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Forward

The Army Aviation Systems Command has the
responsibility for assuring the reliability and combat
readiness of the total fleet of Army aircraft. This
responsibility can only be carried out through the
cooperatior and understanding of a large number of
peoph--both inside and toatside AVSCOM.

This handbook has been developed to promote this
understanding by presenting the techniques that must be
conscientiously applied to assure a reliable product.
Although some statistical and mathematical background is
required to understand the techniques, the handbook has
been designed for engineers and scientists who have not
frequently been exposed to these techniques. Examples and
illustrations are frequently used for ease of reading.

It is hoped the handbook will be a good introduction for
those not familiar with reliability and a good refresher for
those who are currently working in the area.

LEWIS NERI, CHIEF

RELIABILITY AND MAINTAINABILITY DIVISION
DIRECTORATE FOR PRODUCT ASSURANCE
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Preface

This handbook is intended as =n educational device aimed
at engineers and scientists who do not work directly in
reliability but must deal with individuals who do. It attempts
to commanicate the techniques that are used in reliability
analysis and how these techniques are used to solve real
problems.

The handbook is built around five important subject areas
V within reliability. These subject areas are:

1. Reliability of . Single Component versus Multiple
Components

2. The Exponential and Weibull Models
3. Estimating Reliability using Test Data
4. O.C. Curves in Reliability Analysis
5. Bayesian Methods in Reliability Analysis

The pamphlet is structured to stress the techniques used
within the subject areas. Examples are freqaently used to
show how these techniques are applied to real problems.
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Section 1.0

Introduction to Reliability

1.1 Why Bother with Reliability

The measure of an equipments reliability is the frequency
with which failures occur over a specified period of time. In
the past few years, the concepts of reliability have become
increasingly important and have become a primary concern
in the development of most large weapon systems.

The reason for this concern and the increased emphasis on
reliability is found in the technological revolution which

mankind has been experiencing during the last several
decades. This revolution has been accelerated by the various
wars, dating back to the 2nd World War, and the stress on
military preparedness since that time. In addition to
accelerating technological developments, armed conflict
dramatically emphasizes the consequences of unreliability.
These consequences range from minor inconveniences to
matters that can affect national security.

A somewhat disturbing fact is that the problem of
avoiding these consequences can only become morc severe as
time progresses. Highly refined and sophisticated equipment
is a necessity in order to accomplish the missions facing
today's military forces. The ability to respond to military
situations can easily be compromised by potential

equipment failures if reliability is not held at a high level.

Reduced operating budgets serve to further compound the
problem of equipment readiness by limiting the number of
backup systems and units that are available to respond when
needed. The fact that back up systems are often not
available means that the primary units must function
properly. Sound reliability and maintainability practices can
insure that existing systems are capable of functioning
properly. More importantly, perhaps, is the fact that sound



R&M practices will also insure that a minimum number of
dollars will be expended to achieve a required level of
operational readiness. For example, reliability analyses can
be used to determine whether it is better from a cost
effectiveness viewpoint to use redundant systems or to
upgrade the reflability of the primary unit in order to achieve
a given level of operational capability. Sound R&M practices
will also insure that limited operations and maintenance
dollars are spent in the correct areas to assure that
maximum benefit is obtained from the dollars available. For
example, proper reliability analyses can show wnich problem
areas are the ones in real need of attention from an
operational capability viewpoint and which ones are of less
critical nature. The net effect of conscientiously applying
adequate R&M procedures is to bring down the overall
acquisition and operational costs and increase the
operational readiness of most systems.

The inescapable conclusion that one must reach is that the
probability of failure must be carefully controlled for the
highly complex equipment required by today's military
forces to function properly when called upon. The only way
this can be accomplished is for a great deal of emphasis to be
placed in the area of reliability and maintainability during
the equipment development and operation phases.

1.2 How to Calculate the Relibility of a

System

Reliability can be defined in its simplest form as "the
probability of successfuI operation". A number representiig
this probability can be obtained from test data and, again in
its simplest form, is the ratio of the numbt-i of' components
surviving a test to the number of components p'esent at the
beginning of the test.

As a hypothetical example: Ten helicopter wariing lights
could be placed on a test stand, turned on, and observed for
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Rel. 9 0.9

Figure 1-1 Test Stand

a one week period. If at the end of this time there were nine
warning lights still burning, one could conclude that the
reliability of this device was 0.90. (See Figure 1-1). That
is--the probability of successful operation for the warning
light tested is 0.90.

A complete definition of reliability is somewhat more
complex than the one given above and is stated in
MIL-STD-721B as follows: Reliability is "The probability
that an item will perform :ts intended function for a
specified interval under stated conditions". This definition
indicates that matters may not be quite as simple as they
were stated in the first pai'agraph of this section. For
examp&e: The warning lights of Figure 1-4 will eventually be
used in a hostile environment where they will be subject to
stress from vibrations that are always present oa a
helicopter. To yield proper results, the test would have to be
conducted to account for this hostile environment.
Otherwise, the reliability calculated would not have any
meaning. The time over which the test was conducted is also
important since the light must perform "---for a specified
interval---". This means that our previously calculated
reliability of 0.90 must be modified to reflect the actual
period of time over which the light must function in actual
use.
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1.2.1 Probability Laws and their use in Reliability

Calculations

Further complications in the determination of reliability
are introduced when we start talking about system reliability
instead of component reliability. A system is made up of
several components of which one or more must work before
the system can function. Figure 1-2 indicates a situation
where both components must be working in order for the
system to function. The components are said to be connected
in series and when one component fails, the entire system
fails. In this case we are interested in the reliability of the
entire system and not the reliability of the individial
components. We can ý,,lculate the system reliability by
multiplying the reliabilities of the individual components
together as follows:

Reliability of System = (Rel. Component #1) x
(Rel. Component #2)

= 0.90 x0.90

= 0.81.

Component Component
No. 1 . , No. 2

Rel = 0.90 Rel =0.90

System Reliability = 0.90 x 0.90 = 0.81

Figure 1-2 Series Components
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The above operation made use of a probability law called
"The Law of Multiplication". This law can be stated by
saying "that if two or more events are independent, the
probability that all events will occur is given by the product
of their respective probabilities." In the example above, our
event consisted of a single component working. The product
of the two events yielded the probability that the system
would function (i.e., both components would work at the
same time).

A more realistic example is shown in Figure 1-3 where a
portion of the aft section, anti-torque controls installation
for the AH-IG attack helicopter is illustrated. A description
of this series subsystem is given in Table 1-1 below along
with a list of hypothetical component reliabilities.

Table 1-1
COMPONENTS OF ANTI-TORQUE CONTROL

SUBSYSTEM FOR AH-1G

HYPOTHETICAL
COMPONENT COMPONENT COMPONENT
NUMBER DESCRIPTION RELIABILITY

1 Control Rod #1 0.98
2 Pivot Arm 0.99
3 Pivot Bolt #1 0.92
4 Pivot Bolt #2 0.92
5 Pivot Bolt #3 0.92
6 Control Rod #2 0.98
7 Quadrant Assembly 0.97
8 Quadrant Connecting

Bolt 0.92
9 Quadrant Pivot Bolt 0.91

10 Quadrant Cable
Connecting Pin 0.90

5
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'Tile reliability of the anti-to-'que control subsystem is
calculated as follows:

Rel = .98 x .99 x .92 x.92x.92 x .98 x .97 x .92 x .91 x .90

Rel = 0.54.

It is interesting to note the low overall reliability caused by
using multiple components in the above example. The
impact of using multiple components will be discussed in
detail later.

A different type of system arrangement utilizing two
components is shown in Figure 1-4 below. This system
requires that only one component be functional., These
components represent a parallel or redundant system where
one can serve as a backup unit for the other in case of a
single failure.

Component
No. 1

Component

Rel =0.90

Figure 1-4 Parallel Components

To determine the probability that either component No. 1 or
component No. 2 or both will operate we simply add the two
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probabilities and then subtract their product as follows:

Rel of Sys = (Rel of Comp #1) + (Ret of Comp #2)

-(Rel Comp #1)x(Rel Comp #2)

- 0.90 + 0.90- (0.90)x(O.90)

= 1.80-.81

= 0.99.

The above calculations were based on the General Law of
Addition which can be stated by saying that "if two events
can occur, the probability that either one or both will occur
is given by the sum of their individual probabilitics less the
product of their individuai probabilities." Our event again
consisted of a single component working. The system war
said to function as long as either one or both components
were working.

An important point illustrated by the above examples was
tile fact that system configuration can have a major impact
ont the overall system reliability. Parallel (or redundant)
systems such as the one illustrated in Figure 1-4 are often
used where high reliability is required. For the atiti-torque
control system of Figure 1-3, this would mean that a back up
system (or back up components) would be necessary to
provide control in the event of any failure in the primary
system.

One of the basic' concepts of reliability analysis is the tict
that all systems. no matter how complex, can be reduced to a
simple series system. For example: The illustrations of
Figure 1-2 and Figure 1-4 can be combined to yield the
system in Figure 1-5.

8



-- Re 0.90 Rel 0 .9

Figure 1-5 Combination Parallel and Series System

Using the results of our previous calculations we can reduce
this system to the one of Figure 1-6 which has a system
reliability of 0.80. The reliability of the parallel portion of
Figure 1-5 was previously calculated to be 0.99 while the
series portion of Figure 1-5 was previously calculated to be
0.81. These reliabilities are now used to represent the new
two component series system of Figure 1-6.

""Rel =0.81" Rel = 0.a*

* Results obtained from Figures 1-2 and 1-4

Figure 1-6 Condensed Series System
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1.3 The Meaning of Chance Failures

Equipment can fail from a variety of causes., For the
purpose of reliability studies, these causes have been put into
three catagories which are:

1) Early or burn in failures
2) Chance failures
3) Wearout failures.,

Early failures occur during the initial phases of an equip-
ment's life and are normally the result of substandard
materials being used or a malfunction in the manufacturing
process. When these mistakes are not caught by quality
control inspections, an early failure is likely to result. Early
failures can be eliminated by a "burn in" period during
which time the equipment is operated at stress levels closely
approximating the intended actual operating conditions.
The equipment is then released for actual use only when it
has successfully passed through the "burn in" period.

Wearout failures occur at the end of an equipment's
useful life and are a result of equipment deterioration due to
age or use. For example; transmission bearings will
eventually wear out and fail regardless of how well they are
made. Early ftailures can be postponed and the useful life of
equipment extended by good maintenance practices. The
onhl way to prevent failure due to wearout is to replace or
repair the deterior ating component before it fails.

Chance failures are those failures that result from strictly
random or chance causes. "I hey can not be eliminated by
either lengthy burn in periods or good preventative
maintenance practices. Equipment is designed to operate
utndler certain conditions and up to certain stress levels.
When these stress levels are exceeded due to random
unforseen or unknowt, events, a chance failure will occur,
While reliabilit. theory and practice is concerned with all
three tyls of failures, its primary concern is with chance

I0(



failures as these occur during the useful life of the equip-
nment.

The time when a chance failure will occur can not be
predicted- however, the likelihood or probability that one
will occur during a given period of time within the useful life
can be determined by analyzing the equipment design. If the
probability of chance failure is too great, either design
chaages must be introduced or the operating environment
made less severe.

"Thc tailure rates discussed above are further illustrated by
the Life Characteristic Curve, commonly called the
"Bathtub Curve" shown in Figure 1-7.

Figure 1-7 shows failure rate as a function of' age and
clearly indicates the time periods when the three types of
tailures can occur. The chance failure rate is approximated

Bumin I Wearout

Period I Useful Life Period Period

= Chance t Chance Failures Chance &
u. Earuy Wearout

Failures Failures

Operating Life (Age)--T

Figure 1-7 Failure Rate as a Function of Equipmernt Age
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by the exponential distribution. Reliability during the useful
life is calculated by using the equation:

-t

where "t" is the elapsed time period during which the
equipment must operate and "A" is the chance failure rate

during the useful life period. As a specific example let
A = .001 failures per hour and t = 1 hour, then

R(t) = e At

e -001(1)

e.001

= .999.

In other words, there is a 99.9% chance that the above
equipment will operate successfully for one hour.

1.4 Failure Definition Problems

According to MIlL-STI)-721B a failure is the inability of
an item to perform within previously specified limits. This
means that :system lperformance levels must be clearly
detined before failures can be identilied. The task of
defining system performance levels is not completely straight
foreward. A complete analysis of conplcx systcms _such as
Army helicopters normally require,, that these limits be
specified at muhtiple levels. For helicopters, these
perfbrmancc lewels are those affecting.

A. Flight satlety
B. Mission success
C. System unscheduled maintenance.

'12
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The reason for specification of multiple performance
levels is tibat the consequences of a failure and thus the
seriousness of the problem can be vastly different from level
to level, For example, a failure affecting flight safety may
well tnean loss of lives while a failurt- affe~cting s)stem
u nschiedutled maintenance might mean only an inconvenient

delay in a training flight.
Examination of the above catagories reveals that it is

possible for a malfunctioning equipment item to be
classified as an equipment failure in one of the lower ranking
catagories above and yet not be classified as a failure in a
higher ranking catagory. For example, carbon seal leakage
can require an unscheduled maintenance action to replace
the seal and thus be classified as a failure in terms of not
meeting the operational limits specified in Catagory C above.
However, a leaking seal may pose no immediate threat to
flight safety and thus not be classified as a failure with
respect to the performance limits imposed in Catagory A.

Proper failure definition is extremely important if
accurate data is to be collected for use in rnoniioring system
performance and determining system reliability. Design
decisions affecting system safety can not be made correctly
if the analysis is based on a mixture of reported failures
affecting only mission success and unscheduled maintenance
actions. Failure reporting forms must be designed in such a
way as to remove the ambiguity associated with failure
classification and reporting.

13



Section 2.0

Reliability of Single Component
Versus Multiple Components

2.1 Series Components

ih reliability of the total system is of prime importance in
reliability analysis. A system usually consists of many
diffcrent components. For example, large complex systems
sich a,, aircraft, helicopters and rockets have several
thiou,,ands of conlrponents while a small appliance may have

less than one hundred. Components can be structured in one
of two ways, either in series or in parallel. Briefly, if
components arc in series, then all of the components must
operate successfully for the system to operate. On the other
hand, it components are in parallel only one of the
components m List operate for the system to continue
fiinctioning. This is also referred to as redundancy. We will
study both of these configurations to see how they affect the
,,v,,ten reliability.

System reliabilitics are calculated by means of the laws of
probability. To apply these laws to systems, we must have
some' knowledge of the reliabilities of its parts. since they
a ftct the reliability of the system. Component reliabilities
aicV (lci ived fil ol tcsts which yield intormation about failure
tat". When i a neN\ com ponien t is designed and bhfilt, no
nica, i t'c of the electrical, mechanical, chemical, or
,tuttcttIral p0ropCrt iCe 'Man tell uS the reliabilil)y of the
coini)OICtll TlhiS ii obtained only through testini.n the system

inl a rcilh,,tic t'll i:,.llci!.

I lie plo)leil that is ol interest is the mlnie r in " hich tilt
reliTia ilil\ cli'inieCS as the nin ubcr 'f comi)onnllts in series
iii' i at"I. liu \%Lc inlilt bhe ab)lC to coinlti)ute the reliabilities
ot t li Ce coin)oiitiiS gi lotipd together ili a series mianler.

Rcbdiiil\ ci',lculitotis for a groiup otf corin oneitn are

bha'sd '11 I\% o iil l oi t at ionti (1) a•r eCcisC a% p)ossi5leC
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a measurement of the reliability of the components used in
til . ..... .. .ron; ent. , and 12) the calculation of the
reliability oý the series system. The rule that is used for a
group of series components is the product of the reliabilities
of the individual components.

As a specific example consider the rotor blade on a
helicopter as one component. The rotor blade is part of the
rotor subsystem which is part of the power transmission
system. The power transmission system is just one of the
systems that make up the helicotter. The reliability
calculations fbr this hypothetical case are given in Figure
2-1, For illustrative purposes all components were
considered to have an identical reliability of 0.99995. This is
equivalent to having only 5 failures in 100,000 flights.

Note how the reliability decreases from a component
reliability of 0.99995 to a reliability for the helicopter with
5000 components of 0.779. This is an average of 20 failures
every 1X) flights. This decrease is even more pronounced for
lower component reliability. For example, with a component
reliability of 0.99. the reliability of a helicopter with 5"00
components would be practically zero.

Figure 2-2 is a graphic portrayal of how the reliability of
series components changes with the reliability of the
individual component when each component is identical.
This concept illustrates exactly why highly reliable systems
are much more expensive and require extensive testing to
verify the high reliability. A low reliability can be verified
with a small amount of testing; but. unfortunately, as has
been illustrated, this is simply not possible for high
reliability systems.

2.2 Redundancy

When very high sys'em reliabilities are required. the
designer must often duplicate components, and sometimes
whole subsystems, to meet the reliability goals. When this

15



SERIES FORMULA: The reliability of a group of series
components is the product of the
reliabilities of the individual com-
ponents. Art example for a heli-
copter is shown below.

Reliability = (0.99995) 5M

= 0.779

Rotor Power 1 eicote
Subsystem Transmission Helicopter

Group

Rotor Power
Transmission Helicopter

Subsystem System

Number of
Components 10 500 5,000

Component
Reliability .99995 .99995 .99995

Group
Reliability .9995 .97F .779

Figure 2 1 Effect on the Reliability of Increasing the
Number of Components in Series.

U
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Component Reliability of N
Reliability Series Components

N =10 20 50 100 300

.99 .904 818 .605 .366 .049

.95 .599 .358 .077 .006 .000

Figure 2-2 Reliability of N Series Components When
Each Component is Identical
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type of design is used, the components are said to be
redundant or parallel. Just as we saw e".ilier how the
reliability for series components decreases as the number of
components increases, the inverse is true here. Redundant
components can dram.atically increase the reliability of a
system. However this in,.rease in reliability is at the expense
of such factors as cost, weight and space.

When redundant components are being analyzed, the
term "unreliability" is frequently used. This is because the
calculations are easier to perform using the unreliability of a
component. The unreliability is simply defined as

Unreliability -- 1 - Reliability.

As a specific example consider the two parallel
components shown in Figme 2-3. With reliabilities of only
R1 =0.9 and R2 -=-: 0.85, NNC were able to obta'n a combined
reliability of 0.985 by putting them in parallel.

The improvement in teliability achieved by operating
components in parallel car be further illustrated by referring
to Figurc 2-4. These curves show the reliability of the parallel
group compared to the reliability of individual components
for one, two, three, or file components in parallel. Each
component in the paralIel group is considered to be
identtcal.

From this graph \e see that a significant gain in reliability
is obtained from redundancy. To cite a f'.w examples f'rom
the curve, if' the reliability of one component is 0.9, the
reliability of two such components in parallel is 0.99. The
reliability of 3 such components in parallel is 0.999. Which
means that on an average only one time out of a thousand
will all three components fail to operate.

• 18



PARALLEL FORMULA: The reliability of a group of
parallel components is one
minus the unreliability of the
group. The unreliability is the
product of the unreliabilities of
the individual components.

R1 = 0.9

R2 =0.85

UNRELIABILITY OF GROUP - (1 - R1)x (1 - R2)
= (1- .9) x1 - .85)
= (.1) x (.15)
= 0.015

RELIABILITY OF GROUP = 1- UNRELIABILITY
= 1- .015
= Co.9N5

Figure 2-3 Reliability of Two Parallel Components

19
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Section 3.0

The Exponential
and Weibull Models

3.1 Introduction

The previous discussions on reliability analysis have
assumed that the component reliability was known and we
were only interested in using this component reliability to
compute the system reliability. We are now going to see how
these component reliabilities are computed. Specifically the
important role that the exponential and Weibull density
functions play in reliability analysis will be illustrated. Other
density functions that are occasionally us,,d in reliability
analysis are also presented.

3.2 Exponential Distribution

When a component is subject only to failures which occur
at random intervals, and the expected number of failures is
the same for equally long operating periods, its reliability is
defined by the exponential equation

R = e't/O

or in terms of the failure rate A

-AtR =e

where

e = the base of the natural logarithm (2.71828)
E = a parameter called the mean ti-ne between

failure itsually referred to as MTBF,
t = the operating time for which we want to know

the reliability R of the component,
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A / = 1/ = failure rate for the component.

This equation is applicable as long as the component is in its
useful life. The useful life of a component is considered to be
the time after which burn-in failures no longer exist and
wear-out has not yet begun. In highly complex
electro/mechanical systems, such as helicopters, the system
failure rate is effectively constant over the useful life period
regardless of the failure pattern of individual parts. This
constant failure rate is the criteria for assuming the
exponential density function for the helicopter system as a
whole.

An important point to note about this equation is that the
reliability R is a function of operating time for the
component and the mean time between failures. This
relationship can be seen by inspecting Figure 3-1. From this
tigure it can be seen that for small operating times, the
reliability is high. The reliability rapidly decreases as the
operating time increases. For an operating time equal to the
MTBF the reliability is only .368. This can be proven as
follows:

R = et/O

when t = 0

R = /e

= ea 1

= lie

= .368.

The MTBF is a measure of the average time uitil a
component fails. If a large number of identical components
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1.0

.368 - - - - - - -

II
01

MTBF

Operating Time - t

Typical values for the reliability are given below.

t % MTBF %/MTBF %AMTBF MTBF
R .778 .606 .472 .368

Figure 3-1 Relibility Versus Operating Time for
Exponential Time Between Failures

were put on test and operated until they all failed, the MTBF
would be obtained by adding up the operating times until
failure and dividing by the number of items tested. As
implied here, the MTBF is estimated from test data.

Note that the MTBF is not a function of the operating
time. This is a unique and important property of the
exponential equation. The end result of this property is that
a component has an equal chance of survival for periods of
equal length throughout its useful life.

To illustrate the important fact of an equal chance of
survival for periods of equal operating time within the useful
life, let us assume that a debugged component with a 500
hour useful life has a constant failure rate, A, of 0.0001. Its
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reliability for any 20 hours operation within these 500 hours

Is

R = -At

R e -.0001(20)

-.002

= .998.

Thus the probability of the component surviving during the
first 20 hours of the 500 hours is 0.998, and the probability of
the component surviving during the last 20 hours of the 500
hours is also 0.998. However, if this component should
continue operation beyond a total of 500 hours, wearout will
begin to play a role and the reliability of the component will
begin decreasing.

The reciprocal of the MTBF is an important and often
used value. It is commonly referred to as the failure rate. By
definition then, the failure rate is

A = 1/MTBF.

Thus the reliability function, R, can also be written in the
form

R = e"At

Thus tar we have discussed when the exponential
distribution applies in reliability analysis but we have really
not stated that it is the time between failures that is
exponentially dist,'ibuted. The curve that describes how the
time between t'ftlures is distributed is called a probability
density function. This density function is shown pictorially in
Figure 3-2. T'ht reliability for an operating time of t1. is then
the probability that the component will not fail prior to time
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f(t)

The reliability for mission time ti
is the area under this part of the
curve.

A= 1/0

0 tl

Operating time, t

Figure 3-2 Exponential Density Function

t1, which is the area under the curve between t = tI and
t = oo. As a specific example, let MTBF = 1000 hours and
the mission time t I hour. Then

R edt/MTBF

R e-1/1000R =

-e 001

- .999.

The cornplement of the reliability function, the probability
of failing between t 0 and t = I hour or the unreliability, Q is

Q = 1-R

= 1-.999

= .001.
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When components are combined in a series manner, the

calculations are not very complex, particularly if the
operating times are the same for each component. Consider
the block diagram in Figure 3-3, which shows 2 components
in series. Let the operating time for each component be 1
hour and the failure rates are as shown on the block
diagram. The reliability calculations for this system are
shown on the figure. The resultant value for the reliability of
the system is Rs = 0.9987 Note that during the
intermediate steps of the calculations, we added the failure
rates for each of the components to obtain a combined
failure rate for the system. This can be done for any system
when the components have exponential times to failure.
Thus a general expression for the system failure rate is

AS = A1 + A2 + ... + An.

When each convuonent has identical operating time t, the
reliability formula reduces to

-AtR= ='St

When components are arranged in parallel for
redundancy, the calculations are done using the unreliability
of each component. The exact (or classical) equations used
for obtaining the system unreliability for components
arranged in parallel for redundancy are

nnr .lZti)Qs = r (1-e

i=1

and

Rs= 1-Qs.

The first equation states that for n units in parallel, the
unrcliability of the system is the product of the unreliabilities
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Series Formula for Exponential Time Between
Failures is

n

Rs e

Rf R2

A1 = .0005 A 2 = .0008

tI = 1 hr. t2 = 1 lir.

R= e.[A1 tl + A2 t 2J

-[ 000511)+ .00081)=e

-[ 0005- .0008] (1)

e 0013(1)

= 0.9987

Figure 3-3 Reliability Calculations for Two Series
Components with Exponential Times
Between Failure
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Parrallel Formula for Components with Exponential
Time Between Failures Is

n -e t
Qs = O-t ie i Is i=1

Rs = 1-Qs

A, 1 = .01

t1 = 1 hr.

A 2 = .05

t2-- 1H'.

Qs= Q1Q 2

= (1.e4lti ) (1.e-A2t2

= (1.e. 0101 )) (1.e-.060, )
= (1- 0.9900) (1-0.9512)

= (.01) (.0488)

= 0.000488
Rs= 1- Qs

= 1-0.000488

= 0.999512

Figure 3-4 Reliability Calculations for Two Parallel
Components with Exponential Times
Between Failures
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of each of the individual components. Knowing the

unreliability of the system, the reliability is obtained from

the second equation. Components operating in parallel are

often identical. '[he above equations then simplify to

QS =o

and
n

When the failure rates are small, say .01 or less, an

approximation is sometimes used for two components in

parallel. '[he system failure rate, A s , is simply the product

of the Iwo indi'vidual rates, or

As = A1 A2

and again,

R= e-ASt.

Sample calculations for two components in parallel using

the exact equations are given in Figure 3-4. This example

illustrates mathematically how paralleling two components

of mediocre reliability produces a system of very high

reliability. This assumes, of course, that when either of the

components fail the other component takes over the

function. For the system to fail, both components must fail.

3.3 Weibull Oistribution

Although life testing of components during the period of

useful life is generally based on the exponential density

function, we have already pointed out that the failure rate of

a component may not be constant throughout the period

29
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under investigation. In some instances the main purpose of
life testing may be that of determining the time to wcarout
failure rather than chance failure. In such cases the
exponential density function generally does not apply, and it
is necessary to substitute a more general density function
such ias the Weibull. The Weibull density function is
particularly useful because it can be applied to all three of
the phases of'the life characteristic curve. The exponential
density functiot, is a special case of the Weibull.

The equation associated with the Weibull density function
is guivel by

f(t) = afltfl'le-ato t>Oa>OP>O

where

f(t) = Weibull density function

t the operating time for which we want to know
the reliability R(t) of the component,

/3 parameter of the density function usually
referred to as the shape parameter,

a parameter of the density function usually
referred to as the scale parameter.

JI he range of shapes that a glaph of the Weibull density\
futnction catn take on is ver' broad, depeiding priniarily on
the 'alue of the shape pxairanieter (1 Figure 3-5 show.,, three
,it'these cinies corrcsponding to P - 2. [3 -1, and f5 2. For
[3 less than I. the Weibull cur e is ,asymptotic to both axcs
and Ighlqli ke ske ed to tile right. For 3 eq 1ual to 1, it is
slfentltcal to the exponential density function, and for (3

greater than 1, it is "bell-shaped" but skex\ ed. 'I he anion [t
the curve is spread out along tile abscissa dei,-n(s on "he
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"17
f(t)

1/1

0
Operating Time

Figure 3-5 Weibull Density Function for a= 1

other parameter a, thus the reason for it being called the
scale parameter.

The reliability formula associated with the Weibull
density function is

R(t) = e

To use this formula, one must estimate the values of a and
13 firomn test results. Estimates of the parameters a and /3
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of the Wcibull density function are computationally difficult
t) obtain without the use of a computer. There exist

analytical methods for estimating these para-meters, but they
involve the solution of a system of transcendental equations.
A more rapid and commonly used method is based on a
graphica! technique. Although none of these methods for
estimating the parameteis is presented here, an example
problem is given that illustrates the use of the Weibull
distribution.

For the example suppose. that a sample of 50 com-ponents
is puLt on life test for 500 hotit,,. The times Lo t'ailure of the 10
components that failed during the test are as follows: 10, 45,
140, 190, 220, 250, 320, 380, 440 and 480. Uqiig the graph-
ical method the estimates of a and /3 for this example are

a = .0016

/ = .775.

Thus the reliability formula is

-.0016 t .775
R =e

It should be mentioned that even though ol!\ tei of the
fifty components failed, the fact that there were rifti
components tested was used in computing a and /3Nne
of the data is discarded.

Assume now that we want to know the reliability of this
component for a 2 hour mission. Using the reliability
equation

R e -.0016(2)' M

= .997.

32



3.4 Other Distributions

Although the exponential and Weibull density functions
ait; the most frequently used in reliability analysis, there are
occasions when other density functions are tequired. This is
particularly true when wearout failures are being analyzed.
The normal and lognormal density functions are appropriate
to use for these types of failures.

The normal density function is a perfectly symmetrical
distribution. It is the most widely used density function in
engineering applications. The time to wearout of mechanical
equipment often f'ollows the normal density functions. A
graph of a normal density function with a mean of zero and a
standard deviation of one iý given in Figure 3-6. This density
function is 7eferred to as the standard normal density
function. It is the one found tabulated in most statistical
tables. Computations about any normal density funu [ion can
be made using the standard normal with the appropriate
transor m a t ion.

The lognormal density function occurs in practice
wheneier we encounter a random variable such that its
iogarithm has a normal density function. In reliability
analysis it is nin;t frequently uswo for analyzing wearout
failures. A graph of a typical log-normal density function is
shown in Figure 3-6. It can be seen from the figure that this
densitN function is positively skewed.

Manuy reliability pioblems deal with situations referred to
a,, "repeated trial.;." For example. it we want to know the
probabiliiN that 9 of 10 rounds will hit their target, that I of
5 rivets will shear in a tensile test, we are in each case
concerned with a number of "trials" and we are interested in
the probability of getting a certain number of "successes." If
%%e are conducting a test, the number of test specimans
represents the number of trial,,. and the number of
specimans that do not fail represents the number of
successes. The reliability is then the number of successes
divided by the number of trials.

33



f(t)
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Density Function
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0
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Figure 3-6 Graphs of Typical Distributions
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One advantage that the binomial density function has over
the other density functions used in reliability analysis is that
no assumption is made about the time-to-failure density
function. This is why it is referred to as distribution-free
analysis.

A histogram of a typical binomial density function is given
in Figure 3.6. A histogram is used because it is a discrete
distribution, that is, the number of successes can only
assume the non-negative integer values.

35



Section 4.0

Estimating Reliability

Using Test Data

4.1 Determination of Failure Rates from

Test Data

An effective and widely used method of handling
reliability prediction problems is that of life testing. To
conduct such tests, a random sample of n components is
selected from a lot, put on test under specified
environmental conditions, and the times to failure of the
indi% idual components are observed. If each component that
fails is immediately replaced by a new one, the resulting life
test is called a replacement test: otherwise, the life test is
called a nonreplacement test. Whenever the mean litetime of'
the components is so large that it is not practical, or
economikally feasible, to test each component to failure, the
life test may be truncated, that is, it may be terminated after
the, first r failures have occurred or after a fixed period of
time has been accumulated.

lin tracking the reliability of Army weapon systems -inder
development, it is normally the case that test costs are so
high that life testing without truncation is not feasible, we
will concentrate our discussion on truncated life testing. In
what follows we will assume the failure time density function
of each component is exponettial, that n components are
put on test, life testit.g is discontinued after a fixed number
r with r<_n, of components have failed, and that the
observed failure times are t 1 < t, _ ... <• t r •

We are interested in estimating the mean time between
failures, the failure rate can be estimated using the
equation

A = 1/0.
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From the results given by Epstein[21, it can be shown that an
unbiased estimate of the mean time between failure is

S= Tr/r

where Tris the total accumulated test time until r failures
occurred. Thus for nonreplacement tests Tr can be obtained
using

r
Tr = I t.+ (n-rltr.i=1

Note, that if the tests are continued until all items fail, 'Ut
reduces to

n

Tr = 1 tr=1

and the mean time between failures is simply the mean of thu
observed times to failure.

To illustrate the methods presented, let us consider the
following example. Suppose that 10 rotor blades are placed
on test without replacement and that the test is truncated
after r :3 of them have failed. Furthermore, suppose that the
3 failure times are 250, 410, and 480, Thus n - 10, r 3,. and

T3 = (230 + 410 + 480) + (10-3)480

= 4480 hours.

Hence we t :timate the mean time between failure as

A- 4480
3

= 1493 hours.
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The estimate of the failure rate is

A= liA

1
1493

.00067 failures/hour.

This means that on an average one can expect seven failures
to occur e% cry 10,000 hours of operation.

4.2 Confidence Intervals

The estimates of the mean time between failures obtained
from test data as described earlier, are called point estimates
of' the true unknown MTBF. We will now look at what
confi(lence we can have in the point estimates.

Statistical estimates are more likely to be close to the true
value as the sample size intreases. l'hus, there is a close
correlation between the accuracy of an estimate and the size
of the sample from which it was obtained. Only an infinitely
large sample sue could give us a 100 per cent confidence or
certainty that a measured MTBF coincides with tile true
value. In testing of Army equipment the longer the test time
and the greater the number of failures experienced, the
greater the confidence one has in the point estimate MTBF.

When the estimate of the MTBF is obtained from a
reasonably sized sample, we may logically assume that tile
true value of that MTBF will be somewhere in the
neighborhood of the estimate, either greater or smaller.
Therefore. it would be more meaningful to express the
M'1BF estimates in terms of an interval with an associated
probability or confidence that the true value lies within such
interval rather than to express them only as point estimates.
This is exactly what we are doing % hen we assign contf-ience
limits to point estimates obtained from test data.
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Confidence intervals around the mean time between
failures, or around any other point estimate, have a lower
confidence limit and an upper confidence limit. For
example, a 90 per cent confidence interval might read

P(500 < MTBF < 700) = 0.90.

The 500 hours is the lower confidence limit and the upper
confidence limit is 700 hours. This confidence interval is
structured so the probability that the interval between 500
and 700 hours includes the true value of the MTBF is equal
to 0.90. Since the MTBF is estimated from test data. the true
value of it is never known. However, the concept of a true
value for the MTBF must be understood to correctly
interpret confidence intervals.

There is another way of explaining the meaning of
confidence intervals that relates it more to test data. '[he 500
and 700 hour; in the above confidence interval were
estima'ed based on the results of test data and tile fact that
the time between failures is exponentially distributed. If
another test were conducted and a new set of confidence
limits " as calculated based on the results, the limits could bh
slightlv diffeient from 500 and 700 hours. If this same
process s as repeated many many times, realizing this is not
)l1actlcal to do so, then each time we would get slightly

dlfTereni confidencel hmlts. However, on the average. 90 per
cent t' the confidence iitervals thus comlputed would
contain thle trile value of the IMTBF. Also, on the amerage, 10
timestl ot O O I(0 the interval thus computed 'Aould no1

containl tile true talue of li h MTBF.

Confidence" intervals are easily coniputed for the MTBF
v. hen 'hi oimc-t, failure distribution is the exponential. The
inlot nation !hia is requifired is tihe number of' fatlures dhat
oWc1ilcd during the test. the Cstirmnte of the MTIBF obtat tnd

from the test results and the confidence level required. i'he
point estumate MTBF is equal to the total accumulated test
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hours divided by the total faillires. Usually only the lower
confidence limit for the MTBF is of interest. This is because
we are primarily interested in the p-..bability that the MTBF
is greater than some minimum value. Or. stated another
way, it is at least as great as the minimum value.

To illustrate how the lower confidence limit for the MTBF
is computed, let us consider the following problem.

Twenty items are tested for a period of 100 hours.
Four oftthe items fail with failures occurring at
20, 48, 76, and 92 hours. Compute the lower 95%
confidence limit for the MTBF.

In reliability terminology, this is a time terminated test
Sithlout replacement of failed components. Time terminated

mcans that the test is stopped after the predetermined time
of 100 hours is reached. Without replacement means that as
the failures occur, the failed items are not replaced., For this
partictlar test. the equation for the lower confidence limit,
M''BFL.once the confidence level hls been established, is as
follows:

MTBFL 2

a ,2r+ 2

\\ here

T = total test hours, or item-hours

x 22r + 2 chi-square function

a = level of significance

r = tiumber of failures that occurred
during the test

[he level ot significance "a " is related to the confidence
level a-, C.L. 1(XX0I- a ) in per cent. The numerical value of
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the Chi-square function, X 2 a ,2r+2 is obtained from a sAt
of tables for the Chi-square distribution. In most of these
tables the numbers in the vertical column on the left
under v , "nu", are the degrees of freedom and are equal to
the quantity 2r+2 in the above equation. Across the top of
the table are values of the levels of significance, a. Knowing

" v "and "a ", values of X2can be read from the table. For
the above problem v = 2r+2= 10. Under the a = .05
column, read 18.3 from a X2 table.

Therefore

MTBF = 20+48+76+92+16.(1_0
4

- 459 hours (Approximate MTBF 460)

MTBF 2(1836 hrs.)

18.3

= 200.6 hours.

What the above answer states is that one can be 95 percent
confident that the MTBF will be at least as great as 200.6
hours.

The amount of confidence that can be placed in an
estimate of the MTBF is a definite function of the number of
hours tested and the number of items tested. That i,, we can
raise our !ower confidence limit for the MTBF by testing for
a longer period of time, assuming that we don't run iito
wearoul failures. If, in the above example, we test for 200
hours and have failures occur at the following times

20, 48, 76,92, 105, 130, 155

the point estimate of the MTBF would be
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MTBF= 20+ 48+ 76+ 92+ 105 + 130+ 155 + 13 (200)
7

_ 3226
7

= 461 (Approximate MTBF = 460)

which is approximately the same estimate previously
obtained. However the lower 95% confidence limit now
is raised and becomes

2(3226)
BL 26.29

= 245

which is significantly higher than previously obtained.

This same pattern continues as the test time is increased.
Table IV summerized the results for four different cases,
includin., the two presented above. Each of these cases
resulted in about the same estimate for the MTBF, but due
to the longer test time the lower contidence limit is higher.
This s%,1e argument can be extended to the number of units
tested.

The pomi,% made in this section ctn be ,ummarized by
stating that there must be a trade-off between the resources
available for testing and the confidence levels required on
reliability cstinmates. We can never achieve the ultimate of
100 percent confidence in our results. Neither can we at'tora
not to ha~e any testing. A balance between resource, anld
contfidence is ou;. objective.
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TABLE 4-1

ILLUSTRATION OF HOW A LONGER TEST
TIME CAN INCREASE THE LOWER

MTBF CONFIDENCE LIMIT

Lower
Test Test Number Approximate Confidence
No. Time Failures MTBF Limit

1 100 4 460 201
2 200 7 460 245
3 300 10 460 287
4 400 12 460 301

Test I

Test3 2I

•II
Test 4 28

301 460

MEAN TIME BETWEEN FAILURES
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4.3 Reliability Growth Curves

4.3.1 Introduction

The subject of reliability improvement by means of con-
scious efforts on the part of designers, test engineers,
customers, etc., has been of interest since the beginnings of
reliability analysis. The modeling of such growth processes
has followed, for the most part, a common procedure:
Formulas are presented that are intended to represent the
growth of reliability as a function of time. These formulas
contain unknown parameters, and it becomes an exercise in
statistics to find appropriate estimates for these parameters
as a function of observed failure data.

The central purpose of most reliability growth models
includes one or both of the following objectives:

a) prediction of the current system reliability,
b) projection on the system reliability for someI future

development time.
As in any mathematical model, reliability growth models

are idealizations. They are based on a number of
assumptions that vary with the different models. If a
program manager desires to use a growth model to help him
plan a development program, he should choose a particular
model based on prior experience with similar type systems.
As the development program progresses, he can ust: the
model along with test data to monitor and project the
reliability of the system and make necessary decisions
accordingly.

4.3.2 The Duane Model

One of the most widely used growth models used for Army
systems is the Duane model presented in reference 6 by J.T.
Duane of the General Electric Company. He analyzed test
and operational data for programs wi~i test times as high as
6 million hours orn five divergent groups of products. The five

44



groups included two hydro-raechanical devices, two aircraft
generators, and one jet engine. His analysis revealed that for
these systems, the observed cumulative failure rate versus
cumulative operating hours fell close to a straight line when
plotted on log-log paper.

Crow [81 presents a formal mathematical development of
the Duane model. He showed that when the above conditions
hold, the failure rate during development follows the
Weibull failure rate curve. The development given below and
the notation are similar to that given by Crow.

Mathematically, this model may be exptessed by fthe
equation

F(t) = At-a, A > 0

where F(t) is the cumulative failure rate of the system at time
t and A and a are parameters. The cumulative failure rate is
by definition

NO = E(t)
t

where EM)is the expected number of failures experienced by
the system during t time units of development testing. Thus
from the above iwo equations

EMt) = At"a

The instantaneous failure rate, r(t), is of most interest for
applications. It i. defined a, the change i,i the expected
number of failures per unit time. For a nonexponential
system, it varies with time while for an exponential system
the failure tate is constant.
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Differentiating EWt with respect to time ý,.ves the
instantaneous failure rate r(t) as follows:

r(t) dIE
dt

(1a)Ata.

By substituting in the above equations

1-a

ofie i.cet

rMt A i3 t 13

\m h ic is 111 We Veibu II fit ii re rate fu nction For a i-epairable
St k 01).

'11h1ts it' onle pklans to use the(' Duanle m1odel during a
devcloptmit prog~ram, the above expression call be uised to
(leternmw tin te' ailu re late at a partficular. development tinme t.
[he' a ilties of A an 0l( arc cstimnated f'rom test dlata. Since A is

Oiid a mul 1tiplie: and /3 determlinles ho\% mtlicII the 1f'iuiure late
Cli am , t Ii the(i dev'clopmen t time., t3 i'. referred to is die

iirk para Im-aeter. For the w~'tems ,tud(1ied 1)N lDuante, a 13 of'

a11)I1 0\iiih'lel 0.5 \\,Is estimated.

reI-port puiblishied b ) .D Selby amid S.G;. Nmillei., also of'
GT. . gi~ies wollw ald it iofil comlpu tat ional cx perienee ý\ith

Di'u alitye model Ani estab Iishedl and ex perienice growthl
ale'oft 0. totkan 111 essi\r i iii Nas relmort ed.

A11m161111111Li lii (t hi' .4 ý% as estinmated \ Itidh had niever
been aeii ie~ed. A miniin imu i of' A can be'ý e \pected onl t ho.,c
pioigra nll h m no real ISpecific cons~idera t ionl IS ZivA~Ii to
reliability.

To gainl ftu r. 1r insight into the D1na1 tie' oddl cons~ider.
t-iuLre 4-1I which is a ploi of' t h Weibull fauilure rate versus

(le~ lopnient tlimie l'Orf -3'0.5 anrd A - 0.4. D)u tin~g thle eai y
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4"7



L nstant value. At this point in time when the failure rate
becomes constant, the time between failures can be
described by the exponential distribution with a mean time
between failure of

1-/9
MTBF(t°) 0to

Note the similarity between the failure rate curve described
here and the life characteristic curve previously described.

Crow 181 has developed the maximum liklihood estimates
(MLE) of A and Pl and also a goodness of fit test to determine
if the Duane model tits a particular set of data. The MLE
estimate for/3 is

N

K N r(T) T
I I logr=l i=1 X.r Xir

where

K = number of different subsystems,

T - the operation time for each of the K
subsystems,

Nr iT) =number of failures observed for the r-th
subsystem during T time,

Xir = the age of the r-th subsystem at the i-th
failure, beginning of development being 0,

', anda48
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K
N = I Nr t).

i=1

The above MLE estimate of P is biased. The unbiased
estimate is obtained by using

_N-

The MLE of A is

A N
AA

KTP

The chi-square goodness of fit test can be used to
determine if the observed data fits the Duane model. The
chi-square statistic is calculated using

2 C (Oi-Eil2
xc E.i=1 Ei

To compute the statistic the development time is divided into
c intervals. The observed number of failures in the i-th
interval, 0i, is obtained from the observed data. The
expected number of' failures in the i-th interval, Ei , is
obtained using

N(t~ t.-1
E. - _

where ti.- and Ti are the beginning and ending traies for2
the i-th interval. The Xc is compared with the tabled value
ot'chi-square. X 2, with degrees of treedom equal to c-I and
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the specified level of"significance. If

2 2
c T

then it can be concluded that the data fits the Duane model.

4.3.3 Application

An engine system ý as analyted for reliability growth using
thew l)uan model. The data available for analysis was based
on 800.3 hours of development testing. During this time there
%eiw . 40 hailutres and the times of each 'failure were recorded.
I'h1w aNerag' rates ftr this s'ystem during each 1000 hour

interval are shown in Figure 4-2.
Using the data the MLE's of' A and /3 were computed to be

A = 0.128

/3 = 0.639.

I'hle uhl',ased estimate of/Jf is

[1 = 0.623.

I he chi-iqtare good ness of fit statistic wa, calculated next
usinga ni interval d %idth of1"15(X) hours. The result was

2
Xc = 1.343.

tingia I";, level of ,ignificance and a degrees of freedom
of 6-1 5 . the !aihed % aluc of chi-,,qtuare is

2XT = 15.086.

I fItis it can be concluded that the Dthane • model fits the data
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Using the formula on page 46, the estimated failure rate for
the engine becomes

r(t) = .128(.623) t .623-1

S= .08 t"-.377

=.08

A plot of this failure rate curve is given in Figure 4-2. Notice
how the curve is beginning to flatten out. In fact it N(ould
take 100,000 hours of development time to get theC failure
rate down to .001 failures, hour.

Failure Times

1, 43, 43, 171,234, 274,377, 530,533, 941, 1074, 1188, 1248,

2298, 2347, 2347, 2381, 2456, 2456, 2500, 2913. 3022, 3038,
3728, 3873, 4724, 5147, 5179, 5587, 5626, 6824, 6983, 7106,
7106, 7568, 7568, 7593, 7642, 7928, 8063

4-;
6 5

W 4 -

3 3

S2

E1

0

0 1 2 3 4 5 6 7 8 9 10 11 12

Development Time Hours (x0 3)

Figure 4 2 Failure Times and Estimated Failure Rate for
Example



Section 5.0

Operating Characteristic Curves

5.1 Use and Interpretation of OC Curves

Conclusions concerning equipment reliability wvill of
necessity be based onl thle results obtained From a test
sample. Thie behavior of' a sampling lplan is established by
specii[sing the lot size for which it is to be used, the sample
si/c to be tested, and the number of' fiaulty pieces which will
citt.Sc', accept ance or- reject ion of' the lot. From this
initorm a lion it is possible% to priedlict the resuilts that w~illI be
oblainled %% henl thle planl is used in practice Specifically, it is
posiblle to predict the risk that at N rong decision will bc
made yeihraccepting lots of'ploor quality or- rejecting lots
OF good qJuality. Stich predictions are muade% lt-om the
op~eta ting characteristic% (O0) curve of' the' sampling plan.
Fach di ITerent sampling plan has its own OC curve.

'I hie tiise of' operating characteristic c urves calli greatlys
aicld in thle select ion of' reliabilityv test plans. Tlhe purpose ot'
using them is to control the cost ofthew testing program sN bile
at the satmc time assuring that rel iabilit v goals are miet. Tlhis
purposey is accomplished by allowing one to uise at systematic.
quanit it ative approach to evaluiate and select thle test planl

rat her t han rel 'ying com pletely onl subjectiveý judgement to
make thc selection.

As we% sit" earlier in Sect ion 4. 1 . test data canl allow us% to
d rax conclusions Concerning the rekl iabi lit *v of. NI'B F ofI the
eq u ipmenit ii emns uindergointg test. HIowever. it shotuld( be
eniphasiied aigainH that these conclusions concerning t(lie

MTlB F are b~asedl onl samplles and can. therefore, be in error.
lHiis is %%here OC cuiiies provide valuiable assistance. Theliy
allow bothI t he customer and thle mantiffiteturer of' thle test
items to p~redlict the risk of' error when basing their
coinclusions cotncernitng p~roduct reliability onl a satmple of,
test resuilts.
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One of the important characteristics of a demonstration
test plan is its probability of acceptance as a function of' thle
test items actual MTBF'. The probability of acceptance of a
test plan is the probability of concluding that the test results
are satisfactory and indicate an acceptable MTBF. For
examp~le: One of' the test plans taker- from the Department
of Defense handbook, "Quality Control and Reliabiity
Handbook (interim) H-108 - Sampling Procedures and
TFables for Life and Reliability Testing (Based on
Exponential Distribution)" has the following acceptance
criteria.

"Select 22 items ,it random from a lot and place
these items on test. When anl itemn fails, replace
it with another item selected at random from the
lot. If'the test continues for 500 hours with not
more than two failures, accept the lot, If 3 failures
occur prior to 500 hours, reject the lot."

T]his plan could be used to demonstrate a desired M'VBF
of' 10,00(0 hours by following the above accept, reject criteria.
However. before deciding to use this plan (or any other') we
should examine its OC Curve %%hich is shown in FigUre' 5-1.
This cur've represents a sample size of' M - 11000 item hours
(i.e. 500 hours x 22 itemis= 11000) and an acceptance number
ot K --2.

'[he "a ' of' Figiuro 5- 1 is designated the prod l icer's risk
and I,, defined as thle p~robability of'rejecting equiipmeint % 1111
a true MTB3i: eq ual to tilie 10.000 houri MTlB~F. T1he tel III a is

also cal led thle levcl of' signi ficanlce. '[he% "P/ '- of Fiuou ie 5. 1 is
dlesigniatedl the consumer% risk and ik equal to thle probabIitm
of a~ celting equ ipm'ent with Ii true' M I BiF eqLii,1 0II on N to i
miniin ium n acccpt able' MTBF, such as 2000 hourus. h~ shoul~d
bec pointed owt t hat thle mniitinum accelptabW .M113' is not

~cc',ail~a desirabk' M'l'B F and is selected so that arl
aIssO Ciated anrd specified risk ([l) of accep~t ing eq ~iipnien I of
tis Naltue is, tolerable'. Ex arnlirationl of Figure 5 I show, 11thc

III.a Wiiwnch the'pi obabilliv of acceptinig testl results as Nahld



1.0 - "

* .900- -- -

C
C.) t'-

M 11000
.,-

>p K•2
.ta 0.100
Z .088 p =0.088
.0

0.
0 2000 10000

MTBF*
*Axis not to scale

Figure 5-1 Operating Characteristic Curve

indicators of the desired MTBF increases as the true MTBF
of'dhe equiptent on test approaches the 10,000 hour MTBF.

I hc selection of a sotld test plan involves considerable
CX l)iCiCLCC' Mid juddgCmn n to itnsulre that a plan is chosen
%\ itih proper \aline, for a and [. It is these values that dictate
the o•crall cost ol a testing program. The three major costs
associated \ ithi any saml)Iing and testing plan are:

I . 'hc costs associated with rejecting equipmnint as not
meetinig a reliability standard (such as the 10,000 hours
MTBF given above) when in fact it does meet it. This is
called a Type I error and the chance or probability of
making tlis error is called the producers risk ( a).

2. The cost associated with accepting equipment as
meeting a reliability %t~andard (such as the 10i(X) hours
M [BF) whein in fact it is some specitied value' less than
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the standard. This is called a Type II error and the
chance of making this mistake is called the consumer
risk (fl).

3. The cost associated with the sampling and testing
operation. This cost is generally assumed to be directly
proportional to the number of units tested.

Examination of the curve in Figure 5-1 provides some
insight concerning the test plan's ability to discriminate
between good and bad values of the actual MTBF for a
production lot. It shows that there is a 90% chance that 2 or
fewer failures will occur when using this plan to test
production items with a true MTBF of 10,000 hours. If this
occurs, the previously stated acceptance criteria of our test
plan will be met and we will correctly conclude that the items
under test have a MTBF of at least 10,000 hours. The
producer of the item under test should also be satisfied with
this arrangement because there is only approximately a 10%
chance (i.e. a = 1.00-0.90 r- 0.10) that more than 2 failures
wvill occur and cause the rejection of equipment that actually
has an MTBF of the called for 10,000 hours.

On the other hand, when using this same test plan there is
an 8.8% chance (i.e. P3 :-.088 that two or fewer failures will
occur and the acceptance criteria will be met when testing
items with a true MTBF of only 2000 hours. Stated another
way. if a contract cialled for an M'I'BF of 10,000 hours to be
d(emonstrated by using the above plan, an 8.8% chance exists
that the demontration could be successfully made with
equipment who +' MTBF was only 20M0 hours.

The consumer must now decide whether or not the risk of
makinug an eiror and experienccing the assýociated cost of
acccptintg eqjipment k it h an MTBIo ofo i\ 200t)() hiur, call
he tolerated. It' the (lecilsio is mlade that an 8.8"' chalice ol
accepting , pt)dLol lot 1it1h a tiI M'3I lI: ol 20W(X) hor',
Is too 141cat ,I I Isk the sit u,!tion can be remedied b\ rnakin.i ,
ch Lre III the test plan.
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These' chaniges can take many fornms Nit norma lix' ilKh

intenit is to change thle shape of the OC cur' e. The fbIlom% ing
(I iSCussionl Will be' Jim lited to the impact,1 Onl thle OC curI'% Of
chaznging cit her sample size or acccptance number. The
siniple site can be chainged by altering the number of itemis

on test or chaniging the lenigth1 ot time thle items remain oni
test. Of' cotirse', care mutst be taken to insure that wearouti
dtoes not influence the failuire rate and that the probability
that an item w~ill f~ail rema'tins independent: of (ihe n1umber of'
hour% an item has, been on test. Figure 5-2 illustrattes ho()N
the p~robability of' accep~tance is reduced by increasing the
sa n lclle site to 22,000) item houirs. lb is increase cotiu hzivh~e
been achieved either by doublinig theiv number of'items on test
1'rom 22 to 44, dotibhung the lenigth of test time to 1000 hours
for the' original 22 items, or some other combinaitionl of
inireas~ed test time m id increased n umber of'items on lest.

1.0

a =0. 100
4 (3 0.088

>-088 M z22000

IK < 2
(U I, Ia = 0.377

0 .001 =- I 30.001
a. 0

0 2000 1000

MTBF*

*Axis not to scale

Figure 5-2 Operating Characteristic Curve
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The above change in sample size reduces the probability

(P) that items with a true MTBF of only 2000 hours will be
judged acceptable to 0.001. However, while this change is
desirable, two things have happened that are not desirable.
First, our sampling and testing costs have increased. Second.
the probability (a) of rejecting items with an acceptable
MTBF of 10,000 hours has been increased to 0.377 and the
producer will not be happy about this.

Another way to bring about the same general type of
change in the shape of the OC curve is to reduce the
acceptance number from 2 to 1. The results are shown in
Figure 5-3.

1.0

M=.699 IV = 11000

S.088 [3.-/= 0.088

S I I M=11000
/ I - K <1

a =0.301

o .027 _ , -_.I /- = 0.027
S01 -I

0 2000 10000

MTBF*
*Axis not to scale

Figure 5-3 Operating Characteristic Curve

ii tlhi, ca,\ the p lobabil (3) of accepting a lot N ith aii
NM I (i )til0t) hours is reduced to 0.027 v, iIc (Ile

prohaklulit\ (u) ot rleecting a lot \%ith the desired MI[F of'
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10,000 is increased to 0.301. The difference between this
situation and the previous one is that we have not increased
our sampling and testing cost and in fact may have reduced
it slightly if a curtailed testing scheme is being used.

The ability of our test plan to discriminate better between
an MTBF of 10.000 hours and an MTBF of 2,000 hours can
be accomplished by increasing both the acceptance number
and the sample size. The result is a decrease in both the
producers risk (a ) and the consumers risk (f3). For example;
if the sample size is increased to 31,500 hours and (he
acceptance number to 6, the result is an OC curve like that
shown in Figure 5-4.

o 1.0

.9 5 8 -- - - - -"
M=11000

S~K<2_
C.90

O1a = 0.100
. = 0.088

0
>- M = 31,500

K<6
.0 8 a =0.042

o0. 005 0.005
a. 00 2000 10000

MTBF* *Axis not to scale

Figure 5-4 Operating Characteristic Curve

I

In this case, the probability (/3) of accepting items with a
true MTBF of 2000 hours has been reduced from 0.10 to
0.005 and, at the same time, the probability (a) of rejecting
items with a true MTBF of 10,000 hours has aiso been
reduced from 0.10 to 0.042. These are desirable results for
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,oth producer and consumer but the penalty paid is an
increase in sampling and testing costs.

It sometimes requires an extremely large sample size to
provide both the producer and the consumer with the degree
of protection they desire from the risk of makirng an error.
For example; suppose that in our example of Figure 5-1 we
and the producer are satisfied with the 90% chance of
accepting a production lot whose true MTBF is 10,000
hours. However, we feel that the 8.8% risk of accepting a
production lot whose true MTBF is only 2000 hours cannot
be tolerated. Assume further that if the lower MTBF of 2000
hours were raised to 7000 hours, we could tolerate about a
10% chance of acceptance at this level. The sample size or
number of item hours required to satisfy these new
requirements and also keep a at 0.10 is equal to
approximately 330,000 item hours with an acceptance
number of K = 4.0. This is a subi antial increase over the
11,000 item hcurs required earlier and may not be possible
because otfexcessie testing costs. If such large scale testing
wcre not feasible a compromise Would have to be reached
and OC curves provide a mechanism ior doing this
intelligently by helping us evaluate the risks of error
associated with different test plans.

5.2 Examples of Calculations

The OC Curves 'in the previous section were developed t(
show, the probability that a specific testing and sampling
plan would indicate an acceptable MTBF for various true
values of equipment MTBF. Acceptable results were
indicated when the number of failures during a test was
fout•d to be equal to or less than some specified number. In
the exanlple' shown in Figure 5-1 of the previous section we
concluded that an acceptable MTBF was demon!strated
Mhen , o or fewer failures occurred during a ,4)k h1ouLr test of
twentv-two item,,. The probability of two or fewer failures

S~59



during the test is determined by calculating the probability
of exactly t-Ao failures, exactly one failure, and zero failures
and adding these probabilities together.

Calculations of the specific values fbr the OC Curves in
Section 5.1 were accomplished by using the Poisson
distribution as an approximation to the Binomial
Probability Law. This approximation is very good for small
probabilities of failure and relatively large sample sizes.
I'hese conditions are easily ,net in most life testing

situations.
The equation fbr the Poisson distribution is:

(. A 0~ e") X
PWk = e-

k! (5-1)

where:

P(k) = The probability of k failures

k = Specified number of failures

A = Failure rate per hour (i.e. A = 1
MTBF

where MTBF is given in hours.)

X = Test Time (i.e. No. of items being tested
multiplied by the length of test in hours)

e = the constant 2.71828

The above equation will now be used to calculate the
probability that exactly "k" failures will occur during a life
test. T•e failure rate per hour is simply the .eciprocal of the
MTBF given in hours. The test time in "item hours" is
determined by multiplying the number of items being tested
by the length of the test in hours. This calculation assumes
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the repla...-nent of failed items during the duration of the
test. For example: The probability of exactly two failures
occurring when 22 items with a true MTBF of 10,000 hours
are placed on test for 500 hours is determined as follows:

X = Test Time = No. Items x Length of Test

= 22 x 500

= 11,000 item hours

1
A = Failure Rate M

MTBF

1
10000

= 0.0001 failures/hour.

Since we wish to determine the probability that exactly two
failures will occur (i.e. k- 2) ke must now evaluate Equation
5-1.

(0.0001 x 11000)2 (2.71828)'00011000)
P(k=2) - 2!

= 0.201.

This e'aluation indicates that there is a probability of 0.201
that exactly two failures Aill occur during the test. To

determine the probatbility of our acceptance criteria being
inet (i.e. k <. 2 ) we mnutst next find the probability of exacthl
one anl also the probability of ,ero failures occurring and
then add the three values together.

These last two values are:
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P+k (0.0001 x 11000)1 (2.71828) 4-000101000)
P(k =1)=

1!

= 0.366

(0.0001 x 11000)0 (2.71828) ( 0ooolxllOOO)
P (k = ) =

0'

- 0.333.

B.,N adding these three values we get a probability of 0.201 +
0.300 t 0.333 --:- 0.aO as the probability of two or fewer
tailities di'ring the test. This value gives us one point on the
(OC Curve for the test.

A second point on the curve for this test of 22 ite,.a, can be
calculated in a similar fishion. As before, we a,,sLime a 500
hour test and an acceptance, number of k • 2. However, this
time a true M I'BFof only 2000 hours, will be tsed. The
probability of two or fe, er tailures is then

(0005 100)2 (2788-(0005011000)
P(k -- 2) (O.O005x 11000)2 271828

2

= 0.062

P(k = 1) 0.022

P(k = 0) = 0.004

P(k = 2) + P(k=1)+ P(k=0)=0.088.

i his totudI indicates the probability of two or fewer failtures to
be eq iial t) 0 0(88. l'hecs t%%o points are shown on the OC
'tlr' oft Figture >-I and repeated below in Figure 5-5.
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Figure 5-5 Operating Characteristic Curve

Other points on the curve can be calculated in a manner
similar to that shown for MTBF of 2000 hours and 10,0(X)
hours. The OC Curve itself can be thought of as showing the
probability that our acceptance criteria will be met when the
true MTBF varies from zero to over 10,000 hours.
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Section 6.0

Bayesian Methods

in Reliability Analysis

6.1 Introduction

A particular problelm associated with reliability prediction
and assessment is that there is normally a very long time
period between tile design phase and the time at which
ut'lThicent usable test data has been accumulated.

Predictions during the early period of design and
de(eloplment are traditionally based on engineering judge-
ient. Classical prediction methods are not adequate when
onl( a small amount of data is available. Bares' Theorem
preseits a method of assessing achieved reliability during
the lengthy interim phase, when management decisions
regarding design and development can have their biggest
impact. Bayes' technique comnbines relevant operating
e\xperience early in the program phases with the prior
prediction to form a new 1 'prediction. As more and nmore test
dat1a arce accumulated, the prediction is contintually updated.

Bayes" analysis begins by assigning an initial reliability on
the basis of whatever evidence is currently available. The
initial prediction may be based( solely oil engineering
ijudgement or it may be based on data frorm other similar
tx pes of items. [hen, when additional test data is
subsequently obtained, the initial reliabilities are revised on
the basis of this data by mneans of Bayes' Theorem. [lhe
mitial reliabilities are known as prior reliabilities in that they
are assigned before the acquisition oft the additional data.
I he reliabilitie, which result from the revision process are
ki o\\ n ais posterior reliabilities.

6.2 Bayes' Theorem

A basic theorem in probability theory which rela'es joint
and conditional probabilities is

(04
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P(A and B) = P(AIB)P(B).

From the above equalities we can write

P(BIA) = P(AIB)P(B)
P(A)

whizh is called Bayes' Theorem. With this expression we arc
attempting to estimate the posterior probability, P(BI A),
which is interpreted as the probability of getting outcome B
given that outcome A has occurred. The probability P(B) is
the prior probability which is being revised.

To illustrate Bayes'lThcorenm, let's consider the foflowing
specific example:

There are three suppliers of a servo, B1 . B2 , and
B3. Company B1 supplies .6 of the servos. B2 supplies
.3, while B3 supplies. 1. Past history indicates tha t
95% of the servos supplied by B, perform accord-
ing to specifications, 80% of those supplied by B.,,
and 65% of those supplied by B33 . Given that a
servo performed according to specifications, conipute
the probability that it came from B13, B2 , and B3 .

The prior information in this problem is the percent of
servos provided by each supplier. The updated information
is that a servo lperforms according to specifications. We % ant
to compute the posterior probabilitics based on the ntc"
information. The posterior probabilities Aill gi e ut, the
updated probabilities that the ser o came frontm B1, B2. ol
B3. Note that without this new information and without
Bayes'"Theorem, the only conclusion we could draw is the
same as that given in the prior information.

To sol,,e this problem, we will %%rite Bayes' formnLula as,
follows,

P(BrIA) . .....

P(A)
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where

r = 1,2, and3

Br = event "servo came from supplier r"

A = event "servo performed according to
specifications".

In the above equation, the denominator can be written:

3
P(A) = I P(B. I)P(AIBi).

i=1 I.

Expanding, this equation becomes

P(A) = P(B 1)P(AIB 1) + P(B 2 )P(AIB 2) + P(B 3)P(AI B3 ).

We can visualize this situation by constructii'g a tree
diagram like the one shown in Figure 6- 1, where the
probability of the final outcome "A" is given by the sum of
the products of the probabilities corresponding to each
individual branch.

BA PIAB1) B1 0.95 A

' B3  P(AIB2) 2 0.65
, P B . A N 0.30 ,,A

A 3.A

Figure 6-1 Tree Diagram for Example
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Then the probability that any one servo received by the plant

will perform according to specifications is

P(A) = .6(.95) + .3(.80) + .1(.65)

= 0.875.

The posterior probabilities can now be computed as,

P(B 1 )P(A B1 )
P(BIA) = PAP(A)

.6(95)

.875

= .65

P(B 2 IA) = .27

P(B 3IA) = .07.

Thus the new information has provided us revised estimates
about who supplied the serio. Table 6-I shows the prior and
posterior probabilities for comparison purposes.

6.3 Bayes' Theorem Applied to Reliability
Analysis'

As has been mentioned earlier, Bayes 'lTheorem is used in
conljunction with prior information and current data it)
provide updated reliability estimates. Table 6-2 shows the
result,, fo several diffferent cases when the priom NI FI:B \k,

I IlwIt itN , i - glt'tv I, %% 1l1ts•dl on thatt Igi% n in rdertvi.e I• aint 4
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Table 6-1 Results for the Bayes Theorem Example

Probability

Supplier Prior Posterior

B1  .6 .65
B2  .3 .27

B3  .1 .07

Table 6-2 Results of Bayesian Analysis

Prior MTBF Operating Posterior
(Hrs) Time (Hrs) Failures MTBF (firs)

10,000 0 0 10,000
10,000 1000 0 10,547
10,000 5000 0 11,010
10,000 1000 1 8,517
10,000 5000 1 9,675

Table 6-3 Typical Discrete Prior Distribution

Cell Cell Prior Cell
No. Value (R i) Probability P(R;)

1 1. .002
2 .999975 .002
3 .999925 .496
4 .999875 .408
5 .99975 .002
6 .999625 002
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10,000 hours. For each case the prior MTBF, operating time,
and number of failures during this operating time were used
to obtain posterior MTBF.

The discussion given here is confined to the exponential
failure distribution, since this is the one most commonly
applied to reliability analysis. The method given in
references 3 and 4 uses a discrete prior rather than a con-
tinuous prior. When using continuous priors, difficulties
arise due to the mathematical functions involved.

The given discrete prior is divided into a number of
discrete cells. Each cell consists of a cell reliability, R i, and a
probability associated with this reliability, P(Ri). The first
six cells for a typical prior distribution is given in Table 6-3.
Each cell also has a lower and upper boundary for R;
however, for simplicity they are not shown. Note how the
distribution is heavily biased toward the lower cells. This
bias is made in order that any test data which differs
significantly from the predicted prior failure rates will
readily "wash out" the prior. Test data producing results
similar to the prior will not significantly alter the value when
forming the posterior. This is because cells 3 and 4 which
have probabilities associated with them contain the prior
reliability value which was .9999 tor this particular problem.

After the prior distribution is established and some test
data becomes available, the posterior reliability is computed.
This is done by first computing P(BIRi ) for each cell where

B = event "x failures in t total units of time".

To compute titis probability, one uses the number of failures
of the item, number of current hours accumulated on the
item, and the cell failure rate that is computed using
formulas given in references 3 and 4.

Next the PtB) is calculated by summing individual cell
values of P(BIRi), times the cell probabilities P(R.). The
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posterior probability for each cell P(RiIB) is calculated asthe ratio

{P(BIRi)} {P(Ri)}

P(R . IB) = j _ _ _ _ _) _ _ _ _

P(B)

where

n
P(B) = Z P(Bi)P(A Bi)

i=1

and summed over each cell. When this sum equals to .5, then
the corresponding reliability value is interpolated. This
median reliability value is the posterior reliability prediction.

6.4 Example

Suppose that a system consists of two subsystems. Based
on past experience, it is known that the time to failure for
each subsystem is exponentially distributed. It is assumed
that a discrete prior similar to the one giver, in Table 6-3
describes the prior distribution of the reliability for each
subsystem.

The prior failure rates obtained from the discrete prior
d(stributions are .(X)10 and .00050 failures per hour for
suttbNstcms I and 2 respectively. This yields prior reliabilities
fur I hour mission tir'.es of

R1 = e "1O0, = 0.99990

R 2 = e .05 = 0.99950.

Using the above data and the procedure previously
outlined, the posterior reliability for each subsystem can be
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obtained. The results obtained for the updated failure rates
for each subsystem are

A1  = .00889 failures/hour

A 2  = .00048failures/hour

and for the system

A s = .00889 +.00048

= .00937 failures/hour.

The updrted reliability predictions for 1 hour mission times
are

-00889R = e"'-9 = 0.99115

R2= e -00048 = 0.99952

R 3 = e"" o937 = 0.99067.

Although this is a relatively small example the
calculations are similarly done even when applied to large
army weapon systems. Using the prior distribution and
current test data, a new updated distribution is obtained,
referred to a,: the posterior distribution. The reliability of the
total system is then obtained in the usual manner.
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Section 7.0

Summary

The foregoing material explains and illustratcs the need
tbr a quantitative approach to reliability analysis.. The
determination of overall system reliability was discussed in:

Section 2.0, "Reliability of a Single Component Versus
Multiple Components",
Section 3.0, "The Exponential and Weibull Models" and
Section 6.0, "Bayesian Methods in Reliability Analysis".

Use of test data as input to system reliability models and
as an aid in controlling program costs " as discussed in:

Section 4.0, "Estimating Reliability Using Test Data"
and

Section 5.0. "OC Curves in Reliability Analysis".
It was pointed out that during the analysis of system

reliability that it ,•as desirable to evaluate the impact of
different system configurations and changes in component
reliabilities on overall system reliability, This type of
ex aluation can contribute greatly to the overall design effort
and insure that reliablity goals artc met by using the most
economically efficient design.

'lest programs are necessary to insure that various
components meet their design specifications. The material
on estimating reliability from test data and tie use oE' OC
Curves can be used to insure that test programs yield
adequate data and supply this data at reasonable costs. The
d(anger of establishing a test program without using the
proper statistical tools is that either the results will have cost
an excessive amount to obtain or they will not be meaningful
in nature.
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