AD=-A037 463 GTE LABS INC WALTHAM MASS F/6 20/3

. *  SURFACE CHARGE STABILITY ON FUSED SILICA.(U)
NOV 76 D H BAIRD NODO14=74=C=0315
UNCLASSIFIED TR=76-807.1

NL




© e 2
""|‘|§_O ol -

e
""I .1 2 [l220
= e

=y TERI




f

TR 76-807.1

o <
(A
O
Q" OFFICE OF NAVAL RESEARCH
I_\. CONTRACT NO. N00014—-74—C—-0315
[y
oo
=T
2 FINAL TECHNICAL REPORT
SURFACE CHARGE STABILITY ON FUSED SILICA
c/'.’
D.H. Baird
December 1976
e
’ 2
O
O
PoLad
P -
= =
23

Waltham, Massachusetts 02154

\GL[3 LABORATORIE

INCORPORAT

N\




TR 76—807.1

OFFICE OF NAVAL RESEARCH

CONTRACT NO. N00014—-74--C—0315

FINAL TECHNICAL REPORT

SURFACE CHARGE STABILITY ON FUSED SILICA

D.H. Baird

December 1976

GTE Laboratories Incorporated
Waltham, Massachusetts 02154

Reproduction in whole or in part is permitted for
any purpose of the United States Government

Approved for Public Release; Distribution Unlimited

Npep— " ; W—M




( C~‘

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPQRT NUMBER

Final Report

2. GOVY ACCESSION NO.

(2

;/Q‘ECHHENY'S CATALOG NUMBER

TITLE (mnd Subtitle)

4
F———

RY & PERIOD COVERED
o,

| i 265 — epext, J
V'~ / AA G 4 \ »
Suvtace (pai ~ 4 o | December
) L ) 6. PERFORMING ORG. REPORT NUMBER
; 4 ’__.___,_-"
I o
& X cnde ks &l ical L
7 AYTHOR(s 8. CONTRACT OR GRANT NUMBER(s)

D. H.Jls:\ird J

f N00014—74-C-6315,

R A S—

@ ENFORMING ORGANIZATION NAME AND ADDRESS
. GTE Laboratories Incorporated

I 40 Sylvan Road

t Waltham, Massachusetts 02154

10, PROGRAM ELEMENT PROJECT, TASK
AREA & WORK UNIT NUMBERS

G247 p

S—

W CONTROLLING OFFICE NAME AND ADDRESS
y Department of the Navy

{ Office of Naval Research

{ Arlington, Virginia 22217

/1

15 REPORT DATE

/| Novensser3976

13. NUMBER OF PAGES

UNCLASSIFIED

14 MOHITORNG AGENCY NAME A ADDRESS(if ditferent from Controlling Oflice)

: /7 7/\ L&

1S. SECURITY CL ASS. (of this report)

T
15a DECLASSIFICATION DOWNGRADING
SCHEDULE

i
!
116 OISTRIBUTION STATEMENT (of this Report)
{
i

Approved for Public Release, Distribution Unlimited

‘&

18 SUPPLEMENTARY NOTES

o
U

Surface Charge
Fused Quartz

?‘-w‘.f» Y WORDS (Continue on reverse side if necessary and identily by block number)

Breakdown in Argon
Kelvin Method

I sure have been investigated,
radiation,

field of the gas.

ABSTIACT (Continue on reverse side If necessary and identify by block number)
The stability of electric charge adsorbed on a fused quartz surface has been studied.
In particular, the effects of electric field strength, radiation, and ambient gas presH
It is found that transfer to or from the surface of suffi
cient charge to neutralize an external electric field occurs readily under ultraviolet
Fvidence is presented that changes in surface charge in the presence of
a gas ambient occur when the electric field at the surfece exceeds the breakdown
partial discharges then occur which alter the surface charge in

l such a way as to reduce the field below the breakdown valuc

EDITION OF 1 NOV 65 1S OBSOLETE

l

'NCLASSIPLED

SECURITY CLA

SSIFICATION OF T™IS PAGE (When Data Fntered

4 {[ /

»

a—




SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGEWhen Data Fntered)




l TR 76-507.1

ABSTRACT

The stability of electric charge adsorbed on a fused quartz surface has been
studied. In particular, the effects of electric field strength, radiation, and ambient
gas pressure have been investigated. It is found that transfer to or from the surface
of sufficient charge to neutralize an external electric field occurs readily under
ultraviolet radiation. Evidence is presented that changes in surface charge in the
presence of a gas ambient occur when the electric field at the surface exceeds the
breakdown field of the gas. Partial discharges then occur which alter the surface

charge in such a way as to reduce the field below the breakdown value,
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INTRODUCTION

This report describes a brief investigation of the storage and transport of
charge on or near glass surfaces. Interest in this phenomenon was prompted by
observations of a pulsed conduction process occurring between electrodes on a glass
surtace under the application of de voltage. The observation that light and heat increasc
the pulse rate suggested that the process involved the freeing of electrons from surface
traps under the combined influence of the applied electric field and radiative or thermal

activation,

Experiments under controlled atmosphere indicated that this process was
enhanced by conditions favoring ionization of the gas in contact with the surface. This
implied that the phenomenon involves the transfer of charge from the surface to the
gas. To seek turther evidence for such transfer, experiments were performed in
which the magnitude of the charge on a glass surface could be measured as those
parameters which control the pulsed conduction were varied. The experimental approach
and results of this study are described below. The extension of this study in the direc-
tion of surface charge phenomena on glass was made in preference to the exploration
of electron pooling effects at liquid surfaces, which had been under consideration
arlier,  The results of the study of the pulsed conduction process itself formed the

basis tor an invention disclosure describing a controllable random noise generator,

Lxperimental Method of Surface Charge Measurement

The technique used for measurement of the surface charge is a modification
of the Kelvin method similar to that described by Williams and Willis. : The design
and operation of the experimental cell is illustrated schematically in Figure 1, The
specimen is a fused silica plate, about 2 mm thick, which forms one wall of the vacuum
cell. The charging and discharging processes under study take place on the inner
surface of this plate. Within the cell and close to this surface is a nickel mesh clec-
trode which can be made to oscillate in a direction perpendicular to the surface and
thus has a varying capacitive coupling to it.  The oscillating motion is transmitted
through an insulated vacuum bellows, A cam drives the oscillation at 1 Hz, The ex-
ternal surface of the fused silica plate carries a semitransparent platinum coating
which serves as a counter-electrode coupled capacitively to the inner surface and to

the oscillating electrode.  The transparency of this clectrode permits introduction of
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radiation into the cell. Resistive heating may be used to vary the temperature. Oper-

' TR 76-807. 1

ation can be in either a vacuum or a controlled gas ambient. A corona discharge at a

high voltage electrode within the cell affords a convenient means of providing charge tor

’ deposition on the surface under study.

In operation, the movable electrode is connected to an electrometer, 1 the
! clectrometer input is momentarily grounded at some position of the oscillating clectrode

where its capacity to the c®nter-cleetrode is C..., then the voltage Vo] across the

I
electrometer at some other position of the electrode where this capacity is (‘T = A('.I, s

. (3

fp Tt VNG

v b (l’ i (L)
el (14(,r

where Vb is the bias voltage applied to the counter-electrode, ag is the charge on the

internal surface of the fused silica plate, (‘P is the capacity across this plate and (‘i
is the total capacity between the movable electrode and ground. This relation assumes

that the variation AC,. occiirs in a time short compared with the RC time constant of

T
the electrometer circuit, typically of the order of one hour, The determination of q.
depends on the fact that the clectrometer voltage no longer varies with the position of

the movable electrode when

V,==- — =V, (2)

Measurement is made by observing the electrometer output on an oscilloscope or
meter as the motion of this electrode produces cycelic changes in (‘T. Adjustment ol
Vh'

of electrometer output with electrode position yvields \'n and thus q.. Expressing the

the voltage of the counter-clectrode, to a value producing a null in the variation

result as a surface charge density, L
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where € and t are the dielectric constant and thickness of the silica plate, respectively,

Tvpically for fused silica, e/eo =4, With t=2 mm we have

-12 : 2
a -(1.8 x 10 L >\'n coul/em (4)

- 9
= 38 \'n] el/em”

where |e| is the magnitude of the electron charge and Vn is expressed in volts,

Several sets of data were obtained at different levels of surface charge
density to confirm the applicability of Eq. (1) by measuring vel as a function of Vb.
IFigure 2 shows two plots of this relation when o is close to zero, one measured
under vacuum and one at one atmosphere of argon.  The small value of ¢ is shown by
the fact that Vcl vanishes near \'h 0. The slope of the vacuum curve isbsomcwh:lt
the higher of the two. According to Eq. (1), this slope is ACT/(Cj + CT) and the
difference is apparently produced by a change in A(‘T due to a slight flexing of the
silica plate under vacuum, The validity of the measurement is not affected since both
curves yield the same value of Vn and hence of . The curve in Figure 3 was obtained
with the silica surface negatively charged resulting in a shift of the zero in the elec-
trometer output to a counter-electrode voltage of 1275 V.,  This curve was obtained
at one atmosphere pressure and has the same slope as the one atmosphere curve in

Iligure 2,
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RESULTS

Measurements were initiated to identify the factors to which adsorption and
desorption of the surface charge are most sensitve. The results to date are described

below,

Changes in surface charge density have been produced with two different
sources of mobile charge: (1) a discharge at the high voltage electrode, and (2) photo-
electric emission induced by ultraviolet radiation. With respect to the latter process,
it appears that in the presence of light of sufficient quantum energy, charge transfer
occurs between the silica surface and the movable electrode until the electric field
between them vanishes, 1f the counter-electrode voltage is positive, this requires
the addition of negative charge to the silica surface, presumably by photoelectrons
emitted from the movable electrode. 1If the counter-electrode is negative, the reverse
direction of current flow occurs, possibly by photoemission of electrons from the silica
surface itself, Sufficient surface charge has been induced in this way to neutralize
counter-electrode voltages ranging from -500 to +500 volts. These changes occur

readily in vacuum,

Both positive and negative discharges have been used to deposit surface charge.
Most experiments to date have involved use of a negative discharge in low pressures
of argon, As in the photoemissive process, the voltage on the counter-clectrode can
be used to control the charging level, In this case, the control is less exact, and the
magnitude of the resulting surface charge is normally greater than that required to

neutralize the counter-electrode voltage,

Perhaps the most striking observations have been of the dependence of surface
charge dissipation on the pressure of the gas and on the electrie tield within the cell,
It should be noted that when the counter-electrode voltage is adjusted to the value \‘n
which nulls the output ol the movable electrode, there is no field between the silica
surface and this electrode. [If the counter-electrode voltage is then adjusted to some
other value, \’h‘ the field inside the cell near the silica surface is proportional to
| \‘I) o V”] for a g.ven position of the movable clectrode, In vacuum at room tempera-
ture, negative surface charge is stable for values of (\’h— \'n) of at least H000 V. How-
ever, in the presence of argon, partial loss of surface charge can occur at much lower

values, depending on both the argon pressure and the position of the movable clectrode,
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This was illustrated by experiments of the following kind, At a given pressure
of argon, \'h was set at about +1000 V and a negative discharge operated in the cell,
Under these conditions, adsorption of negative surface charge occurs to yield a value
of \'n near 1000 V. The movable electrode was then stopped at a selected position and
\'h reduced slowly to zero, In general, \'n is reduced to some remanent value \'U in
the course of this process, due to loss of surface charge, VO is a measure of the

electric field at the surface when Vl) is zero. In Figure 4, VO is plotted as a function
of argon pressure for three positions of the movable electrode. It can be seen that for
rach electrode position, V() shows a minimum as a function of pressure, the minima
moving to increasing pressure as the distance between the fused silica surface and the
electrode is increased. Also the value of VO at the minimum increases with increase

of this distance,

It is probable that these results are a reflection of Paschen's law relating
breakdown voltage in a gas to pressure and electrode spacing. The remanent surface
charge is determined by the maximum field the gas can support without breakdown,
According to this model, when the field due to the surface charge exceeds the breakdown
field, a partial discharge occurs in the gas near the surface and the charged species
tormed in the discharge neutralize part of the surface charge. The relative positions
of the minima of the various curves as well as the relative magnitudes of VO at the
minima are in qualitative agreement with this picture. A similar explanation has been

2

proposed for the partial discharge of electrets at reduced pressure. ”

If this is the correct explanation, a further significant question exists con-
cerning the role played by the surface in triggering such partial discharges and the
extent to which this role is affected by the state of the surface. Such a role might
depend, for example, on the availability of relatively loosely bound surface charge.

A desirable extension of the present work is the exploration of the effects of temperature

variation of the surface during or after the time when the surface charge is laid down,
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