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ABSTRACT 

Almost a decade ago Sherbrooke formulated the well known METRIC 

model for determining optimal stock levels for recoverable items for two 

echelon inventory systems [3].  Subsequently Fox and Landi [2] proposed a 

Lagrangian approach for obtaining item stock levels for each location. 

In this paper we develop amothod for estimating the value of the optimal 

Lagrangian multipler used in the Fox-Landi algorithm, present alternative 

ways for determining system stock levels, and compare these proposed 

approaches with the Fox-Landi algorithm and other solution techniques.  The 

conclusion of this study is that the proposed approximation methods 

significantly reduce computation time for determining system stock levels 

without degrading the quality of the solution. 

'•—*——-— - • - • • 
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INTRODUCTION 

Almost a decade ago Sherbrooke formulated the well-known METRIC model 

for determining optimal stock levels for recoverable items—items subject 

to repair when they fail—in a two-echelon setting [3].  In particular, 

he studied the Air Force's two-echelon supply system.  This system consists of 

a set of bases and their supporting depots.  Primary demands occur at the 

bases while depots are central repair and inventory stocking points which 

resupply bases when necessary.  When a failure occurs at a base, a demand is 

placed on the base supply organization for a corresponding replacement part. 

Depending on the nature of the failure, the failed part is then either repaired 

at that base or is sent to a depot for repair.  Resupply of the base supply 

organization comes from the base maintenance organization if  repair is 

accomplished at the base-, otherwise, resupply comes from a depot.  In either 

case, the organization resupplying the base supply activity does so by 

exchanging on aone-for-one bacis a serviceable part for the failed part.  Thus 

the inventory policy for placing orders on the base's maintenance organization 

or a depot is an (s-l,s) policy. 

Sherbrooke presented a model (METRIC) for determining both depot and 

base stock levels for all items for this syst«». In particular, the problem 

he formulated was to minimize the average total number of base backorders 

existing at an arbitrary point in time s"bject to a constraint on system 

investment: that is, 

m  n 

1 

minimize 

subject to 

III        (x-s..)p(x|x..T..(s.n .L, .L.       Z i]    ' i] ii  lO 1=1 i=l x>s..      J      J  J 
)) 

13 

m  n 

j=0 i=l  1 1D 

(1) 
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where n       represents the number of items, 

m       represents the number of bases, 

represents the stock level at base j  for item i, 

represents the depot stock level for item i, 

represents the expected daily demand rate for item i at 

base j, 

c.      represents the unit cost for item i, 

C       represents the budget constraint, 

T..(s. ) represents the average resupply time for base j  for item i 

given the depot stock level for item i is s. , 

and p(xly)    represents the probability that x units are in the resupply 

system given that the expected number of units in the resupply 

system is y. 

Furthermore, Sherbrooke shows that T..(s.„) can be expressed as 
xj  xO 

T..(s.n) = r..A.. + (l-r..)(B.. + 6(s.„)-D.), 
x]  xO    xj xj      xj   xj     xO  x 

where A.,  is the average base repair time for item i at base j, 

r..  if the proportion of demands requiring base repair for item i 

at base j , 

B..  is the average depot to base order-and-ship time at base j  for 

item i, 

D.  is the average depot repair cycle time for item i, 

6(s,n)'D.  =  -r—  )"   (x-s.-)p(xlx.D.), the expected delay per depot 
xOxX.'*      xO'ii 

x x>s.0 

demand for item i, 
m 

and X. = I    (l-r..)X.., the expected daily depot demand rate for item i. 
I  -1=1    *  * 

— • •• —-— 1 MkH -• -        - •  — .- -     •__.. 
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In the remainder of the paper    i    will  refer to an  iten and j will refer to 

a base (j=0 represents the depot); thus i and j will always be elements 

of the sets  {l,...,n} and  {0,...,m}, respectively. Additionally, an 

integer k appearing in the text to the right of the statement of a problem 

or equation will designate for future reference that problem or equation.  For a 

complete description of this problem's background and formulation see reference 

3. 

Subsequently Fox and Land! suggested a Lagrangian approach for solving 

Froblem 1 [2].  One of the major obstacles to the successful implementation of 

METRIC using the Fox-Landi algorithm is the requirement of estimating an 

appropriate value for the Lagrangian multiplier.  An important and related 

problem is the lengthy computer run time required to obtain an optimal solution 

to Problem 1 when using this algorithm. 

The purposes of this paper are to present an approach for obtaining an 

estimate of the optimal Lagrange multiplier value required in the Fox-Landi 

algorithm, to present two new methods for determining stock levels, and to 

compare these methods with the Fox-Landi method and other techniques.  The 

proposed approach eliminates the particularly time consuming portion of the 

Fox-Landi algorithm devoted to searching for the beat Lagrange multiplier value. 

The conclusion of the study is that the proposed approximation methods signifi- 

cantly reduce computation time for determining stock levels without degrading 

the quality of the solution. 

2.  THE APPROXIMATION PFÜBLEM 

We begin this section by constructing a problem that is a continuous 

approximation to Problem 1.  We next state and prove two theorems that are 

the basis for an algorithm developed in the next section which can be used 

to solve this approximating problem. 
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Recall that the total average bane backorders existing at any point in 

time for item i can be expressed as 

m 
I      I (x-s..)p(x|X..T..(s.n)). 
i=lx>s..     «     1] « l0 

Two useful probability distributions for describing the demand process are the 

Poisson and negative binomial distributions.  As shown in reference 1, this 

implies that if demand has a Poisson or negative binomial distribution, then 

for a Riven A.. T..(s.n), the form of p(:-:U ..T..(s.„)), the probability 
lj  l]  lO r  ' ij l]  lO        r        J 

distribution representing the number of units in resupply of item i at base 

j  at any point in time, is a Poisson or negative binomial distribution, 

respectively. 

Experimental data gathered during the conduct of this study indicate 

that when p(x|>.-T..(s.,)) is either a Poisson or negative binomial I 13 i] 10 ° 

distribution, the above total expected backorder expression can be closely 

approximated by an exponential function.  That an exponential function accurately 

approximates this expression should not be entirely unexpected.  First, for 

budgets of practical interest the item stock levels,  s.., are normally much 

larger than the average demand during the resupply time.  For example, the 

probability of running out of stock during the resupply time is often much less 

then .15 in real Air Force applications.  Thus, the only probabilities entering 

the backorder calculation are the tail probabilities.  In the tails, the 

Poisson and negative binomial distributions behave almost like the geometric 

distribution, that is, each succeeding probability is roughly a constant 

proportion of its predecessor.  Consequently, when s..  is large relative 

to A..T..(s._), the expected number of backorders existing at any point 
ij ij 10 

in time at location j  for item i is approximately a geometric function of s... 
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Recall that the total average base backorders existing at any point in 

time for item i can be exprecsed as 

m 
y   y      (x-s..)p(x|x..T..(s.n)). 

j=l x>s 
1: 

Two useful probability distributions for describing the demand process are the 

Poisson and negative binomial distributions. As shown in reference 1, this 

implies that if demand has a Poisson or negative binomial distribution, then 

for a given X.. T..(s.A), the form of p(xU ..T..(s..)), the probability 
l]  l]  lO ' ij ij  1O 

distribution representing the number of units in resupply of item i at base 

j  at any point in time, is a Poisson or negative binomial distribution, 

respectively. 

Experimental data gathered during the conduct of this study indicate 

that when p(x|1..T..(s.„)) is either a Poisson or negative binomial 
lAi] 13  lO 

distribution, the above total expected backorder expression can be closely 

approximated by an exponential function.  That an exponential function accurately 

approximates this expression should not be entirely unexpected.  First, for 

budgets of practical interest the item stock levels,  s.., are normally much 

larger than the average demand during the resupply time.  For example, the 

probability of running out of stock during the resupply time is often much less 

then .15 in real Air Force applications.  Thus, the only probabilities entering 

the backorder calculation are the tail probabilities.  In the tails, the 

Poisson and negative binomial distributions behave almost like the geometric 

distribution, that is, each succeeding probability is roughly a constant 

proportion of its predecessor.  Consequently, when s..  is large relative 

to A..T..(s.„), the expected number of backorders existing at any point 
lj ij  lO 

in time at location j  for item i is approximately a geometric function of s... 

--• 
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Therefore an exponential function is a ussful continuous approximation to 

this relationship between expected backorders at a location and the item's 

stock level at that location. 

Furthermore, total expected base backorders exhibit this same behavior. 

If demand has either a Poisson cr negative bincmial distribution (or, for 

that matter, any other compound Poisson distribution), then the total number 

of units of an item in resupply across all bases also has a Poisson or negative 

binomial distribution, respectively, given independence of demand among bases 

and assuming the "order size'1 distribution is the same at all bases.  Since 

in most practical situations total system stock substantially exceeds the 

total expected number of units in resupply, the tail of the distribution 

describing the total number of units in resupply is the only portion of the 

distribution of importance.  As an approximation, this distribution can be 

used to determine the nature of the relationship between total expected base 

backorders and total system stock. For the reasons discussed previously, an 

exponential function should adequately represent this relationship as well. 

Thus we will approximate total system backorders for item i, that is, 

I      I (x-s..)p(x|x..T..(s..)). 
£, _f        11 r  ' 11 11  lO j=l x>s 

13 

with an exponential function of the form 

B.(N.) =  a.e 
li    1 

-b.N. 
l l 

In this approximation N. represents total system stock. The parameters 

a. > 0 and b. > 0 are estimated using regression analysis.  The data used 

in the regression analysis are the backorder data obtained from the solution to 

 - i y_- 



......  -U..,.:.   ,,  . J m,     || | mr,t    „„, „ 

Wi 

the Droblem 

m 
minimize  V  T    (x-s..)p(xI X..T.. (s.n)) 

3=1 X>G.. 

subject to 

V s.. = N.,  and 

s.. = 0,1„...,N., 
n i 

for several appropriate values of fl.. 

We now formulate a continuous approximation to Problem 1 in which the 

exponential representation of total system backorders for an item is used. 

In this approximation problem the decision variatles are the total system 

stock, 1!., rather than the stock levels for each location, s...  As we shall 
i i] 

see, the main reason for studying this approximation problem is that it is 

a vehicle for obtaining an estimate of the optimal Lagrangian multiplier 

value used in the Fox-Landi algorithm.  The approximation problem is 

formulated as 

minimize  / B.GO 
i=l 1 X 

subject to 

I c.N. 
i=l l i 

<C, 

N. > 0. (2) 
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Note that N.  is a continuous variable in this approximation.  The optimality 

conditions (Kuhn-Tucker conditions) for this problem are as follows: 

Find 9, > 0 such that 

dB. 
+ O.e. > 0, 

a) dN.   1 i 
l 

b)  I    CK < C, 
i=l 

N. > 0, 
l =-• 

n 
c)  8 ( I  c.N. - C) = 0, 

i=l 

and 
dB. 

d) N.V'-TT^ + 8c) = o. 
l dN.   1 l 

A relaxed version of Problem 2 in which the non-negativity constraint 

on the item stock level is removed is 

m 

subject to 

inimize  J    B.(N.) 
i=l 1 x 

7 c.N. < C. 

(3) 

The optimality conditions for this problem are: 

Find  0  > 0 such that 

dB. 

i 

b) J  c.N. < C, 
i=l 1 1 " 

n 
c) 9n ( I  c.N. - c) 

2 i=l 1 1 
= o, 
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and 
dB. 

d)  K.(y4 + 0 c.) 
l dN,   2 ! 

We now explore the relationship between Problems 2 and 3 in detail. 

Suppose we obtained a solution to Problem 3 (we'll show how to find 

its solution in the next section).  Let N. represent the optimal solution 

2 
to Problem 2, and N. rep-esent the optimal solution to Problem 3.  If 

2 12 
H. * 0 for all i,  then N. = M.  and the objective function values are 

equal. 

2 
Suppose, however, that N. < 0 for at least one value of l.  Let 

N. = max(0,N.) 
l        l 

and 

c = y C.N. 
i-11 x 

—    2 —    2 — 
Since N. > N. for all i and H. > K.  for at least one I, C > C. 

l - l li 

Suppose Problem 2 is modified slightly so that the right-hand side 

value C  is replaced by C.  This modified problem is 

n 
minimize  J  B.(N.) 

i-1  * X 

subject to I    c.N. < C, 
,£,  li"" 
i=l 

(*) 

N, > 0. 
l " 

The optimality conditions for this problem are the same as those given 

for Problem 2 after substituting C for C.  Also, let 6 represent the 

optimal value of the Lagrangian multiplier for Problem 4. 
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In solving Problen. 3, we will c.tain a value for Ö .  Vie now shew that 

—   r> 
6 = eo, and that N. a max(0,N.) is the optimal solution to Problem 4 by 

demonstrating that there values satisfy the Y ihn-Tucker conditions 

corresponding to Problem 4. 

By construction, 

I    C.M = C, N. > 0,  and  e( I     c.N. - C) = 0. 
i=l 1 i=l 1 

— — — 2 2 
If     0=9^,     6  > 0    since     e„   >  0.     Suppose    N.   =  N.;   that  is,     II.   >  0.     Then 

2 ' 2 «• vt li I •» 

dB. 
 i 
dN. 

l    l 

dB. 
 1 
dN. 

1 
and 

l    i 

dB. 
0 = 

dN. 
l 

iI.=N2 

l     l 

j i 

dB. { 

dN. I 
+   6c. 

1   l     l 

By assumption there exists at least one value of i  for which N. > N.. 

that is,,  N. = 0 while N. < 0.  Since 
l l 

•1 dB. 

dN. 

dP. 
l > dir 

ri.=;;2 

i   i 
N.=0 
l 

due to the exponential form of B.(M.).  and 

t- 

dB. 
l 

dB. 
l 

M.=N: 
i   i 

+ e„c.   =0,     we know that    -VTT 
2   l diJ 

+ 6c. > 0. 
l 

H,«0 
l 

Consequently, the optimal solution to Problem 4 is N. = N. = max{0,N.} 

Furth rmore, the optimality conditions are satisfied when 0 is equal to 9. 
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Theorem 1.  0 > 8 

Proof: The optimal objective function value for Problem 2 is a convex, 

differentiable, strictly decreasing f.motion of the available budget, C. 

Since the slope of this function is equal to the negative cf the Lagrangian 

T.ultiplier value, 9 > 9 since C < C.  But 9 I, so e^  e2' 

Corollary.  9 > 8  when C > C. 

Hext we cc: .,! 1   TT 

New 

»are lit with U..  If C = C, then N. = N.  for all i. 

let us suppose C > C so that 8. >««=¥.  Let us examine the two cases 

N. > 0 and N. * 0 separately. 
l l      r 

First assume N. > 0.  Then 

dBii        - 
3i5—       + 9C = 0. ON. i l 
1„ _TT |N.=:I. 

I i i 

Furthermore,   if    N.   >  0,     then 
dB. 

dlT 
K,=H7 
i    l 

+   9r.    =   0. 
1    1 

r'B 
Since    o,c. > 6c. = - 3K- 

j.   1 l OH. 

dB. 
l 

'     dH. 

l    l 

dB. 
I 

* ax 
l    i 

U.-N1 

l     l 

,  and    Ht < !!. 
' l l 

If    !!7 =  0,     then     I!.   >  NT. 
l ' ii 

dtl. 

"cxt assume N.   = 
l 

i   0. Since 

+  6,c. 
1 l 

dB. 
l 

d;;. + ?c. 
l 

N.=0 
i H.« 

l 
0 

• ?c. > 0,  it follows that U. = 0 

by complementary slackness.  Thus we have proven the following theorem. 

„ 
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Theorem 2.  H. £ N.; additionally,  M. > N. whenever i. > 0. 
ai J   i   l l 

In this section we established several important relationships among 

Probleme 2, 3, and 4.  In the next cer.tion we develop a simple algorithm for 

solving problem 2 based on these relationships.  We will begin the next 

section by shoving how to find the solution to Problem 3.  As we have just 

demonstrated, once we have the solution to Problem 3 we also have the solution 

to ProMem 4. From Theorem 2, we then have an upper bound on the value of 

N..  In particular, if N. = 0, then N. = 0.  Combining this observation with 
i ii 

the implications of Theorem 1 and its corollary provides the bases for the 

proposed algorithm for solving Problem 2. 

3.  COMPUTING OPTIMAL SOLUTIONS FOR PROBLEMS 2 AND 3 

.; ' 

We begin this section by developing a method for determining the optimal 

solution to Problem 3.  Observe that the optimal solution must satisfy the 

following two conditions: 

dB. 
 i. + 6 c =o 
dN.   2 i 

l 

and 

l   c.n. = c. 
i=i S x 

The second condition must hold since each B.C.'.)  is a strictly decreasing 

function of N.. 

Since 

B.(N.) = a.e I i; ii    l 
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where    a.,b.   > 0,    the first condition states that 
l    i 

12 

9     = 
a.b.e 

.t l 

-b.N. 
l l 

c. 
l 

>  0, 

or 

e s ,Cne2 = -^{-~>   - Vi 

Letting 

we  see that 

a.b. 
d.  « Jbi{—±}   , 

ci 

N. 
d.   -  6 

I 

i        b. 

From the second condition we know that 

I    .   - * " c.{——} ' 

Thus 

i*      c. 
1=1 l 

n cd. n    c. 
T -Li „ c}/{ I ^} 

./.. b. 
i=l   l i=l    i 

Letting 

n    cd. n 
a =    I    -~   and    ß =       [    c./b_ 

i=l        i i=l i 

we can express    9    as 

a  - C 

S   ! 

iaus 

and 

(a-O/ß e2 = e 

d. - ^   g, • c 
1 p        _    1 

N.   = - l b. 

(5) 

(6) 

 .^.^••^•^••^^•^^^iH^H 
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where  g. = ßd. - et and f. -- ßb..  Consequently N.  is a linear fimc-'-ion 

of C.  If the budget is incremented by an amount AC, then the new value 

cf the stock level for item i, N!, satisfies 

M! = H. + |£ . 
l   l   f. 

l 

The optimal solution to Problem 2 has been found if each of the N. 

found using Equation 6 is non-negative.  If there exists an i for which 

N. < 0, then we may employ the following algorithn to find the optimal 

solution to Problem 2.  Let I = {l, ,n> and N. represent the optimal 

solution to Problem 2. 

Step 0.  Solve Problem 3 as described above thereby obtaining an 

initial value for N., iel. 
i 

Step 1.  Set N. = 0 for all N. < 0 during the last iteration and 

delete the corresponding i from I.  Recompute  a and  ß, where 

c.d. 

iei   °i 

end 

= I      {c./b.}. 
LI   x    x 

Step 2.  Using Equation 6, obtain new estimates of H.  for each iel. 

If N. > 0 for all iel, then the optimal solution has been found, and 

U.  = N.  for all iel and IT = 0 for all i = l,...,n for which iil.  If 
li l T 

there exists some i for which N. < 0, return to Step 1. 

^^^^^^^^H 
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It is clear that our solution satisfies all the optimality conditions 

for Problem 2 except possibly condition (a) for iij:I.  However, at an earlier 

Iteration (when i was deleted from I) we had 

dB. 
i 

dlC * 92Ci 
H*0 

a. 

where 6  is the earlier value of 9, 
£ 4 

Since 
dB. 

diJ. 
is clearly increasing 

in H,, and 9  increases at each iteration (Theorem 1 and its corollary), 

condition (a) must hold.  Convergence is guaranteed since n is finite. 

A COMPARISON OF ALTERNATIVE SOLUTION PROCEDURES FOR SOLVING PROBLEM I 

a 

In this section we briefly review three algorithms for solving Problem 

1 and compare them to two algorithms designed to obtain a solution for Problem 

1 based on the solution to the aprroximating problem, Problem 2. 

The first algorithm we will disc-iss is the procedure originally proposed 

by Sherbrooke [3].  It is a marginal analysis algorithm consisting of two 

phases.  In the first phase, each item is examined independently.  The 

optimization problem solved for item i in the first phase has the form 

minimize I      I (x - s.,)p(x|X T (s._)) 
j=l x>s. ij r   ij ij  lO 

subject to 

m 
y     I  = N 

j=0  1] 

s.. = o,1,... , (7) 
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where N.  is the total system stock available for distribution among the 

depot and bases.  Let Z.(N.) represent the optimal objective function value 

given N. units are available for distribution.  Problem 7 is solved by 

obtaining the solution to the N.+l problems 

Zi(M.,s.0) = minimise J      £   (x - s..)p(x|A...T. (S.Q)) 

j=l x>s.. 
ij 

subject to 

m 

I '« • »i - siC 
(8) 

S.. ~ U)l)•*•i 

and s._ fixed 
lO 

for s. -  0,1,...,N..  Problem 8 can be solved via marginal analysis.  Then 

Z.(M.) = minimize Z.(N.,s.n), where 
li l l it> 

'iO 

si0 = °'"'''Ni' 

The second phase problem is 

n 
minimise  \    Z.(il.) 

i=l x 1 

subject to I    c.N. < C 

N. = 0,1,... 

   i 
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Sherbrooke [3] suggests a marginal analysis algorithm be used to find a solu- 

tion to this knapsack problcu. Clearly other procedures cculd be employed to 

obtain an optimal solution.  In any case, this approach requires a substantial 

amount of storage to save all the Z.(N.) values.  For moderately sized 

problems— several thousand items—a storage requirement of 10  or more 

words may be needed to save these values.  Furthermore, the computation time 

required to obtain these Z.('i.) values for ruch problems is very large. 

Subsequently Fox and Landi proposed a Lagrangian algorithm for solving 

Froblem 1 [2].  In particular, they formulated the relaxed version of 

Problem 1 as 

m  n m  n 
«*» I  I I (x-s..)p(x|A T (s.0)+e I      I    c£s 

3=1 1=1 x>Sij       
J j=0 i=i (9) 

i] 

where 9  is the Lagrangian multiplier.  Sir>ce pi ^blem 9 is separable by 

item, its optimal solution can be found bv solving the n individual item 

problems 

1 
minimize 

m 

subject to 

I      I (x - s..)p(x|x..T..(s.J + G I    c.s.. 

s.. = 0,1, .. 
il 

This problem, like Problem 9 in  Sherbooke's two-phase method, is solved 

using a partitioning procedure; that is, it is reformulated as 

     i  ii» - 
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fa 

Bc,-s,-n +    I miß • {  I (x - s..)p(x|x..T..(s._)) 1    lO .«*, «< IT    r '     IT     ij        10 
3=1   s..   =     0,1,...     x>s.. J J     J 

+ 6cs..:     s..    fixed} ) , (10) 
i ij IO ( 

or equivalently as 

minimize    Z(s     •. 6) (11) xO' 

Si0 

s.     =   0,1,... 

where 

z(s.0 6) = 9c.s.0 

m 
+     I    min  {   J (x-3. .)p(:;|X..T..(s..)) +   Ges..   :   s. .= 0,1,.. .;s.n fixed}. 

,*•,   s..       • i]   '      '   ii   l]     iO i ij ij iO ]=1    xi    x>s.. J J     J 
13 

To determine    Z(s,-;8)3    solve the    m    base problems 

minim imize     T (x-s. . )p(x|x. .T.. (s._ ))  +  6c P.. . 
L- i]  r     iAi]  ij     iO l ij 

s.. x> s.. 
il 13 

The optimal    s..     is the smallest non-negative integer for which 

I     p(x|x..Ti.(s.0)) <ecr 
X>3 , . 

13 

Problem 10 (or Problem 11) is solved for each item for a given value of 

G.  This yields a total investment cost corresponding to 9.  In the Fox-Landi 

approach, the 'optimal va\ue of 0 io selected fi'om a grid of H equally 

spaced values 

»O^V ••• " 9M> °- 

^^^      -  ••• -      
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The optimal value of 6  is the 0 , K e {0,...,M}, whose corresponding total 
K 

investment cost is closest to C. ^ 

Fox and Landi suggest that their method is a single pass method, that is, 

only one pass through the item data base is necessary to obtain the optimal 

solution.  The storage requirement to effect this one pass approach is poten- 

tially enormous.  For a moderately sized problem having 3000 items, 20 bases 

and M = 63, almost 4 million item stock levels must be saved plus possibly 

millions of additional item data elements reflecting fill rates, probability 

of no stockout at an arbitrary point in time, expected base backorders, etc. 

Furthermore, there may be no simple method for estimating suitable bounds on 

the values of the multipliers thereby requiring much larger values of N to 

insure adequate approximation of the budget. 

In the author's experience, the ability of Air Force personnel to estimate 

a reasonable range for 9 for large problems is not good.  It is not surprising 

that it is difficult for someone to estimate the optimal value of the multiplier. 

The data used in the model frequently change in real situations thereby 

causing the optimal value of the multiplier to change.  Furthermore, changing 

the multipliers' magnitude by 10  or less often causes the corresponding 

total cost to change by many millions of dollars.  Consequently, 2  values 

of 9 have been used in some Air Force applications to make the system 'fool 

proof.' In these cases 60 million or more item stock levels would be needed 

to be stored explicitly—plus a considerable amount of other item and base 

data—to make the Fox-Landi algorithm a truly one pass method. 

On the other hand, if their method is altered so that the item data are 

examined a second time, it is possible to eliminate virtually all the requirements 

for secondary storage.  In the first pass., only the running total cost correspon- 

ding to each 0 , Ke{0,...,M},  is saved. At the end of this phase the "optimal' 

•—- iriUM^M ^ 
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multiplier value, 6 ,  is established.  The second phase of the algorithm 

requires a second pass through the data base.  In the second pass, the optimal 

steck levels for each location are found for all items by resolving Problem 

10 with  e = e". 

In some applications the Fox-Landi one-pass method is clearly infeasible, 

that is, there may not be enough peripheral storage capacity to save all the 

data.  If storage capacity is available, there is a tradeoff between the time 

and cost required to store and access the data in the secondary memory using 

the one-pass method and the tÜJM and cost to recompute the stock levels 

using the second method.  For realistic Air Force problems, the two-pass method 

appears to be the only feasible approach given current hardware constraints if 

M is large enough to guarantee that a solution can  be found that closely 

approximates the target budget.. 

A third way to solve Problem 1 is a slight modification of the Fox-Landi 

algorithm.  This third method, called the bisection method, employs a 

bisection search to find the optimal value for 6.  This procedure requires 

initial upper and lower bounds on the optimal value of 0.  Call these 9 

and 9 , respectively.  The bisection method is as follows: 
it 

1. Set Q =  (e +  8.J/2. 

2. Solve Problem 10 with  9 = 0 for each item. 

3. If the total cost of the solution obtained in Step 2 exceeds C, 

then replace 9.  with  9: otherwise, replace  9., with  9. 

4. If a stopping criteria has not been met (such as a fixed number of 

iterations or an error tolerance), return to Step 1 otherwise, stop. 

The major drawback to the bisection approach is that a separate pass 

through the item data base is required at each iteration of the algorithm. 
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This algorithm performs very well in terms of convergence and in our experience 

virtually always produces solutions that are within 1/2 percent of the target 

budget using 10 bisections. 

The closeness of the solutions to the target budget generated by either 

the Fox-Landi method of the biroction algorithm depends on how broad a range 

of multiplier values must be searched for a fixed value of II or a fixed 

nuiiber of bisections.  It should be pointed out that both of these methods only 

yield an approximation to the optimal multiplier value (assuming one exists). 

Of the methods discussed thus far., it has been the experience of both 

the author and Fox and Landi [2] that the latter two algorithms dominate 

Sherbrool^e's algorithm in run times by an order of magnitude or more on real 

problems given reasonable estimates of upper and lower bounds for the Lagrangian 

multiplier.  Thus in the comparisons we will report., only these two Lagrangian 

methods will be discussed. 

Earlier we described an approximation method for estimating the optimal 

values of 6 and each M..  Several options are open for implementing this 

approximation method.  One way to implement it is to use a two-phase approach. 

Call this approach the First Approximation Method.  The values of a.  and b. 

are computed in the first phase of this method during which the optimal value 

of  6 is also estimated using Equation 5.  In the second phase, we solve 

Problem 10 for each item using the estimate of the optimal  9.  This approach 

has two major advantages over the Fox-Landi method: 

(a) The estimate of the optimal multiplier can be obtained without 

prespecifying a range of values, and computation time to obtain 

the estimate does not depend on the uncertainty of the multiplier 

value. 

(b) The computation time to find an estimate of the optimal multlpj ier 

is much smaller. 

^  
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If tho two-pass version of the Fox-Landi algorithm is used, the second phase 

of that method and the second phase of the approximation method are identical. 

The ore-pass version of the Fox-Landi algorithm requires considerably more 

storage, and also requires more computer time to determine the optimal stock 

levels than this approximation method requires. 

The First Approximation tiethcd also has the following advantages over the 

bisection method: 

(a) Cnly two passes through the data base are required as opposed to 

seven or more required for the bisection method in practice. 

(b) No stock levels need to be saved- in the bisection method it is 

necessary to save all stock levels and other data for three 

multiplier values. 

Another algorithm can be employed that directly uses the results of 

the approximation problem, that is, Problem 2.  Call this approach the Second 

Approximation Method.  This algorithm is of interest in situations in 

which we only want to compute total system stock for each item and are not 

particularly interested in computing the optimal distribution of the assets. 

Determining the optimal allocation of a budget among items is of primary 

importance when purchasing inventory or making budgetary projections for spares 

for different systems.  In these cases, distribution decisions are usually not 

that critical. 

This Second Approximation algorithm also consists of two phases, in the 

first phase we estimate the values of the a. and b.  parameters, and in 

the second phase we determine total system stock for each item using the 

algorithm described in Section 3 and rounding N.  to the nearest integer.  The 

algorithm requires one pass through the item data base and one pass through an 

—^.       
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item file consisting of a.,b., and c.  The major advantage of this approach 

is that it eliminates the stock allocation phase of both the Fox-Landi 

algorithm and the First Approximation Method. 

5.  A COMPUTATIONAL COMPARISON OF VARIOUS ALGORITHMS 

I 

The Fox-Landi algorithm, bisection algorithm, and the two approximation 

methods have been coded and tested on several sample sets of data for the 

Air Force's new F-15 fighter. Since all of the test yielded the same general 

results, vie will discuss only t:.io of them.  The first test consisted of a 75 

item sample and had 3 operating bases. The flying programs were very different 

at each base.  In the second test., 125 items were included in the sample with 

demands occurring at 5 bases.  In the second test, only the Fox-Landi and the 

two approximation methods were compared.  In all Fox-Landi calculations, a 

maximum of 128 multiplier values were examined: ten bisections were used in 

all applications of the bisection method.  The run times stated for both 

approximation algorithms include the time required to estimate the values of 

a.  and b..  Furthermore, in both test cases all stock levels for all 

relevant multiplier values were stored in main memory.  Thus the reported com- 

putation times, which include compile times which are roughly equal for 

all the algorithms, are biased in favor of the Fox-Landi method since for 

larger problems this type of storage would be impossible.  Additionally, the 

range of multiplier values considered in the test of the Fox-Landi and 

bisection methods was selected after estimating the optimal multiplier value 

usinrr the First Approximation Method.  Thus the test results are biased in 

favor of them, since the range of multiplier values was much smaller than 

would normally be the case. 

-  I 
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The data displayed in Tables I and II indicate how well each approach 

approximates a given target budget for the two test data sets.  without a 

doubt the bisection method produced solutions that best matched the target 

budgets followed in order by the Second Approximation Method, the Fox- 

Landi method, and the First Approximation Method.  As mentioned before, the 

results are biased in favor of both the Fox-Landi and bisection methods 

due to the initialization of the range of multiplier values.  From a 

practical viewpoint, all approaches worked acceptably well in meeting the 

target budgets.  Furthermore, the stock levels generated by the various 

approaches were virtually the same for similar budgets.  Consequently, total 

system expected backorders, for all practical purposes, are indistinguishable: 

that is, the backorder versus investment curve.: virtually coincide among these 

various approaches.  Fxact comparison of computed stock levels and expected 

backorders cannot be made among the competing methods since the allocation 

of the available budget in each case depends on the way each algorithm 

estimates the Lagrangian multiplier. 

The area in which the methods clearly differ is in computation time.  The 

approximation methods require substantially less time than either the Fox- 

Landi method or the time consuming bisection method.  Other experimentation 

has shown that the percentage difference in computation times tends to be 

even more substantial as the number of items considered increases. 

Thus the approximation methods produce answers that are as good as those 

produced by either the Fox-Landi method or the bisection method, but with 

less computational effort.  The bisection method did match target budgets 

slightly better than the approximation methods.  However, the approximation 

algorithms are virtually fool-proof.  This is perhaps the greatest advantage 

of the approximation algorithms.  The user does not have to specify the range 

— • - - -   
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of multiplier values or the number of bisections in advance.  This eliminates 

one of the main difficulties associated with implementing either the Fox-Landi 

or bisection algorithms.  In view of these observations, the approximation 

procedures developed here appear to be superior for use on real problems. 

 -—M __.   
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Execution 

Time 

(Seconds) 
92.57 

Total Cost (mill ions of $) 
Target 
Budget 

Bisection Fox-Landi Approx. I Approx. II 

3.68 3.67 3.68 3.63 3.63 
3.97 3.99 3.92 3.82 4.03 
4.27 4.27 4.27 4.30 4.18 
4.57 4.57 4.57 4.62 4.61 
4.87 4.87 4.85 4.87 4.78 
5.16 5.1b 5.18 5.09 5.17 
5.46 5.46 5.42 5.38 5.49 
5.76 5.76 

6.C6 

5.76 5.75 5.79 
6.05 6.05 6.06 6.08 

6.35 6.34 6.38 6.28 6.33 
6.65 6.65 6.63 6.63 6.73 
6.94 6.89 6.80 6.87 6.92 
7.24 7.24 7.19 7.27 7.24 
7.54 7.54 7.57 7.68 7.51 
7.83 7.84 7.77 7.80 7.83 
8.13 8.14 8.24 8.20 8.05 
8.43 8.42 8.50 8.42 8.42 
8.73 8.73 8.50 8.74 8.77 
9.02 9.02 9.04 9.11 9.00 

19.57 11.59 4.57 

      _— 
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26 

Target 
Total Cost (millions of  $) 

Budget Fox-Landi Approx. I Approx. II 

26.4 26.7 24.8 25.6 
27.6 27.6 26.2 27.9 
23.7 28.7       j 27.5 28.9 
29.8 30.0       I 

i 
29.5 29.8 

31.0 31.2 30.7 30.8 
32.1 32.1 32.0 32.2 
33.2 

i 
33.3       i 33.1 33.1 

34.4 
t 

34.4       1 34.3 34,2 
35.4           ' 35.5 35.9 35.7 
36.6 3P.8 37.0 36.7 
37.8 38.0 38.1 37.7 
38.9 38.6 39.3 39.2 

40.0 39.9 40.6 40.0 

41.2 41.1 42.1 41.3 

42.3 42.5 43.9 42.4 

43.4 43.3 44.7 43.7 

44.6 44.5 45.6 44.2 

45.7 46.3 46.1 45.9 

46.8 47.2 47.3 46.7 

Execution 

Times 36.98 16.28 4.74 

(Seconds) 

NOTE:  All programs were run on an IBM 370/168 using the 

WATFIV compiler. 
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Almost a decaue ago Sherbrooke formulated the well known METRIC model 

for determining optimal stock levels for recoverable items for two echelon 
inventory systems J^rJ.  Subsequently Fox and Landi X-2"] proposed a Lagrangian 
approach for obtaining item stock levels for each location.  In this paper we 
develop a method for estimating the value of the optimal Lagrangian multiplier 
used in the Fox-Landi algorithm present alternative ways for determining system 
stock levels, and compare these proposed approaches with the Fox-Landi   ^ 
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(.orv'ti  "^algorithm and other solution techniques.  The conclusion of this study is that 
the proposed approximation methods significantly reduce computation time for 
determining system stock levels without degrading the quality of the solution. 
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