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ABSTRACT

1

- A pattern recognition system applicable to two dimensional
data is presented, and training algorithms for generating pattern
classifiers are surveyed. The method of moments is used by the system
as a feature extractor. The Mahalanobis distance measure is presented
as a criterion for the selection of moment pairs to be used as
descriptors. Experiments conducted using simulated high resolution
radar images demonstrate the effectiveness of the system using un-
structured data. Classification results for the system are compared

to those of human interpreters. _.
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CHAPTER 1

INTRODUCTION

Relatively recent developments in computer technology have made
it possible to store or retreive data in less time than it takes light
to travel 100 feet, and at a cost which makes these facilities avail-
able to almost anyone. Even with today's high speed computers,
however, most businesses and data collection centers have a backlog
of information to be coded and fed into these machines.

It is no longer adequate for computers to simply store and
manipulate data in a mechanical fashion, but machines are now being
required to make intelligent decisions about the data they process.
Examples of some of the decisions being required of today's computers
are character recognition, speech recognition, medical diagnosis,
target recognition, and weather forecasting. Since the autonomous
recognition of external stimuli promises to play a central role in
any type of "intelligent" data processing task, the field of pattern
recognition has been drawing much interest in recent years.

The problem of pattern recognition can be stated as the
assignment of input data via certain features into a class with which
the data shares common properties (Tou and Gonzalez, 1974).

There are two broad approaches to pattern recognition; decision-
theoretic and syntactic. Though there are no well established rules
governing which method produces optimal results when applied to a

specific problem, experimentation has produced certain guidelines in
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selecting which approach to use. If the data are well structured and
spatial relationships are important in describing the pattern classes,
then the syntactic approach promises optimal classification results.
If, on the other hand, the data are best represented in a numerical
form such as measurements or statistics, then the decision-theoretic
approach is best applied. OQutlines of both approaches are given in

this chapter.

A. Approaches to Pattern Recognition System Design

The Syntactic Approach

The origin of formal language theory may be considered to be the
development of mathematical models of grammars by Noam Chomsky. One
of the original goals of linguists working in this area was to develop
formal grammars capable of describing natural languages. From this
work evolved the syntactic approach to pattern recognition. Syntactic
pattern recognition has been applied to the specific problems of
chromosome recognition, classification of cloud chamber patterns, and
the recognition of geometric shapes. Since syntactic classification
schemes derive their ability to discriminate between classes from the
connectivity of patterns, it has also been the source of much interest
in the study of scene analysis.

In the syntactic approach to pattern recognition, the patterns
are specified via the use of primitives and productions. The primitives
are the basic building blocks used in describing shape. For example,

a set of primitives used in the description of two dimensional rectangular

shapes may be the directed line segments +, », +, and «. The productions

b




are the rules which may be applied to the primitives to produce a
sentence (pattern) which belonas to a particular grammar (pattern
class). A pattern may be represented as a string, tree, or graph.

The training of a syntactic recognition system begins with the
measurements representing the training data being used to build one of
the structures mentioned above; for example, a tree. The training
patterns are then used to construct a grammar for each class, which
will properly generate the training patterns. If an unknown pattern
is presented to the recognizer, the new pattern is subjected to the
rules (productions) of each grammar, and is assigned to the class whose
grammar produced the minimum number of errors while reproducing the
given pattern.

An example of a tree representation of Figure 1-1(a) is shown
in (b). The relationship used to derive the tree representation of
this pattern is "inside of."

One of the earliest applications of the syntactic approach was the
recognition of chromosomes. Ledley et al. (1965), developed two
grammars used in dividing chromosomes into one of two classes according
to their shapes. Figure 1-2 shows the primitives used, and strings which
represented the chromosomes. The assumptions were made that the boundar-
ies of the chromosomes formed closed figures and were traced in the
clockwise direction. The strings which represented the chromosomes
were then parsed against two grammars, one representing the submedian
class of chromosomes, the other the telocentric class. Figure 1-2(b)

shows two representative chromosomes and their string representations

(Young and Calvery, 1974).
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Figure 1-1. The tree representation of the pattern (a) is given in (b).




ABEBABCB

ABDBABCBABDBABCB (b)

Figure 1-2. The primitives used in Ledley's chromosome recognition system
: are shown in (a), while chromosomes representative of the

3 two(c;asses and their string descriptions are illustrated

in (b).
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It should be noted that the syntactic approach to pattern recog-
nition is viewed as a powerful technique primarily when the connectivity
of patterns is important to the recognition of the objects. Whenever
the patterns are not well structured, and connectivity relations do not
contain significant amounts of discriminate information, then the

following approach is best applied.

The Decision-Theoretic Approach

If patterns can be adequately represented by numerical informa-
tion, then the decision-theoretic methods of pattern recognition are
generally the best approach to the problem. In these methods, the
numerical data used as features to describe a pattern are usually

arranged in the form of a vector.

[ X1
X2
X
l(_= . s (]'])
*n
where the elements Xjs i=1,2, . . ., n, are the measurements or features

used in representing a given pattern.

The vector x may be viewed as a point in an n dimensional space.
As a simple examp]é, consider two classes, one whose members are the
military airplanes of today, the other the airplanes of the 1920's.
Figure 1-3(a) shows a hypothetical plot of the two classes using the

wingspan as the only descriptive measure. As seen in the plot, the

o o My’ ol el M2 ke S o il N -



(a)

Xy = speed

e wingspan

(b)

Figure 1-3. The plot in (a) represents the aircraft using wingspan
as the only descriptor, while (b) includes information
concerning the maximum speed as well.

o aircraft of the 1920's
® aircraft of today
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two classes overlap and may not be separated by a single line. If the
dimension of the pattern space is increased by adding a second
descriptor, say maximum speed, then the two classes may be plotted
as in Figure 1-3(b). The line drawn between the two classes in the
figure represents a suitable decision boundary for this example, since
it properly separates the two classes. By increasing the dimension
of the pattern space, it is always possible to produce accurate
classification results if no two patterns of different classes are :
identical.
If the pattern classes are not linearly separable, such as in
Figure 1-1(a), page 4, then the dimensions of the pattern vectors may ;
be increased without increasing the complexity of the measurement i

device which produces x. This is accomplished by forming the vector

—

Ff](i) x
f,(x) |

x
*
n

(1-2)

%R(L)

— —

where f(x) is a real, single valued function 6f X. The Tinear decision
functions in the R dimensional space of Equation (1-2) are mapped into
nonlinear decision functions in the n dimensional space of Equation (1-1),
since f(x) may be nonlinear in form.

Classification of patterns into their respective classes will be
achieved in this investigation by evaluating M decision functions, and

assigning the pattern to the class whose decision function is the maximum.




That is, we say a pattern vector x belongs to class wj if

4;(x) > d;(x), (1-3)

for all j not equal to i. Normally, the decision functions are a

weighted sum of the components of vectors such as

di(é) WX WXy h W X W (1-4)

This may be written in vector notation as
d,(x) = wix (1-5)

‘= ==

Note that to allow the vector notation to be used in Equation (1-5),
the pattern x must be augmented so that the vector product is consistent.

The augmented vector has the form

X = ; (1-6)

and will be used without special mention whenever needed throughout the
following chapters.

If there are M pattern classes, then it is desired to find M
weight vectors which will minimize any classification errors. The
weight vector W, is an nt+1 dimensional vector which represents class
Wy In the learning phase of the recognition system, it is the goal
of the training algorithms to find the Wis i=1, 2, . . . M, which will

classify the training patterns with minimum error.
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B. Problem Formulation

The main goal of this investigation was to develop a pattern
recognition system with which to study the effectiveness of two-
dimensional moment pairs as descriptors of radar images. Since the
returns from a high resolution radar vary significantly with relatively
small changes in aspect angle, the patterns are nonstructured in shape
and do not lend themselves to the syntactic approach described above.
The present study investigates the use of a decision-theoretic scheme
which allows for interactive experimentation with modeled radar returns.

Figure 1-4 shows the general structure of the recognition system.
Note that for experimentation purposes, the operator controls the
training algorithms and classifiers. Once in field operation, the
training algorithms would still require a human operator, but the
classification system would run autonomously. The laboratory setup
shown in Figure 1-4 provides considerable flexibility in the procedures
for testing the hypotheses drawn during this investigation.

A brief outline of the topics discussed in subsequent chapters
is as follows: Chapter 2 surveys the classification algorithms used
in training the recognition system. The previaus uses of moments in
pattern recognition as they appear in the literature are discussed in
Chapter 3, along with the application of the Mahalanobis distance as a
criterion for feature selection. Chapter 4 describes the pattern recog-
nition system as it was implemented, and gives the experimental results
obtained with test data. The conclusions drawn from the experimental
results, along with suggestions concerning future work are discussed

in Chapter 5.
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CHAPTER 2

PATTERN CLASSIFIERS

This chapter presents a discussion of the pattern classifiers
used in this investigation. Al1 of the classifiers mentioned are

of the decision-theoretic type and may be divided into two basic

categories--the statistical approach and the deterministic approach.
The Bayes classifier is a statistical classifier which derives
decision functions based solely upon the statistics of the training
patterns. If the statistics of the training patterns can be accurately
specified, then the Bayes classifier yields a solution which minimizes

the expected loss due to misclassification. This makes the Bayes

classifier a valuable standard in the evaluation of results.

The perceptron and the least-mean-square-error (LMSE) algorithms
both belong to the deterministic category of classification schemes.
Each of these two classifiers is implemented by algorithms which learn
a solution to the classification problem by iterating through the
training patterns a finite number of times. The perceptron algorithm
is easily implemented, but it is generally slow in reaching a solution
during the training phase. A much more involved method of training
is represented by the LMSE algorithm. In most separable cases, this
algorithm will converge in a very few number of iterations, but its
implementation is much more complicated and requires more memory in a
computer than the perceptron classifier.

A comparison of these three classification approaches is pre-
sented in the following sections.

12
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A. Bayes Classifier
The Bayes classifier used in this investigation is based on
decision functions of the form
di(_x_) F P()ﬁ_/wi) p((ﬂ])) i=132; R ) M (2'])

where M is the number of classes. The terms p(wi) and p(;/ui) are,
respectively, the a priori probability and conditional probability

density functions of the patterns of class w The decision function

it
di(g) which is the maximum corresponds to the minimum loss in classifi-
cation (Tou and Gonzalez, 1974); therefore, the decision functions

d

d S dM are all computed and the unknown pattern x is assigned

| i ol
to class w; if di(l) is the largest.

To apply Equation (2-1), it is necessary to determine the statis-
tics of the pattern classes by specifying p(mi) and p(ﬁjwi). In a
supervised learning environment, it is usually possible to use subjective
judgment of physical properties in estimating the a priori probabilities.
If for example, the classifier is to be used in determining the outcome
of a toss of a coin, then p(w])=p(w2)=]/2 since the results of the toss
are equally probable. To estimate the probability density functions
p(§/wi), it is often necessary that a particular form of density such

as the Gaussian or normal density be assumed. The multivariate normal

density is

= 1
=i

=i

where gﬁ is the covariance matrix determined from the class population,

|
|
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The term |§4| is the determinant of the covariance matrix.

is the mean of the class, and n is the dimension of the patterns.

Due to the exponential form of the normal density function, it

is more convenient to express Equation (2-1) as

d;(x) = 1n p(w;) +1np(x/w;). (2-3)

By substituting Equation (2-2) into Equation (2-3), the intermediate

result

- n i o A P
d;(x) = In plw;) -5 In2m - 3 1n|§4| (x-m.) C; (x-my) (2-4)

is obtained. Since the term % In 27 is a common factor to all of the
decision functions, it may be dropped from Equation (2-4), yielding the
final form

d;(x) = In pluy) - 3 Injgy| - Flx-m)TC; (x-my). (2-5)

The mean vectors (gi) and covariance matrices (94) in Equation

(2-5) are given by

m, = E.{x} (2-6)

and

= T
¢ = E{(x-m;)(x-m;) "} (2-7)

where Ei{’} is the expected value in class w5 - The mean vector may be

estimated using the arithmetic average
N

L x

ij=1=j

ZI—-‘

m.
==

where X4 is the jth pattern from class i and Ni is the total number of

patterns in class W - The covariance matrices can be similarly estimated

by




15

N
]

C. =5 ) e T

T BT TR T

(2-9)
Equations (2-5), (2-6), and (2-7) completely describe the Bayes
classifier for Gaussian data.

One of the advantages of the Bayes classifier is the speed with
which it can be trained. To specify the decision functions as given in

Equation (2-5) only one pass through the data is needed to estimate the

covariance matrices and mean vectors. This information along with the

a priori probabilities completes the training of the Bayes classifier.
The decision boundary predicted by Equation (2-5) is a hyperquadric
since there are no terms of higher than second order in x. This limits
the decision functions to a second degree system of equations, which may
not be sufficient for separation of the classes. In order to evaluate
the boundaries predicted by the Bayes classifier, the decision functions
must be tested against the training set. If no classification errors

occur, then the boundaries properly dichotomize the classes.

Example 2-1

As a numerical example of the Bayes classifier consider the
two pattern classes wy: {(1,0,1)T, (I,O,O)T, (O,O,O)T, (1,1,0)T}
and wy: {(0,0,1)7, (0,1,1)7, (2,1,007, (1,1,1)T). Applying

Equation (2-8) directly yields

113 ' 1 1]
m, = 1|,andm, = +|3
—IT] 2 4|3

Applying Equation (2-9),
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and
_-l 8 '4 '4
C' =|-4 8 4
A & B

If we assume equal a priori probabilities, p(w]) = p(wz) = 1/2, then

applying Equation (2-5) and dropping terms common to d](é) and dz(é)

yields
dy(x) = 4x, - 3/4
and
d,(x) = -4x, + 8x, + 8x .}
2= 1 2 : G
The decision boundary may be expressed as
dy(x) - dy(x) = 8x; - 8x, - 8x3 + 4 =0

and is plotted in Figure 2-1.

B. Deterministic Classifiers

The Perceptron Algorithm

During the early work in the field of artificial intelligence,
Rosenblatt (1957) developed a set of machines known as perceptrons.
These machines were developed in an effort to simulate human learning.
From this work, the perceptron algorithm was developed which incor-
porates a mathematical approach to machine learning in a relatively
easy to implement scheme.

The central goal of the perceptron algorithm is to learn a weight

vector w such that

d(x) = Xw >0, (2-10)




17

(1,0,1)

Figure 2-1. Plot of the patterns and decision boundary of Example 2-1.
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for the two class case. In Equation (2-10), the term X may be expressed

as

L RS (2-11)

“XN

L. J

where X4 is the jth augmented pattern of class w5 - Note that all of
the patterns of class W, have been multiplied by minus one. The
perceptron algorithm solves the inequality of Equation (2-10) by using
the reward-punishment concept. If a pattern is presented to the
perceptron and classification is correct, the reward consists of not
changing the weight vector w. If, on the other hand, misclassification
occurs, the term cx is added to the weight vector to form the new w.

For two pattern classes, this training scheme may be written as

wk); if Xw>0
w(ke1) = (2-12)

w(k) = ng(k), c>0; if !754 <0,

To expand the two class form of the algorithm to the multi-class

case, Equation (2-12) must be generalized. By allowing each class to

mu.tﬂil.ﬂiill.liﬁﬂ.l“
—— i : -




be characterized by a single weight vector, the kth iterative step

of the perceptron algorithm may be expressed as

wi (k1) = w. (k) + cx(k) (2-13)
Wy (k+1) = w (k) - cx(k) (2-14)
wilkt1) = wo(k) G £, 372 (2-15)

if d.(x) < d,(x), for x e w;, occurred at step k, otherwise

wi(k+1) = w.(k), i=1,2, . . ., M. (2-16)
This algorithm converges whenever a complete iteration through the data
produces no misclassifications. If the classes are separable, the
perceptron algorithm will converge to a solution in a finite number
of iterations, regardless of thz choice of initial weight vectors.

As the patterns are examined by the perceptron algorithm,

the weight vectors are adjusted to achieve. correct classification.
Unlike the Bayes classifier, the perceptron bases its decision functions
on the patterns in the training set rather than the statistics of those
patterns. This eliminates the assumptions required for the Bayes
classifier and the problem of estimating the statistics of the training
set. The perceptron is also free of the difficulties encountered
whenever the inverse of a matrix must be calculated, as in the Bayes
classifier, making implementation a much simpler task. Note also that
since a solution is guaranteed if the classes are separable, the results
of classification are always correct if convergence is reached and a
test pattern is represented in the original training set.

The main disadvantage of the perceptron algorithm is that it
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does not irdicate {f the pattern classes are separable, or how good a
solution is obtained 1f the algorithm 1s stopped at an arbftrary fter-
ative step. In the implementation of the perceptron algorithm for
this study, a maximum iteration count is introduced to fnhibit the
algorithm from never terminating if no solution exists. The procedure
also allows storage of the best set of weight vectors produced by the
algorithm at step k. This set of weight vectors is produced by
checking the accuracy of classification for each weight vector for all
training patterns. [If better classification results are obtained at
this step than the results for the last weight vectors saved, then the
new set of vectors replaces the old. By using this method, if the
maximum learning sequence is reached without the algorithm converging,
the best set of weight vectors are used as the solution. If the
algorithm does not converge, or if a4 new pattern is added to the
training sat and retraining is required, then the algorithm starts
with ﬂi (1) equal to the previous best results. If training has never

been done on the pattern set then the initial weight vectors

we(1) = 0 i=1,2, . . ., M (2-17)

are chosen,

Example 2-2

As a numerical jllustration of the perceptron_algorithm, consider
the three classes w,: {(O,O)T}, Wy {(0,1)T}. and w,: {(1,0)T}. In

order to implement the algorithm, the patterns must be augmented:

0 0 1
x(1) = [0} , x(2) = [11 , and x(3) = [O] .
| 1] 1
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Starting the algorithm with w, (1) = w,(1) = ga(l) = 0 and c=1, yields
the following steps.

For k=1,
W (1)x(1) = 0
wy(1)x(1) = 0
wy(1x(1) = 0,

Since all of the decision functions are equal, the following adjustments

must be made to the weight vectors:

W (2) = wy (1) +x(1) = (0,0,1)
Wy(2) = wy(1) -x(1) = (0,0,-1)"
wy(2) = wy(1) -x(1) = (0,0,-1)".

For the next pattern x(2),
W (2)x(2)

1

wy(2)x(2) = -1

wi(2)x(2) = -1.

Since all of the products are greater than or equal to y;(Z)éjZ),
adjustments are needed to all of the weight vectors.
W (3) = w (2) x(2) = (0,-1,0)
T
)

W, (3) = w,(2) +x(2) = (0,1,0

"

W3(3) = wy(2) -x(2) = (0,-1,-2)"

Testing the weight vectors with x(3) yields

W (3)x(3) = 0
wy(3)x(3) = 0
wy(3)x(3) = -2.

it st
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Since the present weight vectors did not properly classify x(3),

they are adjusted to:

Wy (4) = w(3) -x(3) = (-1,-1,-1)7
Wy(4) = w,(3) -x(3) = (-1,1,-1)]
w3(4) = wy(3) +x(3) = (1,0,-1)7.

Since a complete, error free iteration through the data has not been
obtained, the patterns must be recycled. Letting x(4) = x(1), x(5) =
x(2), and x(6) = x(3), then

Wy (4)x(4) = -1.

Wy (4)x(4) = -1

wy(4)x(4) = -1.

Since all of the products are equal, the following adjustments are made:

Wy (5) = w,(4) +x(4) = (-1,-1,0)

ey
~
]

>

—

ey

~
I

Wy(5) = w,(4) -x(8) = (-1,1,-2)"

W(5) = w(4) -x(4) = (1,0,-2)",

For k=5, the products are

w (5)x(5)

-1

wy(5)x(5) = -1

wy(5)x(5) = -2.

Since 5(5)ew2 was properly classified by y3(5), no adjustment is made

W, (6) = w(5) -x(5) = (-1,-1,-1)"

to w3

{=1,2,-1)"

Wy(6) = wy(5) +x(5)

w3(6) = ws(5) = (1,0,-2)".

T T
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The algorithm proceeds in this manner making corrections to the weight

vectors until iterative step k=11. The weight vectors have become

w (1) = (-2,-1,0)'

(=122}

w,(11)
ﬁ3(‘”) = (2’0,_2)1.

and x(11) = x(3), x(12) = x(1), and x(13) = x(2)

W (1)x(11) = -2
wy(11)x(11) = -3
W (1)x(11) = 0.

Since x(11) € wss the pattern was classified correctly and

w (12) = w, (11) = (-2,-1,0)7
w,(12) = w,(11) = (-1,2,-2)"
wy(12) = wy(11) = (2,0,-2)".

The next pattern, x(12) ¢ wys is then tested.

Wy (12)x(12) = 0
w(12)x(12) = -2
wy(12)x(12) = -2.

Again, the pattern was properly classified and

W, (13) = w, (12) = (-2,-1,0)
w,(13) = w,(12) = (-1,2,-2)'
wy(13) = wy(12) = (2,0,-2)".
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Trying to classify x(13) € w, yields

w (13)x(13) = -1
wy(13)x(13) = 0
wi(13)x(13) = -2.

Now, all the patterns in the training set have been properly classified,

ﬁ and the solution weigh vectors are:

-2 -1] 2
W, = =11, w, = 2| ,and w, = | 0| .
ol B *  jef J g R

The resulting decision boundaries are shown in Figure 2-2.

The Least-Mean-Square-Error (LMSE) Algorithm

The algorithm described in this section not only develops a set
of decision functions for classes which are separable, but it also
indicates if no solution exists to a classification problem. The

LMSE algorithm consists of the following set of iterative relations:

w(1) = x*b(1), b,(1) >0 (2-18)
! e(k) = X w(k) - b(k) (2-19)
! w(k#1) = w(k) + cXTle(k) + e(K)|] (2-20)
i b(k+1) = b(k) + cle(k) + |e(k)|], (2-21)

where |e(k)| is the absolute value of each term of the error vector
e(k). The X in Equation (2-19) is formed from the training patterns

as given in Equation (2-11). The weight vector w is the solution to

Xw2b (2-22)
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A plot of the decision boundaries from Example 2-2 and

the regions described by the decision function.

Figure 2-2.
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which is equivalent to Equation (2-10) since bi(k) > 0. The matrix 1#
is called the generalized inverse of X and may be expressed as
dauy 1 (2-23)

The generalized inverse has the properties that it minimizes the
sum of the squares of the residuals and that it minimizes the sum of
squares of the unknowns (Noble, 1969). The derivation of this algorithm
and its speed of convergence is based on these properties. The separa-

bility of the classes can be determined by examining the error vector

.e(k). If all the components of e(k) cease to be positive (but are not

all zero) at any iterative step, then the classes are not separable by
the specified decision boundary. The scalar constant ¢ is required to be
greater than zero and less than or equal to one for ccnvergence. As

with the perceptron algorithm, the LMSE is guaranteod‘to converge in

a finite number of iterations if a solution exists (7ou and Gonzalez,
1974). .

While it is a useful method for determining tizc existence of a
solution, the LMSE algorithm does have some shortco. 'ngs. To generalize
the LMSE algorithm for use with a multiclass problci., the classes must
be considered pairwise. That is, a decision functic.. must be found
for each class which separates it from each other ¢! ss. This involves
applying the algorithm M(M-1)/2 times for an M clac:. problem, which
greatly increases the number of computations involv ‘ in training.

The calculation of the generalized inverse also req ‘ies a large
amount of memory in a digital computer. Consider ti - case of N training
patterns of augmented dimension n. The matrix X th 1 becomes an N

by n matrix and the generalized inverse is an n by I matrix. These
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dimensions soon surpass the memory size of a small computer for a large
number of training samples. Another consideration is the existence of
the inverse for the matrix ZT X. Since ZT X is an n by n matrix, an
inverse exists only if ZT X is of rank n. If the training set
consists of at least n well-distributed patterns, then the matrix can
be shown to have an inverse.

Due to the above limitations of the LMSE algorithm, it was used
only in determining the separability of pattern classes and not as a
learninj algorithm in this investigation. A numerical example of the

LMSE algorithm follows:

Example 2-3
Consider the patterns for class Wy {(O,O)T, (O,I)T} and

Wy {(l,O)T, (1,1)T}. Augmenting the vectors and multiplying the

patterns of W, by -1 yields the matrix

¢ 0 1

" g 1 1

& 1 B 4

e

The generaiized inverse 5# = (KTK)']XT is

-1 -1 -1 -1
-1 1 1 -11.
32 /2 -1/72 1)2

Letting b(1) = (l,l,l,l)T and c=1, and applying Equations (2-18, 19)

w(1) = x¥ b(1) = (-2,0,)7
and

e(1) = X w(1) - b(1) = 0.
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Since X w(1) = (1,1,1.1)T. the algorithm has converged. Figure 2-3
shows the decision boundary found in this example.

Now consider the classes w,: {(O.O)T, (1,1)T} and w,: {(O,I)T,
(I,O)T}. Again letting c=1 and b(1) = 1, we obtain

0 0 1
¥ S
2%l g a1 )
10 -
and
g A4 3 A
Pyl =2 9 4 1}.
13/2 -1/2 -1/2 -1/2

The first weight vector is then

-
4 0
w(l) = X b(1) = {0
L0
and the error vector
-1
e(1) = xw() - () = |}
-1

Since gﬁ(l) are all negative, the patterns are not linearly separable,

and the algorithm terminates.
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ﬁ d(x)=0

(0.1)4T> - (1,1)

(0,0)

Figure 2-3. Illustration of the decision function found in Example 2-3.




CHAPTER 3

FEATURE EXTRACTION

The performance of a pattern recognition system is strongly
dependent on the type of feature extractor used. Methods for
feature extraction are often based on the intuition and the exper-
ience of the designer, gained through experimentation with a specific
problem. The main guides to feature extraction are that the features
should be insensitive to irrelevant variations, while emphasizing
differences that are important in distinguishing between patterns
of different classes (Duda, 1970).

Once a set of features have been chosen for use as descriptors,
it is often desirable to reduce the dimension of the feature vectors.
This can be accomplished by a transformation which maps the original
feature space into one of lower dimensions while trying to optimize
some criterion function (Tou and Gonzalez, 1974). It is also possible
to simply delete any features which contain little or no information
from the original feature set, thus forming a subset which produces
equivalent classification results with less computation. It is often
difficult to evaluate either the selection or dimensionality reduction
of features since no single analytical criterion of performance exists.

Since the goal of this investigation is the automatic recognition
of radar scatter returns, the selection of features must take into
account several factors. The variability of the patterns and the
high amount of noise encountered in this problem means that global

30
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features would be the most useful in classification. One such set
of features for two dimensional data can be obtained from the two
dimensional moment pairs. The two dimensional central moment Moq of
order p+q is given by
¥pq =j; fw (x-x)P (y-)? p(x,y) dxdy (3-1)

where X and y are the means of the population. It is assumed that
p(x,y) is piecewise continuous and contains nonzero values only in

the finite region of the xy plane. If the above assumption of finite-
ness holds, then a uniqueness theorem exists which states that the
entire set of all Mo are defined by p(x,y) and, conversely, p(x,y) is
uniquely defined by the set of all Mog (Hue, 1962). This uniqueness
implies that if the patterns are not identical, enough moments may

be chosen so that they form a discriminant set. Some noteworthy efforts
in pattern recognition via the extraction of moments from the data are

summarized below.

A. Summary of Previous Investigations

Utilizing the Method of Moments

Character Recognition

One of the classical pattern recognition problems is the auto-
matic recognition of alphanumeric characters. Some of the major
problems encountered in designing such a system are variations in
(1) size, (2) slant and rotation, (3) line thickness, (4) stroke

regularity, (5) measurement noise, and (6) type fonts. There have
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been two areas of interest generated by this problem concerning the
application of moments. Both areas were stimulated by the way in
which the invariant properties of moments may be applied.

Casey (1970) investigated a transformation which mapped a
handprinted character into a pattern of more uniform appearance.
In this study, the covariance matrix was used to derive a trans-
formation matrix A such that

cr=ACA (3-2)

[02 0
£ = . (3-3)
0 02

The term 02 is the variance in both the x and y directions of the new

where

pattern.

To obtain the normalized pattern P*, P is linearly transformed by

PX=AP. (3-4)

The new pattern P* has a covariance matrix C* as described by Equation
(3-3). Since all patterns are mapped into new patterns having identical
diagonal moment matrices, the transformed patterns are identical
except for reflections. It is interesting to note that the transfor-
mation is based upon moments of order two and manages to standardize
the size and slant of the characters. This method does not effectively
normalize line thickness and can amplify measurement noise. The
results of this study extended through experimentation with the
numerals 0-9 with a decrease in classification error of approximately

10% over non-standardized character sets. The motivation for such
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a transformation was stimulated by the desire to apply template matching
to handprinted as well as machine printed characters. Note that the
moments were used to make the patterns of the same class similar,
but were not used as the descriptors themselves.

In a study by A1t (1962) the moments of a character set of
a particular type font were examined to evaluate their usefulness
as features. The moments up to and including order six were calcu-
lated for 35 characters, each forming a pattern class. The higher
order moments were normalized against the lower moments to make the
patterns invariant to position and size. This reduced the number
of useful moments to 22. The moments of order five were sufficient
to distinguish between two characters as similar as 0 and Q of the
type font used. Several classifiers were used in this study, including
a finite automaton and a decision space approach.

Similar work has been done by Giuliano et al. (1961), in which
moments were again used as the features for recognition. Iﬁ this
study the moments were normalized against (1) mass, (2) position,
(3) orientation, (4) scale, and (5) perspective. The character set
used for experimentation was again of a standard type font and a
decision spaée classification was used. The results of the study
showed that the first ten moments were sufficient for proper classi-

fication using a standard data set.

Ship Photo Interpretation

Smith and Wright (1971) investigated the use of moments as
applied to ship photo interpretation. The images used were generated

to resemble the high-contrast, low-resolution returns from a synthetic-

e s S
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aperture radar. The study was limited to top views of images of three
classes: merchant ships, destroyers, and submarines on the open sea
with no returns from the water. The goal of the investigation was to
estimate the length, width, and heading of the ships by using the
method of moments.

Nonlinear functions were designed using a standard linear
regression program by treating the powers of the moments as new
variables in the linear combination. The order of the moments was
kept below five since the higher order moments are more sensitive
to random variations. Experiments were run with up to a 6-term
cubic regression polynomial used for estimation, with the higher
orders giving the best results. In order to evaluate the method,
it was compared to the results of heuristic techniques and a human
interpreter. The method of moments proved equivalent to or better
than the heuristic techniques, and much easier to implement. When
compared to the human interpreter, the method of moments was much
more accurate in every category except for estimating the heading.

The four studies cited here represent the major uses of moments
in automatic classification and interpretation schemes reported in
the literature. In general, the use of moments is attractive because
of their properties in minimizing the effects of size, location, and
slant. The use of moments as descriptive features has also been
attempted with modest success. The difficulty with using‘moments
is that the selection of two dimensional moment pairs which best
describe the data is not simple, and in practice has been confined

to choosing an arbitrary number of low ordered moments and then
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experimentally determining their usefulness. If any selectivity is
applied, it is usually based only on physical reasoning and is of
little value in the general case. In the following section, a cri-
terion for measuring the vaiue of features as descriptors and a

procedure for estimating the criterion is presented.
B. A Criterion for Feature Selection

In order to effectively evaluate the performance of a set
of features such as moments, it is necessary to establish a criterion
with which to quantitatively measure the performance of the resulting
feature set. If for example, a pattern classifier is designed to
be used in deciding which one of two events have occurred, the features
which best characterize the differences between the two events will
normally produce optimal classification results. Since designing
and implementing a pattern recognition system based on a set of
features chosen without any a priori knowledge of their effectiveness
will usually result in poor performance or, at best, redundant computa-
tion, it is desirable to have an indicator available which can predict
the usefulness of a set of features as descriptors. A statistical
distance measure is presented here as a tool for optimizing the choice
of features.

Since the classifiers discussed in Chapter 2 utilize the concepts
of a multidimensional space in order to generate decision boundaries
which properly dichotomize the classes, it is meaningful to use a
distance measure which includes information such as the Euclidean

distances between the classes and the dispersion of the classes
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about their means. One such distance measure is the Mahalanobis

distance.

The Mahalanobis Distance

Given a multivariate normal distribution, the n dimensional
Cartesian space on which the density is a constant forms an ellipsoid

specified by the equation

D=(x-m' cl(x- m), (3-5)

where m is the mean of the population and C is the covariance matrix,
given in Equations (2-6) and (2-7), respectively. The ellipsoid
described by a constant Mahalanobis distance has its center at m

and its shape and orientation is specified by C (Cooley and Lohnes,
1971). Note that the Mahalanobis distance may be used to estimate the
square of the distance from any point x to the center of the population.

The concept of the Mahalanobis distance and its usefulness as

a guide to the selection of features may be better illustrated using
uncorrelated data. Given a set of uncorrelated data, the covariances

are all equal to zero and the covariance matrix C* is given by

xf 0 0 0
0 AE 0 0
0 0 Ag. ¢ W10
C* = (3-6)
L 0 0 0% s A;

where A3 is the variance of component j in the feature space. The

inverse of C* is the diagonal matrix

———
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i ¥ ezl
7 = diag(53). (3-7)
! Under these conditions, Equation (3-5) simplifies to ;
;
B n i
H 1 2 {
i D* = ¥ —(x* - m*) (3-8)
j=1 Aj J J |

where xg and m3 are the jth components of the n dimensional vectors
| x and m respectively.

In any pattern recognition problem, it is most desirable that the

points which represent a pattern class be tightly clustered about

their class mean and that the means be separated by the largest possible
Euclidean distances in the feature space. These properties are inherent
in the Mahalanobis distance since, to maximize D*, the variances along
each component must be minimized and the square of the distance from

the features and the mean of the population must be maximized. If

two classes are considered, then Equation (3-8) may be written as

D¥* = g i.(m* mx 2 (3 9)
glg NEVEE S 2J .
=1 "3
where m?j and mgj are, respectively, the jth components of the means

of classes o and W - This leads to the hypothesis that if the features
can be chosen to maximize D*, then the degree of difficulty encountered
in specifying a decision boundary in the feature space has been minimized.

To generalize to the multiclass problem, Equation (3-9) may be written as

or = § swny; - 6’ (3-10)
1 g )

Here, m;j is the jth component of the ith class and D; is the Mahalanobis

—— S Sl
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distance of class Wy The term ﬁg is the jth component of the mean of
the total population. Equation (3-10) may be interpreted for each

descriptor as discussed in the next section.

Moment Pair Selection by the Mahalanobis Distance Criterion

If the feature or pattern vector x for each training measurement

is given by

(3-11)

1>
"

by (M)
where “pq is given in Equation (3-1) and n is the dimension of X, then
Equation (3-10) may be applied, yielding D? as a measurement of

the effectiveness of the n features taken as a whole. While the
Mahalanobis distance is useful as a statistical classification measure,
it would be more valuable if developed to be used in evaluating the
moment pairs independently. It is indeed the case that Equation ‘3-10)

suggests such a measure, say A;j, where

A%

. ¥ - W 2 o

i
The term A;j characterizes the discriminating power of component j as it
relates to class w;. If the moments which form x can be chosen which
maximize A;j, then D? is maximized, and the moments which best charac-
terize the differences between the classes have been determined.
While the development of the Mahalanobis distance for uncorrelated

data is very useful, it is not always feasible or desirable to
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decorrelate the features. The Mahalanobis distance in its general form
as stated by Equation (3-5) would prove to be more useful if a distance
measure Aij can be established which will provide similar information
as that obtained from A$j.

Since a goal of this investigation is to independently measure
the worth of each feature as a descriptor, Equation (3-5) may be
rewritten to include the effect of increasing the dimensionality of

the feature vectors. By allowing b to denote the dimension of the

vectors and matrices, Equation (3-5) becomes

D(b) = [my(b) - my()1°c™ (b)Im; (b) - m,(b)], (3-13)

b= 525 i - o
for the two class problem. It can be shown (Appendices A and B) that
the Mahalanobis distances in the decoupled and original spaces are

equal. This equality leads to

D(b) = D*(b)
; (3-14)
= A%, 3-14
# ¢
where
_ 1 2
Ag = Xg(mfj - mgj ) (3-15)
By defining By in terms of D(b) as
By = D{b) - D(b-1), ' (3-16)
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a measure in the original space may now be related to A; in the
decoupled space by
by = D(b) - D(b-1)
E bi]
= A* - A*
k=1 K gt
by, = AE. (3-17)

This shows the Mahalanobis distance to be a cumulative measure formed
by the sum of the Ab'S of Equation (3-16). If the features are chosen
to maximize the Ab's, then the Mahalanobis distance will also be
maximized.

Equation (3-13) and (3-16) may be generalized to the multiclass
case by forming each equation so that it corresponds to a separate

class. The multiclass case forms are

D;(b) = [m, (b) - @(b)]'C"(b) [m;(b) - (b)) (3-18)

and
Bip = Di(b) - Di(b-l), (3-19)

where mi(b) and é(b) are b dimensional vectors representing the mean
of class wy and the mean of the population, respectively. The covariance
matrix C(b) is a matrix of order b formed over all classes.

The formulation of the Mahalanobis distance by Equation; (3-18)
and (3-19) provides a method for the evaluation and selection of features
which have not been decorrelated. Figure 3-1 shows a plot of the

Mahalanobis distance as a function of increasing dimension. In this
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Figure 3-1. Graph of Mahalanobis distance between the means
of two classes.
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particular example, the maximum values of A;p Occur for b=2,3,9, and 13.
(Classification tests were run using all 15 original moments and only
the 4 moments which corresponded to b72,3,9, and 13. The two classes ;
were found separable in both cases, but only 27% of the calculations
were needed for the 4 moments compared with the original 15.)

The selection of moments based on the Mahalanobis distance is
not as simple when the multi-class case is considered since a moment

pair which proves very useful in discriminating between two classes,

may not be of any value in separating the other classes. When this
situation occurs, trade-offs must be made between the complexity of

calculations involved and the efficiency of the recognition system.

Computational Considerations

It is of interest to examine the complexity of tnhe calculations
involved in applying the foregoing Mahalanobis distance criterion.
To evaluate D(b), b=1,2, . . .,n, directly requires the inversion of n
matrices of order 1,2, . . .,n. The actual number of calculations
required to obtain the inverse of a nth order matrix will vary depending
on the pivoting strategy used, but Noble (1969) estimates that the
number of multiplications involved is of the order n3 and the number
of additions is approximately n3-2n2+n. Using these estimates as
guidelines, we see that calculating Di(b), for b=1,2, . . .,100, and
i=1,2, . . .,10 requires a total of 255,025,000 floating point
multiplications and 248,308,500 additions. The direct calculation
of the Mahalanobis distance by computer will also usually require a

large amount of memory. For the above example, it would take 40,000 bytes

of memory to hold the inverse covariance matrix alone, and another 4,400
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bytes for the mean vectors. All of the above figures are based on a
standard single precision Fortran implementation. While it is not
unreasonable to expect the large computers to be able to handle arrays
and computations of this size, time on such machines is expensive.
Often a smaller machine must be used, utilizing a peripheral bulk
storage device to hold intermediate results. While this is usually
a less expensive arrangement, the time for data transfers involved
with such a system normally makes the execution times unbearably long.

Another common problem in the direct implementation of the
Mahalanobis distance is the i11 conditioning of the covariance matrix
which usually occurs if the number of patterns is small. It car be
shown (Anderson, 1958) that if K patterns of dimension n are chosen
from a normal distribution, then the probability that the inverse
of the nth order covariance matrix exists is one if K>n. Often in
practice, K must be in the order of ten times n to produce a non-
singular covariance matrix. This means that for our example, the
maximum dimension is 100 and therefore, 1000 patterns should be
available for the calculations of the covariance matrices.

It follows from the foregoing discussion, that an approxima-
tion to the Mahalanobis distance would be a desirable tool. Such a

procedure is discussed below.

An Approximation to the Mahalanobis Distance

The Mahalanobis distance for uncorrelated data has already been
shown to be much simpler than that for correlated data. This simplicity

arises from the fact that the covariance matrix is diagonal, thus
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making calculation of the inverse a simple task. 1In this investigation,

the first order approximation given by

(3-20)

ne-—m22
=
-
- ]
(]
3>
N
~nN

b;(N) =

has proven useful for evaluating feature vectors of dimension larger
than N=30. (Note that Equation (3-20) is equivalent to Equation (3-10)
if the data are uncorrelated.) Figure 3-2 shows a plot of D(N) for

the same classes as the plot in Figure 3-1. Note that even though

the values of the estimated distances are much different than those of
Figure 3-1, most of the prominent changes in ﬁ(N)(Aij's) are clearly
visible in Figure 3-2. Of course, the accuracy of the estimate depends
directly on the amount of correlation between the components. Since
the covariance matrix contains information concerning the correlation
of the data, the selection of features which exhibit a large correlation
should be avoided to minimize the amount of error in the estimation of
the Mahalanobis distance. If it is felt that these features are of
importance in properly discriminating between classes, then it may be
necessary to test them using the more complex but exact representation

of the Mahalanobis distance.

Conclusions

The implementation of the Mahalanobis distance for use as a tool
in the selection of features has been discussed in general in this
chapter. A physical interpretation has been given the distance measure
by examining D; in the decoupled space. This lead to an approximation

of the Mahalanobis distance assuming decorrelated data.
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Figure 3-2. A graph of the estimated Mahalanobis distance between
two class means.
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The next chapter applies the method of moments and the criterion

function discussed here to the specific problem of recognizing high

resolution radar images.




CHAPTER 4
SYSTEM IMPLEMENTATION AND EXPERIMENTAL RESULTS

The pattern recognition system was implemented on a Digital
Equipment Corporation PDP 11/40 minicomputer. The processor has 56K
bytes of core memory and is supported by a real time operating system,
which utilizes two 2.5 megabyte disk packs. The peripherals used by the
system include a nine track magtape, an image digitizer, lineprinter,
video terminals, and a video display generator. A1l of the peripherals
mentioned would not be needed for a field implementation of the system,

but were used in this investigation because of their interactive

capabilities during training,
A. System Implementation

During the development of the pattern recognition system, some
of the main objectives were to allow for interactions with the operator,
and to allow maximum flexibility in dealing with varied applications.
Due to the implementation of these features, the system offers a modular
construction which may be altered to suit the needs of a specific problem,
The computer programs which comprise the system may be divided into three
categories. The programs which are used to generate the sample radar
images will be discussed in this chapter first. The second program
preprocesses thasample images and computes their moments, which are used
by the third program. This last program performs the training required

to generate decision functions, and then allows classification of patterns.
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There are several other programS‘WHich are used as tools in developing
the system, and will be discussed only as they relate to specific
experiments.

The program which creates the sample radar images uses an image
digitizer, which is equipped with a joystick with two degrees of freedom
for inputing coordinates from a 512 by 512 image raster pattern. The
operator inputs the drawing scale of the image to be stored and the size
of the expected backscatter from each reflection point to the program,
Then, by placing the joystick over each reflection point, the coordinates
of the point are read by the computer, A Gaussian data cluster, centered
about the reflection point, is then superimposed on the image when it is
stored. The variances for the clusters are calculated by the program
so that the desired reflection size is obtained at each point., Each image

generated may have a maximum of 2,000 points,

Once the image has been created, the operator has the option of
viewing the image via the video display terminal, or creating a data file
on disk which is suitable for display via an available display program,
If the operator is satisfied with the image, it may be stored on disk in a
contiguous file, and another image sampled. If the image is saved, it
is stored on a disk file along with an identification number, date of
creation, reflection size, drawing scale, and up to 48 other images.

The second program extracts the moment pairs from a given image.
The operator inputs an identifying class number, the name of the class,
and the indices of the moment pairs desired. Images are then extracted
from the specified disk files and are rotated into one of two standard

positions, as discussed in Appendix A, Each image is then scaled by a
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constant which was experimentally determined. This scaling is necessary
to keep the numbers involved within the range of the computer, and does
not affect the classification results. The images are extracted from
the disk files by the operator specifying the identification number
stored with each image. Of course, the images may be read from any of
the available image files, allowing for concatenation of feature vectors
from any image file into a single data structure forming a class.

The two dimensional moment pairs calculated by this program

are given by

)q

y 3 (4'])

1 L p
o =T 1Z](xi—mx) (y;-m

where L is the total number of data points in the image. The terms X;
and y; are the ith coordinate pair, while my and my are the mean coor-
dinates of the images, and p and q are the indices of the p+q order
moment. A maximum of 31 moment pairs may be calculated for each image,
with the maximum moment index value being 127, The identification
number assignéd the image is appended to the descriptors creating a

32 dimensional vector which is then stored on disk,

The vectors described above are stored in groups of 255 or less,
along with a label record describing the file, It is assumed that all
of the vectors stored in one of these files represent one pattern class.
The label record, therefore, contains an identifying class number, the
name of the class, the indices used in calculating the moments, the
date created, and the number of vectors in the file, These files

are in a form suitable for use as training data by the next progran,
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The main program of the recognition system provides the
capabilities of training on stored data, and classifying data which has
been processed by the programs just discussed. This program is also
capable of obtaining new patterns from the image digitizer and preparing
[ them for classification, or adding them to the data which has
previously been stored. This is by far the most involved program in
the pattern recognition system requiring a total of 23 subroutines, and
8,674 bytes of common array storage. The program contains five overlay
i segments which share the same memory, The system is interactive,
allowing specification of files, algorithms used and the execution
time allowed for the completion of a task.
A maximum of ten classes may be handled by the system at one time.
The name of the training file for each class is stored at the beginning

of the program, and each file is checked for compatibility with the other

files prior to any other execution. If the dimensions of the vectors
do not match, or if different moment indices are used in the training
files, the error is flagged and the program halts. The names of the
files containing any decision functions computed during past runs, or
used to store the results of the present experiment, are entered from the
console and stored for future use without operator intervention,

From this point, the operator has several options. If training
files were entered in the initial dialogue, then the system asks the operator
if training should take place. If no training files were entered, then |
the program continues to the classification section. Assuming that
training is desired, the option of one or both of two algorithms is

available.
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If training is desired using the perceptron algorithm, the
system asks for input of the incremental constant c, the maximum number
of iterations allowed, and the maximum allowable training time. The
system then sets up a file on disk, using the name entered earlier,
for storage of the resulting weight vectors. Training then proceeds
according to the algorithm given in Chapter 2. If the algorithm converges,
a message is output to the terminal giving the number of iterations
required for convergence, and the solution vectors are stored on disk.

If convergence is not achieved within the given time 1imit, or the

maximum number of iterations allowed, then the iteration count along with
the number of patterns properly classified by the best solution thus far

is output to the operator. The same information along with the name of

the class is stored with the partial solution on disk. This procedure
allows the operator to return to the system later, and restart the training
sequence from the same step at which it stopped.

If training is required using the Bayes classifier discussed in
Chapter 2, then the system calculates the mean vector and the covariance
matrix of each class. The user then inputs the a priori probabilities
for each class at the request of the system. This information, along
with the name and number of the class, is stored on disk. Often if the
training set is small, the covariance matrix is singular. Whenever this
occurs, a message is sent to the operator, and control returns to the
main program,

It should be noted that the LMSE algorithm has also been implemented
for use with the system, This algorithm was not made an inteqgral part
of the main program due to the large array space needed for its

implementation,

—
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After the training sequence is either completed or bypassed, the
system asks the operator if classification of a pattern is desired. If
the operator replies affirmatively, then the pattern is either input
from the digitizer or an existing disk file. In either case, the option
of displaying the image via the video display terminal is available.

Once the image is made available to the processor, it is

transformed according to the procedure described in Appendix A, and scaled.

The moments are then calculated according to the indices of the training
patterns, and the pattern vector is formed. Assuming a set of weight
vectors exists for both algorithms, the operator may specify which
classification scheme to use.

The system outputs the classification results to the operator
by specifying the class number chosen and the name of the class. The
operator must then indicate to the system if any classification errors
occu?%d. If an error did occur, the pattern vector may be added to
the training set and either one or both of the algorithms may be
retrained, if desired. Once retraining has completed, classification
with the pattern producing the error may be tried again,

As presently implemented, the system provides a flexible,
interactive method for testing the hypotheses developed by the user.
The flexibility of being able to group several patterns into large classes,
and to divide the classes into subclasses, allows the operator to test
numerous classification arrangements for a given problem. The interaction
of the computer hardward and the flow of data through the system as it
relates to the operator is illustrated in Figure 4-1, A sample of the
interactive capabilities of the system is presented in the following

examples, All operator responses are underlined.
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Example 4-1

Once the initial dialogue has allowed the operator to specify

the names of the files needed during the present session, the training
section is entered.

DO YOU WANT TO TRAIN? Y

PERCEPTRON? Y

ENTER POSITIVE CORRECTION CONSTANT: 1.

ENTER MAXIMUM NUMBER OF ITERATIONS: 10

ENTER MAXIMUM TRAINING TIME ... HR,MIN,SEC FORMAT.
0,15,0

THE PERCEPTRON CONVERGED IN 8 ITERATIONS.
BAYES?
If the perceptron algorithm had not converged, the following
message would have been printed.
AFTER 10 ITERATINNS, THE BEST SOLUTION
FOUND WAS 19 OF 20 PATTERNS CLASSIFIED
CORRECTLY.
BAYES?
If training is also required for the Bayes classifier, the following
dialogue takes place.
| BAYES? Y
? ENTER PROBABILITY OF CLASS 1.

NAME OF CLASS IS B-737.

A

ENTER PROBABILITY OF CLASS 2.
NAME OF CLASS IS F-111.

.5

The preceeding dialogue would require decision functions to be

stored on the disk for both the Bayes and perceptron classifiers,
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Example 4-2

After the decision functions have been computed and stored for
future use, the system allows the operator to classify new patterns,
as shown below.
DO YOU WANT TO CLASSIFY A NEW PATTERN? Y
IS PATTERN STORED ON DISK? Y
If the operator had answered N to this question, the program
would assume that the pattern would come from the image digitizer.
The dialogue required for the retrieval of a pattern from disk continues:

ENTER NAME OF DESIRED FILE.
PATTERN.TST

ENTER I1.D. OF DESIRED PATTERN: 103
DISPLAY PATTERN? Y
Pattern 103 would be found stored on disk in a file named
PATTERN.TST and would be displayed on the video display terminal.
The pattern is then rotated, and the moments are extracted. The
method of ciassification is then specified as follows.
D0 YOU WANT A BAYES CLASSIFICATION? Y
DO YOU WANT A PERCEPTRON CLASSIFICATION? Y
If we assume that the pattern belonged to class 1, the following
dialogue might occur.
THE PERCEPTRON ASSIGNED THE PATTERN TO CLASS 1
THE PATTERN IS A B-737.
CORRECT? Y
THE BAYES ASSIGNED THE PATTERN TO CLASS 2
THE PATTERN IS A F-111.
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CORRECT? N
DO YOU WANT TO RETRAIN THE BAYES? Y
Since the Bayes classifier assigned the pattern to the wrong
class and the operator requested training to be reinitiated for
the Bayes, the pattern would be stored on disk with ihe other training
files. The same dialogue for the Bayes classifier in Example 4-1
would then be issued by the program during the retraining sequence.
These two examples illustrate the versatility of the system,
and the way it interacts with the user. The results discussed in
the remainder of this chapter were obtained using this and related

programs,
B. Experimental Results

Radar Data Model

The data used to test the recognition system were simulated
to resemble the returns from a high resolution, synthetic aperture
radar. Since real radar images were not available, the images were
created by estimating the location of the specular reflections from
airplanes, along with the reflection due to creeping waves. (Peebles,
1976). The resolution of the radar was (conservatively) set at ten
feet in both the range and cross-range. Once the reflection points
were located a two-dimensional Gaussian data cluster with a standard
deviation of approximately five feet was superimposed on each reflection
point. If the reflection was determined to be elongated, the variance
of the cluster along the axis of elongation was increased so that
the Gaussian cluster represented the true return more closely. A

sample of the resulting image is shown in Figure 4-2,
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Since modeling the data by this method is a slow, tedious task,

only eight airplanes were considered. Approximately 14 images of
each plane were created. These images represented changes in aspect
angle of 45° in two geometric planes. This produced a total of 103

sample images, which were used in training and classification tests.

Table 4-1 lists the airplanes used, along with their wingspans.
There are two main categories: fighters, and transports, with the
latter category including cargo planes and bombers. Since human
interpreters usually base their decisions on the size of the returns,
the planes used in the experiments were chosen to allow for worst-
case conditions in testing the system, with some of the wingspans
differing only by one to four feet.

The data were generated under the assumption that there was
little or no noise other than that produced by the reflection points
on the object of interest. In practice, this can be achieved by
time-integrating the images for human interpreters. It is also
assumed that there is only one aircraft in the image at a time.

More than one aircraft in the field of view of the radar could be
handled by applying a clustering technique to extract the aircraft
from a more complex image. Rotation and translation of the images
are taken into consideration by the procedures described in Appendix A.

A brief outline of the experiments and topics discussed in
the remainder of the chapter is as follows. The first thirty moments
of the aircraft presented in Table 4-1 were calculated and their
Mahalanobis distances were plotted. These distances were then used

to determine which of the thirty moments to use in dealing with these
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TABLE 4-1. Airplanes Used in the Experiments and
Their Dimensions

Name and Manufacturer Type* Nationality Wingspan
Mikoyan MIG-21 Fighter Russian 23.46'
McDonnell-Douglass A-4M Fighter USA 27.5"
Mikoyan MIG-25 Fighter Russian 40"
General Dynamics F111 Fighter USA 63"
Tupelov TU-22 Transport Russian 90.875"
Boeing 737 Transport USA 93’
Antonov An-22 Transport Russian 211.25'
Lockheed C5A Transport USA 222.71"

*Transport includes bombers and cargo airplanes.
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particular patterns. The aircraft were divided into several groups,
with training and classification experiments being conducted on
the various subdivisions of the classes. An experiment is discussed

which compares the classification results of the system to those

i,

of human interpreters. Finally, the Mahalanobis distance criterion

is considered again, showing the error involved when the distance

is estimated by assuming deccupied data.

Applying the Mahalanobis Distance

To determine wnich moment pairs to use, the Mahalanobis
distance was plotted for the first thirty moments of the aircraft
listed in Table 4-1. The indices of the moment pairs are listed
for reference in Table 4-2. From these thirty moments, a subset
was chosen by applying the Mahaianobis distance criterion.

Figures 4-3(a) - (f) show plots of the Mahalanobis distance
for each of the eight types of aircraft, treating each type as a
separate class. The following procedure was used to determine
which the thirty moment pairs would be used for Experiments No.'s
1 through 4 in this chapter.

In Chapter 3, it was determined that to maximize the Mahalanobis
distance between class means, the descriptors which produced the max-
imum gradients (Aib's) should be selected. In order to appiy this
criterion in a meaningful way, only the Aib's which represented at
least 5% of the total Mahalanobis distance were consicdered. Yhis
reduced the number of moment pairs which were considered meaninaftul
from thirty to twenty. The number of moment pairs used in the exper-

iments was further reduced by keeping only those of the twenty
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Indices of the Two-Dimensional Moment Pairs Calculated

TABLE 4-2.

for the Mahalanobis Distance Plots

y Index

x Index

Order
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The Mahalanobis distance for the aircraft listed in
Table 4-1, page 59, are plotted here. The aircraft
are (a) MIG-21, (b) A-4M, (c) MIG-25, (d) FB-111A,
(e) TU-22, (f) B-737, (g) AN-22, and (h) C5A.
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previously chosen which represented at least three classes. This

procedure resulted in the eight moments pairs shown in Table 4-3.
According to the Mahalanobis distance criterion, these
eight descriptors will prcduce better classification results
than any other set of eight chosen from the thirty listed in Table
4-2, 1t should be noted that if all possible combinations of
eight dimensions of the original thirty were tested separately
by experiment to determine the best eight, a total of over 5.8
million experiments would have to be performed.
In evaluating the classification results obtained with
these eight moment pairs, the fact that all of the aircraft were
considered simultaneously should be remembered. If the Mahalanobis
distance criterion were applied to a subset of the classes, a
different set of descriptors might very well be chosen. Indeed ]
in Experiment No. 5, only four moment pairs were used when considering
two of the aircraft listed in Table 4-1, p. 59.
A representative sample of the experiments conducted using

the foregoing radar data and recognition system follows:

Experiment No. i |1

In this experiment, two classes were formed by dividing
the aircraft in Table 4-1 according to their classification

as fighter or transport. The moment pairs listed in Table 4-3 |

were calculated for each pattern. The resulting transport class
contained 50 patterns, while the fighter class contained 53 patterns.
The separability of the classes could not be determined by the

LMSE algorithm, since the present implementation of this algoritim




TABLE 4-3. The Most Discriminant Moment Pairs As Determined
From Table 4-2 By the Mahalanobis Distance Criterion
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only allows for a maximum of 95 patterns in both classes. This

maximum was imposed by memory limitations.
Training was first carried out using the perceptron algo-
rithm. After 100 iterations, the best result classified 102

patterns correctly out of the 103 total. After another 26 iterations,

the algorithm converged, yielding 100% proper classification
results when using the original training set.

A new set of data was constructed by randomly selecting
twenty patterns from the original training set, and either deleting
or adding a single reflectian point. Ten patterns were created
by adding a reflection point, the other half by deleting a reflection
point. These alterations to the original set were designed to
simulate the addition or deletion of specific pieces of equipment;
; such as spare fuel tanks, or externally-mounted weapons.

The new data set was presented to the weight vectors as
determined by the perceptron algorithm for the original set of
training samples. The resulting decision functions misclassified
two of the twenty patterns, resulting in a 10% rate of error for

new data. The twenty new patterns were then added to the training

set, and the perceptron algorithm converged again after an additional ?
300 iterations.

i The same tests were conducted using the Bayes classifier,
The classifier was trained using equal a priori probabilities of
' p(fighter)=p(transport)=1/2. The training set of patterns was then 4
” presented to the classifier, with only one of the 103 patterns

being misclassified. This is a classification error of approximately

J97%.
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The new data set which was created for use with the perceptron
was presented to the classifier. For this part of the experiment,
the Bayes classifier properly assigned 17 of the new patterns to
their respective classes, for a classification error of 15%.

The Bayes classifier was then retrained by including the new data
in the training set. A1l 103 patterns were then checked for
classification, with only one error occurring. This represents
an error of only .817% after retraining.

Experiment No. 2

For this experiment, the aircraft categorized as transports
were divided into two classes. The patterns which represent the
C5A and the An-22 aircraft formed one class, while the patterns
of the TU-22 and B-737 made up the second ciass. This division
was based on the large difference in wingspans exhibited by the two
types of aircraft. The two classes represented a total of 50 patterns,

25 in each class.

When the two classes were presented to the LMSE algorithm,
the error vector proved the class to be not linearly separable. The
classes were then input to the Bayes algorithm for training. By
assigning equal a priori probabilities of one half to both classes,
the classification error incurred was 2% due to one pattern being
misclassified. Since the Bayes classifier produces a second degree
(hyperquadric) decision boundary, these classification results proved
much better than those produced by the linear decision functions
of either the LMSE or perceptron algorithms. These pattern classes

were then presented to the perceptron algorithm for training. After

st S

R——
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approximately 5000 iterations, the best result was 43 out of 50 patterns
classified correctly. Since the classes were not linearly separable, no
new data were created to test the decision functions obtained by the
perceptron algorithm.

While the Bayes classifier yielded acceptable results in this
experiment, it was hoped that a linear decision boundary could be used
to dichotomize the classes properly. This motivated the division of one

of the classes into subclasses as discussed in the next experiment.

Experiment No. 3

This experiment was based on the same patterns as Experiment No. 2,
with the exception that the transport class with the larger wingspan was
divided into two subclasses. This produced three classes called "small
transports," C5A, and AN-22. The classification results were considered
correct if a C5A or an AN-22 pattern was assigned either the C5A or
AN-22 classes, and incorrect only if assigned to the class of small
transports. This effectively reduced the use of the classifier to that
of a two class case, but allows three decision boundaries in the
feature space.

Figure 4-4 shows a hypothetical problem where this approach is

useful. In Figure 4-4(a), the two classes are not linearly separable

as shown by the decisicn boundary d(x) - d1(K)-d2(X)f0- In Figure 4-4(b),
it is seen that a piecewise linear decision boundary will properly

dichotomize the classes. This form of a decision boundary can be ;

obtained by dividing the patterns in W, into two classes, say Woa and

wyp+ The two decision boundaries formed by d(x) - d](i)-dza(£)=0
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Figure 4-4. Two classes which are not linearly separable (a), ]
become separable when Wy is divided into two subclasses, ‘
Waa and Way in (b).
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and d(x) = d](i)-de(§) now separate the two classes.

Since the LMSE algorithm is only suitable for use with two classes
at a time, the classes were presented pairwise to the algorithm. The
classes proved to be pairwise separable, meaning that the classes could
be properly dichotomized using three decision boundaries.

A solution was achieved by the perceptron algorithm after 7000
iterations of the training sequence. A new data set was created by
adding and deleting reflection centers as discussed in Experiment No. 1.
The resulting 20 patterns were classified using the decision functions
obtained from the original training data. Three patterns of 20 were
misclassified while using these decision functions.

The perceptron algorithm was then retrained, with the 20 new
patterns added to the original data set. After an additional 2000

iterations, 69 of the 70 patterns were properly classified. This is

only a 1.43% classification error, once the algorithm had seen the new
data.

The Bayes classifier was then trained on the original 50 patterns.
A 25% a priori probability was assigned to the C5A and AN-22 classes,
while 50% was assigned to the small transport class. Classification
tests were then conducted using the original data. Only one out of 50
patterns was misclassified, yielding an error of 2% for the chosen probabilities.

The altered patterns were then used in testing the Bayes decision
function. Only one pattern was misclassified out of the 20. After
retraining with the altered aircraft added to the training set, the
pattern which produced the error in the original data set was the

only airplane misclassified.
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Experiment No. 4

The objective of this experiment was to obtain a set of decision
functions capable of discriminating between the transport aircraft listed
in Table 4-1, page 59. A total of 50 patterns in the four classes com-
prised the training set.

The perceptron algorithm trained on the four pattern classes for
over 7000 iterations. At the end of the training period, 56% of the
patterns were properly classified.

The training patterns were then input to the Bayes classifier.
Equal a priori probabilities were assigned to each of the four pattern
classes. When the training patterns were classified with these decision
functions, four of the 50 patterns were misclassified. The decrease in
error which the Bayes exhibits over the perceptron is due to the hyper-
quadric decision boundary of the Bayes c]assifier.

Since the pattern classes could not be proved linearly separable
using the decision functions generated by the perceptron, it was necessary
to obtain decision functions by considering the classes pairwise. This
was accomplished by presenting the classes to the LMSE algorithm two
at a time. The algorithm converged to a solution in each of the six
possible combinations. This means that 100% proper classification
can be achieved by using the six decision functions produced by this
algorithm.

An alternate method of subdividing the data to achieve the desired
classification results is to first present the unknown patterns to the
decision functions obtained in Experiment No. 3, classifying the patterns

as either large or small transports. Then based upon the results of that

ey

e — — i
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classification, each pattern could be input to the decision functions
derived by the LMSE algorithm to make the final classification. This
method is illustrated as a flow chart in Figure 4-5.

The results of the four preceding experiments are presented in

Table 4-4.

Experiment MNo. 5

The objective of this experiment was to compare the classifica-
tion results of the automatic recognition system with the results obtaincd
by using human interpreters. For this exampie, only two aircraft'were
used, the FB-111A and the B-737. These two aircraft were chosen since
the FB-111A has the largest wingspan of any fighter and the B-737 has
the smallest wingspan of any transport in Table 4-1, page 59. The
moment pairs used as descriptors were {0,2}, {2,0}, {1,3}, and {4,1}.

Fourteen patterns from each class comprised the training set.
Photographs were taken of each training pattern and were labeled
according to the class to wnicn they belonged. The interpreters were
given the 23 pnotograpnhs approximataly 5 minutes before the experiment
began, allowing them time to examine each one carefully. Examplos of
the photcgrephs are shown in Figure 4-6. Figure 4-7 contains reduced
photographs of the patterns wiich represent the FB-111A training patterns,
while Figure 4-8 contains thosce for the B-737 class.

Botin the perceptron and the Bayes classifiers were trained using
the sune datn as that given the wnterpreters. Equal a priori probabili-
ties were assigna2d to each class tor the Bayes classifier, The perceptron

algoritha cenvergad te a solution in six iterations.

yow
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Figure 4-5. Flow graph representation of the classification scheme
as outlined in Experiment No. 4.
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TABLE 4-4.
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Compiled Classification Results

Experiment/
Algorithm

Percent Correct Classification

Altered Data
Training Data Altered Data After Training

Experiment No.

Bayes
LMSE
Perceptron

Experiment No.

Bayes
LMSE
Perceptron

Experiment No.

Bayes
LMSE
Perceptron

Experiment No.

Bayes
LMSE
Perceptron

Perceptron/LMSE

99.13 85.00 99.19
N/A N/A N/A
100.00 90.00 100.00
98.00 N/A N/A
N/S N/A N/A
86.00 N/A N/A
98.00 95.00 98.57
N/A N/A N/A
100.00 85.00 98.57
92.00 N/A N/A
N/A N/A N/A
56.00* N/A N/A
100.00** N/A N/A

N/S = Not separable; N/A = Not available.

*Resulting considering all classes simultaneously.

**Results considering classes pairwise.




Figure 4-6. Samples of the photographs qiven the human interpreters.

(A) Representative of FB-111A class; (B) represents the
B-737 class.
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These are reduced photographs of all the training patterns
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Two subjects were used in the experiment, one of which had been
actively involved in the project since its beginning; the other had
little or no experience with radar images or pattern recognition. The
training patterns were presented to the interpreters, allowing them as
much time as needed to make their decision. The experienced inter-
preter gave 100% proper classifications on the training set, while the
inexperienced interpreter had an 18% error rate.

An altered data set was then created and presented to both
interpreters. The photographs were left available to the interpreters
for reference. The experienced interpreter had a 10% rate of error,
and the inexperienced interpreter misclassified 20% of the new patterns.
These results are based on twenty observations.

When the patterns were presented to the recognition system, 100%
proper classification was recorded for both classifiers on the training
set. The altered data produced a 10% error rate for the Bayes classi-
fier, but the perceptron decision function separated the classes with
100% accuracy.

The results of this experiment are summarized in Table 4-5.

Experiment No. 6

In Chapter 3, a first order approximation of the Mahalanobis
distance was presented which was based on the assumption that the data
being used were decoupled. In order to gain further insight into the
error involved in this approximation, two examples are presented below.

In the first example, the Mahalanobi; distance and its approxi-

mation is calculated for the patterns of two classes. The patterns used
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T

i TABLE 4-5. Classification Error Rates for Experiment No. 5

Training Altered
Classifier Pattern Patterns
] Perceptron 0% 0%
Bayes 0% 10%
{ Experienced
Interpreter 0% 10%
| : Inexperienced

Interpreter 18% 20%

Be—
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are eight dimensional vectors. Figure 4-9(a) shows the true Mahalanobis
distance calculated for an eight dimensional data set. The approximate
distance is illustrated in Figure 4-9(b). The values of the Ab's
given in Equation (3-16) and the error involved is Tisted in Table 4-6.
While the amount of error incurred by the approximation is relatively
large, it should be noted that the general shapes of the graphs in
Figure 4-9(a) and (b) are very similar.

As a second example of the estimation error, Figure 4-10(a) shows
a graph of the true Mahalanobis distance between the means of two classes,
while Figure 4-10(b) is a graph of the approximation using the decoupled
assumption. The estimated distances are again different from their
exact counterparts, but almost every large b in the true Mahalanobis
distance is characterized by a large gb in the estimate. It is of
interest to note that while it required over an hour of computer time
to calculate the values of the true Mahalanobis distance, calculation

of the estimate was completed in less than five minutes.
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Figure 4-9. The true Mahalanobis distance is shown in (a), while

(b) is a plot of the estimated distance as a function
of increasing dimensicn.
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TABLE 4-6. Comparison of the Actual and Estimated
Mahalanobis Distances
b Ay Zb Error
1 .4120 .2436 40.9%
2 .0593 .0187 68.5%
3 <1511 .0523 65.4%
4 .079 .2579 22.6%
5 .0011 .0108 88.2%
6 .1464 .1907 30.3% 1
7 1511 .1979 30.9%
8 .1029 .0371 63.9% l
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Figure 4-10. The exact Mahalanobis distance is shown in (a), while
(b) represents the approximate distance.




CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

The development of a recognition system has been presented along
with a method for the selection of pattern features. The system has
been applied to radar images, thus testing the descriptive abilities
of two dimensional moment pairs on unstructured data.

The experiments presented in Chapter 4 indicate the usefulness
of moments as descriptors when coupled with decision-theoretic classi-
fication techniques. Experiment No. 1 is illustrative of the ability
of the system to classify the radar images of fighters against bombers
and cargo planes. This experiment was successful in showing the
ability of the system to adapt to variations in the aircraft used for
training. The results of this experiment along with the other tests
show reasons for being optimistic about the capabilities of the system
when real data become available for experimentation.

In comparing the classification results of the system to those
of human interpreters, the system produced equivalent, or better, results
depending upon the experience of the interpreter. The interpreters
required anywhere from one to three minutes in arriving at their
decisions, while the computer required a few seconds for classification,
including the time necessary for preprocessing. The time consumed
in producing the decision alone was under a second. The usefulness
of such a system for radar surveillance installations at remote sites
where environmental conditions might prohibit human habitation is evident.
It should also be noted that during the evaluation experiment cited in
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Chapter 4, the interpreters were given photographs of‘the training
patterns. As the number of training patterns is increased signifi-
cantly, it becomes impractical to provide photographs of all the

patterns to the humans, while a larger number of images can easily 3
be stored in a computer. Under these conditions, it is felt that the

autonomous recognition system would perform as well or better than an

interpreter, both in terms of accuracy and classification speed.
During the development of the system, several difficulties were
encountered. In the experiments with the Bayes classifier, the co-
variance matrix was often i1l conditioned. In the present implementa-
tion, this was handled with a double-precision subroutine which
utilizes a double pivoting strategy, but it can be shown (Forsythe
and Moler, 1967) that for a positive definite matrix the pivoting
strategy ET = (1,2,3, . . .,n) will produce an acceptably small error.
By developing an inverse using this strategy, a significant savings in
time and memory could be realized. It should also be noted that i
certain assumptions were made in the development of the Bayes classi-
fier which may not be met when implemented. This means that at times,
the algorithm may not produce an acceptable solution even if one
exists. An example of this is given in Experiment No.'s 1 through 4.
On the average over the four experiments, the Bayes classifier produced
very good results. In Experiments 1 and 3, however, the classes were
known to be separable but the Bayes produced classification errors
on the training data. Even when the a priori probabilities were biased
to produce proper classification, the error still occurred.

While the perceptron algorithm produced good classification results
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during experimentation, the training times were generally much longer
than with the Bayes classifier. This was due mainly to the algorithm
being implemented on a minicomputer which required that the training
patterns be swapped in and out of memory from disk. By running the
algorithm on a large computer, we believe that the execution times
could be reduced at least by an order of magnitude. Training limita-
tions, however, should not be confused with classification performance.
Once the training phase has been completed, both the Bayes and
perceptron classifiers can be implemented to achieve speeds approaching
real-time operation.

The first order approximation to the Mahalanobis distance should
be refined to give a more accurate representation of the true distance.
Two possible solutions to this problem are as follows. If an updating
method could be developed for estimating the inverse of the covariance
matrix, then the Mahalanobis distance could be estimated to the
accuracy of the inverse matrix. While this has not been studied in
depth, the properties of a positive definite, symmetric matrix such
as the covariance matrix makes this an attractive approach to the
estimation problem. A second approach might be to express the Mahalano-
bis distance as a power series, where the accuracy of the estimate
will only be limited to the number of terms taken in the series.

While the experiments discussed in Chapter 4 give good reason
to be optimistic about the approach taken thus far as it relates to
radar images, some additional experiments should be conducted. First,

the system should be tested using real data. Although great care
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was taken to model images as closely as possible to real data, modeling
is certainly no substitute for real radar data.

The performance of the system needs to be compared further with
the capabilities of trained interpreters. Such a comparison could

prove very valuable in evaluating the system's performance prior to

field installation.
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APPENDIX A

THE HOTELLING TRANSFORMATION

By extracting the coordinate points of an image and creating a |

set of vectors of the form ' |

= A-1
=l (A-1)

it is desired to obtain a corresponding set of vectors

y_ =5
Y= [ ' (A-2)
Y2

|
- -

by means of the linear transformation
y = Ax. (A-3)
The rows of the matrix A are the eigenvectors of the covariance matrix vﬂ

1
C =E(x-m)(x-m), (A-4)

where m is the mean vector of the image.

One of the basic concepts of the transformation is that the eigen-
vectors point in the direction of maximum variance of the data. This
concept leads to the use of this transformation for standardizing the
slant of an image, since most objects have a maximum variance in a
single direction along the object. Figure A-1 shows the original

coordinate system x and the eigenvectors labeled y. If the eigen-

vectors are normalized, then to rotate the image by the angle o, the

transformation matrix is given by




)

A

»X-I

Figure A-1. Rotation of coordinate system.
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_A_ =
| -sine@  coso _
. s
i) e e
= A-5
L €1 €22 A

where eij is the jth component of the ith eigenvector. If it is desired
to standardize the image against translation, Equation (A-3) may be

rewritten as

Y= Ax-m). e

It is important to note that, if €, and e, are valid eigen-
vectors of C , then the pairs (gy, -&,), (-&;,¢,), and (-gys-8,)
are also valid eigenvectors, but only two pairs represent right-
handed coordinate systems. Figure (A-2) shows the effect of allowing
a pair of eigenvectors which represent a left-handed coordinate system
to be used for the transformation. Of course, if the eigenvectors
are checked to see if they form a right-handed system, then only two
possible orientations remain for the transformed image regardless of

the original orientation.




Figure A-2.

Ll

The direction of valid eigenvectors are given in (a),
while (b) shows the effect of the rotation. Only the
first two sets of eigenvectors form a right-handed
coordinate system.
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APPENDIX B

MAHALANOBIS DISTANCE OF DECORRELATED DISTANCE !

It is desired to show the Mahalanobis distance of a data set which
" has-andergone a linear transformation to decorrelate the data is equal
to the distance measure of the original data. The Mahalanobis distance

of the original data is given by
& T -1
D, = (x-m)" C "(x-m ), (B-1)
while the distance measure for the decorrelated data is given by
D, = (y-m )7 ¢ (y-m ). (B-2)
y b A b

The covariance matrix for the transformed data can be written as i

.
g, Eurgﬂrg)}

T
E{(Ax-Am, )(Ax-Am, )"}

E(A(x-m, ) (x-m )T AT}

T
ACAT. (8-3)

The Mahalanobis distance in the transformed space can be expressed as

s o 3V & &
D, (x,ﬂy) g, (y-m)
T Ty=1
= (AZrﬂmx) (ACLA") (Aérﬂmx)
3 T aT sxly=ol ool o=}
= (_:mx) A" (A) C A A(z:mx) |
Z T .- }
(x-m)" C,"(x-m ) |
!
uy D, » (B-4)
which is the desired result,
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