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PREFACE

The efforts described in this technical report were supported by Program Element
62602F and conducted under Project 1921, Task 03, and Work Unit 01, as part of the
Infrared Simulation Technology program. The work was performed in-house by the
Infrared Technology Team of the Targets Branch during the period from July 1975 to
March 1976. Captain William Jollie provided assistance in obtaining the spectroscopic
data. Other significant contributors were Mr Dale Fink, Mr Louis Weatherford, and

Dr Davut Ebeoglu.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

L‘D uty, Chief, Guided Weapons Division
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SECTION 1|

INTRODUCTION

The investigation of parameters influencing hydrocarbon exhaust plume infrared (IR)
characteristics is of interest to the Air Force for air-to-air missile and target systems. IR
seeker response during terminal guidance is driven by the spatial distribution of plume
radiation. Target realism with respect to IR implies a detailed understanding of plume
radiation. Valid, analytical models of hydrocarbon plume IR characteristics are essential
for both seeker response and target simulation applications.

A detailed evaluation of one afterburning plume IR model has been reported in
Reference 1. The calculations compared poorly with the measured data. The largest errors
occurred for fuel-rich mixture ratios (O/F) where the measurements showed the highest
radiant intensities (see Figure 1). The predicted and measured total radiant intensities
agree near an O/F of 3.5. This agreement is fortuitous, as shown in Figure 2, since the
spatial distribution of the data does not agree with the predictions. Considerable analysis
has been done by many workers to explain these errors and improve the models. A new
series of experiments and calculations were necessary to clarify these former discrepancies
and evaluate the improved models. This activity has been organized as part of the Coop-
erative Plume Modelling Program under the auspices of The Technical Cooperative Programme/
Working Technical Panel No. 4.

The objectives of this effort were to:

® Provide a broad basis for verifying a variety of state of the art,
afterburning plume IR models.

® Evaluate the effect of hydrocarbon propellant carbon/hydrogen
ratio on afterburning exhaust plume IR characteristics.

® Assess the effects of rocket engine combustion efficiency and
liquid versus gaseous fuels on afterburning exhaust plume IR
characteristics.

The experiments were performed in a large vacuum chamber under a static pressure
environment simulating 13.1-kilometer (40,000-foot) altitude. A small rocket engine was
used to create a supersonic exhaust plume under controlled propulsive conditions. Mass
flow rates were approximately 5 grams per second, and chamber pressures were approxi-
mately 4 atmospheres. Both mass flow and pressure were monitored as a measure of
engine combustion efficiency. Kerosene (RP-1), ethylene (CoH4), methane (CHg), and

benzene (CSHG) were burned with gaseous oxygen at mixture ratios from 1.2 through 8.4.

Reference

1. D. B. Ebeoglu and C. W. Martin, Experimental Verification of Infrared Plume Predictions
for a Rocket Engine, AFATL-TR-74-191 (Eglin Air Force Base, Florida: Air Force
Armament Laboratory), 19 November 1974.
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Spatially and spectrally resolved plume IR measurements were made normal to the
plume axis of symmetry. A Bofors scanning radiometer (infrared scanner) was used to
measure the plume spatial radiation distribution. This system was operated in the 4.1- to
5.1-micrometer region. A Block Engineering interferometer spectrometer was used to
measure the plume spectral radiation over the 2- to 5-micrometer region.

Five independent sets of plume IR calculations were made for comparison with
these measurements. The remainder of this report describes in detail the experimental
arrangement, resulting data, and conclusions.
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SECTION 11

EXPERIMENTAL CONDITIONS

1. ROCKET ENGINE AND VACUUM CHAMBER INSTRUMENTATION

All measurements were conducted in a vacuum chamber at Eglin Air Force Base at
a static altitude of 13.1 kilometers using the measurement geometry shown in Figure L4
The vacuum chamber, the rocket engine, engine control unit, and the engine instrumenta-
tion for the measurements are described in detail in Reference 2. A scale rocket drawing
is shown in Figure 4, and the operating parameters of the engine are listed in Table 1.

The rocket control unit (RCU) illustrated in Figure 5 is an in-house designed and
fabricated rocket control and instrumentation system described in detail in Reference 2.
The RCU is composed of a valve box and a control console. The valve box houses a
pressurized, liquid fuel tank, several solenoid valves, motor-driven metering valves, pressure
transducers, flow rate transducers, and the interconnecting plumbing necessary to vary
rocket input conditions and to monitor those conditions. The valve box is connected by
an AC cable and a shielded signal cable to the RCU control console. The control console
houses the manual switching network for rocket operation, transducer electronics, and a
digital display panel which indicates pressures, flow rates, oxidizer-to-fuel ratio, and a banded
radiometric reading.

The pressures were measured with thin film strain gauge-type transducers which were
calibrated with pressurized nitrogen against helicoid Bourdon tube pressure gauges. The
oxygen flow rate was measured with a thermal flowmeter calibrated against a variable area,
glass flowmeter with a viscosity independent float. The liquid fuel flow rate was measured
with a turbine flowmeter calibrated against a variable area, glass flowmeter with a spherical,
constant density float. All the transducer outputs from the RCU control console were
recorded on an eight-channel strip-chart recorder. The gaseous fuel flow rates were deter-
mined by visual readings from a variable area tube flowmeter identical to the oxygen
reference standard. The test chamber pressure (altitude) was visually read from a mercury
manometer calibrated in altitude. The pressure altitude was held at 13.1+0.2 kilometers.
Each of the pressure and flow rate system errors was less than 5 percent. The 5 percent
errors in the flow rates result in a +10 percent uncertainty in the oxidizer-to-fuel mixture
ratio. The experimental characteristic velocity (C*) was determined by the product of
nozzle throat area times measured chamber pressure divided by measured total mass flow
rate.

The general experimental procedure used to achieve the data conditions is as follows:
® Set test chamber to altitude condition.

® |[gnite rocket engine.

Reference
2. J. F. Long, Air Force Armament Laboratory Infrared Plume Simulation Capabilities,

AFATL-TR-76-26 (Eglin Air Force Base, Florida: Air Force Armament Laboratory),
19 May 1976.
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® Adjust flow rates to a desired O/F above stoichiometric mixture
ratio and hold condition for data collection.

e Collect data during hold time.

® Adjust flow rates to a desired O/F below stoichiometric
mixture ratio and hold condition for data collection.

® Collect data during hold time.
e Shut down rocket engine.
® Return the test chamber to ambient pressure conditions.

If it was determined that the engine conditions or the infrared data changed signifi-
cantly during the data collection time, the data points were repeated. The data collection
time for the infrared scanner data was approximately 10 seconds, and the collection time
for the spectral data was approximately 20 seconds.

2. INFRARED SCANNER

The infrared plume spatial distributions and integral plume apparent radiant intensities
were measured with an infrared scanner $ystem. The infrared scanner system consists of
a Bofors infrared camera and camera control monitor with a digital data acquisition system
interfaced to a 9-track digital tape recorder (Figure 6). The data reduction software and
calibration procedures were developed in-house and are reported in detail in Reference 3.

The infrared camera has a 25-degree (horizontal) by 12.5-degree (vertical) field of
view. The instantaneous field of view of the scanner is 0.14 degree which is swept
horizontally and vertically with scanning mirrars to produce a 94-line raster which is
displayed on the cathode-ray tube of the camera control monitor. An oscilloscope was
used to display the horizontal raster line (analog) nearest to the centerline of the exhaust
plume with the detector/preamplifier voltage output displayed as the amplitude of the
oscilloscope trace. The oscilloscope time base was adjusted such that the 600-microsecond
line sweep extended completely across the oscilloscope scale (10 divisions). An oscilloscope
camera was used to photograph this plume centerline data. Also, the complete picture
was digitized line-by-line and recorded on the 9-track magnetic tape recorder to yield a
two-dimensional matrix of 224 (horizontal) by 90 (vertical) picture elements. The digitizer
system digitizes only every fourth point along a horizontal line for 56 points per line in
a single picture scan of 94 lines (one file) in 0.35 second. On successive scans, every
fourth point is digitized, then staggered over by 1, then 2, then 3. The four sequential,
quarter-resolution, 56- by 94-element matrices can be interlaced to produce the 224- by
94-element full-resolution picture in 1.39 seconds.

Reference
3. C. W. Martin, et al, Operation of an Infrared Thermal. Scanner for Plume Measurements,

AFATL-TR-74-204 (Eglin Air Force Base, Florida: Air Force Armament Laboratory),
19 December 1974.
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The infrared scanner 4.0-micrometer cut-on filter and photovoltaic InSb detector (at
77°K) combination viewing through the sapphire vacuum chamber window yields the
system spectral response curve shown in Figure 7. The scanner system spectral bandpass,
including sapphire window port, is approximately 4.1 to 5.1 micrometers. The bandpass
is well centered on the COo emission band and extends only slightly beyond the spectral
cutoff of the interferometer spectrometer. (This is discussed in Section |l, paragraph 3.)

The scanner alignment at the sapphire window was such that the rocket engine exit
plane was several centimeters inside the left field of view extremity, and the horizontal
center of the field of view was perpendicular to the rocket centerline and perpendicular
to the sapphire window. Some of the plumes were found to extend beyond the scanner
field of view at a front-of-camera distance of 2.18 meters. Subsequent data were taken
at a front-of-camera distance of 2.97 meters to alleviate this problem. The spatial
resolution of the digital matrix data at 2.18 meters is 5.2 millimeters horizontally by
6.3 millimeters vertically. At 2.97 meters, the resolution is 6.8 millimeters horizontally
and 8.1 millimeters vertically.

3. SPECTROMETER

The infrared plume spectral distributions were measured with a Block Engineering
interferometer spectrometer capable of 2 wavenumber resolution. The instrument uses
a mini-computer for real-time data acquisition and fast Fourier transform data reduction.
Both an uncooled PbSe detector and a cooled (77°K) InSb detector were used for the
spectral range of 2 to 5 micrometers. The spectral response of the system is internally
corrected in the mini-computer by comparisons with black-body calibration and background
spectra. The data are plotted on an integral x-y plotter interfaced to the mini-computer.

The spectrometer measurement geometry is shown in Figure 8. The window used
for the spectrometer measurements was a 14-centimeter-diameter calcium fluoride window
whose transmission is accounted for in the system response (Figure 9). The maximum
field of view of the interferometer spectrometer as used here was 5 degrees. The spectral
data are reported in units of apparent spectral radiant intensity or spectral irradiance since
all of the plume was not in the instrument field of view. At low O/F conditions (i.e.,
high radiance conditions), the spectrometer field of view was reduced to as low as 1.25
degrees to avoid electronic saturation.




SECTION 1l

EXPERIMENTAL RESULTS

The infrared plume radiation along the plume centerline, the total apparent
radiant intensity, and the radiation spatial distribution in the 4.1- to 5.1-micrometer
band and the radiation spectral distribution in the 2- to 5-micrometer band were meas-
ured for each of four fuels: RP-1, CoHy, CHy, and CgHg (commercial grade or better).

These fuels were burned in the AFATL rocket with gaseous oxygen (commercial grade).

A photograph of the plume is shown in Figure 10 for 02/RP-1 at an O/F of
2 and a total mass flow rate of 5 grams per second. The plume is exhausting from
the rocket nozzle on the extreme left of the photograph, and the shock structure in
the plume is readily apparent. The visible exhaust plume, as shown in Figure 10, is
virtually identical for each of the fuels at an equivalent O/F (same fraction below or
above stoichiometric mixture ratio) and varies little with changes in O/F. The following
spatial plume radiation data is presented and discussed based on the plume geometry
shown in Figure 10.

1. CENTERLINE RADIATION DISTRIBUTIONS

Three samples of the infrared plume radiation centerline data are shown in Figure
11 for 02/CH4 at three different O/F conditions: O/F = 23, 4.1, and 6.6. These

traces are oscilloscope photographs of the infrared scanner center-of-plume raster line
(analog). The oscilloscope was triggered such that only the desired line is displayed.
This single line shows a 7mm high trace of the plume centerline radiance including

the effects of self-absorption and scattering through the thin slice of plume along the
line of sight. The horizontal field of view is adjusted to span 10 divisions on the
oscilloscope scale which is equivalent to 105 centimeters along the plume axis. The
camera shutter speed was 10 seconds, so approximately 28 sweeps of the centerline
occur on each exposure. This number of sweeps is necessary at low O/F conditions
(such as the O/F = 23 for CHy in Figure 11) since the afterburning in the plume
causes a very ragged trace and must be integrated over several seconds to achieve an
average radiation centerline distribution. The exhaust plume goes left to right as shown
in Figure 10, with the shock structure in the plume clearly evident as spikes. Note
that the high temperature, high radiance regions occur downstream of each shock. The
strong Mach disc occurs at or near 1.6 centimeters downstream of the exit plane of
the rocket, with up to six discernible weaker shocks out to about 12 centimeters down-
stream. The small signal just upstream of the exit plane is the ignition spark plug of
the engine which is heated above the external temperature of the cooled engine by the
high internal chamber temperature.

Figures 12, 13, 14, and 15 show the centerline radiation distributions for the four
fuels: RP-1, CoHy, CHy, and CgHg. These data were traced from the oscilloscope
camera photographs (examples shown in Figure 11) with the physical axial distance scale.
The data presented in Figures 12, 13, 14, and 15 were normalized to a constant ampli-
tude scale such that each of the centerline distributions for any of the fuels may be
compared on a consistent basis and are representative of the fifty centerline photographs

s o S e
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taken on the four fuels at various O/F.
from fuel to fuel, is indicated for each of the O/F data points.
of these centerline radiation traces in expanded scale for Oo/RP-1 at O/F = 4.7 and 1.7.

The total mass flow rate, which changed slightly
Figure 16 is an example

The remainder of these expanded scale centerline radiation traces are in Appendix A.

The centerline data clearly show that the oxidizer-to-fuel ratio drastically affects the
centerline radiation distribution for each of the fuels. The peak in the centerline radiation
may occur at a point downstream half the length of the radiating plume at low O/F

conditions or amid the shock structure at high O/F conditions. Also, the amplitude of
the centerline radiation is affected by the O/F.

2. STATION RADIATION DISTRIBUTIONS

The digital data format of the infrared scanner system is a two-dimensional spatial
matrix of 56 to 94 data elements (cells) representing a 25-degree horizontal and 12.5-
degree vertical field of view. Figure 17 is a sample of a quarter resolution data print-
out for Oo/RP-1 at an O/F = 24. The pertinent experimental data is printed on the

output. The background (in digital units) has been removed from the data, and only
the nonzero matrix elements are printed in units of milliwatts per steradian per unit cell.
The data is summed for a total radiant intensity in units of milliwatts per steradian.
The data is also summed by columns or lines for units of milliwatts per steradian per
column or line (see Table 2). The term station radiation (J/) will be used here to

denote the radiant intensity per unit length (column sums divided by the horizontal
distance per column).

Full resolution spatial data is recovered by interlacing four of the quarter resolution

matrices in the proper sequence such that the horizontal increment is decreased by a
factor of four.

Figure 18 is a sample of this data for 05/RP-1 at an O/F = 24.
The remaining station radiation data are given in Appendix B.

3. SPECIFIC RADIANT INTENSITIES

The total radiant intensity (J) of the plume radiation in the 4.1- to 5.1- micrometer
band is determined by integrating under the station radiation distributions or by summing
the matrix data. In order to compare the total radiant intensities from different runs at
slightly different mass flow rates, the radiant intensities are divided by the measured total
mass flow rate for specific radiant intensity in units of joules per steradian per gram (or
watts per steradian per gram per second). The complete sets of data for each of the
four fuels are tabulated in Tables 3, 4, 5, and 6 and plotted in Figures 19, 20, 21, and

e 22. It can be determined from the data in these tables that there is an inverse relation
between C* and specific radiant intensity and that these two parameters are highly depen-

5 dent upon the O/F. It is also apparent that the peak specific radiant intensity occurs

X at a different O/F condition for each of the four fuels.

This O/F for peak specific

,‘ radiant intensity is dependent upon the carbon-to-hydrogen ratio, occurring at approxi-

mately one-half the stoichiometric mixture ratio.

The gaseous fuel specific radiant intensity curves in Figures 20 and 21 (CoHy and
CHy4) show more data point scatter than the liquid fuel curves (Figures 19 and 22 for
RP-1 and CGHG). This increased scatter is attributed to the visual measurements of

7
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gaseous fuel flow rates using a float-type glass tube flowmeter. Errors in the fuel mass
flow rate can produce significant (£10 percent) errors in the O/F at low mixture ratios
and can thus cause data scatter in the regions of steep curve slope.

4. SPECTRAL DISTRIBUTIONS

Plume spectra of Oo/CoH4 at O/F of 6.5, 3.9, and 2.5 are shown in Figures 23,
24, and 25, respectively. These spectra were taken using a PbSe detector with a 5-
degree field of view centered 40 centimeters downstream of the nozzle exit. These
spectra are virtually identical to those obtained for RP-1 (Reference 1). Figures 26
and 27 show spectra of 02/CH4 at O/F of 5.1 and 2.2, respectively. An InSb detec-
tor was used with a 1-%-degree field of view centered 15 centimeters downstream of
the nozzle exit. Note the appearance of unburned CHy in the fuel-rich spectrum
(Figure 27) at 3.3 to 3.4 micrometers.

Plume spectra of 02/C6H6 at O/F of 4.0, 2.0, and 1.5 are shown in Figures 28,
29, and 30, respectively. A PbSe detector was used with a 5-degree field of view for
O/F = 4.0 (Figure 28), 2-%-degree field of view for O/F = 20 (Figure 29), and
1-%a-degree field of view for O/F = 1.5 (Figure 30). These fields of view were centered
40 centimeters downstream of the nozzle exit. At higher mixture ratios, CgHg spectra
are quite characteristic of the other fuels tested. However, at O/F = 2.0, the continu-
um portion of the CgHg becomes important. At very fuel-rich conditions (O/F = 1.5),
the C6H6 spectrum is dominated by continuum radiation. This is consistent with the
observed sooty appearance of the CGHG plumes at fuel-rich mixture ratios.

1
|
|
1
:
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SECTION IV

CONCLUSIONS AND RECOMMENDATIONS

A large amount of high quality data on hydrocarbon plume infrared characteristics
has been compiled under controlled conditions. These data should be very useful for
evaluating the capabilities and limitations of existing plume IR models.

The peak specific radiant intensity in the 4.1- to 5.1-micrometer band has been
found to increase as the fuel C/H ratio increases and as the fuel’s combustion efficiency
decreases. Regardless of fuel type, the most dramatic effect on specific radiant intensity
is O/F. The peak specific radiant intensity has been found to occur at or near one-half
the stoichiometric O/F. The specific radiant intensity decreases exponentially with in-
creasing O/F and catastrophically with decreasing O/F relative to this peak O/F value.

The spatial distribution of plume radiation in the 4.1- to 5.1-micrometer band is
also dramatically influenced by mixture ratio. Fuel-rich mixture ratios result in peak
radiation intensities up to 60 centimeters downstream of the nozzle exit. Oxidizer-rich
mixture ratios have peak radiant intensities at or near the nozzle exit. Plume shock
structure exits up to 12 centimeters from the nozzle exit for all mixture ratios, with
one Mach disc located approximately 1.6 centimeters downstream followed by up to six
weaker shocks.

Plume spectral distributions at oxidizer-rich mixture ratios show characteristic
vibrational-rotational bands for HoO and CO, as expected in hydrocarbon flames. At

fuel-rich mixture ratios, the infrared spectra indicate products of incomplete hydrocarbon
combustion. For CHy, the fuel-rich spectra show emissions at 3.3 to 3.4 micrometers

from unburned CHy. For CGHG' the fuel-rich spectra show continuum emissions from
soot. The IR spectra of RP-1 and CoH, do not yield clues to incomplete hydrocarbon

combustion products. However, visual observation does show incandescent soot in the
plumes of all four fuels at fow O/F.

These results can be interpreted in terms of various effects on plume afterburning.
The amount of combustible species for plume afterburning increases as O/F and C*
efficiency decreases. However, there is a point at which further reduction in O/F, while
adding more combustible species, brings the plume flame temperature below the flamma-

bility limits, resulting in drastic decreases in afterburning. The variation in specific radiant

intensity with fuel C/H ratio can be explained in terms of the CO5 which dominates the
radiation in the spectral band of interest. Higher fuel C/H ratios yield more CO5 which
results in more radiation.

Many questions still remain unanswered about the IR processes of hydrocarbon plumes.

These included but are not limited to:

® What are the products of incomplete combustion and how might they
be varied?




® What role does soot play in the radiant transport processes at 4 to 5
micrometers?

® What are the mechanisms for soot production and oxidation?
® What are the specie, temperature, and velocity distributions?

Further experiments are necessary to clarify these questions.
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O/F = 6.6, m; = 4.93 gm/sec

Figure 11. Infrared Scanner Centerline Data for 05/CHy
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Figure 20. Variation of Specific Radiant Intensity with O/F for
09/CoHy
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TABLE 1. AFATL ROCKET ENGINE CHARACTERISTICS

Chamber Diameter .

Chamber Length .

Nozzle Convergent Cone Half-Angle .

Nozzle Divergent Cone Half-Angle
Nozzle Throat Diameter

Nozzle Exit Diameter

Nozzle Area Ratio .

L*

Nominal Chamber Pressure

Nominal Mass Flow Rate .

Calculated Specific Impulsef.

Calculated Exhaust VeIocityT

Calculated Characteristic VelocityT

Calculated Chamber TemperatureT

C" EfficiencyT.

1.91 cm
413 cm
27.6 deg
15.75 deg
0.508 cm
0.787 cm
24

58.0 cm

4 atm

5 gm/sec
216 sec
2280 m/sec
1759 m/sec
3274°K

98 percent

YFor 0,/RP-1 at O/F = 4

e

w}»ﬁw‘-‘- —

PRECEDING PAGESBLANK.NOT FILvED

e e,

el

———,

i




TABLE 2. INFRARED SCANNER COLUMN AND LINE
SUM DATA FOR FIGURE 16

Column No. Sum Line No. Sum
1 4] 24 4
/ 2 9 25 10
2 3 3 26 5
22 4 0 27 4
3 5 1 28 7
6 19 29 44
& 7 24 30 13
8 30 31 58
9 35 32 141
10 47 33 112
1 60 34 138
12 67 35 194
13 76 36 211
14 89 37 211
15 106 38 302
! : 16 124 39 399
17 141 40 419
i 18 151 41 439
19 163 42 462
20 170 43 484
21 167 44 391
22 179 45 309
} 23 196 46 265
24 186 47 192
25 204 48 132
26 198 49 98
27 195 50 105
28 181 51 62
29 176 52 26
30 159 53 44
31 160 54 23
e 170 55 1
33 161 56 3
34 155 60 1
35 147 61 1
36 147
37 138 mW/srelin
mW/srecol
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TABLE 3. Oo/RP-1 ENGINE CONDITION AND PLUME RADIANT INTENSITY DATA

J
3 iy Pe c* (W/sr) J
O/F (gm/sec) | (atm) (m/sec) (4.1 to 5.1u) (J/sr/gm)
1.59 5.05 3.65 1600 7.35 1.46
1.68 5.10 3.72 1610 9.65 1.89
1.72 5.38 4.34 1790 10.34 1.92
1.91 5.30 4.20 1750 7.54 1.42
1.96 485 a a 8.33 1.72
2.02 492 a a 7.18 1.46
2.06 492 3.88 1620 6.31 1.28
2.18 5.40 4.54 1860 5.71 1.06
2.36 5.38 454 1790 5.45 1.01
2.80 5.32 4.54 1890 3.62 0.68
3.15 5.40 440 1800 2.24 0.41
3.65 5.35 434 1800 1.74 0.33
4.05 5.40 4.20 1720 1.22 0.23 |
4.28 5.29 4.13 1730 1.06 0.20 |
4.68 5.40 4.00 1640 0.88 0.16 |
5.13 5.39 3.86 1580 0.64 0.12
8.42 499 3.27 1350 0.34 0.07
aThis data not available.

TABLE 4. 05/CoH4y ENGINE CONDITION AND PLUME RADIANT INTENSITY DATA

J
m, P c* (W/sr) J
O/F (gm/sec) (atm) (m/sec) (4.1 to 5.1u) (J/sr/gm)
1.68 3.65 2.65 150 0.05 0.01
1.89 3.87 2.86 152 7.02 1.81
2.01 4.19 3.20 157 7.73 1.85
2.10 4.09 2.99 151 495 1.21
2.18 443 3.33 155 8.17 1.84
-~ 2.20 492 3.67 154 10.41 2.12
2.35 492 3.45 155 10.56 2.15
| 251 4.75 3.40 147 4.16 0.88
% 2.60 5.12 3.65 158 7.63 1.49
~ 2.73 4,63 3.33 148 2.80 0.60
i 2.73 494 3.59 161 7.64 1.55
s 3.24 5.08 3.31 141 3.76 0.74
4 397 5.20 3.65 155 1.86 0.36
b 4.85 5.19 3.31 141 0.92 0.18
b 7.30 5.00 2.70 120 0.26 0.05

45
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TABLE 5. 0,/CH, ENGINE CONDITION AND PLUME RADIANT INTENSITY DATA
. J i
my Pe e* (W/sr) J
O/F (gm/sec) | (atm) (m/sec) (4.1 to 5.1u) (J/sr/gm)
1.81 5.47 393 159 0.01 ~0
2.07 5.42 3.59 146 0.04 0.01
2.09 473 a a 3.24 0.69 |
2.13 4.47 3.47 145 2.00 0.45 _-
2.26 5.31 3.65 152 8.02 1.51 |
2.32 4.56 a a 2.32 0.51
2.36 4.70 3.33 146 2.32 0.49 |
2.36 548 | 4.27 172 4.35 0.79 .
2.37 4.65 a a 3.39 0.73 |
2.40 4.59 3.33 149 2.00 0.44 |
2.58 491 3.47 145 2.37 0.48 4
2.69 5.14 4.06 175 4.64 0.90
2.71 527 | 352 148 a 0.71 é
2.93 5.30 4.34 181 3.98 0.75 _
3.79 5.27 4.06 170 1.43 0.27 .
424 482 3.59 165 1.04 0.22
5.37 5.22 3.86 164 0.65 0.12 .
6.82 5.08 3.24 141 0.32 0.06
7.00 5.20 352 150 0.34 0.07
]
3This data not available. ¥
|
TABLE 6. 0,/CgHg ENGINE CONDITION AND PLUME RADIANT INTENSITY DATA b
N e b |
rh Pe c* (W/sr) J i
O/F (gm}sec) (atm) (m/sec) (4.1 to 5.1u) (J/sr/gm)
1.18 4.44 3.38 169 1.65 0.37
1.21 5.30 352 147 8.74 1.65
1.46 4.80 3.31 153 14.54 3.03
1.65 5.03 352 155 8.04 1.60
1.80 5.16 3.52 151 6.64 1.29
1.98 5.09 3.59 156 5.13 1.01
2.35 5.13 2.84 122 3.47 0.68
2.55 5.15 2.97 128 2.83 0.55
2.95 5.05 3.59 157 3.39 0.67
4.15 5.15 3.38 145 1.62 0.31
4.42 5.15 3.31 142 1.54 0.30
6.14 5.00 3.7 165 0.73 0.15
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CENTERLINE RADIATION DISTRIBUTIONS
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APPENDIX B

STATION RADIATION DISTRIBUTIONS
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Figure B-9. Station Radiation Data for 02/RP~1, O/F = 3.0
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Figure B-38. Station Radiation Data for 0,/CgHg, O/F = 1.18
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