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ABSTRACT

Almost a decade ago Sherbrooke formulated the well known METRIC
model for determining optimal stock levels for recoverable items for two
echelon inventory systems [3]. Subsequently Fox and Landi [2] proposed a |
Lagrangian approach for obtaining item stock levels for each location.
In this paper we develop amathod for estimating the value of the optimal
Lagrangian multipler used in the Fox-Landi algorithm, present alternative
ways for determining system stock levels, and compare these proposed
approaches with the Fox-Landi algorithm and other solution techniques. The
conclusion of this study is that the proposed approximation methods
significantly reduce computation time for determining system stock levels

without degrading the quality of the solution.
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1. INTRODUCTION

Almost a decade ago Sherbrooke formulated the well-known METRIC model
; for determining optimal stock levels for recoverable items--items subject
i to repair when they fail--in a two-echelon setting [3]. In particular,
;- he studied the Air Force's two-echelon supply system. This system consists of
a set of bases and their supporting depots. Primary demands occur at the
bases while depots are central repair and inventory stocking points which
resupply bases when necessary. When a failure occurs at a base, a demand is 4
E | placed on the base supply organizaticn for a corresponding replacement part. E
i Depending on the nature of the failure, the failed part is then either repaired
at that baze or is sent to a decpot for repair. Resupply of the base supply
organization comes from the base maintenance organization if repair is
accomplished at the base:; otherwise, rcsupply comes from a depot. In either r
| case, the organization resupplying the base supply activity does so by
exchanging on a one-for-one basis a serviceable part for the failed part. Thus
the inventory policy for placing orders on the base's maintenance organization ?
or a depot is an (s-1,s) policy.
; Sherbrooke presented a model (METRIC) for determining both depot and
_“3 base stock levels for all items for this system. In particular, the problem

he formulated was to minimize the average total number of base backorders

.%E g ‘ existing at an arbitrary point in time subject to a constraint on system
E § investment: that is,
| 11 |
1 2 - minimize (x-s..)p(x|r..T..(s..))
1 : j=1 i=1 »>s,, 1 374310
¥ ' (1)
' m n
15 subject to .Z .Z c4S45 <G,
5 j=0 i=1
i

o

F s
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i
i ? :
E j where n represents the number of items, i
i | m represents the number of bases, 1
i | sij represents the stock level at base j for item 1, j
i ! sio represents the depot stock level for item i, i
% | Aij represents the expected daily demand rate for item i at !
E ; base 7j,
i c, represents the unit cost for item i,

‘ C represents the budget constraint, |

Tij(sio) represents the average resupply time for base j for item i

f given the depot stock level for Item i is S0
i and p(x|y) represents the probability that x units are in the resupply
} system given that the expected number of units in the resupply ;

system is y.

Furthermore, Sherbrooke shows that T}j(sio) can be expressed as

T,.(s. ) =r,.A,, + (1-r, )(B,. + 6(s..)D.),
13 1) i0 1

ij 7io i3 13
;
,1 where Aij is the average base repair time for item i at base j, 3
i: rij if the proportior of demands requiring base repair for item i !

at base ij,

a0 |

£ is the average depot to base order-and-ship time at base j for

X gt
o

item i,

Di is the average depot repair cycle time for item i,

= i
6(s, ) D, = 5 ) (x—sio)p(xlkiDi), the expected delay per depot

- i x>sio 5
demand for item i, g
m !
and Ai = z (l-rij)xij’ the expected daily depot demand rate for item i. .
j=1 '
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In the remainder of the paper i will refer to an item and j will refer to

a bese (j=0 represents the depot); thus i and j will always be elements
of the sets {l,...,n} and {0,...,n}, respectively. Additionally, an
integer k appearing in the text to the right of the statement of a problem

or equation will designate for futurc reference that problem or equation. For a
complete description of this problem's background and formulation see reference
3.

Subsequently Fox and Landi suggested a Lagrangian approach for solving
Froblem 1 [2]. One of the major obstacles to the successful implementation of
METRIC using the Fox-Landi algorithm is the requirement of estimating an
appropriate value for the Lagrangian multiplier. An important and related
problem is the lengthy ~omputer run time required to obtain an optimal solution
to Problem 1 when using this algorithm.

The purposes of this paper are to precsent an approach for obtaining an
estimate of the optimal Lagrange multiplier value required in the Fox-Landi
alpgorithm, to present two new methods for determining stock levels, and to
compare these methods with the Fox-Landi method and other techniques. The
proposed approach eliminates the particularly time consuming portion of the
Fox-Landi algorithm devoted to searching for the Lest Lagrange multiplier value.
The conclusion of the study is that the proposed approximation methods signifi-

cantly reduce computation time for determining stock levels without degrading

tlie quality of the solution.

2. THE APPROXIUATION PFODLEI

We begin this section by constructing a problem that is a continuous
approximation to Problem 1. We next state and prove two theorems that are
tihe basis for an algorithm developed in the next section which can be used

to solve this approximating problem.




Recall that the total average base backerders existing at any point in

time for item i can be exprecsed as

e~ 3

: XZS.' (x-sij)p(xlxijTij(sio)).

] ij

Two useful probability distributions for describing the demand process are the
Poisson and negative binomial distributions. As shown in reference 1, this
implies that if demand has a Poisson or negative binomial distribution, then
for a given Aij Tij(sio), the form of p(xllijTij(sio)), the probability
distribution representing the number of units in resupply of item i at base
j at any point in time, is a Foisson or negative binomial distribution,
respectively.

Experimental data gathered during the conduct of this study indicate
that when p(xlxijTij(sio)) is either a Poisson or negative binemial
I distribution, the above total expected backorder expression can be closely
approzimated by an erponential function. That an exponential function accurately
approvimates this expression should not be entirely unexpected. First, for
budgets of practical interest the item stock levels, Sij’ are normally much
larger than the average demand during the resupply time. For example, the

probability of running out of stock during the resupply time is often much less

e R e B

then .15 in real Air Force applications. Thus, the only probabilities entering

e

the backorder calculation are the tail probabilities. In the tails, the

Poisson and negative binomial distributions behave almost like the geometric

TR TEy

distribution; that is, each succeeding probability is roughly a constant

O 2 TS s OB A
.

proportion of its predecessor. Consequently, when e is large relative

(s..), the expected number of backorders existing at any point

Ayia
to i T ;0

jij
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in time at location j for item 1 is approximately a geometric function of Sii
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Recall that the total average base backorders existing at any point in
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Two useful probability distributions for describing the demand process are the ]
Poisson and negative binomial distributions. As shown in reference 1, this ;

implies that if demand has a Poisson or negative binomial distribution, then

(s..)), the probability

( i0

for a given Aij Tij sio), the form of p(xlkijTij
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distribution representing the number of units in resupply of item i at base
j at any point in time, is a Toisson or negative binomial distributicn,
respectively.

Experimental data gathered during the conduct of this study indicate
that when p(xlxijTij(sio)) is either a Poisson or negative binomial
distribution, the above total expected backorder expression can be closely
apprciimated by an exponential fuaction. That an exponential function accurately
approximates this expression should not be entirely unexpected. First, for
budgets of practical interest the item stock levels, Sij’ are normally much
larger than the average demand during the resupply time. For example, the

probability of running out of stock during the resupply time is often much less

then .15 in real Air Force applications. Thus, the only probabilities entering
the backorder calculation are the tail probabilities. In the tails, the ;

Poisson and negative binomial distributions behave almost like the geometric

distribution that is, each succeeding probability is roughly a constant

proportion of its predecessor. Consequently, when sij is large relative

to A,.T..(s..), the expected number of backorders existing at any point
i

J 1) 10
in time at location j for item 1 1is approximately a geometric function of Sij'
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Therefore an exponential function is a useful continucus approximation to
this relationship between expected backorders at a location and the item's
stock level at that location.

Furthermore, total evpected base backorders exhibit this same behavior.
If demand has either a Poisson cr negative bincmial distribution (or, for
that matter, any other compound Poiscon distribution)}, then the total number
of units of an item in resupply across all bases also has a Poisson or negative
binomial distribution, respectively, given independence of demand among bases
and ascuning the "order size' distribution is the same at all bases. Since
in most practical situations total system stock substantially exceeds the
total expected number of units in resupply, the tcil of the distribution
describing the total number of units in resupply is the only portion of the
distribution »f importance. As an approrimation, this distribution can be
used to determine thc nature of the relationship between total expected base
backorders and total system stock. Fer the reasons discussed previously, an
exponential function should adequately represent this relationship as well.

Thas we will approximate total system backorders for item 1, that is,

m
(x=5 .2 JP(R2 . Ty . (8 )
1]
with an exponential function of the form
-b.N,
B,(N.) Sa,e ~ 1.
1 1 J

In this approximation Ni represents total system stock. The parameters
a; > 0 and bi > 0 are estimated ucing regression analysis. The data used

in the regression analysis are the backorder data obtained from the solution to
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the problem

m
minimize -Z ) (x—sij)p(x,xijTjj(sio))
1=l %5,
1]
subject to
m
y s.. = N_, and !
jso M

Sij SOOI, '

for several apprcpriate values of Ni.

We now formulate a continuous approximation to Problem 1 in which the
exponential representation of total system backorders for an item is used.
In this approximation problem the decision varialkles are the total system
stock, Ni’ rather than the stock levels for each location, Sij' As we shall
see, the main reacon for studying this approximation problem is that it is

a vehicle for obtaining an estimate of the optimal Lagrangian multiplier

value used in the Fox-Landi algorithm. The appro:imation problem is

formulated as

n
minimize .Z Bi(Ni)
i=1
subject to
n
2 ciN. SHEE
j=g & °
N, 2> 0. (2)
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Note that Ni is a continuous variable in this approximation. The optimality
conditions (Kuhn-Tucker conditions) for this problem are as follows:

Find 8. 2 0 such that

l=
dB.
——5-+ 8.c. >0
a) dN. AL 75 = 8
i
n
b) .Z ciNi__<__C,
i=1
N. >0,
n
2 SN =
c) 81(.1 c c) =0,
i=1
dB,
and d) N.{=>+ 8.c.) = o.

idN, 11
i

A relazed version of Problem 2 in which the non-negativity constraint

on the item stock level is removed is .

n
minimize ) B,(N.)
. it
i=1
subject to (3)

The optimality conditions for this problem are:

Find 6, > 0 such that

2
dBi
R
1
n
b) ciNi 9 C,
i=1

n
e) 8, (e, -0C)=o,
2 j=1 12




a2, e

e
o

T

ds.
and b A it = 0.
d) Li le + 2°i) 0

YWe now explore the relationship Letween Problems 2 and 3 in detail.
Suppose we obtained a solution to Prcblem 3 (we'll show how to find
its solution in the next section). Let Ni represent the optimal solution
to Problem 2, and Ni represent the optimal sclution to Problem 3. If
Ni >0 for all i, then Ni = Ni and the objective function values are

equal.

Suppose, however, that Ni <0 for at least one value of 1i. Let

and

Since ﬁ; ?_Ni for all i and ﬁi > Ni for at least one i, C > C.
Suppose Problem 2 is modified slightly so that the right-hand side

value C is replaced by C. This modified problem is

n
minimize ) B, (N,)
=1 10

-
oL

subject to

The optimality conditions for this problem are the same as those given

for Problem 2 after substituting C for C. Also, let 8 represent the

optimal value of the Lagrangian multiplier for Problem 4.




In solving Problen: 3, we will c¢tain ua value for 62. Ve now show that
I 62, and that ﬁi = max(O,Ni) is the opzimal solution to Problem 4 by

demonstrating that these values satisfy the K thn-Tucker conditions

corresponding to Problem 4.

By construction,

o = Q - 2 2
If ©= = NS, is, } .
6 92, 6 >0 since 6, > 0. Suppose Ni Ni’ that is, Ni > 0. Then

dB. dBi
a | & =
N.51 N.=N.
218 1 1 1
dB, dBig _
' aw, G L
Ni=1\!. HIvEN

. y . . “ 2
By assumption there exists at least one value of i for which Ni > N.,

i’

-— (s}
that is, N, =0 while N; < 0. Since

dB, dB,
— S
dl, an. 2 :
[N.=0 N, =3¢
1 1 oL
due to the exponential form of Bi(Ni)’ and
dBi dBi =
P ; + 62ci = 0, we know that T + eci >0
w,=ne =0
b i
: 2 : = 2
Consequently, the optimal solution to Problem 4 is Ni = Ii = max{O,Ni}.

Furthcrmore, the optimality conditions are satisfied when ® is equal to 62.
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Th . 028
eorem 1 129

Proof: The optimal objective function value for Problem 2 is a convex,
differentiable, strictly decreasing function of the available budget, C.
Since the slope of this functicn is equal to the negative of the Lagrangian

| multiplier value, g, > g since C T. But 0y = 9, so 8, 8y |

Corollary. 6, > 0, wien g > e,

Next we ccupare XI;‘ with l'—li. If ¢ C, them Ni 3 ﬁi for all i.

New let us suppose C > C 5o that el > 92 = 8. Let us examine the two cases

—ﬁi > 0 and ﬁi = 0 separately.

First assume Ni > 0. Then

F. dBi: _
4 —N.i h eci =0
*n, =T,
LY 1 '
3 aB,
Furthermore, if N, > 0, then o+ + 68.c. = 0.
58 dni 1 Jat |
N, =N,
1
1 |
i a4 |
' aB B
- b4 (‘B i J‘ —
Cinc E R == = i,
el Sl Sl I Y A A BT
4 N4 iy, =1 %N.=N,
- | SRR at il
1 1f vt =0, then W, > Nl
1 i i 5t
: } Nlext assume Hi = 0. Since I
Aty dB, |
i - + 6 = + 0 >0 it follows that I-‘l=0
i an 1%  aN 3 = Y SSES i
iN.=0 N.=0
N - 1
o !
3 by corpiementary slackness. Thus we have proven the follewing theorem.
Bt e
i

o5




Theorem 2. N, > N1, additiorally, N, > #* whenever N, > 0.
& i S §

In this section we established several important relationships among
Problems 2, 3, and 4. In the next section we develop a simple algorithm for
solving problem 2 based on these relationships. We will begin the next
section by shoving how to find the solution tc Problem 3. As we have just
demonstrated, once we have the solution to Problem 3 we also have the solution
to Problem 4. From Theorem 2, we then have an upper bound on the value of
Ni. In particular, if ﬁ& = 0, then Ni = 0. Ccmbining this observation with

the implications of Theorem 1 and its corollary provides the bases for the

proposed algorithm for solving Problem 2.

3. COMPUTING OPTIMAL SOLUTIONS FOR PROBLENMS 2 AND 3

We begin this section by developing a method for determining the optimal
solution to Problem 3. Obsevve that the optimal solution must satisfy the

following two conditions:

and

The second condition must hold since each Bi(Z!i is a strictly decreasing

function of Ni'

Since

Bi(Ni) £ | A G

e e e e e ke ) A i s Z T i et
TR . — e . — .




where ai’bi > 0, the first condition states that

i Letting
1 ib;
d, = In{—=} ,
] <4
we see that
E By
‘,' Nl = 5 .
r; 1
‘E':;
- From the second condition we know that
E'.
] n -
E X @ {di e} =C
% ! i=1 1 i
' Thus
R n c,
o={J—-cvi] 53}
izl 71 i=l 1
Letting
n Cidi %
a Z and B = c 5
=1 3 i1 P
a 1
e can express 6 as E
~ - a - C P"
® =%
Thus o = o(0C)/8 (5)
2
and
a-C
- <t C s
SN S (6)
+ - = 9 .
i bi fi
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where ;" Bdi - @ and fi = Bbi. Consequently Ni is a linear function

of C. If the budget is incremented by an amount AC, then the new value

of the stock level for item i, N!, satisfies

The optimal solution to Problem 2 has been found if each of the Ni
found using Equation 6 is non-negative. If there exists an i for which
Ni < 0, then we may employ the following algorithn to find the optimal
solution to Problem 2. Let I = {1,...,n} and Ni represent the optimal
solution to Problem 2.

Step 0. Solve Problem 3 ac described above thereby obtaining an
initial value for Ni’ iel.

Step 1. Set Ni = 0 for all Ni < 0 during the last iteration and

delete the corresponding i from I. Recompute a and B8, wiere

end

B = Z {c./b.}.
iel 11

Step 2. Using Equation 6, obtain new estimates of Hi for each 1iel.
If Ni > 0 for all ieI, then the optimal solution has been found, and

Ny = N, for all iel and N; = 0 for all i=1,...,n for which i}L.

there exists some 1 for which Ni < 0, return to Step 1.
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It is clear that our soiution satisfies all the optimality corditions
for Problem 2 except possibly condition (a) for id¢I. However, at an earlier

iteration (when i was deleted from 1I) we had

dB, B
b =o + 6 =
dax. iops ==
*n.<0
oL
= dBi
where 92 is the earlier valuec of 82. Since I is clearly increasing

in Ni, and 92 increases at each itcratiocn (Theorem 1 and its corollary),

condition (a) must hold. Convergence isguaranteed since n is finite.

4. A COMPARISON OF ALTERNATIVE SCLUTICH PRCCEDURES FOR SOLVING PRODLEM L

In this scction we briefly review three algorithms for solving Problem
1 and compare them to two algorithms designed to obtain a solution for Problem
1 based on the solution to the aprroximating problem, Problem 2.

The first algerithm we vill discuss is the procedurc originally proposed
by Sherbrooke [3]. Tt is a mavginal analysis algorithm consisting of two
phases. In the first phase, each item is exaimined indcpendently. The

optimization problem solved for item i in the first phase has the form

m
mininize (x - s,.)p(x|2,.T..(s.,))
jZl xgs 1] P l 1) ij "i0
ij
subject to
m
) &, =N,
j=0 Y
£ O\l (7)
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where Ni is the total system stock availzble for distribution among the
depot and bases. Let Zi(Ni) represent the optimal objective function value
given Ni units are available for distribution. Problem 7 is solved by

obtaining the solution to the Ni+l problems

Zi(“i’sio) = minimize .Z ) (x - sij)p(xlxijTij(sio))
j=1 x°>s,.
13
subject to
m
RELTRE RN (8)
=1
sij = 0,1,...,

and s. fived
i0

for s.

j0° O,l,...,Ni. Problem 8 can be solved via marginal analysis. Then

Z.(N.) = minimize Z.(N.,s..), where
2.l i 1’10

Si0

SiO = 0""’Ni'

.

The second phase problem is

n

minimize ) 2.(i.)
R I
i=1

subject to

Siliaate.
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Sherbrooke [3] svzges*s a margin2l onalysis 2lgeritla be used to find a solu-
tion to this knapsack problecia. Clearly other procedures cculd be employed to
obtain an optimal solution. In any case, this approach requires a substantial
amount of storage to save all the Zi(Ni) values. For moderately sized
problems~- several thousand items--a storage requirement of 106 or more
words may be needed to save these values. Furthermore, the computation time
required to obtain these Zi(Wi) values for czuch problems is very large.

Subsequently Fox and Landi proposed a Lagrangian algorithm for solving
Problem 1 [2]. In particular, they formulated the relaxed version of

Problen 1 as

2 0 .'-_:l (9)

where 0 is the Lagrangian multiplier. Since p..blem 9 is separzble by
item, its optimal sclution can be found by solving the n individual item

problems
2 m
minimize ) ] (x - Sij)P(xlkij*i (s;0) + 8 .Z C.S..

1=] K> 1 = 1 1]}
3=1 sij j=0

subject to
Baa ME 0o 505 4

This problem, like Problem 8 in Sherbooke's two-phase method, is solved

using a partitioning procedure; that is, it is reformulated as
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m :
minimize {6c.s,. + } win e 0 - @y 00, T.. (s, . ))
= 1730 a 5 i 15§ T i0
S:6 0,1,...{ 31 s, = 0,1, wos,, : -y
+ 0c.s..: S. fixed}‘}, (10)
17°1j i0
or equivalently as

minimize 2Z(s,_ 3;8) (1)

i0

o

710

Bo~ 8 055000

i0
where
Z(Siole) = eciS:.L0
m o -
% jzl g;? {XZSij (x-sij)p(xlxijTij(sio)) + ecisij P8y -O,l,...,sioflxed}.

To determine Z(sio;e), solve the m base problems

minimize § (x-sij)p(x|xijTij(si0)) + ecisij.
Sy X>S. .
1] 1]
The cptimal sij is the smallest non-negative integer for which
¥ p(xlxijT..(sio)) < 6c,.

i i
x>S, . J
1]

Problem 10 (or Problem 11) is solved for each item for a given value of
6. This yields a total investment cost corresponding to 8. In the Fox-Landi
approach, the "optimal" value of 8 iz selected fi'om a grid of M equally

spaced values

8. >06. > ... > 06,> 0.
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The optimal value of 6 is the 6_, K e {0,...,M}, whose corresponding total

K?
investment cost is closest to C. O
Fox and Landi suggest that their method is a single pass method, that is,
only one pass through the item data base is necessary to obtain the optimal
solution. The storage requirement to effect this one pass approach is poten-
tially enormous. For a moderately sized preblem having 3000 items, 20 bases
and M = 63, almost 4 million item stock levels must be saved plus possibly
millions of additional item data elements reflecting fill rates, probability
of no stockout at an arbitrary point in time, expected base backorders, etc.
Furthermore, there may be no simple methed for estimating suitable bounds on
the values of the multipliers thereby requiring much larger values of I to
insurec adenquate approximation of the budget.
In the author's experience, the ability of Air Force personnel to estimate
a reasonable range for 6 for large problems is not good. It is not surprising
that it is difficult for scmeone to esEiméte the optimal value of the multiplier.
The data used in the model frequently change in real situaticns thereby
causing the optimal value of the multiplier to change. Furthermore, changing
the multipliers' magnitude by 10—6 or less often causes the corresponding
total cost to change by many millions of dollars. Consequently, 210 values
of © have bcen used in some Air Force applications to make the system "fool
proof.' In these cases 60 millicn or more item stock levels would be needed
to be stored explicitly--plus a considerable amount of other item and base
data--to make the Fox-Landi algorithm a truly one pass method.
On the other hand, if their method is altered so that the item data are
examined a second time, it is possible to eliminate virtually all the requirements
for secondary storage. In the first pass, only the running total cost correspon-

ding to each 6, Ke{0,...,M}, is saved. At the end of this phase the "optimal®
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multiplier value, 6", is established. The second phase of the algorithm

requires a second pass through the data base. In the second pass, the optimal
stcck levels for each location are found for all items by resolving Problem
: 10 with 0 =6 . |
] In some epplications the Fox-Landi one-pass method is clearly infeasible,
1 that is, there may not be enough peripheral storage capacity to save all the
data. If storage capacity is available, there is a tradeoff between the time
and cost required to store and access the data in the secondary memory using
the one-pass method and the time and cost to recompute the stock levels
using the second method. For realistic Air Force problems, the two-pass method
appears to be the only feazihie approach given current hardware constraints if
M 1is large enough to guarantee that a solution can be found that closely
approximates the target budget..
A third way to solve Problem 1 is a slight modification of the Fox-Landi
algorithm. This third method, called the bisection method, employs a
bisection search to find the optimal value for 6. This procedure requires
initial upper and lower bounds on the optimal value of g. Call these 8

U

and 8 respectively. The bisection method is as follows:

L,
1. Set 8 = (GU + GL)/2.

D A

'1 2. Solve Problem 10 with ® = @ for each item.
3. If the total cost of the solution obtained in Step 2 exceeds C,
then replace eL with 8- otherwise, replace eU with ®.

4. If a stopping criteria has not been met (such as a fixed number of

iterations or an error tolerance), return to Step 1: otherwise, stop.

The major drawback to the bisection approach is that a separate pass

through the item data base is required at each iteration of the algorithm.
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This algorithm performs very well in terms of convergence and in our experience
virtually always produces solutions that are within 1/2 percent of the target
budget using 10 bisections.

The closeness of the solutions to the target budget gencrated by either
the Fox-Landi method of the bisection algorithm depends on how broad a range
of multiplier values must be searched for a fixed value of ¥ or a fired
nutnber of bisections. It should be pointed out that both of these methods only
yvield an approximaticn to the optimal multiplier value (assuming cne exists).

Of the methods discussad thus far, it has been the experience of both
the author and Fox and Landi [2] that the latter two algorithms dominate
Sherbroole's algorithm in run times by an order of maznitude or more on real
problems given reasonable estimates of uppef and lower bounds for the Lagrangian
multiplier. Thus in the comparicons we will report, only these two Lagrangian
methods will be discussed.

Earlier we described an approximation method for estimating the optimal
values of 6 and each Ni. Several options are open for inplementing this
approximation methcd. One way to implement it is to use a two-phase approach.
Call this approach the Iirst Approximation llethod. The values of a; and bi
are computed in the first phase of this method during which the optimal value
of € 1is also estimated using Equation 5. In the second phase, we solve
Problem 10 for each item using the estimate of the optimal 6. This approach
has two major advantages over the Fox-Landi method:

(a) The estimate of the optimal multiplier can be obtained without

prespecifying a range of values, and computation time to obtain
the estimate does not depend on the uncertainty of the multiplier
value.

(b) The computation time to find an estimate of the optimal multiplier

is much smaller.
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If the two-pass version of the Fox-Landi algorithm is used, the second phase
of that methcd and the secend phasz of the approximation method are identical.
The one-pass version of the Fox-Landi algcrithm requires considerably more
stcrage, and also requires nore computer time to determine the optimal stock
levels than this approximation method requires.

The First Approximation Iethod also has the following advantages over the

bisectiocn mathod:

(a) Cnly two passes through the data base are required as opposed to
seven or more required for the bisection method in practice.

(b) No stock levels need to be saved: in the bisection method it is
necessary to cave all stock levels and other data for three
multiplier values.

Another algorithm can be employed that directly uses the results of

the approximation problem, that is, Prcblem 2. Call this approach the Second
Poproximation Method. This algorithm is of interest in situations in
which we only want to ccmpute total system stock for each item and are not
particularly interested in computing the optimal distribution of the assets.
Determining the optimal allocation of a budget among items is of primary
importance when purchasing inventory or making budgetary projections for spares
for different systems. In these cases, distribution decisions are usually not
that critical.

This Second Approximation algerithm also consists of two phases; in the
first phase we estimate the values of the a; and bi parameters, and in
the second phase we determine total system stock for each item using the
algorithm described in Section 3 and rounding Ni to the nearest integer. The

algorithm requires one pass through the item data base and one pass through an
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item file consisting of ai’bi’ and cy- The major advantage of this approach
is that it eliminates the stock allocation phase of both the Fox-Landi

algorithm and the First Approximation ilethed.

5. A COMPUTATICNAL COifPARISON OF VARIOUS ALGORITHMS

The Fox-Landi algorithm, bisection algorithm, and the two approximation
methods have been coded and tested on several sample sets of data for the
Air Force's new F-15 fighter. Since all of the test yielded the same general
results, we will discuss only tiro of them. The first test consisted of a 75
item sample and had 3 operating bases. The flying programs were very different
at each base. 1In the second test, 125 items were included in the sample with
demands occurring at 5 bacses. In the second tcst, only the Fox-Landi and the
two approximation methods were compared. In all Fox-Landi calculations, a
maximum of 128 multiplier values were cramined: ten bisections were used in
all applications of the bisection method. The run times stated for both
approximation algorithms include the time required to estimate the values of
a; and bi. Furthermore, in both test cases all stcck levels for all
relevant multiplier values were stored in main mcmory. Thus the reported com-
putation times, which include compile times which are roughly equal for
all the algorithms, are biased in favor of the Fox-landi method since for
larger problems this type of storage would be impossible. Additionally, the
range of multiplier values considered in the test of the Fox-Landi and
bisection methods was selected after estimating the optimal multiplier value
using the First Approximation Method. Thus the test results are biased in
favor of them, since the range of multiplier values was much smaller than

would normally be the case.
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The data displayed in Tables I and II indicate how well each apprcach
approximates a given target budget for the two test data sets. Vithout a
doudt the bisection method produced solutions that best matvched the taret
budzets followed in order by the Second Approximation Method, the Fox-

Landi method, and the First Approximation Method. As mantioned before, the
results are biased in favor of both the Fox-Landi and biscetion methods

cdue to the initialization of the range of multiplier values. From a
practical viewpoint, all anprciches worked acceptably well in meeting the
target budgets. Furthermore, the stock levels generated by the various
approaches were virtually the same for similar budgets. Consequently, total
systen expécted backorders, for all practical purposes, are indistinguishable:
that is, the backorder versus investment curves virtuallv coincide among these
various approaches. Exact comparison of computed stock levels and expected
backorders cannot be made among the ccmpeting methods since the allocation

of the available budget in each case depends on the way each algorithm
estimates the Lagrangian multiplier.

The area in which the methods clearly differ is in computation time. The
approximation methods require substantially less time than either the Fox-
Landi method or the time consuming bisection mcthod. Other experimentation
has shown that the percentage difference in computation times tends to be
even more substantial as the number of items considered increases.

Thus the approximation methods produce answers that are as good as those
produced by either the Fox-Landi method or the bisection method, but with
less computational effort. The bisection method did match target budgets
slightly better than the approximation methods. However, the approximation
algorithms are virtually fool-proof. This is perhaps the greatest advantage

of the approximation algorithms. The user does not have to specify the range
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of multiplier values or the number of bisections in advance. This eliminates
one of the main difficulties associated with implementing either the Fox-Landi
or bisection algorithms. In view of these observations, the approximation

procedures developed here appear to be superior for use on real problems.

.0 4
—

L
T O S

AT e o b
TR

& i . o
— Rt E e

e -

s
¥

B .
1
‘
.
-




:
3 25
.
b |
K Table 1
! 75- ITEM, 3-BASE TEST CASE
\.
|
i Total Cost (millions of $)
Terget
3 B et Bisection Fox-Landi Approx. I Approx. II
‘f' 3.68 3.67 3.68 3.63 3.63
3 3.97 3.99 3.92 3.82 4.03
- 4.27 4.27 4,27 4. 30 4.18
4.57 4.57 4,57 4.62 4.61
3 4.87 4.87 4.85 4.87 4.78
1 5.16 5.16 5.18 5.09 5.17
5.L6 5.46 5.42 5.38 5.49
. 5.76 5.76 5.76 5.75 5.79
6.05 6.C6 6.05 6.06 6.08
6.35 6.34 6.38 6.28 6.33
4 6.65 6.65 6.63 6.63 6.73
1 6.9u 6.89 6.80 6.87 6.92
3 7.24 7.24 7.19 7.27 7.24
: 7.54 7.54 7.57 7.68 7.51
1 7.83 7.84 7.77 7.80 7.83
- 8.13 8.14 8.2u 8.20 8.05
3 : 8.43 8.42 8.50 8.42 8.42
& | 8.73 8.73 8.50 8.74 8.77
| .02 9.02 9.0 9.11 9.00
i Evecution
; Time 92.57 19.57 11.59 4,57
{ (Seconds)
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125-ITEil, S5-BASE TEST CASE

Table 2

Total Cost (millions of $)

Tarpg=t
Budget Fox-Landi  Approx. 1 Approx. II
26.4 26.7 ; 24.8 | 26.6
)
27.6 2736 | 26.2 ; 2749
28.7 28.7 g 27.6 i 28.9
: :
29.8 | 30.0 | 25.5 , 29.8
31.0 31.2 ; 30.7 b 30.8
[} i
32.1 g 32.1 ; 32.0 i 32.2
33.2 i 398 33.1 | 33.1
34,4 . 3u.u 3u.2 g 34,2
{
35.4 35.5 i 35.9 } 35.7
36.6 | 35.8 ! 5710 36.7
37.8 | 38.0 38.1 37.7
38.9 i 38.6 39.3 39.2
40.0 L Safs 40.6 40.0
K1,2 ! 43.1 42,1 : 41.3
42.3 ;2.5 43.9 ' u2.4
u3.y 43.3 uy.7 43,7
4, 6 yu.5s 45.6 ; uy,2
l
us.7 46.3 : 4.1 , 45.9
46.8 47.2 | 67.8 ! 46,7
| i
Execution
Tiues 36.98 16.28 L.74
(Seconds)

NOTE: All programs were run on an IBMY 370/168 using the

WATF1IV compiler.
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‘approach for obtaining item stock levels for each

stock levels, and compare these proposed approaches with the Fox-Landi

“YAlmost a decade ago Sherbrooke formulated the well known METRIC model
for determining optimal stock levels for recoverable items for two echelon
inventory systems [31. Subsequently Fox and Landi [2] proposed a Lagrangian

location. 1In this paper we

develop a method for estimating the value of the optimal Lagrangian multiplier
used in the Fox-Landi algorithm present alternative ways for determining system
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>y algorithm and other solution techniques.
the proposed approximation methods significantly reduce computation time for
determining system stock levels without degrading the quality of the solution.
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