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Forward

The Army Aviation Systems Command has the
responsibility for assuring the reliability and combat
readiness of the total fleet of Army aircraft. This
responsibility can only be carried out through the
cooperatior and understanding of a large number of
people--both inside and v atside AVSCOM.

This handbook has been developed to promote this
understanding by presenting the techniques that must be
conscientiously applied to assure a reliable product.
Although some statistical and mathematical background is
required to understand the techniques, the handbook has
been designed for engineers and scientists who have not
frequently been exposed to these techniques. Examples and
illustrations are frequently used for ease of reading.

It is hoped the handbook will be a good introduction for
those not familiar with reliability and a good refresher for
those who are currently working in the area.

LEWIS NERI, CHIEF

Vo M

RELIABILITY AND MAINTAINABILITY DIVISION
DIRECTORATE FOR PRODUCT ASSURANCE
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Preface

This handbook is intended as an educational device aimed
at engineers and scientists who do not work directly in
reliability but must deal with individuals who do. It attempts
to communicate the techniques that are used in reliability
analysis and how these techniques are used to solve real
problems.

The handbook is built around five important subject areas
within reliability. These subject areas are:

1. Reliability of « Single Component versus Multiple
Components
The Exponential and Weibull Models
Estimating Reliability using Test Data
O.C. Curves in Reliability Analysis
Bayesian Methods in Reliability Analysis

The pamphlet is structured to stress the techniques used
within the subject areas. Examples are frequently used to
show how these techniques are applied to real problems.
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Section 1.0
Introduction to Reliability

1.1 Why Bother with Reliability

The measure of an equipments reliability is the frequency
with which failures occur over a specified period of time. In
the nast few years, the concepts of reliability have become
increasingly important and have become a primary concern
in the development of most large weapon systems.

The reason for this concern and the increased emphasis on
reliability is found in the technological revolution which
mankind has been experiencing during the last several
decades. This revolution has been accelerated by the various
wars, dating back to the 2nd World War, and the stress on
military preparedness since that time. In addition to
accelerating technological developments, armed conflict
dramatically emphasizes the consequences of unreliability.
These consequences range from minor inconveniences to
matters that can affect national security.

A somewhat disturbing fact is that the problem of
avoiding these consequences can only become morc¢ severe as
time progresses. Highly refined and sophisticated equipment
is a necessity in order to accomplish the missions facing
today’s military forces. The ability to respond to miltary
situations can easily be compromised by potential
equipment failures if reliability is not held at a high level.

Reduced operating budgets serve to further compound the
problem of equipment readiness by limiting the number of
backup systems and units that are available to respond when
needed. The fact that back up systems are often not
available means that the primary units must function
properly. Sound reliability and maintainability practices can
insure that existing systems are capable of functioning
properly. More importantly, perhaps, is the fact that sound
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R&M practices will also insure that a minimum number of
dollars will be expended to achieve a required level of
operational readiness. For example, reliability analyses can
be used to determine whether it is better from a cost
effectiveness viewpoint to use redundant systems or to
upgrade the reliability of the primary unit in order to achieve
a given level of operational capability. Sound R&M practices
will also insure that limited operations and maintenance
dollars are spent in the correct areas to assure that
maximum benefit is obtained from the dollars available. For
example, proper reliability analyses can show which problem
areas are the ones in real need of attention from an
operational capability viewpoint and which ones are of iess
critical nature. The net effect of conscientiously applying
adequate R&M procedures is to bring down the overall
acquisition and operational costs and increase the
operational readiness of most systems.

The inescapable conclusion that one must reach is that the
probability of failure must be carefully controlled for the
highly complex equipment required by today’s military
forces to function properly when called upon. The only way
this can be accomplished is for a great deal of emphasis to be
placed in the area of reliability and maintainability during
the equipment development and operation phases.

1.2 How to Calculate the Reliability of a
System

Reliability can be defined in its simplest form as “the
probability of successiul operation’. A number representiiig
this probability can be obtained from test data and, again in
its simplest form, is the ratio of the numbei of components
surviving a test to the number of components present at the
beginning of the test.

As a hypothetical example: Ten helicopter warving lights
could be placed on a test stand, turned on, and obsverved for




Figure 1-1 Test Stand

a one week period. If at the end of this time there were nine
warning lights still burning, one could conclude that the
reliability of this device was 0.90. (See Figure 1-1). That
is--the nrobability of successful operation for the warning
light tested is 0.90.

A complete definition of reliability is somewhat more
complex than the one given above and is stated in
MIL-STD-721B as follows: Reliability is ““The probability
that an item will perform i intended function for a
specified interval under stated conditions”. This definition
indicates that matters may not be quite as simple as they
were stated in the first pavagraph of this section. For
exampie: The warning lights of Figure 1-1 will eventually be
used in a hostile environment where they will be subject to
stress from vibrations that are always present oa a
helicopter. To yield proper results, the test would have to be
conducted to account for this hostile environment,
Otherwise, the reliability calculated would not have any
meaning. The time over which the test was conducted is also
important since the light must perform “---for a specified
interval---"". This means that our previously calculated
reliability of 0.90 must be modified to reflect the actual
period of time over which the light must function in actual
use.




1.2.1 Probavility Laws and their use in Reliability
Calculations

Further comtlications in the determination of reliability
are introduced when we start talking about system reliability
instead of component reliability. A system is made up of
several components of which one or more must work before
the system can function. Figure 1-2 indicates a situation
where both components must be working in order for the
system to function. The components are said to be connected
in series and when one component fails, the entire system
fails. In this case we are interested in the reliability of the
entire system and not the reliability of the individral
components. We can colculate the system reliability by
multiplying the reliabilities of the individual components
together as follows:

Reliability of System = (Rel. Component #1) x

(Rel. Component #2)

= 0.90x0.90
= 0.81.
Component Component
~——1 No.1 No. 2 Em—
Rel = 0.90 Rel = 0.90

Systern Reliability = 0.90 x0.90 = {.81

Figure 1-2 Series Components
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The above operation made use of a probability law called
““The Law of Multiplication’’. This law can be stated by
saying “that if two or more events are independent, the
probability that all events will occur is given by the product
of their respective probabilities.”” In the example above, our
event consisted of a single component working. The product
of the two events yielded the probability that the system
would function (i.e., both components would work at the
same time).

A mwore realistic example is shown in Figure 1-3 where a
portion of the aft section, anti-torque controls installation
for the AH-1G attack helicopter is illustrated. A description
of this series subsystem is given in Table 1-1 below along
with a list of hypothetical component reliabilities.

Table 1-1

COMPONENTS OF ANTI-TORQUE CONTROL
SUBSYSTEM FOR AH-1G

HYPOTHETICAL
COMPONENT | COMPONENT COMPONENT
NUMBER DESCRIPTION RELIABILITY
1 Control Rod #1 0.98
2 Pivot Arm 0.99
3 Pivot Bolt #1 0.92
4 Pivot Bolt #2 0.92
5 Pivot Bolt #3 0.92
6 Control Rod #2 0.98
7 Quadrant Assembly 0.97
8 Quadrant Connecting
Bolt 0.92
9 Quadrant Pivot Bolt 0.91
10 Quadrant Cable
Connecting Pin 0.90
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: The reliability of the anti-torque control subsystem is
? calculated as follows:

98 x .99 x.92 x.92 x .92 x .98 x .97 x .92 x .91 x .90

r Rel

Rel = 0.54.

; It is interesting to note the low overall reliability caused by
I using multiple components in the above example. The
impact of using multiple compenents will be discussed in
detail later.

A different type of system arrangement utilizing two
components is shown in Figure 1-4 below. This system
requires that only one component be functional. These
components represent a parallel or redundant system where
one can serve as a backup unit for the other in case of a
single failure.

Component
No. 1
Rel = 0.90

Component

No. 2 | S—

Rel = 0.90

Figure 1-4 Parallel Components

To determine the probability that either component No. 1 or
component No. 2 or both will operate we simply add the two
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probabilities and then subtract their product as follows:

]

Rel of Sys = (Rel of Comp #1) + (Rel of Comp #2)

-(Rel Comp #1)x(Rel Comp #2)

0.90 + 0.90 - (0.90)x(0.90)

= 1.80-.81

0.99.

i

The above calculations were based on the General Law of
Addition which can be stated by saying that *“if two avents
can occur, the probability that either one or both wili occur
is given by the sum of their individual probabilitics less the
product of their individuai probabilities.”” Our event again
consisted of a single component working. The system was
said to function as long as either one or both components
were working.

An important point illustrated by the above examples was
the fact that system configuration can have a major impact
on the overall system reliability. Parallel (or redundant)
systems such as the one illustrated in Figure 1-4 are often
used where high reliability is required. For the anti-torque
control system of Figure 1-3, this would mean that a back up
system (or back up components) would be necessary to
provide control in the event of any failure in the primary
system.

One of the basic concepts of reliability analysis is the fact
that all systems. no matter how complex, can be reduced to a
stimple series system. For example: The illustrations of
Figure 1-2 and Figure 1-4 can be combined to yieid the
system in Figure 1-5.
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- Rel = 0.90 |

- Rel = 0.90 Rel = 0.90 p—

.4 Rel = 0.90 §

Figure 1-6 Combination Parallel and Series System

Using the results of our previous calculations we can reduce
this system to the one of Figure 1-6 which has a system
reliability of 0.80. The reliability of the parallel portion of
Figure 1-§ was previously calculated to be 0.99 while the
series portion of Figure 1-5S was previously calculated to be
0.81. Thesc reliabilities are now used to represent the new
two component series system of Figure 1-6.

-———1 Rel = 0.81* Re! = 0.99* }——

*Results obtained from Figures 1-2 and 1-4

Figure 1-6 Condensed Series System




i TR e D P R At e

1.3 The Meaning of Chance Failures

Equipment can fail from a variety of causes. For the
purpose of reliability studies, these causes have been put into
three catagories which are:

1) Early or burn in failures
2) Chance failures
3) Wearout failures.

Early failures occur during the initial phases of an equip-
ment's lite and are normally the result of substandard
materials being used or a malfunction in the manufacturing
process. When these mistakes are not caught by quality
control inspections, an early failure is likely to result. Early
failures can be climinated by a “‘burn in" period during
which time the equipment is operated at stress levels closely
approximating the intended actual operating conditions.
The equipment is then released for actual use only when it
has successfully passed through the “*burn in'' period.

Wearout failures occur at the end of an equipment’s
useful lite and are a result of equipment deterioration due to
age or use. For example; transmission bearings will
eventually wear out and fail regardless of how well they are
made. Early failures can be postponed and the useful lite of
equipment extended by good maintenance practices. The
only way to prevent failure due to wearout is to replace or
repair the deteriorating component before it tails,

Chance failures are those failures that result from strictly
random or chance causes. They can not be eliminated by
etther lengthy burn in periods or good preventative
maintenance practices. Equipment is designed to operate
under certain conditions and up to certain stress levels.
When these stress levels are exceeded due to random
unforseen or unknowr events, a chance failure will occur.
While reliability theory and practice is concerned with all
three tvpes of failures, its primary concern is with chance

10
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failures as these occur during the useful life of the equip-
ment.

The time when a chance failure will occur can not be
predicted; however, the likelihood or probability that one
will occur during a given period of time within the useful life
can be determined by analyzing the equipment design. If the
probability of chance failure is too great, cither design
changes must be introduced or the operating environment
made less severe,

The tailure rates discussed above are further illustrated by
the Life Characteristic Curve, commonly called the
“Bathtub Curve” shown in Figure 1-7.

Figure 1-7 shows failure rate as a function of age and
clearly indicates the time periods when the three types of
failures can occur. The chance failure rate is approximated

Bumin | {Wearout
Period | Useful Life Period | Period
~< L > :4 _J':
% I I
o | |
p | !
=}
= | Chance &; Chance Failures "Chance &
% | Early | Wearout
. t .
Failures | | Failures

Operating Life (Age)--T

Figure 1-7 Failure Rate as a Function of Equipmert Age
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by the exponential distribution. Reliability during the useful
life is calculated by using the equation:

Rit) = e'“

where *‘t" is the elapsed time period during which the
equipment must operate and “* A" is the chance failure rate

during the useful life period. As a specific example let
A = .001 failures per hour and t = 1 hour, then

R(t) = e At

e -.001{1)

-.001
= e

.999.

In other werds, there is a 99.9% chance that ihe above
equipment will operate successtully for one hour.

1.4 Failure Definition Problems

According to MIL-STD-721B a failure is the inability of
an item to pertorm within previously specified limits. This
means that system performance levels must be clearly
defined before failures can be identified. The task of
defining system performance levels is not completely straight
foreward. A complete analysis of complen systems such as
Army helicopters normally requires that these limits be
specifiecd  at - multiple  levels.  For  helicopters,  these
performance levels are those affecting.

A. Flight safety

B. Mission success

C. System unscheduled maintenance.
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The reason for specification of multiple performance
fevels s that the consequences of a failure and thus the
seriousness of the problem can be vastly different trom level
to level, For example, a failure atfecting flight satety may
well mean loss of lives while a failure affecting system
unscheduled maintenance might mean only an inconvenient
delay in a training tlight.

Examination of the above catagories reveals that it is
possible for a malfunctioning equipment item to be
classitied as an equipment failure in one of the lower ranking
catagories above and yet not be classitied as a tailure in a
higher ranking catagory. For example, carbon seal leakage
can require an unscheduled maintenance action to replace
the seal and thus be classified as a failure in terms of not
meeting the operational limits specitied in Catagory C above.
However, a leaking seal may pose no immediate threat to
flight safety and thus not be classified as a failure with
respect to the performance limits imposed in Catagory A.

Proper failure definition is extremely important if
accurate data is to be collected tor use in moniioring system
performance and determining system reliabifity. Design
decisions aftecting system safety can not be made correctly
if the analysis is based on a mixture of reported failures
atfecting only mission success and unscheduled maintenance
actions. Failure reporting forms must be designed in such a
way as to remove the ambiguity associated with failure
classification and reporting.
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Section 2.0

Reliability of Single Component
Versus Multiple Components

2.1 Series Components

'he reliability of the total system is of prime importance in
reliability analysis. A system usually consists of many
difterent components. For example, large complex systems
such as aircraft, helicopters and rockets have several
thousands of components while a small appliance may have
fess than one hundred. Components can be structured in one
of two ways, either in series or in parallel. Brietly, if
components are in series, then all of the components must
operate successfully for the system to operate. On the other
hand, if components are in parallel only one of the
components must operate for the system to continue
functioning. This is also referred to as redundancy. We will
study both of these configurations to sec how they affect the
system rehiability.

System reliabilities are caleulated by means of the laws of
probability. To apply these laws to systems, we must have
some knowledge of the reliabilities of its parts, since they
atteet the reliability of the system. Component reliabilities
are derived from tests which yield information about failure
taies. When a new component s designed and buailt, no
measure of  the electrical, mechanical,  chemical,  or
sttuctural properties can tell us the reliability of the
component This is obtained only through testing the system
i realstic emitonment,

[he problens that s of interest is the maisier in which the
reliability changes as the number of components in series
incteases. Fhus we must be able to compute the reliabilities
of the components grouped together in a series manfier.

Relabihity caleulanions for a group of components are
based on twormportant opetations: (1) as precise as possible

14
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a measurement of the reliability of the components used in
the system environment, and (2) the caleulation of the
reliavility of the series system. The rule that is used for a
group of series components is the product of the reliabilities
of the individual components.

As a specific example consider the rotor blade on a
helicopter as one compenent. The rotor blade is part of the
rotor subsystem which is part of the power transmission
system. The power transmission system is just one of the
svstems that make up the helicopter. The reliability
calculations for this hypothetical case are given in Figure
2-1. For illustrative purposes all components were
considered to have an identical reliability of 0.9999S. This is
equivalent to having only S failures in 100,000 flights.

Note how the reliability decrcases from a component
reliability of 0.99995 to a reliability for the helicopter with
5000 components of 0.779. This is an average of 20 failures
every 100 flights. This decrease is even more pronounced tor
lower component reliability. For example, with a component
reliability of 0.99, the reliability of a helicopter with S000
components would be practically zero.

Figure 2-2 is a graphic portrayal of how the reliability of
series components changes with the reliability of the
individual component when each component is identical.
This concept illustrates exactly why highly reliable systems
are much more expensive and require extensive testing to
verify the high reliability. A low relisbility can be verified
with a small amount of testing: but, unfortunately, as has
been illustrated, this is simply not possible for high
reliability systems.

2.2 Redundancy

When very high sys‘em reliabilities are required, the
designer must often duplicate components, and sometimes
whole subsystems, to meet the reliability goals. When this

IN
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SERIES FORMULA: The reliability of a group of series
components is the product of the
reliabilities of the individual com-
ponents. Ari example for a heli-
copter is shown below.

Reliability = (0.99995)%"
= 0.779
R Power
S botor Transmission Helicopter
ubsystem System
L
Group
Rot Power
S b° or’ Transmission Helicopter
ubsystem System
Number of
Components 10 500 5,000
Component
Reliability .99995 .99995 .99995
Group
Reliability 9995 97¢ 779

Figure2 1 Effect on the Reliability of Increasing the
Number of Components in Series.
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Component Reliability

Typicai Values from

the Above Curve
Component Reliability of N
Reliability Series Components
N=10 20 50 100 300
.99 904 818 .605 .366 .049
.95 599 358 .077 .006 .000

Figure 2-2 Reliability of N Series Components When
Each Component is Identical
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type of design is used, the components are said to be
redundant or parallel. Just as we saw ezilier how the
reliability for series components decreases as the number of
componeits increases, the inverse is true here. Redundant
components can dramatically increase the reliability of a
system. However this increase in reliability is at the expense
of such factors as cost, weight and space.

When redundant components are being analyzed, the
term “unreliability” is frequently used. This is because the
calculations are easier to perform using the unreliability of a
component. The unreliability is simply defined as

Unreliability = 1 - Reliability.

As a specific example consider the two parallel
components shown in Figure 2-3. With reliabilities of only
R;=0.9 and Ry==0.85, we were able to obta’n a combined
reliability of 0.985 by putting them in parallel.

The improvement in reliability achieved by operating
components in parallel can be further illustrated by referring
to Figurc 2-4. These curves show the reliability of the parallei
group compared to the reliability of individual components
for one, two, three, o five components in parallel. Each
component in the paraliel group is considered to be
identical.

From this graph we sec that a significant gain in reliability
is obtained from redundancy. To cite a few examples from
the curve, it the reliability of one compoenent is 0.9, the
reliability of two such compenents in parallel is 0.99. The
reliability of 3 such componerts in parallel is 0.999. Which
means that on an average only one time out of a thousand
will all three components fail to operate.

18




PARALLEL FORMULA: The reliability of a grcup of
paraliel components is one
minus the unreliability of the
group. The unreliavility is the
product of the unreliabilities of
the individual components.

R,=09
R,=0.85
UNRELIABILITY OF GROUP = {(1- Ry x{1- Rz)
={1-.9)x{1-.85)
= {.1) x {.15)
= 0.015
RELIABILITY OF GROUP = 1- UNRELIABILITY

= 1- .015
= (.985

Figure 2-3 Reliability of Two Paraliel Components
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Section 3.0

The Exponential
and Weibull Models

3.1 Introduction

The previous discussions on reliability analysis have
assumed that the component reliability was known and we
were only interested in using this component reliability to
compute the system reliability. We are now going to see how
these component reliabilities are computed. Specifically the
important role that the exponential and Weibull density
functions play in reliability analysis will be illustrated. Other
density functions that are occasionally used in reliability
analysis are also presented.

3.2 Exponential Distribution

When a component is subject only to failures which occur
at random intervals, and the expected number of failures is
the same for equally long operating periods, its reliability is
defined by the exponential equation

R=et/0

or in terms of the failure rate A

where

e
0

the base of the natural logarithm (2.71828)

a parameter called the mean tine between
failure usually referred to as MTBF,

t = the operating time for which we want to know
the reliability R of the component,

il
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A = 1/0 = failure rate focr the component.

This equation is applicable as long as the component is in its
useful lite. The useful life of a component is considered to be
the time after which burn-in failures no longer exist and
wear-out has not yet begun. In highly complex
electro/mechanical systems, such as helicopters, the system
failure rate is effectively constant over the useful life period
regardless of the failure pattern of individual parts. This
constant failure rate is the criteria for assuming the
exponential density function for the helicopter system as a
whole.

An important point to note about this equation is that the
reliability R is a function of operating time for the
component and the mean time between failures. This
relationship can be scen by inspecting Figure 3-1. From this
figure it can be seen that for small operating times, the
reliability is high. The reliability rapidly decreases as the
operating time increases. For an operating time equal to the
MTBF the reliability is only .368. This can be proven as
follows:

R=et0
when  t=0
R=e 0
= e
= 1/e
= .368.

The MTBF is a measure of the average time until a
component fails. If a targe number of identical components

22
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x

MTBF

Operating Time -t —————

Typical values for the reliability are given below.

t “%“MTBF %2 MTBF % MTBF MTBF
R .778 .606 472 368

Figure 3-1 Relibility Versus Operating Time for
Exponential Time Between Failures

were put on test and operated until they all failed, the MTBF
would be obtained by adding up the operating times until
failure and dividing by the number of items tested. As
implied here, the MTBF is estimated from test data.

Note that the MTBF is not a function of the operating
time. This is a unique and important property of the
exponential equation. The end result of this property is that
a component has an equal chance of survival for periods of
equal length throughout its useful life.

To illustrate the imporiant fact of an equal chance of
survival for periods of equal operating time within the useful
life, let us assume that a debugged component with a 500
hour useful life has a constant failure rate, A, of 0.0001. Its

23




reliability for any 20 hours operation within these S00 hours
is

R=e A
R = g 000120

-.002
= e

= .998.

Thus the probability of the component surviving during the
first 20 hours of the 500 hours is 0.998, and the probability of
the component surviving during the last 20 hours of the S00
hours is also 0.998. However, if this component should
continue operation beyond a total of S00 hours, wearout will
begin to play a role and the reliability of the component will
begin decreasing.

The reciprocal of the MTBF is an important and often
used value. It is commonly referred to as the failure rate. By
definition then, the failure rate is

A = 1/MTBF.

Thus the reliability function, R, can also be written in the
form

Thus far we have discussed when the exponential
distribution applies in reliability analysis but we have really
not stated that it is the time between failures that is
exponentially disteibuted. The curve that describes how the
time between fatlures is distributed is called a probability
density function. This density function ts shown pictorially in
Figure 3-2. The reliability for an operating time of t4, is then
the probability that the component will not fail prior to time

24
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flt)

The reliability for mission time t
is the area under this part of the
y curve.

////7777777777777M

Operating time,t ——

A=1/0

Figure 3-2 Exponential Density Function

(1.which is the area under the curve betweent = ty and

t = o, As a specific example, let MTBF = 1000 hours and
the mission time t 4 = | hour. Then

R = e-t/MTBF

R=e -1/1000

= o001

= .999.

The complement of the reliability function, the probability
of failing between t - 0 and t=1 hour or the unreliability, Q is

Q=1R

1-.999

R A
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When components are combined in a series manner, the
calculations are not very complex, particularly if the
operating times are the same for each component. Consider
the block diagram in Figure 3-3, which shows 2 components
in series. Let the operating time for each component be 1
hour and the failure rates are as shown on the block
diagram. The reliability calculations for this system are
shown on the figure. The resultant value for the reliability of
the system is Rg = 0.9987 Note that during the
intermediate steps of the calculations, we added the failure
rates for cach of the components to obtain a combined
failure rate for the system. This ¢an be done for any system
when the components have exporential times to failure.
Thus a general expression for the system failure rate is

Ag = Ay + Ay + .+ Ap,
When each con'vonent has identical operating time t, the
reliability formula reduces to
-Agt
Rs = e S .

When  components  are arranged n parallel  for
redundancy, the calculations are done using the unreliability
of cach component. The exact (or classical) equations used
for obtaining the system unreliability for components
arranged in parallel for redundancy are

n .
Qs= n (1‘e-At')
i=1

and
Rs = 1'05.
The first equation states that for n units in parallel, the

unreliability of the system is the product of the unreliabilities
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Series Formula for Exponential Time Between
Failures is

AR e e

OO Y
oo
(7]
I
[s-}
i
-

t, = 1hr t,="1hr,

Rg = o 1A th +4; ty]
- e-[ 0005(1) +.0008(1)
-| 0005 ~-.0008) (1)
= p

.0013(1
e00()

= 0.9987

Figure 3-3 Reliability Calculations for Two Series
Components with Exponential Times
Betwezn Failure
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Parrallel Formula for Components with Exponential

Time Between Failures Is
n .
Q. = n (e titi)
s =1

Rg = 1-Qg

A1= 01
t1 = 1hr-

Rq

R,

/\2= -05
t, = 1H.

= 0102
(1-e”f1t1) (1e7h2%2)

o
)
{

= (1.e01)  (1.g7%5
= (1-0.9900) (1-0.9512)
= (.01} (.0488)
= 0.000488

R = 1- Qg
= 1-0.000488
= 0.999512

Figure 3-4 Reliability Calculations for Two Parallel
Components with Exponential Times
Between Failures
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of each of the individual components. Knowing the
unreliability of the system, the reliability is obtained from
the second equation. Components operating in parallel are
often identical. The above equations then simplify to

Q, =Q

and
n

Rg =1-0".

When the faiture rates are small, say .01 or less, an
approximation is sometimes used for two components in

parallel. The system failure rate, A g , is simply the product
of the “wo ind1vidual rates, or

and again,

Rs= e-,\st.

Sample calculations for two components in parallel using
the exact equations are given in Figure 3-4, This example
illustrates mathematically how paralleling two components
of mediocre reliability produces a system of very high
reliability. This assumes, of course, that when either of the
components fail the other component takes over the
function. For the system to fail, both components must fail.

3.3 Weibull Distribution

Although life testing of components during the period of
useful life is generally based on the exponential density
function, we have already pointed out that the failure rate of
a component may not be constant throughout the period
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under investigation. In some instances the main purpose of
life testing may be that of determining the time to wearout
failure rather than chance failure. In such cases the
exponential density function generally does not apply, and it
is necessary to substitute a more general density function
such as the Weibull. The Weibull density function is
particularly useful because it can be applied to all three of
the phases of the life characteristic curve. The expouential
density function is a special case of the Weibull,

The equation associated with the Weibull density function
is given by

flt) = a/itﬂ"e"”[j t>0,a>0,5>0

where
f(t) = Weibull density function

t = the operating time for which we want to know
the reliaoility R(t) of the component,

} = parameter of the density function usually
referred to as the shape parameter,

a = parameter of the density function usually
referred to as the scale parameter.

The range of shapes that a graph of the Weibull density
function can take on is very broad, depending primarily on
the value of the shape parameter f#. Figure 3-S shows three
of these cutves corresponding to f- ' ff -, and B 2. For
B less than 1. the Werbull cunve 15 asymptotic to both axes
and highly skewed to the right. For f equal to 1, it
wlentical to the exponential density function, and for g
greater than Lot iy “bell-shaped™ but skewed. The amount
the curve is spread out along the abscissa dej.onds on the
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f(t)

Operating Time

Figure 3-5 Weibull Dexisity Function for a= 1

other parameter g, thus the reason for it being called the
scale parameter.

The reliability tormula associated with the Weibull
density function is

8
Rit) = e 0t"

To use this formula, one must estimate the values of a and
B trom test results. Estimates of the parameters a and f3

R}
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of the Weibull density function are computationally difficult
tn obtain without the use of a computer. There exist
analytical methods for estimating these para:meters, but they
involve the solution of a system of transcendental equations.
A more rapid and commonly used method is based on a
graphica! technique. Although none of these methods for
estimating the parameteis is presented here, an example
problem is given that iliustrates the use of the Weibull
distribution.

For the example suppose: that a sample of S0 con:ponents
is put on life test for S00 hours. The times ic tailure of the 10
components that failed during the test are as follows: 10, 45,
140, 190, 220, 250, 320, 380, 440 and 480. Using the graph-
ical method the estimates of a and f8 for this example are

a = .0016
p = .715.
Thus the reliability formula is
J75
R = e-.0016 t '

It should be mentioned that even though only tea of the
fifty components failed, the fact that there were fifty
components tested was used in computing a and f#. None
of the data is discarded.

Assume now that we want to know the reliability of this
component for a 2 hour mission. Using the reliability
equation

-.0016(2) 77®
= e

997.
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3.4 Other Distributions

Although the exponential and Weibull density functions
aiv the most frequently used in reliability analysis, there are
occasions when other density functions are required. This is
particularly true when wearout failures are being analyzed.
The normal and lognormal density functions are appropriate
to use for these types of failures.

The normal density function is a perfectly symmetrical
distribution. It is the most widely used density function in
engineering applications. The time to wearout of mechanical
equipment often follows the normal density functions. A
graph of a normal density function with a mean of zero and a
standard deviation of one it given in Figure 3-6. This density
function s veferred to as the standard normal density
function. it is the one found tabulated in most statistical
tables. Computations about any normal density funciion can
be made using the standard normal with the appropriate
transformation.

The log-normal density function occurs in  practice
whenever we encounter a random variable such that its
fogaritham has a normal density tunction. In reliability
analysis it is mnst frequently usea for analyzing wearout
failures. A graph of a typical log-normal density tunction is
shown in Figure 3-6. It can be seen from the figure that this
density function is positively skewed.

Many reliability problems deal with situations referred to
as “repeated trials”” For example, it we want to know the
probability that 9 of 10 rounds will hit their target, that 1 of
S vivets will shear in a tensile test, we are in each cuse
concerned with a numiber of “trials’ and we are interested in
the probability of getting a certain number of “'successes.” 1f
we are conducting a test, the number of test specimans
represents the number of trial.. and the number of
specimans that do not fail represents the number of
successes. The reliability is then the number of successes
divided by the number of trials.
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One advantage that the binomial density function has over
the other density functions used in reiiability analysis is that
no assumption is made about the time-to-failure density
function. This is why it is referred to as distribution-free
analysis.

A histogram of a typical binomial density function is given
in Figure 3.6. A histogram is used because it is a discrete
distribution, that is, the number of successes can only
assume the non-negative integer values.
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Section 4.0
Estimating Reliability
Using Test Data

4.1 Determination of Failure Rates from
Test Data

An effective and widely used method of handling
reliability prediction problems is that of life testing. To
conduct such tests, a random sample of n components is
selected from a lot, put on test under specitied
environmental conditions, and the times to failure of the
individual components are observed. If each component that
fails is immediately replaced by a new one, the resulting life
test is called a replacement test; otherwise, the life test is
called a nonreplacement test. Whenever the mean lifetime of
the components is so large that it is not practical, or
economically feasible, to test each component to failure, the
life test may be truncated, that is, it may be terminated afier
the first v failures have occurred or after a fixed period of
time has been accumulated.

In tracking the reliability of Army weapon systems under
development, it is normally the case that test costs are so
high that life testing without truncation is not feasible, we
will concentrate our discussion on truncated life testing. In
what follows we will assume the failure time density function
of each component is exponential, that n components are
put on test, life testirg is discontinued after a tixed number
r with r<n, of components have failed, and that the
observed failure times are t, < <<ty

We are interested in estimating the mean time between
tailures, the failure rate can be estimated using the
equation
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From the results given by Epstein{2}, it can be shown that an
unbiased estimate of the mean time between failure is

6 = T, /r

where Ty is the total accumulated test time until r failures
occurred. Thus for nonreplacement tests Ty can be cbtained

using

r
T, = 3

ti+ (n-rit,.
i

1

Note that if the tests are continued until all items fail, T,
reduces to

and the mean time between failures is simply the mean of the
observed times to failure.

To illustrate the methods presented, let us consider the
following example. Suppose that 10 rotor blades are placed
on test without replacement and that the test is truncated
after r =3 of them have failed. Furthermore, suppose that the
3 failure times are 250, 410, and 480. Thusn =10, r = 3, and

(230 + 410 + 480) + (10-3)480

Ts

4480 hours.

Hence we ¢ timate the mean time between failure as

4480
3

1493 hours.

0 =
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The estimate of the failure rate is

A

1= 10

1
1493

00067 failures/hour.

This means that on an average one can expect seven failures
to occur every 10,000 hours of operation.

4.2 Confidence Intervals

The estimates of the mean time between failures obtained
from test data as described earlier, are called point estimates
of the true unknown MTBF. We will now look at what
confidence we can have in the point estimates.

Statistical estimates are more likely to be close to the true
value as the sample size increases. Thus, there is a close
correlation between the accuracy of an estimate and the size
of the sample from which it was obtained. Only an infinitely
large sample size could give us a 100 per cent confidence or
certainty that a measured MTBF coincides with the true
value. In testing of Army equipment the longer the test time
and the greater the number of failures experienced, the
greater the confidence one has in the point estimate MTBF.

When the estimate of the MTBF is obtained from a
reasonably sized sample, we may logically assume that the
true value of that MTBF will be somewhere in the
neighborhood of the estimate, cither greater or smaller.
Theretore, it would be more meaningtul to express the
MTBF estimates in terms of an interval with an associated
probability or confidence that the true value lies within such
interval rather than to express them only as point estimates.
This is exactly what we are doing when we assign conf*dence
limits to point estimates obtained trom test data.
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Confidence intervals around the mean time between
failures, or around any other point estimate, have a lower
confidence limit and an upper confidence limit. For
example, a 90 per cent confidence interval might read

P(500 < MTBF < 700} = 0.90.

The SO0 hours is the lower confidence limit and the upper
confidence limit is 700 hours. This confidence interval is
structured so the probability that the interval between 500
and 700 hours includes the true value of the MTBF is equal
t0 0.90. Since the MTBF is estimated from test data, the true
value of it is never known. However, the concept of a true
value for the MTBF must be understood to correctly
interpret confidence intervals,

There is another way of explaining the meaning of
confidence intervals that relates it more to test data, The 500
and 700 hour; in the above confidence interval were
estimared based on the results of test data and the fact that
the time between failures is exponentially distributed. If
another test were conducted and a new set of confidence
limits was calculated based on the results, the limits could be
shghtly ditterent from 300 and 700 hours. If this same
process was repeated many many times, realizing this is not
pracucal to do so, then cach time we would get slightly
difterent contidence hmits, However, on the average, 90 per
cent of the confidence intervals thus computed would
contain the trae value of the MTBE. Also, on the average, 10
times vut of 100 the interval thus computed would not
contiunt the true value of the MTBE.

Contidence intervaly are easily computed for the MTBE
when the tume-to tatture distribution s the exponential. The
information that s required 15 the number of tatlures that
occutted during the test, the estimate of the MTBE obtamed
trom the test results and the confidence level required. The
pomnt estimate MTBF is equal to the total accumulated test
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hours divided by the total failures. Usually only the lower
confidence limit for the MTBF 1s of interest. This is because
we are primarily interested in the probability that the MTBF
is greater than some minimum value. Or, stated another
way, it is at least as great as the minimum value.

To illustrate how the lower confidence limit for the MTBF
is computed, let us consider the following problem.

Twenty items are tested for a period of 100 hours.
Four of the items fail with failures occurring at
20, 48, 76, and 92 hours. Compute the lower 95%
confidence limit for the MTBF.

In reliability terminology, this is a time terminated test
without replacement of failed components. Time terminated
means that the test is stopped after the predetermined time
of 100 hours is reached. Without replacement means that as
the failures occur, the failed items are not replaced. For this
particular test, the equation tor the lower confidence limit,
MTBE .once the confidence level hus been established, is as

follows:
MTBF, = -—2l——
L Xz
a,2r+ 2
w here
T = total test hours, oritem-hours
2 N . . .
Xy ar+2 = chi-square function
a = leve!l of significance
r = number of failures that occurred
during the test

[he level of significance **a ™ is related to the confidence
levelas C.L. = TO(X1- a ) in per cent. ‘The numerical value of
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the Chi-square function, X24 »r+2is obtained from a s.t
of tables for the Chi-square distribution. In most of these
tables the numbers in the vertical column on the left
under v, *‘nu’’, are the degrees of freedom and are equal to
the quantity 2r+2 in the above equation. Across the top of
the table are values of the levels of significance, a. Knowing
“v "and“a", values of X2can be read from the table. For
the above problem v = 2r+2=10. Under the a = .05
column, read 18.3 from a X2 table.

Therefore

MTBF = 20+48+76+92 + 16(1@
4

i

459 hours (Approximate MTBF = 460)

2(1836 hrs.)
18.3

Il

MTBF,

200.6 hours .

What the above answer states is that one can be 95 percent
confident that the MTBF will be at least as great as 200.6
hours.

The amount of confidence that can be placed in an
estimate of the MTBF is a definite function of the number ot
hours tested and the number of items tested. That is we can
raise our lower confidence limit for the MTBF by testing for
a longer period of time, assuming that we don’t run inrto
wearout failures. If, in the above example, we test for 200
hours and have failures occur at the following times

20, 48, 76, 92, 105, 130, 155

the point estimate of the MTBF would be
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MTBF = 20+48+76+92+1075+130+155+13(200)

3226
7

461 (Approximate MTBF = 460)

which is approximately the same estimate previously
obtained. However the lower 95% confidence limit now
is raised and becomes

2(3226)

MTBF, = 5629

= 245
which is significantly higher than previously obtained.

This same pattern continues as the test time is increased.
Table 1V summerized the results for four different cases,
including, the two presented above. Each of these cases
resulted in about the same estimate for the MTBF, but due
to the longer test time the lower confidence limit is higher.
This same argument can be extended to the number of units

tested.

The ponts made in this section can be summarized by
stating that there must be a trade-off between the resources
available tor testing and the confidence levels required on
reliability estimates. We can never achieve the ultimate of
100 pereent contidence in our results. Neither can we aftora
not to have any testing. A balance between resources and
confidence is our objective.
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TABLE 41

ILLUSTRATION OF HOW A LONGER TEST
TIME CAN INCREASE THE LOWER
MTBF CONFIDENCE LIMIT

Lower
Test |Test |[Number| Approximate | Confidence

No. |Time|Failures MTBF Limit
1 100 4 460 201
2 200 7 460 245
3 300 10 460 287
4 400 12 460 301

Test 1 ]

!

/// |

201
Test 2 |
|
245

Test3 |

|

|

Test4 287 |

I

| 1

301 460

MEAN TIME BETWEEN FAILURES
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4.3 Reliability Growth Curves

4.3.1 Introduction

The subject of reliability improvement by means of con-
scious efforts on the part of designers, test engincers,
customers, etc., has been of interest since the beginnings of
reliability analysis. The modeling of such growth processes
has followed, for the most part, a common procedure:
Formulas are presented that are intended to represent the
growth of reliability as a function of time. These formulas
contain unknown parameters, and it becomes an exercise in
statistics to find appropriate estimates for these parameters
as a function of observed failure data.

The central purpose of most reliability growth models
includes one or both of the following objectives:

a) prediction of the current system reliability,
b) projection on the system reliability for some future
development time.

As in any mathematical model, reliability growth models
are idealizations. They are based on a number of
assumptions that vary with the different models. If a
program manager desires to use a growth model to help him
plan a development program, he should choose a particular
model based on prior experience with similar type systems.
As the development program progresses, he can use the
model along with test data to monitor and project the
reliability of the system and make necessary decisions
accordingly.

4.3.2 The Duane Model

Oue of the most widely used growth models used for Army
systems is the Duane model presented in reference 6 by J.T.
Duane of the General Electric Company. He analyzed test
and operational data tor programs wiih test times as high as
6 million hours on five divergent groups of products. The five
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groups included two hydro-racchanical devices, two aircraft
generators, and one jet engine. His analysis revealed that for
these systems, the observed cumulative failure rate versus
cumulative operating hours fell close to a straight line when
plotted on log-log paper.

Crow [ 8] presents a formal mathematical development of
the Duane model. He showed that when the above conditions
hold, the failure rate during development follows the
Weibull failure rate curve. The development given below and
the notation are similar to that given by Crow.

Mathematically, this model may be expressed by the
equation

Fit) = At™ %, A >0

0<a<1

where F(t) is the cumulative failure rate of the system at time
t and A and a are parameters. The cumulative failure rate 1s
by definition

Flt) = -—E—t(—tl

where E(1) is the expected number of failures experienced by
the system during t time units of development testing. Thus
from the above two equations

E(t) = At77 9,

The instantaneous failure rate, r(t), is of most interest for
applications. It 1» defined as the change in the expected
number of failures per unit time. For a nonexponential
system, it varies with time while for an exponential system
the failure rate is constant.
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Differentiating  E(t) with respect to time pves the
instantaneous failure rate r(t) as follows:

(o = dE@
dt

s
o

(1-ajat @,
By substituting in the above equations

f = 1-a
ane gets

My =gt

which is the Weibull failure rate function for a cepairable
systom,

Thus it one plans to use the Duane model Jduring a
development program. the above expression can be uscd to
deternune the failure rate at a particular development time t.
Thevalues of A and ffare estimated from test data. Sinee A is
only a multiplicr and  determines how much the failure ate
chang  with the development time, ff i veferred to as he
crowth parameter. For the svstems studied by Duane, a g of
approvimately 0.5 was estimated.

A report published by 1D, Selby and S.G. Millei, also of
G.F. gives some additional computational experience with
the Duane model  An cstablished and eaperience growth
tate of 0.5 for an aggressive reliability progranmy was reported.
A manimum growth of 4 was estimated which had never
been achieved. A minimum ol .Y can be expected on these
programis where no real speeitic consideration is given 1o
rehiabiluty.

To gain fur.her insight into the Duane modcl, consider
Figure 4-1 which is a plo of the Weibull tailure rate versus
development time for f -0.5 and A -0.4. During the ealy
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Figure 4-1 Failure rate versus development time for
Weibull Fa:'ure Rate

stages of development the failure rate decreaces rather
rapidly due to more faitures and more rework going on
during this time. As the development progresses, the rate of
decrease of the failure rate drops oft considerably. The
Duaane model assumes that at some time ;. which
corresponds to about the time thai development ends and
production stants, the fatlure rate Jevels oft 10 a fairly
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¢ .nstant value. At this point in time when the failure rate
becomes constant, the time between failures can be
described by the exponential distributior with a mean time
between failure of

to P
MTBFitg) ~ —o- .

Note the similarity between the failure rate curve described
here and the life characteristic curve previously described.

Crow [ 8] has developed the maximum liklihood estimates
(MLE) of Aand f8 and also a goodness of fit test to determine
if the Duane model fits a particular set of data. The MLE
estimate for 3 is

l§ _ N
K Nelt) T
)X z log
r=1 i=1 ir
where
K = number of different subsystems,

i

T the operation time for each of the K

subsystems,

N, (T) =number of failures observed for the r-th
subsystem during T time,

X, = the age of the r-th subsystem at the i-th
failure, beginning of development being 0,

and
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K
N = XNt
i=1

The above MLE estimate of f§ is biased. The unbiased
estimate is obtained by using

—--N-:.lA
/3- N[’.

The MLE of Ais
3\ N

———————

KTA

The chi-square goodness of fit test can be used to
determine if the observed data fits the Duane model. The
chi-square statistic is calculated using

2
2 c (Oi-Ei)
xc = .z E. .
i=1 i

To compute the statistic the development time is divided into
¢ intervals. The observed number of failures in the i-th
interval, 0;, is obtained from the observed data. The
expected number of failures in the i-th interval, E; . is
obtained using

BB
E. = __.__..___N(ti -__ti.‘_L)

1P
where ti-4 and T are the beginning and ending tumes for

the i-th interval. The Xé 1s compared with the tabled value

of chi-square, X ;". . with degrees of freedom equal to ¢-1 and
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the specified level of significance. 1f

then it can be concluded that the data fits the Duane model,

4.3.3 Application

An engine system was analyzed for reliability growth using
the Duane model. The data available for analysis was based
on 8063 hours of development testing. During this time there
were 40 taitures and the times of each failure were recordec.
Fhe aserage rates for this system during each 1000 hour
interval are shown in Figure 4-2

Using the data the MLE's of A and 8 were computed to be

1 = 0.128

i

B = 0639,
I'he unbirased estimate of /7 s
f = 0623.

[he chissquare goodness of fit statistic was caleulated next
using an interval width of 1500 hours. The result was

2

X = 1343,

Using a 1" level of signiticance and a degrees of freedom
ot 61§ the tabled value of chi-square is

x2 = 15.086.

| has it can be concluded that the Duane model fits the data



Using the formula on page 46, the estimated failure rate for
the engine becomes
6231

r(t) 128(.623) t

= 08t

A plot of this failure rate curve is given in Figure 4-2. Notice
how the curve is beginmng to flatten out. In tact it would
take 100,000 hours ot development time to get the failure
rate down to .001 failures. hour.

Failure Times

1.43,43, 171,234,274, 377, 530, 533, 941, 1074, 1188, 1248,
2298, 2347, 2347, 2381, 2456, 2456, 2500, 2913. 3022, 3038,
3728, 3873, 4724, 5147, 5179, 5587, 5626, 6824, 6983, 7106,
7106, 7568, 7568, 7593, 7642, 7928, 8063
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Figure 4 2 Failure Times and Estimated Failure Rate for
Example
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Section 5.0
Operating Characteristic Curves

5.1 Use and Interpretation of OC Curves

Conclusions concerning equipment reliability will of
necessity be based on the results obtained from a test
sample. The behavior of a sampling plan is established by
specifying the lot size for which it is to be used, the sample
size to be tested, and the number of faulty pieces which will
cause acceptance or rejection of the lot. From this
information it is possible to predict the results that will be
obtained when the plan is used in practice Speafically, 1t is
possible to predict the risk that a wrong decision will be
made by cither accepting lots of poor quality or rejecting Jots
of good quality. Such predictions are made from the
operating characteristic (OC) curve of the sampling plan.
Each different sampling plan has its own OC curve,

‘The use of operating characteristic curves can greatly
ard in the selection of reliability test plans. The purpose of
using them is to control the cost of the testing program while
at the same time assuring that rehability goals are met. This
purpose is accomplished by allowing one to use a systematic,
quantitative approach to evaluate and select the test plan
rather than relving completely on subjective judgement to
make the selection.

As wesaw earlier in Seetion .1, test data can allow us to
draw conclusions concerning the reliability or MTBFE of the
cquipment items undergoing test. However. it should be
emphasized again that these conclusions concerming the
MTBE are based on samples and can, therefore, be in error.
This 1s where OC curves provide valuable assistance. They
allow both the customer and the manufacturer of the test
items to predict the risk of error when basing  their
conclusions concerning product rehability on a sample of
test results,
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One of the important characteristics of a demonstration
test plan is its probability of acceptance as a function of the
test items actual MTBF. The probability of acceptance of a
test plan is the probability of concluding that the test results
are satisfactory and indicate an acceptable MTBF. For
example: One of the test plans taker from the Department
of Defense handbook, “Quality Control and Reliabiity
Handbook (interim) H-108 - Samphng Procedures and
Tables for Life and Reliability Testing (Based on
Exponential Distribution)” has the following acceptance
criteria.

“Select 22 items st random from a lot and place
these items on test. When an item fails, replace

it with another item selected at random from the
lot. It the test continues for S00 hours with not
more than two failures, accept the lot. It 3 failures
occur prior to S00 hours, reject the lot.”

This plan could be used to demonstrate a desired MTBEF
of 10,000 hours by following the above accept, reject criteria.
However, before deciding to use this plan (or any other) we
should examine its OC Curve which is shown in Figure S-1.
This curve represents a sample size of M - 11000 item hours
(i.¢. SO0 hours x 22 items = 11000} and an acceptance number
of K- 2.

The “a™ of Figure S-1is designated the producer’s rish
and s defined as the probability of rejecting equipment with
a true MTBE equal to the 10,000 hour MTBE. The term a s
also called the tevel of significance. The ™ of Figure 8.1 1s
destgnated the consumers risk and is equal to the probabihin
of acceptng equiprmient with a true MIBF equal only to g
minimum acceptable MTBE, such as 2000 hours. 1t should
be pointed oat that the minimum acceptable MTBE is not
necessarth o desirabie MTBE and iy selected <o that an
associated and specified risk () of accepting equipment of
this value is wolerable. Examiration of Figure S 1 shows the
way i which the probability of aceepting test results as vahd
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Figure5-1 Operating Characteristic Curve

indicators of the desired MTBF increases as the true MTBF
of the equipment on test approaches the 10,000 hour MTBF.
[he selection of a sound test plan involves considerable
experience and judgement to insure that a plan is chosen
with properyvalues for a and . 1t is these values that dictate
the overall cost of a testing program. The three major costs
associated with any sampling and testing plan are:
. The costs associated with rejecting equipment as not
meeting a reliability standard (such as the 10,000 hours
MTBF given above) when in fact it does meet it. This is

called a Type 1 error and the chance or probability of

making this error is called the producers risk (a).

2. The cost associawed with accepting equipment as
meeting a reliability standard (such as the 10,000 hours
M I'BF) when in factit is some specitied vatue less than
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the standard. This is called a Type II error and the
chance of making this mistake is called the consumer
risk ().

3. The cost associated with the sampling and testing
operation. This cost is generally assumed to be directly
proportional to the number of units tested.

Examination of the curve in Figure 5-1 provides some
insight concerning the test plan’s ability to discriminate
between good and bad values of the actual MTBF for a
production lot. It shows that there is a 90% chance that 2 or
fewer failures will occur when using this plan to test
production items with a true MTBF of 10,000 hours. If this
occurs, the previously stated acceptance criteria of our test
plan will be met and we will correctly conclude that the items
under test have a MTBF of at least 10,000 hours. The
producer of the item under test should also be satistied with
this arrangement because there is only approximately a 10%
chance (i.e. a = 1.00-0.90 = 0.10) that more than 2 failures
wiil occur and cause the rejection of equipment that actually
has an MTBEF of the called for 10,000 hours.

On the other hand, when using this same test plan there is
an 8.8% chance (i.e. # =.088 that two or fewer failures will
occur and the acceptance criteria will be met when testing
items with a true MTBF of only 2000 hours. Stated another
way. if a contract called for an MTBF of 10,000 hours to be
demonstrated by using the above plan, an 8.8% chance exists
that the demonstration could be successtully made with
equipment whe @ MTBFE was only 2000 hours.

The consumer must now decide whether or not the risk of
making an crror and expertencing the assoctated costs of
accepting equipment with an MTBE of only 2000 hours can
be tolevated. I the deewsion s made that an 8.8"4 chance of
accepting @ production lot withr a ttue MTBE of 2000 hours
i too gieat a tisk the situation can be remedied by making
change i the test plan.

o
o
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These changes can take many forms but normally the
intent 1s to change the shape of the OC curve. The following
discussion will be limited to the impact on the OC curve of
changing cither sample size or acceptance number. The
sample size can be changed by altering the number of items
on test or changing the length of time the items remain on
test. Of course, care must be taken to insure that wearout
does not influence the failure rate and that the probability
that an item will tail remains independent of the number of
hours an item has been on test. Figure S-2 illustrates how
the probability of acceptance is reduced by increasing the
sample size to 22,000 item hours. This increase could have
been achieved either by doubling the number of items on test
from 22 to 44, doubling the length of test time to 1000 hours
tor the original 22 items, or some other combination of
increased test time and increased number of items on test.

*
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Figure 5-2 Operating Characteristic Curve



The above change in sample size reduces the probability
(f3) that items with a true MTBF of only 2000 hours will be
judged acceptable to 0.001. However, while this change is
desirable, two things have happened that are not desirable.
First, our sampling and testing costs have increased. Second.
the probability (a) of rejecting items with an acceptable
MTBF of 10,000 hours has been increased to 0.377 and the
producer will not be happy about this.

Another way to bring about the same general type of
change in the shape of the OC curve is to reduce the
acceptance number from 2 to 1. The results are shown in
Figure §-3.
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M = 11000
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Figure 5-3 Operating Characteristic Curve

[ this case the probabil 8) ot accepting a lot with an
MIBE of 2000 hours s reduced to 0.027 while the
probabihis Ca) of rejecting a lot with the desired MTBE of
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10,000 is increased to 0.301. The difference between this
situation and the previous one is that we have not increased
our sampling and testing cost and in fact may have reduced
it slightly if a curtailed testing scheme is being used.

The ability of our test plan to discriminate better between
an MTBF of 10.000 hours and an MTBF of 2,000 hours can
be accomplished by increasing both the acceptance number
and the sample size. The result is a decrease in both the
producers risk (a ) and the consumers risk ( §). For example;
it the sample size is increased to 31,500 hours and che
acceptance number to 6, the result is an OC curve like that
shown in Figure 5-4.
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> M = 31,500
I:.;: K<6

S a =0.042
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MTBF*

*Axis not to scale

Figure5-4 Operating Characteristic Curve

In this case, the probability (8) of acccpiing items with a
true MTBF of 2000 hours has been reduced trom 0.10 to
0.00S and, at the same time, the probability (a) of rejecting
items with a true MTBF of 10,000 hours has aiso been
reduced from 0.10 to 0.042. These are desirable results for
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soth producer and consumer but the penalty paid is an
increase in sampling and testing costs.

It sometimes requires an extremely large sample size to
provide both the producer and the consumer with the degree
of protection they desire from the risk of makir.z an error.
For exampie; suppose that in our example of Figure 5-1 we
and the producer are satisfied with the 90% chance of
accepting a production lot whose true MTBF is 10,000
hours. However, we feel that the 8.8% risk of accepting a
production lot whose truc MTBF ts only 2000 hours cannot
be tolerated. Assume further that if the lower MTBF of 2000
hours were raised to 7000 hours, we could tolerate about a
10% chance of acceptance at this level. The sample size or
number of item hours required to satisty these new
requirements and also keep a at 0.10 is equal to
approximately 330,000 item hours with an acceptance
number of K=4.0. Thisis a sub: antial increase over the
11,000 item hcurs required earlier and may not be possible
because of excessive testing costy. If such large scale testing
were not feasible a compromise would have to be reached
and OC curves provide a mechanism ijor doing this
intelligently by helping us evaluate the risks of error
associated with different test pians.

5.2 Examples of Calculations

The OC Curves in the previous section were developed 1
show the prebability that a specific testing and samphing
plan would indicate an acceptable MTBF for various true
values of equipment MTBF. Acceptable results were
indicated when the number of failures during a test was
found to be equal to or less than some specified number. In
the example shown in Figure S-1 of the previous section we
concluded that an acceptable MTBF was demonstrated
when two or fewer failures occurred during a A0 hour test of
twenty-two items. The probability of two or fewer tailures

9
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during the test is determined by calculating the probability
of exactly two failures, exactly one failure, and zero failures
and adding these probabilities together,

Calculations of the specitic values for the OC Curves in
Scction 3.1 were accomplished by using the Poisson
distribution as an approximation to the Binomial
Probability Law. This approximation is very good for small
probabilities of failure and relatively large sample sizes.
hese conditions are easily et in most life testing
situations.

The equation for the Poisson Jistribution is:

(ax)k e’

k! (5-1)

where:
P(k) = The probability of k failures

k = Specified number of failures

- . . - l___
A = Failure rate per hour (i.e. A = MTEE
where MTBF is given in hours.)
X = Test Time (i.e. No. of items being tested
multiplied by the length of test in hours)
e = the constant 2.71828

The above equation will now be used to calculate the
probability that exactly k"™ failures will occur during a life
test. Tie failure rate per hour is simply the reciprocal of the
MTBF given in hours. The test time in “item hours’ is
determuned by multiplying the number of items being tested
by the length of the test in hours. This calculation assumes
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the replac..nent of failed items during the duration of the
test. For example: The probability of exactly two failures
occurring when 22 items with a true MTBF of 10,000 hours
are placed on test for 500 hours is determined as follows:

X = Test Time No. Items x Length of Test
= 22x500
= 11,000 item hours

1 _
MTBF

]

A = Failure Rate

—_
= 70000

0.0001 failures/hour.

]

Since we wish to determine the probability that exactly two
failures will occur (i.e. k= 2) we must now evaluate Equation
5-1.

(0.0001 x 11000)* (2.71828) 1 2%*11%0

P(k=2! = 2!

= 0.201.

This evaluation indicates that there is a probability of 0.201
that exactly two failures will occur during the test. To
determine the probability of our acceptance criteria being
met (e, k < 2) we must next tind the probability of exactly
one and also the probability of zero failures occurring and
then ad'd the three values together.

These last two values are:

ol




(0.0001 x 11()()())1 (2.71828) -(.0001x11000)
P(k = 1) = 1'
= 0.366
0 -( 0001x11000)
o(k = 0) = (0:0001x11000)" (2.71828) e

0!

0.333.

By adding these three values we get a probability of 0.201 +
0.366 + 0.333 = 0.900 as the probability of two or fewer
failures duiing the test. This value gives us one point on the
OC Curve for the test.

A second point on the curve for this test of 22 ite.nw can be
caleulated in a similar fashion. As vefore, we assume a 500
hour test and an aceeptance: number of k < 2. However, this
ttme a true MTIBFof only 2000 hours will be used. The
probability of two or fewer failures is then

Pl - 2) - 10.0005x11000)* i@ﬂ@)’i o061
= 0.062

Plk = 1) = 0.022

P(k = 0) = 0.004

P(k = 2) +Plk=1)+Plk =0) =0.088.

I his totelindicates the prebability of two or fewer failures to
be equal to 0088, Fhese two points are shown on the OC
Curve of Figure -1 and repeated below in Figure S-S,
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Figure5-5 Operating Characteristic Curve

Other points on the curve can be calculated in a manner
similar to that shown for MTBF of 2000 hours and 10,000
hours. The OC Curve itself can be thought of as showing the
probability that our acceptance criteria will be met when the
true MTBF varies from zero to over 10,000 hours.
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Section 6.0
Bayesian Methods
in Reliability Analysis

6.1 Introduction

A particular problem associated with reliability prediction
and assessment is that there is normally a very long time
period between the design phase and the time at which
sufficient  usable  test data  has  been  accumulated.
Predictions  during  the carly period of design and
development are traditionally based on engineering judge-
ment. Classical prediction methods are not adequate when
only a small amount of data is available. Bayes' Theorem
presents a method of assessing achieved reliability during
the lengthy interim phase, when management decisions
regarding design and development can have their biggest
impact.  Bayes' technique  combines relevant  operating
evperience carly in the program phases with the prior
prediction to form a new prediction. As more and more test
data are accumulated, the prediction is continually updated.

Bayes™ analysis begins by assigning an initial reliability on
the basis of whatever evidence is currently available, The
initial prediction may be based solely on engineering
judgement or it may be based on data from other similar
tpes  of dtems. Then, when additional test data is
subsequently obtained, the initial reliabilities are revised on
the basis of this data by means of Bayes” Theorem. The
iittal reliabilities are known as prior reliabilities in that they
are assigned before the acquisition of the additional data.
[ he reliabilities which result from the revision process are
known as posterior reliabilities.

6.2 Bayes' Theorem

A basic theorem in probability theory which relates joint
and conditional probabilities is
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P{A and B} = P{A|B)P(B).

From the above equalities we can write

_ P(A[BIP(B)
P(BIA) bIA]

which is called Bayes’ Theorem. With this expression we are
attempting to estimate the posterior probability, P(BIA),
which is interpreted as the probability of getting outcome B
given that outcome A has occurred. The probability P(B) is
the prior probability which is being revised.

To illustrate Bayes' Theorem, let's consider the foliowing
specific example:

There ave three suppliers of a servo, By, By, and

B;. Company B4 supplies .6 of the servos, B, supplies
.3, while B supplies .1, Past history indicates that

95%% of the servos supplied by By perform accord-

ing to specifications, 80% of those supplied by B,

and 65% of those supplied by B 5 . Given that a

servo performed according to specifications, compute
the probability that it came from B,, B,, and B3.

The prior information in this problem is the percent of
servos provided by cach supplier. The updated information
is that a servo performs according to specifications. We want
to compute the posterior probabilitics based on the new
information. The posterior probabilities will give us the
updated probabilities that the servo came from By, By, o
B,. Note that without this new information and  withowt
Bayes' Theorem, the only conclusion we could draw is the
same as that given in the prior information.

To solve this problem, we will write Bayes' formula as
follows,

P(AIB,IP(B,)
P(B/A) = —— - -
P(A)




where

1,2,and 3

..
i

B, = event’'servo came from supplier r”

event ‘‘servo performed according to
specifications’.

>
i

In the above equation, the denominator can be written:

3
P(A) = Z P(Bi)P(AIBi).
i=

1
Expanding, this equation becomes

P(A) = P(B,)P(A|B,) + P(B,IP(A[B;) + P(B,)P(A[B,).

We can visualize this situation by constructirg a tree
diagram like the one shown in Figure 6-1, where the
probability of the final outcome A" is given by the sum of
the products of the probabilitics corresponding to each
individual branch.

B, Pl(AIB,} 95
N - LPY 0% oA
&
B, PIAIB,) 0.80
- @A @A
P(B.)
%\ B. PIAIB.]
B 0.65
2/ g2 1 eA oA

Figure 6-1 Tree Diagram for Example
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Then the probability that any one servo received by the plant
will perform according to specifications is

P(A)

.6(.96) + .3(.80) + .1(.65)

0.875.
The posterior probabilities can now be computed as,

P(B,)P(A B,)
P(A)

P(B|A)

.6(.95)
875

= .65
P(leA) = .27
P(B;lA) = .07.
Thus the new information has provided us revised estimates

about who supplied the servo. Table 6-1 shows the prior and
posterior probabilities for comparison purposes.

6.3 Bayes' Theorem Applied to Reliability
.
Analysis
As has been mentioned earlier, Bayes' Theorem is used in
conjunction with prior information and current data to

provide updated reliability estimates. Table 6-2 shows the
results for several ditterent cases when the prior MIBE was

1
I e discussion given hege s based on that ginen i reterences Vand 4
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Table 6-1 Results for the Bayes Theorem Example

Probability
Supplier Prior Posterior
B, 6 .65
B, 3 27
B, A .07

Table 6-2 Results of Bayesian Analysis

Prior MTBF Operating Posterior
(Hrs) Time (Hrs) Failures MTBF (Hrs)
10,000 0 0 10,000
10,000 1000 0 10,547
10,000 5000 0 11,010
10,000 1000 1 8517
10,000 5000 1 9.675

Table 6-3 Typical Discrete Prior Distribution

Cell Celi Prior Cell
No. Value (R ;) Probability P(R;)
1 1. 002
2 .999975 002
3 .999925 496
4 .999875 .408
5 99975 .002
6

.999625 002
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10,000 hours. For each case the prior MTBF, operating time,
and number of failures during this operating time were used
to obtain posterior MTBF.

The discussion given here is confined to the exponential
failure distribution, since this is the one most commonly
applied to reliability analysis. The method given in
references 3 and 4 uses a discrete prior rather than a con-
tinuous prior. When using continuous priors, difficulties
arise due to the mathematical functions involved.

The given discrete prior is divided into a number of
discrete cells. Each cell consists of a cell reliability, R;, and a
probability associated with this reliability, P(R;). The first
six cells for a typical prior distribution is given in Table 6-3.
Each cell also has a lower and upper boundary for R;
however, for simplicity they are not shown. Note how the
distribution is heavily biased toward the lower cells. This
bias is made in order that any test data which differs
significantly from the predicted prior failure rates will
readily “wash out” the prior. Test data producing results
similar to the prior will not significantly alter the value when
forming the posterior. This is because cells 3 and 4 which
have probabilities associated with them contain the prior
reliability value which was .999Y tor this particular problem.

After the prior distribution is established and some test
data becomes available, the posterior reliability is computed.
This is done by first computing P(BlRi ) for each cell where

B = event "‘x failures in t total units of time’’.

To compute tiris probability, one uses the number of failures
of the item, number of current hours accumulated on the
item, and the cell failure rate that is computed using
formulas given in references 3 and 4.

Next the P(B) is calculated by summing individual cell
values of P(BIRi), times the cell probabilities P(Ri)' The
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posterior probability for cach cell P(R; |B) is calculated as
the ratio

{PBIR.)} {P(R,)}
P(B]

P(Ri B) =
wherte

n
i=1

and summed over each cell. When this sum equals to .5, then
the corresponding reliability value 1s interpolated. This
median reliability value is the posterior reliability prediction.

6.4 Example

Suppose that a system consists of two subsystems. Based
on past experience, it is known that the time to failure for
cach subsystem is exponentially distributed. It is assumed
that a discrete prior similar to the one giveri in Table 6-3
describes the prior distribution of the reliability for each
subsystem,

The prior failure rates obtained from the discrete prior
dhistributions are 00010 and .00050 failures per hour for
subsystems 1 and 2 respectively. This yields prior reliabilities
tor 1 hour mission times of

R, = e " = 0.999%0

R, = e %% = 0.99950.
Using the above data and the procedure previously

outlined, the posterior reliability for each subsystem can be
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obtained. The results obtained for the updated failure rates
for each subsystem are

Ay = .00889 failures/hour
A, = .00048 failures/hour
and for the system
Ag = .00889+.00048

00937 failures/hour .

The updcted reliability predictions for 1 hour mission times
are

~00839 _ 0.99115

o o)
]
o

|

R, = e %04 = 099952

Ry = e ™ = 0.99067.

Although this is a relatively small example the
calculations are similarly done even when applied to large
army weapon systems. Using the prior distribution and
current test data, a new updated distribution is obtained,
referred to as the posterior distribution. The reliability of the
total system is then obtained in the usual manner.




Section 7.0
Summary

The toregoing material explains and illustrates the need
for a quantitative approach to reliability analysis. The
determination of overall system reliability was discussed in:

Section 2.0, “Reliability of a Single Component Versus

Multiple Components”,

Section 3.0, “*The Exponential and Weibull Models™ and

Section 6.0, *'Bavesian Methods in Reliability Analysis™.

Use of test data as input to system reliability models and
as an aid in controlling program costs was discussed in:

Section 4.0, “Estimating Reliability Using Test Data”
and

Section 5.0, **OC Curves in Reliability Analysis™.

It was pointed out that during the analysis of system
reliability that it was desirable to evaluate the impact of
difterent system configurations and changes in component
reliabilities on overall system reliability. This type of
evaluation can contribute greatly to the overall design eftort
and insure that reliablity goals are met by using the most
economically efticient design.

Test programs are necessary to insure that various
components meet their design specifications. The material
on estimating reliability from test data and the use of OC
Curves can be used to insure that test programs vield
adequate data and supply this data at reasonable costs. The
danger of establishing a test program without using the
proper statistical tools is that cither the results will have cost
an excessive amount to obtain or they will not be meaningful
in nature.
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