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k| FOREWORD
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N00014-73-C-0294, ONR Contract Authority NR 061-214/12-07-72
(438). The ONR scientific officer was Mr. Ralph D. Cooper,
Director, Fluid Dynamics Programs and the monitor of the
technical effort was Mr. Morton Cooper. Dr. H. Yoshihara
“ served as principal investigator at Convair and Dr. R. J. Magnus
carried out the computer programming and the calculations. The
assistance and cooperation of Dr. H. Lomax and Dr. W. Ballhaus,
Fluid Dynamics Branch at NASA Ames Research Center are

acknowledged.
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ABSTRACT 1

The inviscid transonic flow over an NACA 64A410 airfoil oscillating in pitch
in a Mach 0. 72 stream was calculated with a program based on the unsteady
Euler equations. The airfoil oscillates about a mid-chord axis with attitude
@ = 1° 31° at reduced frequency k = wC/U, = 0.2. The effects of two
approximations made in the analysis, handling boundary conditions at the
airfoil surface and at the perimeter of the computation field, have been

studied.
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1.0 INTRODUCTION

Research on numerical solutions of unsteady transonic flows over airfoils has been
conducted under Contract N00014-73-C-0294 since March 1972. During the course
of the contract there have been four antecedent reports or papers issued which are
discussed briefly below. These reports primarily deal with unsteady flows over
the NACA 64A410 airfoil at Mach number 0.72. In this (final) report, an additional
example is presented and two questions concerning effects of approximate handling
of boundary conditions have been studied.

1.1 Notes on the Reports Issued

Reference 1. Magnus, R. and Yoshihara, H., "Finite Difference Calculations of
the NACA 64A410 Airfoil Oscillating Sinusoidally In Pitch at M = 0. 72", General
Dynamics Convair, CASD-NSC-74-004, 1 August 1974.

The flow over the airfoil was calculated at three reduced frequencies, 0.2, 1.0 and

5.0, and results are presented in diagrams showing pressure distributions at various
angles through the oscillations. The behavior of the pressures at selected locations

on the airfoil, the shock waves, and the normal force and pitching moment coefficients
are shown throughout the oscillation cycle. Simple "printer graphics' diagrams show
the isobars near the airfoil at several points in the oscillation cycle. Except for state-
ment of the equations used, the descriptions of the numerical method are not detailed
and there is little discussion of the results.

Reference 2. Magnus, R. J. and Yoshihara, H., "Calculations of Transonic Flow
Over an Oscillating Airfoil", AIAA Paper 75-98, 13th Aerospace Sciences Meeting,
Pasadena, California, January 20-22, 1975.

The data on the three oscillatory cases covered in the first paper were digested by
Fourier analysis. The forces and moments, pressures at selected airfoil surface
points, and the shock location were inspected for evidence of non-sinusoidal response.

The isobar patterns around the oscillating airfoil were carefully drawn on a cathode-ray
tube device. Additionally, contours showing rate-of-pressure change were generated.

A 16mm motion picture film showing the airfoil surface pressures and the isobar patterns
about the oscillating airfoil (reduced frequency 0.20) was prepared and shown at the
meeting.

The paper has some descriptions of the method of solution, notes on assumptions
utilized, and the effort necessary to obtain a solution. Although it was explicitly stated
that the method was not intended for production use, the fact that seven hours of computer
time were spent on one solution has been quoted by a number of authors to advertise, by
contrast, the efficiency of other subsequently developed methods.

1
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Reference 3. Ballhaus, W. F., Magnus, R., and Yoshihara, H., "Some Examples
of Unsteady Transonic Flows Over Airfoils', Symposium on Unsteady Aerodynamics,
University of Arizona, Tucson, March 18-20, 1975.

In this paper there are short descriptions of two methods for calculating unsteady tran-
sonic flows over airfoils; the method based on the unsteady Euler equations used in the
work described in Papers 1 and 2, and a method by Ballhaus and Lomax based upon a
low frequency approximation to the transonic perturbation potential equation.

The response of the 64A410 airfoil to a step change in angle-of-attack from two degrees
up to four degrees in Mach 0. 72 flow (as calculated using the Euler equations) was
examined in somewhat more detail than had been presented in Paper 2. There are
figures showing the airfoil pressure distributions at specific times in the transient

and histories of the surface pressures at six airfoil surface locations. These results
were interpreted in a qualitative discussion mentioning waves and pulses originating

at the airfoil surface. An omission which should be noted is that the initial part of the
transient airfoil lift is reasonably well predicted by the linearized method of Heaslet,
Lomax and Spreiter given in NACA Report 956 (or NACA TN1767).

There is a discussion of the difficulties of "tailoring' the parameters in a computer
program based on the transonic perturbation potential equation (satisfying boundary
conditions on a slit) so that the results match results calculated using the Euler
equations. This discussion is illustrated by comparisons of results obtained for
steady flow fields over the 64A410 airfoil at Mach 0. 72 and angles-of-attack of 0°, 2°
and 4°. Additionally, there is a comparison of unsteady flows calculated with the two
methods for the 64A410 airfoil oscillating in pitch between 0° and 4° about a midchord
axis at reduced frequency of 0.2 in Mach 0. 72 flow.

Unfortunately, these comparisons of the two unsteady flow calculations did not show
very satisfactorily similar results. Comments and criticisms accumulated since

the paper appeared would seem to indicate that (a) the tailoring used in the perturbation
program was too unsophisticated for the overly severe problem being attempting,

(b) the Euler solution is probably not a good approximation to a physical flow (at flight
Reynolds numbers) on a problem as severe as this one, (c) the ultimate usefulness of
the perturbation method to calculate a broad range of unsteady flow problems is not
disproved by the results on this one example.

It is noted that obtaining a solution with the perturbation method requires only about
1/30th as much computer time as obtaining a solution to this particular unsteady

example with the program based on the Euler equations.

Reference 4. Magnus, R. and Yoshihara, H., "Unsteady Transonic Flows over an
Airfoil", AlAA Journal, Vol. 13, No. 12, December 1975, pp. 1622 - 1628.

2
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This paper is the result of rewriting Paper 2 to conform with requirements for publica-
tion in the archival journal. It differs from Paper 2 in having eliminated n.ost of the
. isobar plots and by inclusion of an explicit presentation of the equations being solved.
k| The text was heavily modified to clarify certain points and to answer questiuns raised
by reviewers, and to put the material into forms which seemed to be more conventional
for the presentation of unsteady airfoil data.
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.0 FLOW OVER 64A410 OSCILLATING ABOUT « - 1° AT MACH 0.72

(8]

The flow over the NACA 64A410 in Mach number 0. 72 flow had been studied earlier in
Reterences 1 - 4.

The example at reduced frequency 0.2 had the airfoil oscillating in pitch about a mid-
chord axis +2° from 2° mean angle-of-attack. This example has been characterized
as overly severe because the peak Mach numbers at, for example, 4° angle-of-attack
are over 1.6 and could not be achieved in an experiment. Therefore, a less severe
example has been calculated using the same airfoil and the same computer program as
was utilized in the cited references. This example has the 64A410 in Mach 0.72 flow
oscillating in pitch about a mid-chord axis with amplitude +1° about 1° mean angie-of-
attack at reduced frequency 0. 2.

The steady-flow pressure distributions at 0° and 2° angle-of-attack are shown in
Figure 1, reproduced from earlier work. The highest local Mach number at 2°
angle-of-attack is 1.42.

In the oscillatory example, the airfoil angle-of-attack, in degrees, was assumed to vary
sinusoidally.

a(t) = 1.0 + sin @t)

The circular frequency is related to the (non-dimensional) reduced frequency as
follows:

w = kU,/chord

The instantaneous pressure distributions at 30° intervals through an oscillation are
shown in Figure 2. The histories of normal force, pitching moment about the quarter
chord, shock location and the pressures at several locations on the airfoil are shown in
Figures 3 through 6. Selected oscillatory data were fitted with approximating functions
with (up to) four harmonics by a least squares procedure:

4

f(t) = By + z Apsin (nwt * Q)

n=1

These data are listed in Table I. It may be seen by comparing the amplitudes of the higher
harmonics with the amplitudes of the fundamentals that no great error would be realized if
the traces were regarded as sinusoidal (except for pressures at stations traversced by the
shock). This is also evident in Figures 5 and 6d where the light lincs are the least-squares
fitted single harmonics.

|
I
{
The chordwise distributions of the mean pressure coefficient during the oscillation and l
the first harmonic amplitudes and phase angles are shown in Figures 1 and 7. The dis- l
tributions of amplitudes of the pressure oscillations are compared with quasi-steady

1
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pressure changes obtained for 1.0 degree angle-of-attack excursions about a mean
o = 1.0 degree; the latter were calculated as:

0.5 (Cpa=2 - Cpa-——o) on the lower surface

0.5 (Cpoz=0 -C ) on the upper surface

Po=2

Comparing these unsteady results with earlier results obtained on the same airfoil
oscillating with o= 2+2°, it may be seen in Table II that the oscillatory parts of Cy

are practically identical when normalized by the pitching oscillation amplitude. Since
the shock is further forward (closer to the quarter chord) at a=1° than at = 2°, and
it was noted, (Reference 4) that about 0.8 of the pitching moment comes from shock
motion at reduced frequency 0.2, the oscillatory part of the pitching moment is smaller
at o= 1° than at o= 2°.

2
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Table II

Comparison of Results
With Two Amplitude and Reference Attitude Combinations
Mid-chord Axis k = 0.2

at) = a + @& sin (wt)
Single Harmonic Representation of Response

£(t)

B0 £ Sl sin (wt) + C; cos (wt)
= By +A1 sin (wt + ¢1)

Responses normalized, per radian of oscillation amplitude

Function B o S1 Cl A 21

Normal Force Coefficient, CN-

a = 1=+ . 8445 6.976 -2.884 7.549 -22,.46
a = 212 1.0521 6.831 -2.873 7.411 -22.81
Pitching Moment Coefficient, Cm C/4 reference, nose up positive

@ =1+¢  -.1577 -.6871 . 0781 . 6916 173.52
a = 2x2 -,1836 -.8514 .2610 . 8509 162.96

Location of Upper Surface Shock, x/C

a =1+ . 6572 1.395 -.803 1.610 -29.93

o 2 +2 . 6961 1.069 -.701 1.278 -33.25
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3.0 OUTER FIELD BOUNDARY CONDITIONS

In all of the previously reported calculations, References 1 to 4, and in the results
described above, the computation field was a 9.6 chord square (approximately) centered
at airfoil midchord. On the field perimeter, flow properties have been held to assigned
values throughout the process of solving any particular unsteady flow problem. The
distributions of flow properties on the boundary were obtained by adding perturbations
due to a vortex and a doublet (at the airfoil) to the freestream conditions. The vortex
strength was set at a value appropriate for the lift at a mean angle-of-attack.

The distances from the four boundaries and the signal propagation speeds are such that
disturbances emitted at the airfoil should not return by reflection off the boundaries for
about thirteen time units. Here a time unit is:

Unit t = chord/freestream sound speed

The solutions for problems on sinusoidally oscillating airfoils all required more than

13 time units before an acceptably repeatable oscillatory response was obtained and,
hence, all contain the influences of the approximations in perimeter boundary conditions.
An attempt has been made to determine consequences of the arbitrary method used for
assigning boundary conditions at the field perimeter.

The problems of concern in the present research involve lifting airfoils in subsonic
unbounded freestreams. The pattern of disturbances (of velocity, pressure, etc.)
from freestream conditions are caused by the airfoil; in the calculations these distur-
bances are generated by emitting pressure waves so that boundary conditions are
satisfied at the surface. The wave fronts emitted from centers at the airfoil expand
radially and are swept downstream. With the exception of a trailing vortex sheet (on
unsteady problems) and an entropy wake (on problems with imbedded supersonic flow
and shocks), the disturbances caused by the airfoil attenuate with distance from the
airfoil. Thus, near the airfoil, a numerical solution done over a finite computation
field may be hoped to be an adequate representation of the solution in an infinite stream
whether the disturbances at the perimeter of the working field are set to their correct
(but small) values, or some highly idealized approximate values, or even zero.

Application of approximate boundary conditions at the perimeter of the computation field

still must be done with caution. Disturbances do not decay toward zero with distance

from the airfoil in a uniform manner. For example, velocity perturbations will be

stronger above and below the airfoil than ahead of the airfoil depending on the closeness :
of the freestream Mach number to unity. As a first approximation, the perturbations :
at large distances from the airfoil are sometimes regarded as representable by perturba- «.
tions from vortex and doublet singularities of appropriate strengths located somewhere near é
the airfoil. This sort of approximation has been used in the computer program utilized in

the present research. It should be recalled that the strengths of velocity perturbations due




i S

GRS AT TE N RIS

to a doublet (roughly representing airfoil thickness effects) are inversely proportional
to distance from the singularity squared. The velocity perturbations due to a bound
vortex (representing airfoil lift effects) are inversely proportional to distance

and in steady flow the circulation (line integral of velocity perturbations) along any con-
tour surrounding the airfoil is supposed to a constant. Therefore, when obtaining a
solution to a steady flow problem, the pattern of disturbances on the field perimeter

is set so that the circulation agrees with the amount expected from the airfoil lift.

This is analagous to the process of setting the potential on the outer perimeter to have
the proper jump across the wake in a program based on the transonic potential equation.

In the computer program the Kutta condition is enforced and, therefore, the circulation
level is set ultimately by application of finite difference approximations to derivatives

of various functions in the vicinity of the trailing edge. In a steady flow problem, the
setting of a new, different, circulation level at the outer perimeter will affect circulation
on interior contours and affect the circulation achieved (and therefore the lift) at the air-
foil by altering the balance of truncation errors in the approximations near the trailing
edge. A direct test of this on a problem of steady Mach 0. 72 flow over the 64A410 airfoil
at 4 degrees angle-of-attack, but with outer perimeter circulation set to agree with lift

at 2 degrees angle-of-attack, showed, for example,

d T (airfoil)/d T (outer perimeter) = 0.0775

Inasmuch as the lift is proportional to the circulation (I'), the normal force and pitching
moment at the airfoil can also be affected by an incorrect circulation level at the outer
boundary of the computation field.

The effect on the airfoil circulation of the circulation maintained on the finite field perimeter
causes difficulty when one considers calculating unsteady flow problems involving lift changes.
If, say, there is a step change in angle-of-attack causing a step change in lift, a starting
vortex is swept downstream from the trailing edge. Additional vorticity will continue to

be shed as the starting vortex moves downstream. The circulation on the outer field
perimeter will remain unchanged at first because the outer perimeter contains both the
starting vortex and the (equal, but opposite sign) enhancement of the airfoil bound vortex.
Ultimately the starting vortex will be convected to the downstream boundary of the computa-
tion field. If the "outer perimeter' were merely an interior contour in a (much larger)
computation field, the starting vortex would continue being convected downstream, be
removed from the interior of the "outer perimeter' and the circulation on the outer
perimeter would jump to the value compatible with the enhanced bound vortex at the airfoil.
The distribution of velocity perturbations on the "outer perimeter' would be peculiar at

first along the downstream border because of close proximity to the receding starting
vortex, but the velocity pattern would asymptotically approach the pattern associated

with an airfoil in steady flow.

If, as in the present computer program, the "outer perimeter' is a real boundary of the
computation field, and if we retain fixed conditions at the boundary, the starting vortex

9
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will be unable to penetrate the boundary and will be dissipated by "numerical viscosity.'"
The circulation will remain fixed at the outer boundary and this fixing will inhibit the
buildup of lift at the airfoil to the final value which would have been achieved in an
unrestricted field. Similar inhibition of lift changes can be envisioned if the airfoil
executes some sinusoidal oscillation schedule.

For a first estimate of the effects on the oscillatory normal force and pitching moment

of having held fixed conditions on the outer perimeter of the computation field, the
oscillatory responses have been calculated from indicial responses by the use of convolu-
tion integrals, a method appropriate to linear systems. As described in References 2
and 4, the responses to step changes in o and © were calculated for the case of the 64A410
at @ = 2 in Mach 0.72 flow. The responses were determined for 12 time units

(unit t = chord/freestream sound speed) which is shorter than the time necessary for
signals originating at the airfoil to have returned from the tield perimeter by reflection.
Twelve time units, however, is enough time for signals originating at the trailing edge

to have made at least three circuits around the airfoil via a path forward along the lower
surface and aft along the upper. The completion of the indicial response (Wagner)
functions for t > 12 was then carried out in two manners:

A, Asymptotic approach toward final values that might be
realized in an unbounded stream (as deduced from proper
steady-flow calculations at the final angle-of-attack).

B. Asymptotic approach toward final values that would be
attained in a steady flow calculation which maintained
the outer perimeter circulation at the level prevailing
before the step change.

The results for a number of reduced frequencies of sinusoidal pitching oscillations
(mid-chord axis) of the 64A410 at 2° mean « in Mach 0. 72 flow are shown in Figures 8
and 9. The results using Method B above (restricted computation field with fixed
perimeter boundary conditions) have been presented earlier in Reference 4. The
differences in the two results are small at reduced frequency 5.0, but are appreciable
at reduced frequency 0.2. At reduced frequency 0.2 the predicted results of removing
the constraints of the boundary conditions at the field perimeter are (principally)
increases in the lag of the responses behind the motion. The lag increase expected is
on the order of 4.5° for normal force and 9. 8° for the pitching moment; the amplitude
of the pitching moment response might be increased about 5% as well. Conversely, if
the constraints of the perimeter boundary conditions were to be increased by (say)
moving the perimeter closer to the airfoil, the oscillatory responses in normal force
and pitching moment should be expected to change in phase toward the leading direction
and probably the amplitude of the pitching moment response would be reduced.

For a second look at the probable effects of freezing conditions at the outer perimeter of
the computation field, the calculations on the reduced frequency 0.2 pitching oscillatory

10
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flow over the 64A410 at mean angle-of-attack of 1. 0 degree in Mach 0. 72 (described in
the previous section) were repeated with different sizes for the computation field. The
outer perimeter for the basic calculation was a square of 9.6 chords. The repeated
calculations placed the outer perimeter on squares of 4.8 chords and 14.4 chords,

respectively.

On the assumption that the strongest effect of freezing conditions on the outer compu-
tation perimeter is to reduce oscillatory components of a vortex character, one should
expect that the amount of constraint depends inversely on the distance of the perimeter
from the airfoil. Thus, one would expect that the calculation with boundary at 4.8 chords
would have roughly two times as much boundary influence as the calculation with
boundary at 9.6 chords; the expected factor for a boundary at 14. 4 chords is 2/3.

Figures 10 to 13 show selected response characteristics with the outer perimeter set
at three different distances from the airfoil. Moving the boundary closer to the airfoil
(4. 8 chord square) does seem to shift the peaks in pitching moment and normal force
responses to occur earlier in the cycle and to somewhat reduce the amplitude of the
pitching moment response. The changes due to moving the boundary out to a 14. 4
chord square are not very dramatic. Moving the boundary in to 4.8 chords seems to
inhibit development of the circulatory flow as a whole with reductions in the time-
averaged mean values of normal force and pitching moment. Table 1lI shows the
(normalized) oscillatory responses for normal force and pitching moment calculated
with the three different outer field sizes.

Table III

Effect of Outer Field Size on Calculated Oscillatory Response

64A410 Mach 0. 72 a=1+1° k=0.2
Mid-chord Oscillation Axis

aft) =a, + asin (wt)
First Harmonic of Response Listed
f(t) = B, + S; sin (wt) + C; cos (wt)

s BO + Al sin (wt i ¢1)
Responses normalized, per radian of oscillation amplitude

Function, Field Size Bo S1 C 1 A1 2
Normal Force Coefficient, Cy

4.8 Chord Square . 8223 7.038 -2.108 7.347 -16.67°

9.6 Chord Square . 8445 6.976 -2.884 7.549 -22.46°

14.4 Chord Square . 8474 6.834 -2.998 7.462  -23.68°
Pitching Moment Coefficient, Cy, (C/4), Nose Up Is Positive

4.8 Chord Square -.1453 -.6404 . 0199 .6407 178.22°

9.6 Chord Square -.1577 -.6871 . 0781 .6916 173.52°

14.4 Chord Square -,1601 -.7103 .1075 L7184 171.39°
11
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The effects of different degrees of boundary constraint predicted from the super-position
of indicial responses are qualitatively confirmed by the results shown in Table llI. The
further out the perimeter boundary is placed, the more phase lag in oscillatory normal
force and pitching moment responses and the more amplitude in the pitching moment

response.

To possibly assist in judging the feasibility of applying a more sophisticated outer peri-
meter boundary condition in working on problems involving oscillatory flow, an examina-
tion has been made of the pressures in the outer field. For the 64A410 at Mach 0. 72,

@ =1 +1°, with a mid-chord oscillation axis and reduced frequency 0. 2, the pressures
at nodes in the outer field distributed along a circle (of radius 3. 6 chords) circumscribed
about the airfoil mid-chord have been examined. These results are from the basic case
with 9. 6 chord square outer field boundary.

The time-averaged mean pressure coefficient has a plausible distribution, Figure 14,
with peak negative pressures above the lifting airfoil and peak positive pressures below
the airfoil.

The magnitudes of the first harmonics of the oscillatory pressures show some tendency
to be largest near loci having large (absolute) steady pressure perturbations, | Cp s
The phases of the oscillatory components are comparatively uniform in the half circle
below the airfoil, but have more lag ahead than aft. The peak positive pressure
excursions occur from 15 to 55 degrees after peak angle of attack. In the upper half
circle, the phase angles cover a considerable range; the lag in peak negative Cp after
maximum angle of attack is about 50 degrees directly above the airfoil.

The pressures at this (3.6 chord) rad.\us from a lifting airfoil lack the y antisymmetry

and the simplicity of form (that is, ¢ ﬁ is evidently not independent of ¢ f) of the farfield
solution described in Reference 5.
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4.0 EFFECT OF TRANSFER OF AIRFOIL BOUNDARY CONDITIONS TO THE
MEAN POSITION OF THE OSCILLATING AIRFOIL

In all calculations of flows over oscillating airfoils performed to date on the present
contract, the airfoil surface boundary conditions have been satisfied at discrete fixed
locations in the physical plane arrayed along a contour which would coincide with the
airfoil if the airfoil were in its time averaged location. The objective here is to
determine the consequences of the approximation of satisfying the boundary conditions
at fixed (mean) loci rather than at points along the moving airfoil.

The computer progra.ni is designed to obtain numerical approximations to solutions
for the unsteady Euler equations in conservative form:

a(p)/at=-a(pu)/ax - 3 (pv)/ay @)
2 (pu)/at = -a(Pu? +p)/ox ~ 3(Puv)/ay @)
a(pv)/ 8t = -3(puv)/dx - 3 (pv2 + p)/ay @)
9(E)/at = -3 [u(E+p)] /ox - 5[ V(E + p)] /ay )

Here, the usual meanings for fluid mechanics problems apply:

p = fluid density
p = pressure
u,v = Cartesian fluid velocity components
X,y = Cartesian (space-fixed) coordinates
t =time
Y = adiabatic index
E =p/(v-1)+(P/2)u® +v?) (5)

= total energy per unit volume

The coupled system of equations, (1) ~ (4) has the form:

dW/at =-9F/9x - 8G/gy (6)

where W, F and G are four element vectors whose elements may be discerned by
inspection of (1) - (4).

13
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In the computer progrom the system represented by (6) is solved approximately by
setting up arrays of about 6000 points in the X-Y plane at which the 4 components

of the dependent variable W are defined; the elements of F and G are non-linear
functions of the elements of W. The partial derivatives on the right hand side are
approximated by finite-differences between values of F or G at suitably adjoining
mesh nodes near the point being worked on and the values of W are integrated,
approximately, in time using discrete time steps. In the existing computer program,
airfoil boundary conditions are maintained at (on the order of) 100 of the mesh nodes
distributed along a contour which would coincide with the airfoil if the airfoil were in
its mean position.

First, the manner in which airfoil boundary conditions have been applied in the calcula-
tions done to date will be reviewed. Referring to Figure 15, assume a system of
coordinates X, Y, affixed along and normal to the airfoil chord.

The airfoil shape, considered rigid here, may be given, parametrically, as functions
X (s), Y (s), that is the Xa Ya pairs of points along the airfoil contour are functions
of a parameter s, which could be, say, distance from the trailing edge as the airfoil
is traced in a clockwise manner. The inclination of the clockwise tangent to the sur-
face is:

tan © = (dY, /ds)/ (an/ds) (7)
and the outwardly directed surface normal would be in the direction © + 7/2.

Now, assume that the airfoil executes some oscillatory motion with respect to a
Cartesian reference system, x, y. In particular we might wish to study sinusoidal
pitching oscillations about an axis on the airfoil chordline a certain distance XC aft

of the nose. Referring to Figure 15 the pitch angle, called § here, may be a function
of time of the form:

B () = A sin (wt) (8)
and its time derivative is:
L;(t) = wA cos(wt) )

Instantaneously, the location in the x, y system of a particular node point m affixed
to the moving airfoil at Xm’ Ym would be:

Xm = X, 1 (Xm - XC) cos B+ Ym sin f3
(10)

= =X, - X¢) sin B+ Y, cos B




Of course, since B is a sinusoidal function of time, the location of point "m' has
Cartesian velocity components

).Lm li[-(xm-Xc)sinB +Ymcos B
i : (11)
‘ y Bl-X,, -X,)cos B-Y, sin g ]

Ym
The instantaneous direction of the clockwise surface tangent through Xm, Ym is
0 = O - B az2)
and the direction of the outward normal is

0 + m/2.

m

The proper, inviscid, boundary condition on the flow at a node X _, Y affixed to

the rigid, but moving, airfoil contour is that the flow velocity refative to the moving
node "m'" must have zero component in the instantaneous direction of the local surface
normal. Thus, in the computer program, when boundary conditions are to be satisfied
at a particular mesh node m at time t:

a. the airfoil pitch angle 8 and pitching angular velocity are calculated for time t
using Eqs. (8) and (9) (these are independent of the particular node, m).

b. the inclination angles of the local surface tangent and normal are calculated
from Eq. (12).

c. the Cartesian fluid velocity is resolved into components along and normal to the
instantaneous surface tingent:

' \' = ucos 6 +vsin 6
y m
¥ L i 13)
v = -usin 6 +vcos 0
nor m m
d. the fluid velocity in the direction of the local surface normal is adjusted to
! i match the component of velocity of node m in that direction; this adjustment
! causes changes in the density and pressure but no change in the tangential
| velocity.
' : vtan ~Vtan
:
b v = -x s8inf +y cos @ (14)
il } nor m m “m m
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E e. the new fluid velocity is resolved back to Cartesian components.

I}

~ ~ ~ .
E | u \% cos 6 -V sin 6
< tan m nor m

15)

I

v=V sin@@ +V _cos 6
tan m nor m

B f. the adjusted density, pressure, and Cartesian velocity components are used to

I recalculate the primary dependent variables; that is, the four elements of the

£ | vector W.

I There are no severe approximations in the procedure for satisfying airfoil boundary
conditions described above. The main approximation in the computer program used
to date is that this procedure has been applied at nodes fixed in the Cartesian (x,y)
space rather than at nodes affixed to the moving airfoil. That is, in Equation (10) the
approximation has been made that the motion is small and that it would be acceptable
to set

X
m m

w
Ile

. (16)
=Y
Ym m

Actually, for a problem involving an airfoil pitching about midchord with 2 degree
amplitude, the y excursions of the nose and the trailing edge would be +0.017 chords
so airfoil boundary conditions would be satisfied at 0.017 chords from the correct
location. More pertinent, since this is the case actually worked on to evaluate the
errors, is the case of an airfoil executing plunging oscillations of 0. 0436 chord
amplitude at reduced frequency 0.4. This combination of excursion amplitude and
reduced frequency is such that the maximum plunging velocity (when divided by free
stream velocity) is equivalent to one degree induced angle of attack.

i To study the effect of the above approximation, the program has been temporarily
revised to allow computations in a rigid grid system attached to the rigid (but mov-
ing) airfoil. The approach used follows that outlined in a note by Viviand, Ref. 6.

R N

f Following Viviand, assume we are using the gas dynamics equations in 2 space dimensions
[ in conservative form and rewrite Eq. (6) as:

oW/at +al~‘i/axi = 0. ({=1,2) 1)

W and Fi are each 4 component vectors (in our case) and the convention of repeated
indexes indicates summation.

) 5.
1% 16
d 7




Define a new system of coordinates which has relations to the old which can be
functions of time:

X; = X (), Xp, 1)
(18)

T:t

and, by application of chain rules for differentiation, the gas dynamics equations
come out in non-conservative form:

W 0X. 9W 0X. oF. = 0
22 2oyl S8 00
ar ot 8Xj+8xi', o, (19)

Using this form has disadvantages in complication of the treatment of discontinuities
such as shocks. The equations can be brought back to conservative form in the new
coordinates by use of the Jacobian of the transformation of coordinates:

= —aﬁ 3—52)- -L = ._i)_( X ).
D = 1 d == 12-=2 20
a(xs %) 0 D 8Ky, Xp) e

Viviand shows that the proper conservation form of the new coordinates is:

3 (W\ .8 (W 8X. 8X. F
2 (=) s (=25 4 25 S
BT(D) axj(n Bt axiJ D) 2

and that the jump conditions at discontinuities for this system are identical to jump
conditions for the original system. Therefore, shocks treated by a shock-capturing
difference scheme should appear with the same properties as they would have in the
original system, Eq. (17).

As a specific example for evaluating the errors attendant with satisfying boundary
conditions at a fixed location rather than on the moving airfoil, the Mach 0. 8 flow
over the NACA 64A010 airfoil at zero angle of attack has been chosen. The airfoil
is oscillating sinusoidally in a plunging motion of amplitude 0. 0436 chords at a
reduced frequency 0.4 (based on chord). This example was chosen, as a matter of
expediency, because:

a. itis a worthwhile example since this airfoil is to be tested at this Mach number
in experiments planned at NASA Ames Research Center.

b. the Jacobian of the coordinate transformation takes a particularly simple form

which could be incorporated into the existing computer program with a minimum
of modifications.

17
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c. choosing an example with zero average lift and no angular excursions avoids
conceptual complications concerning the (also troublesome) outer field boundary
condition.

Therefore, consider an airfoil-fixed coordinate system (X, Y) with X aft along the
chordline from the airfoil nose and Y upward and an inertial Cartesian system
(%,y). The relation between the two sets for the plunging motion described above is:

x = X
y = Y - A sin (07) (22)
=T

where:
A = 0.0436 chord and w = kU,/chord.
It may be noted that the plunging velocity of the airfoil is
&a = -A wcos (wT) (23)

which has a peak value of 0.01745 U, so the "induced'" angle of attack is 1.0 degree.

The inverse Jacobian of the transformation, Eq. (20) is:

Therefore, the proper conservation form for the moving system attached to the
plunging airfoil (X, Y, 7 ) is: (after putting it into the form analagous to Eq. (6) )

W X e}
AW _ OF (c“w@f—)

oT “9X ~ oY ot
oF 9
L — — + A
BX BY(G WA w cos (w-r)) (24)

3F 9 s
- T8X T oY (G’yaw>

Thus, in the computer program, it is only necessary to replace G by G - 3':. Ny
where S(a is a function of time only. 5
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Comparisons between the results of these calculations with the boundary conditions
satisfied along a fixed (mean) contour in space and satisfied on the moving airfoil
are shown in Figures 16 through 21. The abscissa in a number of these figures

is defined

¢ = w7 in degrees

where w7 is the argument for the sinusoidal plunging motion, Eq. (22). Where
¢ = 0, the airfoil has maximum downward velocity.

The normal force coefficient, pitching moment coefficient about the quarter chord
and the location of the lower surface shock are shown in Figures 16 - 18 and
summarized in Table IV.

The magnitudes of the C__ excursions agree reasonably well. The peak C__ for
fixed B.C. nodes occurs about 5° later in the cycle (40° after maximum down-
ward plunge velocity rather than 35° after maximum plunge speed for the calcu-
lation with moving B. C. nodes). The pitching moment excursions for the two
calculations differ quite dramatically from one another; the amplitude when B. C.
nodes are fixed is . 01861, whereas it is . 01051 when the B. C. nodes are on the
moving airfoil. Similarly, the shock motion amplitude is greater by a factor of
. 05544/. 04518 when the B.C. nodes are fixed rather than moving. Expressed as
vectors, the discrepancies between the results of the 2 calculations have magni-
tudes which are appreciable fractions of the magnitude of the basic response
vectors, 0.083 for CN’ 0.84 for Cm’ and 0. 29 for the shock movement.

Loading-style chordwise pressure distributions at 30 degree phase intervals for
the calculations with boundary conditions satisfied at nodes on the moving airfoil
are shown in Figure 19. Only half a cycle is covered formally; since the airfoil
and the motion are symmetric, the second half of the cycle can be examined by
interchanging the labels "upper surface' and 'lower surface' in this figure. It
may be noted that there is relatively little loading on the aft part of the airfoil
over most of the cycle and that the lower surface shock becomes quite weak in
the vicinity of ¢ = 90°.

Traces showing the lower surface pressure fluctuations at two stations ahead, one near
the shock, and two stations aft of the shock are shown in Figure 20. For the stations
which are not traversed by the shock the pressure traces may be seen to be
reasonably sinusoidal. Ahead of the shock (see X/C = 0.14 and X/C = 0.30)

the pressure excursions are noticeably smaller when the boundary conditions are
satisfied at fixed nodes than when they are satisfied at nodes on the moving airfoil.

Aft of the shock (see X/C = 0.66 and X/C = 0.82) the reverse is true. If the
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point of view is taken, that satisfying boundary conditions at fixed nodes merely
deletes terms from the differential equations (compare Eq. 24 to Eq. 6) and
that the effects might be localized in space and time, one ought to expect the
pressures from the two solutions to agree when the plunging velocities are zero;
that is, at ¢ = 90° and ¢ = 270°. Inspection of the traces in Figure 20 shows
the above reasoning to be approximately valid.

That the differences in the two oscillatory solutions are significant is further
illustrated in Figure 21. The calculated pressure oscillations at a number of
locations on the lower surface of the airfoil were fitted with single harmonics
of the form:

p(¢) = By *A; sin (9 +¢,)

by at least squares procedure.
The mean pressure distributions differ noticeably only in the region traversed

by the moving shock. The amplitudes and phase angles are shown also in
Figure 21.

In summary, satisfying the airfoil boundary condition at fixed nodes rather than
at nodes on the moving airfoil had the following effects (for the particular plung-
ing problem studied):

a. decreased the pressure fluctuations on the forward part of the airfoil.

b. increased the pressure fluctuations on the aft part of the airfoil

c. increased the excursions in shock location.

The resultant effect on the normal force fluctuations was to shift the phase angle
at which the normal force reached its maximum to about 5 degrees later in the
cycle. The pitching moment fluctuations were increased to about 1. 8 of the

value when boundary conditions were satisfied at nodes on the moving airfoil and
peak values of pitching moment came about 15 degrees later in the cycle.
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5.0 CONCLUDING REMARKS

A primary objective of the research was the calculation of some examples of unsteady
flows over airfoils by a straightforward method. The results were intended to serve
as test solutions to which results from simpler, more approximate, methods could be
compared.

In the computer program used in this research study, features were included which
would not have been used if the program had been designed for routine production use.
The usage of four coupled equations is unnecessary for most of the flowfield; the
unsteady potential equation probably would have done equally well for most problems
and for most parts of the field on severe problems. The complexity of the Euler equa-
tions is needed only for tracking the motion of the shock with the shock capturing
scheme and for detailing the flow over the aft part of the airfoil behind a strong shock.
The bulk of the computation time is expended for detailing the flow over the nose and the
tracking of the shock. The flow over the nose could be handled better by use of the
potential equation and an implicit scheme which would permit advancing the solution
with fewer passes through the field. Actually, many of the main features of unsteady
flow can be reproduced using perturbation potential programs with boundary conditions
satisfied along the chordline; these programs treat the flow around the airfoil nose in
an extremely roughshod manner.

The examples turned out, References 1 through 4, seem not to have been used much
for checking other methods, possibly because they were too severe and at too high a
reduced frequency. In Reference 7 the amplitudes of the pressure excursions for
64A410 pitching at k = 0.2 were compared to results presented in Reference 2.
Unfortunately, no phase information was compared. That References 1 through 4
show the pressure changes on the upper surface of the airfoil aft of the shock are

""out of phase' with those ahead of the shock in both steady flow angle of attack changes
and in oscillatory flow at K = 0.2 was not commented upon in Reference 7. Integrated
pressures were used to obtain the forces and moment about the nose of the airfoil;
these were compared to the results in Reference 2. Comparing moments about the
nose rather than the quarter chord tends to obscure the rather severe differences
between the two solutions. The additional example of flow over the 64A410 oscillating
about ¢ = 1° presented here, being less severe, may find more usage as a test
problem.

The investigations reported here show that there are appreciable effects of approxi-
mations in satisfying boundary conditions at the airfoil surface and on the outer field
perimeter.

The fixing of the outer perimeter flow conditions appears (Figure 9) to cause phase

shifts in the pitching moment, at k = 0.2, of (on the order of) 10 degrees). It is
not certain that these shifts could be eliminated by use of a stretched outer coordinate
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mesh extending to infinity because the signals of concern may be severly attenuated in
the coarsening outer mesh and because the distance coordinates may formally be
removed toward infinity but the airfoil remains a finite number of grid lines (and com-
putation steps) from the perimeter boundary condition in any practical numerical
solution. Patching to a "far field" solution has the hazard that the outer solution may
be unsuitable for the problem being worked on.

Caution probably should be exercised in usage of the results obtained here on the effects
of freezing flow properties on the outer perimeter of the computation field. First, the
results may be dependent on the details of the specific method and specific computer
program used in evaluating the effects. Second, the hints are present in Figures 8 and
9 that the effects of the constraint are different at different reduced frequencies. It
may be noted that the vector differences between the '"bounded' and "unbounded" pre-
dictions (Figures 8 and 9) change direction as the reduced frequency is varied. Pre-
sumably, this is explainable by there being a rather definite lag time for the most
influential signals to propagate from the airfoil to the field perimeter and return. The
""mishandling" of the signals at the perimeter can return influence to the airfoil and
either tend to reinforce or to cancel the cause of the original signals depending on
phasing (which is dependent on reduced frequency).

A calculation satisfying airfoil boundary conditions on nodes fixed at the mean location
of the oscillating airfoil was shown to have rather remarkable differences from the test
solution with boundary conditions satisfied on the moving airfoil. The effects appear to
be due to straightforward additional terms in the differential equations whose magnitudes
depend on gradients of the primary dependent variables and the airfoil plunging velocity.
In the example selected as a test problem the maximum plunging velocity was 0. 01745

of the free stream velocity. Presumably, those problems worked earlier having plung-
ing velocities of a similar magnitude could change upon recalculation by amounts approach-
ing what was found here. Two of the three oscillatory problems on the 64A410 reported
in References 1 through 4 have plunging velocities of 0.01745 Ux at the nose and trail-
ing edge of the airfoil; namely the k = 1.0, a = 2 +2° case and thek = 5.0,

a = 2 +0.4° case.

Inasmuch as the terms added to the differential equations when the problem is trans-
formed to satisfy boundary conditions at nodes on the moving airfoil depend linearly on
the airfoil velocities due to oscillation (compare Egs. 6 and 24), their effect might
become negligible if the amplitude of and velocities caused by the oscillations were
reduced toward zero. The amplitudes of the response functions would tend toward
zero also, so the relative orders of magnitude of the various terms should be studied.
For thin airfoils with small gradients in the primary variables (W) in the vicinity of
the airfoil, the extra terms should become negligible as the oscillation-caused
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velocities approach zero. Thus, if the results of calculations already performed are
normalized (by dividing response functions by the amplitudes of the motions executed)
the normalized results should (ostensibly) be applicable to problems with vanishingly
small oscillation amplitude. Of course, if one is attempting to calculate the flow
over an airfoil oscillating with a definite amplitude (for example, to compare with

an experiment in which the oscillations have finite amplitude) one ought to use care

in the calculations to include the proper terms.

The effects of wall interference should be considered if the calculations are to be com-
pared with data obtained in wind tunnels. Initial efforts to assess possible wind tunnel
wall effects are reported by Traci, et al, in Reference 7.

Ultimately, if the calculations are to be of use in prediction of behavior to be expected
on airfoils oscillating in real airstreams, the strong viscous effects occurring in
transonic flows must be accounted for. In particular, the weakening of the pressure
rise at the shock because of interaction with the boundary layer must be considered,
and the lessening of the lift because of boundary layer buildup or separation at the
trailing edge must be taken into account.
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on NACA 64A410 oscillating in Mach 0.72 flow.
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NACA 64A010 Mach 0.80 a=0
Plunging motion:
y,(9) = -.04365in(e) ¥ (9) = -.0175U,Cos(9)
{ First harmonic of response:
p(e) = B_ + Alsin(¢ + ¢1)

o

93 Sgéady, @=1 4 y
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X s ¥
0.7 = ¥

Unsteady, a= 0O
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(a) Pressure in steady flow and mean value
in unsteady flow

Figure 21. Pressure distributions on NACA 64A010 in
Mach 0.80 flow.
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Figure 21. Pressure distributions on NACA 64A010 in

Mach 0.80 flow.
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