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ABSTRACT ‘ | SR |

Because a turbulent boundary layer in a nozzle undergoes strong
| acceleration, a laminariscent boundary layer with the benefit of a
5 lower surface heat transfer rate can result for some short distance.
Here and in a previous report (Simpson and Wallace, 1975) several
phenomena which accompany laminariscence produced by strong acceler-
ation are examined for nozzle-flow and sink-flow accelerational dis-
tributions, respectively. Several uifferent type measurements of
the structure of two nozzle-type flows are reported to determine how
an initially normal turbulent bour..ary layer approaches the laminar-
like state, including mean velocity and Reynolds stresses profiles,
spectra, turbulent/non-turbulent interfacial structure, and wall
bursting and sublayer spanwise spatial structure.

As a result of these experiments, it appears that the surface
skin-friction is not reduced to laminar values in sink flows unless
K(=vqbdgL/dx) is greater than about 3.6 x 107%. In nozzle-type
flows, K must also be greater than this value over a short distance
in order to produce a short relaminarized region downstream. The
large-eddy structure of the outer region governs the bursting fre-
quency, the intermittent bulge passage frequency, and influences
the wall flow behavior downstream. After the cessation of entrain-
ment of free-stream fluid, these frequencies approach constant values.
The wall spanwise structure appears to lag behind local conditions
and to reflect upstream flow behavior. After retransition to a Tow
acceleration turbuient boundary layer downstream, much larger spanwise
scale structures are observed. ;

The entrainment rate of non-turbulent fluid decreases to zero
at about the streamwise location at which the shape factor reaches
a minimum value. The cessation of entrainment by the eruption and

* Professor of Mechanical Engineering, Southern Methodist University.
** Research Assistant, Dept. of Mechanical Engrg., Southern Methodist
University. i
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}i and engulfment action of the large eddies can be traced to the reduc-
A tion of available turbulence energy for diffusion to free-stream

j‘ fluid. This reduction of available energy is due to the negative
3 normal stresses turbulence energy production term. Spectral distri-
butions of the streamwise fluctuation F(n) possess a frequency region

fﬂj where nF(n) is constant for laminar-like boundary layers at large
| K values.
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NOMENCLATURE

constants.

= Tw/pU£, friction factor.

mean and fluctuation voltages.

spectral density defined by equation (9).

defined by equations (18) and (20), respectively.
U/U_ and 3f/9n, respectively.

8§*/6, shape factor.
du

= —¥'3f2 ; also a constant in equation (12).
U

integral length scale defined by equation (14).
constant.

exponent in split-film calibration curve.
frequency, Hz.

frequency of intermittent bulge passage at Y.
pressure gradient.

power dissipation in split-film sensor i.
-2+ el

normalized spatial cross-correlation of two t surface
fluctuation signals during sample time TS.

sﬁ(z, TS) as T, becomes very large.

= U _8/v, momentum thickness Reynolds number.

“2\1/2
= L!—%———i , microscale Reynolds number.

length of sample time.

time delay; time.
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SUBSCRIPTS
b
eff

= (Tw/p)]/z, shear velocity.

velocity fluctuations in the streamwise, normal, and
spanwise directions.

mean velocities in the streamwise, normal, and span-
wise directions.

kinematic Reynolds shearing stress.
entrainment velocity.

cartesian co-ordinates in the streamwise, normal, and
spanwise directions, respectively.

distance from the wall to where y = 0.5.

denotes "bursting" value.

denotes effective cooling velocity.
split-film sensor index.

denotes linearized signal.

denotes wall value.

free-stream condition.

constant in equation (10); split-film probe yaw
parameter.

intermittency, long-time averaged fraction of time
that the flow is turbulent.

89 g9 = ¥ where f = 0.99; 85.90; = ¥ Where f = 0.995.
= I ¥ - gr dy, displacement thickness.

0 Ve
dissipation rate

= yU /v

U (-]

= [m-g— {] - %—}dy, momentum thickness.
0
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= (15vu /6)1/2, a turbulence microscale.

spanwise wavelength in wall sensors cross-correlations.

defined by equations (15).

kinematic viscosity.

density.

standard deviation for intermittency distribution.
shearing stress.

angle of flow incidence to split-film probe.

logarithmic equation (5) constant.
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1. INTRODUCTION

The strong acceleration of turbulent boundary layers in a nozzle
can produce the benefit of a substantially reduced convective heat
transfer rate when relaminarization occurs (Moretti and Kays, 1965).
The accelerational parameter K, defined as vu;zduw/dx, must increase
to a value in excess of about 3.6 x 10'6 (Kline et al., 1967) for
relaminarization to occur. The practical consideration that flow
acceleration extends over a finite length then requires that K decrease
to zero downstream. Narasimha and Sreenivasan (1973) reexamined the
behavior of this type of flow from the time-averaged results of many
previous experiments. However, there is little information on the
flow structure that would explain the mechanisms for relaminarization.
Exceptions are the space-time correlations of Blackwelder and Kovasznay
(1972) for the large-scaled motion and the wall region structure
reported by Schraub and Kline (Kline, et al., 1967).

The work described here is the second part of a program to pro-
vide experimental flow structure information for strongly-accelerated
turbulent boundary layers under different K distributions. In the
first part (Simpson and Wallace, 1975) results were obtained for two
asymptotic sink-flow type turbulent boundary layers with constant K

®. flow B, K =3.19 x 10°°

distributions (flow A, K = 2.17 x 10° ). Here
results are presented for a flow in which K increases linearly with x
(flow C) and a flow in which K increases linearly with x to a maximum
value, stays constant at this level for a short distance, and then

decreases linearly with x (flow D). Flow C models the rapid increase




E
i
E in K encountered in nozzles while flow D models both the increase and

LI: decrease in K. Since the acceleration of both flows took place in the
‘ same length of wind tunnel test section, dK/dx for the increasing K
portion of flow D was more than double dK/dx for flow C.

k | The type of measurements reported here for flows C and D are simi-

@ lar to those obtained for flows A and B. In addition to mean velocity

o rE

and Reynolds' stresses measurements, spectra of the streamwise fluc-
! tuations were obtained. This was partly motivated by the presence of
a flat nF(n) spectrum for flow B and the question as to whether this
behavior accompanies true relaminarization. Other measurements are
the turbulent/non-turbulent interfacial intermittency and frequency

of passage of intermittent turbulent bulges, the wall "bursting"

frequencies or rate of passage of eddies over the wall, and the span-
wise spatial structure at the wall. This latter group of measurements
provides further insight as to the roles that the bursting behavior,
spanwise structure, and intermittency play in relaminarization. Since
these measurements have been obtained for four different K distribu-
tion flows on the same apparatus, the effect of the K distribution on

the developing flow structure can be determined.

2. EXPERIMENTAL APPARATUS

é | In general, all of the apparatus and instrumentation described
by Simpson and Wallace (1975) for flows A and B were used for flows C

and D. The SMU wind tunnel with a sixteen feet long, three feet wide,

i test section was used to produce the desired boundary layer on the

flat bottom wall by adjusting the plexiglas top wall. In the current
2
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experiments the freestream flow upstream of the acceleration was uni-
form within 0.066% in the spanwise direction and within 1% in the
vertical direction, with a streamwise turbulence intensity of 0.6% at
9.1 fps. At the tunnel exit the free-stream streamwise turbulence
intensity dropped to below 0.55% and 0.5% for flows C and D, respec-
tively. Of this intensity, about 0.5% was due to unsteadiness at about
20 Hz. Figure 1 is a side view schematic of the test section with

the upper wall locations for flows A, C, and D. In all four flows

the flat upper wall was 15 inches above the test wall at the entrance
and 19.5 inches above it at the 96 inches loca ion. For flow C the

parabolic-shaped upper wall sectior bogan at Y6 inches and was 1.72

inches above the test wall at the exit at 19C.Z inches. For flow D
} the antisymmetric ogee-shaped upper wall began at 96 inches and was
1.84 inches above the test wall at 189.7 inches. All experimental
data were obtained with the temperature maintained constant at 77
+1/2°F and a constant stagnation pressure at the exit.

Th2 1/4 inches blunt leading edge trip on the test wall and the
boundary layer smoke injection arrangement upstream of the trip were
4 ! the same as used for flows A and B. The same smoke generation system
with a mean particle size of about 1 micron was used when smoke was
used to mark turbulent fluid upstream of relaminarization. For these
intermittency measurements the optics and traversing equipment of the
SMU laser anemometer were used as for flows A and B.

;-i - Standard Thermo-Systems, Inc., model 1050 constant temperature

anemometers, model 1055 linearizers, model 1057 signal conditioners,




Figure 1. Sideview schematic of the test section: solid line, flow C; dashed line,

- flow 0. Major divisions on abscissa and ordinate: 10 inches. Note 2:1
3 scale ratio.
i
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Floure 2. K distributions for flows C and D: flow C - dashed line; flow D - solid iine.
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and model 1015C correlator were used. A TSI model 1274-10 boundary
layer hot-film probe was used in measuring the mean and streamwise
fluctuation velocities in flow C while a model 1218-T1.5 boundary
layer hot-wire probe was used for flow D. The sensing element for
the hot-film is a 0.001 inches diameter platinum coated quartz rod
with a sensing length of 0.04 inches. The 0.00015 inches diameter
platinum-plated tungsten wire had a 0.05 inches sensing length. Based
on the Collis and Williams (1959) equation for the anemometer bridge
output calibration, the linearizers were adjusted. The linearizer
output was directly checked with the known calibrator velocity for
accuracy and linearity, the maximum tolerable deviation being less
than about 1/2%. Consequently, the uncertainty on velocity measure-
ments is about +1/2%.

The split-film probe (TSI model 1287) was used to determine U,
v, ;?; ;?; and -uv for flow C. This relatively new hot-film probe
was selected because of its relatively small size since the boundary
layers under study were thin. The split-film sensor is a modifica-
tion of the basic platinum coated cylindrical film sensor. Two elec-
trically independent films each cover one-half of the circumference
of a 0.006 inches diameter quartz rod. Each film is operated by a
separate constant temperature circuit. The non-uniform heat transfer
distribution around a constant temperature cylinder is utilized to
measure the fluctuating components of the instantaneous velocity vec-
tor. To avoid thermal variations in the substrate the sensors must

be held at closely identical temperatures. The resulting output




voltages are used in the same manner as those from an x-wire probe to
determine mean and fluctuation quantities.

Using a right-handed coordinate system, the plane of the two
splits that separate the two platinum films from one another are in
the x-z plane, being nominally parallel to the test wall in these
k- experiments. Following Spencer and Jones (1971), the power dissipated

A in each film can be related to the velocity by

Q; = (A + 800 (1 +a U::—?;) i=1,2
neglecting axial cooling. The constants A, B, and m were obtained
by velocity calibration as done for a single sensor probe; a; was
determined by azimuthal yaw calibration. The power dissipated is pro-

portional to the square of the anemometer bridge output minus the zero

flow voltage:
v
E. =M. (Q-0Q). =MU" . (1 +a, 7 )
i i 0’1 i eff i Ueff

The voltage Ei can be linearized directly in terms of Ueff using m =

0.5. Thus

E. =M EV/M

v 2
1 21Ei )

= MU (0 +a; 7
eff i Ueff

or when neglecting higher ordered terms the instantaneous voltage is

. A (Vrv)
Bog * @y = W pp [1 4 g°—¢ 20, e J

Li A eff

Sdags &

When calibrated in a steady flow
i ! (Eli)

T———fi =1+ 2, sing
Ez' i

i 4=0
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r Second order effects, which occur for angles larger than 20°, are

negligible for this particular flow.

The following calibration procedure was repeated before and after
3 ! each velocity profile was obtained. The probe was mounted in a spe-
' ; cially constructed support with orientation adjustment, the "dial
- i calibrator," that permitted a +50° rotation of the split-film sensor
about a fixed location. The sensor was supported over the potential
core of the near jet produced by a TSI model 1125 calibrator. The
dial calibrator was used for both the velocity and azimuthal yaw
calibrations. The uncertainty in the angle was less than 0.2°. The
use of the split-film probe requires ciosely equal temperatures of
the films, so that very fine overheat adjustment of one film is man-
datory to match temperatures.
Both films were exposed to 77° air flow directed along the plane
of splits. Cold resistances were measured and found to be about 11
and 12 ohms. Both films were then overheated by a factor of 0.5.
One film was left without further adjustment while the other film
overheat was adjusted using a 1 ohm precision ten turn potentiometer.
The temperature matching was achieved when the ratio of the two out-
1 put bridge voltages remained constant (within 0.2%) as the velocity
hy directed along the plane of the splits was varied from 9 fps to 70
fps. Temperature matching was checked again immediately after tak-
ing data from flow C in order to estimate any possible anemometer
drift.
.? The bridge outputs were then each linearized and checked with

the known calibrator velocity. A calibration equation of the form:

7

<
et
5
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Bui = Cilerr * 04

was determined from a least squares fit with less than 4% standard
deviation. The background noise level in the steady laminar calibrator
flow was also measured. This noise took the form of a triangular wave
with no phase change between channels. We suspect the noise was due
to vortex shedding off of the relatively large diameter sensor. The
probe was then calibrated for several azimuthal yaw angles to deter-
mine e Yaw characteristics were found to be independent of the mag-
nitude of Ueff‘

The equations governing the split film are a combination of the

above equations

E. +e ciUeff 1+ u/Ueff + Zai(V + v)/Ueff] + Di

21 i
f=1,2
or Ez] = cl[Ueff + Za]VJ + D]
and Epp = CZ[Ueff + ZaZV] + 0,

Since Ci’ Di’ and a, are known from calibration, then Ez] and E22 are
measured and Ueff and V are derived. The angle of flow, ¢, at a point
is then found from

sing = V/Ueff

Similarly, the fluctuation quantities are found from:

- R 5 ) 2 e 2 g
(ezl) = C] uc + 4C]a] uv + (2C]a]) v
T e )2 = (C4C, ) 2ul+8(Crog +Coy) (Cy4C, JTVHE (Croy +C oty ) V2
A b e LB %1 22\ ™2 G
— D -] — 2 27

8
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52], (ezl + 922)2’ and (eR] - ez?_)2 were measured, corrected for the

above mentioned noise, and used to solve simultaneously for ;?; -uv,
and ;f using the latter equations. These results are discussed in
section 3.4 below.

The traversing mechanism used for the boundary layer velocity
measurements was mounted on the supporting frame for the upper wall
and provided for precise positioning of the probe sensors as described
by Strickland and Simpson (1973). A cathetometer was used to accu-
rately locate the probe sensor from the wall within an uncertainty of
about +0.001 inches. The detailed streamwise free-stream velocity
distributions were obtained using a TSI model 1210-20 hot-film probe
(0.002 inches diameter platinum-coated quartz rod) attached to a
probe support rod inserted from the tunnel exit or mounted on the
toy racing car shown in figure 3 of Simpson and Wallace (1975). The
car was easily positioned along the flow by fishing line. It could
not be used near the exit since substantial flow blockage effects
would have been produced.

The flush surface mounted hot-film sensors for the wall "bursting"
and spanwise measurements are described in detail by Strickland and
Simpson (1973). The basic sensing part is a very thin layer of plat-
inum (Engelhard Ind. Liquid Bright Platinum #05) fired on the end of
a 2mm diameter quartz rod. Gold leads (Engelhard Ind. Gold Alloy
Paste A-1199) were fired on the sides of the rod and short wire leads
were soldered to the gold. A casing made from 1/4 inch diameter plexi-

glas rod was used to protect the sensor from damage due to handling.




b | The resulting unit wa§ mounted in the wind tunnel wall with the plati-
num portion flush with the test wall. A unit containing two flush
surface 0.020 inches diameter platinum sensors was also fabricated
to permit one of the sensors to be traversable. This unit was used
in the surface spanwise structure measurements and is described in
more detail by Simpson and Wallace (1975). A1l of these sensors were
operated at an overheat ratio of 0.03 in the current experiments. A
higher overheat ratio would have permanently damaged the sensors.
The constant temperature frequency response for each sensor was deter-
mined to be down 3 db at 4 KHz using the method of Freymuth (1967).
Other electronic equipment included Krohn-Hite model 3202 and
330B filters, HP model 400E rms voltmeters, an Anadex model CF-600
timer-frequency counter, a SAICOR model 41 digital correlation and
probability analyzer, an Applied University Research four-channel FM
tape recorder (response down 3 db at 2 KHz), a voltage comparator or
schmitt trigger using an operational amplifier integrated circuit and
a multiplier using an Analog Devices AD533 JH integrated circuit
trimmed to within 1% fullscale nonlinearity error. A true integrat-

ing voltmeter consisting of a voltage-controlled oscillator (Tektronix

FG501 Function Generator) and a digital counter (Tektronix DC503 Universal
fi Counter) was found to be superior to RC-type meter circuits used in
most voltmeters. A HP 5451A/71A Fast Fourier Analyzer System was
used to process data recorded on the tape recorder.
For the intermittency measurements in flow C, the laser optics,

and photo-multiplier tube of the SMU laser anemometer (Simpson, et al.,

1974) was used to scatter light from the smoke filled boundary layer
A . 10




and collect the signal. A focal volume of 0.32 mm diameter and 3.56
mm Jong was produced from a laser beam 1.1 mm in diameter at the 1/e2
intensity locations. Since the laser anemometer is mounted on a single 1

¥ | traversable cart, accurate location of the focal volume could be

determined.

A 3. EXPERIMENTAL RESULTS

3.1 Description of the test flows

f Because of the strong influence of acceleration on these boundary
layers, careful measurements of the freestream velocity were made
every one inch along the test section using the rake and car probe
mounts. For flow C the following velocity and K distributions were
obtained:

1/U_= -1.525x107% + (2.307x1073)(x) - (1.133x107°)(x?)
] « for 96 < x < 178 inches and

1

§.2713000° " - (2.466x10'3)

(x) + (1.473x10°%) (x)

1/qw
for 178 < x < 190 inches with

-4.622 x 108 + (4.5827 x 10°8)(x)
6

K

for 96 < x < 185 and K = 3.83 x 10" for 186 < x < 191 inches. U_ is
in fps and x is in inches. The maximum deviation of U_ data from
these equations is less than 0.4% while the rms deviation is about

fw ! 0.1%. The different x ranges for the 1/U_ distributions and their

¥ ) respective K distribution reflect the fact that the upstream velocity
equation produces K values in closer agreement with data for 178<x<185 '

inches. The single-sample uncertainty (Kline and McClintock, 1953) i

in K at 20:1 odds is about 2%.

1
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For flow D, with both increasing and decreasing K regions, the

following velocity and K distributions are presented:

1/U_ = 9.898x1072 + (6.568x107°)(x)
for 64 < x < 96 inches

1/U_ = -1.449x107 + (5.167x1073)(x) - (2.675x107°)(x%)
for 96 < x < 132 inches

1/U_ = 3.243x107 - (1.917x107
for 132 < x < 144 inches

1/U_ = 8.497x107" - (9.1869x1073)(x) + (2.5138x107°)(x%)

3

) (x)

for 144 < x < 180 inches and
/U, = 2.475x107% - (7.8147x107°)(x)
for 180 < x < 190 inches.

7 tor 64 < x < 96 inches

K = -1.32x10"
K = -1.037x107° + (1.0737x10"7)(x) for 96 < x < 132 inches
K = 3.85x10"% for 132 < x < 144 inches

K = 1.8438x10'5 - (1.009x10'7)(x) for 144 < x < 179 inches

7 £or 180 < x < 190 inches

K = 1.568x10"
The maximum deviation of U_data from these equations is less than 1%
while the rms deviation is about 0.2%. The discontinuity in K at the
ends of each region is of the order of 10-7. The single-sample uncer-
tainty in K is about 4%. The smoothed K distributions for both flows
C and D are shown in figure 2,
As was done for flows A and B, observations were made to assess

the three-dimensionality of flows C and D. Because of the care used

in adjusting the spanwise elements of the upper wall parallel to the

12
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test wall, the thin bbundary layers in a large aspect ratio channel,

and the fact that the flow was accelerating, minimal three-dimensional
effects were expected. At the 88 inches location there was less than
1% spanwise difference in the momentum thickness, so no gross three-
dimensionality due to the upstream flow was present. The side wall
boundary layers of the converging section for each flow tended to
remain at about a constant thickness due to the reduction of the side
wall surface area simultaneously with acceleration of the freestream.
Thus convergence or divergence effects on the test wall boundary layer
by the side wall boundary layers appears to be negligible.

As discussed in section 3.3 below, the skin friction was deduced
by analyzing mean velocity profiles near the wall. The smoothed "best
estimate" skin friction coefficients and other required and experi-
mentally deduced quantities were used to check the balance of terms
in the two-dimensional momentum integral equation. In both flows C
and D this equation was balanced well within the uncertainty of the

most uncertain term, do/dx, or about 5% of that term.

3.2 Mean velocity profile measurements

Figure 3 shows the mean velocity profile results for flow C. A
distinct logarithmic region exists for each upstream profile, with
the last evidence of any logarithmic region occurring at about station
160 inches. As shown in figure 4, the shape factor H is near a mini-

mum at station 165 inches. The wake-like tail of each profile near

the freestream is observed to progressively decrease in wake strength,
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the wake strength being defined as the maximum deviation of the mea-

sured velocity profile from the extrapolated logarithmic region profile.
Downstream of the location of the minimum H the velocity profiles take
on an increasingly more laminar-like character, although the stream-
wise fluctuation measurements clearly show that a relatively large
turbulence intensity still exists. Since the last 5 inches of the

test flow has a constant K of about 3.83 x 10'6

, this is the only
region where constant K asymptotic velocity profile similarity of
f(=U/U_) and n(=yU_/v) is possible. In this region the velocity pro-
files for n > 1000 are similar well within a deviation of 0.01 f.
However, the streamwise fluctuation intensity profiles discussed in
section 3.4 do not posses similarity in this region and H and Re8 do
not reach constant values, as required for true asymptotic similarity
(Simpson and Wallace, 1975). Ree drops well below the value of about
360 (Kays 1966) where normal transition from a laminar to turbulent
boundary layer occurs, so true laminar behavior could be expected
downstream had the test section been longer and the level of acceler-
ation maintained.

Flow D also has a linearly increasing K distribution but only
for x < 132 inches. dK/dx is more than twice that for flow C. As
in flow C, the initial upstream logarithmic velocity profile pro-
gressively decays downstream. Figure 5 shows that the wake strength
also decreases to zero near the minimum H location, shown at about

135 inches in figure 6. The location of the minimum H occurs in the

region where K is a maximum, while in flow C it occurs at a much
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Tower K value. Downstream the profiles assume an increasingly more

[#]
¥

laminar-1ike character as Ree drops below 360 until about 157.5 inches,
even though K decreases downstream of 144 inches. No profile simi-
larity is observed.

Between 157.5 inches and about 172.6 inches the momentum and
displacement thicknesses, 6 and &§*, remain about constant, giving rise
to about a constant shape factor (H = 6*/9) of about 2.0. As noted
in section 3.7 below, intermittency measurements downstream of 157.5
inches indicate that considerable turbulence is redeveloping. At the
189.6 inches location a thick logarithmic region 500 < n < 5000 is
observed, so that this flow is developing into a typical low acceler-
ation turbulent boundary layer. The wake strength is also observed
to be increasing.

Simpson and Wallace (1975) found that for each of flows A and
B the location of the H minimum was closely related to where the wake
strength was zero and where entrainment of free-stream fluid ceased.
For flows C and D, the mass flux in each boundary layer as reflected
by Uw(é - 8*) increases until about 165 inches and 135 inches, respec-
tively, as shown in figures 7 and 8. This parameter decreases down-
stream in both flows but again increases downstream of about 157.5

inches in flow D as a Tow acceleration turbulent boundary layer de-

v ——

F velops. These plots of experimentally deduced values indicate that

4

there was entrainment of non-turbulent fluid into each boundary layer
until the minimum H locations. As in the cases of flows A and B, the

intermittency measurements discussed below indicate that after the

L
g,
) 19
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cessation of entrainment the intermittent turbulent/non-turbulent
region lies outside §. Thus there is no mean velocity gradient 3U/3y
and no wake-like tail in this region and no mechanism for engulfment
of non-turbulent fluid by the intermittent bulges is possible. The
model proposed by Simpson and Wallace for the entrainment process in

a strongly accelerated boundary layer is discussed in section 4 below.

3.3 Skin-friction results

The skin-friction coefficient Cf/Z was primarily determined by
two methods: the velocity profile near the wall and the logarithmic
velocity profile relationship for unaccelerated flow regions. The
momentum integral equation

Eﬁ
2

[=%

o+ KRe (2 + H) (1)
was used some for flow D when both terms of the right side were pos-
itive and relatively certain.

The velocity profile near the wall can be derived from the dif-

ferential momentum equation, neglecting the convective and turbulent

transport terms:

v._a._U.z_]_Q= — (2)

£ of

and the velocity profile upon integration of equation (3)




Equation (4) was used with experimental velocity measurements for

5<y' =n/JZ to determine C./2. Oka and Kosti¢ (1972) noted that
hot-film and hot-wire measurements are strongly influenced by conduc-
tion tu the test wall for y+ < 4. For velocity profi]es-with Toga-
rithmic regions it is known that equation (4) does not well describe
the velocity profile for y+ > 6, so only points in the range 5<y+<6
were used. For the more laminar-like profiles experimental data with
y+ > 6 were also used.

Logarithmic velocity profiles in unaccelerated or weakly accel-

erated flow regions are described by the relation

172
i, e B n{_ﬁ} 7 (5)
T Q 2
o %
oV 2
-1/8

where Q = 0.40 (Ree/6000) (Simpson, 1970) for low Reynolds number
boundary layers with Ree < 6000. A fit of equation (5) to experi-
mental data was made for the two upstreammost profiles of flow C and
to the downstreammost profile of flow D. In the latter case @ = 0.40
was used since a Targe logarithmic region that normally accompanies
high Reynolds number boundary layers was observed. Results using
this latter method are about +10% uncertain.

For flow C the 0.001 inches diameter cylindrical hot-film sen-
sor was located from the test wall within an uncertainty of about
0.001 inches. Considering the +1/2% uncertainty of the velocity, the

C¢/2 values shown in figure 4 appear to be about +15% uncertain at

20:1 odds. This uncertainty value seems reasonable due to the scatter

22
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of the data. The logarithmic velocity profile results from equation
(5) are in close agreement with these results.

For flow D the 0.00015 inches diameter hot-wire sensor was lo-
cated from the test wall with somewhat more uncertainty than for flow
C since the wire was more difficult to illuminate and to observe by
the cathetometer. This more fragile sensor was located at a safe
distance of about 0.005 inches from the wall to prevent breaking the
wire. Data from this smaller diameter sensor are less suceptible to
velocity gradient effects so the near wall velocity profiles for
y+ > 4 are believed to be of higher quality than those of flow C.
For each velocity profile point a least squares fit of equation (4)
to the five surrounding data points was made to deduce the slope
of/an at that point. Cf/2 can be eliminated from equations
(3) and (4) to produce

"3 4 {Aﬁ] + 2KF

= .. of on
n K (6)

from which the proper sensor distance from the test wall could be
computed from K, f, and 3f/3n. For flow D equation (6) was used to
determine the required change in the y direction for a self-consis-
tent velocity distribution near the wall. Values within about 5% of
one another were obtained for successive points in a given velocity
profile. As given in Appendix B these shifts in the y direction are
no more than *+0.005 inches and therefore are reasonable.

Figure 6 shows relatively less scatter in the wall profile re-

sults than shown for flow C, thus an estimated uncertainty of £10%

23
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seems reasonable. Thé logarithmic profile Cf/2 result at 189.6
inches is in good agreement with the Cf/Z result from equation (4)
with no y direction shifting. Results from equation (1) at 161.6
and 179.7 inches are also in good agreement with the wall profile
results.

Smooth curves of "best estimate" values for Cf/2 are shown on
figures 4 and 6 with values given in Tables 1 and 2. While these
curves were just faired among the points shown on those figures
within about 15% and 10%, respectively, they are probably represen-
tative of the variation of Cf/2 along each flow. From the laminar
sink flow (Schlichting, 1968), i.e. a constant K flow, one can obtain

the expression

£ = Jrx (7)

so for the maximum K of about 3.83 x 10'6 achieved in these two flows,
Ce/2 = 2.26 x 1073, Near the maximum K for each of flows C and D

the experimental Cf/2 values are above this value as they should be
since considerable turbulent momentum transport is still present.
While one cannot exactly compare results from different K distribu-
tions, it is interesting that the experimental results shown in fig-
ure 6 for flow D are always greater than or about equal to those
given by equation (7) with the local K value. In the region near

165 inches where the turbulence intermittency is near zero at the
wall, as discussed in section 3.7 below, the skin friction values

are about equal. Downstream of this region the experimental Cf/Z

values increase rapidly as turbulence redevelops.
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3.4 Reynolds stresses distributions

Figures 9 and 10 show intensity J[igf}um profiles for flows C
and D from the fluctuation portion of the linearized hot-film and
hot-wire signals. In flow C the maximum intensity remains at about
0.1 and is located in the range of 300 < n < 400 up until K>3.6x10'6
at about 181 inches, after which the normalized intensity decays and
the maximum intensity location moves to a greater n value. The
hump in the outer region of the upstream intensity profiles vanishes
Just downstream of the cessation of entrainment at about 165 inches.
Between 165 inches and 181 inches the acceleration of the wall region
flow alone is apparently sufficient to maintain the same level of
turbulence production as upstream. In other words the entrainment
of high momentum free-stream fluid performs no role.

Flow D exhibits the same behavior but the outer region hump does
not completely vanish until about 143.8 inches. The maximum inten-
sity is located in the range of 200 < n, < 400. Beginning at about
153.6 inches, where Cf/2 begins to drop rapidly, the value and n
location of the maximum intensity decreases. After retransition to

a low acceleration turbulent boundary layer begins, the maximum inten-

sity remains at about 0.08 but the n location of the maximum increases.

At 189.6 inches the intensity profile of a normal low acceleration
turbulent boundary Tayer is emerging.

The split-film probe was used to determine ;ﬁ, ;i, and -uv for
flow C. No split-film probe measurements were attempted for flow D.

The mean velocity profiles showed very good agreement with those

25
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measured with a single film boundary layer probe. The deviation was

within the uncertainty of the calibration except at Tocations 171.3,
178.8, and 187.6 inches. At these locations the mean velocities
below n = 103 were as much as 47% high nearest the wall yet were less
than 2% high at n=103 and were less than 0.5% high at n = 1300 and
beyond. At locations 101.7, 137.8, 149.6 and 162.4 inches, the mean
velocity deviated from the single film probe by less than 3% from

the wall to the freestream. The large deviation near the wall at
higher freestream velocities may be due to the significantly greater
velocity gradient effects which tend to cool the top film more than
the bottom film.

The V component of velocity, when normalized against Ueff allowed
comparison of the angle of flow ¢ with respect to the test wall since
sin ¢ = V/Ueff' After accounting for the angle of the plane of the
splits with the test wall, the angle of flow measured by the split-
film probe at a point in the freestream was at worst within 1.4° of
the flow angle at that point derived from the displacement thickness
gradient and freestream velocity gradient. This difference is beyond
0.6° uncertainty in computing ¢ from the calibration equations plus
the 0.2° uncertainty in ¢ due to approximation of the displacement
thickness gradient. However, for 6 of the 8 profiles taken, the
angles measured agree within that 0.6° uncertainty in ¢.

The ;? fluctuations, as seen in figure 11, tend to show very
poor agreement with those measured with the singie fiim probe for

n < 103. At x = 137.8 and 149.6 the discrepancy is apparent to
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In all other cases the agreement is good from n = 103 to

the freestream except at x = 158.3 where agreement is poor until n
reaches 5000. The kinematic Reynolds shearing stress -uv also shares
the n = 103 cutoff above which the data begin to seem reasonable.
There is a rapid decrease in -uv as the flow accelerates as Sshown

in figure 12. Also shown on this figure is the shearing‘stress pro-
file for 190.1 inches generated from the momentum equation and U/U_
vs. n similarity. The outer region mean velocity profiles at 185.8
and 190.1 inches are similar well within 0.01 in U/U_ and K is con-
stant. Thus the similarity assumptions are met for an asymptotic

flow and the equation

Sl e (8)
U2 f dn

describes the Reynolds shearing stress (Simpson and Wallace, 1975).
The agreement must be considered good for n > 2600. Thus the results
from the split-film for -uv are credible at least in locations where
;? is credible. The ;ﬁiquantities measured by the split-film are
high in the viscous sublayer due to the high velocity gradient there.
The data in the outer region, n > 3000, are more believable.

Many problems were encountered in using the split-film sensor.
The calibration process was time-consuming and frequent checks were
required to overcome anemometer drift. Anemometer drift at times
caused the films to operate with different temperatures, thus produc-

ing thermal interference between films as well as introducing a

slight velocity dependence on the yaw characteristics. The resistance
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of the probe support structure sometimes changed when the probe was

unplugged and then replaced in its support. Vortex shedding from
the sensors produced high noise levels at increasing velocities.

This noise introduced greater uncertainty in the fluctuation quanti-

ties. Velocity gradients near the wall produced unusually high V
values at those points where V should be lowest. Several schemes
were tried to correct for the influence of the high velocity grad-
ient. Unfortunately, those corrections did not produce consistent
results.

This experience with the split-film probe seems to bz reason-
ably consistent with that of Sandborn (1976). He found ;? /U,
to be closely the same as that measured by a single hot wire paral-
lel to the test wall. -uv values from split-film data appeared to
be close to the estimated true shear stress profile away from the
wall where velocity gradients are sufficiently small. On the other
hand, Young (1976) found that the split-film probe consistently pro-
duced a low ;? by about 22% and a Tow -uv by about 26% in a two-
dimensional channel flow. Thus, clearly the split-film results should

be critically compared with results from other sensors for consistency.

3.5 Spectra measurements and dissipation estimates
The spectrum function F(n) of u2 was obtained throughout each
boundary Tayer at several streamwise locations, where

;7 Iw F(n)dn = ;?. (9)
0
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and n is the frequency in Hz. Simpson and Wallace (1975) discovered
that a portion of F(n) varied like n'] for locations in the region
n > 1000 after the cessation of entrainment in flow B. They found
that Tchen's high mean vorticity spectral model (Hinze, 1975) relat-

ing F(n) to the turbulence dissipation ¢ by

—_—

2
2= galrn)]| & 13 (10)

seemed to hold.

Their data indicate that o is about 0.77 for flow B. Data from
flow B were reanalyzed using equation (10) above. Equation (21) of
Simpson and Wallace should have contained :EZ The spectral data of
Laufer (1954) in the logarithmic region of a pipe flow indicate that
« ~ 0.88 while Klebanoff's (1955) flat plate turbulent boundary layer
produced flat nF(n) spectra with o =~ 0.80. In both of these latter
cases, € was evaluated by the equilibrium relationship

— 23U
€= -uv 5o (1)

that is applicable for the logarithmic velocity profile region (Rotta,

1962). Here we wish to eiamine the spectra obtained for flows C and

D and the range of applicability of equation (10) using a = 0.8.

Representative first moments of the spectra nF(n) for flows C
and D are presented in figures 14 through 23. The hot-film and hot-
wire sensor response was down 5% at 15 KHz, and 25 KHz, respectively.
The data were recorded on tape and processed on the fast Fourier

analyzer with a bandwidth of 2 Hz and 50 seconds record times. The
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2 KHz upper frequency 1imit on the analyzer was not a serious limi-

tation except for the data at the downstream stations in flow D.
For several of the spectral distributions, a small range of the
-5/3 law of the inertial subrange existed as shown in figure 14, so

it was used to estimate the dissipation rate e:

B -2/3
4" Fln} = Ksm[ —S—‘I] a3 (12)

Here K is a constant taken to be 0.49 (Corrsin, 1964; Bradshaw,

1967a) and U is the local mean velocity. Bradshaw (1967b) suggested

— 1/2
u2)

that the turbulence Reynolds number Rex = ( A/v, where

Az = 15v ;ﬁke, must be greater than 100 for an inertial subrange to
exist. For those spectra on which a region with a -5/3 slope was
found, 35 < ReA < 80. Thus there is some question of the validity
of equation (12) even for these cases.

Figures 24 and 25 show the dissipation rate results for flows
C and D. For comparison the dissipation rate for a turbulent bound-

ary layer which possesses a logarithmic "law of the wall" mean velo-

city profile is given by

2
v ot F
EE‘[ 2] [ L)

This equation is derived from equation (11). This result would also
be expected to be valid for moderately accelerated turbulent bound-
ary layers since a logarithmic mean velocity profile would still
exist. At the upstream stations the dimensionless dissipation rv/Ui

is the same order of magnitude for each flow from equations (10),
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(12), and (13). The results from equation (12) for each flow near
the 100 inches location are closely the same. At 137.2 inches in
flow C the results from equations (10) and (12) are reasonably close
for a given n when o = 0.8 is used. Since the nF(n) spectra at
downstream stations are flat for n > 800, the results from equation
(10) are the best available estimates of the dissipation rate.

Spectral data from locations 170.8, 178.3, 182.3, and 185.8
inches of flow C are very similar. In the sublayer, n < 800, no flat
region of a given nF(n) distribution is observed. The contribution
from the 20 Hz free-stream unsteadiness becomes an increasingly

greater portion of the total u2 in the downstream direction. Figure
9 shows that the total contribution to ;?.at a given n decays down-
stream of about 178 inches. However, since (;?S(nF(n)) is the same
whether the unsteadiness is accounted for or not, the results in
figure 24 should be unaffected. For a given n in the outer region,
ev/Ui decreases two orders of magnitude from 137.2 inches to 170.8
inches. Thereafter the decrease is much slower. In the inner region,
n < 1000, cv/Ui remains about the same order of magnitude all along
the flow.

Figure 19 shows spectral distributions at 135.6 inches for flow
D. This location is the last downstream station that was recorded
with spectra shapes similar to those for flow C. Between this loca-
tion and 161.6 inches, retransition to an entraining turbulent bound-

ary layer begins, as mentioned in section 3.7 below. Figure 20 shows

that F(n) varies as n’z'3 in the region of n < 800 at 161.6 inches,
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where the intermittency is about 0.01. In the outer region at this
location flat nF(n) spectra are found. Note the relative importance
of the 20 Hz unsteadiness. Downstream where the intermittency is
progressively increasing, the spectral distributions are flatter.

At 179.7 and 189.7 inches the peaks shift progressively toward 1 KHz
as the Tow accelerated turbulent boundary layer redevelops. Notice
that 20 Hz unsteadiness does not dominate the near wall spectra.

The dissipation results for flow D from equations (1C) and (12)
are in reasonably good agreement at 123.1 inches and in fair agree-
ment at 132.2 and 140.7 inches. Between 132.2 and 161.1 inches the
results from equation (10) are considered the best available esti-
mates of the dissipation rate. For a given n in the outer region,
ev/Ui decreases two orders of magnitude from 123.1 to 161.1 inches,
as was observed for flow C. As for flow C, sv/Ui remains about the
same order of magnitude in the inner region along this length of
flow. Certainly the spectral behavior downstream of retransition

needs further research.

3.6 Wall bursting frequencies and spanwise structure

The more or less periodic 1ift off oQ bursting process in the
viscous sublayer has become accepted as tﬁe sequence of events that
creaté the Reynolds shearing stress nearfihe wall (Wallace et al.,
1972; Nychas et al., 1973; Willmarth, 1@75). On a short-time basis
the velocity fluctuations in the sub]axér produced by the bursting
process vary across the sublayer in thé spanwise direction. The
data of Gupta et al. (1971) indicate Fhat the short-record-time

!
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normalized cross-correlation of fluctuations SRuu(Z’ Ts) could be

represented by a spanwise periodic function. Their reéuits indicate
that the short-record-time TS over which the cross-correlation i;
averaged must be less than about 20 bursting periods iﬁ order for
the periodic spanwise structure to be detectable. Simpson and
Wallace (1975) measured the average frequency of bursting and the
long-time spanwise cross-correlation of fluctuations for two sink-
flow type strongly accelerated turbulent boundary layers, flows A
and B. Here the results from flows C and D are presented.
Strickland and Simpson (1973, 1975) assumed that the short-time
autocorrelation time scale from a flush wall hot-film sensor and the
bursting period were equal. Histograms of the frequency character- '
ized by the time to the first peak on these autocorrelations were
constructed and the corresponding frequency of the peak of each

histogram was taken as the characteristic frequency. The histograms

appeared to have a log-normal probability distribution, so this peak

RLO
I ey

frequency was also the median frequency. They also proved a one to

one correspondence between this characteristic frequency and the

TR gy

peak of the first moment of the wall shearing stress spectra nf(n).
Also, examination of spectral data from zero pressure gradient bound-
ary layers produced bursting frequencies in agreement with those
previously reported. More recently, Simpson (1976) used a pattern
recognition algorithm to determine the average bursting frequency

i

from flush surface hot-film signals produced in the Max-Planck-

Institut fUr Strémungsforschung oil channel. This average bursting

a?
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frequency closely agreed with the peak of the nF(n) spectral distri-

bution of these signals.

As was done for flows A and B, the peak of each nF(n) curve for
flows C and D was deduced as the bursting frequency for a given wall
spectral distribution. The resuits are given in table 3. As it is
clear from figures 26 and 27, it is difficult to select a precise
single frequency at which nF(n) is a maximum for a given distribu-
tion. Consequently, a range over which the peak frequency definitely
occurs is also presented in table 3.

Two types of non-dimensionalizing parameters have been used in
previous bursting frequency studies, inner variables and outer vari-
ables. Inner variables are the shear velocity UT for the velocity
scale and v/UT for the length scale. This scaling does not corre-
late other available bursting data. The bulk of available bursting
frequency results for turbulent boundary layers, correlate using the
outer flow velocity and length scales, U_and §. For zero pressure
gradient boundary layers Um/éinb is about 5 (Rao et al., 1971) and
varies between 11.7 and 8,35 for the separating turbulent boundary
layer of Simpson et al. (1974). It should be noted that this large
eddy outer variables scaling continued even after the boundary layer
separated.

For flow A presented by Simpson and Wallace (1975), Uw/énb
started at about 5 at 89.2 inches, decreased to about 3.5 at about

139 inches or the location of minimum H, and then monotonically

increased to a value above 50 at the last measurement station. The
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bursting frequency "y apparently reached about a constant value after
the asymptotic condition was achieved, so an increasing Uw/<5nb
reflects the fact that U_ increases and ¢ decreases faster than ny
increases. For flow B U /8n_ remained nearly constant at about 3(:1)
until the location of a minimum in H, downstream of which it also
increased monotonically to a value of about 90 at the last measure-
ment station. The bursting frequency n, was virtually constant ail
along flow B. The outer variables parameter Um/é*nb was no better

a correlation parameter for these data.

The results for flow C indicate that the bursting frequency
increased up to about 165.3 inches or where H was about a minimum
and where entrainment ceased. The plateau on the nF(n) spectral
distributions existed over an increasingly wider frequency range at
downstream Tocations. The low frequency end of the plateau remained
at about 25 Hz. The results from these three flows indicate that
they are non-equilibrium flows at least up until the cessation of
entrainment. Thus no equilibrium non-dimensional parameter such as
Um/6nb should have a constant value upstream of the minimum in H.
Downstream of the minimum H lccation there was no entrainment, so
the large eddy structure and the intermittent turbulent/non-turbulent
outer region flow were not creating new bulges. Thus the bursting
frequency and the frequency of passage of the intermittent bulges
(see section 3.7 below) were constant in this downstream region.

For flow D the bursting frequency increased until near the loca-

tion where H was a minimum, after which it remained constant until
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Flow C Flow D
X Peak 2 Peak
Station Range of Station Range of
(inches) frsqueﬂgy, peak, Hz (inches) frequegcy, peak, Hz
9 b’ nb’ z
by 90.2 15 13-18 105.0 12 10-15
¥ 105.0 12 10-15 110.4 15 10-20
b 110.4 13 10-20 122.0 5 10-20
- .3 15 10-20 129.9 19 15-25
E | 122.0 16 13-20 1335 18 15-25
e | 129.9 16 11-20 135.5 18 15-20
131.6 16 11-20 139.7 20 15-25
k- 135.5 20 14-22 147.6 20 15-25
3 138.6 16 10-20 158.3 25 20-30
' 139.7 16 10-20 171.8 20 15-30
147.6 20 15-30 175.2 25 20-40
156.3 20 15-20 177.4 300 250-250
158.3 20 15-25 182.0 200 150-250
165.3 25 20-30 184.2 500 400-700
171.8 25 20-30 186.2 500 400-700
175.:2 25 15-35 189.6 500 400-700
177.4 26 20-30
{ 182.0 26 20-30
i 184.2 -- 20-45
i 186.2 -- 20-100

Table 3. Peak frequencies of nF(n) spectral distributions from flush
surface hot-film sensors.

Station + + 4 1
: Z _ ,mm{ X Z . ,om| A L. ,mm I 55—, Hz
(inches) | “max Z1 min 72 7i 7 Ztmin-max
7.3 F.62 6t 5.59 99| 4.88 43.4 19
138.6 - --- 74l 1511 4.46 47.3 16
! 156.3 10.16 | 135 9,33 108 e L e 43.0 -
& 165.3 9.40 | 157 3.56 119 1.42 23.8 --
: 182.0 8.38 | 302 3.86 2781 1.79 64.5 28
i [
126.3 14.48 | 179 5.33 132 b 2070 33.3 27
138.6 9.40 | 160 4.83 164 | 2.60 44.3 21
B 156.3 8.38 | 274 2.41 158 Lokl 36.4 22
of 165.3 7.8 | 332 3.30 279 | 3.61 152.5 -
: 182.0 -— -—— 21.6 3480 | 12.50 | 1007 --
SR

Table 4. Experimental results from the wall spanwise spatial cross-
correlatives. First five entries, flow C; second five,
flow D.
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the beginning of retransition to a low accelerated turbuient bound-

ary layer. As discussed in section 3.7 below, high velocity pulses
are first detected at about 165.3 inches. Figure 27 shows that the
wall sensor spectra are not appreciably affected until about 175.2
inches.

Figure 28(c) shows a typical signal trace for this location.
Between 175.2 and 182.0 inches, a distinct local peak is observed
in the spectra at frequencies an order of magnitude higher than
observed upstream. This indicates that the high frequency oscilla-
tions that are contained in the higher velocity pulses are increas-
ingly important. Downstream of 184.2 inches the laminar-like low
velocity regions such as seen in figure 31 for 182.0 inches were no
longer observed on signal traces. Thus the flow at the wall was
always turbulent. Peak frequencies are observed in figure 27 to
occur at an even higher frequency of about 500 Hz.

Several researchers have proposed that during the bursting pro-
cess a hairpin or horseshoe vortex with trailing legs is formed
(Willmarth, 1975). With this model, the counter-rotating trailing

legs would produce fluctuations in the sublayer that are periodic

in the spanwise or z direction on a short-time basis. Simpson (1976)

noted that this model suggests motions too coherent to be consistent
with experimental observations.

He alternatively proposed that "fingers" of high velocity fluid
come from the outer region at a velocity much higher than sublayer

mean velocities toward the wall and displace the low velocity fluid
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(a)
AZ = 3.30 mm

B S o g s o o 2 S

Figure 30. Flush surface hot-film signals from two-sensor unit at
165.3 inches for flow D. Top trace of each photo -
moveable sensor; bottom trace - fixed sensor. Abscissa -
10 msec/div. low pass filtered at 2 kHz. G denotes mean
signal Tevel.
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to each side. These fingers of high velocity fluid were found for
the MPI oil channel flow to be no less than Az+ = 11 nor greater
than about AZ+ ~ 44 in size and are spaced spanwise across the flow
at average distances of about A;=100. There are curved fronts on
these higher velocity fluid fingers so that the low velocity fluid
Just downstream at that instant must move aside to satisfy continu-
ity requirements. Thus low velocity fluid trapped between two high
velocity fluid fingers must move outward from the wall.

After the low velocity fluid has been "ejected" away from the
wall, the two adjacent higher velocity fluid fingers coalesce. Since
this fluid now occupies the wall region it progressively gives up
its momentum until new high velocity fingers from the outer region
force this fluid away from the wall and the process is repeated down-
stream. The spanwise locations of these high velocity fingers vary
randomly for successive burst occurrences.

An interesting point is that these high velocity fingers must
be formed so that the low velocity fluid can be ejected between them.
Otherwise a blanket of higher velocity fluid would trap the low velo-
. city fluid beneath. Stability considerations then require regions
of high velocity fluid separated by low velocity ejections. The
bulk of available experimental results for low pressure gradient flows
show that the most preferred spacing of these higher velocity regions
is A: = 100. It appears unlikely that streamwise vortices that ro-
tate more than one revolution are produced by the ejection process.

Some characteristics of the spanwise sublayer spatial structure
for flows C and D were determined using the two sensor wall unit
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described by Simpson and Wallace (1975). The unit was located span-

wise across the tunnel with the direction of travel of the slider
plate perpendicular to the streamwise flow direction. The signals
from the two sensors were time-delay cross-correlated using the
SAICOR model 41 correlator, with the record time for a given z-spac-
ing time-delayed correlation being 65.5 seconds. For zero time
delay, normalized spanwise cross-correlations S&TT(z) such as shown
in figures 32 and 34 result. Three characteristic lengths were
deduced, the distance to the first correlation maximum 2 the

distance to the first correlation minimum Zoin® and the integral

length scale
4

;
b= 2 JO sR(z)dz (14)

The limit of integration z, was taken as the largest available loca-
tion for which data were available.

Figure 32 and table 4 indicate that for flow C the integral
length scale progressively decreased until 165.3 inches and slightly

increased thereafter. The parameters z and z are relatively

min ax

easy to interpret, within 10% for the former and 20% for the latter.

The results of Gupta et al.(1971) and Simpson (1975) indicate that

Zoin is a somewhat more reliable spatial parameter than  — These

two parameters are normalized by the wall length scale \)/UT to pro-
duce the quantities

Uz 2U z

* o L BBX ¥ . 1w
. Rl and Ag = (15)
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which have the value of about 100 for zero pressure gradient bound-
ary layers. Only at 182.0 inches does A:Z increase appreciably from
this value. At the two downstream locations, sﬁrr(z) behaves more
like the low Reynolds number cross-correlation computed by Simpson
(1976). He used the Gupta el al. spanwise spacing probability dis-
tribution to compute sﬁTT(z) when no large eddy outer region struc-

tures were present, i.e. L_/z 0.

2/ fmin 7
Figure 34 and table 4 indicate the same type of behavior for

flow D up to 156.3 inches with Lz/z = 1/2. Figures 28(a) and 29

min
shows typical simultaneous signal traces for the two sensors. For
the two downstream stations, the signals contained high velocity
pulses intermittently as shown in figures 30 and 31 and as discussed
in section 3.7 below. The length scale ratio Lz/Zmin was about 1.1
at 165.3 inches and 0.579 at 182 inches. The parameter x:z is sig-
nificantly Tlarger than 100 at these two stations.

Several different models were examined in an attempt to corre-
late these *:2 results. As attempted for flows A and B, x;z was
compared with the data of Schraub and Kline(1965) when presented
versus K. Just as Schraub and Kline found, AZZ is of the order of

300 for K= 3 x 10°°

. However, for lower K values x:z varied rather
randomly between 100 to 164. In flow D AZZ remained only at about
158 at 156.3 inches even after the flow had been subjected to a K

of 3.85 x ]0'6 and K was decreasing. After retransition to a Tow
accelerated turbulent boundary layer had begun A;Z was very large

6

even though K was of the order of 107 °. It does not apbpear that x;z
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is solely a function of K. After retransition began, the flow char-
acter with high velocity pulses is entirely different than that
found upstream.

Simpson et al. (1974) found that for adverse pressure gradient

turbulent boundary layers, the maximum turbulent shearing stress

should be used in the velocity scale in order to produce (-ﬁVhax)]/z

zmax/v values of about 100. This model was not successful for flows

A and B (Simpson and VWallace). Unfortunately the split-film results
for -uv presented in section 3.4 are not reliable in the wall region
where it is a maximum. Since —UVYUi decreases along a strongly

_ N 1/2 : )
accelerated flow, ( uvmax) Zmax/v would also decrease. This para

Y/t would be below 1/4

meter would fall well below 100 since (-uv w

max
-1/2

at say, 156.3 inches. Another correlation parameter, (KUi/vnb)(Cf/Z)
used by Simpson et al. was also not successful in correlating these
data.

It appears that the A; spacing lags behind local conditions.

In other words, the spatial parameters o and 2ol remain large

ax
due to upstream conditions in these non-equilibrium flows. For
example, at 182.0 inches in flow C, UT/v is more than twice that at

165.3 inches but 24

and z
in m

ax are only slightly different. In
retrospect, there is no reason to expect flows C and D to possess
equilibrium characteristics.

Figures 33 and 35 show the local maxima and minima from the

time-delayed cross-correlations for a given z spacing which were

clearly distinguishable from noise. The wavelike nature of the
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viscous sublayer behavior is illustrated by the fact that the maxi-
mum correlation at a given z spacing is time-delayed. The bursting

frequency results given in table 3 above are somewhat crudely sup-

ported by the frequency corresponding to twice the time delay between
the first minima and the first maxima, as given in table 4. In other
words, if there is a repetitive wave-like nature of the sublayer flow
in both z and t, the time-averaged characteristic bursting frequency

should be approximately the same at all z sensor spacings.

For flow D figures 29(b) and 30(a) show that for the z spacings
of sensors at which the spanwise cross-correlations were a minimum,
the two signals were strongly out of phase. At time A in the latter
oscilloscope photograph a short period of high velocity fluid passed
over the moveable sensor. At the same time lower velocity fluid
passed over the fixed sensor. A short time later, of the order of 3 msec,
high velocity fluid passed over the fixed sensor while low velocity
fluid passed over the moveable sensor. About 15 msec later the two
traces again appear to be strongly out of phase. These data are
consistent with the observations of Simpson (1976) regarding fingers

of high velocity fluid as mentioned above.

3.7 Intermittency measurements

The intermittency factor v, or the fraction of time that the
flow is turbulent at a given spatial location, was determined for
flow C using smoke in the boundary layer as the marker of turbulent

fluid and scattered light from this smoke at a given location as the

detected signal, using the optical apparatus described in section 2
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above. Due to the large-scale mixing in the turbulent region the
smoke is rapidly diffused while smoke is carried across the turbulent/
non-turbulent interface by the much slower process of molecular dif-
fusion. Thus, the smoke was assumed to be effectively confined to

the turbulent regions of the flow. Fiedler and Head (1966) verified
that values obtained by this method agree with those obtained by

analysis of hot-wire signals.

The signal passed from the photomultiplier tube through a trig-
ger circuit which produced positive rectangular pulses when the input
was above a preset discrimination level. The discrimination level
i was set at approximately 10% of the peak PM tube sign amplitude.

The counter-timer determined the fraction of time the positive pulses
were present, which is the intermittency. Due to the steep slope of
the PM output pulses, y was not very sensitive to stightly different
discriminator levels. Preliminary data taken in a zero pressure
gradient flow were féund to be in close agreement with the data of
Klebanoff (1954).

The intermittency factor y of this turbulent/non-turbulent

interface has been previously found to be welil represented by the

integral of the normal distribution curve

00 1 2
J exp |- —= |d& (16)
2

y | , where & =y - Y, Y is the mean distance from the wall to the inter-

b
V2T o

i face where y = 0.5, and o is the deviation from the mean. If this

interface is viewed as a wavy pattern moving approximately at the
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free-stream velocity, then o characterizes the amplitude of this

pattern. y was in good agreement with equation (16) for flow C.
Table 5 presents the characterizing parameters which describe these
intermittency distributions.

The results of Fiedler and Head (1966) showed that the para-
meters Y/8* and o/6* are strongly dependent on the shape factor H
for values of H less than about 2. This dependence is quite strong
as the lower limiting value of H is approached. The minimum H found
for flow C was about 1.26 at about 165 inches. Upstream of the mini-
mum in H for flow C,at 130.6 and 149.3 inches, values of these para-
meters were well within the scatter of the Fiedler and Head results
for their "normally developing" boundary layers. As pointed out in
section 3.2 above, no entrainment of non-turbulent fluid takes place
after the minimum H value occurs so it is not unexpected that Y/s*
and o/8* downstream do not follow the results of Fiedler and Head.

The celerity and mean velocity profile measurements for flows
A and B reveal that when there is no entrainment, the entire inter-
mittent region is moving with the free-stream velocity. This means
that there cannot be any relative streamwise motion of the inter-
mittent region nor any engulfment of non-turbulent fluid by turbu-
lent bulges. U_(Y - 6*) and U_o remain approximately constant down-
stream. As for flows A and B, the intermittent region plays no role
in the momentum transport after entrainment.

Measurements of the frequency with which turbulent bulges pass

a fixed point were made by counting the number of pulses per unit
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- b
Station T s n -4 gl i i
(inches) inches inches YX]0 —;—110 3 y %
Hz :
130.6 3.00 0.491 1.506 2.465 47.7 ,é
149.3 2.55 0.417 1.540 2.518 45.4 ;
164.2 1.93 0.440 1.605 3.660 50.2 2
i 170.8 1.59 0.437 1.620 4,453 530 l t
178:3 1.19 0.306 1.759 4523 54.8 &
185.8 0.704 0.193 1.562 4.281 58.7 a?
Table 5. Intermittency parameters for flow C. o
¢
Station, 4
inches Y g
l‘\
165.3 0.02 g
171.8 8.15
175.2 0.55 b
177.4 0.78 g-‘
182.0 0.96 I
184.2 1.0 8
186.2 10 !
Table 6. Surface intermittency parameters for flow D. !
;
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time from the schmitt trigger output. A serious problem with this
method arises due to the fact that several short duration pulses may
occur as the probe volume enters and leaves the turbulent bulge thus
giving rise to frequencies which are perhaps an order of magnitude
higher than the actual.

In order to reduce the effects of this problem, the signal from
the schmitt trigger was processed through a low pass filter which
attenuated the short duration pulses responsible for the higher fre-
quency. It was found that the resulting frequency obtained was quite
dependent on the filter setting, so the filter setting was obtained
by visual comparison of the unfiltered PM tube signal with the fil-
tered schmitt trigger signal on a dual trace storage oscilloscope.
Typical signal and oscilloscope traces from this method are given by
Strickland and Simpson (1973). The filter was set such that there
was a single zero crossing from negative to positive for each "sig-
nificant” peak on the unfiltered PM tube signal. The filter setting
chosen for all the results here was 300 Hz.

Figuﬁe 33 of Simpson and Wallace (1975) shows a typical bell-
shaped frequency distribution such as obtained for flow C. The fre-
quvncy distributions across the intermittent region for flow C are
rather similar when the frequency is normalized on the frequency at
Y, niY. As for flows A and B, the peak frequency for each profile
occurred at about the location where y = 0.6. The niY for flow C

was about twice the bursting frequency Ny when tables 3 and 5 are

compared. Since the technique used to obtain the intermittency
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frequency requires a certain amount of arbitrary judgment, as do
techniques using hot-wires, it cannot be determined if the absolute
values of these measurements are accurate. However, since for each
flow ny, was proportional to niy, it appears that the large motioﬂ
influencing the intermittency also influences the wall bursting fre-
quency even downstream of the cessation of entrainment. Strickland
and Simpson (1973) also found n, to be proportional to niY for an
adverse pressure gradient turbulent boundary layer. Thus, apparentiy
this proportionality is present in turbulent boundary layers over a
wide range of pressure gradient conditions.

For fiow D the intermittency at the surface was determined for
the retransition region downstream from the flush-surface hot-film
signals. The taped signals were examined for high frequency content
since considerable mixing and high frequency oscillations are asso-
ciated with turbulent fluid. These signals were passed through the
model 330B filter with a 200 Hz-2KHz bandpass and then through the
multiplier used as a squarer in order to rectify the negative por-
tions. This signal was low-pass filtered at 300 Hz using the model
3202 filter and passed through a schmitt trigger. The resultant
pulses were visually compared with the original signals on a storage
oscilloscope for validity as regions of high frequency content.
These pulse periods were accumulatively counted for 50 sec. by the
digital timer-counter. The fraction of time pulses were presenl was
the intermittency y. These results are presented in table 6. These

same signals were processed by using the schmitt trigger on the
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output signal of the model 330B filter. The resulting fraction of
time positive pulses were present was doubled to get the intermit-
tency since contributions from negative pulses had not been recti-
fied. These latter results were within 5% of the results of table 6.
The results in table 6 follow a curve of the form of the inte-
gral of the normal distribution curve. vy increases slowly from about

165.3 inches to 171.8 inches, increases more rapidly up to 177.4

inches, and thereafter increases slowly to unity at about 184.2

(i 5 i - Gt R L

inches. Upstream of 165.3 inches the flow had low frequency oscil-

lations as shown in figures 28(a) and 29. It is clear in figures

IR

30 that higher amplitude pulses were occasionally present at 165.3

k- inches. Figures 28(b) and (c) show the relatively high frequency

E' oscillations in the high velocity pulses at 171.5 and 175.0 inches.
The clearest oscilloscope traces are shown in figures 31 for 182.0
inches. The higher velocity regions contain high frequency oscilla-
tions. Regions of laminar-like flow follow each high velocity pulse.

These velocity signals slowly decay, not because of limited sensor

response but because of temporarily high velocity laminar flow that

follows the turbulent pulses.

It is clear that in the lTow velocity wall regions downstream
P of the cessation of entrainment in flow D, the flow became progres-
L sively more laminar-like. The magnitude of the oscillations in these
regions progressively decreased. However, beginning at 165.3 inches,
high velocity fluid moved in toward the wall. The average frequency

of occurrence of high velocity pulses in this downstream region was
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about 25 Hz, as determined by counting these pulses. Further anal-

ysis of these data is planned.

4. DISCUSSION
Many aspects of flows C and D are similar to previous results

reported by other investigators and by Simpson and Wallace (1975).

In flow D and in the flow of Blackwelder and Kovasznay (1972), K
increased to a value which exceeded 3.8 x 10_6 and decreased down-
stream to zerc. In both flows, a local maximum in Cf/Z occurred at
the same streamwise position as the K maximum; the minimum in Cf/2
occurred downstream of the minimum of the intermittency at the wall;
the maximum H occurred upstream of the Cf/2 minimum and approximately
at the minimum intermittency at the wall.

In all four flows measured in this research program, the behav-
ior of the turbulent boundary layer after the beginning of strong
acceleration was very similar. An initially normal low-pressure-
gradient boundary layer first became distorted. The wake-like tail
of the mean velocity profile became progressively weaker until at
the cessation of entrainment none remained. It appears that the
shape factor H is about a minimum at this location. The bursting
frequency and intermittent bulge passage frequency downstream either
increased or remained about constant along this length. The surface
spanwise structure was not appreciably different from a low Reynolds
number low-pressure-gradient boundary layer. Downstream the entire

intermittent turbulent/non-turbulent interface was outside the
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boundary layer thickness & and the celerity of this region was the
free-stream velocity.
Simpson and Wallace (1975) showed that normal stresses produc-
tion was important in the mean turbulence kinetic energy balance
]—{Ugw—a—z} +3—E3—i+l_é—il+ =iv 39 - (—2_7)2_92 (17
2 X oy y | p 2 i y b X )
Here the terms are from left to right: advection, turbulent diffu-
sion, dissipation, shear production, and normal stresses production.
This last term is of opposite sign to the shear production term in
strongly accelerated flows. The net turbulence energy production
is less than the shear production by the factor

Fa=1- (—u-?T - ;Z)au/ax (18)
(-uv)au/ay

which represents total production to shear production.

They also found that the normal stresses term reduces the dif-
fusion of turbulence kinetic energy into the freestream, or the
entrainment of non-turbulent fluid into the boundary layer. The
velocity difference between turbulent fluid in the intermittent
region and the irrotational freestream fluid approaches zero with
strong acceleration. Thus, velocity profile instabilities which
produce the eruption and eventual engulfment of free-stream fluid
are eliminated. There could be no creation or merging of adjacent
large eddies that accompanies the entrainment process. This also
explains why the intermittency and bursting frequencies for all four

flows remained about constant after cessation of entrainment.
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Simpson and Wallace found that

V. = 10F5(-UV) (19)

E max/Uw
described the entrainment velocity upstream of cessation for flows

A and B. This scale characterizes the large eddy structure that is
not only largely responsible for the various turbulence intensity
levels in the turbulent fiuid, but is directly responsible for the
entrainment. When the negative normal stresses turbulence energy
production term arises under strong acceleration, the available tur-
bulence kinetic energy in the outer region is reduced so less large
eddy energy is available for entrainment. This equation reduces to
Bradshaw's relation for low acceleration boundary layers when F6 = 1.
FG is given by equation (18) with all quantities evaluated at the
boundary layer thickness §. Using the relations -uv > 0.15 ;ﬁ,

ut x5 9, and v2 =z 0.2

qz, which apply to entraining flows, they

obtained
Py =1 - s (20)
§ iZ)f/Bni6

Figure 36 shows this quantity along flows C and D. Note that nega-

A

rante

S occur after engulfment of non-turbulent fluid ]

ceases. This does not mean that turbulent fluid is instantaneously

tive values of F

reverting to a laminar state, but simply that progressively more
turbulent fluid lies outside the & location.

Figures 7 and 8 show the results obtained by integrating equa-

tion (19)
u_(6 - &%) ]x - Jx Vedx (21)
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For these computationé the relation (—UV)max x O.3(u2)max was used

with experimental (u2)max values. The results are in good agreement
with values determined directly from the mean velocity profiles,
B especially for flow C. Thus the growth and decline of the mean flow
boundary layer 1is fairly well predicted by this model, at least to
Just downstream of the cessation of entrainment.

The observed flat nF(n) region for ;?.spectra emerges after
some length of acceleration. The streamwise location where this
behavior is first noticed does not seem to be directly related to
the location where entrainment ceases. For flow A with K = 2.17x10_6,
the nF(n) spectra examined by Simpson and Wallace had no flat region,
even downstream of the cessation of entrainment. For flow B with

K= 3,19 1070

, no flat region was present in the spectra obtained
upstream of the minimum H, while such a region was observed for
spectra downstream. In flow C presented here, the flat region in

some spectra began at about 137 inches while the cessation of entrain-
ment did not occur until about 165 inches. Similarly for flow D
entrainment ceased at about 132 inches while the flat nF(n) region
began at about 123 inches. A preliminary exploration of this behav-
ior is that with strong acceleration, progressively weaker new low
frequency oscillations are produced by the large-scaled motion while

the higher frequency oscillations are produced by the breakdown of

the more intense upstream large-scaled motions. Further analysis of

1
!
i
[

these data is needed.
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In flows A and B, asymptotic similarity flows were approached
near the downstream end of the test section. This means that v u® /U,

vs. n similarity was present for K < 3.19 x 1075, For flow C when

K> 3.6 x 10'6, \/uz /U, profiles decayed. This means that had this
K level been maintained downstream, true relaminarization would have
eventually resulted, as suggested by Kline et al. (1967). Since

there is a much shorter distance from the beginning of acceleration

to the maximum K in flow D, the intensity v/;Z /U_ did not begin to
decay near the wall until about 157 inches. At 161.6 inches, as

shown in figure 20, a considerable amount of the intensity was due

to unsteadiness rather than turbulence. Since K decreased downstream
of 144 inches, retransition to a Tow acceleration turbulent boundary
layer began at about 165 inches. In this region the flow possessed

a highly laminar-like behavior, so -uv was extremely small. Evidently

Jvz decays considerably. As mentioned above, the surface spanwise

structure upstream of the onset of decay of JC;? /U_ was not appre-
ciably different from that of a low Reynolds number;hfi pressure grad-
ient boundary layer. After the onset of decay of v/;§ /U, A:
increased. Evidently the upstream Az values in these non-equilibrium
flows persist downstream, so when normalized with a higher UT/v, x;
is higher.

In the relaminarizing nozzle-type flow of Schraub and Kline
"(Kline et al. 1967), A; was reported for the region of maximum K to
be of the order of 200 for K = 2.75 x 10°6 and of the order of 300

6

for K - 3.25 x 107", On the surface, it would appear that they found
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A; to vary directly with K. However, their estimates of Cf/2 for

these two streamwise locations seem high by about a factor of two
when compared to the Cf/2 behavior in flow D and in the Blackwelder
and Kovasznay (1972) nozzle flow. In that case, values of about 150
and 220 for A; would result, respectively, and would agree reason-
ably well with the flow D results in the vicinity of the maximum K.

Schraub and Kline did not present AZ results downstream of the

K maximum, so the data from flow D are the only available on this
downstream structure. A; is still of the order of 300 while K

decreases below 2 x 10—6.

After retransition to a Tow-accelerated

+
low-pressure-gradient turbulent boundary layer begins, AZ is an order
of magnitude greater. This behavior is as yet incompletely explained,

so further analysis of these data is needed.

5. CONCLUSIONS AND RECOMMENDATIONS

The following conclusions can be made about turbulent boundary
layers subjected to strong acceleration.

6 for

a. The parameter K must be greater than about 3.6 x 10~
the decay of the upstream generated turbulence.

b. For practical use in a nozzle only one short region down-
stream of the maximum K will possess a laminar-like behavior with
significantly Tower Cf/Z and heat transfer coefficients.

c. The large eddy structure of the outer region governs the

bursting frequency, the intermittent bulge passage frequency, and

influences the wall flow behavior downstream. These frequencies
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seem to approach constant values after the cessation of entrainment
of non-turbulent fluid.

d. The wall spanwise structure appears to lag behind local
conditions and to reflect upstream flow behavior. A; seems to
steadily increase to about 300 even after K has dropped below its

maximum value in a nozzle flow. After retransition to a low accel-

erated turbulent boundary layer, a large x; of the order of 3000 is

observed.

e. The proposed modified entrainment model accounts for the
reduction of available turbulence kinetic energy by the negative
normal stresses production term of the turbulence kinetic energy
equation.

f. A nF(n) spectral distribution of EE for n > 1000 appears
to possess a flat region for laminar like boundary layers at large
K values.

As a result of the large quantity of experimental data provided
by the research program, the following recommendations for future
work are suggested.

a. Further analysis of these data, some of which was not pre-
sented in this report because of the lack of time. Afterwards a
manuscript should be submitted for journal publication. At that
time a more intelligent assessment for future work can be made.

b. A generalized computational effort incorporating flow models
reflected by all available data should be undertaken. Communication
between the senior author and predictors has begun, but no results

are yet available.
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APPENDIX C
ERRATA FOR REPORT SMU-1-PU

"96 inches" should "93 inches"

v3.1672 x 10-%(x)" should be "3.1627 x 107*(x)
v6.5031 x 10°8(x2)" should be "6.5931 x 107 (x%)"
v1.1948 x 10°2(x2)" should be "1.1994 x 107> (x%)"
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20. turbulent boundary layer approaches the laminar-like state, including mean

velocity and Reynolds stresses profiles, spectra, turbulent/non-turbulent
interfacial structure, and wall bursting and sublayer spanwise spatial struc-
ture.

As a result of these experiments, it appears that the surface skin-fric-
tion is not reduced to laminar values in sink flows unless K(=vU 2dU_/dx) is
greater than about 3.6 x 107, In nozzle-type flows, K rust also be greater
than this value over a short d1stance in order to produce a short relamina-
rized region downstream. The large-eddy structure of the outer region
governs the bursting frequency, the intermittent bulge passage frequency, and
influences the wall flow behavior downstream. After the cessation of entrain-
ment of free-stream fluid, these frequencies approach constant values. The
wall spanwise structure appears to lag behind local conditions and to reflect
upstream flow behavior. After retransition to a low acceleration turbulent
boundary layer downstream, much larger spanwise scale structures are observed.

The entrainment rate of non-turbulent fluid decreases to zero at about the
strearmise location at which the shape factor reaches a minimum value. The
cessation of entrainment by the eruption and engulfment action of the large
eddies can be traced to the reduction of available turbulence energy for dif-
fusion to free-stream fluid. This reduction of available energy is due to
the negative normal stresses turbulence energy production term. Spectral dis-
tributions of the streamwise fluctuation F(n) possess a frequency region where
nF(n) is constant for laminar-like boundary layers at large K values.
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