ADAO37302

pe.
‘lU- -

DOC FiLe copy

AD

JPr—

ESD-TR-76-160

PROBABILISTIC MEASURES OF COMPROMISE

L]
Honeywell Information Systems, Inc.
Federal Systems Operations

7900 Westpark Drive
Mclean, Virginia 22101

January 1976

Approved for Public Release;
Distribution Unlimited.

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
HANSCOM AIR FORCE BASE, MA 0173I

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
1400 WILSON BOULEVARD

Arlington, VA 22209

ARPA Order No, 2641

|
|
i
|
|

|

The views and conclusions contained in this document are those of the authors
and should not be interpreted as necessarily representing the official policies,

either expressed or implied, of the Defense Advanced Research Projects Agency
or the U. S. Government.

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permissicn to manufacture, use, or sell any patzanted
invention that may in any way be related thereto.,

OTHER NOTICES

Do not return this copy. Retain or destroy.

This technical report has been reviewed and is approved for publication.

0. Il KF7

{ISAF WILLIAM R. PRICE, Captain, USAF
Techniques Engineering Division

LL, Major,
niques Engineering Division

FOR THE COMMANDE

ERESKA, Colonel, USAF
Chief, Téchniques Engineering Division
Information Systems Technology
Applications Office

SECURITY CLASS'FICATION OF THIS PAGE (Whan Data Entered)

/D REPORT DOCUMENTATION PAGE pan et DOSRICTONS

/f\ T. REPORLN —]z. GOVT ACCESSICN NO.| 3. PECIS'ENT'S CATALOG NUMBER
] e
__{_ESDATR-76-16¢ LT A AT T TR S
4. TITLE ‘Mdilﬁiﬁt_!c) s BN rer 20 Y o 4 - o 5. TVYFE OF REPCRT & PERIOD COVERED
’v / PROBABILISTIC MEASURES OF gOMPROMISE ,['
l ’/,__.. - -a——w-""‘“‘""‘""""'_ " —7 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s i ¥ ¥ ~1 8. CONTRACY OR GRANT _N__U_MB'ERU)

/George A.7 Ki1gore | /¥ F19628-74-C-f193, :

0% moe [ARPA Ofder Mz 2641 [

S PERFGRMING ORGANTZATION NAME AND ADDRESS 1 W;chﬁi ELEMENT, PROJECT, TASK
Honeywell Information Systems, Inc. ARES & WORK UN}I_EH!.EE'?E_.,_.
Federal Systems Operations T 7.2} 6.0 — /
7900 Westpark Drive, McLean, VA 22I0i = PR Sl

11. CONTROLLING OFFICE NAME AND ADDRESS 2. TE gy
Deputy for Command and Management Systems /YN da 6| — i
Efectronic Systems Division s 177 ©RRETEEGE e

Hanscom Air Force Base, MA 0173l

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

Defense Advanced Research Projects Agency
1400 Wilson Boulevard UNCLASSIFIED
Arlington, VA 22209 52 DECLASSIFICATION/ DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)
Y . l
’A‘/ 1 A i 2L s |

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Secure Communications Minicomputer
Simulators Computer Security
Design Verification Fault Tolerance
Probability

» ABSTRACT (Continue on reverse side If necessary and identify by block number)

This report describes the results of a trade-off study in which candidate
methodologies for verification of a secure minicomputer hardware design were
evaluated. Three verification elements appropriate to the problem were
developed: (1) probabilistic measurement of security compromise due to
hardware failure, (2) logic design certification, and (3) production hardware
security criteria. The trade-off of techniques included evaluations of
technical characteristics and cost effectiveness of both manual andkcnguter

"

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

e ————————

DD | 5%%; 1473 eoimion oF 1 NoV 68 15 oBSOLETE g 09

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) -

20. ABSTRACT (Continued) 3

"aided analysis techniques. The architectures for two computer logic
design simulators are described and evaluated. This report contains
recommended verification methodologies suitable for a MULTICS compatible
security front-end processor.

R

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

A A . i
et i 2

This report has been prepared under Air Force
Contract F19628-74-C-0193. fhis is a final report
on Secure Communications Processor (SCOMP) Hardware
Verification, CDRL A019. The requirements to which
this report is responsive are found in the Statement
of Work for Secure MULTICS Design, Development and
Certification, dated 22 June 1975, Section 4.8.6,

first paragraph.

1L,

ITI.

SCOMP HARDWARE VERIFICATION METHODOLOGIES
FINAL REPORT

TABLE OF CONTENTS

INTRODUCTION

1.1 Purpose of the Study
1.2 Approach to SCOMP Hardware Verification Analysis

1.3 Observations on Sufficiency of Verification
Methodologies

PROBABILISTIC MEASURE OF SECURITY COMPROMISE

2.1 Objectives and Criteria for Probabilistic
Analysis

2.1.1 Failure Induced Security Compromises
2.1.2 Baseline SCOMP Hardware Configuration

2.1.3 Techniques for Numerical Probability
Assessment

2.1.3.1 System Reliability Modeling

2.1.3.2 Failure Rate Basis for Probabilistic

Analysis

2.1.3.3 Periodic System Health Checking
Software

2.1.3.4 Circuit Failure Modes

2.2 Review of Hardware Failure Effects Analysis Methods

2.2.1 Probabilistic Measure - Manual Analysis

2.2.1.1 Fault Implantation

14

14

15

20
20
21
21

2.2.1.2 Failure Modes and Effects Analysis (FMEA) 23

2.2.2 Computer Fault Simulators

2.3 Recommended Probabilistic Measurement Methodology
for SCOMP

SCOMP HARDWARE CERTIFICATION

3.1 Objectives and Criteria for Hardware Certification

25

30

31

31

ITI. SCOMP HARDWARE CERTIFICATION (Continued)

3.2 Hardware Design Verification Analyses
3.2.1 Hardware Design Verification Descriptions
Manual Analyses
Instruction Simulator Description

Register Transfer Level (RTL)
Simulators

Logic Circuit Simulators

Boolean Logic Simulators
Logic Device Simulators

Security Proofs for Operating
System Software

3.2.2 Recommended Hardware Design Analysis
for SCOMP

3.3 Hardware Verification Tests
3.3.1 Prototype and Production Logic Test Criteria
3.3.2 Design Verification Testing
3.3.3 Acceptance Tests for Production Hardware

IV. CONCLUSIONS AND RECOMMENDATIONS

BIBLIOGRAPHY OF REFERENCES

APPENDIX A - A Formalism for Description of SCOMP
Security Compromises

31

32

32

32

38

42

42
42

43

44

44

45

45

46

49

51

53

SECTION I

INTRODUCTION

Purpose of the Study

The objectives of this analysis were to examine available
computer hardware verification methodologies applicable to
a Secure Communications Processor (SCOMP) and to recommend
techniques which accomplish each verification element.

Two major verification elements were identified for
analysis. They are:

Probabilistic measures analysis of security
compromise induced by hardware failure. For
this element, the impact of unreliability in
the physical hardware on Secure Communications
Processor performance must be analyzed and
quantified.

Certification that the SCOMP hardware accomplishes
the performance requirements of its design
specifications. For this element, the hardware
certification criteria for design analysis,

design testing and production product control

must be selected and specified. :

The objectives were accomplished.

Approach to SCOMP Hardware Verification Analysis

This study was accomplished in two phases.

In the first phase, a general investigation of the form
and character of available analytic tools and process
techniques applicable to hardware verification was
conducted. The investigation served to establish the
specific tasks appropriate to accomplishing the
probabilistic measurement analysis and the certification
of the SCOMP hardware design and physical product.
Additionally, the range of the available methodologies
for each task which should be a candidate for detail
study and/or trade-offs was also determined in the
first phase. The first phase of this study culminated
in October 1975 with the issuance of A Brief Technical
Note on SCOMP Hardware Verification Methodologies.

Contained in the note were descriptions of the work elements

necessary to achieve probabilistic measurement and hardware
certification and an overview of candidate methodologies
which were to be examined in trade-off studies in the
second phase of the study.

In the second phase, the methodology trade-offs described
above were performed and suitable criteria were selected.

'llllIIIIIIIlllllIllIllllIlllllIIlI!.l!ll-'F-'l'H!-l-"lll'lﬂ!l!ﬂ!ﬂﬂ'ﬂﬂﬂﬂi-ﬂlnuwﬂv

Approach to SCOMP Hardware Verification Analysis (Continued)

The trade-off results and recommendations are contained in
this final report. Where further trade-offs were inappro-
priate to a specific task, the task criteria have been
developed and specified. These criteria are contained in
the appropriate Detail Specifications (D.S. Part 1) for

the Security Protection Module and the MULTICS Interface
Unit, Quality Assurance Provisions sections. DParagraph 3.3
of Section IIIl of this final report also contains a

summary of these criteria.

Observations on Sufficiency of Verification Methodologies

The course of this study has led us to a set of conclusions
which either define or scope specific SCOMP hardware
verification tasks. In arriving at these conclusions, we
have employed analytic, and sometimes subjective, tests

on candidate methodologies. Stated generally, these

tests are:

Appropriateness of the task to achieving Project
GUARDIAN objectives.

Sufficiency of the methodology for accomplishing
a defined technical task.

Timeliness of the methodology for application
to the design of a Secure Communications Processor.

Cost efficiency of the methodology, consistent
with technical sufficiency and timeliness.

In the specific circumstances where trade-off studies have
been performed on candidate probabilistic measure and
hardware design analysis methodologies, subjective views

of technical sufficiency and cost efficiency were necessary.
It is important to note that reasonably clear upgrading paths
are identifiable in the event that they should be required

at some later date. These are discussed together with

the recommendations in Sections II and III.

SECTION 11

PROBABILISTIC MEASURE OF SECURITY COMPROMISE

2.1 Objectives and Criteria for Probabilistic Analysis

The objectives of the probabilistic measure analysis are
threefold:

a. To establish the numerical probability that any SCOMP
hardware failure will induce a security compromise
condition which remains undetected. The probability
desired is an upper bound on failure probability
rather than its exact value.

b. To insure the hardware design effectiveness as it
addresses the problem of detecting security impacting
device failures.

c. To determine the need for and frequency of SCOMP
system exercise by '"health checking'" diagnostic
software to supplement the hardware design.

Probabilistic measures of security compromise due to undetected
computer hardware failures can be developed analytically using
either manual or computer-aided methods. Additionally, it is
feasible to employ a physical fault implantation evaluation
test sequence which yields sufficient failure effects data to
establish a measure of security compromise.

All classes of probabilistic measurement methods considered
herein result in a single indicator of design effectiveness

in precluding security compromise, a probability of security
compromise due to hardware failure per unit time. The SCOMP
design goal for the probability that a security compromise due
to hardware failure will occur is less than 0.000001 per hour.
Restated, this equates to a steady state secure operation
99,9999 percent of the time. The objective of the probabilistic
analysis is to c¢stablish an upper bound, rather than a precise
value, for the probability of compromise.

Three prerequisite criteria must be established prior to proceeding]
with any detail review of candidate probabilistic measurement
methodologies. The first, and most important criterion, is the
existance of a definition of the SCOMP operating conditions

which represent a security compromise. Second, a baseline SCOMP
hardware system configuration is necessary to scope the analysis
task size for trade-off purposes. Third, specific techniques for
numerical probability assessment must be established. Failure

to develop these tools may result in evaluation of candidate
probabilistic measure methodologies in terms of the entire

Secure Communications Processor instead of smaller, more
manageable modules. This in turn could cause a methodology

to be discarded because the technical or economic factors grow
exponentially instead of linearly with module size.

- - ———

et |

Failure Induced Security Compromises

Hardware failure induced computer security compromises
for the SCOMP stated in terms which can be directly
correlated with specific hardware mechanizations

are essential to the probabilistic measure analysis.
Because the intended utilization is to establish

the yardsticks by which security responsibilities

of specific hardware functions are measured, the
hardware failure tabulations must be correlatable

to individual hardware elements such as functional
circuit interfaces and registers.

Initially, it appeared that a list of security
compromises could be assembled easily through
inspection of the problem using the SCOMP archi-
tecture specification and hardware functional
diagrams. Just such a list is shown as Table I.

Table I is presented in three parts:

Faults outside the SPM in devices having
complex functional subsystems but within
a front end processor security perimeter.

. Faults inside the SPM hardware within
functional SPM subsystems.

Detail of control and power distribution
faults outside the SPM as seen at the bus.

These are identified as Parts 1, 2 and 3 of Table I,
respectively.

While we do not believe that the technique of using
fault tables should be abandoned altogether, the rather
obvious deficiencies of the example were a clear
indication that a more rigorous approach should at
least be explored. A readily available alternate
method for developing the desired tabulation of
security compromises for a digital computer was

not found. An attempt at structuring a suitable
formalism which would result in the desired tabulation
was performed. By taking a functional view of the
SCOMP system (both hardware and software), a more
precise and certainly more rigorous determination of
the results of any hardware malfunction can be made.
This approach is illustrated in a partially completed
example in Appendix A. It is unnecessary at this

time either to proceed further with the formalism

or to refine Table I. The insight provided by the
process of their development to this point is
sufficient to support the probabilistic measures
methodology trade-offs.

[8¥]

.1.2 Baseline SCOMP Hardware Configuration

A representative SCOMP configuration has been determined
necessary to size the hardware certification and the
probabilistic measures task. The baseline SFEP

(Secure Front End Processor) shown in Figure 2.1.2-1

is intended to illustrate hardware elements and
functional interconnections which mechanize SCOMP
architecture.

Initially, this diagram, and supporting functional
interface diagrams, have been used to assess the

scope of and the modularity with which the
probabilistic measures task and the hardware design
certification task could be approached. Figure 2.1.2-2
illustrates the Central Processor-Security Protection
Module (CPU-SPM) dedicated interface in this context.
Another utility of the functional diagrams is
determination of circuit complexity of major functional
elements. This was useful to the simulator trade-offs
(see paragraph 2.2.2, especially Table V). |

These functional block diagrams of the Secure
Communications Processor architecture are an effective
tool used to identify functional element interfaces
within the SCOMP and, together with the tabulation

of compromises, the security responsibilities of
signal sets within functional interfaces.

Resultant from our study of the relationships
shown on the diagrams and a review of the specifi-
cations is a Security Failure Model represented

in Figure 2.1.2-1 as the SFEP Security Perimeter.
This perimeter defines the approximate analysis
boundary for the probabilistic measures analysis
task.

Subsystem Elements
in Analysis

Address bus § checks
and memory module
address circuitry

Address control

Data bus § checks

Data control

Other bus controls

Interrupt network
priority-resolved

Timing information

Power and ground

Inside SPM

Associator identifying

descriptor

Descriptor permission

TABLE I

Security-Related Processing
by the Subsystem Element

Absolute addresses only, if the new
address is out of user's space

Absolute addresses only, if stuck
at Logic "1'" failure (time-out if
control is stuck at Logic "0")

Only when passing descriptor-parts,
critical state information or
absolute device identification, and
classes of errors as on A-bus

Stuck at "1" failure; either
Absolute bus or Virtual bus

For modules within the security
perimeter (see Item 3)

Only for SPM security fault con-
dition being transformed to
other fault condition

If withheld from kernel, or if a
"unique -name'" generated by the
clock is repeated

For modules within the security
perimeter (see Item 3)

Only for false "hit'" indication in
the SPM Cache

Only for false extension of

information: permission permission

checking logic and storage

If the altered address base is out
of the user's space

Address within descriptor

If the limit is effectively increased,
and overlaps another user's resource

Limit within descriptor

Always potential breach regardless
of system operating mode

Current user id,
operating ring

3

TABLE 1

(Continued)

System Considerations

Device identification duplicated due to hardware fault
(double routing of message)

Device fails to recognize its identifier

(data link cannot be established)

Direction bit from device on bus (including SPM) stuck at
1 = output or 0 = input

(transaction is one way only to device)

Tie breaking network fault which permits confusion of control
bus protocols

Function code bit error confuses read/write
Status word bits 1-5 inoperative
(stuck off)

Interrupt Level - Interrupt may appear to have lower priority
than it should

Byte Confused - Word format on memory transfers to bus 1is

confused, resulting in address, data or
descriptor bits being misinterpreted

11

'

2404e 243 UL PIPNTOUT J0U PUE JuIpuadap UOTIEINBIFUOD 1B SOUW YITM pasn sisidepe adTAaQ

*sS1unod 21e8

bz
"pajeInuls ATIPEal 2q ued AIT[BUOTIOUNY SSOYM SIUQWATa AIOWAW IPNTOX3 SIUNOD 9389 ‘T :3JION
.] " IR S AL T
l 1
“ _
2TNAOK IINAOW | A
KONW XHOWIN P ol
y NIVIK NIVI e , . e
(NSYL STNSYIN DI1LSITISVEONd dZIS OL @isn) w , 20T i Rl
14
R 3 F P VA T I T L e RIS g bl anc
b T Ry = ..I'L T a
| { |
[| |
f 104 1N\0D M‘ i 1 ! i
_ ‘ “ _
| |
M | SS3EAUY 3INI0SAY i _ '
_ | — | | | ;
_ | vd | ! | '
i | ! i H :
W, e h | | ~
» r 3 i B o i ey T N |
SILVD 0OL¥ = | J | S41YD 0087 = SILYD 0096 = S3IVO 0069 =
Lo . gars asis | |
FEs=E S ms =g e _ ﬁ- === - -~ _LIND FOVHMIAINI| W B e T
ARl i | | i
_ ' _ _ m u i = — g \ <—>]
40SSII0Yd ' ’ 2aW) > 31NA0K i (ndd)
SNOLLVTNINNOD | s [RSRE LIIOHEROD |SALV9 0058 X ﬂ | NOILDH10¥d , L1\ ¥0SS)0HJ
SNET TR0 N 2DIA3AQ ITJILINN M g i w ALT¥NDIS | ., TYIINTD 434S
) 4 iy N
[LSOH LINN FOVAMHINI| | :
e e . o e y : e z -t " e
|
ey L) _ | =
| . QYO sexq |
| wowv1 | 31170 kAT = \ J _ SEINZ
[-0S1 | xol i} //// ; _ T0¥INOD d3dS |
_Wmmazﬁ - dAY¥INd i o i
s |
1
! - -
» | ¥IaV R 2 !
o Y a¥vd = f _ g
” N LSOH ! mmxmquaqaz
; | i
K3QOW W3IAOW M | SOILINK m h:mk@momsmzH
P el ﬁ usy _L ! ‘
f — i .
SANIT “WIWOD e NOILVENOTINOD ANTIZSYH diis

LINVd TIVMAUVH WdS

T3INVd

L1avd ALT¥ND9S —»

NdoN —&

"ON ONI¥ TOLS —P

SYFLSIDTY YVITO —4——

3IN09X3 ‘LOTIIANI —+<

SHOVAYILNI NdD-WdS

WdS “ ndo 0MLNOD
nmm.mm MO) ig o Tint .\r
_]
_
i
IDV4HILNI - - - ——
Sng 31NT0S4V ll.l' sna SN8 TYNYILN! !
\ MV Wou3 m
; SNivis |
: |
| 1 :
" 21807 0NLN0D
1
f b3
I =) ¢
\ “ N8YN SAIN , _
| g _....lo»coa:. A :E.Qmu |
- PUp—
_ I
I
; ¥315193¥
t NOLLINULSN i
1 j s
. B
| — ¥ ;
§ {
) : ‘ :
_ 2 T
_ : .ff, o
_ i ﬂl.) ¢
: 91807 * A i
NOILVHIN3D 't f=.d
) SS3IMAQY o
, WALS = ;
| IO¥LNOD |
_ |
! |
_ SS3¥aay e
—1 s¥316193y |
| WHINT
| _ ¥31S1034 i
| e e
|
” nm | 21907 u_SJ‘“
I ' 048 |]
< a3 WULNGD |—- mm _ ws) | Caws)
An |
| 20V —
_ Pr—r—>

Z-7°1°C 9¥N914

13

Zd

Techniques for Numerical Probapility Assessment

Calculation of computer hardware failure probability
requires effective circuit mathematical models and
accurate device failure rate information. Both

of these are available within the industry in a

variety of forms. Contractor reliability engineering
groups typically develop and refine circuit reliability
models as the detail design progresses. Specific

SCOMP calculation criteria are further described

below.

2.1.3.1 System Reliability Modeling

The SCOMP Architecture Study Final Report
(Reference 2) describes the mathematical

basis for reliability calculation and

modeling considerations. It specifically
describes the probability calculation

procedures to be used in assessing security
breach due to hardware malfunction. These
criteria are essentially complete and sufficient
to perform the probabilistic measures analysis
calculations regardless of which probabilistic
measurement analytic techniques evaluated herein
are utilized to define security breach criteria
or identify associated hardware failure modes.
Should a situation arise where state matrix
reliability calculations are necessary (a case
not anticipated in Reference 1), the equations
can be augmented with procedures from Appendix A
of Military Standardization Handbook 217,
Revision B,

2.1.3.2 Failure Rate Basis for Probabilistic Analysis

Accurate electronic component part failure

rate data is essential to achieve a correct
probabilistic measure numerology. Incorrect
failure rate assessment of circuit functional
elements can cause undesirable failures to be
tolerated because of their apparent low
probability. Conversely incorrect rate
assumptions can cause hardware or software
design modifications to be performed unneces -
sarily to eliminate apparently high probability
events which in reality have little bearing

on system security. Because many eclements

of commercial minicomputer hardware are involved
in the SCOMP mechanization, device failure
rates have been selected from experience

data banks rather than the military handbooks.
Very high statistical confidence supports

these failure rates due to the fact that

they are derived directly from monitored

14

———

2,1.3.2

2.10.3.3

Failure Rate Basis for Probabilistic Analysis
(Continued)

system installations containing practically
identical hardware.

The microcircuit rates are the most critical
to the calculation process. They are listed
in Table II and specified in the SPM and
MSIU detail specifications.

Periodic System Health Checking Software

The design of a Secure Communications Processor
requires particular attention to the placement
of hardware fault detection circuits if the
probability of undetected security compromises
induced by failures is to be minimized.

Parity circuits, because they are electrically
straightforward and economical to implement,
are the most commonly used form of hardware
fault detection. This additional circuitry,
however, can itself fail undetected, creating
a potential system security problem.

Failure of a parity checking circuit, regardless
of where it occurs, does not create security
breach. Generally, two separate failures

are then required for a breach to be induced.
The probability of two or more undetected
failures occurring in any short time interval
can be quite small. Nevertheless, after

some arbitrarily long elapsed time, the
failure probability will increase beyond

any acceptance limit we set for secure
computer performance. The relationship is

a simple one:

=1 - e'()‘l ¢ >‘2)t

Where:

P = the probability of undetected
security compromise ot the system.

A1 = the failure rate of the parity
checking circuit element.

A2 = the failure rate of the circuit
whose performance is being checked.

t = the total time that the secure

computer has been used to process
secure data.

2.1.3.5 Periodic System Health Checking Software
(Continued)

It should be obvious that added fault checking
hardware is not a perfect solution to the
problem of insuring secure operation in the
presence of failure. By extension of the
above formulae, we can delay compromise by
checking the hardware with redundant parity
hardware. This approach can extend the time
to any acceptable compromise probability limit
out beyond the life of the computer and, hence,
solve the whole problem. Unfortunately,
redundant parity circuits aren't either
straightforward or economical in their
implementation, particularly if many circuits
require parity checking.

An effective solution to the dilemma is the
institution of periodic software checks,
whose function is to exercise either the
circuit element having security related
functions and/or its parity check. The
probability of undetected compromise
resulting from hardware failure can be
reduced to a level which can be neglected
provided at least one of the two failure
conditions is checked by the system software
periodically.

2.1.3.3.1 Calculation Procedure

For any given circuit, with security
processing, the probability of undetected
failures per hour, in the presence of
periodic diagnostics, can be developed
using the following five steps:

1. Single IC MSI typical failure rate:

A = 0.05 x 1076

2. Probability of parity chip (one MSI
circuit) failed:

Pp = 1-e-At

3. Probability of single bit failure of
N bit word being checked:

Py = 1-e-NAt

4. Frequency of system "health check"
software diagnostic of either the circuit
or its parity:

f = number of checks per hour

16

| —

Z. 055,10

2. 180502

e et

T T PRSI
~

Calculation Procedure (Continued)

5. Probability of both 2 and 3 simultaneously
failed per hour:

P = (Pp*Py)/f = (N*10°14)/f

Example of Health Checking Applied to a
Minicomputer with Parity

For a minicomputer complex, it may be safely
presumed that less than 100 MSI microcircuits

are dedicated to parity generation or checking.

Hence, the total probability of all such
occurrences is expected to be less than:

i=m
0.5*% INi*10-14/f hours (from Equation 5)
i=1

Where M is the number of parity circuits
and Nj is the word length of the data
checked by the ith parity circuit. In
minicomputers, Nj is typically small

(32 or less). Semiconductor memory
matrix element (RAM) failure rates are
approximately an order cof magnitude
greater than our example. However, the
total probability for a SCOMP type
minicomputer is still less than 10-10/f
per hour. This calculation is, of course,
oversimplified in that it assumes the
ability of a periodic system diagnostic
to exercise every circuit or its parity
check.

For our example, we can derive a first order
approximation of the probability of undetected
compromise using the formula:

M+ N« X » xp ¢ff

Where:
M = the total number of parity circuits.
N = the maximum bit length of any word
whose parity is checked.
A1 = the failure rate of the parity
circuit
Ay = the failure rate of the circuit

generating the word whose parity
is being checked.

17

e

_ -

2.1.%:3:2

Example of Health Checking Applied to a

Minicomputer with Parity (Continued)

f = the frequency with which software
exercises either the word or its
parity.

Using: M = 100 N = 32

kg = -5 x 1676 A, = 1076

The probability becomes 1.6 x 10°9/f.

If our maximum acceptable probability is 10°6,
or .00001, then f must be less than 625 hours.

18

TABLE TI

FATLURE RATES FOR PROBABILISTIC ANALYSIS

Microcircuit Device Type

SSI, less than 20 gates
MSI, 20 - 100 gates

LSI, greater than 100 gates
Bipolar memory, 256 bit RAM

MOS memory, 4096 bit RAM

19

Failure Rate (Per 106 Hours)

0.03
0.05
0.1
0.3
1.0

2.1.3.4 Circuit Failure Modes

In addition to failure rate data on individual
logic circuit elements, it is necessary to
specify the circuit failure modes which

will be employed in the assessment of hard-
ware failure effects. Essentially, two
classes of failures cover the logic; gate
failures and flip-flop failures. The modes
within these classes are stated in Table III.

TABLE TII
LOGIC FATLURE MODES

1 - Gate Functions
- Outputs failed to logic one or zero

- Individual inputs failed to logic one or zero

1]

Normal
Inverted

2 - Flip-Flop Functions: Output Terminals Q
Q

- Set or Reset failed to logic one or zero

- Data input failed to logic one or zero

Q output failed to logic one or zero
(without affecting Q)

Q output failed to logic one or zero
(without affecting Q)

Input failed to Q and Q without regard to clock

Review of Hardware Failure Effects Analysis Methods

Candidate manual and computer simulation analysis methodologies
identified during Phase 1 of this study are addressed in

detail in the section. Relative cost, task complexity and
confidence data are discussed to facilitate a selection.

A1l candidate analytic techniques which support probabilistic
measurement serve one purpose:

. To identify specific circuit elements which have
failure modes that result in undetected security
compromise of the system.

It is only when these specific physical points have been isolated
that numerical assessment, as described in Reference 1 and
supplemented by paragraph 2.1.3, can begin.

20

i

Probabilistic Measure - Manual Analysis

Manual circuit reliability analysis techniques are

well established in the electronics equipment industry.
Some of these failure modes analysis techniques are
readily adaptable to problems such as the SCOMP.

There are two major classes of manual techniques;

fault implantation and failure modes and effects
analysis (FMEA).

Fault implantation is a physical test technique where
individual failures (shorts or opens) are inserted

in the hardware and the resultant effects on
performance assessed. Obviously, at least prototype
functional modules must be available to use this
technique.

Failure modes and effects analyses are a standard :
tool employed by Reliability and Systems engineers

in both the large computer and Aerospace industries.

The level of detail to which such analyses are

conducted are, however, subject to substantial

variation which affects both cost of and confidence

in the analysis output. The restrictions of these

analyses to the subset of hardware failure modes

which induce security compromise is a trivial change

from the original intended purpose of FMEAs.

2.2.1.1 Fault Implantation

Fault implantation tests can be employed
to evaluate a computer system's actual
responses in the presence of a simulated
hardware failure. The available nodes at
which short circuit or open circuit
conditions may be inserted include:

Connectors
- pin-to-pin or pin-to-case shorts
- individual pin open circuits
- entire connector unmated
Electronic Components or Modules

- individual leads open circuited
(including power and return terminals)

- inputs or outputs shorted to return
or to each other

It is also possible to insert series or
parallel resistance, capacitance and inductance
and even to inject currents of the above nodes.
By so doing, a wide variety of parameter
shifts, leakages and stray inductance or
capacitance may be simulated.

21

———————————

2502 St

Fault Implantatior (Continued)

To effect a fault implantation test requires
functional computer hardware; preferably of
a geometry closely resembling the final
product configuration. Also necessary is
sufficient test equipment and operating
system software to mechani~e an operating
unit. Lastly, and very irportant to the
success of the test, a representative
computer test program which exercises as
many system functions as possible is
required. It is desirable (but not
mandatory) to know beforehand which computer
circuit nodes and which failure modes are
of interest. This knowledge can cut down
the amount of work involved substantially.

Given that the prerequisites stated above

are satisfied, the test may begin. The
duration of the test might range from

several days to several months dependent

on the nature of the test program,

the number of nodes to be failed, and

the number of failure modes to be simulated
for each node. A scenario in which the

fault implantation test could be accomplished
would be as follows:

Open and short failure modes would
be individually failed for nodes
of interest (as determined from
the tabulation of security compro-
mises, paragraph 2.1.1) using a
prototype SPM and Interface Unit in
a ruggedized minicomputer chassis.
The system would be configured as
a front end processor. A sample
test routine developed on an
instruction simulator developed
separately would be used to
exercise the system. * The prob-
ability of each node failure which
resulted in a compromising change
in performance which was not
detected would be calculated from
reduction of a data dump of

stored variables.

* Preliminary KERNEL software would be utilized.

Assuming that an ongoing prototype program
existed, the cost of this testing could be
as little as a few man months of effort.
While costs are attractive, there is 1little
clse to recommend it. The advantages of
hard test data arc offset by a long list of
disadvantages. Among these are:

22

2211

22512
22 o2 il

Fault Implantation (Continued)

1. The test program element in execution
at the instant of fault implantation
may not result in a compromise while
a subsequent test may. Multiple
tests and special test routines
developed for this test would be
required to overcome this.

2. Fault implantation is not timely
for hardware proofing or analysis
purposes, since most major design
decisions are completed by the time
the prototype becomes available.

Failure Modes and Effects Analysis (FMEA)

FMEA - General Description

FMEAs are a form of design analysis whose
purpose is to insure that all system level
failure effects which result from probable
hardware failure modes are known. The FMEA
permits assessments to be made of the design,
which may result in minimizing the impact

or elimination of those failure modes
considered undesirable through circuit
redesign. Ideally, an FMEA should be
accomplished in parallel with the detail
circuit design to be most efficient, though
the pace of many military hardware develop-
ments often precludes this. For the SCOMP,
the undesirable system level failure effects
are those system operating states which
result in security compromise.

In performing the analysis, existing design
documentation (including block diagrams,
circuit schematic diagrams and hardware
performance specifications) is used. The
analysis consists of a systematic review of
this documentation to obtain an ordered
understanding of the following factors:

1. The function of each hardware functional
item being analyzed (brief description).

2. Possible failure modes of each item
(an itemization).

3. Effects on item operation and system
interfaces of all failure modes (an
itemization).

4. Causes of each failure mode (an
itemization).

23

2201 o2

QS22

FMEA - General Description (Continued)

5. Probability of occurrence of each
failure mode (calculated estimate).

FMEA Analysis Detail

The scope of the FMEA is determined both by
the complexity of the hardware being
analyzed and the level of detail to which
the analysis 1s conducted. Four different
levels of detail are generally recognized.
Certain very sophisticated equipments may
require several of these analyses, or
conceivably all of themn.

1. Functional Level FMEA in which
circuit interface signal groups are
analyzed for their interaction in
the presence of a postulated failure
within the functional element. In
this sense, elements include CPU,
Memory, device controller, SPM,
MSIU, etc. The signal groups are
bus data lines, address lines,
control lines, power distribution,
and SPM-CPU interfaces.

2. Part Level FMEA in which failures
at terminals of individual circuit
elements (i.e., microcircuit output
pins) are analyzed for their impact
on functional element performance.
The circuit element failures (shorts-
opens) are postulated to occur due to
malfunction within the circuit. This
FMEA is a second level of detail
supporting (1) above.

3. Single Failure Analysis (SFA) iterates
(1) and (2) above another step into
the workings of complex circuit elements.
The SFA is employed where LSI elements
containing many hundreds of gates are
involved, such as with microprocessor
chips. SFA is typically reserved for
space mission equipment and certain
classes of COMSEC equipment involving
key generators and related decrypting
equipment.

4. Piece Part Mechanical FMEA is very
similar to SFA but is more concerned
with the circuit element geometry
and its placement in the functional
element assembly. A piece part FMEA
would be used only to insure that

24

2.2.1.2.2 FMEA Analysis Detail (Continued)

electrical circuit redundancy was
not reduced by part characteristics
or assembly factors. Mechanical
FMEA considerations include using
dual transistors as a redundancy
switch where a single mechanical
failure could easily disable
supposedly independent electrical
circuits.

2.2.1.2.3 FMEA Evaluation for SCOMP

For SCOMP, a system view of failure modes
and effects is desirable to accomplish a
probabilistic measure. A baseline SFEP
system, such as is illustrated in

Figure 2.1.2-1, is sufficiently general to
conduct meaningful analysis. It is
obvious that the FMEA results must be
stated in terms which apply to some
specific configuration. This is not a
serious drawback due to the bus oriented
structure of the SCOMP minicomputer.
Table IV below shows typical man hour
costs for the candidate techniques based
upon the baseline SFEP configuration.

TABLE IV
MANUAL FMEA COST FACTORS

FMEA Type Extent of Analysis Analysis Effort (MM)
1. Functional 15 Functional Units 3

10 Interfaces Each Unit

2. Part Level 3000 Parts 26
3 Failure Modes Per Part
3. Single Failure 20 LSI Types 25
Analysis
4. Piece Part 3000 Parts 2
Mechanical

2.2.2 Computer Fault Simulators

G wtboil Fault Simulators - General

Digital fault simulators are available in a
variety of well developed forms. Generally,
they are structured to evaluate circuit
stimulus -response characteristics for the
purpose of generating fault detection

25

—1nu-u—-uu--nn--n-i--hn--.I-.-.H-...-I...-'

20220k

Fault Simulators - General (Continued)

tests for automatic tests and diagnostic
dictionaries. Typically, such simulators
consist of a collection of computer
programs which analyze digital networks
so as to perform the following functions.

1. Test Generation

a. Generate stimulus and response
capable of detecting all functional
faults.

k. Overlay stimulus whose functions can
be performed simultaneously.

c. Provide an accurate worst-case time
analysis simulation, initializing
the network first to all unknown
states (X), so that the response
0s, 1s, and Xs may accurately
reflect possible races, X-propagation,
and initialization shortages, thus
obtaining good test accuracy and
repeatability.

d. Utilize a criticality trace tech-
nique to determine for each response
pattern/pin the set of failures
which would cause that pin to fail.
Reduce and process this information
to provide a high-resolution fault
isolation file or '"'fault dictionary."

e. Given, in any specific test case,
the set of patterns/pins which failed
the stimulus-response tests, utilize
the fault dictionary to determine
and print out the most probable faults.

2. Design Verification

a. Utilize the accurate simulator to
verify that the network does in fact
perform its intended functions. If
not, utilize the fault-isolation
capability to determine why not.

b. Utilize the simulator's accurate
worst-case timing analysis to
eliminate all possible races, due
either to close timing or to transient
spikes, so as to eliminate costly
trial-and-error engineering revisions,
and to yield a more reliable product.

2l

Fault Simulators - Operating Characteristics

Fault simulators can accomplish the same
basic tasks for SCOMP that are obtainable
by manual analysis means. Aligorithmic
simulations by computer do not eliminate
all manual effort, however. Manual coding
and manual interpretation of simulator
outputs are still both necessary and
significant cost items.

The LASAR (Logic Automatic Stimulus and
Response) simulator is typical and perhaps
the most highly developed fault simulator
available. Originated by Digitest, this
simulator has been upgraded both by
University Computing Company and Honeywell.
Basic circuit elements are modeled by LASAR
as nand equivalents (most TTL small scale
integrated circuit types have library models
of their nand structures). These callable
models greatly simplify the coding process.
Unfortunately, the SCOMP minicomputer
circuitry employs many MSI and LSI micro-
circuits of newer types for which library
models must be developed. This situation
results in a fairly high additional cost
as the models are individually complex and
approximately one-third of the 100 plus
integrated circuit types used in SCOMP
require modeling before system level
simulation could begin.

LASAR type simulators are essentially data
matrix manipulators. While this is both
accurate and complete, it requires a
substantial amount of CPU time to execute
all possible combinations. Matrix manipula-
tion by such computer program is a very
limited technique due to the fact that run
times are proportional to N**2.5, where

N is the nand equivalents. The LASAR
"fail-all" mode, for example, will drive
all unique failure modes and simulate

them one at a time, building a file which
shows for each failure mode the output
pattern (including patterns which represent
compromise conditions) which it fails.

The fail-all approach, while simple and
accurate, is costly since a 200 IC network
has about 2000 nands, 6000 failures and

3000 stimulus patterns to simulate for

each failure, or 18,000,000 simulations.
Even at its fast 20 ms per pattern speed,
360,000 seconds, or 100 hours, would be
required. For this reason, this most direct
approach to fault isolation file generation

£

-

LA P4 5

Fault Simulators - Operating Characteristics
(Continued)

has been replaced by the DYSOGN or ISOGEN
approach which is about 100 times as fast.
DYSOGN's and ISOGEN's accuracy has been
verified by comparison with the fail-all
simulation output.

If the user desires to fail only IC interface
pins in order to reduce the run time, a mode
is available for this.

The Fast Sim mode performs the same functions
as the Fail-All mode, but in about one-fourth
the time. This speed-up is made possible by
carrying 100 failures per pass, maintaining
delta configuration states for each failures
so that only the area in the vicinity of such
deltas need be processed and only to the
extent that such area interacts with an
active region of the network for that
stimulus.

Fail-All and Fast Sim run times are propor-
tional to N**2.5, where N is the number of
nands. Table V illustrates the relative

fault simulator run costs for various SCOMP
elements and approximate manual analysis
support costs. If they take 100 hours and

25 hours, respectively, for a 2000 nand

(200 IC) network, then they take roughly

1 hour and 1/4 hour, respectively, for a

30 IC network, which is thus about their
applicable 1limit. While each may occasionally
find special application, both have essentially
given way to the ISOGEN system because of its
greatly increased speed (about 50 minutes for
3000 patterns on a 200 IC network).

ISOGEN accomplishes a similar function to the
techniques described above using a criticality
trace to derive the fault dictionary. This
results in a drastic reduction in run time

of about 100 to 1 when compared to Fail-All.
Run time proportionality is just N**1.5, a
substantial improvement. Inherent problems
plague criticality trace techniques, which
affects their accuracy and ease of use.
Multi-Zero and Zero-One effects (logic states
and logic state transitions) create discontinu-
ities in some logic conditions causing actually
critical nand failure elements to be ignored.
Networks involving memory elements or counters
require elaborate history maintenance to determine
true effects of a failure occurring at some
arbitrary time.

28

RELAT I VE

Circuit to be Simulated

Multiple device controller

Direct interface unit -
SCOMP side

Multiple line communica-
tions controller

Central processor unit

Direct interface unit -
multics side

SPM

Total of 1 to 6 above;
taken individually

Total of 1 to 6 above;
simulated simultaneously

SPM and CPU; simulated
together

SPM and CPU control
interfaces only; simulated
together

TABLE

\Y

FAULT SIMULATOR RUN COSTS
Gate Relative Relative Eng. Normalized
Complexity Run Cost Analysis Cost Total Cost
2,500 1.0 2.0 1.0
2,800 1.3 2.0 1
4,700 4,8 2.0]
6,900 12.6 2.0 4.9
8,300 20.0 2.0 73
9,600 28.9 2.0 10.3
34,800 7.0 5 12510 26.8
34,800 722.0 12.0 244.7
16,500 112.0 4.0 38.7
11,325 43.6 3.0 15.5

29

Recommended Probabilistic Measurement Methodology for SCOMP

The functional level FMEA, performed manually, is sufficient
to achieve SCOMP probabilistic measurement objectives.
Descriptions of security compromises, as in Table I, are
sufficient to support a functional FMEA. The advantages

of this selection are:

1. It's timely because it requires a minimum of
prerequisite data which are expected to be
available concurrent with detail design.

2. It's emphasis is on influencing circuit design
architecture which should be the primary
objective of the probabilistic measurement.

3. It's cost effective, yielding high confidence
system level analysis at a fraction of the
effort required by more detail evaluation.

Logical upgrading of the confidence in procbabilistic
measure data is achievable along several paths. While
confidence determination is perhaps the most subjective
element in the methodology selection process, the following
order of upgrading appears reasonable should it be desired.

Methodology Confidence
Manual FMEA, Functional > 85%
FMEA, Part Level > 90%
FMEA, Single Failure Analysis > 95%
Fault Simulator; ISOGEN > 97%
Fault Simulator; Fail-All > 99%

Fault implantation and piece part mechanical FMEAs are not
recommended for SCOMP.

30

SECTION III

SCOMP HARDWARE CERTIFICATION

3.1 Objectives and Criteria for Hardware Certification

Two major objectives must be addressed to achieve SCOMP
hardware certification. These are design verification
analyses and hardware verification tests. Each of these
objectives has its own issues and criteria which establish
boundaries on candidate methodologies that can be employed
in satisfying the objective.

T —

The hardware design verification objective is involved in
i the issue of desired confidence level. While design

3 security is not directly at issue here, two related
criteria require that relatively high confidence be
established. These are:

. 1. Certification that the SCOMP design accomplishes 1
l the performance requirements of its design
specifications; and

2. Verification that the hardware design is closed;
that is, its mechanization does only that which
it is specified by design to do.

Hardware verification testing must address the initial
performance testing, as well as the controls upon which
physical certification of production hardware are to be
based.

3.2 Hardware Design Verification Analyses

i The logic design verification techniques are primarily 1
circuit design analyses to some level of detail which
verify that the stated performance specifications are
accomplished by the digital logic mechanization. If
we assume that the SCOMP hardware functional design
specifications for the SPM and Interface Unit (IU)
correspond to the Secure Communications Processor
architecture specification, we may proceed directly
: to analyze their circuit design mechanization in terms
p of design specification requirements (DS Part I).

In Section 3.2.1 which follows, the characteristics of
available design analysis tools which accomplish design
verification are described. Recommendations are contained
in Sections 3.2.2 and 3.2.3.

31

3.2.1 Hardware Design Verification Descriptions

3.2.1.1 Manual Analysis

Circuit design analysis can be accomplished
manually by the designer or an independent
reviewer. There is a long list of design
analysis types; each type of analysis
addressing a specific design objective.

The list includes logic correctness
analysis, circuit timing analysis, worst
case circuit loading (electrical stress)
analysis, structural and thermal analysis.

Of greatest interest and necessity for SCOMP
is a logic correctness analysis. The SPM
and the 6000/60 IU are the only functional
elements of the SCOMP minicomputer which do
not yet have the benefit of sufficient
correctness analysis. The functional
complexity of the SPM (and perhaps also

the 6000/60 TU) could require a very
substantial manual effort to thoroughly
explore the many intricate circuit interactions.
The manual technique does not lend itself

to effective documentation; and, by its very
nature, is prone to human introduced
analytic errors.

3.2.1.2 Instruction Simulator Description

The function of an Instruction Level Simulator
would be to perform the same functionality

as the minicomputer CPU and SPM hardware.

This functionality would primarily be used

to run and debug SCOMP test software. The
intended life of the simulator is until the
hardware is operational. As such, it will

be used to give software design the opportunity
to develop functioning software prior to

the hardware availability. Hardware elements
such as registers, memory, accumulator

states, compare states, etc., as specified

by the CPU and SPM specifications, would be
simulated and available for interrogation

and modification. The standard minicomputer
order repertoire, including a limited I/0,

and security unique instructions would be
available.

The following definitions apply for the
Instruction Simulator:

Order - The group of words required
to define 1 computer function

32

" % , -

Instruction Simulator Description (Continued)

to be performed. The order
comprises from 1 to n computer
words.

Instruction - The first word of the group
of computer words that
comprises the order.

The initial input/output for the simulator
takes two forms. The first form is the
actual minicomputer software program to be
simulated along with the related supporting
I1/0. The second form is the data input/
output processing the simulated program will
use to manipulate the actual program data.
The output is to be in the form of one
MULTICS segment (file). The actual data
file manipulation is initiated from the
program by special simulator I/O orders.

The interface between the user and the
simulator will be minimal. The interface
consists of a numbered set of sub-commands
with subsequent parameters as needed.

This interface supplies the following]
capabilities:

1. Execute 1 or more orders.

2. Dump memory in decimal or hexadecimal.

3. Print values of program counter,
accumulator, base register or

current memory location.

4, Print machine status; registers
and last instruction.

5. 1Initialize, terminate, restart and
continuous execution.

6. Load registers or memory.
These capabilities can provide sufficient

visibility of hardware functions to
effectively evaluate their performance.

33

Sl a1l 2,1

Adaptation of the CPU-SPM Instruction
Simulator for Hardware Verification

The existing CPU-SPM Instruction Simulator

is basically a software development tool

for SCOMP Kernel software and new security
instructions added to the existing mini-
computer CPU instruction set. In the

form necessary for these tasks alone,

this simulation is not sufficiently

detailed in its view of the SPM hardware.

To use this approach, the CPU-SPM Instruction
Simulator would have to be modified to
provide a detail view of SPM hardware
functionality. One method of achieving

this is shown in Figure 3.2.1.2.1-1.

This structure provides for both detail
(complex) and simple views of SPM function-
ality in one simulator. The required CPU-SPM
simulator modifications are a straightforward
process involving the following four task
elements:

Modify 12 of the existing CPU subroutines
to accommodate SPM functionality.

. Create four administrative subroutines
to provide both simple and complex SPM
algorithms and input/output routines.
Create nine SPM service routines based
upon DS Part I descriptions of SPM
functionality. These service routines
would describe the following SPM
functions and call to lower level
register control routines.

- Address Translation

- Access (Cross Ring Validation)

- Effective Ring Calculation

- Argument Validation

- Memory Descriptor Handler/Interpreter
- Device-to-Memory Interface

- Device-to-Processor Interface

- Processor-to-Processor Interface

- Operator-to-Processor Interface

34

———————————

3.2.1.2.1 Adaptation of the CPU-SPM Instruction
Simulator for Hardware Verification (Continued)

Create an SPM register control routine
based on SPM circuit interconnections
and register functional links. This
routine would contain entries to the
above described service routines and
would simulate individual SPM register
actions.

These modifications effectively overlay on-
going effort to develop Kernel software.
The interaction of these task activities

is shown tor the Instruction Simulator
approach ia Figure 3.2.1.2.1-2.

This has definite advantages in that the
software analyses are always in step with
the hardware verification analyses.

ki

35

CPU SIMULATOR
MAIN EXECUTIVE

(KLUNK)

CPU MODULES

(EXISTING)

TELETYPE

<£——— INTERFACE

MODIFTIED MODULES

\l/

INPUT
FILES

SPMAIN

OUTPUT
FILE

/ i

SIMPLE COMPLEX

INOUT

SPM FUNCTTONALITY MODULES

SERVICE ROUTINES

SPM
OUTPUT
FELE

REGISTER CONTROIL ROUTINE

MODIILES

EEGURE &2l 2« =1

STRUCTURE OF CPU-SPM SIMULATOR

NOILVOIATH9A NOISIAA FIVMA¥VH

404 d9SN ST HOTHM YOLYIAWIS HWVS HHL ONISA G4dOTHAd 49 NVD HYVMIA0S TVNMAN dWODS
It e i i
| (L3S 9NISIO¥IXd)!
| YOLVINWIS P PG L e A
, NOILVDIJID4dS WdS ! i
D ———-=-- - |
| I
_ —
v |
|
_ —
(WHLIMOO9'TV Q4'TIVLIA WdS) HOLVTONIS -
WdS ondsq |
|
A
T e R AT e e o
1
_
!
. (IOLVINWIS !
(WHLIMOO'TY dTdWIS WdS) | (45 01 SNOISIATY) !
FOVAYILNI ; :
WdS _
|
|
1
= e = e e —
: 1as | |
| ONISIOYAXT —==---» LNIWdOTIALA |
| NdS MS TANYAX JOLVINKIS NdD HOLIMS
b= - -
: {
- |
IllL'IllJ |
§ : | NOTLVD 14 1¥3A
: ia8 TAVMAYVH
| ONISIOYIXH | REMIET0) WdS
PoTANGEN SOTLIN ¥04 1NdLNO
b i L

SASVL/HOVOYddV MOLVINWIS NOILONYLSNI YOSSAIO¥d

¢-1°2°1°2°¢ TN9Id

Register Transfer Logic Simulators (RTL)

The Register Transfer Level (RTL) simulation
is a set of computer programs designed to
assist in the formulation and verification
of digital device structure and operation

at a level higher than the gate-level logic
and/or detail circuit implementation.

The typical process of Logic Design involves
manual preparation of machine descriptions
at three levels: specifications (English
language), flow charts and algorithms
(graphic) and gate-level logic (Boolean).
At each level, the process involves a
choice between various alternatives,
feedback resulting from that choice and
modification based on the feedback. The
feedback at the flow-chart and gate-level
stages is primarily a matter of review.

At the gate-level stage, illogical circuit
operation and timing factors are considered
(see Logic Circuit Simulators, 3.2.1).
These are mostly related to the mechanics
of the implementation, rather than the
conceptual integrity, of the design.

Significant feedback often begins only
after the design is released, the prototype
is built ard hardware debugging begins.
However, the advent of committed logic MSI
and LST has made it highly desirable to
have the design debugged before a prototype
is built. This is due to the high cost and
long delay times required to make changes
to designs based on committed logic.

One method of verifying design integrity
before it is actually built is to simulate
the gate-level logic description of the
design. This method has many disadvantages,
primarily the amount of description modifi-
cation required to make a major significant
change. ‘Also, at the gate-level stage, 1t
is usually too late in the design cycle

to make significant changes.

Improved design verification can be achieved
without simulation at an earlier stage in the
design when the device is described at the
less detailed, but conceptually complete,
register transfer level.

A machine design can be described at various

levels of detail in the Register Transfer
Level (RTL) language. During the preliminary

38

2.2:1.5

Register Transfer Logic Simulators (RTL)
(Continued)

stages of machine design, the logician may
be interested only in outlining the data
flow, whereas at later stages, he will
want to include more detail by specifying
intermediate registers and portions of
the control logic. Simulation of an RTL
logic description provides the logician
with an opportunity to evaluate machine
algorithms with a minimum of design data.
Thus, a number of alternate approaches
may be explored and compared early in

the design cycle when conceptual changes
are far less expensive to implement.

RTL simulation of a design is accomplished
by programs which create a simulation model
from the register level description and
then run designer specified test programs
through the model. The various control
states through which the model cycles

and the contents of the simulated
registers and memories may be checked
against precalculated results. The
simulator may be instructed to report

the state of various model elements

under a variety of conditions. Should

the model not produce the correct results,
these reports may be used to locate the
design errors.

There are several important advantages
to this type of simulation. The final
design is conceptually debugged before
build documentation is generated. For
example, Read Only Memory (ROM) algorithms
can be verified prior to detailed design
of the ROM word layout. Also, very
early in the design cycle, the logician
can vary parameters, change algorithms
and receive results for evaluation of
speed, efficiency, etc.

The same preciseness and lack of ambiguity
that are required for simulation conceptually
allow gate-level synthesis from the RTL
machine design. The initial gate-level
description may be written directly from

RTL reports, with the advantage that
gate-level design is performed with

verified conceptual integrity.

39

3.2.1.3.1 Use of RTL Simulators for SCOMP

An RTL simulation, if selected for SCOMP,

would have to be written from the beginning,

RTL providing only the framework and
conventions for circuit definition. To

* do this would require two major tasks:

Create the simulations of the CPU
and the SPM in RTL.

Develop an input problem to run
on the new simulator.

While both tasks are substantial, the
creation of the input problem is the

larger technical challenge. It is believed
that the only effective SPM exercising
problem will come from the CPU-SPM simulator
used for Kernel development. Unfortunately,
RTL provides only batch operation on the
H6080 computer and the Instruction Simulator
is interactive on the MULTICS system.

The creation of an RTL simulation therefore
requires a complex translation from MULTICS
to get its input problem. Figure 3.2.1.3.1-1
illustrates the approach.

40

'!IIllll!!!llllllllllllllll!!!5!E'l""'l-'-'-Hl-!n---u-- . I

FIGURE 3.2.1.3.1+~1
RTL STMULATION APPROACH

COMPUTER (?)
OUTPUT RTL
H6080 RTL (?)

BATCH INPUT

DEBUG A

,it |
! RTL SO L A
§ SPM STMULATION |PROGRAM
INTTTALIZE |
& EXTERNAL FILE
; (PART OF APPENDED TO
| SIMULATOR)
]
N
RTL SPECIFICATION EXERCISING
SIMULATION (RTL) 7
(EXERCISING SET) SET /" DEBUGC
BT W

|

BEGIN H-6080

4 TRANSLATION L
PROGRAM (6080)

H-6080
R Ay i T BEGIN MULTICS
OUTPUT i SPM EXERCTISING
e SPM iy SET

o ,

SWITCH KERNAL EXERCISING
SET

SPM l
INTERFACE :
(PROGRAM PATCHES) MULTICS KERNAL
NML SIMULATOR DEVELOPMENT
SPM

e ST
,znuﬁm 5 , g R

i OUTPUT I MULTICS

L

|
— INTERPRETATION :
| |

S S S |

41

3.2.1.4 Logic Circuit Simulators

When circuit detail design has been sub-
stantially completed, logic circuit
algorithmic simulators offer a high
confidence path to hardware design
certification. These simulators could
be developed specifically for circuit
component analysis, or could be used to
extend a register level simulation to a
greater level of analytic detail.

3.2.1.4.1 Boolean Logic Simulators

The family of Boolean Logic Simulators
are employed at the circuit gate level
to determine that the logic design of

a device is correct. The algorithms
utilized in Boolean Logic Simulators are
simple algebraic relationships. Boolean
gate level simulators are among the
earliest automated digital logic design
tools.

Circuit timing factors are typically
ignored in Boolean simulations. It

is assumed that the circuit logic
stabilizes before the next test or logic
sequence occurs. This is, of course,

not always the case; timing considerations
being critical to the success of modern
high speed logic designs.

Most Boolean simulators accommodate only

two states: 1 and 0. Modeling of one-shots,
tristate logic or indeterminate state
devices 1s generally not possible, except
where logical 1 or 0 may be assumed to

apply.

The Boolean simulator is, therefore,
severely limited in its ability to
effectively simulate real circuits.

3.2.1.4.2 Logic Device Simulators

These simulators attempt to duplicate the
detailed functioning of a logic device

in terms of signal values as a function
of time. All simulators of this type
look at the logic in terms of how each
piece of hardware performs. For example,
actual propogation delays are used,

The simulator used at the Aerospace Division,
called HISIM (Honeywell Inc. Simulator),

is typical of the class. It has five
states: 0, 1, X (static unknown), Z (tri-
42

‘ , , o

3.2 . 1.4002

3.2,1.5

Logic Device Simulators (Continued)

state high impedance) and 1 (initial
undefined). It uses real time circuit
delays for 0+1, 1-0, 0-Z, 1-+Z, Z-»0 and
Z»1. It simulates synchronous and
asynchronous logic for gates, flip-flops,
one-shots and MS[s. The MSIs may contain
RAMs, ROMs and/or truth tables, as well
as gates.

It optionally detects failure to stabilize
time(s) and stops or continues at user
discretion. It detects inputs less than
gate delays and ignores inputs less than

a user specified minimum pulse width. It
has several diagnostics for RAMs and ROMs,
such as: detecting an undefined RAM
address while write enabled, undefined
RAM/ROM content, and reading and writing
the same RAM address if it's illegal.

HISIM uses two libraries: a logic library
that contains gate and MSI logic; and, a
RAM/ROM Truth Table library which contains
the data for each device. HISIM has a
formattable output that can be in any
arrangement desired, with or without labels
and a line printer plot as a function of
time.

Security Proofs for Operating System Software

Correlation between the software certification
methodology and the probabilistic measures
and hardware certification methodologies

is not immediately obvious. The approaches
to the problems are, however, similar in
several respects. The need to employ a
modular view of the system is evident in both
hardware and software certification tasks.

In the hardware case, partitioning of the
SCOMP into functional modules is particularly
useful to the study of failure induced

system effects.

In the course of our trade-offs, an extensive
review of published articles pertaining to
software systems was conducted. Unfortunately,
there is little evidence that the theoretical
development work now in progress could be
applied to the SCOMP hardware certification
in any meaningful way at this time. An
approach similar to the software mathematical
model and specification language proofs

(such as those advanced by Bell and Lapadula
and Neumann, Levitt, et al) applicable to

43

3.2.1.5 Security Proofs for Operating System Software
(Continued)

software certification may eventually

become a viable alternative. In this regard,
Neumann and Levitt, et al (Reference 2)

offer a five-stage decomposition of proof

in which the fifth, and last, stage is

f "the actual implementation in terms of

hardware or a programming language.'

We determined that the current state of
development of these software techniques does
not provide a clear and bounded methodology
which could be effectively evaluated in our
hardware verification trade-off studies.

i 3.2.2 Recommended Hardware Design Analysis for SCOMP

A CPU-SPM Instruction Level simulation is recommended
for the SPM and the minicomputer CPU logic dedicated
to the SPM interface. The need for additional
simulation of the 6000/60 Interface Unit is believed
to be of lesser priority. In making this selection,
both manual circuit analysis and software proof type
approaches were determined to be inappropriate

to the problem.

While RTL simulation is a powerful tool that can be
very effectively applied to logic as complex as that
of the SPM and the minicomputer Central Processor,
the unique character of the SCOMP problem (security
Kernel software) causes RTL to be a second choice.
By using a complex, as well as a simple, view of the
SPM in the SPM-CPU Instruction Simulator, the rigor
of analysis, which is RTL's strongest recommendation,
is equalled. RTL would have provided simpler
upgrading paths if additional detail analyses were
desired at a later date.

Logic circuit level simulations are always viable
contenders as a design analysis tool. Of the two
circuit level simulator types, the HISIM type would
have been preferred; the Boolean approach being
technically obsolete. The cost of circuit level
simulations is, however, relatively high, although
its algorithms yield the most precise simulation
available. The design verification testing (see
paragraph 3.3.2) can accomplish much the same
confidence in the hardware. As some design verifi-
cation testing is considered essential in any event,
detail circuit level simulation must be viewed

as less cost effective.

3.3 Hardware Verification Tests

Hardware verification testing is necessary in both prototype
and production environments. The elements of which hardware
verification is comprised are described below.

44

3.3.1 Prototype and Production Logic Test Criteria

Functionality of the hardware security functions of
the physical hardware is verified in the course of
prototype and production product performance tests.
These tests need to be structured to ensure that

the functionality of each hardware element which

has a reference monitor function is correct. While
it is probably impractical to exhaustively exercise
every element of the SPM, it is practical to expand
performance testing to include typical routines which
exercise the operational characteristics of each
SCOMP performance specification. The most efficient
method of achieving this is to develop test software
in a systematic way structured toward this objective.

It is recommended that evaluation software be developed
with the aid of a CPU-SPM instruction simulator having
the characteristics described in paragraph 3.2.1.2.

This approach insures that functional acceptance

tests will have desired and predictable characteristics.

3.3.2 Design Verification Testing

£ i e e s e e e

Design Performance Verification Test techniques are
intended primarily to ensure that the logic design
(and analog support circuit designs) maintain the
specified performance characteristics over the
environments of the application. These elements of
the hardware verification include voltage and timing
margin tests and environmental performance tests, such
as temperature extremes, vibration, etc. Trade-offs
are not appropriate for the design verification test
element of the hardware certification task. The
hardware design tests that are appropriate to the
SCOMP include the following:

Temperature Altitude Testing
Humidity Exposure - Endurance Testing
Physical Shock Testing
Sine Vibration Testing
. Electromagnetic Compatability (EMC) Testing

These tests are the qualification tests established
for the ruggedized minicomputer, which has been
selected for application in the SCOMP. It is not
necessary to repeat these tests for the SPM or the
6000/60 TU. The SPM and 1U should be considered
qualified by structural similarity to the minicomputer
due to the similarity of interfaces and form factors.
Qualification tests are planned for the minicomputer
as part of a separate project.

45

\ i

3.3.2 Design Verification Testing (Continued)

It is necessary to augment these qualification tests
for both the SPM and the IU with selected circuit
performance tests. These additional tests should

be structured to exercise circuit performance
operating margins in at least the following areas:

1. Worst case voltage extremes of input power
and of internally generated logic operating
voltages.

2. Worst case clock frequency variation to
isolate critical timing chains (if any)
and establish operating margins.

3. High and low temperature operating tests,
including monitoring of critical performance
parameters.

3.3.3 Acceptance Criteria for Production Hardware

[t is not practical to attempt a compliete design
certification of production computer hardware in
the absence of a controlled build environment.
There is a wide range of techniques available to
establish a controlled build environment for
digital computers such as the SCOMP. These range
from simple configuration inspection of the
finished product which accomplishes a verification
that the product is like its design drawings to
elaborate access controlled build areas where
access to the hardware is limited to cleared
personnel who are trusted not to maliciously
modify the hardware. Regardless of the extent of
manufacturing line controls, which though not
trivial can be left to the Quality Control
discipline, it is necessary to perform product
acceptance tests which verify that security related
hardware functions of the SCOMP are operational.

The following SCOMP production item control elements
have been specified in the DS Part I specifications
for both the SPM and the 6000/60 IU. :

Configuration

Each production SPM shall be visually examined in
individual parts kit form prior to issuance to
assembly and, again, upon completion prior to
acceptance testing. Configuration examination shall
include:

Verification that correct part types have
been issued for manufacture.

46

. R ——-er =

D

Acceptance Criteria for Production Hardware (Continued)

. Completed assemblies are complete and
visually identical to a standard reference
SPM or photograph thereof.

Electronic Parts Inspection

The logic functionality, damage and marking of
integrated circuits to be assembled into production
SPMs shall be verified by inspection and test

prior to assembly. Appropriate quality control
sampling plans based on lot total percent defective
(LTPD) acceptance criteria shall be employed for
marking and damage.

Production Acceptance Testing

Acceptance Tests

Production acceptance tests shall be conducted
under the supervision of quality control using
approved test procedures, equipment and software.
Each SPM shall be accepted with the SCOMP unit
for which it is intended. Spare SPMs may be
acceptance tested in any SCOMP of compatible
configuration provided that all functional
elements used in the test have been inspected

for assembly workmanship.

Production Test Software

Software used for acceptance testing of production
SPMs shall be derived from the prototype software
(see paragraph 3.3.1) or other suitable source which
insures that each SPM mediation function is
exercised.

Production test software shall be formally issued
and controlled.

47

SECTION IV

CONCLUSIONS AND RECOMMENDATIONS

The hardware verification methodclogies investigation
has resulted in recommendations in three areas:

1. Probabilistic measures analysis techniques
2. Hardware design certification technique

3. Physical product test and certification
criteria

A manual analysis probabilistic measures analysis
technique was selected. A SCOMP functional level of
analysis was determined to be more suitable than a
detail electronic circuit analysis of every component.

A CPU-SPM Instruction simulation is recommended to
accomplish the SCOMP hardware design certification.

The simulation would encompass the SPM and the portions

of the CPU dedicated to support the SPM interface. The
technique may be extended for the Series 6000/60 Interface
Unit.

Test and inspection criteria were developed and specified
for SCOMP hardware new design elements. These criteria
include reference monitor functional exercising to be
developed on an instruction simulator, electronic parts
logical tests for production units and configuration
inspections to insure integrity of production product.

49

BIBLIOGRAPHY OF REFERENCES

1. SCOMP Architecture Specification for Secure Multics,
prepared under Contract F19628-74-C-0205, draft
August 1975,

2. A Formal Methodology for the Design of Operating System
Software; Robinson, Levitt, Neumann, Saxena, September 1975.

e —————— <

APPENDIX A

A FORMALISM FOR DESCRIPTION OF

SCOMP SECURITY COMPROMISE

SEPTEMBER, 1975

.0

INTRODUCTION TO APPENDIX A

This Appendix contains an example of a rigorous logical notation
which could be used to establish functional [ailure categories
in a minicomputer system. These failure categories can be
evaluated by inspection for security breach characteristics

and be directly translated to an English equivalent table of
possible security compromises which could be induced by hard-
ware failure. This formal notation was developed in an effort
to improve upon earlier attempts to create tables of possible
security compromises in a minicomputer using only computer

system architecture data and functional diagrams.

DESCRIPTION OF THE FORMALISM

This formalism has four major elements which should be reviewed:

A. Each secure minicomputer operating function involving the
CPU or the SPM must be identified. A few are listed in
Table I. These functions involving the system of both
hardware and software are analyzed as defined in the three

following elements of the formalism.

B. The system result of a hardware failure defined in terms
of a change in value of some system parameter. These must
be accounted for all system parameters pertinent to the

operating functions defined above.

54

g

The sets of consequences for each possible change in value
of each system parameter. The sets must be iterated to
successively smaller subsets such that all possibilities

of interest are described in detail.

The system view of the consequences defined above at the
lowest level of consequence subset. These system

views of failure consequences are stated in terms which
have meaning to the user, user files, the normal hardware
fault circuits and the computer control panel. The

major system views of failure consequences are listed

in Table II.

TABLE I
SCOMP FUNCTIONAL BREAKDOWN INVOLVING CPU § SPM |

- Request for Level 6 CPU Bus action
- Request for Internal Bus action
(several - within specific hardware module as in
Eigure 12,102 1)
- Request for firmware action
(Control Processor, Security Protection Module, Multi-time
Communications Processor)
- SPM, fast access store action
- SPM descriptor cache action

- Standard Bus I/0 interface

56

TABLE 11

SYSTEM VIEWS OIF FAILURE

PERR Program error, incorrect execution, etc.,

but not security related

SERR Security error, fault mask, etc.

FAULT Normal fault

Normal INTT Normal interrupt to processor

NO ACTION Halt

NORMAL ACTION Normal control action on system bus

ABNORMAL ACTION induced by failure: unexpected illegitimate

control action.

57

TERMINOLOGY

A

INTT
PERR

FAULT

SERR
(V)

(A)
Module

Support

defined equality

defined variable

Kernel

System (operating supervisor)

Application (user program)

logical or

and

change due to hardware fault

normal interrupt
program error (incorrect execution)

hardware trap (aborts at memory cycle) - calls
a routine

serious (security?) error (incorrect mediation)
virtual (subscript for PERR, SERR, FAULT)
absolute (subscripts for PERR, SERR, FAULT)

any functional unit interfacing the SCOMP bus

timing and/or power inputs necessary to facilitate
bus cycle

<3xoddns snq (V¥) > |

<3xoddns snq (A)> | <ssaappe 0/I »>|<Ssaappe
<T0I3uU0d aaels ejep (A)>| 193STHba1 XIpuTl > |<Ssaippe
<T0I3U0D 3AeIS ®BIEpP (V) > | 193sTbax>| <sseappe Aiowsu>
<10I3u0d I93sew e3ep (y)>| | <®poo do> :: = sanpeooad :: = ,9pod, s
<T0I3U0D I93Sew e3jep (A)>| <uoT3oe M>
<TOI3UOD 9ARTS SSaIppe (V) > | <osuodsax 3dnxxa3uTr> | <asuodsax 3Tness>
<TOI3UO0D DAPTS SS3Ippe (A)>] <e3jep 3jnd3inos|<ejep Indurs
<T10I3U0D I93Sew Ssaippe (V) >| | <Tox3uoo 3nd3nos | ><T0I3U0D
<TOI3UOD Id3sew SsaIppe (A)>| < 3nduls|< 0/I ¥>|< 0/I S>| '
<e3jep (¥)>|<eiep (A)>| < 0/1 ¥>|<e3ep y>|<e3ep S>|
<ssaappe (V)>|<ssaappe (A)> :: = ,snq, <e3ep M>|<dpPOod V¥>|<3dpod S>|
*snq <®pod ¥>| :: = ISANDTY J0 IXIINOD
wa3sAs UO IO ‘STnpow B 03 TRUISDJUT
$3Tq Jo Aexxe Toijuod 10 ejep Aue = ,snq, - - - - - - = - = - - NOILOV SN€ ¥0d I1S3ANDIAY

astwoadwo) A3TINOSS UT 3JITNSaY YOTUM
SUOT3TUTISQ 3ITNEJ SIeMpPIRH JO uoT3leZTlRWIOd JO SoTdwexd

(¥) 9yds

(n) aqommAlg

<juswbas juelsTX3-UOU>

mmmm.‘l_

| <sseappe 19ybTy ‘3juswbes swes>

(¥) ygyds

(A) I1I0VYd AI._

| <c3usweaout I9YDLTY 3IXBU> ::

= <ybTy 003 SSaippe>
<MOT 003} ssaippe>|<UbTy 003 ssaippe> ::

= (SS2IppyY AIoWSR) ¥ o i

(&) mmmm‘Arq

<uotjeaado TebosTIT po3os3spuns

LINvd ‘l._ qJddd All_

| cuotaeaado TebaTTT pPe30939p> | <uoTr3jeaadp [ebaT> ::

= (8pod dO)V I
TANTIVL 0 MAIA WILSAS AIa

<2buepyd anTea Jjo adusanbasuop> :: = * e gt e e
3 s 03 onp onTeA UT 2buURYD WNOJ TYHENID

JINTIVd FIYMAIVH J0 FIONFSTYd HHL NI SAIHSNOILVYTIY HONVYIWHOSMId

60

saaoge II i =
(sseappe Aiowsy)y :: = po3jeaausab ssaappe aadoxdut

i: = P93D9T9s X3puTl buoam :: = (ssaappe 193sTHOY X9pur)y ‘AT

dddd ‘l_

<pabueyoun pueaado xadoxd 3 paia3Te

mmmm‘]_

»

puerado buoim 3 33TaM>|<pe3oaTas pueaado Huoam 3 pesr> :: =
uoT30979s pueiado buoam :: = (SsaIppe 193sTHaY)V *TiT
(¥) ¥9yds

(A) I1I0vd .lll_

<3uswbas JuelzsSIXa-UOU>

gyddd l.|._

| <ssa2appe a9mo1 ‘3Juswbss swess

(¢) ¥¥ds

(A) L1Invd ‘|._

[<3uUsWHIS IBMOT 3IXSBU5 :: = <MOT 003 SSIIpPpEe:

61

[(<e3ep> |

<Toa3ucdo> 3 <3senbax Toajuod>] (<e3Ep>|<T0I3U0D> %3 <3sanbax [oijuod>)] %
[(<3sonbax 23Tam> 3 (<93TIM>|<UOTIOR OU> R <peai>) | (<3senbsx pesx>

% (<®3Tam>|<UoT3loe ou> % <peai>)] % |<T3uueyo z2doads |<Tauueyd
x9doxdut> [<ssaappe 20Ta9p i1ddoads | <ssaappe 20Tadp xadoxadwTs | <sSsaappe

19710a3u0d 13doaduts [<po3oaras a9170a3uod za@doxdwts :: = <uUOTIDUNI O/I)V
<TOI3UOD 33TIAM>|<TOIFUOD pPedI>|<PIEP 9ITIM>|<eIEp pEal> :: = <uorjound o/I>

[<pabueyoun a0TASDP>
| <MOT 003 @0TA®P>|<YbTY 003 80TA3P>] % [<MOT 003 Tauueyod:
| <pabueydun TauueRYD> |<YHTY 003 TdUURYD>] % <MOT 003 IST[OIJUOD>

| <pebueyoun 13TT0I13U0D> [<YBTY 003 ISTTOIFUOD> :: = (SSDIPPY O/I)7V

<uot3jduny O/I>|<ppe TaUueyd>|<ppe BOTASP>|<ppe ISTTOAJUOD> :: = <SSIIPPY 0/I>

e

A

