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the development of practical systems for the support of the manager in the
exercise of his operational responsibilities.

From the manager's point of view, one of the most important features of the sys-
tem is its flexibility.

It is considered of prime importance that the manager
have full control over the knowledge used by the system, and the way it uses i%.

He should be able to exercise this control, on either a permanent or ad hoc
basis, with minimal attention to implementation details.

In addition, the research has concentrated on giving the manager flexible and
effective means for evaluating the current and expected future state of his
organization and its operational capabilities.

him the capability of defining exceptional conditions, so that the system can

It has also focused on giving
monitor the expected future situation and alert him when his attention may be
needed.

The technical issues addressed in the research include the system organization,
the explicit separation of knowledge, data, and functions and their separation
by responsibility; the maintenance of consistency in the system's working data
as new data and plans are entered; the development of techniques for planning

and for maintaining approved plans as conditions change; and the development of
ways to integrate a.complex set of models.

The design of the experimental system, ACS.1, is described in some detail.

Viewed from the top level, the heart of the system is a collection of modules

of two types called "planners'" and '"scheduler.” These implement what are called
"process' and ''resource models,'" respectively.

Planning is conceived as a
process of negotiation among these modules, each handling its own defined re-
sponsibility.

The system mimics the way the human organization develops, main-
tains, and executes plans. This facilitates the transfer of responsibility be-
tween the human organization and the system. This aspect facilitates incremen-

tal growth of the system, its adaptation to changing conditions and needs, and
human intervention to handle exceptional situations.

It is believed that ACS.1 demonstrates priznciples and techniques that permit
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I. JINTRODUCTION AND OBJECTIVES

This paper describes the current state of a program of research
on systems providing automated support for high level managers.
The program seeks to apply some of the techniques of knowledge-based
inference that have been developed by the artificial intelligence
community, and to develop means for their application in decision-making
environments.

In cogssdeting what attributes would make a decision-aiding

system useful to managers, we have focused attention on three areas:

*

User control of the system. The manager needs to be able
to control the knowledge the system has, and how the system
uses it. He needs to be able to exercise this control on
either a permanent or ad hoc basis, with minimal attention
to implementation details.

User evaluation of conditions. The manager needs to know
the current and expected future state of his organization
and of its planned activities. The system should support
this need, giving him access to the information in a form
that is convenient for his purposes.

Exception monitoring. The manager needs to be able to
define potentially critical situations. The system should
accept his specifications, and, when appropriate, alert him
to the situation, allowing him to determine its significance.

To achieve these attributes, we are addressing five major
technical issues so as to obtain design principles for implementing
knowledge-based managerial support systems. These issues are:

*

System organization. The dominant requirement is considered
to be the need for user control of system initiative, and

of the knowledge the system uses. This reguirement is not
likely to be met satisfactorily unless the system organ-
ization is explicitly chosen to facilitate user inter-
vention. Design principles to meet this requirement are
being studied.

Separation of functions. The principle of separating
knowledge, data and functions, and knowledge and data by
type appears to be an important one for obtaining the
required flexibility of use. The identification of areas
of useful separation, and the development of techniques that
will facilitate use of the different kinds of separation

are important parts of the program.




* Maintenance of consistency in the data used by the system.
Much of the data that describes expected future conditions
or events is subject to change. New data can be entered
without realization of their full implications. The know-
ledge contained in the system can be regarded as defining
those implications, and so determining what changes in the
existing data must be made to maintain consistency. The
research program has given considerable emphasis to the
development of principles and methods for applying the
system's knowledge to the maintenance of consistency within
its data.

* Planning and the maintenance of plans in a changing environ-
ment. Planning can be regarded as the seeking of ways to
achieve a stated goal consistent with the knowledge that
expresses the rules and constraints that must be satisfied
and consistent with the current and expected future state
of the environment. Planning is generally initiated by the
addition of new goals. The need for the maintenance of plans
is the result of changes in the environment. The research
program is concerned with the development of principles and
technigues to support this activity, which includes automatic
planning and the maintenance of plans under normal condi-
tions, and providing informational support in exceptional
situations.

* The integration of a complex set of models. The knowledge
used by the system is conceived as being embodied in two
types of models. One type, called a "process model,"
defines what is meant by a process or an activity. The
other type, called a "resource model," embodies the con-
straints that limit the use of some type of resource.
Planning, and the maintenance of plans, is seen as requiring
the simultaneous satisfaction of all these models as partic-
ularized by the command requirement and the data. The
principles and techniques that will allow the simultaneous
use of a large and complex set of models are being studied.

The research effort has focused on the manager's respons-
ibility for developing and maintaining plans that are viable for
his organization and resources within an environment that may change
unexpectedly in many ways. This requires the initial formulation of
tentative plans, their submission to the manager for modification or
approval, and the maintenance and administration of approved plans.
Administration, as the term is meant here, includes transmitting
orders to execute planned tasks, and receiving notice of their
completion. Maintenance includes the capability of recognizing
when events or delays may force adjustments in existing plans. The
research goals include, also, the development of means to support
the analysis of past operations, based on the accumulated data.

The assumption that the environment is a changing one, and
that its changes are not always predictable, is central to the research.
The impact of changes, whether due to unexpected events or to unexpected
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delays in the execution of planned tasks, must be handled if the

system is to be useful. However, it is also assumed that the frequency
and extent of the environmental changes is not so great as to make
planning useless. It is assumed that changes do occur that may force
replanning, but that they occur with only moderate freguency.

In studying these goals, we have seen that major benefit can
be obtained by the explicit separation of such entities as data,
knowledge and computational functions. This principle has many aspects,
some of which are not obvious. For example, the separation of functions
from data or knowledge implies that the functions should be relatively
independent of the knowledge that specifies their behavior under the
particular circumstances. To the extent that this is done, the
knowledge can be altered almost at will without rewriting the functions.
A continuing theme of the research has been the identification of
useful areas for the application of this principle of spearation, and
the development of implementation techniques for use in these areas.

The relevance of the principle of separation to a managerial
support system derives from the conviction that system design cannot
be frozen if it is to remain responsive to managerial needs. These
needs will change with time as the problems and opportunities change,
as new circumstances arise, and as the organization develops.

In addition, exceptional situations will arise that require special
handling. 1If the system is to remain useful, it must be amenable to
incremental growth, and to modification for unusual or changing
requirements.

Another important principle is that of negotiation. The
experimental system that is discussed herein is constructed so that
viewed from the top level, it appears as a large number of essentially
autonomous modules. Each module has a specific responsibility, either
for planning certain defined tasks or for managing a particular type
of resource. The evolution of a plan is the result of a process of
negotiation among these modules, each being attentive to 1ts own area
of responsibility. Further, in the administration and maintenance of
approved plans, each module accepts responsibi;ity for the commi:ments
it has made, responding to new data in terms of that responsibility.

The significance of this principle of negotiation is that it
mimics the human organization and its mode of operation. It is, then,
easier to specify what the system should do since the specification
of each module can be limited to its particular responsibility.
Furthermore, these areas are similar to those for which human experts
already exist, again making it easier to specify the behavior of the
modules. Use of the negotiation principle also permits shifting
responsibility for parts of the process between the system and the
corresponding human organization. This provides a mechanism for
exceptional situations for which the system has not been programmed
since it allows responsibility to be switched to the human expert.
Further, it makes possible incremental growth, since the more complex
parts of the planning process can be handled by humans until the
corresponding modules have been programmed and verified.




To study the technical issues described, we have undertaken
the design and implementation of an experimental system called ACS.1,
for Automated Command System.* Its purpose is to develop and verify
principles and technigues that will be useful in the construction of
practical systems.

To provide a context in which to explore the technical and
managerial issues pertinent to the design of a knowledge-based
management support system, we have chosen to simulate the command
environment of a naval air squadron. This environment is convenient
for a number of reasons. First, planning is a continuing and important
part of the operation. Second, the principal activity, flying, is
repetitive in the sense that the same type of tasks must be planned,
using the same types of resources, independent of the details of the
flight. Third, a number of different types of resources must be
coordinated, giving the planning problem a significant richness.
Fourth, a considerable variety of other events can happen, such as
a pilot getting sick or an aircraft requiring maintenance, that can
affect both the planning process and the maintenance of an approved
plan.

In the following sections, the connection of this program to
to other work on automated goal-seeking behavior is discussed. The
the experimental system, ACS.1l, is then described at successively
greater levels of detail. The discussion of the system is given mostly
in terms of the chosen operational environment, that of a naval air
sqguadron. This is done in order to illustrate the practical issues
involved, but the generality of the principles and techniques should
be apparent.

* The system was previously called SPADOR for Scheduler, Planner

and Administrator of Operations and Resources. The name has been
changed to reflect our conviction that the principles embodied in the
system have a broader significance than would be indicated by that
name.




II. BACKGROUND

The problem of planning operations has received a great
deal of attention over the last several years. A number of approaches
have been developed and implemented in experimental systems or
languages. These include the work on language understanding by Green
[1], the development of TLC by Quillian (2], the STRIPS program of
Fikes and Nilsson [3], PLANNER developed by Hewitt [4], MICRO-PLANNER
developed by Sussman and Winograd ([5], CONNIVER by McDermott and
Sussman [6], the work on understanding natural language of Winograd [7],
and the procedural nets of Sacerdoti [8]. The concept of "frames" as
developed by Minsky [9] and Winograd [10]) must also be mentioned
because of its great influence on workers in the field.

The classic planning problem considered by the referenced
authors and others starts from a set of possible operations. Each
operction has associated with it certain preconditions. The
operation is meaningful or possible only if these preconditions are
satisfied. The problem is, first, to find a sequence of operations
that will attain the required goal, and, second, to find one that will
do so efficiently. The problem is difficult because the tree of
possible sequences can become huge, far greater than can be handled by
any simple search strategy. Furthermore, as Sacerdoti has observed [8],
the inefficiency, or even the impossibility, of a given branch of the
tree may not be detectable until a considerable effort has been
invested. Consequently, major emphasis is generally given to the
development and implementation of heuristic search methods.

The planning function of ACS.]1 has a different character.
In it, a process is viewed as a complex of operations whose sequential
structure is largely determined and stable in a given managerial
environment. A partial ordering, or lattice structure [11], is used
to define the process that is to be planned. We admit the
possibility of alternative orderings within some subset of the tasks
in 3 process, but this is not the dominant feature of a process;
the planning process is not primarily concerned with ordering the
tasks in a process.

Part of the problem addressed by the planning part of ACS.1
arises from the complexity of the interactions that can occur. These
interactions are assumed to occur only through competition for certain
limited resources, but many types of resources may be involved.
Furthermore, each type of resource may have its own rules or constraints
that determine what constitutes a conflict. For example, if the
resource is a human one, such as the pilots, the planning process
must account for the need for rest and food.

Another part of the problem arises because it may be necessary
to complete much of the planning process before a possible conflict
can be identified. For example, in planning a flight, mechanics
must be assigned for preflight and postflight operations. However, the
times when they will be required is not known until much of the other
planning has been done. It is desirable, therefore, that the initial
planning at least be done rapidly to avoid an excessive investment
of effort before discovering possible conflicts.

SHSETERNI
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A third part of the problem arises from the variability of the
operational environment. Unexpected events will occur that change the
availability of some resources. Even the tasks that are planned will
not be done exactly as anticipated. This leads to issues within the
planning process itself. First, it implies that a plan should contain
@ certain amount of slack. However, if the loading on a particular
resource is heavy during some period of time, then its planning should
be tight, without slack. Therefore, it is desirable to be able to
change the planning strategy, depending on the loading condition.
Second, the likelihood that some part of a plan may prove unworkable
for various reasons raises the issue of replanning. Clearly, if much
replanning is necessary, it should be limited to those parts of a plan
that need it.

Thus, the aspects of the planning problem addressed by ACS.1
arise from the complexities of the processes being planned, of the
interactions between plans and with other events, and of the operational
environment. These complexities make the problem substantially
different from those addressed in the research referenced above [1-11].

The planning problem is also substantially different from the
usual scheduling problem, which is discussed in Reference 12. The
classic scheduling problem is to find a suitable ordering of a set of
jobs subject to some set of constraints. The suitability of an ordering
may include not only that all constraints are satisfied, but also
that some cost function shall be minimized, or value function maximized.
The difficulty of the problem lies in the size of the tree of
possible orderings, so that heuristic methods may be needed to guide
the search.

In the type of application environment addressed by ACS.1,
it is assumed that replanning will be needed frequently for a variety
of reasons: an unexpected event, a failure to complete a task on time,
or to make room for another high priority operation. Replanning can
be expected to be reasonably common.

If replanning is frequent, it is unlikely that we can afford
to put primary reliance on a complex scheduling algorithm. Although
we may use one occasionally to establish an initial planned optimal
use of the resources, most of the replanning can be expected to depend
on finding a way of "patching" the current schedule to make it work
without reoptimizing it. Indeed, much of the replanning is likely to
be only partial, just enough to recover workability.

The research problems addressed in ACS.1 are, therefore, not
those of optimal scheduling, although we can expect that it will be
necessary to integrate a sophisticated scheduling procedure into ACS.]
for many applications. The immediate concern is to make the planning
process function satisfactorily, and to provide for the maintenance of
approved plans as the situation develops.

In the following sections, the structure of ACS.1 is described,
as well as the design principles and technigues that make it
recponsive to managerial needs.
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III. OPERATIONAL OVERVIEW

In this section, the operations of ACS.l1 are described from
the user's point of view. The description is given in the context
of a naval air squadron. The intent is to provide a perspective
from which to understand the reasons for the system's various
features, no to limit the application of the principles and technigues
being studied. As indicated before, we are addressing technical
problems relevant to the design of systems for the support of managers
in a wide class of application environments.

In the current system, planning is initiated by the commander
entering a requirement to fly a mission to a specified destination
at a specified time, and to leave the destination area at a specified
later time. ACS.1 is required to generate a plan that will meet these
requirements. Constructing a plan requires Zhe identification of the
pilot and aircraft, and the determination of start and end times for
preflight servicing, fueling, arming, launch, recovery, and for
postflight inspection. Maintenance and service personnel must be
assigned for some of these operations. The launch and recovery
facilities must also be scheduled. A plan has been constructed only
when the start and end times of all tasks have been set, and all
necessary resources have been assigned for the necessary intervals
of time.

If a plan can be generated that satisfies all of the con-
straints, it is returned to the commander for his consideration.
He may modify the plan, direct its acceptance, or cancel the require-
ment. It is important to note that ACS.1 is intended to aid him' in
the exercise of his responsibilities, and does not preempt his res-
ponsibilities.

Once a plan has been accepted by the commander, ACS.1l assists
in its execution. As time progresses, it notifies the appropriate
people or departments when tasks should be started, for example,
that preflight servicing should be initiated. It checks the time
of completion of the tasks, determining that the work is going
according to plan. If a serious lapse from the plan is observed,
it will seek to replan the operation to meet the original requirements
and will report the situation to the responsible authority. Thus
ACS.1 assists in the execution of the plan and monitors its continuing
validity.

After the mission is completed, ACS.1 records the data in its
data system. These data remains available for retrospective analysis
by the commander or his staff.

ACS.1 also accepts other data that may be given to it that
can have significant impact on the availability of resources.
For example, if a pilot becomes sick, or an aircraft is found to need
maintenance, these facts are recorded since they affect availability.
In responding to a requirement to plan a mission, ACS.1 takes account
of this information, using it to avoid making unrealistic assignments.
In accepting other information, ACS.1 is also able to recognize its

.




implications for existing plans. For example, if a pilot becomes

sick, ACS.1 determines if plans have been approved that use that

pilot. If so, those plans have become unrealistic. If authorized,

ACS.1 will replan the affected missions using other pilots. The f
revised plans, or the failure to replan successfully, is reported to

the commander for his approval or modification. If ACS.1 has not

been given replanning authority, it reports the situation to the

commander, alerting him of the need for action.

action.

: ACS.1, then, monitors the continuing validity of the
3 approved plans, guarding lest they be invalidated by later events
or information.

In providing the capabiliity to plan, and to aid in the

: administration and monitoring of approved plans, ACS.1 also

provides the means through which the user can conveniently modify

the rules and procedures used by the system, either permanently or
temporarily. The user can suspend the system's role at any point,
transferring responsibility to the corresponding human authority.

He can, in other words, use the capabilities provided by ACS.1 in

E: any way and to whatever extent that best serves the existing situation
and his own needs.




IV. FUNCTIONAL OVERVIEW

In this section, the internal organization of ACS.1 is
considered. Attention is limited to the system concept; details are
discussed in later sections.

ACS.1 has been implemented on a PDP-10 using INTERLISP
under TENEX. Figure 1 is a block diagram of the system at the
conceptual level; its actual implementation is somewhat different.
In particular, various functions are shared among the modules shown
in Figure 1, rather than being duplicated as would be necessary for
full modularity. Nevertheless, the virtual modularity permits the user
to make modifications, or to change the system's operations, as if the
design were literaly as given in Figure 1.

ACS.1 operates with a simulated clock in an interactive mode.
This is sufficient for research purposes. Experience indicates,
however, that it would not be unreasonable to expect satisfactory
real-time performance on a dedicated machine, even without further
optimization of its code.

The heart of the system is a collection of modules, each of
which is responsible for particular planning operations, of for
scheduling particular types of resources. These are virtual modules,
but the apparent modularity is an important element in providing user
control, as is discussed later.

The two principal types of modules are the planners and
schedulers shown in Figure 1. All interactions among them, and
communication to the commander or other user, are handled by messages.
A plan is developed as a set of agreements between the modules reached
through negotiation among them. The process is initiated by the
commander entering a requirement for a plan, for example, to fly a
perticular mission. This activates the mission planning module and
causes it to initiate reguests for planning the various tasks that are
required and for assigning the needed resources. The requests for
planning the tasks are sent to the planners that know how to plan them.
The requests for assignments go to the appropriate schedulers. The
planners for the subtasks may call other planners or schedulers, so
that the process may involve many levels of planning at different
levels of detail. A planner, at whatever level, reports that it
has a plan only when all of its component tasks have been planned
and all necessary resources have been scheduled.

The knowledge used by the system is held in the planners

and schedulers. Knowledge held by a planner describes the essential
features of the process handled by that planner, and is called the
"process model" for that process. The knowledge held by a scheduler
describes the constraints on the use of a particular type of resource,
such as pilots or aircraft, and so controls how that type of resource
can be utilized for various processes. This knowledge is contained

in what is called the "resource model" for the resource type. The
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structure and use of these models is described in later sections.

In addition to the set of planners and schedulers, there are
three other major components. One is the data system that records
historical information about completed operations. The second
component is a pseudo-natural language front end which serves as an
interface to the user.* The third component is the message handler.

A relational file system has been constructed for the data
system, although it not yet been integrated into the system. It is
planned that the data system will be an active module that will
handle the monitoring function on its own initiative. All data
entering the system will go to the data system which will determine
the significance of the data versus established deadlines. If the
situation requires replanning, this will be discovered in the data
system and the appropriate process will be initiated.

The message handler is a central switching module that handles
all communications among the planners, schedulers, the data system,
and to and from the user. It is also planned that the message handler
will be able to translate messages. Receiving a messgae from Module A
for delivery to Module B, it will translate that message into a format
that can be received by Module B. This will further decouple the
modules from each other, facilitating their modification or the
substitution or addition of new modules.

The central location of the message handler, and its design,
are important for obtaining flexibility and facilitating command
intervention. It permits having more than one planner for a given
process or task, implementing alternate ways of planning the task.

The user will be able to switch from one to the other, either
permanently or on an ad hoc basis to meet exceptional circumstances,
by changing the contents of the message handler. He can also cause it
to send all messages of a given type to the terminal, allowing him

to take direct control of any part of the planning process.

In summary, the structure of ACS.1 is deliberately designed
to parallel the corresponding human organization. The responsibilities
of the planner and scheduler modules correspond, to a large degree, to
those that are likely to be assigned to departments or to specific
individuals. The message handler provides a central point at which
the manager can intervene to modify this separation of responsibilities
within the system, or to shift responsibility between the system and
the human organization.

———— - ————

By a pseudo-~natural language front end, we mean one which can
accept input gqueries and commands in a natural language format. The
formats, however, are specified, and the system uses pattern-matching,
rather than syntactic and semantic analysis. The program we have

used is one called LIFER that has been developed by the Artificial
Intelligence Center at SRI.

11




V. PLANNERS

The responsibility of a planner is to plan some activity. This
activity may be a top-level one, such as a mission, ordered by the
manager. Or it may be a lower level activity that is a part of a
higher level one, such as the preparation of an aircraft for flight.

In order to execute its responsibility, a planner must contain
the necessary knowledge about the activity. This knowledge
constitutes what we call a "process model." The process model for any
activity, whether top level or subordinate, identifies what infor-
mation is regquired in a plan for that activity, how that information
can be obtained, and what are the applicable constraints. A given
process model specifies, implicitly, a particular level of detail.

The information that it seeks and uses is strictly confined to that
level of detail. Any more detailed information that is needed to
generate the required information will be handled by a subordinate
planner using its process model.

As an example, Figure 2 shows the principal components and
relationships contained in the process model for flying a mission.

The correspondence between a process model, as illustrated in
Figure 2, and a PERT chart is evident. The correspondence is not
complete. A PERT chart includes also the relevant deadlines, which
become part of a plan that instantiates the process model.

More exactly, a process model contains the following
information about the activity it models:

(1) The tasks that are components of the process being
modeled.

(2) The way in which the duration of each task is to be
determined for planning purposes. This may be by stored
values or through specifying a2 call on another planner
that knows how to compute the duration.

(3) Any sequential constraints between tasks, such as that
certain tasks must be completed first.

(4) The identities of the planners that can plan the tasks
identified in (1).

(5) The types and number of resources that must be assigned
during execution of the process.

(6) The constraints that relate assignments to tasks within
the process-- for example, that the assignment must be
made from the beginning of one task to the end of anodther.

(7) The identities of the schedulers that are responsible
for scheduling the needed resources.
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FIGURE 2 PROCESS MODEL FOR FLYING A MISSION
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(8) The formats and contents of messages to schedulers and
planners that will request assignments and the planning of
tasks, and of the expected responses.

As an example, the process model given in Figure 2 indicates
that flying a mission is composed of the tasks called preflight
preparation, pilot briefing, flight out, the unnamed task at the
target, flight back, postflight service, and pilot debriefing. The
graph at the top indicates the constraints between these tasks, such
- as that the preflight preparation and pilot briefing must be completed
before the start of the flight out. The model also states that an
aircraft and a pilot must be assigned, the aircraft being assigned
from the start of the preflight preparation to the end of the postflight
service, and the pilot being assigned from the start of the pilot
briefing to the end of the pilot debriefing.

The durations of the tasks before and after flight can be
handled through stored values, based either on established standards
or through experience. The durations of the flight out and the flight
back, and thus the times of launch and recovery, must be computed by
a separate planner using the ship's position, the target's location,
and the airplane's performance characteristics.

The planner that plans the flight out and back can be regarded
as using a more conventional type of model, one that models the
geography involved and the performance characteristics of the aircraft.
This illustrates the use of other types of models, which is feasible
because of the modular organization of the system as a whole and the
use of messages for communication within the system.

In addition, the process model will identify the planners that
can plan the various tasks identified in Figure 2. For example,
the process model for the preflight servicing will cover inspection,
arming, fueling, and locating the aircraft on the flight deck.

It is no accident that the constraints expressed in Figure 2
all appear quite obvious. Our feeling is that, if they are not
obvious, the given process model should be decomposed further into a
hierarchy of models, each of which would have relatively trivial
constraints. Otherwise, there is too great a danger of ambiguity, or
of overlooking some important implication. Also, the decomposition
into relatively simple process models enhances adaptability and
flexibility since it makes it easier to understand the content of each
model and its implications.

The subtasks of launch and recovery require the assignment of
facilities and crews, but may not be decomposed further into smaller
tasks. If not, their process models consist only of the single task
and the assignment. This is a limiting case in which the process model
has become structurally trivial.

The implementation of a process model is accomplished by means

of an a-list, or an association list. An a-list is a list of property-
value pairs without specified order. Any retrieval of a value is done
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associatively, using the name of the property. Also, the values may
themselves be a-lists, so that the whole structure can be a tree of
indefinite depth. A-lists are a convenient device that is well imple-
mented in INTERLISP for encoding complex information.

The principle information encoded in the a-list of a process
model is that listed above. Other information, such as the rules
for handling priorities, can also be encoded in the a-list.

The development of a plan starts from the specification
of its objective. Some timing information must be contained in the
request; for example, the request may specify the time of arrival
at the target, and the time of departure. The planner determines
which tasks are partially but not completely specified--in this
case, the flight out and the flight back. It initiates reguests to
supply the missing information to the planner that plans flights.
The responses fills in the information about the flights out and
back. These data also provide an end time for preflight preparation
and pilot briefing, and a start time for postflight service and
pilot debriefing. Hence these tasks are now partially specified
and can be planned by the corresponding planners.

After all the tasks named in the process model for a mission
have been planned, the mission planner knows the intervals over
which an aircraft and a pilot must be assigned. It can then reguest
these assignments of the schedulers identified in its process model.

The planning of the tasks in the mission by the various
planners may include other processes and assignments. For example,
the flight out may include the tasks of launching and the flight
itself. The flight itself will be computed by another planner that
knows the ship's location and the flight characteristics of the
aircraft type. The launch task requires that the catapult be
schedvled by the appropriate scheduler. The crew operating the
catapult may also need to be scheduled. The planner that is planning
the flight out will not respond to the initial request until these
tasks have been planned and the needed assignments made.

In the course of generating a plan instantiating a process
model, some additional complications may arise. First, there is the
use of internal priorities. For example, the ideal launch time is
determined by the specified time at the target. However, an earlier

launch time is acceptable, providing it is not too much earlier. Hence,

in requesting assignment of a catapult, the desired launch time is
specified with top priority, and the beginning of the launch with
lower priority. The catapult scheduler will then meet the requested
times if it can, but, if not, will furnish an earlier rather than a
later time, violating the requested start time, rather than the end
time.

A second complication may entail external priorities, given as
part of the initial requirement by the commander. This has not
been implemented as yet, but is intended to be introduced when time
permits. It would be used to determine when resources can be
preempted from other, previously approved plans if necessary for
meeting the reguirements.
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Finally, there is the possibility of alternate sequences. 1In
the example of a military flight, arming and fueling can be done in
either order, although not concurrently. If the planner for the
preflight preparation cannot obtain a fully satisfactory plan using
one sequence, it will try the other.

The encoding of the process model as a distinct data structure
is an important feature in making the system amenable to managerial
control. It makes it relatively easy for the manager to specify a new
process model, or to change an existing one. If he wishes to introduce
a new planner, either to replace an existing one or to plan some
activity that has not been planned by the system before, he need only
introduce the appropriate process model or models. Dialog functions
for this purpose have been written.

As indicated before, it is also important that the process
models are relatively simple, with complex processes being decomposed
into a hierarchy of process models at successively greater levels of
detail. Again, this facilitates intervention by the manager to change
the process being planned or to change the scope or purpose of the

system.

In addition, work is currently under way to provide for planning
in context. That is, we expect to be able to hold plans on a contingent
basis, from which they will be promoted to the global context for
execution only when needed.
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IV. SCHEDULERS

The general responsibility of a scheduler is to coordinate
the use of some type of resource, such as the pilots, the aircraft,
the launch catapult, or any other resource that needs to be coordinated.
Thedwgrd “"resource" includes people, equipment, or facilities, as
needed.

The principle system function served by the schedulers is to
respond to requests for assignment from the various planners. To
do this, each scheduler must have access to all information that bears
on the future availability of its resources. In ACS.1, this information
is retained by the scheduler itself in a data structure called a "scroll
table," which is described later. This data structure is entirely
separate from the data system of Figure 1, which records actual events
rather than planned or expected future ones.

A scheduler is also required to monitor its data to recognize
when existing, approved plans must be reconsidered. This requires
that it be able to enforce consistency on the data given to it, as
defined by the knowledge it has about its resources. For example,
if an aircraft is found to be inoperable, this precludes its use until
the needed maintenance is done. If it has been scheduled for a flight,
then either the required maintenance must be done first, or the plan
for the flight must be revised. It is the responsibility of the
aircraft scheduler to recognize this fact, and to initiate the
appropriate system action.

To execute its responsibilities, a scheduler must contain
knowledge about the constraints that 1imit the use of the resources
that are its concern. This knowledge is contained in what we call
a "resource model." The way this knowledge is encoded and used is
discussed later.

The ability of a scheduler to retain data about the future
use of its resources makes it a convenient location for providing
additional services to the manager. It can be expected, for example,
that the manager will need to obtain various information about the
expected usage of the various types of resources, retrieving either
specific data or various summaries and overviews. This need is
supplied by the schedulers of ACS.1 in response to queries from the user
that are transmitted through the message handler.

In addition, a scheduler is a reasonable place to locate some
of the alert functions that the manager is likely to need. An "alert
function"” is one that will inform the manager if some critical condition
occurs that may require his attention. Since the scheduler holds
information about the future state and availability of its resources,
it has the information needed to recognize critical situations of
overloading or underloading.

For example, the commander of an air squadron may specify

that a certain number of pilots should be available during some critical
period. The pilot scheduler has the information with which to recog-
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pize whether or not this condition is being maintained. Therefore,
it should have the capability of monitoring the situation, and of
alerting the commander when the requirement is being violated.

In summary, for the schedulers to execute their responsibil-
ities, they must have the following capabilities:

* A scheduler accepts and maintains all information that
affects the future availability of the resources it controls.

* The information retained by a scheduler is maintained
in a self-consistent way, as specified in the rules and
constraints of its resource model.

* The information is retained in a form that permits the user
to obtair o>verviews of the expected utilization of its
resources in accordance with his needs.

* Tools are provided with which the user can define critical
conditions of overuse or underuse of which he needs to be
alerted.

To provide these capabilities, the schedulers use a data
structure called a scroll table. Table 1 is an example of the scroll
table for a pilot scheduler after it has been given certain data and
and has participated in planning certain missions.

TABLE 1
PILOT SCROLL TABLE

<MONITOR>: SHOW THE TABLE FOR THE PILOTS FROM 0:00:00 TO 0:03:00

TABLE NAME: PILOTS s
DATE: 70001.00:00

; NAME\TIME| 0:00 0:30 1:00 1:30 2:00 2:30

i ABLE | SICK SICK SICK SICK SICK SICK

; BAKER | AVAIL ASG ASG ASG ASG ASG.RET
CHARLES | AVAIL AWAY AWAY AWAY AWAY AVAIL
DAVIS | AVAIL ASG ASG ASG ASG ASG.RET
ELLIS | AVAIL AVAIL AVAIL AVAIL AVAIL AVAIL
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Table 1 is a copy of an actual printout, except for the
addition of the dividing lines. The command after "<MONITOR>:" is
an example of a pseudo-natural language input that is recognized by
the User Interface of Figure 1. £

& scroll table is a two dimensional array of indefinite
size, arranged in columns of increasing time. As shown in Table 1,
the rows are assigned to the different resources being scheduled, here
the pilots in the squadron. The columns represent increments of time,
30 mirute intervals in this instance. The first column includes the
current time. As time advances beyond the limit of the first column,
that column is deleted and the second column becomes the first. The
table is then said to have been "scrolled."

In Table 1, information about a given pilot at a given time
is found in the "cell" that is at the intersection of the appropriate
row and column. In the actual printout shown, only a small portion
of the content of a given cell is exhibited, specifically a code that
identifies one of a predetermined set of states for the named resource.
The additional information contained in a cell can be obtained by
accessing the cell directly. For example, pilot Baker at time 0:30
is shown to be in the state ASG, or assigned to a flight. Accessing
the cell will recover the identification number of the mission, its
start and end times, and other data that may have been included such
as the flight purpose code. Similarly, at time 2:30, he is is the
state ASG.RET, for assign-return, indicating a rest period following
an assignment. Accessing that cell will recover not only the start
and end times of this state, but also the key data on the assignment
from which he is resting.

Table 1 shows the scroll table in its basic conception. It
exists in this form only as a virtual entity, i.e., as one that is
implied by the next more detailed level of implementation, although
it can be printed out as if it actually existed. At the next level of
detail, the scroll table has the form shown in Table 2, which is also
a copy of a printout.

TABLE 2
CONDENSED PILOT SCRCLL TABLE

<MONITOR>: SHOW THE CONDENSED TABLE FOR PILOTS

PROPERTY: STATE.NAME (* = AVAIL)
TABLE: PILOTS
NAME\TIME | 00:00 00:30 02:30 05:00 05:30 08:00
ABLE | SICK SICK SICK SICK SICK SICK
BAKER | * ASG ASG.RET ASG.RET * *
CHARLES | * AWAY * * GONE GONE
DAVIS | * ASG ASG.RET ASG.RET * *
ELLIS | * * * * * *
19
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The major difference between Tables 1 and 2 is that, in the
latter, the individual columns may cover an indefinite number of
increments of time. For example, the second column of Table 2 covers
the time period from 0:30 to 2:30. although the basic increment of
time is 30 minutes. The data in that column apply to all half-hour
intervals in the range. 2 new column is made only when it is actually
needed. For example, if pilot Able were to return from sick leave
at, say, 1:30, the first action would be the creation of a column
whose start time was 1:30. This column would , initially, be given
the same data as that contained in the column with start time 0:30.
The information that pilot Able will become available at 1:30 can then
be entered into the table.

Columns are created only as the need arises. Therefore,
the total time covered by the scroll table is limited only by the
capability of the computer to handle the numbers involved. The
applicability of this device depends on the assumption, which is
reasonable in the case of a scheduler, that most of the data that
must be stored will concern the fairly immediate future. It allows
the scroll table to cover an essentially indefinite period without
requiring an excessive amount of memory.

It may be observed, in Table 2, that there is no apparent
difference between the column starting at 2:30 and that starting at
5:00. The same is true of the last two columns. The creation of the
extra columns was the result of making an assignment to a mission that
ended at 4:50, and then cancelling that mission. These columns are,
therefore, no longer needed, and could be combined into the previous
columns. However, it is not worthwhile to do so; no check is made to
determine if columns can be safely removed. Scrolling will eventually
eliminate unnecessary columns.

As stated previously, the information printed in Tables 1 and

2 is only a small part of that actually contained in the cells of the
scroll table. This is illustrated in Table 3, which gives a rundown
of the available information about each pilot at the requested time,
in this case 5:15. Table 3 gives, for each pilot, the start and end
times of the principal actions involved, and the identification code

for that action where appropriate. By "principle action" is meant
the action that was initially entered, which may be different from
the action indicated by the state name. For example, the start and
end times, and the identification code, for Davis are those of the
original assignment, although ASG.RET is the state name for the rest
period following an assignment.
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TABLE 3
PILOT ASSIGNMENTS

<MONITOR>: WHAT IS THE ASSIGNMENT OF EACH PILOT AT 0:05:15

NAME | STATE START RETURN ID
ELLIS | AVAIL

DAVIS | ASG.RET 33 123 M3
CHARLES | AVAIL

BAKER | ASG.RET 32 122 M2
ABLE | SICK 0 INDEFINITE

Additional information can be attached to the scroll table
in other ways than by entry into its cells. For example, attached
to the table as a whole is a list of the missions that have been given
to the scheduler, together with the key information about each. A
printout derived from this list is shown in Table 4. This listing
permits accessing the data about missions directly through their
identification codes without having to search the table. It acts
like an inverted file for that information. Note that Table 4
contains data about a cancelled mission, number M1, which no longer
appears in the scroll table. This is useful since it permits the
plan for that mission to be reinstated without replanning, if this
can be done without conflict. It increases the flexibility of the
scheduler.

TABLE 4
MISSIONS

<MONITOR>: SHOW THE STATUS OF EACH MISSION

ID I PILOT START RETURN STATUS

M3 | DAVIS 33 123 SCHEDULED
M2 i BAKER 32 122 SCHEDULED
M1 | BAKER 31 291 CANCELLED
i
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If desired, it would also be possible to attach data to the
rows or columns of the scroll table. For example, total flight hours
for the month could be accumulated for each row and attached to it.

The format of the scroll table, either in full or in its
condensed form, is a useful way of displaying key information to the
user. It should be noted that any information that has been encoded
into the cells of the scroll table can be displayed in this format.
Hence it provides the user with the ability to obtain an overview
of the expected utilization of the resources of a given type, according
to whatever property he wants to see.

The structure of the scroll table is convenient for planning
purposes. It permits rapid response to a request for assignment.
When a request is received, the columns for the requested period
can be scanned rapidly to determine which resources are available.
The structure of the scroll table is also convenient for determining
the effect of an input describing an unanticipated event, and thus
for maintaining the consistency of the data. For example, if a given
pilot goes on sick leave, the corresponding row can be scanned
rapidly to determine if any plans are affected. This is not, in fact,
the way consistency is maintained; the actual method is discussed
later. However, the method used does depend on the ability to access
data rapidly in a row over a given time period.

The scroll table is particularly useful for gueries or
entries that specify the time, but not the particular resource.
This is generally true of requests for assignment. It may also be true
of aueries from a user, such as the commander, about the utilization
of the resource type. The importance of these uses of the schedulers
that has dictated the use of scroll tables in ACS.1.

The scroll table is currently being modified to inclucde the
possibility of entering data "in context,” that is, when the data are

only provisionally true, or refers to some contingency. This capability

will be coordinated with the ability to plan "in context,” as, for
example, in constructing contingency plans. Provision is also being
made to allow the user to obtain overviews, and to set alert
functions, with reference to a specified context.
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V. RESOURCE MODELS AND CONTROL OF THE SCHEDULERS

In the previous section, the way information is held in a
scheduler, using the device of the scroll table, is discussed. 1In this
section, we discuss the resource model that contains the knowledge
used by a scheduler, and the techniques that enable the scheduler
to use that knowledge.

The resource model of a scheduler contains the knowli:dge about
the resource type being scheduled. This knowledge is used to identify
the entries that can be made to its scroll table and to define the
consistency relations that must be enforced.

The principal components of a resource model are the "entry
types" that are to be recognized by the scheduler. These are labels
that are used by the planners in requesting assignment, and by the
data entry functions to identify the category of the entry desired.

For example, the entry types that have been used by the pilot scheduler
are: MISSION, MISSION-REST, TRAINING, SICK-LEAVE, SICK-LEAVE-RETURN,
LEAVE, ATTACH and DETACH. MISSION-REST is a period that follows
assignment to a flight during which the pilot is not to be assigned

to another flight if it can be avoided. SICK-LEAVE-RETURN is a similar
period following sick leave. Other entry types could be added easily,
and probably would be required in an operational system. This set,
however, provides an interesting variety of constraints.

For each entry type in the resource model, the following
information is included:

* The state name that identifies the entry type--for example,
ASG for missions. (Note: Only a2 single state name is used
for each entry type.)

* The identity of any preceding or following entry type--
for example, MISSION-REST as a succeeding entry type to
MISSION. (Note: This permits multiple state names to
describe a connected sequence of entries, each being a
single entry type.)

* The "level" of the entry type, which determines if the type
can displace data already present in a cell. Entry is
allowed only if the level of the entry type is greater than
than that of the existing data.

* A code designating the mode of entry, identifying how the
entry is to be made. For example, MISSION must be entered
consecutively in a single row of the scroll table over the
entire period specified. TRAINING (meaning classroom
training, not flight training) can be entered disconnectedly
in a single row, providing the required total time is
accumulated.

* The labels and format of additional information that may
be included. For example, MISSION requires the designation
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of an ID under the label ID-MISSION. The resource model
specifies the label and, by implication, that the entry .
shall be listed separately and attached to the table as a
whole, as illustrated in Table 4.

* The demons* that are to be set, as is discussed shortly,
and the names of the functions to be used.

* 1If appropriate, the functions called by the demons when they
are fired. These include, for example, dialog functions
that give the user direct control of what the system does
about the situation that caused the demon to be fired.

The resource models have been encoded as a-lists that are
attached directly to the scroll table. The functions that make an
assignment in response to a request, or that enter data describing
a current or expected event, do so by referencing the a-list for the
entry type and using it to control the actual entry operation.

The use of demons is a very important technique in the
implementation of ACS.1l. They are used to enforce consistency according
to the resource model, while maintaining separation of the operations
involved. For example, the use of demons allows the data entry function
to be separated from its side effects.

As a specific example, suppose a given pilot goes on sick leave
for some period of time. That information is entered directly. The
function that makes the entry into the scroll table does so without
regard for any possible side-effects. If that entry overlaps a period
during which the pilot is assigned to a mission, this fact is recog-
nized by a demon that has been set to watch the ASG entries. The
demon recognizes that an assignment must be made for the full duration
or not at all. The demon therefore cancels the assignment over the
full range. It then reschedules the mission with @ new pilot 1f 1t
has been authorized to do so and if one is available. If not authori-
zed, or if no other pilot is available, it alerts the commander,
calling a dialog function through which he can evaluate the situation
and decide what to do. The demon is the link between the entry and
its side effects, however extensive thece may be.

* A "demon", as the term is used in the artificial i1ntelligence

community, is a function that is set to "watch" a data element. If

the data changes in a way that is specified as part of the demon,

the function is "fired" and does what it has been programmed to do.
As used here, demon refers only to "write demons."” There are

also "read demons" that can be fired on reading the data element, but

we have had no occasion to use them in ACS.1.
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We give this rather detailed example to illustrate how demons
are used to maintain consistency in the scroll table according to the
resource model. Other examples could be given where different rules
are involved. As a general principle, whenever a change of the contents
of some cell implies a change in the restrictions on the data elsewhere,
demons provide a convenient device for testing the new restrictions
and making any necessary adjustments.

The commander has control over what the demon should do when
it is fired. In the example discussed, he may or may not be willing
to have the system reschedule the mission with a different pilot.

To switch from one mode to the other, it is only necessary to change
the function called by the demon. This function is named in the
resource model, and a new function name can be substituted without
difficulty. If the alternate function does not exist in the systenm,
an appropriate one can be constructed gquickly since it need only
implement the specific policy decision without considering other
problems. It is, therefore, relatively easy for the user to exert
effective control over what authority is exercised by the system.

The effect of the use of demons is to separate the inputting
of data from its possible side effects. The entry function need only
check the admissability of the data, and, if permitted, enter it.

Any consequent adjustment or deletion of other data is handled by
demons.

Demons are also used for other purposes. For example, as was
discussed, the commander may need to maintain a certain number of
pilots available for missions during some critical period. Demons are
used to monitor the data for this purpose, issuing an alert when the
condition is no longer met. These demons are set to watch the columns
of the scroll table. Any change in the data in those columns fires
the demon, which then evaluates the reserve capability that remains.
If the reserve has fallen below the required limit, an alert message
is initiated.

Demons can also be used on a row of a scroll table, to be
fired when the data in the given row changes in specified ways. This
type of demon can be used to accumulate flight hours per pilot for
the month, or to keep track of when scheduled maintenance actions
should be undertaken on the aircraft and, if desired, initiate the
planning for those actions.

The use of demons is a flexible and powerful tool for applying
the knowledge contained in the resource model of the scheduler and
for obtaining alert messages. It is an important device for achieving
separation of functional behavior, as illustrated in the separation of
of data entry from its side effects and from the determination of
critical conditions or of cumulative measures. This separation is
important since it means that changes in the rules and policies
contained in the resource model can be made with minimal concern for
their long range implications,

The design of the schedulers, and the means used to implement
them, is intended to give the user immediate and easy control over
the knowledge they use, and the way they use that knowledge. It
repiesents a deliberate exploitation of the principle of separation,
seeking to isolate, as far as possible, the different aspects of

scheduler operations. -




VI. CONCLUSIONS

The experience with ACS.]1 has demonstrated the feasibility
of a system that can be a direct aid to management in planning,
executing, and monitoring operations. The system is a knowledge-
based, model-driven one that exhibits considerable inferential
capability, yet is controllable by the manager in a flexible and
adaptable way.

Flexibility and adaptability are considered to be of prime
importance so that the system can continue to be responsive to
managerial needs as the situation develops, as the organization and
its policies evolve, and as managerial requirements change. Flexibility
and adaptability are obtained through several means that can be regarded
as different aspects of the principle of separation. The primary
applications of the principle are the following:

* The system, as seen by the user, is highly modular, and its
structure parallels that of the comparable human organ-
ization. 1In consequence, operations can be shifted between
ACS.]l and a human at will, with little difficulty.

* A central node is provided in the unit called the message
handler. This node provides a convenient means for the
user to intervene to direct operations or to take over,
permanently or temporarily, control of any of the system
functions.

* The virtuval modules at the top level, the plannerc and
schedulers, are entirely separated in their operations,
being linked only through the message handler. One module
does not even know if another exists, or if its functions
are being handled by a human at a terminal.

* The different functions of ACS.l--planning, administering
approved plans, monitoring their execution, and retrospect-
ive analysis of past operations--are well differentiated.
Consequently, each can be modified or adapted independently
of the others. %

* Both the process models and resource models used by ACS.1
are explicitly encoded in the system. Since these models
embody the knowledge-base of the system, the knowledge is
accessible for modification, adaptation, and evolution.

* In the schedulers, extensive use is made of demons to
separate data entry from its side effects. This greatly
facilitates modifying scheduler operations, and creating
new schedulers at will.

* Demons are used for other purposes such as monitoring for
overloading or underloading of a given type of resource,
accumulating data, or initiating actions whose timing
depends on accumulated indices. Again, they provide
separation of functions from the other operations of the
system.

26




The system demonstrates the possibility of achieving the
desired attributes and behavior for a management support system. In
particular, it is a system in which the user can exert a very high
degree of control with minimal attention to implementation details.
It provides him with a flexible means for evaluating the expected
state of the environment. It also provides him with a facility for
automaticly monitoring against exceptional conditions. Further, the
system acts to enforce the consistency of the data according to the
knowledge it has about the processes and resources that are its concern.
Finally, it can generate plans, and administer and maintain those
plans in a changing environment. The degree of autonomy it exercises
in these activities is under the control of the manager, so that he
retains full responsibility.

It is believed that the ACS.l system confirms the possibility
of making knowledge-based inferential systems useful in the decision-
making role of the manager.
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