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A SURVEY OF BACKGROUND NOISE FROM ACOUSTIC
FREQUENCIES TO OPTIC FREQUENCIES

CHAPTER 1

ACOUSTICS

INTRODUCTION

Acoustic Noise is ever-present in the underwater medium,

such as the ocean. This type of noise, called ambient

noise, can interfer with the transmission and reception of

sound signals.

The ambient-noise level is defined as the intensity,

in decibels, of the ambient background measured with a

nondirectional hydrophone and referred to the intensity
2

of a plane wave having a rms pressure of 1 dyne/cm per

Hz bandwidth [1]. The ambient noise levels, plotted as

a function of frequency, are called the "ambient spectrum

levels".

Sources of Ambient Noise

Ambient noise levels have been measured extensively

over the frequency range 1 hz to 100 khz. Over this

relatively broad range of frequencies, studies have shown

that in the deep ocean the noise spectrum can be related

to many different sources. Figure 1 is an example of a

typical deep water noise spectrum divided into 5 fre-

quency bands. In Band 1 the source of acoustic energy

below 1 hz is largely unknown, but is believed to originate

from hydrostatics (tides and waves), or from seismic dis-

turbances, Band II is characterized by a slope of -8 to

-10 dB/octave, with only a slight dependence on wind-

speed, leading to the belief that the noise in this band

is caused by oceanic turbulance. In Band III, a pronounced

"flattening out" in the noise spectrum is noted. Non-

Note: Manuscript submitted November 30. 1976.
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dependence on wind speed and other evidences indicate

that the noise is dominated by distant shipping traffic.

Band IV contains the Knudsen spectra [2], having a slope

of -5 to -6 dB/octave and the noise originates mainly

from sea surface wave effects. Band V is duc to thermal

noise arising from the molecular motion of the sea and has

a positive slope of approximately 6 dB/octave.

Other sources of underwater noise are also often

encountered. Among these are precipitation noise due to

rain and hail aboue 100 hz and biological noise caused by

marine animals such as snapping shrimps and croakers.
U

Measured Ambient Spectrum Levels

In the absence of sounds from ships and marine life,

measurements have shown that underwater ambient noise

levels are dependent on wind forces and sea state in the I
frequency range 100 hz to 25 khz. For this reason, ambient

noise spectrum in the main frequency band of interest

(100 hz to 25 khz) is classified in terms of wind velocity

and sea states, and a related parameter called Beauforte

Scale (wind force). Table 1 [3] below shows the approxi-

mate relation between wind speed, wave height and sea

state.

A composite of ambient noise spectra due to many

different component sources in the frequency band 1 hz

to 100 khz is shown in Figure 2. To estimate the ambient

noise in a particular situation the combined effects of

the component spectra must be summed.

The curves in Figure 2 are averages over both deep and

shallow water data. For deep water applications the

values in Fig. 2 should be lowered by 2 or 3 dB. For

shallow water the values should be raised by 2 or 3 db.

Notice that the reference oressure intensity is 0.0002
2

dyne/cm To relate the spectrum levels in Fig. 2 to a

2
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reference of 1 dyne/cm , a factor of 74 dB should be sub-

tracted from the former. Figure 3 shows the expected -L

ambient noise level for three frequently encountered

conditions.

Variability of Ambient Noise

Ambient noise level measurements is characterized by

a great deal of variability. To a large extent, this

variability is due to the constant changing conditions in

wind speed, ocean tides, shipping, and sound transmission

paths. The values of noise levels shown in Fig. 2 re-

present average values and serve as a good guide to ex-

pected levels. However, a residual variability remains I
that creates an uncertainty of 5 to 10 dB between an

estimate based on average values and an amount that might

be measured at a given location over a short period of

time.a
Daily and seasonal variations in ambient noise levels,

have also been observed. One cause for seasonal variations

is the change in propagation characteristics. Over a

4-year period of observation with a bottom mounted hydro- -_

phones at Bermuda and at Bahama Islands, Walkinshaw [5]
has observed that the average signal strength was 7 dB

higher in winter than in summer for a long distance trans-

mission link. In another study, a peculiar periodic

variation of 12 to 24 hours was noted by Wenz [6] in the

frequency band 20 to 100 hz. The analysis of data col-

lected at six locations spaced over 450 of longitude in

the Pacific Ocean indicated a maximum noise level at mid-

night and noon, local time, and appear to be independent

of longitude. The cause of this periodic variations in

noise level is not known.

3



Amplitude Distribution

Not a great deal of information exist on the amplitude

probability distribution of ambient noise. At moderate

depth Calderon [4] has performed a probability density ana-
lysis of ambient noise and conclude the amplitude distri-

bution is approximately Gaussian. Near the sea surface

however hydrophone measurements made a few feet under the

surface indicate that the ambient noise is more impulsive

than Gaussian.

Sample Calculation [1,71
We give a sample calculation of the voltage output of

a hydrophone suspended underwater with an ambient noise

level L. Assume the hydrophone is omni-directional and has
2a sensitivity of H (db/v)/(dyne/cm -Hz). Assume the amv-
2bient noise level is L dB/(dyne/cm -Hz), at a particular

frequency fo" Then the hydrophone output at the frequency

is

V=H+L (1)

where V = Hydrophone output (dB/volt) per Hz 2
H = Hydrophone sensitivity (dB/v)/(dyne/cm) per Hz
L = Spectrum level dB/(dyne/cm2 ) per Hz

If we are interested in the same hydrophone output for a

frequency band "If = f2 - fl, where f2 ' fl, than the hydro-

phone output voltage will be due to the total noise energy

in Af. Suppose the noise intensity level is frequency
2dependent, and can be expressed as L(f) (dyne/cm - Hz),
2then there exist an average noise level L (dyne/cm - Hz)

such that

L ) ZjLa~ (2)

4



from which

Njw the hydrophone output voltage due to the noise in the

band Mf will be

H Vt l iolhi fiof 1  A-f (4)

where

V -hydrophone output dB/v 2 UH =hydrophone sensitivity (dB/v) /(dyne/cm)
Af =bandwidth 2

L.=mean noise level (dyne/cm -hz)U
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CHAPTER 2

EXTREMELY JOW FREQUENCY (ELF)
(30 -300 hz) %

INTRODUCT ION

Noise in the ELF band result from a number of diffe-

rent sources. Amonq these sources are: atmospheric

(lightening discharges), power line radiations and other

man-made sources such as mechn.nery and ignition systems.

At locations free from man-made sources, ELF noise

is dominated by the radiations from lightening discharges,

which occur on a world wide basis. A substantial amount

of ELF noise measurements has been made at various geo-

graphical locations around the world in support of the

SANGUINE program [, 2 and 3 Recorded ELF noise data

has been analyzed to determine its amplitude statistics.

The results of these analysis indicate that the ELF noise

waveforms contain frequent spikes and the amplitude statis-

tic is not Gaussian.

In references f1,2 and 3] the analysis indicate that

the log-normal statistics provides a better approximation

of ELF noise amplitude statistics.

Measured ELF Data

As previously mentioned, ELF noise waveforms are

characterized by frequent large amplitude spikes. Fig. 1

shows some typical waveforms measured at Malta using a

receiver with a bandwidth 5-320 hz. The large dynamic

range of the noise amplitude can be seen.

Figure 2 shows the amplitude probability distribution

of some ELF noise recorded at Saipan, Norway and Malta [4].

In this figure the noise amplitude relative to its rms

valuse, is plotted in terms of decibels. For each of the

three locations shown in Fig. 2, the non-Gaussian behavior

i -i



of amplitude statistics at higher amplitude levels is

evident. _

Additional ELF noise measurements have been made and

analyzed by Ginsberg [33 at Malta and Guam for the time
period July 1969 through April 30,1970. These measurements

were made using a "Portable Atmospheric Noise Data Acqui-

sition" (PANDA) system. Atmospheric Noise were recorded

at 33, 41, 83 and 180 hz. A 2-meter monopole antenna was

used to measure the verticle electric and horizontal mag-

netic fields. A core antenna with a turn area product of

830 M2 was used to measre the magnetic intensity. The

recorded data was analyzed and the cumulative probability

distributions for H (X component of magnetic field) and

H (y component of magnetic field) are shown as Figs. 3 and
y
4, respecively. In Fig. 3A the magnetic field intensity

(Hx) measure at Malta during the fall at 33,41 and 88 hz

has a distribution which is approximately log-normal about

the 95 exceedance level (the value exceeded 95% of the

time) to the 10% exceedance level. Fig. 3B shows the

measured magnetic intensity statistic (Hx) in spring at

Malta. In this case, except for the 41 hz noise, the mag-

netic intensity statistics of Hx is approximately log-

normal from the 99% to the 1% exceedance levels.

For Guam, the contribution of local thunderstorms to

the high noise exceedance levels stand out. Fig. 4A

shows the statistics of magnetic intensity Hy for fall

at Guam. The 1% exceedance level for this case is 13-18dB

greater than the median level, compared to a 1% exceedance

level of 12-14dB greater than the median level for Malta

(Fig. 3A). The larger 1% exceedance levels (relative to

the median level) at Guam are attributed to the more fre-

quent occurrance of thunderstorms in the vicinity of Guam.

The long term probability distribution for the spring

season at Guam is shown in Fig. 4B. When compared with

12
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the data in Figs. 3A, 3B, and 4A, Fig. 4B gives the best

fit to a log-normal distribution. This data correlates

with minimum local thunderstorm conditions. No local

thunderstorms were recorded during the measurement period

of Fig. 3B data.

Variability of ELF Data

Since ELF noise levels is dependent upon 1,,cal and

worldwide thunderstorm activities, a relation between

noise intensity with seasons is noted. In general, thunder-

storm activities are more frequent during fall and summer

than during winter and spring.

Figure 5 gives the spectral density of Hx for the

median and 1% noise exceedance levels for each season at

Malta. The highest 1% exceedance levels were in the fall.

The lowest 1% exceedance levels were in the spring. The

electric field intensity scale (right-side of Fig. 5)

is obtained by E=377H, where E is the electric field

intensity and H is the magnetic field intensity.

Similarly, amplitude statistics of the total magnetic

intensity at Guam has been computed for the four seasons

for the 1% and the 50% exceedance levels. This is shown

in Fig. 6.

13U
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CHAPTER 3

VOICE FREQUENCY (VF) AND VERY-LOW FREQUENCY (VLF)
(300-3000 hertz, 3-30 kilohertz) __

INTRODUCTION

Radio frequency noise in the VF and VLF bands

results mainly from the electromagnetic radiations

caused by terrestial lightning, The noise waveforms

observed in these frequency bands are characterized

by large impulses which are associated with local and
world-wide thunder storms.

Since lightning is the main cause of VF and VLF

noise, the phenomena of lightning discharge has been

throughly investigated and the process is relatively

well-understood. Among the investigators of the light-

ning discharge phenomena are Watt Jl , Norinder [2 ,

Taylor and Jean [3] Robertson [41 McCann [5] and

Pierce [6]

CHARACTERISTICS OF LIGHTNING DISCHARGE

Studies of lightning discharge characteristics
have shown that the process can be considered as con-

sisting of five stages [1 : (1) build-up of charge

centers in clouds, (2) predischarge or leader formation,

(3) main discharge or return stroke, (4) follow-on

multiple strokes, and in some cases, (5) a continuing

small current (500-1000 amps) flow which may flow be-

tween strokes and can follow the last stroke for a

large fraction of a second. It has been estimated that

on the average there are 100 lightning discharges that

20
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occur per second, worldwide. The total noise field

produced at an antenna is the integrated effects of all

lightning stroke fields which arrive at the antenna

within a time interval comparable to the reciprocal of

the observation bandwidth.

VF AND VLF NOISE MEASUREMENTS

Noise in the VF and VLF bands have been measured
by several investigators. Crichiow [71 described the

efforts made at the National Bureau of Standards (NBS)
toward atmospheric noise measurements, which were later
adaped by the VIII Plenary Assembly of the International

Radio Consultative Committee (CCIR) in Warsaw, Poland

in September, 1956. Watt [8" measured the amnlitude

distribution of atmospheric noise envelopes at several

locations (Point Barrow, Alaska; Kenai, Alaska; Boulder,

Colorado; and Balboa, Canal Zone). The measurements
made by Crichlow and Watt indicate that over a short

time period of several minutes to an hour the atmos-

pheric noise statistic remain essentially constant and

the typical amplitude-time distribution can be repre-

sented by Fig. 1. The scales of Fig. 1 were chosen so

that the Rayleigh distribution would plot as a straight

line with a slope of - . In Fig. 1 we note that the

lower portion of the curve approaches a Rayleigh distri-

bution while the upper portion has a much steeper slope.

statistics when the dominant cause is terrestial light-

ning discharge.

We now present some measured noise values in the

VF and VLF bands. Measured noise data will be class-

ified as: (I) long term (average values) and (2) short

term (statistical values). Short term noise data has

21



been of concern recently for communication system design.

See, for example, Omura and Shaft and Watt

LONG TsRM OR EAQN VALUES

The mean atmospheric noise spectrum at Malta was

measured by Maxwell and Stone [l2} during 1963 for three

seasons (Spring, Summer, and Winter'at 2000-0400, local

time and the result is shown in Fig. 2. In addition, the

mean noise levels observed at three different locations

(Colorado, Mialta and Alaska) are compared in Fig. 3. in

Figure 2 we notice that the mean noise level is greatest

during the summer and lowest in winter. Also, we note a

deep notch in noise levels exist at 3-4 kilohertz, which

corresponds to high attenuation occurring at this frequency

region. In Fig. 3, we can see the dependence of mean noise

level upon location. The difference between the mean

electric field spectrum levels measured at Malta and

Alaska can be more than 20 dB.

More extensive world-wide measurements of the ex-

pected atmospheric noise levels in the frequency band

10 khz to 100 khz are tabulated in CCIR Report 322 f1
=~ VI

Watt [11 has extrapolated the expected noise levels at

10 k.z from CCIR Report 322. The expected atmospheric
noise at 10 k'z are divided into twenty-four (24) differ-

ent time blocks and are plotted as Fig. 4 through Fig. 27. "°

The 24 time blocks represent 4 season blocks, with each

season block divided into 6 time blocks of 4 hours each.

We point out that Figs. 4-27 represent the expected noise

levels obtained by averaging data ove 4-3hour time blocks.
The actual hourly average noise levels measured at a

given location can differ from the expected noise levels.
The anount of variation of the hourly average noise levels
about the expected levels can be expressed by a quantity

22
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Du , which is defined as the upper decile value. The upper -

decile is a value which is exceeded 10% of the time. Fig,

28-30 give the best estimate of D in the VLF range ob- -__
U

tained by Watt based upon data contained in CCIR --_

Report 322.

SHORT TERM STATISTICS

During a time span of several minutes to an hour the

average value of atmospheric noise is relatively constant

(+ 2dB) and statistical measurements have been made for

the amplitude probability distribution of atmospheric _

noise in the VF and VLF bands. Fig. 31 shows an amplitude

probability distribution of atmosphe:ic radio noise at

13.3 khz measured by Crichlow et al . The data for

Fig. 31 was taken at Boulder, Colorado and the curve

represents noise levels over a time span of approximately

30 minutes. We note that at lower amplitudes the noise

envelope is approximately Rayleigh while at higher ampli-

tudes the slope is much steeper and non-Rayleigh. Some
efforts to determine whether the amplitude statistics

fits a log-normal distribution have been made. The results

indicate that VF/VLF noise does not fit the log-normal

distribution, except over a restricted region of amplitude

probabil ities.

Additional measured amplitude distribution of VLF

noise were made by Watt and Maxwell [8] at Point Barrow,

Alaska and Boulder, Colorado at 21 khz. This is shown

by Fig. 32. Clarke et a! [15] measured composite ampli-

tude probability distributions at Singapore and Slough,

England and the results are shown in Fig. 33.
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CHAPTER 4

LOW FREQUENCY (LF). NEDIUM FREQUENCY (MF). AND HIGH

FREQUENCY (HF)

(30 to 300 Kilohertz, 300-3000 kilohertz, and 3-30

megahertz)

INTRODUCTION

In the LF, MF, and HF bands the noise at a receiver

generally result from two sources: (1) external to the

antenna, called external noise and (2) within the antenna

and receiver system, called internal noise. In this

section we shall be concerned primarily with the external

noise.

The external noise in the three above frequency bands

arise from three main sources: (1) atmospheric, (2) ga-

lactic and (3) man-made. For frequencies below about 30

megahertz and in the absence of man-made noise, the dom-

inate noise sources is due to atmospheric noise, or noise

=that result from lightening discharges.

In a previous section, on VF and VLF noise bands,

we have given a brief discussion on the mechanism of

lightening discharges. The general behavior of atmos-

pheric noise is that the levels gets lower as the fre-

quency increases. Oh has compiled a summary of

atmospheric noise spectrum that shows in general the

atmospheric noise in the region of present interest de-

creases at the rate of 1/f, where f is the frequency

(Fig. 1).

As before. we will present some measured noise data

for long term average values and for short term statistics.
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M
The most comprehensive measured data is that contained in

the CCIR report 322 [2] which attempts to show world-wide

distribution of atmospheric noise.

The data is based upon world-wide measurements made

in the frequency range 10 khz to 100 mgz. The measured

data was grouped into four seasons and six four-hour

periods. Thus twenty-four time blocks were represented.

The division of a year into four seasons, of three

months each, was made in the following way:

MONTHS SEASON

NORTHERN SOUTHERN
HEMISPHERE HEAISPHERE

December,January,February Winter Summer
March, April, May Spring Autumn

June, July, August Summer Winter

September,October,November Autumn Spring

Data for each of the four seasons was grouped into six
four-hour periods as follows:

LOCAL HOURS

0000 - 0400

0400 - 0800

0800 - 1200

1200 - 1600

1600 - 2000

2000 - 2400

The world-wide measurements were recorded mainly at six-

teen stations shown in Fig. 2, using the standarized

recording equipment ARN-2 Radio Noise Recorder. The data

was collected from the stations during the period from

1957 to 1962.
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DESCRIPTION OF NOISE

Since noise must be described quantitively using a

measuring device, one may define a measure of noise power.

The noise power received from sources external to the
antenna can be expressed in terms of an effective antenna

noise factor, fa' which is defined as

where

P Noise power available from an equivalent loss
n free antenna

-23 0
k Boltzmann's constant, 1.38X10 jouls /0k
To: 288°k, reference temperature

0

b effective receiver noise bandwidth (hz)

T a effective antenna temperature in the presence
a of external noise.

From Eq. 1 we see two alternative methods of specifying

noise power, by the effective noise factor, fa or the

effectiver temperature, T, of the antenna. Both fa and

Ta are independent of bandwidth, because the amount of

noise power is portional to bandwidth. In this section

the effective antenna noise factor will be given for a

short verticle antenna over a perfectly conducting ground-

plane and are expressed in dB, (Fa). The parameter Fa is

related to the r.m.s. noise field strength along the

antenna (a third way of expressing the noise level) by:

E FL -20(2)

where En: r.m.s. field strength for a 1 khz bandwidthn
(dB above 1 jiv/m)

57



Fa: Noise factor

fmhz: frequency (mhz)

The value of field strength for any bandwidth b Hz

other than 1 kHz can be obtained by adding (10 lagl0 b -

30) to En . Fig. 3 is a nomogram for the solution of Eq.
n

2. We should point out that E is the vertical component
n

of the field at the antenna; and in general, the field may

be complex so that the knowledge of En alone is not

sufficient to describe the complex wave.

NOISE CHARACTERISTICS

The atmospheric noise in the three bands is charac-

terized by large, rapid fluctuations and the statistics

of noise is a nonstationary process. However, the value

of noise power averaged over tens of minutes to an hour
are found to be relatively constant; variations rarely

exceed + 2dB, except near sunrise and sunset, or when

there are local thunderstorms. The CCIR Report 322 data

was based upon measurements made at eight frequencies

spaced over the frequency band and for fifteen minutes

each hour. Thus, at each frequency, the value F- is con-
a

sidered as the hourly average.

The noise level measurements are dependent upon many

factors such as location, season, time of day, frequency.

There are other variations of Fa which must be accounted

for statistically. The value of F for a given hour ofa
the day varies from day to day due to the changes in

thunderstorm activities and propagation conditions. The

medium of the hourly values within a time block (4-hour

blocks) is called the time block median, Fa. Variations
am

of the hourly values during the time blocks can be denoted

by values exceeded 10% of the time (Du) and values exceed-
u
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ed 90% of the time (De). When plotted on normal prob-

ability graph (levels in dB), the amplitude of the devia-

tions, D, above the median can be represented with reason-

able accuracy by a straight line through the median and

upper decile (Du) values, and a corresponding line through

the median and the lower decile (De), for variations be-e
low the median.

VARIATION OF NOISE WITH SUNSPOT ACTIVITY

It is reasonable to expect a dependence of noise

level with a change in Sunspot activity, since it is 5
known that sunspot activities affect propagation con-

ditions. However, the expected correlation between sun-

spot activity and atmospheric noise levels are at present

unknown. The increased level of galactic noise at these

times tend to obscure variations in atmospheric noise.

SHORT TERM STATISTIC

While knowledge of F is useful for comotunicationsa
system design by providing a measure of average noise

level to permit a specification of average SNR require-

ments, the short term noise statistic is required .o per-

mit realiabiiity predictions and optimum receiver design.

For this reason, short term noise statistics, such as the

probability amplitude distribution of noise envelop (PAD)

have been computed. The PAD curves provide an indication

of the percentage of time in which the noise envelope

exceed a certain level, so provide a amplitude-time sta-

tistics of the noise envelope.

The PAD of noise has been measured at many different

areas, world-wide. The data from various locations are

reasonably consistant. Analysis of noise data indicates

that the PAD curves can be represented to a sufficient

degree of accuracy by a family of idealized curves, one



°a
may be chosen to fit a particular case. When the PAD

curves are plotted in a coordinate system in which a Ray- I
leighnt distribution has a slope of -0.5, the family of

PAD curves has a slope which is approximately Rayleigh

at small amplitude values and has a higher slope (neg-

ative) for higher amplitude values.

From data analysis, Crichlow et al 3] has shown that

tle PAD curves can be determined if the ratio of r.m.s.

to average voltage, Vd (dB), is measured; and Spaulding __

et al [4] provides a method for the conversion of the PAD

curves from one bandwidth to another. I
MEASWRED MEDIAN VALUES

Figures 4 through 27 show the median values of atmos-

pheric noise on a world-wide basis for twenty-four time

blocks from CCIR Report 322. In Fig. 4A the values of

Fam represent median noise levels likely to be encounter-

ed at a location when man-made Ao noise and unwanted

signals are removed. Since the values of Fam in Fig. 4A

is shown for 1 Megahertz, Fig. 4B is used to extrapolate

F am values at other frequencies by first finding a value

on the 1 Megahertz curve of Fig. 4B and then follow the

contour curve to another frequency to determine the cor-

responding value of F am* Also plotted on Fig. 4B are the

expected value of man-made noise and galactic noise. The

an-made noise represent the minimum levels to be expect-

ed, while the galactic noise represents expected upper

limits. Since both the man-made and galactic noise

levels are representative values, caution should be ex-

ercised in their use. The actual value of man-made noise

depends upon local conditions and can be much greater

than the level indicated; while the galactic noise levels 3
will depend upon the type of antenna used and its orien-

tation. 
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Similarily, the values of F in a time block mustambe used with caution, because these represent long term

average values.

Since the parameters Fam, Du, De, V (median value

of V , are median values within a time block, there ared
variations to be expected for measured data about the

median. Fig. 4C shows the expected value of the standard

deviation of measured data about the mean values within

a time block. In Fig. 4C the parameters 6

D n card 0 are independent of bandwidth. Vd* however,

is bandwidth dependent and was measured at 200 hertz.

To compute the value of V at a different bandwidth, a

method due to Spaulding I can be used. This computa-

tion can be made by using he curves of Fig. 28, in which

Vn and V are the values of V corresponding to the
dn dw d

narrower bandwidth, bn , and the wider bandwidth, b,

respectively. The corresponding values of Vd and V
dn dw

are read at the intersection of the lines defined by the

bandwidth ratio, b lbn, and the known value of Vdwl n d

AMPLITUDE PROBABILITY DISTRIBUTION CURVES

PAD curves corresponding to various values of Vd are

shown in Fig. 29, plotted as a function of A = A - Arms,

where A and A are the instantaneous and r.m.s. envelop

voltages, respectively.
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CHAPTER 5

VERY HIGH FREQUENCY (VHF), ULTRA-HIGH FREQUENCY

(UHF), SUPERHIGH FREQUENCY (SHF)

(30-300 i/hz, 300-3000 rmhz, 3-30 qhz)

INTRODUCTION--

At broadcast and short wave frequencies the ambient

noise level is high relative to the receiver self-noisesuch that the receiver sensitivity is limited by the ex-

ternal noise that enters the antenna along with the signal.

At microwave frequencies (VHF, UH-F, and S1W bands) the ex-

ternal noise level is relatively low and the sensitivity

of receivers is defined primarily by internal noise,

except for low noise receivers employing masers and para-
metric amplifiers. The contribution of various types of

~noise in a receiver can be represented by the effective

~temperatures of the component noise. The total noise

~temperature is the sum of the component noise temperatures.

~Receiver noise can be separated into two basic com-

~ponents - external and internal. External noise is defined

~as those energy sources originated external to the antenna

NU

internal noise is due to the receiver noise, loss in the

~cables and antenna etc. This section concerns mainly with

~the external noise.
~In the microwave fre.,,-encies noise originates from nuny -

sources. Among the important contribution sources are:

yS

JAtmospheric -Mainly due to lightening --_

Galactric -radiation from extraterrestrial sources

~Atmospheric absorption -atmospheric radiations

-- 117 -
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I
Man-made - transmission lines, electrical machinery

auto ignition systems, co-channel inter-
ferences.

Atmospheric

Lightening discharges radiates a large quantity of

radio-frequency power. It is estimated that on the average

there are 100 lightening strokes per second occur world =

wide. The combined effects of the lightening strokes give

rise to RF noise, which can degrade radio RF communication

at frequency below approximately 30 mhz. Noise due to

lightening is generally termed "atmospheric noise" and its

spectrum decreases with frequency so that it can usually bt

discounted for frequencies above about 30 mhz. Therefore,

atmospheric noise is usually not of concern at microwave

frequencies, except perhaps at the lower VHF region.

Man made Noise

Man-made noise originate from automobile ignition,

electric tools, machinery, fluorescent lights, and trans-

mission lines. At microwave frequencies, the noise levels

due to man-made noise are very low relative to other noise

levels so can be neglected.

Cosmic Noise

Cosmic noise are due to electromagnetic radiations

from outer space. This extra-terrestrial noise comes Zrom

our own galaxy (milky-way), from extra-galactic sources,

discrete radio stars, the planets, moon, and the sun.

In general, cosmic noise decreases with increased fre-

quency and is important for frequencies in the VHF and low-

-r UHF region, but may be neglected for frequencies grea

than 1 gigahertz.

The magnitutude of cosmic noise as seen by an antenna

depends upon the antenna pointing direction in space. Cos-
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mic noise level is a maximum when the antenna is pointed

toward the center of our own galaxy, while minimum levels are

observed along the poles about which the galaxy revolves.
A measure of cosmic noise level can be expressed in

terms of the parameter called brightness temperature. The
brightness temperature of an extended source of radiation

measured in a particular direction is the temperature of
a black body which yields a brightness eqnal to that of

the source under consideration. Brightness is defined as
the power received per unit area per hz bandwidth. per unit

2
solid angle. (Watts/m -Hz-steradian). Brightness B and
the brightness temperature TB at microwave frequencies are

related by the Rayleigh-Jeans formrula.

The brightness temperature specifies the intensity in a
specific direction at a given frequency. The measureable

temperature is the mean temperature in the field of an
antenna and is called antenna temperature. Figure 1 shows

the range of ex pected brightness temperatures in space as

seen by an antenna with single polarization [] . Therefore,
the brightness level shown in Fig. i is one-half the value

that would be observed with an antenna responsive to tw-o2orthogonal polarizations.

Figure 1 also shows the effects of atmospheric absorp-
tion losses discussed in the next section.

Atmosneric Absorption Noise

From the theory of blackb-dy radiation it is 'known that
any bodyv wnich absorbs radiated electromagnetic energy

also radiates the same amount of energy it abosrbs. Since

£ U



the atmosphere body is an absorber of radiated energy frc-

space, the energy radiated from the atmosphere is continu,

and noise like.

Let us consider the atmosphere as an absorbing body

surrounded by an imaginary black body at temperature To.

Atmosphere

Absorbing Blackbody
Body at temp. Ta

Energy available from black body at temperature T
a

= within bandwidth B is E= kT B
n B a n

Suppose the atmosphere absorbs a certain amount of energy,

as when the quantity EB is passed through, such the re-

maining energy is EB where L is a loss factor. Then the

amount of energy absorbed by the atmosphere is Eab

- i
(2)

Te is called the effective temperature. But from our

earlier discussion on black body theory, a body radiates

an amount of energy precisely corresponding to its abosrbe

energy. Let AN be the radiated noise energy, so

(3)
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Example: -7

e. I- )

ii "°"2 6- = °K , -  ) 6 7. K

Atmospheric absorption noise is plotted in Fig. 1 as a

solid curves, assuming an ambient temerature of 2600K.

The cosmic noise is shown as dotted curves with higher levels

for antennas pointed toward the galactic center. For at-

mospheric abosrption noise, the higher level corresponds

to antenna pointing towards the horizon, and the minimum

level occurs when antenna is verticle. From Fig. 1 we note

that at lower frequencies cosmic noise dominate while at

higher frequencies the atmospheric absorption noise

dominates. A region of frequency from about 1000 mhz

to 10,000 mhz appear to be favorable for radio systems

operation because of a relatively quiet noise region.

Atmospheric absorption noise is greatest near the hori-

zon because the antenna sees a thicker layer of atmosphere.

Sun, Moon, Radio stars

The sun is a strong emitter of electromagnetic radiation

which has an intensity that depends upon solar activities.

The minimum level of solar noise corresponds to a black

body radiation at a temperature of about 6000°K. The flux

density received on earth from a thermal source at the dis-

tance of a sun is [21

S -/ (4)
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Where,

A plot of the flux density as a function of frequency for -

the basic thermal noise component from the quiet sun is

shown in Fig. 2. It does not exactly follow the relation-

ship of Fig. 1 because Fig. 2 takes into account the effects

of solar atmospheric absorption [3]

When the sun is disturbed by solar storms (sunspots and

flares) the solar noise level can be several orders of

magnitude above that of the "quiet" sun. The disturbed

solar radiation levels can exceed that of an undisturbed

level by 40 dB. This can be seen on Fig. 2. Also plotted

on Fig. 2 are some expected flux density levels from the

radio star cassioplid and the moon.
Flux Density and Brightness Temperature

The flux density S is related to the brightness TBby integrating the brightness B over the entire solid angle

fs ,Q2 (5)

The sun and the moon may be considered point sources only

if the angle subtended by the sources (on the order of o
in both cases) is less than the antenna beamwidth.
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Fig. 2 -Noise flux density as a function of frequency from
the sun, Cassiopeia, and the moon

125



CHAPTER 6

OPTICAL
(300-3000 Gigahertz)

INTRODUCT ION

At optical frequencies two basic types of noise are

encountered: (1) thermal noise, generated internally

within the optical receiver, and (2) quantum noise, which

has both an internal component (dark current noise) and an

external component from radiations incident upon the re-

ceiver optics. Thermal noise spectrum can be described

by [1] ___ __

11V
S-1 (1)

VI-34

where h is the Planck's constant (6.624xlo joules-sec.),

V is the optical frequency in hertz, k is the Boltzmann's

constant ( 1.3e x yra l/,lK), and T is the temperature

in degress absolute. At very low temperatures and at

optical frequencies, thermal noise decreases exponentially

with increasing frequency.

Quantum noise in an optical receiver is dependent up-

on the type of optical detection scheme used. In general,

optical detection makes use of one of two techniques: (1)

coherent or heterdyne detection, and (2) incoherent or

direct detection. Coherent detection operates in a phase-

locked mode and provides a measure of gain against back-

ground noise. An incoherent detector, on the otherhand,

is a "square law" device and is more susceptible to back-

ground noise.
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Since the incoherent detector is more susceptible to

background noise at optical frequencies, in the following

we will consider the background noise as the output of an

incoheret detector. For this case, the average detector

output current due to incident power P can be modeled as

a Poisson process [H

jii~~~P (2)

where I is the average current in amperes; n(v) is the

detector quantum efficiency, the ratio of the average

number of current carriers generated by the detector to

the average number of incident photons; q is charge on an

electron. t (,x o'C); h is the Planck s constant;

v is the frequency in hertz; and P is the average incident

power in watts. The noise current for this case is given

by

with B being the detector bandwidth in hertz.

The current I in Eq. 3 is actually made up of three

component: (1) ut, a current due to incident signal power,
PhO (2) is, a current due to incident power, b from the

background, and (3) 1 a dark current, generated intern-

ally. Equation 2 now becomes

IS 7b Id +P) (4)

our main interest will be to present some available

information on the component of noise due to 'the back-

ground. For a discussion on the dark current, I d we refer

to Ross [3] and Pratt [4]
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BACKGROUND NOISE

Background noise incident upon receiver optics

either by direct radiation, by reflection from a surface,

or by scattering from a medium. All bodies at a tempera-

ture above absolute zero is known to radiate thermal

(electromagnetic) energy. For a body with a radiant

absorptance equal to unity, c=l, the spectral radiant

emittance, WK, has the value

w, ~ ~ ~ ~ ~ 17 71A[//~I Lvfiz (5)

Where k is the Boltzmann's constant, T is the

absolute temperature, h is Planck's constant, C is the

velocity of light in free space (m/s), and X is the

wavelength in meters. Equation 5 is Planck's radiation

law for a blackbody. Most radiating bodies encountered in

practice are not precisely blackbodies. However the

radiation characteristics of non-blackbodies (greybodies)

can often be approximated by a blackbody. The relation

between the spectral radiant emittances is

%VVA (41rei1iy) W ( AA (Wqckhb-.40

Figure 1 is a plot of Eq. 5 at several temperatures.

At a particular temperature, the spectral radiant

emittance has a maximum value which occurs at a wave-

length, Am. This value is obtained bv differentiating

Eq. 5 with respect to the wavelength and SOIvC for

A-" ~i7 (6)

This is known as Wien's Displacement law.

129



E

DIRECT RADIATION

If the radiations from a background source arrive

normal to the surface of the receiver optics, the detector

output power can be written as [2]

TL NAQ12s A rt -t CaF. (7)

where Pb is the detector output power due the background

radiation, -jQ is the solid angle subtended by the radiating

source at the receiver (steradians), NK is the spectral

radiance of the source in watts/m Sr.A, Z is the

transmittance of the receiver optics, Z. is the trans-

mittance of Earth's atmosphere, and Bopt is the optical

bandwidth in hertz. At optical wavelengths most back-

grounds have diffuse surfaces [31 so

NA = (8)

The detector noise power due to blackbody radiation

in Eq. 7 can now be written in terms of Eqsz and 8 as

p= 2 h C'L A r 4ot (9)

k"EVfcphcA - - Ij

In space communication systems, 4 4 1 while,

in Earth's atmosphere ZC, has two components

(10)

where a, 0 -s are the atmospheric extinction,

absorption and scattering coefficients, respectively, and

R is the distance between source and receiver. The

absorption characteristic of Earth's atmosphere at optical

wavelengths has been studied by Battelle L53 and this is
shown in Fig. 2. In the region of optical windows the
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absorption coefficient is very small, so a -- i and

scattering attenuation dominates. Figure 3 is a plot of

scattering data by Battelle [5] for various atmospheric

kff conditions.

Direct background radiations may result from many

sources. Among these sources are the sun, stars* planets,

the Earth, Earth's moon, and the atmosphere at high ele-

vations. Figure 4 shows the spectral irradiance of the

sun atzenith obtained by Gast [6] , which is seen to

follow closely blackbody radiation clharacteristics at

0U

5900K. Since radiation data is often given in spectral

irradianceH , its relation to the background power P can

be written as

Calculated values of spectral irradiance for he mon and

planets outside the terrestrial atmosphere [7] art shown

in Fig. 5. Figure 6 shows the spectral irradiance values

for some of the brighte st ]ars, also calclaee

Remseyr [7] - Earth and its atmosphere has a radiation

characeitcsmlrobacod radiationad ic
general liese b lackbody radiation curves o

218°K and 288°, the differences resulting from Uhe atm17os-
pheric absorption bands shon in Fig. 2. This hecral a

background noise is referred to as "earthsine and is 

shown in Fig. 7.

REFLECTED BACKGROUMIS
Thermal radiation can arrive at the r,-ceiver optics,

even when the radiating source is not in view, th rone

tion from a surface or scattering from a medium. vle

reflection of solar energy from the mon and whe pic a

are examplesb In general, the spectral dit rs o

218K nd280Kth dffrecesreulin frn h1a s1

phrcasrto bnssoni i. .Ti :e



I reflected solar radiations by the moon and the planets is

= similar to that of the sun, but diminished in magnitude. S

Some calculated values of reflected irradiance from the

moon and some planets are shown in Fig. 5. U
The atmosphere, as a medium, introduces volume scat-

tering to incident solar radiations. The spectral radiance

of scattered solar radiation is dependent upon the solar

zenith angle, the angle through which light is scattered,

the atmospheric condition, and other factors. Figures

7 and 8 show scattered spectral radiance levels for the
cases of day and night sky backgrounds, respectively, due
to Stewart and Hopfield [9] In both Figures & and %,

curve E is the spectral radiance for a blackbody radiation

at 2830K, which approximates that for the Earth. Curve F

in both figures shows the expected level of atmospheric

radiations caused largely by water vapor and CO

BU
?I
}U
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