" AD=-A037 262 ILLINOIS UNIV AT URBANA=CHAMPAIGN DEPT OF CIVIL ENGIN==ETC F/6 13/4
NONLINEAR ANALYSIS OF INTERSECTING CYLINDERS BY THE FINITE ELEM==ETC(U)
DEC 76 H CHEN» W C SCHNOBRICH NO0014~-75=C~0164
UNCLASSIFIED SRS-435 NL




' G CIVIL ENGINEERING STUDIES

(C\l' STRUCTURAL RESEARCH SERIES NC. 435

e

A

=

S NONLINEAR ANALYSIS OF INTERSECTING CYLINDERS

BY THE FINITE ELEMENT METHOD

By
H. C. CHEN
W. C. SCHNOBRICH

A Technical Report of
| Research Sponsored by
THE OFFICE OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY
Contract No. N0O0014-75-C-0164
Project No. NR 064-183

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

Approved for Public Release: Distribution Unlimited

UNIVERSITY OF ILLINOIS
AT URBANA-CHAMPAIGN

URBANA, ILLINOIS
DECEMBER 1976

U —— v e ——— T




¥

-
%

NONLINEAR ANALYSIS OF INTERSECTING CYLINDERS
BY THE FINITE ELEMENT METHOD

By

H. C. Chen
W. C. Schnobrich

A Technical Report of
Research Sponsored by
THE OFFICE OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY
Contract No. NO0014-75-C-0164
Project No. NR 064-183

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

Approved for Public Release: Distribution Unlimited ‘..

UNIVERSITY OF ILLINOIS o B .
AT URBANA-CHAMPAIGN R R
URBANA, ILLINOIS I o e R

December 1976




ACKNOWL EDGMENT

The research report herein was carried out by Mr. Hsin-Chang Chen
under the direction of Dr. William C. Schnobrich, Professor of Civil
Engineering, for the degree of Doctor of Philosophy in Civil Engineering,
University of I1linois at Urbana-Champaign.

The research was conducted as part of a research study of
numerical analysis sponsored by the Office of Naval Research under
Contract N0O0014-75-C-0164.

The numerical work was performed on the IBM 360/75 system on

the Computer Service Center at the University of Illinois.




iv

TABLE OF CONTENTS

Page
CHAPTER
1 INTRODUCTION ==ccmmmmm e e m e e e e oo 1
1.1 General ------c-mm o 1
1.2 Objective and Scope =---===--~commmmc et 4
1.3 Notations ==e=----mmccm oo 5
2 THE STRESS ANALYSIS OF INTERSECTING CYLINDERS -----=-ccoeo--o 9
2.1 Previous WOrk ==-===-emcmmm oo 9 |
2.1.1 Experimental Work =----cecemmmmmmmm oo 9 |
2.1.2 Analytical Analysis =-=-=-=---ccmmmmmmmmmaaooo 11 |
2.1.3 Finite Element Method ----=----=ccccmcccomcmcaoo 12 |
2.2 Important Geometric Parameters of Intersecting |
Cylinders ——--cee oo e e 14 ;
} 2.3 Stress Concentration of Intersecting Cylinders --------- 16 |
2.4 Behavior Beyond the Elastic Limit =----v--memoommmaoaaau 19 |
k1 2.4.1 Failure Mechanism of Intersecting Cylinders ----- 19 |
1 2.4.2 Limit Analysis -=e--mmmcmmmm e 21
3 THE FINITE ‘ELEMENT APPROACH —--=reosmcrrsacocbninmsmmmmananana 23 1
-4 3.1 General =~-=--mmmmm e e e 23
i 3.2 Displacement Method -------cccommmmmmm oo 24
3.3 Structural Modeling =-=---e--emoomoo oo 26
3.4 Element Stiffness Matrix ---------cmcmcmmmccccccmmeo 28
3.4.1 The Isoparametric Family ------=-cec-ccccmacaao-o 28
3.4.2 Three-Dimensional Transitional Element ---------- 32
3.4.3 Ahmad's Shell Element ----------mcmmmcccmmmcaono 33 ?
3.4.4 Shell Transitional Element -----c=co-mmcemmoeonn- 37 §
3.5 Generalized Loads =--=--=m-m-cmmmmccc oo 38 |
3.5.1 Three-Dimensional Element ----------ccocmmuaaanan 38 i
3.5.2 Ahmad's Element =------=eceoccommmmmomoeceeooae 38 %
3.6 Reduced Integration Technique -----=-=---ccecmcccccoannn 39 '
3.7 Equation SOTVEr ==-ce-emomooom oo ee 41
4 PLASTIC ANALYSIS ==cccsceenmunemminmmsmenstmmumeaenssmmasness 43
4.1 General ==---c-mmm e 43
4.2 Yield Criteria and Incremental Theory ---------cccac--a- 44
4.3 Solution Method ==--==-=mcmemmmmcccc e ccccccceae 47
4.4 Qutline of Numerical Procedures =------eeececcccccmaoan- 50
4.5 Updating Structural Stiffness Matrix ----------c-ccocooe- 53
4.6 Evaluation of Excess Nodal Forces ----==----c-cceccecano 54 !




e Do B

by ¥ A i

Page
5 ELASTIC-PLASTIC SOLUTION OF NORMALLY INTERSECTING CYLINDERS-- 57

5.1 General =--c-cececmccmmmcocccaaaa- e e S S R R SR 57
5.2 Elastic Solutions ==--=cemcmmmmm oo 58
5.2.1 Hyperbolic Paraboloid Shell =----eccccccmmmaaaao- 58
5.2.2 Pinched Cylinder -------ceommmmmmcmccmeee 60
5.3 Elastic-plastic Solutions ----=--cecmcmcccmcmmeeeee o 61
5.3.1 Simply Supported Beam and Cantilevered Beam ----- 61
5.3.2 The Thick-walled Pressure Vessel -----=--ceocee--- 62
5.4 Normally Intersecting Cylinders -----=-cecececccccccaa-- 63
5.4.1 Introduction ----=--cccmcmmm oo 63
5.4.2 Discretization Model of the
Intersecting Cylinders ==-=----cmcmmcccccccccaaa- 65
5.4.3 Elastic Solution ===--ccmmmmmcm oo 67
5.4.4 Plastic Solution =----eccmmmmmmc oo 69
6 CONCLUSIONS AND RECOMMENDATIONS ----=---ccmmccmccccc e 72
6.1 ConCluSTONS ====mmm e e e e 72
6.2 Recommendations for Further Studies ---------ccccaceao-- 73
6.2.1 Intersecting Cylinders --me-e-coemmmomoocceeao 73
6.2.2 Fatigue Failure of Shell Intersections ---------- 73
6.2.3 Fracture Mechanics of Shell Structures ---------- 74
LIST OF REFERENCES -------- - e 76
APPENDIX
A THREE-DIMENSIONAL ELEMENT -~=----cmmmcc e ccccccccccccceee e 118
B AHMAD 'S SHELL ELEMENT =--c-coccccmmmmcccmmcmcmc e 122
C VON MISES CRITERION =====c-cmcm e e e 126




-

C i A

——
o

P

5 e

L2

",'

Figure

N OO BB WwWw N

o o

10
1

12
13
14
15
16
17
18
19
20

21

22

vi

LIST OF FIGURES

Page
Intersecting Cylinders with an Intersection Angle o -----~----- 81
"T" Shape Connection ----s-cm-cccmcccm e e 82
Area Method ---===~--c-mcocmc e 82
Quadratic Displacement Variation along AB --=---cecccccccmamaoo 83
8-node Brick Type Element -------~--c-mommmmmmcccmeeee o 83
3-D Transitional Element -----------mcmmmmmcmcccmmmceee o 83
Thick Shell Element -----veeccmcmcmccmm e mcc e 84
Two-Dimensional Quadrilateral Element ~-----c-mcccmcmcacccaao 84
Ahmad's Element ------~--cemccmcmcmmcmm e 84
Graphic Representation of Nonlinear Problem Solutions ~-------- 85
Graphic Interpretation of Incremental-iterative Method
and Linear Interpolation Factor ---------cccccecmcmmmccccnao 86
Excess Nodal Forces with Initial Stiffness ---------ccecocnanao-o 87
Excess Nodal Forces with Updated Stiffness -~-------=-cccccan--- 87
Clamped Hyperbolic Parabolic under Uniform Normal Load ----~--- 88
Vertical Deflection across Midspan ¥ = 0 --ec-cccccmcmmcmmnno 89
ny along Integration Points near Y = 0 ---ec-cmmcmccmconnnnn- 90
My along Integration Points near Y = 0 ---cecccmccmcmcmcmnnoo 9]
Pinched Cylindrical Shell -=---emccmcmccmm e e 92
Displacement Distributions for Pinched Cylindrical Shell ------ 93
Membrane Stress Distributions along DC
of the Pinched Cylindrical Shell =-s--ccmmccmmccmcc e e 94
Membrane Stress Distributions along BC
of the Pinched Cylindrical Shell ------ccmccccmmccccccccnccnaa- 95

Bending Moment Distributions along DC and BC
of the Pinched Cylindrical Shell --ec--cccccccccmncccnnccnccnna- 96




e
|
-

L

S T

- ey
" AP -

N o o

¢

&
¢

Figure
23
24
25

26

27
28
29

30
31
32
: 33
34
35
36
37
38
39

40

vii

Page
Simply Supported Beam -=-=-===-m oo 97
Cantilevered Beam -----~----mcommmm oo 98
Thick Hollow Circular Cylinder Subjected to
a Uniform Internal Pressure ------=--comcmmmmmmc e 99
Load-displacement Curve and Plastified Region
of a Thick-walled Pressure Vessel --------oocmmcmmmmmomoo 100
Stress Variations in Different Load Levels --=----—ccmmmcmaa-_ 101
Finite Element Mesh of Nozzle and Cylinder --------ccmcomcmanao 102
Cylinder-Cylinder Intersection Hoop Stress in
the Qutside Surface of Cylinder near 0° Line --------~-ccceuun- 103
Cylinder-Cylinder Intersection Hoop Stress in
the Inside Surface of Cylinder near 0° Line --------c~cccmeaa-- 103
Cylinder-Cylinder Intersection Axial Stress in
the Qutside Surface of Cylinder near 0° Line --------~--cooc-- 104
Cylinder-Cylinder Intersection Axial Stress in
the Inside Surface of Cylinder near 0° Line ---=---cc-ccecaeaoao 104
Cylinder-Cylinder Intersection Hoop Stress in
the Outside Surface of Nozzle near 0° Line -------~cceecomemcnao 105
Cylinder-Cylinder Intersection Hoop Stress in
the Inside Surface of Nozzle near 0° Line --------ecccmmccaao 105
Cylinder-Cylinder Intersection Axial Stress in
the Outside Surface of Nozzle near 0° Line -------acccocoeaaooo 106
Cylinder-Cylinder Intersection Axial Stress in
the Inside Surface of Nozzle near 0° Line ---=----mcomcocmmcmu- 106
Cylinder-Cylinder Intersection Hoop Stress in
the Outside Surface of Cylinder near 270° Line ---~----ccceuouo 107
Cylinder-Cylinder Intersection Hoop Stress in
the Inside Surface of Cylinder near 270° Line -~-----cecccacauo 107
Cylinder-Cylinder Intersection Axial Stress in
the Outside Surface of Nozzle near 270° Line --------cocccaaeno 108
Cylinder-Cylinder Intersection Axial Stress in
the Inside Surface of Nozzle near 270° Line ---=--cccccoccaeou- 108




Figure

41

B 4 3¢ jw

42

43

44

45

46

47

48

50
51
52
53

b lnendl

54

-
-

55

YR

56

g
-

i
¢

viii

Load-Displacement Curves for Cylinder-to-Cylinder
Intersection Subjected to an Increasing Pressure ---------ce---
Cylinder-Cylinder Intersection Hoop Stress in
the Outside Surface of Cylinder near 0° Line ---=--ce-cecmmeeaa_—-
Cylinder-Cylinder Intersection Hoop Stress in

the Inside Surface of Cylinder near 0° Line --=----mmommcceana-
Cylinder-Cylinder Intersection Axial Stress in

the Outside Surface of Cylinder near 0° Line ==----memomceaunn-
Cylinder-Cylinder Intersection Axial Stress in

the Inside Surface of Cylinder near 0° Line -----=-mecemcmenaa-
Cylinder-Cylinder Intersection Hoop Stress ‘in

the Outside Surface of Nozzle near 0° Line ------=-=cccemceaceo-
Cylinder-Cylinder Intersection Hoop Stress in

the Inside Surface of Nozzle near 0° Line -------comum-
Cylinder-Cylinder Intersection Axial Stress in
the Outside Surface of Nozzle near 0° Line ----=T--mcccmccaaao-
Cylinder-Cylinder Intersection Axial Stress in

the Inside Surface of Nozzle near 0° Line

Locations of Sections A, B, C and D

- -

Progression of Plastic Region in Section A

Progression of Plastic Region in Section B

Progression in Section C

- -

of Plastic Region

Progression of Plastic Region in Section D
Progression of Plastic Region on the Inside Surface
of a Cylinder-to-Cylinder Intersection -------c-ecccmcccccaaaao-

Progression of Plastic Region on the Outside Surface
of a Cylinder-to-Cylinder Intersection

- - - -




i W nn X7 5

LA T

i
£
”
ﬁ
!

~

CHAPTER 1

INTRODUCTION
1.1 General

Elastic analysis produces satisfactory results when the
loading develops stress below the elastic 1imit. But it obviously begins
to experience trouble in predicting the structural behavior once the
yield stress has been exceeded. For intersecting cylinders, a stress
concentration exists in the vicinity of the intersection curve. It is
therefore impractical or at least uneconomical to let this concentration
control the design while retaining the same allowable stress throughout
the whole structure unless that concentrated stress critically determines
the failure load. Actually, to tolerate a small amount of plastic
deformation in the region of high stress gradient helps the material to
accommodate the imposed distortion paftern and smooths out the stress
concentration as long as the material is ductile and no fatigue crack
occurs. For structures operating in a high pressure state or for large
diameter intersecting cylinders, this allowance saves material and serves
as a safety valve. Design procedures based on this principle have been
formalized, for example, the ASME Pressure Vessel Code [1] allows self-
equilibrating thermal stresses calculated by elastic procedures to be up
to twice the value of the yield stress. However, the accurate and detailed
determination of the stresses in the vicinity of the intersection region
of the cylinders would be of 1ittle value unless the designer recognized
the significance of those stresses in relation to failure. A better

understanding of the post-elastic behavior and the possibility of achieving




a more reliable design of the cylindrical intersections can be obtained
from a plastic analysis.

Cylinder-to-cylinder intersections are a very common occurrence
in many industrial applications such as boilers, pressure vessels, pipe
connections, etc. However, until only a few years ago most of the

research investigations reported in the literature were limited to

experimental work. Recently analytical treatment of this subject area !
has been given some-attention. Most of this recent work is still ]
incomplete [2]. ;
Difficulties in obtaining analytical evaluations of the stress
distributions in the disturbed regions near the intersection of comparable
size shells originally stemmed from the complicated geometrical shape of
the intersection line. The intersection curve of the middle surfaces of
i the cylinders is neither rotational symmetric nor on a plane curve but
rather is a spacial curve. Early efforts required one cylinder to be of
;i a much smaller diameter in comparison to the cylinder that it is inter-

secting so that the intersection curve could be approximated by a circle,

f' thus simplifying the problem. Besides, the sharp discontinuities of
if curvatures across the intersection curve function as a stress raiser.
;: Therefore, the presence of the stress concentration is inevitable and,

as a consequence, constitutes a major consideration in the design.

g 7

vz

With the aid of high-speed digital computers, numerical
solutions are now playing a significant role in obtaining solutions to

engineering applications. During the past decade, the development of the

&
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finite element method has increased markedly the capability of engineeting

problem solving. Many complicated design problems which were considered
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unfeasible to a realistic analysis several years ago can now be solved
almost routinely by using the finite element method. The method provides
a powerful tool to attack shell structures and has been applied lately to
evaluate the stress distribution for intersecting cylinders [3]. By
subdividing the whole structure into a finite number of regions, referred
to as the "elements", it has the advantage of being able to adjust to
complicated configurations and irregular geometrical boundaries. There-
fore the troublesome boundary conditions along the intersection curve of
intersecting shells is effectively overcome. In addition, the finite
element method is a very convenient and efficient method for programming
for electronic computers compared with other numerical methods [4].

One of the most advantageous applications of the finite element
method is to nonlinear problems. Nonlinear behavior can occur in two
different forms. The first is material nonlinearity which arises because
of the material possessing nonlinear constitutive laws. The second is
geometric nonlinearity. This nonlinearity is associated with large
displacements that cause sufficiently large changes in the geometry of
the structure that the deformed configuration is used when writing the
equilibrium conditions. Superposition techniques are no longer valid for
loadings increased beyond the proportional limit. However, with the aid
of incremental or iterative techniques, the finite element method can
handle both of these two different categories of nonlinearities without
major changes in numerical procedures.

Accuracy and efficiency are two considerations, even essential
issues, that enter into the development of computer programs that are to

be applied to large nonlinear problems. For intersecting cylinders, since




a large amount of core storage (or input-output operations if secondary
devices are used) and computational efforts are required for the nonlinear
solutions, special techniques such as the reduced integration concept
should be considered to make the problem tractable in a practical sense.
Very little mathematical development of the reduced integration technique
has been published to date. Most publications have centered around a

demonstration rather than a development. {

1.2 Objective and Scope

It is the object of this study to develop a general procedure
for nonlinear analysis of intersecting cylinders. The finite element

method is selected for its high efficiency and convenience in computer

work.

| gw>p ot aeem §

The progression of yield is of particular interest in this

).

study. The three-dimensional isoparametric elements are layered through

[

the thickness of the intersecting cylinders in the region where the high

used throughout the remainder of the structure. Transitional elements
are employed to connect these dissimilar three-dimensional and shell
ke elements together.

Since small deformations are assumed, only the material

stress gradieint exists while two-dimensional curved shell elements are i
nonlinearity is considered. The study is lTimited to isotropic, ﬂ

homogeneous materials with elastic, linear strain-hardening behavior.

A T
.
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Isotropic strain hardening is applied with monotonically increasing

loadings. In the plastic range, a mixed incremental-iterative method

is included in the stress analysis. The Von Mises yield criterion is




used to predict the nonlinearity of elements. The reduced integration
technique is also employed to economize on computer operations.

The reliability and the effectiveness of the procedure are
verified by solving several examples. Finally, a problem of two normally
intersecting cylinders subjected to increasing internal pressure is solved.
The stresses at the outer and inner fibers of the shells are evaluated and

compared with available experimental data.

4

1.3 Notations

[A] = T3D transformation matrix (Appendix A)
[B], [B'] = matrix relating nodal displacement and strains, based on
global and Tocal coordinate systems
tel, [CS] = transformation matrix for 3D and shell transition elements,
respectively
[D], [D'] = material property matrix in global and local coordinates
[Dep] = incremental stress-strain relations

D = diameter of the main cylindrical shell

d = diameter of the branch pipe

f E = modulus of elasticity
: i' fa = average stress concentration factor
:; fb = correction factor when bending stresses are included
?f fc = stress concentration factor of normally intersecting cylinders i
g fi f; = body force components
E'f' [6Y], [6-] = upper and Tower triangular matrices of the structural
ki stiffness matrix
; é. G, G' = effective area of the main cylinder and the branch pipe,
¥ respectively
k H = do/de’
L
nH
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[1]

[J1, |9]
Jz, J3
[k,
[K']

(K]

(k]
(K7

K

MB’ Ma
[n1, [N*]

B

P

{AP}n
{AP}
{P}

Po

fl

unit diagonal matrix

Jacobin and determinant of Jacobin

the second and the third invariant of stress deviator
initial elastic stiffness matrix

the stiffness caused by nonlinearity of material
element stiffness matrix

stiffness matrix of Ahmad's shell element

stiffness matrix of shell transitional element

element stiffness matrix, and the hardening parameter

= applied moments along the x', y' axes

shape functions in curvilinear coordinates for 3D element
and shell element, respectively

generalized load vector

internal pressure

residual nodal forces at nth iteration

applied Toad increment

load vector

4bo,

distributed surface load

radius of the main cylinder also residual nodal forces
radius of the branch pipe

stress deviator tensor

nominal hoop stress of the main cylinder, r/R, and
Ahmad's shell element

nominal hoop stress of the branch pipe
shell transitional element

surface traction
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thickness of the main cylinder
thickness of the branch pipe
three-dimensional transitional element
nodal displacement vector

displacement components of the top, the bottom,
and the mid-nodes on the interface of T3D element

displacement variation along the edge AB

nodal displacement vector excluding those
on the interface of T3D element

nodal displacement at nodes A,‘B, C

departure displacement of node C (Fig. 4)

components of displacement in the X, Y, Z directions
components of displacement in the x', y', z' directions
incremental displacement vector

volume of a given solid domain

unit direction vector in the x', y', z' directions,
respectively

the center or the tip deflection when yielding starts

the center (or the tip) deflection of simply supported
beam (or cantilevered beam)

global coordinate system
local coordinate system
strain vector

strain vector in global and local coordinates,
respectively

curvilinear coordinates
rotations about the x', y' axes
virtual work

stress tensor

.




do.., Ao.. = stress increment
0o = initial yield stress in simple tensile test

0, Ao = effective stress and effective stress increment,
respectively

o_ = normal stress of cylindrical shell
l ‘ {deg} = elastic strain increment
: {deP} = plastic strain increment
de ' = effective plastic strain increment
é?f d)A = nonnegative constant
Y = the rate of convergence
Ao = step length
o = nondimensional load parameter
p = Poisson's ratio
A [6] = direction cosine matrix [V}, Vé, Vé] 2
§ = distance as defined in Fig. 1 |

‘i : a = linear interpolation factor, intersection angle
of intersecting cylinders

3D = three-dimensional element
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CHAPTER 2

THE STRESS ANALYSIS OF INTERSECTING CYLINDERS

2.1 Previous Work

Intersecting cylinders can occur in a variety of engineering
applications. Therefore, a number of engineering solutions have been
sought for these problems using different approaches such as experimental,
analytical, or numerical methods. These procedures have been performed
to investigate both the stress distribution and the structural behavior
of such intersecting shells. The previous work directed to this problem

is grouped and summarized below.
2.1.1 Experimental Work

Experiments conducted on the intersection region can commonly

be classed within two broad categorieﬁ.
A. Metal Specimens

This application consists of measuring the surface strains at
some particular points on an actual shell or a scale mbde] machined or
milled out of metal. Mechanical or electrical resistance strain gages
are used for this purpose. Experimental studies conducted by Mehringer
[5] and Cranch [6] have been published. The work presented by Corum [7]
represents some recent careful experiments. This latter study is well
documented and has already been referred to by other researchers.
Electrical resistance strain gages were used on both the inner and outer

surfaces of the models in the test series. The series involved four

e i, i
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models that had different geometric variables and were subjected to
various loading patterns, including internal pressure and end forces
on the nozzle.

Strain gages were placed in two opposite quadrants. Each
quadrant had four lines of gages which ran along the nozzle then when
on the cylinder radiated from the junction. The space between two gages
on each line was based on the anticipated stress concentration and on the
distance from function. The test results were compared with theoretical
predictions derived from a finite element solution obtained by using flat

triangular elements.
B. Photoelasticity

This method gives an overall picture of stress distribution.
The differences of principal stresses are optically measured from isotropic
transparent models which become doubly refractive when polarized light is
passed through the model. The newly developed freeze techniques are
available for three-dimensional models. Upon the completion of the
"stress freezing" operation, slices are removed from the model and then
the stresses are determined by standard photoelastic techniques. L N
Schneider [8] tested a series of intersecting cylinders which
were made of epoxy resin and subjected to internal pressure. Stress
concentration factors, or stress indices, were investigated by these
photoelastic tests. Taylor [9] conducted a three-dimensional photoelastic
study of stresses around reinforced branch pipe intersections. Taniguchi
and Kono [10] described the results of an experimental analysis of the

nozzle to vessel attachment under external loadinas by means of the

yy-
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three-dimensional photoelastic method.
2.1.2 Analytical Analysis

The complicated geometrical shape of the intersecting line
between normally intersecting cylinders creates a difficulty in solving
the problem analytically. However, the problem can be greatly simplified
if the diameter ratio between the branch shell and the main shell is small.
The main shell can be treated as a shallow shell, so Donnell's equation
is applicable. The end section of the branch pipe can be looked upon as
flat. Therefore standard solutions for cylindrical shells such as those
presented by Flugge [11] can be used directly.

Reidelback [12] made the above assumptions and derived a
simplified differential equation to examine the influence of internal
pressure on the elastic behavior of the intersection region. In his work,
formulas are given for the case of both cylinders of equal diameter even
though the procedure is valid only for very small diameter ratios.

Later, Eringen and Suhubi [13] used Donnell's equation for both
shells to attack the same problem, and established a set of eight boundary
conditions along the intersection curve. These conditions are used to
determine the unknown constants of the analytical solution. The diameter
ratio of the intersecting cylinders was limited to less than one-third.
Unfortunately, no numerical example was presented in that article.

Bijlarrd, Dohrmann and Wang [14] presented results for the
case when the intersecting cylinders were of equal diameter. Thick
shells were considered and shear deformations were also taken into

account. Flugge's equations were applied to both cylinders in the
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development of the solution process. No numerical results were presented
in that study either.

For an arbitrary diameter ratio of normally intersecting shells,
Pan and Beckett [15] formulated their resulting equations on the basis of
a general elastic thin shell theory. Donnell's and Flugge's equations
were used for main and branch cylinders, respectively. The numerical
example for the diameter ratio 1:2 was selected to compare with experimental
results. As pointed out by Lekkerkerker [2], the equations border on
being ill-conditioned if a numerical procedure such as collocation, with
points at equal intervals, is selected for solving the equations that
enforce continuity between the two shells along the intersection curve.

Hansberry and Jones [16] also developed a collocation method to
describe the elastic behavior of two normally intersecting cylindrical
shells with small diameter ratios that are less than 0.2. Their numerical

results were compared with the experimental tests of Cranch and Dally [17].
2.1.3 Finite Element Method

In the early applications of the finite element method to
intersecting cylinders, the curved shell surfaces were simply replaced
by flat plate bending and membrane elements. Because of discretization
errors, a large number of such flat elements was needed to converge to
reasonable answers.

Prince and Rashid [18] used triangular plate elements to solve
the case of very thin normally intersecting cylinders with the diameter
ratio of 1:2. Their results were compared with experimental data for a

nozzle-to-cylinder intersection.
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Greste [19] used both two-dimensional plate bending and plane
type elements to solve the tubular K joint problem.

Hellen and Money [20] demonstrated the general capabilities of
the stress analysis program BERSAFE by using a double layer of isoparametric
elements through the thickness of the shells.

Bakhrebah and Schnobrich [21] modeled the normally intersecting
cylinder problem by using three-dimensional isoparametric elements along
the intersection curve, and two-dimensional curved shell elements in the
regions away from the intersection. Because the simple isoparametric
elements formulated by the displacement method are inherently too stiff,
incompatible modes [48] and reduced integration [47] techniques were
investigated as a possible means for making the element and therefore

the structure more flexible. The results calculated by Bakhrebah show

good agreement with the experimenta]_resu]ts obtained by Corum.

The techniques of nonlinear analysis have been applied to
structures for many years. The application of employing the finite
element method to intersecting shells, however, has only recently begun.
To update the structural stiffness of the system at each step of the
nonlinear analysis is a straightforward but costly and cumbersome
procedure. Some literature concerning this topic has been published,
with several different approaches being appiied.

Mahmoud Khojasteh-Bakht and Popov [22] provided a general
discussion of the use of finite elements in the analysis of elastic-
plastic problems. The tangent stiffness method was employed to solve

rotational shells subjected to axisymmetric loading.
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Gupta, Mohraz and Schnobrich [23] used three-dimensional
isoparametric elements to solve a thick circular plate with circular
openings. Elastic-plastic behavior of the material was included by
incorporating the Von Mises yield criterion in an incremental format.
The initial stress method was used to economize the evaluation of the

unbalanced nodal forces and plastic deformation at each iteration.

Larser and Popov [24] used three-dimensional isoparametric
elements for the elastic-plastic analysis of thick-walled pressure vessels _f
with sharp discontinuities in geometry. A modified incremental method,
termed the "one-step iteration" or "out-of-balance force" method, was used
to work out some numerical examples.
53 It is clear from the above reviews of the previous work that a

1 reliable general analytical method for the nonlinear analysis of cylinder-

to-cylinder intersections is not available. To fill the need for an
engineering solution of the intersecting cylinders problem, the finite
element method with its nonlinear feature capable of representing elastic-
plastic behavior of structures is highly desirable. Before simulating and
then discretizing the intersecting cylinders for finite element models,
some basic knowledge of the general behavior of the structure should be

known.
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2.2 Important Geometric Parameters of Intersecting Cylinders

The branch pipe connection is characterized by the intersection
angle of the two cylinders, reinforcements around the intersection, and
three geometric ratios, i.e., the diameter ratio d/D, the main vessel

thickness ratio T/D, and the membrane hoop stress ratio s/S = dT/Dt.
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The "T" shape connection without any fillet reinforcing is the problem of
central interest in this study. Its general behavior is discussed below
based on the three geometric parameters.
The range of the diameter ratio is obviously 0 < d/D < 1.
From the parametric study carried out by Ellyin and Turkkan [25], it was
concluded that the unreinforced nozzle-vessel attachment provided less
strength when the diameter ratio was bounded between 0.5 < d/D < 0.6.
The same conclusion was also reached by Schroeder [26]. For a small d/D
ratio, d/D < 0.2, the weakening caused by the cutout in the main shell is
relatively small, and high strength is anticipated. This has been
demonstrated with both analytical and experimental results. ;
The deformation pattern of the intersecting cylinders when
subjected to a constant internal pressure is based on the combinations of
:‘ thicknesses and radii of the branch pipe and the main shell. If the

thickness ratio of the structure is rélatively small, the nominal hoop

f stress in the cylinders is high but the distance from the intersection for

which the disturbance has effectively damped out is small, and vice versa

-~

for the large thickness ratio. Therefore, in practical design, it is

L3

Bl F 0

essential to optimize the T/D ratio if the intent is to use the material

effectively. The behavior of thin shells and that of thick shells is
: quite different. Accordingly, the analysis approaches are not the same.
; For thin shells, T/D < 1/20, both the bending stresses and the stresses
[ 3

normal to the surface can be ignored, and only the membrane stresses due
to strains in the middle surface of the shell need be considered. This

is true except in the regions of disturbance such as penetrations,

stiffness changes, and supports. For thick shells, the shear effect

i T T




o DO il

= g

i J

7 e VA

16

in the thickness direction is not negligible. This means the distortion
across the thickness invalidates the Kirchoff hypothesis. If the finite
element method is used to analyze the structure, the selection of element
models must be able to represent the real behavior of the shell. In
industrial applications, a T/D ratio in the range of 1/10-1/50 is

comparatively common.

2.3 Stress Concentration of Intersecting Cylinders

The branch pipe connection consists of two individual components,
i.e., the branch pipe and the main cylinder. The contact points of these
two cylindrical shells form an intersection curve [16] which, for the
general case with an intersection angle o between the two axes, can be

expressed as (Fig. 1)

X =rcos ¢
Y=rsing¢ - 8§ sin o
(2.1)
7 =R/l - S% cos? ¢
with S=r/R and 6§ = R ( - g = S2 cos? ¢) - r sin¢ tan a
cos a !

where r and R are the radii of the branch pipe and the main shell,
respectively. A set of edge forces is introduced at the juncture of the
two shells to enforce the continuity of displacements across the
intersection line.

The standard solution of the Donell, Flugge or other form of
the cylindrical shell equations for the branch pipe when subjected to
edge loads can be obtained and is well known. From such solutions, it is

evident that the effect of an edge disturbance on a cylindrical pressure
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vessel is negligible when

X > 2.45 /RT (2.2)

where X is the distance measured from the forced edge. One exception
deserves to be mentioned here. When the edge of the cylinder is subjected
to a set of self-equilibrating axial forces and the far end is left free,

the edge disturbance increases, with the distance away from the disturbed

edge rather than dying out. This causes the collapse of the cylinder into
an oval shape. This phenomenon was first described by Vlassov [27] in his
experimental and analytical investigations. Bakhrebah also experienced
this in his finite element analysis. To avoid this difficulty, the
constrained boundary conditions, such as those for a diaphragm closure,
are usually adopted instead of free end conditions.

The main shell is weakened by the opening which causes the
discontinuity in the geometry and in the displacement fieids. The existence
of a stress concentration around the hole can be visualized by comparing
the vessel with an infinite flat plate having a circular opening. This
plane stress problem was investigated by Timoshenko [28]. It has been
pointed out that the maximum stress is three times larger than the stress
found in a solid plate. The stress distribution in the cylinder must also
be influenced by the curvature. The stress concentration varies with the
size and shape of the hole and may be three to four times as large as the
stresses would be in a solid shell (Taylor [9]).

On the basis of the above data, it is logical to conclude that
there is a stress concentration in the vicinity of the connection of a

cylinder-to-cylinder intersection. Furthermore, experimental data [29]
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have shown that there are two stress peaks along the intersection line
when the structure is under internal pressure:
(1) High hoop stress in the vicinity of section AB due to
the removal of material for the hole in the main
cylinder (Fig. 2).

(2) High bending stress in the vicinity of point C, where
the internal pressure normal to the vessel can only be
balanced by the bending action and the component from the
axial force in the branch pipe. For large diameter ratios,
the bending stress increases while the component from the
axial force decreases.

Test results show [30] that the bending stress at point C is
seldom as high as the hoop stress at section AB. Thus the hoop stress
in section AB governs the design at least of the intersection. To
Qetermine the stress concentration factor at section AB, an approximate
analysis proposed by Lind [33], called the area method, is available for
pressurized normal branch pipe connections without fillets around the
junction. The area method avoids rigorous mathematic derivations.
Instead, the whole concept is based on an estimate of the effective
lengths (Fig. 3) of the branch pipe and main shell. The rate of decay
of stress in the main shell is assumed to be a linear variation. The

length over the cylinder from the maximum stress to the membrane stress

is approximated as 0.8 vRT. The area of the triangular stress distribution
is equivalent to the maximum stress uniformly distributed over an effective

length 0.4 /RT. From the effective lengths of the branch pipe and the main

cylinder, the corresponding effective areas G' and G (effective length x
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diameter, Fig. 3) can be measured and the average stress concentration

factor is computed as

f. = (6/G')/(D/2T) (2.3)

When the bending stress is taken into account, a correction factor fb is

introduced as indicated in Eq. (2.4)

f, =1+ (T/D)/V/s/S (2.4)

b
The actual stress concentration factor fc thus is

Ea= £ fy {2.5)

From a comparison with the experimental data, the author quotes a mean
error of fc as less than 3 percent based on his statistical evaluation of

the data. Therefore, it is reasonable to presume that the high concentrated

stress is distributed over a distance about 0.8 ~ 2.45 /RT from the junction.

Out of this region, membrane behavior dominates. This approximation
provides a preliminary estimate for modeling the structure when the finite

element method is to be employed to solve the problem.

2.4 Behavior Beyond the Elastic Limit

2.4.1 Failure Mechanism of Intersecting Cylinders

The failure mechanism of intersecting cylinders is essentially
based on Toading conditions, material properties, and surrounding
temperatures. If the structure is subjected to a monotonically increasing
internal pressure, the serviceability may end as a result of severe

overstressing in some regions. In other words, the stress reaches the
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strength capabilities of the material in these regions. But on the other
hand, if the pressure is cyclic, a shakedown failure caused by high strain
fatigue may be the controlling factor [31]. When brittle materials are
employed, the high stress concentration around the intersection region
remains right up to the breaking point since the material has little
ductility to deform and hence redistribute more uniformly the high local
stresses. Therefore, points of stress concentration along the intersection
curve have a greater importance and are regions of central interest if
brittle fracture is a consideration. For ductile materials, a large
deformation may be developed before a final plastic rupture occurs. The
environmental conditions also affect structural behavior. For instance,
the toughness of intersecting cylinders made from brittle materials [32]
can be improved at elevated temperatures even if the structure contains

] notches or flaws.

‘ Intersecting cylinders provide low serviceabilities if they

3 ﬁndergo little deformation prior to the failure. To prevent or minimize
the brittle fracture possibilities of ductile materials, it is necessary

to avoid high stress fields, low temperature environments and flaws

i occurring simultaneously. In most of the engineering applications such
,‘.
Eki as boiler or nuclear reactors, both the temperature and the internal

pressure are very high. Therefore, rupture is most probably accompanied

by some plastic deformations if a ductile material is used. Actually,

:’ from a survey of the failures of pressure vessels over the past decade,

:§ Nichols [34] pointed out that the most important phenomenon to be

‘; considered as a potential source of trouble was the plastic rupture of

i the welds, or the weld-affected areas near the branch attachments. {
g !
y |
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In this study, it is of particular interest to investigate
the progression of plastification after yield starts but before the
intersecting cylinders have fractured. To determine the bounds of
this range, limit analysis techniques can be employed to approximate

the initial yield load as well as the collapse load.
2.4.2 Limit Analysis

In Timit analysis, the stress-strain relation is normally
simplified to rigid-perfectly plastic, concentrating thereby the
deformations in localized regions. A lower bound solution is obtained
by the determination of a statically admissible system, defined as any
system which satisfies the equilibrium conditions, and has stresses at
every point at or below yield. An upper bound solution is found by the
consideration of a kinematically admissible system. This system is
defined as a compatible pattern of displacement for which the rate of
external work is equal to or exceeds the rate of internal dissipation.
The upper bound gives the maximum collapse load.

The 1imit analysis method was essentially developed for the

{ design of steel frames. Its application to shells was first published
;? by Drucker [35] in a study of symmetrically loaded cylindrical shells
TT without axial forces. Because of the lack of rotational symmetry,

: unlike the nozzle to spherical shell connections, the limit analysis of

a branch-to-cylindrical vessel is much more difficult. Attempts at limit

P —
-

analysis of this configuration have only been made recently. Cloud and
Rodabaugh [36] gave an upper bound solution for internal pressure of a

normal branch pipe connection with the restriction of a small diameter

v
;'
X
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ratio, less than 0.5. Schroeder and Ramgarajan [27] also obtained an
approximate upper bound solution for diameter ratio between 0.4 to 1.0.
Ellyin and Turkkan [26] have given a lower bound solution for internal
pressure by using the limit pressure as the objective function and
maximizing the objective function over the admissible stress field. The
solutions obtained were over a wide range of parameters and were compared
with experimental data.

To solve intersecting shells by 1imit analysis, the general
geometric relations are first established. No simplifying assumptions
should be made along the intersection curve if the solution is to be for
the general case. Then, the partial differential equations of equilibrium
of stress resultants are derived. A stress field which satisfies the
equilibrium equations, all the boundary conditions and the stress continuity
condition at the intersection are constructed by following the work of
Hodge [37]. After the stress fields for the branch and main vessel have
been chosen, a yield criterion is imposed and, according to the lower
bound or upper bound theorem, a set of inequality conditions are obtained.
The extreme of the solutions of these inequality conditions gives the
lower or upper bound solution for the intersecting cylinders.

From a parametric study, it is found that the bound is affected
by the geometric variables. A relatively small increase in the nozzle
thickness considerably increases the 1imit pressure of the structure.

This leads to the reinforcement around the junction of cylinders in
practical design. However, 1imit analysis gives no intermediate results,
only the initial yield load and the collapse load of the branch pipe
connections. To fill in this gap, the finite element approach with

elastic-plastic analysis is desirable.
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CHAPTER 3

THE FINITE ELEMENT APPROACH
3.1 General

The finite element method can be viewed as basically a

variational approach. When considered in this light, the procedures can
be generalized, thereby extending the application of the finite element
method to many engineering fields, not just structural. Using variational
principles, the governing equations of a continuum can be obtained through
) the derivation of a stationary solution. For most cases, these equations
are too complex to be amendable to closed form solutions directly. A
usual technique is to use the Rayleigh-Ritz method to construct approximate
solutions by reducing or restricting the unknowns to a small or finite
number.

The energy procedures used fn structural mechanics can be
classified essentially as the minimum potential energy method and the

minimum complementary energy method. The former, usually referred to as

] f; the stiffness or displacement method, associates with assumed displacement ;
vi, parameters. The latter, termed the flexibility or force method, deals
E Ei with a parametric equilibrium stress field. In addition to these two
; ii methods, a mixed procedure, utilizing the Hellinger-Reissner principle
[38], has been developed by taking both displacements and stresses as

primary variables. However, of these methods as well as other hybrid
schemes the displacement method remains the most generally used procedure

in structural mechanics. It is employed in the present study.

W T e S
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The finite element idealization simulates a real structure as
an assemblage of a finite number of elements. This introduces a
discretization error. This error can involve both the geometry and the
displacement field. The upper-bounded monotonic convergence is not
guaranteed unless several sufficiency conditions are satisfied. The
first is the completeness in energy that requires both rigid body modes
and constant strain states to be included within the displacement field.
The second is that the continuity of displacement must be maintained
across any element interface. However, the conditions given above may
be relaxed if the so-called “patch test" proposed by Irons [39] is
satiifiggi"lhis test provides a necessary condition for convergence
while its sufficiency is unproved. Also nothing can be said about the

direction from which convergence is obtained.

3.2 Displacement Method

The matrix formulation of structural problems arose general
attention in the early 1950's with a series of papers published by Argyris
[40], Turner [41], and a number of other investigators. Much progress has
been made since then by introducing new types of elements and more
sophisticated computer techniques. Successful developments cover various
forms of structural behavior such as plasticity, dynamics and large
deflection problems.

There are two basic steps in the development of the displacement
method. One is the element formulation and the other is the structural
calculation. At the element level, the displacements, u, over the element

are defined in terms of the displacements at selected points called
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nodal points. These points are located within the element or on its
boundary. The displacement definition is accomplished by means of

interpolation functions, N:

u=Nu (3.1)

where u contains all the nodal displacements of the element. The strains,
£, at any point in the element are obtained by taking appropriate derivatives
of displacement field with respect to the selected element coordinate system.

The strain-displacement relations can be expressed as
€=Bu (3.2)
where the coefficients of matrix B are functions of the nodal coordinates.

The condition of equilibrium is obtained by applying the principle

of minimum potential energy

a(wi & wé) =0 (3.3)

where Ni can be expressed as the integral of strain energy over the volume

of element under deformation

1
5 T L? Dijke €ij €kg

J%f B! DB u dv (3.4)
Vv

The external work done by the surface traction Ti and the body force fi

is given as

We = -L fi uj dav - LTi uy ds (3.5}

Substituting these into Eq. (3.3) and taking the first variation, the

following equation is obtained

R ettt e s



sul Ku-6u P=0 (3.6)
where
K = LBT DB dV (3.7)
P = f N f v+ J N T ds (3.8)
Vv S

Since the virtual displacements Su are arbitrary, Eq (3.6) can be
simplified as

Ku=§g (3.9)

K and P are the stiffness matrix and the generalized load vector of the
element, respectively.

At the structural level, the total structural stiffness matrix
and the structural load vector are set up following the superposition
technique to assemble all the elements of structure together properly.
After incorporating the boundary conditions, the nodal displacements can
be solved. The strains and the stresses can therefore be evaluated
wherever desired.

The structural stiffness matrix is characterized by being
symmetric, banded, sparsely populated and positive semi-definite. Only
the upper or the lower triangular form obtained by decomposition is

considered in computation with only a half band of it being stored.

3.3 Structural Modeling

In a region with a sharp geometric discontinuity or a high
stress gradient, a fine mesh is needed to achieve accuracy in results.

A coarse mesh may cause the violation of local equilibrium even at
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integration points. These are the points that are used as control points
to predict the occurrence of the plastic actions in the structure when
nonlinear analysis is being used. This drift from the true response can
be kept to a minimum if the structure is modeled properly.

Hand, et al. [42] used a layered concept to investigate the
progression of cracking that develops in a concrete slab or shell under
external loads. The thickness of each element is divided into several
layers. Each layer, in turn, may have different material properties.

The nodal displacements are converted to middle surface strains and
curvatures, then to layer strains by employing the Kirchoff assumption
that implies normals to the middle surface remain straight and normal
after deformation. From the stress calculation, the excess stresses in
each layer are accumulated and converted back as unbalanced nodal forces
for the next iteration. This procedure worked well for the plate and
smooth shallow shells that were studied. A layered concept which allows
the plasticity to propagate through the thickness as well as along the
surface will be employed.

The intersecting shell is the problem of particular interest in
the present study. From previous studies, it is known that the stresses
in intersecting shells decay sharply to reach the membrane stress levels
away from the intersection region. Therefore, a layered system need to
be considered only in the vicinity of the intersection. The desirability
of restricting the layering to as small an area as possible is to economize
the computational effort. Because of the complicated geometrical shape of
the intersection curve and the displacement variation through the thickness

in this region, it is undesirable to impose the Kirchoff's assumption on
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displacement field as Hand did. The three-dimensional isoparametric
element family is therefore used to divide the thickness of the structure
into several layers in this intersection region.

To avoid an abrupt change of stiffness in the structure away
from this region, a method of grading the mesh from a fine to a coarse
mesh is obtained by connecting every two layers of the previous grid to
a single layer in the adjacent grid. The same procedures are repeated
until only one layer represents the entire thickness. Then the shell
transitional elements are used to connect to the two-dimensional curved

shell elements which are used throughout the remainder of the structure.

Although the modeling method is developed for interesecting shell analysis,
the general nature of the procedures used is applicable to other kinds of

structures as well.

3.4 Element Stiffness Matrix

’ 3.4.1 The Isoparametric Family

;‘ Three-dimensional solid elements are capable of correctly

;5 representing the behavior of a beam, plate, or shell including any of

*: the varied aspects of structural components because they enable bodies ﬂ
i; with curved boundaries to be treated with a limited number of elements. %
F? A general isoparametric element suggested by Irons [43] is adopted in

the present study. With that formulation it is possible to add any

number of intermediate nodes to the individual edges of an eight-node

brick element by employing the so-called "departure concept". The
displacement variables at intermediate nodes are treated as the

difference or departure from the linear displacement variation
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between two corner nodes.
One way of expressing the displacements at the edge of an
element would be to use interpolation functions in the form of a quadratic

variation on the edge AB (Fig. 4), This can be expressed as

yhB +NU (3.10)

= NUy + NBUB Ve

A"A

where

UAB

quadratic response along the edge AB
UA’ UB’ UC = nodal values at nodes A, B and C, respectively
NA’ NB’ NC = quadratic shape functions correspohding to nodes

A, B and C, respectively

On the other hand, the displacements of the intermediate nodes UC can be

written as

N —

Ug = Ty + 5(Uy + Up) (3.11)

where Ut is the departure displacement of node C as shown in Fig. 4.
Substitution of Eq. (3.11) into Eq. (3.10) gives an alternate

way of expressing the displacements as

AB _ = = T

U = NAUA + NBUB + NCUC (3.12)
where

Ny =N, + 4N =1 (1 - g)

A A2 C 2

ﬁ:N +lN =l(]+g)

B B2 G 2

- - E2
Ne = (1 - £2)
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NA and NB are the linear shape functions of the corner nodes A and B

(6 = £1). With or without the last term of Eq. (3.12), the variations
along the edge AB become quadratic or linear. This means whenever an
additional intermediate node is introduced to any edge of an 8-node
element, only the last term needs to be added without changing the rest
of the equation. In a manner similar to Eq. (3.12), more intermediate
nodes can be incorporated to the edge AB in order to define a higher
degree of response. 1

The isoparametric displacement field within an element is

given as
u us
v)y=) Ni vy (3.13)
W W

For a general curvilinear element the geometric transformation relationship

between the global cartesian coordinates and the local isoparametric i

1
coordinates is established by Eq. (3.14) as §
§
b X X,i
5; y =L Ny (3.14)
i 2 Z;
e
t; The strain-displacement relation is defined by proper differentiation of
;; the displacement field as ?
| - ’ ~ 5 j 4
) T 3
\“; E,x W Ni,X 0 0
¢ “y . NiLy =
3 € 0 0 N, i
! (e} ={ %2 )= ) ’ v, y = [B]{U,} (3.15)
Y N. N. 0 i i
Xy i,y X ™ 3
Tyz ¥ Niiz Niy ' :
LT L™z Tk | i
|
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Substituting into Eq. (3.7), the element stiffness is obtained

(K1 = |

[817[DI[B] dV (3.16)
vol

where [D] is the material property matrix defined as the stress-strain
relationship of a homogeneous linearly elastic material. This matrix is

given in Appendix A. The volume element dV has to be transformed to a |

curvilinear coordinate system for the integration process

dV = dx dy dz = [J| d& dn dt (3.17)

where |J| is the determinant of the Jacobian matrix. Equation (3.16) is

now of the form

1 ¢1 (1
tm=J j[ (817[DICB] [J] dE dn dt (3.18)
FEEES

Both [B] and [D] contain many null factors. A lot of intermediate
calculations can be eliminated if the calculation of the element stiffness

matrix is broken into parts and only the non-zero terms are executed. A

.y

“4 more detailed discussion of this is present in Appendix A.

E_ There are several points that bear mentioning here.

Ei 1. The requirements of continuity and those for the constant
#; strain states are satisfied in the isoparametric element
i; family, thus insuring convergence.

2. The elements, however, are far too stiff against flexure,
especially the Tow order elements. For instance, a three-
dimensional 8-node brick type isoparametric element (Fig. 5)

4
2\
4
f
%&
: develops the constraints on the transverse displacement
mode because of the appearance of parasitic shear strain
$
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energy. Therefore, softening procedures such as the use
of nonconforming modes or a reduced integration technique
are usually utilized to overcome this deficiency.

3. The Kirchoff's hypothesis, i.e., the normal to the mid-
surface remains straight and normal after deformation,
is adequate for most shell problems. Thus, the unnecessary
nodes through the thickness of an element can be eliminated
to minimize computational efforts. In addition, since the
concept of a layered system is employed, the high order
displacement variation along the shell thickness direction
can be approximated by several elements having only two

nodes through the element thickness.
3.4.2 Three-Dimensional Transitional Element

It is desired to ccnnect‘both elements A and B to only a single
element in the next region (Fig. 6). Obviously, the continuity across the
element interface will be violated if a quadratic displacement variation
is allowed in element C while in elements A and B the displacement
variation on the corresponding face is only linear. Therefore, it is
reasonable to impose a linear displacement variation on the interface
between these three elements. With this, the constraint equation of the

mid-nodes can be established as

3 - J " utop
bot

where [C] is a transformation matrix and is described in Appendix A.
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Introducing this relationship into the formulation of the [B]

matrix, we get

utop a
(bot) Utop top
[B] Ui d = [B][A] ot f = [B'] Upot (3.20)
U U U
with
j S R
fAl=18& € © (3.21)
3 B s

In this, [I] is the unit diagonal submatrix and U is the nodal displacement
vector excluding those on the interface of T3D element.

The element stiffness matrix, independent of nodes 4, 5, and 6
(Fig. 6), for elements A and B can be obtained through the substitution of
[B'] for [B] in Eq. (3.18). With this transition element it is now possible
to connect the layered region to any general three-dimensional element

with 3 nodes on both the top and the bottom edges of the interface.
3.4.3 Ahmad's Shell Element

Ahmad's shell element [44] is extracted from a 16-node three-
dimensional isoparametric element. Conversion to the shell element
precludes the possible i1l conditioning that occurs when the shell
thickness is very small compared to the other dimensions of the element.
Furthermore, it reduces the number of unknowns. In this element, the
constraint of straight normals is imposed and the strain energy

corresponding to normal stresses perpendicular to the middle surface

is ignored.
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For a typical thick shell element (Fig. 7), the geometric shape
can be defined as Eq. (3.22) if there are no intermediate nodes in the

element thickness direction.

+ 1s
ypo= In B Oy HEn, L3l oy, (3.22)
Z Z,i Z'i
top bottom

where Ni(i, n) are the shape functions for a two-dimensional quadrilateral
element as shown in Fig. 8. For convenience, Eq. (3.22) can also be

rewritten in a form specified by a nodal vector that connects the pairs of

nodes Ttop and L and the midsurface coordinates
X X;
= Ly
y ) Ni ¥; + 3 Ni 5 V3i (3.23)
z Z-
, 1 mid
with
V3i =8 ¥ s (3.24)
: 2 z,
- top bottom
R
e
; Similarly, the displacement field at any point in the element
\ can be expressed as
.
s u u‘i Au]
3 g
, wr=]Ns + 1N 3 (A, (3.25)
w W, Aw .
nid g
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where A“i’ Avi and Awi are relative displacements or displacement
differences of 1top and o abhon Awi is ignored as is the corresponding
strain energy in the thickness direction. Equation (3.25) can therefore

be rewritten as (Fig. 9)

i
t. '
o _1ry v 1
vpy=] Ny § vy +J N; ¢ [V1i’ V2i] . (3.26)
w W. -
"mid
or
u
v )= TN (8.} (3.27)
W
with
£ %
Y
Y
y
{Gi} = < W; >
(D 48
1
B.
~ 1 “mid

[N*]i’ expressed explicitly in Appendix B. Uss Vy and W, are
midsurface nodal displacements along the three global coordinate axes

while a; and Bi are rotations about Véi and V}i , respectively. In this,

~

Y14 = 1 x Vg4
(3.28)

v

2i = V3q x V

1i

where i is a unit vector aleng the global x axis. By this, three local

Cartesian coordinate axes x', y' and z' are defined at the midsurface

node i.

-



36

The strain components of interest at any point in the element

are established based on its local coordinate system.

4 N 4 N ( ™
€ U {8y}
€y vy y
{cl}) = < ka> = < u:y. + v:x, > = [B'] < {; ; ! (3.29)
.YI vl . + wl : .i
yz o2 .y ’
¥, LA S .
LZX L o X 2z ) L J

After the [D'] matrix of an anisotropic material has been
\ constructed (Appendix B) the stiffness matrix can be found in a systematic

manner following some coordinate transformations.

T 1 (1
[ - | [ [ (8*17[0* 18" 11J] dE dn de (3.30)
-17-17-1

A more detailed description of the formulation of the [B'] matrix is
& given in Appendix B.
With the Ahmad element, there is the inherent weakness of being

far too stiff against bending. This weakness stems from an excessive

extraneous shear strain energy which, in turn, causes much slower
convergence than desired. As pointed out by Pawsey [45], this weakness

can be diminished by the use of the reduced integration method. When

e ————————

reduced integration is used, the stiffness matrix may become singular as
zero strain energy may occur at integration points. This is for the
individual elements. But when assembled into a structure, the singularity

is suppressed upon joining the element to others.
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3.4.4 Shell Transitional Element

In selecting the structural modeling to be used, it becomes
desirable to connect together two dissimilar elements, the three-
dimensional solid element and the two-dimensional curved shell element.
The transition element provides this service. It converts the five
shell degrees-of-freedom at the edge where it is intended to connect to
a three-dimensional element back to six degrees-of-freedom, three each at
the top and the bottom face of the element.

Since the departure concept is employed with the three-
dimensional element, the same modification has to be applied to the
transition element at each node that is intended to connect to a three-
dimensional element node for which the departure is used. The other
nodes remain the same as in the Ahmad shell element. After the new shape
functions for these nodes have been defined, as described in Appendix B,
a new shell element stiffness matrix can be generated by standard
procedures as in the Ahmad element. Then, the stiffness matrix of a

transition element is obtained from Eq. (3.31).

]

:
(k] = [e1"[k ILCD (3.31)

where [C] is defined as

(U} = [ClHugp} (3.32)

The nodal forces that correspond to the displacement {uT} in

transition elements are obtained by

_ T
{PT} = [C] {PS} (3.33)

PV RSN T Y |
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The derivation of matrix [C] is also described in Appendix B.

3.5 Generalized Loads

In the finite element system, loads are prescribed only at the
nodal points and in the directions corresponding to displacement components.
When distributed loads are applied to the structure, the equivalent

generalized nodal loads as outlined in Section 3.2 are used because of

their computational efficiency. The distributed pressure load is of

particular interest and is described here.

3.5.1 Three-Dimensional Element

[ o The pressure load Q is applied to either the top or the bottom

face. Let n be the unit vector normal to the surface at any point p.

The equivalent nodal loads can be established on the basis of the
equivalence of the work done during a virtual displacement consistent F

with that for the distributed load Q.

| ) ¥ T . T A
3 SW = {aui} {Pi} = { §{U} Q ndS
| R s
A
3 = (6u,} J (NT o nds (3.34)
k: S
'n or
gt g ¥
P {Pi} =Q | [N] ndS
- g
’ 3.5.2 Ahmad's Element
f’
ff The same procedures are followed for the shell element. The
generalized load vector, at node i, of a pressure load Q on the surface ;

z =1 in Ahmad element can be constructed as

—— .




y
{ Beidm L [N*ﬁ Q A dS (3.35)

KM8)

3.6 Reduced Integration Technique

Obtaining the stiffness matrix of an element involves an
integration over the volume of the element as Eq. (3.18) indicates.
For most cases, the form of these integrals is far too complex to be
carried out explicitly. To circumvent this, these integrations are
frequently done numerically. The quadrature rule, as the sume of a
series of products of weighting coefficients times the value of the
integrand evaluated at a number of points is used. Obviously, the fewer
the number of points involved, the less the amount of computation required.
From numerical experimentation, it has been shown that less accurate
numerical integration rules can produce better displacement and stress
values. This happens because of introducing compensating errors. The
reduced integration technique was first employed by Doherty, et al. [46]
on plane quadrilateral elements and later by Pawsey [44] on curved
elements. Zienkiewicz, Taylor and Tuo [47] used a general reduction in
Gaussian integration order rather than applying the reduction only on
the shearing strain energy components. They demonstrate much better
accuracy than in Ahmad's first work. Choi and Schnobrich [48] compared
the results obtained by including nonconforming modes with those by the

reduced integration technique. Dovey [49] investigated the applicability
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of three-dimensional elements for general shell problems by employing
reduced integration procedures.

Theoretically, when the limiting subdivision of a structure
is approached, each element approaches a state of constant energy. The
total energy is then obtained by summing these constant energies over
all the element volumes. Therefore, to obtain a minimal degree of
accuracy, the quadrature rule must be able to evaluate the element volume
correctly. For three-dimensional isoparametric elements, a second order
quadrature rule meets this requirement and converges rapidly. The
improvement of element performance, when using a 2 by 2 integration rule,
is attributed primarily to the elimination of the extraneous shear strain
energy at the ordinates of the two Gaussian integration points. That
makes the element far from being too stiff.

In the finite element idealization, a geometric regularity
condition is imposed on the element in a practical mesh subdivision
process. Even for quite irregular configurations, numerical examples
show the volume error induced is very small compared with the other
approximations involved. Thus, any order of quadrature rule actually
yields the correct volume as the element 1imit is reached. This insures
the convergence. A reversed argument was therefore proposed by Dovey
that the convergence might be assured if a positive semidefinite stiffness
matrix of appropriate rank was obtained. In other words, any reduced
integration scheme considered should be able to insure convergence as
long as it results in a stiffness matrix that is positive definite after
the rigid body modes have been removed. No rigorous analysis was

provided but rather justification was based on numerical examples.
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However, a reduced integration method tends to reduce the value of
stiffness of an element to below the value evaluated exactly. This
softening allows the use of a coarser mesh and economizes the cost. The
reduced integration technique is now widely used in research work even ]

though the merit of the monotonic convergence property is lost. In the

present study, a second order integration is utilized for all the elements.

3.7 Equation Solver

After the structural stiffness matrix has been generated, it is
desirable to solve for the nodal displacements. There are several

numerical schemes available for this purpose. The Gaussian elimination j

method is often used for large systems due to its efficiency, and it is
adopted in the present study. In the method, the whole process is divided
into three separate steps, i.e., the decomposition, the forward substitution,
and the backward substitution.

In the decomposition, the structural stiffness matrix is split

into upper and lower triangular matrices as

[k] = [6-16"] (3.36)

where [GU] is nearly the transpose of [GL] except for the fact that [GU]
has been normalized to make all diagonal terms equal to unity. Because
of a large amount of zero factors scattered inside the banded structural
stiffness matrix, the efficiency can be improved by bookkeeping the first
nonzero entry in each row to avoid unnecessary computer operations.
Because of the symmetry of the structural stiffness matrix, only the

lower triangle is developed and stored in blocks on the secondary devices
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of the computer system. Each block, with the same size of nodal degree-
of-freedom, is brought back to the main core in turn and broken into
submatrices for execution. Inversions of the diagonal submatrices are
necessary and the singularity caused by any mistake is detected.

The forward substitution computes the intermediate results {x}.

[6-1(x} = (P} (3.37)

The backward substitution gives the nodal displacement by operating

[614uy = {x} (3.38)

Only the forward and the backward substitutions need to be carried out
when the solutions of different load vectors are required. This feature
provides the feasibility for nonlinear analysis when the iteration method

is employed.

"1
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CHAPTER 4

PLASTIC ANALYSIS

4.1 General

Many engineering applications require yielding as an essential
phenomenon of a structural material. Beyond the yield point, the load-
displacement relation is no longer proportional.

Plastic deformation is the movement of one layer of atoms with
respect to another inside the material. This slipping is often associated
with the presence of shearing forces. From a series of tests with ductile
materials conducted by Bridgman [50], it has been concluded that yielding
does not occur under hydrostatic stress even though those stresses may be
very high. For the hydrostatic state, no shear stress occurs in any
direction. With this experimental observation, the mathematical models
for plasticity can be considerably siﬁplified.

Plastic deformations are irrecoverable. Also, the strain,
unlike that considered in elasticity, is not uniquely determined by the
final stress but depends instead on the loading path. - Incremental theory
[51] is thus necessary to relate strain increments to stresses. Deforma-
tion theory, which determines the total strain components in terms of the i
state of stress, will not be considered here. ’

Lack of strain recovery is caused by "locked in" residual
microstresses which result in a Bauschinger effect upon unloading. For

an isotropic hardening material, however, the Bauschinger effect is

ignored. i

d e - S
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4.2 Yield Criteria and Incremental Theory

For a simple member with uniaxial load, yielding is easy to
determine. But for most structures, yielding may be caused by a
combination of stress components °ij‘ On the basis of experimental work
and theoretical modifications, numerous yield criteria have been proposed
to describe the behavior of material after yielding has occurred.

In general, the yield criterion depends upon the state of
stress at the point under consideration. Therefore, the condition that

a material has been loaded to the initial yield can be expressed as

Flogg) = K (4.1)

where F = the loading function, and

K

the hardening parameter which describes the strain history.

This equation represents a yield surface in six-dimensional stress space.
éome materials, such as metals or crystalline rocks, yield no plastic
volume change during plastification. The hydrostatic or spherical stress
state, as experiments show, does not cause any plastic deformation.

Hence, it is usual to substract the hydrostatic componént from actual
stresses and use only the remaining stress deviator in the yield function.

Equation (4.1) can thus be written in a general form as

F(JZ’ J3) = K (4.2)

where J2 and J3 are the invariants of the stress deviators.
The Von Mises [51] and the Tresca [51] yield criteria are the

most widely used for ductile material. However, there are several
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drawbacks with the Tresca criterion. First of all, the principal stresses
have to be known. Otherwise, the Tresca yield function becomes quite
complicated compared to the Von Mises criterion. Secondly, with Tresca,
the intermediate principal stress has no effect on yielding while in the
Von Mises criterion all three principal stresses are taken into account.
From experimental data plots, it has been found that the Von Mises
criterion generally provides closer correlation. Thirdly, in order to
find the maximum shear stress at one point, it is necessary to make
comparisons continuously in order to find the order of principal stresses.
This makes the use of the Tresca procedure less desirable. In the present
study therefore, the Von Mises criterion is used to investigate the
plasticity of the shell material.

For the Von Mises criterion, Eq. (4.2) can be expressed in a

simple form as
J, = 1g2 (4.3)
2 -3 i

where o, is the initial yield stress in simple tension. A more detailed
derivation of Eq. (4.3) is shown in Appendix C.

The yield surface of a Von Mises criterion in the stress space
can be interpreted geometrically as a circular cylinder with its axis
equally inclined to the stress axes. For an isotropic hardening material,
the yield cylinder expands without changing its shape as the loading is

increased. This can be expressed as in Eq. (4.4).

dF = do.. >0 (4.4)

If dF equals zero, the equation indicates a neutral loading case.
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This means the stress state is moving on the yield surface. The condition,
dF > 0, means the controlling stress state, in other words the yield
surface, is expanding.

For subsequent yield surfaces, after the initial yield has
occurred, it is operationally desirable to correlate the state of stress
with the history of deformation by a single curve as in the result of a
simple tensile test. The effective stress and the effective plastic strain
increments are thus introduced. Their definition is as expressed in Eq.

(4.5) and Eq. (4.6), respectively.

— 1

5 =V3 s o5 18 (4.5)
Sp BT B
de " = 3 (deij dgij) (4.6)

where Sij is the stress deviator tensor. Differentiating both sides of

Eq. (4.5), we obtain
— T
= _ (0
do = {30 {do} (4.7)

To obtain general stress-strain relations after yielding has
started, the Prandtl-Reuss assumption [51] is employed. This theory
states that plastic strain increments {dsp} are proportional to the

instantaneous stress deviation, i.e.,

P, _ . 130y =P
{de' } = Sij dx = {55} de (4.8)

The stress increments {de} are now related to the elastic strain increments

{dee} through Hooke's Tlaw

{do} = [D]{de,} = [D]({de} - {deP}) (4.9)

e ——— e e e —— ——
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Substituting Eq. (4.8) into Eq. (4.9) and premultiplying both sides of

B

=3
Ea. (4.9) by (3%} as Zienkiewicz [52] did, we get

= _ (30,7 e :
do = {7} [D1({de} - {57} de ) (4.10) |
1
or §
= !
33 (0] ?
de " = m———— {de} = [W]{de} (4.11)

H o+ {%g} [D]{%g—}

where H = igﬁ-and can be obtained for a given stress-strain curve. With
&

the substitution of Egs. (4.8) and (4.11) into Eq. (4.9), it can be

rewritten as

tdo} = ([D] - [DICTHW]) {de} = [0, J(de) (4.12) f

[Dep] varies with the state of stress and/or the deformations.
Therefore, the structural stiffness corresponding to the current material

properties becomes a function of the existing displacements, i.e.,

. [K(u)]{au} = {aP} (4.13)
i

- This means the load-displacement relations are nonlinear. When loads are
ti applied, the calculated load-displacement relation departs from the proper
! curve and corrective procedures have to be employed in order to bring the
i; solutions back to satisfying the equilibrium equations.

4.3 Solution Method

The problem defined by Eq. (4.13) can also be considered as a

f
i;
i system of n simultaneous independent nonlinear equations of the form [53],
3
~
!




P
» RS

48
where
-
u )
u
i 2
u=-¢ 23
u
. n/

{ui} are components in a n-dimensional space or nodal parameters in the

finite element method. The norm of the vector in Eq. (4.14) is
n
F(U) = llfi(U)lF = .21 f?(U) >0 (4.15)
1:

Equation (4.15) becomes zero only if each fi(U) = 0, and this can happen
only if U satisfies Eq. (4.14). Hence, the problem of finding a nonlinear
solution is equivalent to the problem of searching for the minimum of Eg.
(4.15). By employing a truncated Taylor's series expansion, Eq. (4.15)
can be expressed as a quadratic approximation in terms of AU.

F(U) = F(Uo) + VTF(Uo) 8U + 3 £ 72F(Uo) AU (4.16)

Differentiating F(U) with respect to each of the components of AU and

equating the resulting expression to zero, we get

AU = [V2F(U0)TY [9TF(Us)] (4.17a)

where [VZF(UO)]'] is the inverse of the Hessian matrix defined as the
matrix of the second partial derivatives of F(U) with respect to U
evaluated at U,. The inverse of the matrix should be positive definite

for all AU # 0. The application of Eq. (4.17a) in the finite element
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method reverts to an equation of the form

AU = [K_ + k'77' (aQ} (4.17b)

where [K'] is the stiffness caused by nonlinearity and {AQ} are the
incremental nodal forces. [Kc] is the initial elastic stiffness.

The solution process indicated by Eq. (4.17) is the Newton-
Raphson method (64). However, there is a serious drawback to this
method. The inversion of [K] at each iteration makes the procedure
very inefficient for large systems. In the modified Newton-Raphson
method [54], the continual requirement for carryiﬁg out the inversion

is avoided by using the same stiffness throughout; i.e.,

a0 = [K 17 (a0} (4.18)
The new U is updated
U] = U, + AU (4.19)
or
Uy = Uo + AN (4.20)
where
Ao = ||AUG]| » and
N= Lo
Il U ||
Fi Equation (4.20) defines a straight line through U, with a step length
o
5% of Ao and approaches the minimum of n-dimensional space in the direction
¥
¥ of the vector N. The rate of convergence is thus
y |, A
U r < 4.21
¥; -1
e
t“ A
The solution is obtained when 1 Xﬂ is less than a given small number.
{.i
P
|
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Obviously, a lot of numerical procedures have been developed
and used to solve general nonlinear problems. Because no one method
appears to be far superior to all the others, the selection of a
particular technique rests on the characteristics of the problem.

For a stress concentration problem, it is presumed that the
plastification starts from the regions of high stress gradients and stays
in these areas up to a certain load level. Because the plastic zones are
not widely spread and represent only a fraction of the whole structure, a
mildly nonlinear load-displacement relation is anticipated. To solve
this type of problem, a significant amount of computational effort can
be saved if the same stiffness is used in the iterative method to obtain
the solution corresponding to an applied increment of load. The structural
stiffness is updated only on reauest to speed up the rate of convergence.
The incremental-iterative method [55], based on a modified Newton-Raphson
procedure is thus adopted in this study. This method is usually presented
in an intuitive, graphic concept as shown in Fig. 10.

To avoid the accumulation of round-off errors, the residual
nodal forces from the previous load step are added to the next load

increment.

4.4 Outline of Numerical Procedures

Since the regions with highly concentrated stresses are modeled
with layered 3-D isoparametric elements, it seems wasteful to examine the
state of plastification of all the other types of elements if those elements

are known to remain elastic. Therefore, the plastic analysis is concen-

trated only on 3-D elements.
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The following steps are carried out for each applied load
increment.
(1) Find the incremental nodal displacements corresponding

to the applied load increment by solving

[KI{au} = {aP}

(2) Convert the incremental displacements to strain increments
{Ae}n and then use the elastic material properties to
calculate a temporary stress increment, {Ac?n, at each
integration point of the 3-D elements.

(3) Add {Ao‘}n to {G}n-1 and compute the temporary effective

=1
stress On .

: Three different situations may occur at this stage
(aA) If 8; < 0, , yielding has not yet happened and the
temporary stresses are the actual stresses. Go to step 10.

(4B) If o_ , > 0., yielding is already occurring, thus the
n-1 —

k plastic deformation that results from the load increment
E; has to be evaluated. Find [W] as defined in Eq. (4.11)
1% and go to step 5.
|~
¢ (4C) If o _; <0, but ol >o, (see Fig. 1)
:: Yielding begins during the increment when the stress
5: vector tries to penetrate the yield surface. The ;
;' initial yield is now exceeded. Therefore, find the %
i; intermediate stress value by multiplying [W] by a linear g

interpolation factor B8 [56] which is defined as
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Then, proceed to step 5.

Evaluate the effective plastic strain increment &Eﬁ

and the plastic strain increment of each component {Aep}n
by employing Eq. (4.11) and Eq. (4.8), respectively.

Find the actual stress increment {Ac%‘by substituting
{Aeph‘into Eq. (4.9), then add to the previous state of
stress.

{o}, = lo}, 4 t tac},

Compute the effective stress increment AEn, then

update the accumulated effective stress.

G =3
n %n-1 n

Evaluate the unbalanced nodal forces.

Update [Dep] and use it to generate the new element
stiffness if a new structural stiffness matrix is required.
Repeat steps 2 to 9 until all 3-D elements have been
examined.

If convergence is attained, add the residual nodal forces
to the next load increment. Otherwise, use the current

force unbalance of step 8 for another iteration starting

from step 1.
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4.5 Updating Structural Stiffness Matrix

When a slow rate of convergence indicates the necessity of
updating the structural stiffness, usually new element stiffness matrices
corresponding to the current material properties are generated for all
elements, then reassembled. For a stress concentration problem, it is
presumed that those elements away from the regions of rapid variations
in displacements are still in their elastic range even up to the load
causing severe distress in the intersection region of the structure.
Thus, it is more efficient to use the difference between the old and
the present element stiffness matrices when creating the new system
rather than reevaluating and reassembling all the element matrices.

For elements that have yielded, the constitutive law gives

{Ac} = [Dep]{Ae} (4.22)

Therefore, the new element stiffness matrix is

(K1 = | ROYUSGED (4.23)

Vo
Equation (4.23) is evaluated at integration points. For those points
that have no plastic deformation, the [Dep] is replaced by elastic
material property matrix [D] as described in Chapter 3.

The difference or change in the element stiffness matrix is
calculated as

[AK] = [K] = [K]O]d (4.24)

new

The positions of [AK] in the total structural stiffness matrix is
determined so that [AK] can be added to the old structural stiffness

matrix in accordance with their contributions to the nodes of the
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structure. To save storage space, only the lower half of the 3-D

element matrix is stored in the system.

4.6 Evaluation of Excess Nodal Forces [57]

An iterative approach is commonly employed when solving
nonlinear problems. When the state of equilibrium is not achieved,
residual stresses exist and have to be converted to unbalanced nodal
forces. To do this, the residual stresses at any point are first

evaluated as (Fig. 12)

{Aoex}= {AO}B - {Ao}C (4.25)

where {AU}B is calculated temporary stress,

{Ao}C is actual stress including nonlinearity

The residual nodal forces are determined by converting the excess nodal
stresses to a system loads at the nodes which does the same work as the

excess stresses would do during a virtual displacement

{aR_} = z[vo] (81 (A0, } dV (4.26)

Substituting Eq. (4.25) into Eq. 4.26, we get

(4R ) - Z[O][B]T{AO}B av - i

[B]T{Ao}c av (4.27)
ly vol

The substitution of Eq.(4.8) into Eq. (4.27) yields

B
f [B1T[D]({de} - {de"}av (4.28)

(R } = z[ g

(81" (Ao} dV - ZJ
vol

vol

If the initial stiffness is used, the applied load increment {AP} can be




expressed as

B
(8P} = zj 81" (ac} oV = zj [ [817(D(de} dv (4.29)
vol vol ‘A
Therefore
8 T P
{aR } = XI J [B]'[D]{de"} dV (4.30)
vol ‘A

From Eq. (4.30), it is seen that only those elements which have
yielded produce excess nodail forces and need to be included when integrating
to find the residual forces. This saves a lot of computer operations when
solving stress concentration problems in which the plastified area is small
compared with the whole structure.

If the structural stiffness matrix is updated (Fig. 13) at

point E, [D] in Eq. (4.29) is replaced by a new material property [Dep]

and yields
(4P} = ZLO] I:[B]T[D.ep]{de} dv (4.31)
where
[0gp) = [01- [0,]  with [0 = (0132} (W)
or
[0] = [0, + [0,] (4.32)

Substituting Eq. (4.32) into (4.28), we get

B B
: i T i T |
(AR} = {aP) zLol JA (817 [0, Jide} av )Lo] L[B] [D,)de} av

B
+ ZJ J (817[D1{de’} av (4.33)
vol ‘A

or
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B B
(AR} = TeoteaePy av - 5[ [ 1817[Dg]¢de} dv 4.34 |
e XLO]L[B][ i 2Lo]JA[ s o . ! V

The first term in Eq. (4.34) is exactly the same as Eq. (4.30). ﬂ

[Dp], in the second term, is zero if the material at the integration

point is still in the elastic range when the structural stiffness is
updated. Thus, again, only the plastified elements need to be operated

upon. Obviously, [Dp] varies from point to point. To save storage,

only {%%} is kept in the file used to generate [Dp].
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CHAPTER 5

ELASTIC-PLASTIC SOLUTION OF NORMALLY
INTERSECTING CYLINDERS

The objective of the present study is to develop a finite

element method to solve intersecting cylinder problems including in that

solution any elastic-plastic behavior that might develop. Before the

selected problem was investigated several numerical examples were solved

to demonstrate the reliability and the effectiveness of the computational

procedures.

(1)

(2)

Two aspects of the solution process had to be evaluated.

Elastic solution

The applicability of reduced integration techniques to
shell structures was first tested. The behavior of the
elements and the adequacy of the proposed discretization
models were observed. The improvement of the accuracy
and the efficiency of the procedures suggested the use

of double precision and the secondary storage devices in
the computer work. Before a nonlinear solution was sought
an elastic solution was first run. The regions o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>