are shown schemat-
ically. The charge per unit surface length, qe(ke,kh), is
also shown along each surface.

Although Fig. 5a was drawn to illustrate the electric
field and the charges near the point of maximum for one
spheroid with surface defined by kel in the upper half of the
diagram, and for a second spheroid with surface defined by
ke2 in the lower half, the representation is actually a zero-
order approximation of the fields and charges of a single
spheroidal antenna with surfaces defined by different values
of ke in the upper and lower half spaces and a step at the
junction where kh=0' The diagram in Fig. 5a for the spher-
oidal antenna with discontinuous cross section at its center
corresponds to Fig. la for the coaxial line with a change
in radius of the inner conductor at z=0. At short distances
from the junction the electric fields are unaffected and have
the form and magnitude characteristics of an unperturbed
conductor. Near the junction the charges rearrange them-
selves near the step in the sense that their magnitudes are
reduced at the inside corner, increased at the outside corner
with appropriate gradual changes along the adjacent surfaces.

These are indicated schematically for the spheroid in Fig. 5b

in a manner that is analogous to that used for the coaxial
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line in Fig. 2b. Note that at short distances from the junc-
tion the fields in Figs. 5a and 5b are the same, just as are
those in Figs. la and 1lb. The magnitude of the charge per
unit surface length is shown along the surfaces in Figs. 5a
and 5b in a manner similar to that in Figs. 2a and 2b.

The important observation to be drawn from a study of
Figs. 5a and 5b is that the ratio of the zero-order charges
per unit surface length on the two sides of the junction bet-
ween electrically thin half spheroids with different eccen-

tricities is very nearly unity. This confirms the conclusions

drawn in conjunction with (19) for a similar junction in a

coaxial line.

4. REFINEMENT OF THE THEORY

The discussion of the junction in the coaxial line and
the spheroid is highly simplified and somewhat unrealistic.
In the coaxial line the conclusions depend on allowing the
radius of the outer conductor to approach infinity while
preserving the purely TEM character of the field. This implies

that the cross section of the line remains electrically small,

so that the limit is valid only at zero frequency. Clearly,

while b should become large compared with a; and 32’ it should

not exceed a wavelength. If it is noted that (18) is equiv-

alent to:

qz(O) 7
ql(O) e
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and if it is recalled that in coaxial line theory the char-
acteristic impedance Zc plays the same role as the expansion
parameter ¥=2[2n(2/Ba)-0.5772] in antenna theory, the indi-
cation is that b should approach the large value b=2/8 instead

of infinity. In this case (46) becomes:

(0) ¥ tn(2/8a,)

7,0 " ¥, T Ta(2/8a,) s

If the radii of the coaxial lines at the junction are made
equal to the semi-minor axes of the spheroids used in (43),

i.e.,Baz=Bbe2=0.O99, Bal=8be =0.057, (47) gives:

1

q2(0) ql(O)

a'l—(ay = 1 ,18: E;-(—OT = 0.85 (48)

These are more realistic values than exactly one.

Throughout the discussion of the spheroidal antenna it
has been assumed that a suitable excitation exists along the
antenna to maintain currents of the form (39a,b) with the
associated charges (40a,b). Actually, if two antennas with
different semi-major axes ael=hkel and aez=hke2 but the same
distances between foci, viz., 2h, are excited by identically
distributed fields of equal amplitude along their respective

axes, the amplitudes of the currents will not be the same.

Specifically, as shown by Ryder [12],

2 ! : /
TR kg BB R ke /TR IT & () (49)
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for an excitation of the form

: X (k)
n b
Bl = e

1= kh

In these formulas Xn(kh) is the distribution of current along
, - e
the antenna and Yn(kel) and its derivative Yn(kel) are func

]
tions of Xn(kh). Yn(kel) has the form

kel + L

el)=d2ni—-—_—-r+c (51)

Y'(k
= el

In (51), d and c are comparable in magnitude in general whereas
the logarithm is quite large when kel is near one. However,

d is a function of frequency and goes to zero at the reso-
nances defined by Rh=nm/2 while ¢ remains finite. At resonance,
Yn(ke1)=exp(inﬂke/2), Xn(kh)=tcos(nﬂkh/2) when n is odd,
Xn(kh)=tsin(nﬂkh/2) when n is even. It follows that at reso-
nance and when exposed to identical fields of the form in (50)
along their respective axes, the amplitudes Im in (39a,b)

and (40a,b) for the antennas must be replaced by Im(kel)

such that with ImO a constant,

I (k ) =k

m el (52)

elImO s Im(keZ) ) keZImO
It follows further that (41) and (42) must be replaced by:

Ie(kel,k
Ie(k

) k
kh) - kel (53)
e2’"h el

9




2 2

qe(kel’kh) kel ke2 B kh
” " R S

qe(keZ’kh) ke2 kel g kh

In particular, the spheroid with n=2, Bh=m, that is discon-
tinuous at kh=0 as shown in Fig. 5, will have zero-order

currents given by

Ie(kel,kh) = -Iokelsinﬂkh (55a)

Ie(k

e2’kh) = -Iekezsinnkn (55b)

which vanish at the junction, k., =0. The corresponding

charges per unit length are:

qe(kél’kh) cosTk (56a)

h

qe(keZ’kh) cosTk (56b)

where ¢ is the velocity of light. At the junction, kh=0 and

I (k 0) = I _(k

e el’ e eZ’O) =84 qe(kel’o) = LR

e eZ’O) = IO/C

(57)

Thus, in the resonant antenna with the junction at a charge

maximum and current zero, with each half identically excited

40




in only the single resonant mode, the charges per unit length
at the junction are equal.

With the same excitation but not at resonance the loga-
rithmic term in (51) dominates so that (52) must be replaced
by:

I (k

s el) = kelI/Zn[kel + l)/(kel =Sl (58a)

Im(kez) = keZI/ln[(kez + 1)/(ke2 - 1)] (58b)

where I is a constant and Zn[ke+1)/(ke-l)] corresponds to
the expansion parameter Y of a cylindrical antenna. It

follows that

Ie(kel,kh) kel 2n[(ke2+ l)/(ke2 - 1)]

- (59)
Ie(keZ’kh) ke2 Qn[(kel+ l)/(kel - 1)]
and
9 Capokn) Ll R T e
q (kg ysky) Pal(k, + 1)/ (k,y = 1)]
In particular, at the junction,
qo(ke1s0)  Rallky, + D/, = D] s

a,(k,,,0)  2al(k ; + 1)/(k y - 1)]

With ke =1.0005, kel=l.000166, (61) gives:

2
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qe(kel,o)

——=— = (.88 (62)
qe(kez,o)

Note that this value is in good agreement with (48) for an
approximately equivalent cylindrical conductor.

When the spheroidal antenna is not excited by the very
specially distributed field (50) which excites only the nth

mode, but is immersed in an incident plane wave, the total

induced current is the sum of the modes,
It(kh) = Zanln(kh) (63)

where the an are amplitude coefficients. Even when the fre-
quency is tuned to resonance with one of the modes, many
higher modes will also be present but with much smaller
amplitudes. It is to be expected, therefore, that the ideal
conditions leading to (53) will not obtain and that (58a,b)
will be good approximations. This means that the condition
(61) on the charges per unit length at a junction should be

generally useful.
5. CONCLUSION

A careful study of the properties of currents and charges
in a coaxial line with a step in its inner conductor and of a
spheroidal antenna with a similar step leads to the conclusion
( that the behavior of the charges per unit length near the

junction of two cylindrical conductors with different radii

42
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is not simple even for electrically thin conductors. How-

ever, a good approximation is given by the condition

g% gt = ciaeom g (64)

where Wi is the expansion parameter for conductor i treated
as an antenna. The definition of the expansion parameter is
somewhat arbitrary, but is always a logarithmic function.
Useful values for conductors that have lengths h that satisfy

BhZT/2 are given by:

Y = 2[2n(2/Ba) - 0.5772] (65)
For shorter antennas the appropriate parameter 1is

Y = 2 2&n(2h/a) (66)
where a is the radius of the conductor. The conditions (64)
and the Kirchhoff condition (1) apply to junctions of elec-
trically thin conductors. There is no justification for a
condition of the form (2) or (4). The conditions (5) or
(6) may be adequate approximations of (64) for junctions of
conductors that are sufficiently thin and not too different
in cross-sectional size.

Since in thin-wire theory the surface area of a junction
is negligible, and each conductor is treated as if its charges
were concentrated at an average position on the axis, the
angle at which two conductors meet is irrelevant. This is
true provided the diagonal distance across a junction is

electrically small, and not only the diameter of the thicker




wire. With this sharpening of the condition for electrical

smallness of the junction, the conditions (1) and (64) may

be applied in general.




SECTION III

ANALYSIS OF STEPPED-RADIUS WIRE
1. INTRODUCTION

In this section is presented an analysis of the stepped-
radius wire structure shown in Fig. 7. This structure, with
its confluence of two coaxial wires of different radii, is
perhaps representative of the simplest thin-wire configura-
tion possessing a junction. For this reason, the behavior
of the stepped-radius wire must be understood before more
complicated junction problems are undertaken. A numerical
procedure is developed for solving.for the current on the
stepped-radius wire. The procedure is applied to both a
stepped-radius scatterer and an antenna, and representative
results are provided.

In the present investigation of the stepped-radius struc-
ture of Fig. 7, the wire radii, a and b, are looked upon as
being very small relative to the wavelength A as well as to
the wire length L. These restrictions, common in thin-wire
theory, assure one that the current on each cylindrical sur-
face is circumferentially independent and that it mayv be
accounted for by the total axial current, denoted Ia on the

cylinder of radius a and I, on that of radius b. These

b

quantities are shown in Fig. 7, which serves to define
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geometric quantities of interest.

In the analysis which follows, the boundary condition
that total tangential electric field be zero on the conducting
surface is enforced on cylindrical surfaces but not on the
small annular surface located where the wire radius is dis-
continuous at z=s. This annulus is a very small portion of
the total surface area of the stepped-radius wire structure
and, therefore, when the wires satisfy thin-wire conditions,
the accuracy of a solution for current should not suffer
seriously from a failure to enforce the boundary condition
on the annulus. Experience with thin-wire analyses supports
this simplification, since excellent solution accuracy is
obtainable for problems involving solid wires even though
the boundary condition mentioned above is seldom enforced on
the disks at the wire eﬁds.

A further simplification employed here is that one
assumes he may ignore the small fraction of total field due
to the induced ch;rge and current which reside on the annulus.
The chargeable annular surface is, indeed, small compared with
the cylinder surfaces, and only a relatively small fraction
of the total charge on the structure could reside on the
annulus. Ignoring the charge on the annulus or, equivalently,
approximating its small value by zero, is tantamount to
requiring the total axial current to be continuous at the
point z=s (junction) where the two wires of different radii
join. TIf the axial current were discontinuous at the step,

charge would be deposited on the annulus in order that the
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continuity equation be honored. Therefore, under the assump-
tions set forth, one considers only the induced charge and
current on the cylindrical surfaces and enforces the boundary
condition Etan=0 only on these two surfaces.

In a scattering problem, one requires the sum of the
prescribed incident electric field Ei and the scattered
electric field Es, due to induced sources, to have zero
tangential component evaluated on the perfectly conducting
cylindrical surfaces of the structure: (§S+Ei)'ﬁz=0 on the
surfaces. In an antenna problem, one may view the tangential
incident field as being localized at the emf generator and,
again, he requires this specified field and the tangential 4

=s
scattered field to add to zero on the structure: E

'ﬁz+V6(z—zg)=O
on the surfaces, where Vd(z-zg) is a delta function of strength

V at z=zg due to a slice generator of V volts located at zg.
Due to the thin-wire assumption and the rotational symmetry

in both the scattering and antenna problems, the scattered
electric field E° is independent of ¢ and has no component in
the ¢ direction. Hence, to satisfy the boundary condition

that the total tangential field be zero on the two cylindrical
surfaces, one needs only to calculate Ez(r,z), the axially
directed scattered field, and to require EZ+E:=0 on the surfaces.

From basic electromagnetic theory applied to the

structure of Fig. 7, one may readily calculate E:(r,z) from

s ; a
B, & sJuk, = z@ (67)




where Az(r,z) is the 2z-

tial and &(r,z) is the
are readily determined
on the structure. The

quency w is suppressed

component of the magnetic vector poten-
electric scalar potential, both of which
from the induced current and charge

harmonic time variation of angular fre-

in (67). 1In view of the assumptions

and simplifications discussed above, Az and & are calculated

from the current and charge, respectively, which reside wholly

on the cylindrical surfaces; the contributions to ¢ from

charge induced on other surfaces are ignored. The boundary

condition discussed above now can be written

ES(a,z) + E.(a,z) = 0 , ze(s,L/2) (68a)
and

ES(b,2) + Ei’(b,z) =0, ze(-L/2,s) (68b)
for the scattering problem and

Ei(a,z) * V8(z-z ) = 0 ze(s,L/2) (69a)
and

Ei(b,z) + V8(z-z) = 0 ze(-L/2,s) (69b)
for the antenna problem.
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2. NUMERICAL SOLUTION PROCEDURE

From Eqs. (67) and (68) or (69), with A, and $ written
as functions of current, one may readily obtain an integro-
differential equation characterizing the current on the
stepped-radius structure. Then, of course, this integro-
differential equation may be solved for the unknown current.
The solution procedure emploved here is essentially the moment
metkod {13] but with a change in the usual sequence of steps
of this method which enables one to gain interesting insight
into the nature : the numerical procedure. The alteration
alluded to is that one performs the testing [13] of the equa-
tion to be solved before the unknown current is approximated
as a linear combination of the basis set. The testing pro-
cedure leads to a system of linear equations which represents
a discretized equivalent of the original integro-differential
equation. The numerical solution procedure is described below,
in general, for a representative segment of wire beginning at
zq and extending to Zyo and, subsequently, the method is
applied to the stepped-radius structure.

a. Testing

Pursuant to the establishment of a linear svstem of
equations from which one may ultimatelvy obtain a solution to
Ea. (67), one equates the corresoonding projections of the
two sides of Eq. (67) onto the space spanned bv the testing
set. In other words, if Tm is an element of the testing set,

one equates the scalar product of Tm and the left-hand side
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of (67) to that of Tm and the right-hand side:

<—ijz % %_z-cb’ Tm> i <Ei’ Tm> 4 (70)

where the scalar product is defined
[ L}/2

<f, g> = ffg*dz (71)

z=-L/2

Because they are particularly amenable to numerical solutions

of (67) and lead to stable linear systems, the set of piece-

i wise linear functions is selected for testing; the nth element
ﬁ Ai(z) of this testing set is defined

& Cho< |aea )Y 5 zete Ak

A m = m-1’"m+1

g

} A, (z) = (72)

0 s 2k(z (20 00)

where
b (o, = %p.q) G730

Implicit in the above, and depicted in Fig. 8, is the parti-

tioning of the segment of wire of length z,-z, into M-1

M il
subintervals, each of length A=(zM-zl)/(M-l).
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2
Since the testing function Am is zero outside the sub-

domain ze(z ), one sees immediately that (70), subject

m-l'zm+1
2
to (71) and (72), reduces to (Tn=Am)

z

£ 2
- (E—Q(r z) + jwA_(r,z) Al(z)dz = Es(r )Al(z)dz (74a)
3z > Zie ot i > iy -
z=z, z=z,
(m=1)
zm+1 zm+1
e BS (e ek (zhaz , (T4b)
3% ’ J z ’ o > ’ o s
z=zm-l z=zm-l
m = 2,3, yM=-1
and
M Zy
- Q—Q(r z) + jwA_(r,z) ‘l(z)dz = ES (r z)Az(z)dz (74¢c)
3z * 2 * M 2 2 M %
z=zy z=zy_,

(m=M)

One integration by parts anplied to the portion of each of the

integrands in (74) involving ¢ reduces the above to
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22 22

3(r,z,) -%f@(r,z)dz iy fAz(r,z)Api(z)dz

z2=2Z Z=Z

1 1
%o
= g2 (r.z)0 Y (z)dz , (75a)
z all 2
Z=Zl
(m=1)
zm zm+l zm+1
L Foie.2ydz = 2 Joce,21dz ~j0 fa e, 030" (2)az
A , A , i p AT IA
:=Zm_l Z=Zm Z=Zm_1
zm+l
3
= fE:(r,z)Am(z)dz 2 (75b)
M-1




z z

M M
® i vt Fotrzide ~1u |5 (e 50l (z)dz
=0 (r,zy A 2 Z 2 M
2%%u-1 27%M-1
Zm
= fEs(t,z)AQ'(z)dz s (75¢)
z M

Z=ZM_1

(m=M)

The testing functions, often called triangle functions, are

illustrated in Fig. 8 . For m=2,3,...,M-1, the testing functions

are interior full triangles and are associated with Eq. (75b).
On the other hand, due to tﬁe integration limits on (71),
testing with Ai is equivalent to testing with a half-triangle
on the lower end while use of A; yields the same results as
would a half-triangle on the upper end (Fig. 8).

The vector potential Az due to currents on a wire is
reasonably slowly varying with z. Therefore, with A suffi-
ciently small relative to wavelength, the approximations below

are quite good, and they significantly lessen the computa-

tional complexity of the present analysis:

4

2
A (e, 23N (z)de & 2 & Cr,2.) ., be<k (76a)
Bl T i 2 iR
z2=2

k




zm+l

) )
fAz(r,z)/\m(Z)dz = AAz(r,zm) , A<<A (76b)
Z=Zm_l
ZyM
A TR E R (16)
z ) M 2 z ,ZM 3’
S e

The same type approximation can be applied to the right-hand

sides of (75), but is usually unnecessary because the indicated
integration can almost always be performed analytically. How-
ever, in the interest of notational convenience, the following

definitions are emploved:

S
S = s 2
\Y (1'.21) = sz(r,z)/\l(z)dz (77a)
z=z,
zm+1
Vs(r,zm) = JrEz(r,z)Ai(z)dz g mMm2 5 30 o s M=l (77b)

(iic)




With the approximations (76) and definitions (77), the

three equations of (75) can be written in the form

2
S8Cr.z.) = = B Ber.adis ~ju 2k Cr.z.) = FCe.2.) (78a)
G A » L 121
Z=21
(m=1)
zm zm+1
1 1 ! S g "
Kf@(r,z)dz =¥ fcb(r,z)dz —JwAAz(r,zm) =V (r,‘.m) . (78b)
Zszm_l Zgzm
m=2731, yM=-1
ZM
IR i [T O S T R e (78¢)
| A ? 2 2 ’°M M ?
Z=ZM_1

(m=M)

b. Current Approximation

The next step in the numerical solution procedure is to

approximate the unknown current I(z) in a series of the form

N

I(z) =2Inin(z) (79)

n=1




where each in(z) is a known element of a basis set selected
for representing the current, and In is the unknown complex
coefficient of the nth term in the series (79). It is the

set of coefficients {In} that one seeks to determine in the

numerical procedure. Az and ¢ are written .as functions of

the terms in (79) and then are substituted into (78), which

leads to a system of linear equations that, subject to bound-

ary conditions, can be solved for {In}
A very useful basis set in terms of which to represent
the current on the stepped-radius wire is that comprising

the so-called pulse functions (in=pn):

1 ze(zn - Of2, z  + A/2)

p (2) = (80)

0 zef(zn - A2, z + A/2)

i pulse. A represen-

where 1 locates the center of the n
tative pulse is shown in Fig. 9 together with half-pulses
on the ends of the interval (zl,zM). The number of pulses,
including the two half-pulses, is chosen to be equal to M,
the number of testing triangles.

(28 Az and ¢ in Terms of In

The vector potential Az due to the approximation given

in (79) is conveniently written

A (r,Z) = I _A (r,Z,R) (81)
¥4 )0 B o |
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In (81) An is the contribution to the total vector potential

Az from the nth pulse:

zl+A/2
Al(r.z,R) = f% .I;(z-z',r,R)dz' (82a)
z'=zl
z +A/2
n
An(r,z,R) = f%-‘];(z—z',r,R)dz' 5 (82b)
z'=z -A/2
n
n=2 31, SyM~-1
Zy
Ay(r,z,R) = ZET?fg(z—z',r,R)dz' (82¢c)
zEzM—A/Z

where R is the radius of the wire on which resides the current
I being approximated by the given pulse and where u is the
permeability of the medium in which the wire resides. 1In

(82) the kernel is given by

g 3
22D
1 e-jk[g +r +R“-2rR cos¢']
g(&,2,R} = 3= = d¢' (83)
ik 2 d.at &
4 [E4r“+R“-2rR cos¢']
¢ ==T
where k is 2m/A. By a suitable change of variables in each

expression of (82), these integrals can be converted to the
following, which are far better suited for computation than

are those of (82):
60




A2
=0l s
Al(r,z,R) . - fg(z z" zl,r,R)dz' (84a)
z'=0
A2
- B aake
An(r,z,R) AT fg(z z zn,r,R)dz' (84b)
z'==A/2
n=2,3 ;o M=1
0
AM(r,z,R) = f% g(z-z'-zM,r,R)dz' (84c)
z'==A/2

The scalar potential ¢ due to the charge associated with
the current approximation (79), with the pulses of (80), is

to be calculated as a sum of partial potentials,

M

i, z) =Zln®n(r,z,R) 5 (85)

n=1

where, of course, @n is that contribution to ¢ due to the
charge related to P.* As suggested in Fig. 9 , current on

a cylinder in the form of a pulse "deposits" a discrete ring
of charge at the upper and lower ends of the pulse, where it
is discontinuous. Since the derivative of the pulse is zero
other than at the points of discontinuity, no other charge,

e.g., linear charge density, is associated with the current
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pulse. The total charge deposited at the nth pulse's upper
end-point, zM+A/2, is - f; and that at its lower end-point,
zM-A/Z, is + E%. The current on the wire surface is assumed
to be uniform around the wire circumference so each ring of

- 1

: o L i
charge is of constant linear density: X J02TR at zn_A/2.

Now, each partial potential Qn is seen to be

1
¢1(r,z,R) S Yo [g(z-zl—A/Z,r,R) -g(z-zl,r,R)] (86a)
1
®n(r,z,R) = = S [g(z-zn-A/Z,r,R) —g(z-zn+A/2,r,R)] , (86b)
B®2, 3. 400 gM=1
1 A
@M(r,z,R) = - EZ;IE [g(z-zM,r,R) —g(z-zM+u/2,r,R)] (86¢c)

where € is the permittivity of the medium surrouncding the wire
structure.
d. Linear System of Equations for Stepped-Radius Scatterer

If A, of (81) and ¢ of (85) subject, respectively, to
(82) and (86), are substituted into (78), one obtains a system
of linear algebraic equations having the current coefficients

In's as unknowns. This system of equations comes from testing
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(67) with the triangle testing functions, and it contains the
same information as does (67).

At this point we adapt the system of equations to the
stepped-radius wire scatterer. The scheme for applying the
above to the stepped-radius problem is suggested graphically
in Fig. 10. 1In this example, the portion of the stepped-
radius wire between z=-L/2 and z=s (step location) is divided
into six subintervals of length Ab=[s+L/2]/6, and the remaining
portion is divided into three subintervals of length
Aa=(L/2-s)/3. Next (78) is applied individually to the in-
terval ze(-L/2,s) and to ze(s,L/2), and the currents I, and
Ia are approximated by pulses in the resnective intervals.

The testing triangles and the pulses are observed in Fig. 10

where one sees that the coefficients Ib and Ia of the end

1 10
half-pulses are made equal to zero so that Ib(-L/2)=O and
Ia(L/2)=0--current boundary conditions at free wire ends. With
I?=Ii0=0, the number of unknowns is reduced by two, and, thus,
(78a) applied in (~L/2,s) and (78c) applied in (s,L/2) are
deleted to reduce correspondingly the number of equations in
the linear system. Also, notice that the current is made
continuous at the step by the composition of the 7th pulse;
this pulse occupies an interval of length %(Aa+5b) and is the
combination of the upper half-pulse on the larger-radius wire
and the lower half-pulse on the smaller-radius wire. Com-

bining the two half-pulses at the step into a single pulse

b a
(I-=I1_=1I) reduces the number of unknowns by one, and a corre-
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sponding reduction is achieved in the linear system by adding
(78¢c), applied in (~-L/2,8), to (78a), applied in (s,L/2).

With the current represented by pulses and with the
testing of (67) (leading to (78)) suggested by the triangles
in Fig. 10, one applies (68) to E: in (77) and enforces (78)
on the surface of the larger-radius wire and on the surface of
the smaller-radius wire. The linear system resulting from
the above applications of (78) to the two wires in the struc-
ture of Fig. 10 can be readily solved for the current coef-
ficients I: and Is.

For a general stepped-radius scatterer, one would divide

(s+L/2) into N, segments of length Ab=(s+L/2)/Nb and (L/2-s)

b
into N segments of length Aa=(L/2-s)/Na. Then, applying
the scheme described above for the example of Fig.1l0, he would

establish the following system of linear algebraic equations:

b b
'8 1L . Z i R (87a)
n mn m n mn m
n=2 n=Nb+2
m=2 ,3, ..,Nb
N N 4N,
ZIbZSb £ 12° 4 z 12" - (87b)
n n 2 il o |
n=2 n=Nb+2
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N N N
12220 4 122 & E gRgRa o gl (87¢)
n mn m n mn m

2

n=N_+2

n= b

m=N +2,...,Na+N

b b

where Ii and IE are the weighting coefficients of the pulse
approximations for Ia and Ib’ respectively. The elements in

the above linear system are defined in (88).

Z
m+1

b 5 2
Vm = - sz(r,z)Am(z)dz
=z
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For a specified incident field having a z component Ei,
the system of equations (87), with the definitions of (88),
can be solved for {Iz} and {I:} from which a pulse approximation
for current on the scatterer is readily available.
e. Reduced Kernel

Although the exact kernel of (83) can be calculated by
means of elliptic integrals and can be employed in the com-
putation of quantities above, an approximation of (83) lessens
the computer time required in calculations.

The distance from a point (r,0) on the inner circle of

Fig. 11 to (R,9') on the outer circle is, from the law of

1
2
cosines, [r2+R2—2rR cos$d'] . The maximum value of this dis-

1 1
2 2 z

tance is [r2+R2+2rR] and the minimum is [r +R2—2rR] from
1

Ny
which one determines the median distance to be [E—%E—] ’
o2 v 5 2, =2

Hence, one replaces (r“+R"-2rR cos¢') in (83) by (r“+R°)/2
and arrives at a reduced or average kernel for the sta2ppad-
radius wire:
5

g 2 2

TN EARTCLs Y
K(§,r,R) = o (89)
2 E e A i
[E°+5(x"+R7) ]

The viewpoint above leading to (89) is precisely that in thin-
wire theory from which the usual approximate kernel stems, and,

indeed, for a constant-radius wire, (89) reduces to the usual
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kernel. Selected sample calculations employing (89) yield
results which exhibit no significant error compared with re-
sults based upon the exact kernel (83), and, therefore, in the
interest of efficiency, calculations reported here are based
upon (89).
f. Stepped-Radius Antenna

If one wishes to determine the current on a stepped-
radius antenna, driven at z=zg by an emf source of V volts,
he simply replaces Ei of (88) by Vé(z—zg) as suggested in
(69). With this replacement, the linear system (87) can be
solved for the antenna current.
g. Scatterer or Antenna above Ground

To analyze a stepped-radius structure above and perpendic-
ular to a perfectly conducting ground screen as depicted in
Fig. 12, one only has to appéal to symmetry and to modify the

kernel, (83) or (89), in the usual way.

3. SAMPLE RESULTS

In Figs. 13-24 are presented selected results of currents
on stepped-radius wires. In all cases the presence of the
step influences the magnitude of current relative to what it
would have been on a constant-radius wire, but the effect on
the shape of the distribution depends upon length and certain
features of the excitation.

Near resonance, where the forced response is dominated

by the resonant response, the distribution is little affected
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by the presence of the step or its position on the wire. This
is supported by the data of Figs. 13-15 where are displayed
currents on wires which have steps in various locations and

which are illuminated by a normally incident plane wave.

Those knowledgeable in thin-wire theory are aware that the

forced current is dominant on a lA wire which is symmetrically
excited and they know that this response is essentially a
shifted cosine function. Only, if the forcing function
possesses an odd-function component, can the resonant cur-
rent respond on a lA wire of constant radius. On the other
hand, in the case of a 1A stepped-radius wire having, of
course, the odd symmetry within the structure itself, one
does expect a component of resomant current. This is vividly
exhibited by the data of Fig. 16 where one sees a significant
change in the real current on a stepped-radius wire over that
on a constant-radius wire.

Fig. 17 shows the current on a stepped-radius scatterer
caused by plane wave illumination impinging upon the wire at
angles @ (w.r.t. 2 axis). Figs. 18 and 19 provide infor-
mation on the variation of peak current on stepped-radius
scatterers of lengths below and above A/2.

Figs. 20-23 give comparative data for 1A antennas excited
symmetrically and antisymmetrically. Again one observes
little influence on current due to the presence of the step
at s=0 when the excitation is an odd function, but a marked

effect is seen in the case of even~function excitation.




Lastly, shown in Fig. 24 is the current on a stepped-
radius monopole above a ground plane. The inherent symmetry
of such an antenna suggests that no major change in shape
of current is to be expected, and this is corroborated by the

results of Fig. 24.
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SECTION IV

AN ITERATIVE-SOLUTION ANALYSIS OF THE BENT~WIRE SCATTERER
1. INTRODUCTION

In this Section, a theory is developed by means by
which one may determine the current induced on a bent-wire
scatterer illuminated by a specified incident electromagnetic
field (Ei,ﬁi). The solution procedure is of the iterative
type and, in general, follows the principles set forth in
recent work by King and Wu [8,14]. However there is a sig-
nificant difference in the iterative procedure applied to
the bent-wire problem compared with that applied to either
a straight wire or perpendicular crossed wires. This analysis
is applied to the problem of a bent-wire scatterer in free
space, as depicted in Fig. 25, as well as that of a bent-
wire scatterer above an ideal ground plane (Fig. 26).
Calculated results are presented for several cases of interest.
The straight wire elements of the bent-wire structure
are treated as perfect conductors and the usual simplifi-
cations of thin-wire theory are employed in the analysis.
Principally, the element radii are assumed to be very small

compared with the wavelength A, and the current density is

considered to be essentially uniform around the periphery of

an element.
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Figure 25. Bent Wire
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Figure 26. Bent Wire Above Ground
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In the analytical solution procedure which follows, an
expression, suitable for iteration, is derived for the total
axial current on each element. In Fig. 25, one sees the bent
wire located in a Cartesian coordinate system with the bend
at the origin. One wire is coaxial with the z axis, and the
other extends from the origin radially outward in the yz
plane along a line which is declined from the z axis by an
angle 6. Tne direction of the axis of the latter wire 1is
designated the s direction. Iz is the total axial current
on the z-directed wire, and Is is that on the s-directed
wire as shown in Fig. 25 which serves to define other geom-

etric quantities of interest.

2. ANALYSIS

In the present analysis, expressions for IZ and Is

are formulated and are used to obtain zero and first order
solutions by iteration. The above-mentioned expression for
Iz is developed below from consideration of the magnetic
vector potential A and the partial differential equation which
this quantity satisfies.

Since the current on the bent wire is in the yz plane,

one can readily show [5] that

52 2
2 +k2A=jk—E-§(§—A> (90)
az2 z w z G2 \NdN ey

where Az and Ay are the z and y components of the vector
89




potential, Ez is the z component of the electric field result-
ing from currents induced on the scatterer, w is the angular
frequency of the suppressed harmonic variation in time, and

k is 2m/X. Consider now that Ez’Az’ and Ay are evaluated on
the surfaces of the z-directed wire in Fig. 25 along the

line (az,O,z) for ze(-h,0). 1In order to satisfy the boundary
condition that total electric field tangential to, and eval-
uated on, the perfectly conducting wire surface, one requires

Ez(az,O,z)+E;(aZ,0,z)=0, ze(-h,0) where E: is the z component

of E'. Equation (90) is a well-known inhomogeneous differ-
ential equation, and one can demonstrate [ 5 ] that, on the

7z-directed wire,
U d 51
Az(az,O,z) = [Czcos kz + 3251n kz + Vz(z) + Uz(z)] (91)

where Cz and Bz are arbitrary constants of integration, where
U is the permeability of the medium, and where Vi and UZ

are defined

vigz) = -3 & El(a,,0,C)sin k(z-7)dg (92a)

£=0

with n the intrinsic impedance of the medium and

U (2] = = &= [7— A (az,y,c)] « co8 k(z=t)dg (92b)
S
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The z-directed vector potential AZ in (91) is

0
ol I (z'")K(z-z',a_)dz'
4 z ez

>

N
~~
[

N
()
%
N
N

[}

=

+ cos®H f% ./;S(s')G(z,s',az)ds'

s'=0
where
1/2
. 2. 2
e-Jk[S +a”]
K(g,a) = [
(£2+a?)
and

Y
e—jk[a2 + E'zsinze +(£—E'cose)2]
%

€(8,E" ;a)

2 2 2

+ E'Zsin 8 +(E-E£'cosh) ]

[a

At a point in space (az,y,z), Ay is

)
-jkR
= B : ' e___y '
Ay(x,_v,z) - sing f Is(s ) R ds
¥
s ' =0

1

(93)

(94a)

(94b)

sy
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where

1
2

2 N 2 2
Ry = [az + (y-s' sinB)° + (z-s' cosB)] (96,

The derivative of Ay appearing in (92b) is seen to be

3
= & (a_,y,2)| -
dy "y s ly=0
%
-jkR
zu?sinze fs’Is(s') -lj-+ 3 %]e YV ds! (9175
Tk L 6
e y y G

Hence, subject to interchange in order of integration in (97),

Uz of (92b) becomes

@ Z
-jkR
-sin’6 fs'I (s") [—%— + 3 —%—] e %% cos k(z-r)dzds'
R RS
s'=0 z=0 - ©°S 58 (98)
with
FE- 5 N 4 . E
RCs = a, + s'"8in"8 + (g-s' cos9) (99)

The double integral of (98) can be reduced [15] to the single

integral,

| ——




Cs
-sin26 fs'I (s') = [(C—s'cos@)cos k(z-72)
s 2 2 )
R fla® & =" sin=8]
s'=0 e s
z
-jR_ sin k(z—C)] } ds' (100)
zs £=0

which enables one to express Uz in the form of (101), which is

2
U 2 . s'

z(z) = -sin” 8 Is(s ) 5 g 3 (z=s'cos®)G(z,s8",a_ )

[a - * s" sin~8] 2

s'=0 =
2 L
' ~jkfa_+ 5'2]

+ s cosGK(s',az)cos kizl 4@ . “sin kz Y as!
(101

computationally much more manageable than is (92b). At z=0,

Uz is seen from (92b) to be zero and, for z less than zero by
a few radii (az), the integrands of (10l1) are quite easy to

integrate.

With the kernel K defined in (94a) partitioned into real

and imaginary parts,

Kt ,a) Kr(i,a) + jKi(S,a) (102)

where
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2 2
K.(5,a) = cos k/E? + a (103a)
./52 + a2
and
-2 2
Ki(E,a) _ sin kvE~ + a (103b)

/52 B a2
Equation (91) can be rearranged:

0

i
' e [ e
f Iz(z )Kr(z z ,az)dz Czcos kz + stin kz + Vz(z) + Uz(z)

z'=-h
o Uzs(z) + Uzi(z) (104)
where
L
Uzs(z) = -cos® fls(s')G(z,s',az)ds' (105a)
s'=0
and
0
v, (2) = -] flz(z')[(i(z—z',az)dz' (105b)
z'=-h
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Now, without approximation, (104) yields

il
Vz(z)Iz(z) = C,cos kz + stin kz + Vz(z)

& Uz(z) + Uzs(z) £ Uzi(z) (106)

subject to the definition,

0
1 | 1 1]
‘!’z(z) = I—z—(z—) flz(z )Kr(z-z ,az)dz (107)

z'=-h

A procedure parallel to that leading to (104) for the z-

directed wire can be applied to the s-directed wire to obtain

; 3
Ws(s)IS(s) = Cscos ks + 3531n ks + Vs(s) + Us(s)

+ Usz(s) + Usi(s) (108)

where Cs and Bs are arbitrary constants peculiar to the s-
directed wire and where the remaining terms in (108) are

defined below.

b))
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'3
1 (] ' '
l{’,__,‘(s) = Is(s) fIs(s JK_(s-s',a;)ds (109a)
s'=0
s
vi(s) = -5 AT [El(a,,0,E)s1n k(s-0)4E (109b)
£=0
0
Usz(s) = -cosf ./;z(z‘)c(s,z',as)dz' (109c)
z'=~h
l :
Usi(s) = -j fls(s')Ki(s—s',as)ds' (1094)
s'=0
| §
0
@ i Us(s) = -sin29 Iz(z')< 5 2:2 3 > {(s—z'cose)c(s,z',as)
. [a + 2z'"sin" 6]
z'=-h 5
F
5
-jk[a2 + z'Z]
+ z'cosBK(z',aS)cos ks + je - sin ks ) dz'
(109e)
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a. Y-Functions

When a<<l, which is true for thin wires, the real part

of the kernel of (94a) is highly peaked for small £/)A and j

decays very rapidly for £>>a. These properties are evident

from the approximations below:

cos kJ%Z + a2 cos Zﬂnglk)z + (a/l)2 |

K.(§,a) = = f

g2 + a? A JeE1? 4 (arn)? !

E ]
R (E,2) = L -2 a2 fem® e @m? o,

2 JeEjRy: = Catt)®

E/X <<1 and a/A <<1 (110)
and
R (E,a) = C—"—S—E—ké T (111)

Due to the sharply peaked behavior of Kr near £=0 and the
fast decay for &>>a, Kr exhibits the selecting property of a
delta function. The Y-functions defined in (107) and (109a)

may be represented by

)




¥

Y(w) = le—) ff(w')Kr(w-w',a)dw'

w ’Wl

which, for a<<), is reasonably well approximated by

LD
Y(w) f

w'=w

wl we(w,wz)

1 d
jQw-w')z + ot
1

2 2
(w=w.,) + [(w-w,)" + a
L5 L '/ . (112)

(w=v,) +/(w-w2)2 + a®

Y(w)

The VY-function is almost constant for w remote, in terms of

numbers of a, from end points vy and v, but varies quite rap-

idly within a few radii of either end; its value at v, and O

is approximately one-half its value at (wl+w2)/2 for (wz-w1)>>a.

One may obtain a good approximation of ¥'(w) at vy and Wyl

98




w'-wl

Ra

2 f(lw) f““" g_w K (w-w',a)dw' = £'(w)¥(w)/ £(w) (113)

'=
w wl

At w=w,, the first term in (113) can be well approximated by

2
(w,-w')
1 ' 1 ]
T Ew) ff(“’ ) e
wv,wl [(Wl‘w') + a“]

which reduces to
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and

=
atww2

W, =W
For reasonable values of (wz-w1)>>a but not exceeding roughly

2
100, ¥Y(w) is not significantly greater than 2 2%n (;). Hence,
for f'(w) typical of the derivative of current on a thin wire--
not at a free end--the second term in (113) is very small com-

pared with the first at w, or Wy, and one has a simple but

il

good approximation. of ¥' at w, and w,:
¥'(w,) &2 (114a)
¥'(u,) & - = (114b)

It is worth noting that the value of ¥ or ¥' at either v, or
LD is highiy sensitive to a but is insensitive to (w2-wl) so
long as (wz-wl)>>a.

In view of the properties of the Y-function given above,

Wz(z) and Ws(s) are seen to be almost constant except near
the upper and lower ends of the individual wires. The values
of WZ and Ws may be obtained from (112) with appropriate

interpretation of wl,wz, and a, and the derivatives of these

100




Y-functions at the wire junction (bend) are, from (114),

' R bl
Wz(O) i (115a)

' o
WS(O) a, (115b)

b. Outline of Iterative Procedure

The large value of the ¥Y-functions for thin wires and the
observation that some terms in (106) and (108) are far more
significant than others suggest that these expressions may be
amenable to an iterative solution procedure for determining
Iz and Is' In such a procedure, one identifies a so-called
zero-order solution which comprises only terms that themselves
are not direct functions of the currents.

The zero-order currents, I: and I:, from (106) and (108)

are

o 1 o o _. i

Iz(z) = wz [Cz cos kz + 3251n kz + Vz(z)] (116a)
o 1 o o ol

I (s) = v [ C_ cos ks + B sin ks + V (s)] (116b)
s s s s s

where the Y-functions, defined in (107) and (10%9a), are
approximated by (112). One observes that in (106) and (108)
the U-functions, each of which depends upon current on the bent

wire as is seen explicitly in (101), (105), and (109), are
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ignored in the zero-order solutions. Expressions (116) are
subjected to boundary conditons and the zero-order coefficients,
(o] (o] c0

z" B,» s

C
z

, and B:, are thereby determined.

Finally, returning to (106) and (108) and using the zero-
order currents as approximations to the exact currents in the
integrands of the U-functions, one forces Iz and Is to satisfy

boundary conditions and thereby calculates Cz, B CS, and

2
Bs. With these coefficients in (106) and (108), one has what
are called first-order solutions for Iz and Is.

In a procedure like that described above, the influence
of the zero-order currents upon the first-order is proportional
to the factor 1/¥Y; hence, the importance of a large Y-function
is clearly evident.

The boundary conditions which one enforces are (1) that
the current vanish at the two free ends of the bent wire and
(2) that both the current and its first derivative be con-

tinuous at the bend. In summary, these boundary conditions

are

Iz(-h) =0 (117a)
Is(z) =0 (117b)
1,(0) = IS(O) (117¢)
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—y

= I;(O) (1174)

C. Current and its Derivative at the Bend

If the structure under study here were a straight wire
(bent wire with 9=0°) or even the complex structure compris-
ing two wires which cross at 900[8,14],it would be found that
an iterative solution could be formulated in such a way that
the Y-functions would be essentially constant even at the
confluence of wires. However, in sharp contrast to analyses
of the structures above, the iterative solution method for
the bent wire must fully account for effects of the large
derivative of the Y-functions at the bend. In addition, and
of paramount bearing on the present analysis, one cannot
relegate to a secondary role the contributions from one wire
to the value of current on the other when the point of eval-
uation is at the bend--a point common to both wires. In
other words, the determination of Iz and its derivative at
2=0 cannot be made without cognizance of I, at s=0. Hence,
before the first order coefficients are calculated from
boundary conditions (117), a thorough investigation of cur-
rent and its derivative is in order.

From (106) WZ(O)IZ(O) is

WZ(O)IZ(O) = Cz + Uzs(o) + Uz (0) (118)

i

since UZ(O) is seen from (92b) to be zero. Notice from (105a),
103




(94b), and (94a) that Uzs(o) is

2
= - ara (] ]
Uzs(O) cos® fIS(s YK(s ,az)ds

s'=0

and, even though the integration above is over the s-directed

wire, it reduces to

s

Uzs(o) = -cosH WZ(O)IS(O) -j cosb ./}S(s')xi(s',az)ds' (119)

s'=0

Since Iz(0)=IS(O) as required by (117c¢), (119) and (118)

yield

2
= - 1 1 1
‘{‘Z(O)[l + cosG]Iz(O) = Cz j cos® fIs(s )Ki(s ,az)ds

s'=0
0
-3 jIz(z')Ki(z',az)dz' (120)
z'=-h

By a similar procedure, one obtains the following for

WS(O)IS(O):

104
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0

‘!‘S(O)[l + cosB]Is(O) = Cs ~j cosf fIz(z')Ki(z',as)dz'

2

-4 fIs(s')Ki(s',as)ds' (1:23%)

s'=0

Subject to the definitions of the constants,

2
= =3 ' ’ 1]
B j cosb Is(s )Ki(s ,az)ds + Uzi(O) (122a)
s'=0
3 and
0
& = ' ' [
Ps = -j cos® fIz(z )Ki(z ,as)dz + Usi(o) 5 (122b)
z'=-h

which are clearly not zero~order contributors, (120) and (121)

lead to
4
Cz + Pz
= )
Iz(o) WZ(O)[l + cosf] (123a)
and
C + Ps
1_(0) = S (123b)

WS(O)[I + cosf9]

L05




Next, in order that boundary condition (117d) may be

enfofced, it is necessary to investigate the derivatives of
each term on the right-hand sides of (106) and (108). Only

U and U of (106) and U and U
zs s

2 of (108) require special

sz
attention; nence the derivative of Uz(z)+Uzs(z) at z=0 is
investigated in detail.

From the definition of Uz(z) in (92b), the desired deriv-

ative of this function is seen to be

' .l 0
UZ(O) = [dz Uz(z)] 7 u [ay Ay(azsyvo)]

z=0 y=0

or
2
-jkR
UE(0) = =slnb f 1 €'l =5 4 ds'
z s dy R .
y y=0
s'=0 z=0
Since
:
-jkR -jkR
E 9 <e > - wglal 3 <e y>
P) R 0y ds' R
¥ y y=0 - y y=0
z=0 z=0

U;(O) becomes




X

'3
'(0'126 I(l 3_ ] '
Uz ) sin s (s ) P K(s ,az)ds ; (124)
s'=0

At this point, attention is turned to the derivative of

Uzs(z), which can be written

2
Ul (0) = [ u__(2) > ~cosh I (85 his €(z.8" 0. da’
zs dz " zs s 9z g
z=0 z=0
s'=0
One can show that
[%— G(z,s',az)] = -cose[ %—T G(z,s',az)]
2 z=0 5 z=0 ;
which leads to f
2
u' (0) = cosze I (s') - G(0,s',a_)ds' ;
zs s o9s' = ey .
S'=0 s
Recognizing that G(O,s',az)=K(s',az), one obtains
%
U' (0) = cosze Iy LB K(s',a_)ds' (125)
zs s ds' )
s'=0




Now, the sum of (124) and (125) is simply

2

U;(O) + U;S(O) = fIs(s') gs_' K(s',az)ds' (126)

s'=0

The portion of the integrand of (126) involving Kr’ the real
part of K, can be integrated by parts and (126) can thereby

be converted to

cos ki cos ka

BR(0) 0 5 B () —p— = T (0 o

d
T IS(S') Kr (s',az)ds'

2
s'=0
L
+Jf
s'=

3
Al P SO 1 L}
IS(S ) 58" Ki(s ,az)dS
0
; : < cos ki
in which the excellent approximation Kr(l,az)= e A4S

utilized. ©Now, in view of the selecting property of the VY-

cos ka
z

function and since =™ —— = :L = -W;(O) as indicated in (114),
z z

one arrives at
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U3(0) + Ul (0) & 1 (2) S8 KL 4 1 oyy!(0) - 1:(0)¥,(0)

)
+j ./;s(s’) %;T K, (s',a,)ds’ (127)
s'=0

With (127) available, the derivative of (106) is readily seen

to be

d
[E; (Wz(z)lz(z))}

or

o = [Wz(z)I;(z) + W;(z)Iz(z)] s

¥,(0)I2(0) + ¥2(0)T_(0) = kB, + UL(0) + U!_(0) + U} (0)

cos k& ' '
NG T IS(O)WZ(O) - IS(O)WZ(O)

[

sz + IS(Q)

2 0
. 1] 8 ] L] 3 A a \J L}
+j I.(s") 357 Ki(s sa,)ds’ +j I,(z") 327 K;(z »a,)dz
S'=0 z'=—h

(128)

Since Is(O)aIz(O) and I;(O)=I;(O), the above reduces to

109




cos k&

' =
ZWZ(O)IZ(O) sz + IS(Q) e + Wz (129)
where
0 2
W o= I (2') 2 K.(z'",a )dz' +j I (s") I K,(s'a_)ds'
z z 9z' i At J s 9s' i z
z'=-h s'=0
(130)
Similarly,
2Y (OFE'(0) = kB - I (-n) S88ER 4 g (131)
s s s z h s
where
0 2

Ws = j fIz(Z')
h

z'=-

3 ] [} . (] 3 1 '
5T Ki(z ,as)dz +j fIs(s ) T Ki(s ,as)ds
s'=0
@32
From (123) the requirement that current be continuous at

the bend (117c) is equivalent to the following relationship

between CS and Cz:

S
e [cz ¢ Pz] - ¢, (133)

Similarly, continuity of derivative (117d) requires

110




¥ _(0)
s 1 cos ki 1
B = [Bz + Is(l) + X Wz]

k 2

1 cos kh

1
tf LRl S e e W k)

Now the need to consider the derivative of the Y-functions
is evident. If, for example, W;(O) were ignored, and, hence,
did not exist on the left-hand side of (128), the term
IS(O)W;(O) on the right-hand side of (128) would have remained
and would appear in (134). Similarly, a term involving
Iz(O)W;(O) would appear in (134), and the two together would

contribute a term proportional to

I,(0) [\P;(O) - \F;(O)] = -1,(0) [-81— + ;1—] :
z s

Clearly, a very large term like the above would incorrectly
"uncouple" the coefficients B, and Bs and would cause B_ to be
prohibitively large in magnitude.
d. Zero-Order Currents

The zero-order coefficients are determined from the ap-
plication of the boundary conditions (117) to Egs. (116)

b i d i i

. d
which, since Vz, Vs, T Vz, and Vs

T8 are zero at the bend,

results in

e® cos kh = 8% sinkh = ~Vi(=h) (135a)
Z z Z
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¢ cos k& + BY sin k2 = -vz(z) (135b)

g? (135¢)

B° (135d)

where the ¥Y-functions are treated as constants calculated from
the approximations (112) evaluated at the midpoint of the ap-
propriate wire. Equations (135) can be solved for the zero-

order coefficients:

y )
= V:(l)sin kh + Vo (-h)sin k2
[o} S
Cz ) sin k(h+2) (136a)
- via) kh - Vi(-h)cos k2
5 ‘ys s cos z cos
B = - (136b)

z sin k(h+%)

where (h+2)#nr/2, a=1,2,..., . When cg and B: are determined,

cg and BZ follow from (135¢) and (135d) or

Y
o s 0
3 CS - ‘\y— Cz (136(:)
z
o ws o
Bs -5 Bz (1364d)
z
112




Equation (135d) follows from boundary condition (117d) which
equates the derivatives of the currents at the bend. In the
computation of these derivatives for determination of the
zero-order coefficients, the ¥Y-functions are treated as
constants even though this is clearly not the case near the
bend. However, Eq. (135) is exact within thin-wire approx-
imations and supports the treatment of Y as a constant even
at the bend.
e. First-Order Currents

Returning to (106) and (108) and using 12 and 1: of the
zero-order solution in the U-functions where Iz and Is
appear, respectively, one has first-order currents. These
first-order solutions are improvements based upon the zero-
[ order approximations. The first-order coefficients Cz, Bz’
: Cs’ and Bs are determined from requiring (106) and (108) to
satisfy the boundary conditions (117). To fully account for
the fact that the ¥Y-functions possess appreciable derivatives
at the bend, the enforcement of (117c) and (117d) is achieved &
through (133) and (134). Equating Is(l) and Iz(—h) of (106) |
and (108) to zero and eliminating Cs and Bs by means of (133)

and (134), one finds that Cz and Bz satisfy
Cz cos kh - Bz sin kh = —Fz(—h) (137a)

Cz cos k& + Bz sin k& = T (137b)
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where

¥, (0) 1
T Y [Ps cos ki + i W, sin ki - Fs(z)]
-P, cos ki - £ sin k2 (138a)
Fo(2) = Vilz) + U_(2) + U _(2) + U_,(2) (138b)
Fo(s) = Vi(s) + U_(s) + U_,(s) + U, (s) (138¢)

The solutions of (137) are

-Fz(—h) sin k% + T sin kh

Cz i sin k(h+2) (1392)

T cos kh + Fz(-h) cos k&
Bz 9 sin k(h+2)

(139b)

Knowing Cz and Bz from (139) and, subsequently,cS and BS from
(133) and (134), one can calculate Iz and Is from (106) and

(108).
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3. ZERO-ORDER CURRENTS FOR BENT-WIRE
SCATTERER ABOVE GROUND PLANE

The currents Iz and Is on the bent-wire scatterer above
a ground plane, depicted in Fig. 26, can be calculated in a
way similar to that described in IV-(1d). The single dif- ?
ference is that the boundary condition (117a) is replaced by ?
I;(-h) =0 (140) 3
Subject to (140) and (117b)-(117d), the coefficients C: and
B: for the zero-order currents on the structure of Fig. 26
are found to be
1
: ]
- ‘y—z- v;(z) cos kh + % vi (-h) sin k2
o s
€z = cos k(h+l) (141a)
4
i AT ZRd
- V. (-h) cos k& + —— VS(Q) sin kh

o a Ws
Bz 5 cos k(h+%) (141b)

The coefficients C: and B: follow from (141) in (136) and,
with the four coefficients known, one may calculate the zero- ’
order currents for the bent wire above a ground plane from

¢116).
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4. RESULTS

a. Bent Wire in Free Space .
Shown in Fig. 27 are curves of zero-order current on the

bent wire of Fig. 25 for various values of bend angle 6. The

radii are equal as are the lengths of the two wires

(az=as-0.001k , 2=h=X/8). The plane-wave incident field 1is 5

z-directed, the direction of propagation is parallel to the

x axis, and the magnitude of the incident electric field is

adjusted so that Eik=l volt. In Fig. 28 is displayed current

calculated for the same structure and illumination by means

of an accurate numerical technique. Attention is called to

the good agreement even though the data of Fig. 27 are only

zero-order solutions.

b. Bent-Wire above a Ground Plane

In Figs. 29 and 30 are shown zero-order current distrib-
utions on the bent-wire scatterer of Fig. 26. The radii and
lengths are equal (az=as=0.00635A and %=h=A/2), and the incident
field is that described above. Numerical technique solutions
for the current on this scatterer are provided in Fig. 31,

where again one observes very good agreement. The flatness of
the current for 6=60° is remarkable as is its sensitivity to
small changes in 6 about 600 (Figs. 30 and 31). Notice also
in Figs. 30 and 31, for the 6=90° case, that the top-loading
element (s-directed wire) bears very little current--zero
zero-order curreat (Fig. 29)--and, hence, is an ineffective

top load.
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The zero-order solutions presented here are good ap-
proximations to actual currents and such would be true for
numerous cases. However, the goodness of the zero-order
solution is highly dependent upon wire lengths. One should
not expect the zero-order results for the bent wire in free
space to be acceptable for 2+h fairly near odd multiples of
A/2 or near odd multiples of A/4 in the case of the bent
wire above ground. Of course, the first-order solutions should
provide accurate results except at odd multiples of A/2 in
the free space case and at odd multiples of A/4 for the struc-

ture above ground.
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SECTION V

MEASUREMENT FACILITIES AND APPARATUS

The experimental measurements reported here consist of
current and charge distributions on thin wire structures. The
first set of measurements were made on scattering elements,
the second on a driven antenna. Both types of structure utilize
an image plane geometry, since this geometry allows complete
separation of the test structure and the instrumentation. The
facilities and apparatus used for the measurements are described-

in this Section.

The frequency at which the measurements were made was
determined by three factors: (1) the size of the image plane,
(2) the requirement that the test structures be compatible
with thin wire theory, and (3) the physical size of probes
and associated apparatus which could be accurately constructed.

Requirements 2 and 3 above indicated that a frequency
range from 300MHz to 600MHz was desirable. However, the
then existing 12 ft. x 13 ft. image plane was too small for
measurements in this frequency range and an enlargement of
this facility was necessary.

An 18 ft. x 28 ft. image plane was constructed by

extending the original plane to the fullest extent possible
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in the antenna laboratory building. The new portion was
constructed of 4 ft. x 12 ft. x 0.032 in. aluminum sheets
cemented to 5/8 in. thick particle board backing. The joints
between the aluminum sheets are backed by aluminum strips and
10/32 flat head aluminum bolts are counter sunk along the edges
at a spacing of about 6 in. The joints and bolt heads are
covered with 0.002 in. thick silver backed tape. The final
structure deviates from a plane by less than 0.02)A overall
at 600MHz and less than 0.007X over short distances at the
same frequency. Mounting for the test antennas is provided
at a point 8.2 ft. from the lower edge and 10 ft. from one
side. A cross sectional view of the antenna laboratory showing
the position of the image plane is provided in Fig. 32.
Panels of 24 in. high pyramidal absorber can be placed around
the image plane to reduce reflections.
b. Instrumentation

The technique used for measurement of current and charge
distributions was basically the same as that used by many
researchers (see for example Mack [16])., Charge density was
measured by a very short monopole perpendicular to the surface
of the test structure. The accuracy to which the response of
this probe corresponds to charge density depends primarily on
the constancy of the normal component of electric field over
the length of the probe. Errors may therefore be expected

very near changes in the surface of the test structure such
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as bends, junctions, or ends of the tubular structures. The
current distributions were measured by a small, center~loaded,
image plane loop. The probe is mounted with its plane in

an axial plane of the tubular antenna. The loop thus responds
to the H¢ component of magnetic field. The accuracy to which
the response of this probe corresponds to current density

depends on several factors. Since the electric field is

essentially perpendicular to the surface, the amount of elec-

L tric field, or dipole mode, response which is added to the
magnetic field response, is dependent on the accuracy to which
the load is centered at the top of the loop. This location
of the load, however, cannot discriminate against response
to tangential components of electric field and, hence, errors
similar to those of the charge probe may be expected near
changes in the surface of the test structure. Finall&, the
finite size of the loop results in errors at points where the
current is changing rapidly with distance along the surface,
or where the tangential magnetic field changes rapidly in a
direction perpendicular to the surface. Probes of the type
used here have been analyzed by Whiteside [17]. The design
: of the probes and probe carriages are shown in Fig. 33.

The test structures, both scatterers and driven antennas,

f were constructed of cylindrical brass tubing. A slot 1/16 in.

I wide was cut axially in this tubing to allow movement of the

probes along the structure. The probe carriage was designed
to slide inside of the tubes and extend through the slot to

the surface of the tube. The charge probe was constructed

126




' BRASS

—— — —————— ———

aosrcm
1 (o) 1
.y 0477cm
7
| ! A
0.5cmp—] : |0.5¢cm
[}
|
1.9cm
CURRENT PROBE
COAXIAL
CABLE |
BRASS
SeREEaN

%

_ ST /JJ%///

== [

|
CURRENT PROBE

’
|
CENTRAL CROSS  SECTION

Figure 33. Probe and Probe Carriage

127




on the probe carriage from 0.034" 0.D. semi-rigid coaxial
cable. The outer conductor of the cable is soldered to the
probe carriage and cut at the surface. The inner conductor
continues beyond the surface to form the monopole antenna.
The current probe was constructed from 0.02 in. semi-rigid
coaxial cable. The cable was first formed into a semi circle,
and then the center conductor was removed for a distance of
about 0.020 in. starting from a point exactly at the top of
the loop. The cable on one side of the loop is short cir-~
cuited, the other side is joined to the signal cable. The
load for the loop antenna is thus the input impedance of the
coaxial cable.

Signals from the probes are carried by coaxial cables
passing inside of the tubular test structures to the measuring
instruments located behind the image plane., A block diagram
of the system is shown in Fig. 34. Preliminary to actual
measurements, the entire system including probes was tested
in a coaxial line having a slotted tubular inner conductor.
The commerical instruments used in the system are listed be-
low:

Power Source - General Radio Model 1209 B Oscillator
Hughes Model 1401 H ----- Amplifier
Boonton Model 230 A ----- Amplifier

Measurement - Hewlett Packard Model 8405A Vector Voltmeter
Hewlett Packard Model 5345A Counter

Recording, Processing and Plotting of Data- Hewlett
Packard Model 9820 Calculator with Model

9862A Plotter
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The primary purpose of this measurement program is to
obtain data for comparison with theoretical solutions of
wire models (idealized) of aircraft. 1In the cases of the
scattering measurements, it is therefore very desirable for
the illumination to correspond as near as possible to that
of a plane wave. For the structures studied here, this re-
quirement reduces to having the component of electric field,
which lies in the plane of the scatterer, perpendicular to
the image plane and constant in both magnitude and phase over
the area of the scatterer. 1In the actual experimental system
the transmitting antenna was only 12 wavelengths away from the
test structure at 600MHz. The spherical wave front pro-
duced by a short dipole at this distance creates a 15° phase
change along a 1 wavelength long scatterer. Calculations
show that acollinear array formed by mounting a one-wavelength
element above the image plane and driving it at its center
should produce a phase deviation of only 5° over a one wave-
length long test scatterer. The transmitting antenna actually
used consisted of this collinear type element mounted in a
90° corner reflector. 1In addition to the direct wavefront of
the transmitting antenna, additional distortion of the illum-
inating field may be caused by reflections from the edges
of the image plane and surrounding objects. As a test of the
illuminating field two monopole scatterers were measured,

one of length h = X and the other of length h = 1.5A. The
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comparison of the current and charge distributions measured
with theoretical results of Burton and King [18 are shown in
Fig. 35. The agreement is seen to be reasonably good for
the h = A\ case, but significant deviation is seen for h = 1.5x.
This may be taken as evidence of near plane wave illumination
to a distance of one wavelength from the image plane. For
scattering elements greater than oné wavelength long, errors
due to non-plane wave illumination may be expected.

Two types of scatterers were measured, the bent wire and
V cross shown in Fig. 36. Each of the structures was con-
structed from brass tubing 0.25 in. in diameter with a wall
thickness of 1/32 in. The bends and junctions were formed by
soldering the tubes together with a miter joint. Since the
current and charge distributions were measured at all points
except near the joints, it was necessary to design a system
to control the probe position past the joints as shown in
Fig. 37. A small Teflon pulley was mounted inside of the tube
at the end. A pre-stretched and treated nylon dial cord was
attached to each end of the probe, the portion attached to
the forward end of the probe passed around the pulley and
back through the tube to a control mechanism behind the ground
plane. The coaxial cable carrying the signal from the probe
was a 0.023 in. O0.D. semi-rigid cable capable of bending
around the joint inside of the tube. Initially, a small Teflon
piece was inserted at the bend to protect the coaxial cable.

Later it was found that a small build-up of solder at this
1Sl
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point provided satisfactory protection for the cable. The
probe carriage could not pass through the junction; therefore
it was necessary to insert the probe from the image plane
end and measure up to the junction. The probe was then re-
moved and inserted in the outer end of the antenna, cables and
control lines being inserted through the slot, after which
measurements were made from the end back toward the junction.
This measurement procedure was somewhat time consuming and

it was necessary to insure that the system remained constant
during each set of measurements. Although frequency drifts

were observed, they were iess than 4 parts in 105.

Measurements of the current and charge distributions
were made on a thin cylindrical monopole antenna containing
a step in radius. The ratio of radii of the two parts of
the antenna was originally intended to be about 2 to 1.

The diameter of the smaller portion was restricted by probe
size to be at least 0.25 in., thus the larger portion was
required to be at least 0.5 in. in diameter. Availability

of materials governed the final choice of 0.625 in. for the
larger diameter and 0.25 in. for the smaller diameter. In
order for the larger radius to be compatible with thin-

wire theory, it was necessary to make measurements at a
frequency of 300MHz. Scattering measurements were not con-
sidered to be reliable at this frequency with the image plane
size available. A coaxially driven monopole was therefore

used for these measurements.
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The construction details of the coaxial line antenna
system are shown in Fig. 38. Current and charge measurements
were desired along both sides of the step in radius. For
correlation of the data, it is essential that the same probe
system be used throughout. The larger-radius portion of the
antenna was therefore placed at the image plane so that the
probe could be withdrawn from this portion and inserted into
the smaller-radius tube from behind the image plane. The
0.625 in. tube forms both the larger-radius part of the mono-
pole and the inner conductor of the coaxial line. The tube
is slotted axially over its entire length. Measurements can,
therefore, be made inside of the coaxial line for determination
of antenna apparent impedance and normalization factors
needed for determination of absolute values of current and
charge on the antenna. The 0.25 in. diameter tube is mounted
coaxially through the larger tube and extends beyond it a
distance of 25 cm. to form the smaller-radius portion of the
antenna. Provisions were made for adding unslotted sections
of 0.25 in tube to extend the length of the smaller-radius
portion of the antenna. The outer conductor of the coaxial
line has an inside diameter of 1.020 in., and the space be-
tween the two conductors is filled with a high density
styrofoam, Er = 1.12. The characteristic impedance of this
line is, therefore, 27.8 ohms. The coaxial line has an over-
all length of 1 meter (1A at 300MHz) and is short circuited

at the end opposite the antenna. Signal is applied to the
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line by a T connection at a distance of 25 cm. from the
short circuit. The system before and after assembly is shown
in Fig. 39.

The probes used for these antenna measurements are
identical to those described in the previous section. The
probe carriage differs however, since only straight line
movement of the probe is necessary. A 0.125 in. diameter
brass tube is attached to the rear of the probe carriage and
| extends beyond the rear of the coaxial line. A pointer
attached to this tube provides for measurement of probe
location. The 0.020 in O.D. semi-rigid coaxial line from the
probe passes through this 0.125 in. diameter tube.

The instrumentation for the antenna system was the same

as that shown for the scatterer measurements.
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SECTION VI

EXPERIMENTAL MEASUREMENTS--STEPPED-RADIUS

The apparatus described in Section V was used to obtain
current and charge distributions on a thin stepped-radius
monopole. The measured data is presented in this Section.
For interpretation of the data the calibration and normali-
zation factors which were used are of considerable importance

and these will be discussed first.

The coaxial line/antenna system provides for continuous
movement of the probes into the coaxial line portion. Measure-
ments within the coaxial line make possible an absolute cali-
bration of the probe measurement relative to the voltage

across the line at the image plane.

A calibration factor, Nq, for the charge probe is deter-

mined to satisfy the equation.

Nqu(z) = q(z) covlombs/meter-volt (142)

where Qm(z) is the meter reading of the charge probe signal,
? and q(z) is the linear density of charge on the antenna.
; Within the coaxial line the charge density is related to the
voltage by

i a(z) = v(z)c, (143)




where

€ €._2T
o r

Co = W) farads/meter (144)
is the capacitance per length of the coaxial line. The most

convenient location for determining q(z) is z = =-X/2 where

V(-1/2) = v(0)edT (145)
From Eqs. (142) and (l143) we then have

jm
e C0

Nq = 6;7:1757— (146)

where V(0) = 1 volt has been assumed. The capacitance of the

o farad/meter.

coaxial line in this system is C_ = 1.272 x 16"
The calibration factor was applied to all measurements on
the antenna.

The calibration factor NI for the current probe measure-

ments was obtained in a manner similar to Nq. At any point

within the line

I(z) = V(z)Y(2) (147)

The most convenient point for computing NI is z=-\/4, where

y(=A/4) = 2(0), and

V(=-A/4)Z(0)
Im(—xla)fzc)z it
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where Im(-A/4) is the meter reading of the current probe

signal. The voltage V(-A/4) may be related to V(0) by

Z

[d Jimf 2
z(0y (e

V(-A/4) = V(o (149)

where Zc is the characteristic impedance of the coaxial

line. Combining 148 and 149

ejTr/2
I Im(-xla)zc

(150)
where V(0) = 1 volt is assumed. The calibration factor
determined by eq. 150 depends only on knowledge of ZC.

The factor could be computed from measurements at any point
within the line, but knowledge of the antenna impedance
would then be necessary. The disadvantage of eq. 150 is
that when the antenna impedance is high, as occurs for one
of the test antennas, the measurement of Im must be made

near a current minimum.

The probe calibration factors discussed above provide
for absolute normalization of measurements on that portion
of the antenna which is a smooth continuation of the coaxial
line. Measurements on the smaller radius portion of the
antenna require additional correction factor. If it were
assumed that the probes respond to the fields at the surface

of the antenna, the signal from the probes would then be
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proportional to the surface density of current or charge.

The calibration factors NI and Nq convert the measurements
to total current and linear density of charge respectively.
Hence, the assumption that a probe signal is proportional
to surface density leads to a correction factor which is
simply the ratio of the two radii, a/bl. Unfortunately,
the situation is not this simple. The probes being of
finite dimensions respond to fields away from the surface
of the antenna, and this must be considered in the cor-
rection factor.

The charge probe, being a very short monopole, responds
to the integral of the Er over its length. At points along
the antenna which are not too near the step or end, the Er

field varies 1l/r near the surface of the antenna. Hence,

the charge probe response is proportional to

R+h
f% dr = 2n[(R + h)/R] (151)
R

where R = b, or a, the radius of the antenna, and h = the

length of the charge probe. The correction factor, Mq. to
be applied to measurements of charge on the small radius 1

portion of the antenna is therefore

By = zn(é?)/zn(b—:;*—‘) (152)
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For the two radii used Mq = 0.469 with a probe height h =

0.1 in.

The correction factor MI for the current probe is ob-

tained in a similar manner. The probe response in this

case is proportional to the integral of H, over the area

¢

of the loop probe. As for Er we may assume that H, varies

¢

as 1/r near the surface of the antenna except near the

step and end. Thus the signal from the probe is proportional

F o= fj% s (153)

For evaluation of this integral the coordinate system of

to

Fig. 40 is used and eq. 153 becomes i

|
R+h SRR

F =2 % dxdy (154)

ysR x=0

Integrating with respect to x and introducing the change

of variable, y = z + R, we obtain

F = 2 —— vh™ + 2z dz ¢155)

Expanding the factor 1/(z+R) in a power series, and inte-

grating term by term a series solution is obtained.
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2 2 <
F o= 2h [% MO+ G =1 - ED +] (156)

Taking the ratio of F(R=b) to R(R=a) and us‘ng a probe
radius h = .0625 in. the correction factor is found to be,
RI = 0.446.
c. Measured Data

The current and charge distributions for two stepped-
radius monopoles have been measured. The measurements were
conducted at a frequency of 300MHz, and the electrical radii
at this frequency are kb1 = 0.05 and ka = 0.02. Fig. 41

gives the data for h, = XA/4, h, = A/4. Fig. 42 gives the

1 2

data for hl = A4, h2 = A/2. These two cases were choosen
to illustrate the behavior for charge minimum and charge
maximum at the position of the step. Some irregularities

in the data, particularly the charge distribution of Fig. 42
are related to equipment problems which had not been over
come at the time of this report. The behavior of the

charge data near the step shows the expected edge behavior
of exterior and interior 90° corners.

Probe errors are significant near the step where the
fields depart from the simple behavior assumed in computing
the probe response. The departure of the current distribu-
tions from a smooth curve near the step is believed to be

entirely caused by probe error. It is difficult to deter-

mine at this time the degree to which the observed charge

behavior rnear the step is influenced by probe error. The
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measured data demonstrates continuity of current across the
step. However, until the probe errors can be determined
no definite conclusion can be reached concerning continuity
of charge per unit length at the step.

Figs. 43 and 44 show a comparison between the measured
current and the numerical solution for the case h1 = h2 = A/4.
The agreement is seen to be very good except for a small

difference which may be the result of errors in the probe

calibration.
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Figure 43. Stepped-Radius Antenna, h1=A/4, h2=A/4
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SECTION VII

EXPERIMENTAL DATA-BENT WIRE AND V-CROSS

The egperimental data obtained on the scattering elements
described in Section V arepresented in this Section. The
principal use of thesedata is expected to be comparison with
theoretical solutions. For this purpose the shape of the
distribution curves is the most important information. No
attempt has been made to obtain absolute normalization factors
for the amplitude or phase of the measured data. It is,
therefore, suggested that, in any future use of these data,
normalization can be made at any appropriate point on the
curves.

The geometries and coordinate systems used for presentation
of the data are those shown in Fig. 26 and Fig. 45. The
actual structures upon which measurements were made are

shown in Fig. 36.

The measured current and charge distributions for bent
wire scatterers are given in Figs. 46, 47, 48, 49. The
current distributions for the case hl = h2 = \/2 were measured
using a frequency of 600MHz, at which the electrical radius,
is ka = 0.04. These results are shown in Fig. 46, and it is

o " ;
seen that the current on the 6 = 30 case is very similar

to the 6=0, i.e. straight wire, case. The principal difference
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between these two distributions occurs near the image plane,

together with a small shift in the position of the maximum.

Increase of the bend angle to 6 = 62° results in a very
significant change in the distribution of current on the z = 0
to -hl,portion. It is somewhat surprising that the current
distribution on the z=0 to + h2 portion retains essentially
the same shape as for the 6 = 0° and 30° cases. A comparison
with Figs. 29 and 30 shows very good agreement with the pre-
dictions of the zeroth order solution as well as the numerically
solutions given in Fig. 31. The curves shown across the junction
region in Fig. 46 are of course only estimates of the behavior
in this region. 1In addition to the mechanical problem of moving
the probes into the junction region, measurement errors
become significant near the junction where the fields are
not slowly varying over the dimensions of the probe. These
errors are evident in the 6 = 62° data of Fig. 46 where the
two data points nearest the junction have been excluded from
the estimated curve.

The charge distributions given iu Fig. 47 show many of
the same features as discussed above for the current. The 6 = 0
and 8 = 30° distributions are seen to be very similar with
only a shift in the position of the minimum. The 8=62° data,
however, shows even greater differences from 6 = 00, than
were evident in the current distribution. In fact the entire
nature of the charge distribution is changed, with the minimum
which occurs at the junction for 6 = 0° and 30° being

replaced by a maximum,
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Figs. 4C and 47 give the measured current and charge

distributions for bent wires with h1 = h2 = A/4. These

measurements were made at a frequency of 300MHz and an

S S —————————————

electrical radius of ka = 0.02. Although not shown here it

may be seen that the distributions for 6 =30° are very similar

£
f
i
¢
!

to the known distributions for a straight wire, 6=0°. As for
the longer element the 8= 62° distributions for this case
show significant changes, particularly in the charge, a
contrast between the h = A/2 and h = A/4 charge distributions
for 6 = 62° is partiuclarly evident in the charge minimum
which occurs at the bend for h = A/4 whereas the h = A/2 case
shows a maximum of charge.

All of the bent Wire structures discussed above were
constructed with a sharp mitered junction. A different
junction geometry was obtained by placing a brass sphere of
l in. diameter around the junction. It must be pointed out
that this is a rather large sphere and does not satisfy the
conditions of thin wire theory at the frequencies used. The
data are shown in Figs. 50 and 51 for distributions of current
and charge with and without the sphere. Examination of these
data shows that for the case of charge minor changes in the
distributions occur. However, for the case which has a charge
maximum at the junction very significant changes occur when
the sphere is placed over the junction. For junction regions

having an electrical size ka = 0.16, the geometry of the junction

region is therefore of considerable importance. Further in-
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vestigation will be necessary before conclusions can be reached

concerning junctions of small electrical size.
The V cross structure is perhaps the most important in
relation to theoretical studies of aircraft. The experimental

| data which has been obtained for current and charge distributions é

on this structure is given in Figs. 52, 53, 54, and 55.

These measurements were made over an image plane as described

in Section V. The two cases studied wereintended to be examples
of the behavior when a charge minimum occured at the junction,

and when a charge maximum occured at the junction. As seen

% in Fig. 53 the hl = h2 = A/2, 21 = 22 =)1/4 case achieved a
; very deep charge minimum at the junction. However, as seen
in Fig. 55 the h2 = )2, h1 =3A/4 case, while having a significant
charge density at the junction, did not produce a real maximum
desired. The two cases, however, do provide examples which
show significantly different behavior.

Probe response errors exist near the junction, but do not
appear to be significant factors in the measured data. A
much more significant error is believed to be caused by the
féfiﬁreto achieve a planar wave front illumination. It is
not possible at this time to evaluate the amount of error
caused by the unknown incident field; however, the shape of the
| distribution on each arm is believed to be accurately
represented in the measured data. Some changes may be expected
| in the relative magnitudes of these currents with changes in

the incident field. Additional studies of these structures

will be necessary before definite conclusions can be reached.
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SECTION VIII

CONCLUSIONS

Results of the theoretical and experimental investiga-
tions are presented for current and charge distributions on
thin-wire scatterers. Insofar as the investigators are
aware, these are the first experimental data available for
the structures studied in this project. The study of wire

junctions is far from complete but this initial work, both

theory and experiment, certainly addresses the major question
of what the appropriate thin-wire junction conditions should
be. The experimental investigation of structures with junc-
tions is in its infancy and numerous facets deserve further
refinement, yet, within limitations of accuracy and experi-
mental error, the correlation between measured and theoretically
predicted results is both gratifying and encouraging.

A careful study of the properties of currents and charges
in a coaxial line with a step in its inner conductor and of
a spheroidal antenna with a similar step leads to the conclu-
sion that the behavior of the charges per unit length near
the junction of two cylindrical conductors with different
radii is not simple even for electrically thin conductors.
However, a good approximation is given by the condition (See

Eq. (64), p. 43)
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qIWl = qzwz s anse qan

Wl is the expansion parameter for conductor i whose definition
is somewhat arbitrary, but always involves a logarithmic
function.

From the analysis of a stepped-radius wire scatterer
presented in Section III, one sees that the presence of the
step influences the magnitude of current relative to what
it would have been on a constant-radius wire, but the effect
on the shape of the distribution depends upon length and
certain features of the excitation.

Near resonance, where the forced response is dominated
by the resonant response, the distribution is little affected
by the presence of the step or its position on the wire.
However, on a antiresonant (1)) wire of constant radius sub-
ject to even-function excitation, the current is essentially
the shifted cosine forced response. Only, if the forcing
function possesses an odd-function component, can the resonant
current respond on a 1\ wire of constant radius. On the other
hand, in the case of a 1) stepped-radius wire having, of
course, the odd symmetry within the structure itself, a strong
antiresonant current is produced by an even-function excitation.

Measured current and charge on a stepped-radius struc-
ture are presented in Figs. 43 and 44 where one sees good
correlation between experiment and theory. However, measure-

ment of the condition on charge at the junction, discussed
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in Section II, is not entirely satisfactory. The investi-
gators do not judge the accuracy of their data to be sufficient
to enable them to claim undeniable corroboration of the small
discontinuity predicted in linear charge density for all

cases considered.

In the bent-wire scatterer above a ground, the investi-
gators found far greater sensitivity of current upon bend
angle than ekpected. Actually, in an attempt to uncover rea-
sons for disagreement between experimentally and theoretically
determined currents, a 2 degree error was found in the angle
of the fabricated bent wire. Correction for this brought
theory and experiment into good agreement (shape) as can be
seen from comparisons of Figs. 29 - 31 with Figs. 46 and 48.

A small conducting sphere (ka = 0.16) was placed at
the junction of the bent-wire structures for the purpose of
observing effects of junction geometry. The measured currents
distribution shows little change when a charge minimum occurs
at the junction. However when a charge maximum occurs at
the junction very significant changes in the current distri-

bution are observed.
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