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1
FOREWORD

On a continuing basis , the Army Mathematics Steering Comittee (ANSC)
sponsors three annual conferences. These meetings , in the areas of appl ied
mathematics , numerical analysis and statistics , are designed to promote
better comunications among Army scientists. The oldest member of this
series, the Conference of Army Mathematicians , held its twenty-second
meeting at the Benet Weapons Laboratories , US Army Waterv liet Arsenal ,
Watery] let , New York , on 13-14 May 1976. Dr. Moayyed A. Hussain , the
Chairman on Local Arrangements, took this assignment seriously, and he ,
together with other members at Watervliet Arsenal , are due the thanks of
all the attendees for an exceptionally well-planned meeting .

The ninth Conference of Army Mathematicians also had as its host
Watervliet Arsenal. Statistics from these two meetings point out some
of the changes taking place in these affairs . The ninth Conference had
65 attendees , while the present meeting entertained 94 persons . The 1963
meeting had one invited speaker and 24 contributed papers , while the 1976
Conference had 6 invited speakers and 44 contributed papers . The most
encouraging statistic in these figures is the increase in the number of
contributed articles. While 5 of the 44 papers in this class were given
by University professors, this still leaves a sizable inc rease in the
number of scientific papers being presented by Army scientists.

• The Subconiuittee on Applied Mathematics of the AMSC has charge of the

• planning of the Conference of Army Mathematicians. It selects invited
speakers whose fields stress areas of applications of mathematics which
meet the needs of the Army . It also selects some speakers that address
fields which meet the special interests of the host installation. From
the titles of the addresses of the invited speakers listed below, one may
note that the requirements of the host in the area of fracture mechanics
is stressed in several of these talks. 

-

Nonlocal Elasticity and Fracture Mechanics .‘
~~

Professor A. C. Eringen , Princeton Universit

iii
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Unsteady Problems in Combustion Using Activation Energy Asymptotic

Professor John Buckmaster, University of Illinois

A Return to Input-Output Methods in Statistical Theory
Professor Thomas Kail ath, Stanford University

Three-Dimensional Cracks and Weight Functions
Dr. Hans S. Bueckner, General Electric Company

• Recent Developments in the Theory of Elasticity and Rupture of
Fluid Infiltrated Solids

Professor James Rice, Brown University

In addition to the above speakers, Professor George H. Handelman
of Rensselaer Polytechnic Institute gave an invited address at the
banquet which was held on the first evening of the Conference.

Members of the AMSC were pl eased that representatives of the Air

Force, the Navy, and the Department of National Defence 0f Canada were
in attendance at this symposium. They were also pl eased to note the
host installation had 22 of their staff members listening to the pre-
sented papers.

• •~ The last two articles appearing in these Transactions were not given
at the Conference of Army Mathematicians. These papers, one by Dr. Achi
Brandt and the other by Professor Gene H. Golub , resulted from invited
addresses delivered at the 1976 Army Numerical Analysis and Computers
Conference held 11-12 February 1976 at the US Army Research Office.

¼
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PROGRA M

• THE 22nd CONFERENCE OF ARMY MATHEMATICIANS
Maggs Research Center , Watervl iet Arsenal

Watervi let, New York

All general and technical sessions will be hel d in Rooms 240 and 215 , on
the second floor of Maggs Research Center , Bldg. 115 , Watervliet Arsenal ,

• Watervllet , New York

Wednesday, 12 May 1976

H 0745 BUS FROM HOLIDAY INN TO WATERVLIET ARSENAL

0800-0830 REGISTRATION - RECEPTION LOUNGE, 1st FLOOR, MAGGS RESEARCH
CENTER

0830-0845 OPENING OF THE CONFERENCE , WELCOMING REMARKS - ROOM 240

0845-0945 GENERAL SESSION I - ROOM 240

SPEAKER : Professor A. Cemal Eringen
School of Engineering and Applied Science• Princeton University
Princeton , New Jersey

TITLE: Nonlocal Elasticity and Fracture Mechan ics

CHA IRMAN : Dr. E. A. Saibel1. US Army Research Office
P.O. Box 12211
Research Triangle Park , North Carol ina

• 0945-1000 BREAK
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Wednesday AM

1000-1200 TECHNICAL SESSION I - ROOM 240

CHAIRMAN: Dr. T. Davidson
Chief , Materials Engineering Division
Benet Weapons Laboratory
Watervliet Arsenal , Watervl iet, New York

• BENDING OF A CRACKED STRIP INCLUDING CRACK SURFACE
INTERFERENCE

0. L. Bowie and C. E. Freese, Army Materials and
Mechanics Research Center, Watertown, Massachusetts

• DYNAMIC FRACTURE UNDER SHOCK LOADING CONDITIONS
John F. Mescall , Army Materials and Mechanics Research

• Center , Watertown , Massachusetts

SINGULARITY ANALYSI S BY THE FINITE ELEMENT METHOD
Dennis M. Tracey and Thomas S. Cook, Army Materials and
Mechanics Research Center , Watertown, Massachusetts and
Southwest Research Institute , San Antonio, Texas,
respectively

SINGULAR BEHAVIOR AT THE TIP OF A GROWING CRACK IN A
BILINEAR ELASTIC-PLASTIC MATERIAL

John C. Amazigo and John W. Hutchinson, Department of
Mathematical Sciences , Rensselaer Polytechn ic Institute,
Troy, New York and Division of Engineering and Applied
Physics , Harvard University , Cambridge , Massachusetts,
respectively

ASSESSMENT OF STRENGTH-PROBABILITY-TIME RELATIONSHIPS IN
CERAMICS

Edward M. Lenoe and Donald M. Neal , Army Materials and
• Mechanics Research Center, Watertown, Massachusetts

1000-1200 TECHNICAL SESSION II - ROOM 215

CHA IRMAN : Dr. A i vars Celm i ns
Ch;ef of Fluid Mechanics Branch
Applied Mathematics and Science Lab
Balla stic Research Laboratory

?1 Aberdeen Proving Ground , Maryland

FINIT E-DIFFERENCE SOLUTION OF POISSON’S EQUATION
IN RECTAN GLES OF ARBITRARY PROPORTIONS

J. Barkley Rosser , Mathematics Research Center,
University of Wisconsin, Madison , Wisconsin
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Wednesday AM

1000-1200 TECHNICAL SESSION II - ROOM 215 (Continued)

ON A GENERAL METHOD FOR GENERAL PURPOSE HEAT DIFFUSION
EQUATION

R. Yalamanchili , GEN Thomas J. Rodman Laboratory,
Rock Island Arsenal , Rock Island , Ill inoi s

SOLUTIONS TO INITIAL VALUE PROBLEMS USING FINITE
ELEMENTS - UNCON STRAINED VARIATIONAL FORMULATIONS• Julian J. Wu, Benet Weapons Laboratory, Watervl iet

• Arsenal , Watervliet , New York

THE NUMERICAL SOLUTION OF FREE—BOUND ARY PROBLEMS BY
MATHEMATICAL PROGRAMMING

R. S. Sac her, Department of Mathematical Sciences ,
• Rensselaer Polytechnic Institute , Troy, New York

A NUMERICAL INTEGRATION ERROR ANALYSIS UTILIZING A
WRONSKIAN TECHNIQUE

Lawrence A. Whatley and S. Bart Chi l ds, Intern Train-
ing Center , DARCOM, Alexandr ia, Virginia , and Texas
A&M University, Texakana , Texas

Wednesday PM
2 

1 200—1315 LUNCH (OFFICERS ’ CLUB)

1 315-1515 TECHNICAL SESSION III — ROOM 240
• 

CHAIRMAN : Roger F. Willis
• US Army TRADOC Systems Analysis Activity
. 4 . • White Sands Missile Range , New Mexico

AN INPUT CONTROLLABLE PROBABILIT Y MODEL
Frank Kuo , US Army Construction Engineering Research

J~. Laboratory , Champaign , Illinois

A SCANNING ELECTRON MICROSCOPE STUDY OF STATICAL LY LOADED
• FOUNDATION MATERIALS

Raymond E. Aufmuth , US Army Construction Engineering
Research Laboratory , Champaign , Illinois
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Wednesday PM

131 5-1515 TECHNICAL SESSION III - ROOM 240 (C9ntlnued)

PHASE II SECURE VOICE PROGRAM •- AN INDEPENDENT ARMY
ANALY SIS

Theodore S. Trybul , DARCOM , Al exandr ia, Virginia

SOLVIN G CONTROL PROBLEMS USING DISCRETE CONTROLS
Randy 3. Schuetz and S. Bart Childs , Intern Training
Center, DARCOM, Alexan dria, Virginia , and Texas A&M
University , Texakana , Texas

131 5-1515 TECHNICAL SESSION IV — ROOM 215

CHA IRMAN : Dr. Walter Pressman
US Army Electron ics Command
Fort Monmouth , New Jersey

ON THE GENERALIZED FELLER EQUATION
Siegfried H. Lehni gk, US Army Missile Comand ,

• Redstone Arsenal , Al abama

A PERTURBATION METHOD FOR FREE BOUNDARY PROBLEMS OF
ELLI PTIC TYPE

B. A. Fleishman and Thomas 3. Mahar , Department of
Mathematical Sciences , Rensselaer Polytechnic Institute ,
Troy, New York

CONSTITUTIVE EQUATIONS FOR TWO-PHASE FLOW
Donald A. Drew, Department of Mathematical Sciences ,
Rensselaer Polytechnic Institute , Troy, New York

DETERMINATION OF PROPAGATION CONSTANTS IN SCATTERING FROM
DIELECTRIC—COATED WIRES

Leon Kotin, US Army Electronics Comand, Fort Monmouth ,
New Jersey

1515-1530 BREAK

1530-1630 GENERAL SESSION II - ROOM 240

SPEAKER : Professor Joh n Buckmaster
Mathematics Department
University of Illinois
Urbana , Illinois
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Wednesday PM

GENEk,~L 5ESSION II — ROOM 240 (Continued )

TITLE: Unsteady Problems in Combustion Using
Act ivation Energy Asymptotic

CH~:RMAN : Dr. Donald Eccleshall
Chief , Applied Mathematics and Science Lab
Ballastic Research Laboratory
Aberdeen Proving Ground , Maryland

Wednesday Evening

BANQuE r - OFFICERS ’ CLUB

SPEAKER: Professor George H. Handelman
• • Dean , School of Science

Rensselaer Polytechnic Institute
Troy , New York

MASTER OF CEREMONY: Dr. F. W. SCHMIEDESHOFF
Director of Research , Watervliet Arsenal
Watervliet , New Yor k

Th ursd a~~~l3 May 1976

0800 BUS FROM HOLIDAY INN TO WATERVL IET ARSENAL

0830-1030 TECHNICAL SESSION V — ROOM 240

CHAIRMAN: Dr. Alma Gray
Physical Sciences Division
Benet Weapons Laboratory
Watervliet Arsenal
Watervliet , New York
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0830-1030 ~~ HNICAL SE SSION V - ROOM 240 (:ontinued)

‘THE STRUCTURE OF GROUPS WITH INDEX -3 SUBGROUPS AND
LANDAU ’ S SECOND THEOREM

L. V . Meise l* , D. NI . Gray* and E. Brown**
*Benet Weapons Laboratory , Watervliet Arsenal ,
Wat erv liet , New Yo rk

**Departrnent of Physics , Rensselaer Polytechnic
Institute , Troy, Ne~ Yor k

PHASE- SPACE TRANSLATIONAL AND PERTURBATION METHODS IN
NONRELAT IV I STIC QUANTUM ELECTRO DYNAMICS AND THEIR

• APPLICATI ON TO LASERS
R. A. Shatas , S. S. Mitra , an d W. C. Henneberger ,
Quan tw’ Physics , Physical Sciences Directorate ,
Redstone Arsenal , Al abama

A MODEL FOR SHOCK INDUCED PHASE TRANSFORMATIONS
Paul Harr i s , Concepts and Effectiveness Divisi on ,• Pica tinnv Arsenal , Dover , New Jerse y

BiFURCATION PROPERTIES OF LASER MODEL HAMILTONIANS
Charles M . Bow den and R. Gi lmore , Quan tum Physics ,
Physi cal Sc i ences D i rectorate , Redstone Arsenal ,
Ala bama an d Ins titut de Physiq ue Th~orique , Universite

• 
de Louvai n , 8-1348 Louvain -La-Neuve , Bel g ium, respectively

• 0030-1030 TECHNICAL SESSION VI - ROOM 215

CHAIRMAN : Dr. Sieg frie d H. Lehn ig k
Physical Scien ces Direc torate
US Army Missi le Command
Red s tone A rsenal , Ala bama

A PULSATING REACTION FRONT IN SOLID FUEL COMBUSTION
B. 3. Matkowsky and G. I. Sivashinsky , Department of

• •I- Math emati cal Sc i enc es , Renssela er Polytechnic Institute ,
Troy, New York

STABILITY THEORY FOR SIMPLE FLUIDS
M. Slemrod , Depar tment of Mathema tical Sciences ,
Rensselaer Polytech nic Institute , Troy, New York
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Thursday AM

0830-1030 TECHNICAL SESSION VI - ROOM 215 (Continued)

EXACT METHODS IN HEAT TRANSFER PROBLEMS
John F. Polk , Detonation and Defl agration Dynamics
Laboratory, US Army Bal li stic Research Laborator ies ,
Aberdeen Proving Ground , Mary land

EXTREMUM VARIATIONAL PRINCIPLES FOR LINEAR DIFFUSION-
• TYPE EQUATIONS

Ben Noble, Mathemati cs Research Center, University
of Wisconsin , Madison , Wisconsin

1030-1045 BREAK

1045-1145 GENERAL SESSION III - ROOM 240
4 1

SPEAKER : Professor Thomas Kai lath
Department of Electrical Engineering

• Stanford Univers ity
Stanford , Cal ifornia

TITLE: A RETURN TO INPUT-OUTPUT METHODS IN
STATISTICAL SYSTEM THEORY

CHAIRMAN : Dr. Merl e M. And rew
Head, Mathematical Sciences Division
Air Force Office of Scientific Research
Bol li ng A ir Force Base
Washington , 0. C.

1145-1300 LUNCH (OFFICERS ’ CLUB)

• 
1300-1515 TECHNICAL SESSION VI I - ROOM 240

CHAIRMAN : John F. Mes call
• Army Material s and Mechanics Research Center

Wa tertown, Massac husetts

FINITE ORTHOTROPIC PLATE WITH CIRCULAR HOLE LOADED BY
FRICT IONLESS RIG ID INCLUSION

K. R. Gandhi , Army Mater ials and Mechan ics Researc h
• Center, Watertown , Massac huse tts
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Thursday PM

1 300-1515 TECHNICAL SESSION VII - ROOM 240 (Continued)

AN EXACT SOLUTION TO AN ELASTIC-PLASTIC DEFORMATION
• PROBLEM IN A RADIALLY STRESSED ANNULAR PLATE

Pe ter C . T. Chen , Benet Wea pons Laboratory , Waterv llet
Prsenal , Wa terv l i et , New York

A PROBABILISTIC THEOr. OF THE INTRINSIC TIME TO FRACTURE
K. C. Va lan is , Division of Materials Engineering,
Universit y of Iowa , Iowa City , Iowa

FINITE ELEMENTS FOR ELASTIC-PLASTIC ANALYSIS AND ITS
• APPLICABILITY TO DUCTILE FRACTURE

T. P . Rich , Army Materials and Mechanics Research
Cen ter. Wa ter town , Massachusetts

AN EFFECTIVE STIFFNESS VISCOELASTIC COMPOSITE BEAM THEORY
• Charles R . Thomas , Benet Weapons Laboratory , Water-

v l i et Arsenal , W aterv liet , New York

1300—1515 TECHNICAL SESSION V III - ROOM 215

• CHA IRMAN : Dr. Leon Kotin
• Communication/Automatic Data Processing Lab

• US Army Electronics Command
Fort Monniouth , New Jersey

USING FAST TRANSFORMS TO COMPUTE THE WEIGHT DISTRIBUTION
OF A LINEAR CODE

Bart F. Rice , National Security Agency , Fort Meade ,
Maryland

FACTORIAL AND HADAMARD SERIES FOR BESSEL FUNCTIONS OF
ORDERS ZERO AND ONE

Alexander S. Elder and Emma M. Wineholt , US Army
Ballis tic Research Laboratories , Aberdeen Proving
Groun d , Mary lan d

ON A CLASS OF FINITE AND INFINITE NONUNIFORM CONTINUED
FRACTIONS

T. N. Lee and C. C. Yang, Department of E.E. and C.S.,
The George Washington University , Washington , 0. C. and
Appl ied Mathematics Division , Naval Research Laboratory ,
Washington , D. C., respectively

4;
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Lhursday PM

1 300—151 5 TECHNICAL SESSION VIII - ROOM 215 (Continued )

AUTOMATIC NUMERICAL INTEGRATION USING VP-SPLINES
Royce W. Soanes , Jr., Benet Weapons Laboratory,
Wa terv li et Ars enal , Wa tervl iet, New Yor k

TIME EVOL UTION OF AN ORTHOGONAL MATRIX
James M. Wilkes , Army Materiel Test and Evaluation
Directorate, White Sands Miss i le Range, New Mex ico

151 5-1530 BREAK

1 530-1630 GENERAL SESSION IV - ROOM 240

SPEAKER: Dr. Hans S. Bueckner
Turbine Department, General Elec tric Company

• -

~ Sc henec tady, New York

TITLE : Three-Dimensional Cracks and Weight Functions
• 

. CHAIRMAN: Professor Ben Noble
Di rector, Mathematics Researc h Center
University of Wisconsin
Madi son, W iscons in

*****************************************************************************

Friday , 14 May 1976

0800 BUS FROM HOLIDAY INN TO WATERVLIET ARSENAL

• 
•
~~~. 0830-1030 TECHNICAL SESSION IX - ROOM 240

CHA IRMAN : Dr. San-L i Pu
Applied Mathematics and Mechanics Division
Benet Weapons Laboratory
Watervliet Arsenal
Waterv liet , New York

‘S
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Friday AM

0830-1030 TECHNIC AL SESSION IX - ROOM 240 (Continued)

THE BUCKLING PRESSURE OF AN ELASTIC PLATE FLOATING ON
WATER AND STRESSED UNIFORMLY ALONG THE PERIPHERY OF AN
INTERNAL HOLE

Shunsuke Takagi , US Army Cold Regions Research and
:i En gineering Laboratory , Hanover , New Hampshire

NONLINEAR THEORY OF THE RESPONSE OF PAVEMENTS TO
VIBRATORY LOADS

Richard A. We iss , US Army Engineer Waterways Experiment
Sta tion , Vicks burg, Mississippi

STABILITY ANALYSIS OF A HIGH-SPEED SLIDER-CRANK MECHANISM
W T T H A N ELASTIC CONNECTING ROD

Shih -Chi Chu and K. C. Pan , GEN Thoma s J. Rodman
La boratory , Rock Island Arsenal , Rock Island , Illinois

CHARACTERIZATION OF BEHIND ARMOR EFFECTS FOR LONG ROD
PENETP~~U~SVictor D. Makj , US Army Ballistic Research Laboratories ,

Aberdeen Proving Ground , Maryland

3830-1030 TECHNICAL SESSION X - ROOM 215

• CHA IRMAN : Dr. Badrig M. Kurkjian
US Army Material Development Readiness Comand
DARCOM

• A lexandria , Virginia

STABILITY OF SOLUTIONS OF THE LINEAR COMPLEMENTARITY PROBLEM
• Stephen M. Robinson , Mathematics Research Center ,

Universit y of Wisconsin , Madison , Wisconsin

MODELS OF SYSTEMS AND TACTICS IN COMBAT
Roger F. W i l l is , US Army TRADOC Systems Analysis Activity ,
W h ite Sands Missi le Range , New Mexico

LVALUATIO N OF SEVERAL “BEST FIT” METHODS AS THEY PERTAIN TO
THE SUPERPOSITION OF SOLUTIONS IN A MULTIPOINT BOUNDARY
VALUE PROGRAM

• John Wal ker and S. Bart Childs , Intern Training Center,
DARCOM , Alexandria , Vir ginia and Texas A&M Univers ity,
Texakana , Texas
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Friday AM

0830-1030 TECHNICAL SESSION X - ROOM 215 (Continued)

A STATISTICAL STUDY OF NUMERICAL ANALYSIS APPLIED TO
THE REGRESSION OF N-th ORDER DIFFERENTIAL EQUATIONS

Crai g D. Hunter and S. Bart Childs , Intern Training
Center , DARCOM , Alexandria , Virginia and Texas A&M
University , Texakana , Texas

1030-1 045 BREAK

1045-1145 GENERAL SESSION V - ROOM 240

SPEAKER: Professor James Ri ce
Engineering Division
Brown University
Providence , Rhode Island

TITLE: RECENT DEVELOPMENTS IN THE THEORY OF
ELASTICITY AND RUPTURE OF FLUID
INFILTRATED SOLIDS

• 
CHAIRMAN: Dr. Robert E. Weigle

Director , Benet Wea pons Laboratory
Watervliet Arsenal
Watervliet , New York

1200 ADJOURN
~ 1
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STATE OF STRESS IN THE NE I GHIsO R H O OD
C. 

*OF A SHARP CRACK TIP

A. Cemal Eringen
Princeton University

• ABSTRACT

Field equations of nonlocal elasticity are solved to determine the
• state of stress in the neighborhood of a line crack in an elastic pla te

• subject to uniform tension perpendicular to the line of crack at infinity .
It is found that no stress singularity is present at the crack tip. When

• the maximum hoop stress is equated to the cohesive stress Griffith criterion
of fracture is obtained with the Griffith constant fully determined .
Cohesive stress necessary to break the atomic bonds are calculated for
AL, Ni, Fe , LIF , Diamond and Zn. The results are In excellent agreement

• with those known in the atomic theory of lattices and experiments.

1. INTRODUCTION

The determination of the state of stress near the tip of a sharp crack
in an elas tic plate subject to uniform tension perpendicular to the line
of crack at inf ini ty ,  Fig. 1, is one of the  most fundamental problems in
fracture mechanics. The solution of this problem was first given by Ing lis
[19131 and it was used by Griffi th [1920] to establish his celebrated
cri terion for fracture of solids. The classical elasticity solution of
this problem gives a hoop stress with a /r singularity near the crack tip,
where r is the distance from the crack tip. Thus , according to classical
elasticity the stress is infinite at the crack tip for  even a min ute
amount of applied tension . Since a p la te wit h a sharp crack possesses a
certain amount of resistance to fracture until the app lied tens ion , to ,reaches a cri tical valu e de te rmi ned by the so—called Griffith criterion

(1.1) t
0
2Z C

G

where £ is the half crack length and C is an experimental constant (Griffith
• . constant), it must be concluded that c~ assical ela st icity solution fa i ls

to apply near the crack t ip. T h i s  conclusion is responsible for the abandon—
men t of max imum stress hypothes i s for f a i l ure which  has been promi n en t in
structural mechanics. Consequently, for brittle solids , since the time of
Griffith , two distinct fra& - tuie criter !a have been i . use , one fo r
structural members with no cracks and one for those containing cracks, in
fact, the state of the art is more involved , fa r  beyond this  d i c l i o t  only , and
many other f r a c t u r e  c r i t e r ia  have been i n t r o d u c e d  b y o ther  authors  to ov~’ i —

f *The presen t work was suppor ted by The Arm y Research O f f i c e  at Dur 1iai~ .

General l ec tu re  present ed (under the t i t le  of “N o n l o c a l  N i a s t  i c i t y
~~ and F r a c tu r e  Mechanics”) at the 22nd Conference of A m y  M~it 1ien’it i ian s ,

• Maggs Research C e n te r , ~aterv 1i  et Arsenal  , ‘.~~tcrv l  i et  , NY , Nay 1 ~— 1 
‘i , i9 7 6
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• come this stress singularity (e.g., J—In tegral , Barenblatt theory [1962]
Khrjstianowich [1955] —D ugdale theory [1960], Good ie r & K ann in cn loca l l y
nonlinear theory [19661, etc.). Below we give a brief discussion of
these t heo r i e s .  A t h orou gh  d i scussion  of the  s t a t u s  of the  a r t  is to  be
found in Good i~ r ’s [1968] article.

G r i f f i t h  C r i t e r i o n . G r i f f i t h  assumes t ha t  the work done to extend a
l i ne  crack of l eng th  2~ an amount  of 2d~ must  be equal  to the  work of
the s u r f a c e  tens ion . In t h i s  way he a r r i v e d  at the f o r m u l a  (1.1) w i t h

2E(1.  2) C~ n( 1—v ” ) ~

where F is the Young ’s modulus , v is the Poisson ’s ra tio for an i so t rop ic
• elastic plate and y is the surface tension energy . The surface tension

energy y he emp loyed is that borrowed from fluid statics. In obtaining
• (1.1), the Inglis ’ solution for the elliptic hole was used wi th the

provision that in the limit the minor axis of the ellipse approach to
• zero. This theory has been under criticism for over half a century

nevertheless surviving all criticisms . Basic comp laints may be sum-
mar ized as:

(i) Crack tip stress is inf in i te no ma tt er how small the app lied load is.

• (ii) The crack opens up into an ellipse , so that the shear strain at
the tip is too large ( i r/ 4 )  for the linear theory to he app licable.

(iii) Ellipse shr inking to a crack may no t be “uniform ,” ma themat ical ly ,
i.e., other shapes may give different limits.

(iv) The surface tension energy -y borrowed from f lu id statics may
not he appropriate for solids.

Barenhlatt Model . To overcome the objections (1) and (ii) ~arenblatt [1962]
assumed tha t  the t i p region of the crack is not  free of t r a c tio n s  but  there
exis ts  a “cohesive s tress , ” o(x ) , d i s t r i b u t e d  in  such a way as to b r i ng  the
crack ti p to a cusp,  Fig.  2.  He then determined the shape of o ( x )  to
ach ieve  the  cusp fo rm.

Kh r i s t i a n ow i c h— D u g d a l e  Model .  Khr i s t i a n o v i c h  [19551 and Dug dale  [1966 1
assu ned t h a t  beyond t h e  c rack t i p  over a small  length  s there  is a
constant cohesive stress distribution to close up ends of the crack ,
Fig . 3.

Clearl y both  B a renb la t t  and Kh r i s t i anwich—Dug da le  t heo r i e s  are
o b j e c t i o n a b le  for  t he i r  uses of h eu r i s t i c  a s sumpt ions  not j u s t i f i a b l e  on

• th e  ba s i s  of any phys ica l  p r inc ip les  or exper imenta l  work .

(‘o~ d i ’ - r - -Ym ~n m e n  M od el . Accord ing  to Coodier  and Kaon inen  [1966]  the
a tom c i l i t e r a c t  i o n s  arc im p o r t a n t  at the  ti p of a cri ek. In order  to
O’• e l O O i ~~O I 10 ohj ~~c t i o n  ( i i i )  they usc non i  incar sp r ing s  a l o n g  the  t i p
of t h e  cr~ie~:. The ox tent  of n o n l i n ea r  spr ings  and t h e i r  p r o p o r t i  c~; nrc
l~ It to our d i s er et  ion . W h i l e  t h e  b~ s I c  idea of m c i  u s ion  of long  r ange
t n t  r a t o ~ i c  m t  e r act i  oIl ; ar e  wo i t hy  of c ar e f u l  a t t e n t i  on t h e  i i o de l  c e n t a i r n

1 : ~ ~~ f ;,c tor I ;  and f t i n c t  ionn t o  ho f i  x d  to  s u i t  I l i e  p u r p o se .

2
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Remarkably common t.o all these models is the unequivocable realiza—
çion that nenz r the ~~~~~~~~ tip interatomic cohesive forces rn~.nt 2 e
l-rnporta nt.

There exist s olu t i o n s  of Inglis ’ problem by us ing  po la r  theor ies ,
e.g. , couple stress. theory (Sternberg and Muki [ 1 9 6 7 ] ) ,  m i c r o p o l a r
theory (Kim and Eringen [1973]). These results also contain the same
type of singularities and therefore no further progress is possibl e on
these grounds.

Recen tly we have developed a continuum theory that takes into
accoun t the e f f e c t of long range in tera tomic a tt rac tion s. According to
th is the ory the stress a t a poin t of an elas tic sol id is in f l~~ ncccI by
the  s t r a ins  at all  points of the body. Al.l known phy s i c a l  and t h i e r m o —
d ynamic p r i n c i p les were s a t i s f i e d  ( c f . ,  Er ingen[ 1972a ,h ] ,  E r ingcn  &
Ede len  [ 1 9 7 2 1) .  When the  nonlocal  t h e o ry  is emp loyed fo r  the  s o l ut i o n
of the crack t i p  problem one f i n d s  t ha t  the s t ress  f i e ld  at the  c r a c k
t ip  is no longer singular and therefore i t  is poss ib le  to rever t  hack
to the maximum stress hypo thesis for fracture criterion. Remarkably
enough this theory not onl y gives G r i f f i t h ’ s c r i t e r i o n  w i t h o u t  any new
assumption but  also determines  the G r i f f i t h  c o n s t a n t .  In f ac t  the
cohesive stress calcu la ted for various ma terials are in excel lent
agreement wi th those known f rom the a t o m i c  theory  of la tt i c ;s and

• experiments. The main purpose of the p resen t  paper is an exposi t ion of
these resu l t s .

2.  BASIC EQUAT I ONS OF NONLOCAL ELASTICITY

-
~ • 

Basic equa t i ons  of l inear , homogeneous , isotropic , non i ocal e l a s t i c
solids wi th  vanishing bod y and i ne r t i a  forces  are ( c f . ,  Er ingen  [1972 1) ] )

(2.1) t
~~~~k = 0

( 2 . 2 )  t~~~ = J [ A ’ ( j x ’-x~ ) e, , (x ’) 
~~~ 

+ 2ii ’( ~ x ’ - x I )  ek~~
(x )]  d v ( x ’)

(2 .3 )  ek~ 
= ½(u k ,~ + U1:k )

~
: where the only d i f f e r e n c e  f rom c l a s s i cal  e l a s t i c i ty  is  in the  s t r ’~s

constitutive equations (2.2) which  s t a t es  t ha t  the s t ress  t 11 (x)  at  a

point x depends on strains , e~ p (x ’)  , at. e77 points of the  b~~ly .  For
U homogeneous and i so t rop ic soii~1s the m a t e r i a l  m o d u l i  A ’ ( j x ’ — x I )  and

ii’ ( x ’— x j  ) are functions of the distance between t h e  p o i n t s  x ’ an~h x .
The integral in ( 2 . 2 )  is over the volume V of the body enclosed -:~ t h i  in
the sur f a c e  ~ V .

Here and t h r o up h c ~ut we emp loy  C ar t e s i a n  t rnso~ wi t i l  a t  ( 1
indices tha t ind ica te s~s nuit. i on over th e range  (I , 2 , 3) and i~~ Li e-
following a corr’xi partial differ ent atlon , \- ‘I t hi respect to si • cv
coordinates , e.g.

~ ~~~~~~ ~~~

r - - - •

~

---- — 
~~~~~~
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~~
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~~ 

•
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In our p r eviou s work [l972f~, 1974] we have o b t a i n ed  t h e  form of A ’ ( j x  ‘ — x l )
and ii ’ ~ x ’ — x l )  for which the dispersion curves of p l a n e  waves coincide
with those obtained in Born—von Kirm Th theory of Lit  t ice d y i iam i  cs within
the entire Brillouin zone. Accordingly

(A’ , ji ’) =  (A ,ji) a (lx ’—x I )

(2.4) a (a — Ix ’— x l )  , 
~x ’ —x~ a

a ( l x ’ -x l )  =
- 0 , f x  —x l > a

where a is the lattice parameter A and classical Lame constants and
a is a normalization constant to he d e t e r m i n e d  f r o m

(2.5) J a ( l x ’-x I )  dv(x ’) = 1

Since the nonlocal effects are most important along the  ech ge of the  crack
we usc (2.4) and (2.5) at x2 = 0 to determine ct~ . This gives a

0 = C/li a 3 .
Upon Carry ing (2.4) into (2.2) we will have

(2 .6) tke = I n ( l x ’ -x l )  o
k~~
(x) dv(x ’)

where

( 2 . 7 )  okt ( x )  X e,~~(x ’) 6k~ 
+ 2v ekC ( x )

is th e classical Hooke ’s law.

Substituting (2.6) into (2.1) and us ing  the  i d e n t i t y

~~~~~~ 
G
k~~
(
~~
) = a x k ,  o~~~(x ’)

— — ( a  eke ) k ’ + °k~ ,k’

and Green—Gauss  theorem we ob ta in

( 2 . 8 )  ~~~~~~~~~ o~~(~’) da
k
(
~~

’) + J ~~~
(l

~~~~~~~~
)
~~
l)  ok~~ k t ( ~~~

) dv ( x ’) 0

There  t h e  ~u r f c c c  i n t eg ra l  may be dropped i f  the e f f e c t  of the s u r f a c e
t ens ions  ;ire n eg l i g i b l e  or t he  bod y ex t ends  to i n f i n i t y  in all  d i r ec t i o ns .
We a s s i t n e  tI~ is is t h e  case so t h a t

(2 .9) J ci ( Ix ’-x l)  ul f k ~~
(
~~~

) d v ( ~~’) 0

it is no t  d i f f 1 c t i l ~ t o  prove t h a t  i f  s~~l x ’— x j )  ha l ;  a b o u n d e d  .S t t p i 1 aci d
°k (‘ k ~~ cen t  i n c t o u s  in  1’ thc (-n t he ne -es ;- c r y  and ~; c t  fli ri ot  conch i t  i.1 -n for
( 2 . 9 )  to he s a t . i s f i -h is , c i . ,  Er i . n~-cn  [ 197 ( 1

( 2 . 1 0 )  °Ii ,k =

1:



- - - — --•=—-- - - -- —.=—---..— - -•- --.—-•,--—
~

-—-‘ 
- —,—-—----•~ — -----•---• ---——,w -~—~~-~~_--~ —— ~•_-~~~~ •- -- -• —

Equat ion  (2 .10) t oge the r  w i t h  ( 2 . 7 )  are none other than Navier ’s equation
for  the d isplacement  f i e l d  u( x)  . From th is resul t it f ol lows tha t

TJ ceooer ~t. The / i sp  / o st J o  1 2  of  the non /O o J 7- c 7aetici I p (wI / - i- the
~osI i tiono at  ~ 1 - 1  al-wee) sat ~~~~ ~

1W ; ( l ~ cqu z ~ los.

For the di sl)l accment boundary—v alue problem (1st boundary—value problem)
this impl ies t h a t :

CoroZ lary . The 7i sp  7 5 s - ’r Sn l  f~~- id of  the ~~ ra t hose- 7 ø”i value r-~ 
j 7  ,‘;

the ~ ‘5  705 7- a ‘as t~~e 1-~ is b /sn I- -lea 7- to tha t a the (-Za saj oa l  ~ las t - ‘~l I

Note , however , t h at  to obtain the stress field we mus t  s u b s t i t u t e
obtained from the classical theory into (2.6) and carry out the v o l u m e
i n t egr a t i o n . Thus , fo r  bounda ry  c o n d i t i o ns  on t h e  tractions we must employ

(2.11) tk~
fl k = t~ Ofl ~V

on tha t par t of the sur fa ce 
~~~~~ 

where the trac tion t~ is prescribed .

3.  FZ PROBU~M

Consider a p la te  weakened by a sharp l ine  crack of length 2L The
plate is subject to a uniform compression to a t the crack sur f a c e and
f ree  of t r a c t i o ns a t  i n f i n i t y .  The displacement  f i e ld  = u ( x ,y) ,
u2 = v(x,y) in the upper h a l f  p l a n e  y > 0 are given by the classical
elasticity solution (ci., Sneddon [1951 , p. 40 4 1) .

(3 .1) 

= J ~ A(k)  + (I ’ i~~~ 
- 

~
-
~
) B(k)] exp(-~ k~ y - ikx) dk

v = 

~ J [~<~ + y B ( k) ]  exp ( - ik ~y - ikx) dk

where A(k) and B(k) are two f u n c t i o n s  to he determined from the boundary
conditions at y = 0. These conditions are:

t yx = 0  , y = O  ,
( 3 . 2 )  t

yy = ~t0 0 lx i

v = 0  , y O ,
To obtain the  s o l u t i o n  of the crack p r o b l e m  w i t h  c rack  s u r f a c e  f ree  of
t rac t ion s  and the p l a t e  is sub jec t  to a u n i f o r m  t e n s i o n  t~~, = t 0 a t  y =
(Fi g. 1) to the  so lu t ion  of the  above problem we sup c ’r i mp bsc’ a u n i f o r m
stress field t = tyy 0

Substituting (3.1) into (2.3) and (2.7) we calculate:
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o ( x ’,y ’) = - 

~ [i’ i A ( k )  - (
~~~ 

- IkIY ’) B(k) ]  exp( .-tkIy ’

— ikx ’) dk
(3. 3 ) 2ip I I k i X±2 c= - 

~~~~ J 
[
~ 
A(k) ÷ (k y ’ - --i--- ~~~~~~ 11(k)] e x p ( - l k ~ y ’

— ikx ’) dk

According to (2.6) then we have

t ( x ,y) = J J a ( l x ’-x~ ) o ( x ’,y ’) dx ’ dy ’ ,
(3.4) 

0-o~

t
~~~

(x
~Y) = J J a ( I x ’_ x l )  0

yx (x ’~ Y ’) dx ’ dy ’

Substituting (3.3) and (2.4) into (3.4) and after carry ing out in tegra t ions
on x ’ and y ’, we Set y = 0 i.n these equations and in (3.1)2 to form the
boundary conditions (3.2). As in classical treatment (3.2)1, can he used
to dc’teraine B(k) in terms of A(k). The process is lengthy and ted i ous.
We onl y give the  r e s u l t i n g  expression

(3.5)  B(k)  = k[(~- k 2 a 2 + 
~
-) cos(ka) + -~ ka sin(ka)

+ k~ a~ Si (ka)  - i~ k
3a3 - fl A(k)/[(~~ k2a2 ~~~~~

-
~
-

± -~ 2~T~~~ — -j~j  k
2 a 2 — ~- + ~~ k 1

~a u1)cos(ka)

-

~~~~~~~ 

ka -~~~~~~ -~~ - -
~~~~ ka + ~~ k3 a 3)sin (ka) + k 3a 3

+ .
~~~~

- k 5a~ ) S i (J a) — -~- iv k 3a 3 -
~~~~~~

--“- — -~ ~~~~~~~~~~

— —~-- iv k5a 5 +I. 40 5
U

where  Si(z) is the sine integral. de f ined  by

S i (z) 

~
- J ~~~~~~~~~~~~ dt

0

W i t h  B (k )  g iven  b y (3 .  5) , the  b o u n d ar y  Cood i t i o n  (3. 2)
i is s a t is f i e d  and

~nd ( 3 . 2 )
3 I c-a d to

r 
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r (2/ir) 2 J A ( k )  cos(kx)  dk = 0 , x
0

(3.6)

- ( 2 / i v )~~ J k ~ (ka) A ( k )  cos (kx)  dk = T , x ~

where

- 

(3 .7)  T t (A + 2 p ) / 2 t t ( A + t i )

- 

~ 
{ [(4 k 2 a 2 + -

~) cos(ka ) + 4 ka sin (k a )

+ 4 k~ a 3 Si ( k a )  - ~~i v k~ a~ - 4]2
[(

J 1 5a 5

+ -~- k~ a 3 — 

~~ 
k 5a 5 

~—~ -~- - -~- k~ a 3

+ k 7 a~ cos (ka)  + (4 k ’~a ’~ — -j~ 
k 1

~a~

+ k~ a 6 
~~~~~ 

s in ( k a )  + (4 k 6a 6 ± k 8a 8 
~~~

-) Si (ka )

— ~~i T k 1a 6 — k~ a 3 — k 8a 8 -~~-~-- + -~- k 3a 3

The dual i n t e pr a l  equa t i ons  ( 3 . 6 )  must ho solved to  det:ermine A(k)
- When this is clone , we w i l l  have t h e  problem solved .

— 
It  is i n t e r e s t i ng  to no te  tha t  in t h e  c o n t i n u u m  limi t a - -~ 0

- ‘ a —* 1 and ( 3 . 6 )  revert  the  chual  in tegca l  e q u a t i o n s  o b t a i n ed  in c l a s s i ca l
e la st  i c i t y  fo r  ~h~e same p r o b l em . Wi t ic  a comp l i c a t e d  kerne l  f u n c t i o n  ~ (ka )
the  sol ut i on  of ( 3 . 6 )  cannot :  he a f f e c t e d  in d osed f o r m . hlce-icvc r ,

- - can take  a d va n t ; i g e  of the known c l ;i s s ica l  solut ion to  re d uce the  p r o b l e m
to a Fre ch i i o lm j n t e g r a l  ed luat  ion ~ h i i cli is m ore  amc-n ah ]  e to  nnmci r i  cal
t r ea tmen t  . To this end l e t  Ac (k) d e n o t c  the  solut. ion of the  dual  m t  e~’ r a l

- 
equat ions of the  c l a s s i c a l  t heo ry

‘7( 2 / u )  2 j A (k) cos (kx) dk 0 , cx >

0
(3 .~~)(2 / iv Y 2 j 1: A f t )  cas( i s : )  dk T , x < £

St ’h t r a c t  i c c - . (3 .8 )  150;-; ( 3 .6 )  we w i l l  hove

r J [Aft ) —

. 

A C :)]  cos ( lc~:) dlc = 0 , x > C

~ J k [ A ( ’,:) — A C ) ]  e c o f t - : )  di-: — J 1: [ l — (k :~) ]  1( k )  c o s ( l c—- ) chic , 
. 

-
0 
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() 

-

‘
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Treat tug the r i .  g I it  — h and s ide of t hese  cqua t ia c ’~ 3S know n , wt -  copy t h e
scc i  c i t - i on of t 1cc -sc e q u t a t  i o ns  f r o m  Sneddon [ 1 9~~1 , p .  70]

A(k )  - A (k) (~~~2 / )  [J (kfl 
J 

( l r ~2 ) .  

~ J ~ [l - ~~(m ) 1

A f t )  c o sf t n~~) d:, dr ~ + k~ J (l~ c c~~) 2  du

i - ~ 
0

J ~ J [l-~~~ a)]  A f t )  cos (r ~~n u )  d~ (c
2J

1(fkn)dr]

where  3 ( z )  and j
1(z )  are Bessel f u n c t i o n s . A f t e r  c a r r y i n g  out i n t e g r a t i o n s

in y an~ u we obta ined the  fo l lowing  i n t egr a l  e qu a t i o n  of the  second kind

(3.9) A(s) - J ~ (~~7~~~2 ) l [ J o  T o  - ~ J o  3 0 ) ]

[i~~ (uic )1 A f t )  dn = A (s)

where

-

- s a k - t  , c-~~= ç t  , c a a / - C

(3.10) A( s )  a (2/ n) 2 [2jc (~ )/ C t ( -+2 i ; ) ]  A(k)  ,

A
c ~~ 

( 2/ 7 1 ) 2  [~ ( ± ~;) /U:’ t ~~+2 t i ) ]  A (k) = 
~~ ~~~

in  which  t h e  l a s t  equa l  i t  y f o l l o w s  f r o m  t h e  c la ss i c a l  s o l u t i o n  fo r  A
~ 

(k)
in t h e  ro se  of t = con s t .

0

-‘ t - 3ic-cc (3 .9 )  is so lved  f o r  A f t )  then  t h e  d i sp i a d - c  -oa t  and s t ress  f i c - I d s
f o l i o ’s f r c - a  ( 3 . 1 ) ,  ( 3 . 3 )  and ( 3 . 4 ) .  Aio i ;g  the crnck line (y = 0) these
arc g i ven  by

v f t , 0) [ 2 ;  (7~I p) / ( ;+ 2; )]/~~~f = J A ( s )  - o s ( 7 )  de

t 
(3.11) 

0

t ( ~ ,0) I t  t / s , f l )/ i :  = — J & ( r c )  A ( s )  cos(~~~) ds

~ : - ; / c
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The i n t eg ra l  eq u a t i o n  ( 3 . 9 )  is n o n — s i n g u l a r  for  a l l  c ~ 0. For c = 0
we have A(s) A ( s ) = J l (s ) / c . I t  is also c l ea r  t h a t  1—nC a )  = 0(i 2)
for  small - < 1 .  The sm a l l e s t  l eu ig t h i  cr a c k may be c o n s t r u c t e d  by one
m i s s i n g  a tom . Iii t h i s  case a = f and u = I . Th ins 0 c I for  a
mic ro—crack  of 100 at o m i c’ I e i c g t  h = 1/50. 1 t i s  thus  e xp o c t e d  t h i ; c t
the c o n t r i l cu t  ion of the  i n t e g r a l  in ( 3 . 9 )  w i l l  become app rec i  a b l e  o n l y
fo r  submic roscop ic  c racks  of few a t o m i c  d i s t a n ces .  In f a c t , th is t u r n e d
out  to  be the  case when ( 3 . 9 )  t-.- ; - s  solved by means  of e l ec t r o n i c  c o m p u t e r s .

The numerical calculations were carried out over a two Brillouin
zone, k = 2ii/a, by discretizing (3.9) over 150 grid points. The results
will  be repor ted  e l sewhere .  Uerc , however , we give son’c typ ical cases.
In fact , we have found that the classical solution A is p erf ectl y
satisfactory for 21~/n > 40 (still a submicroscop ic crack).

The stress concentration for the case when t i c s  c rack s u r f a c e  Is
free of traction hut the plate is subject to uniform tension t~~ = t 0
at infinity is given by

(3.12) P(x) = [t (x,0)/t ]  + 1

The fact that the classical solution A of the dual i n t e g ra l  e q u a t i o n  (3.8)
satisfies the boundary  c on d i t i o n s  ex t remel y wel l  fo r  2 C m  > 40 can be
seen from Fig. 4. For o ther  d e t a i l s  and error estimates dependin g on c
the reader is r e fe r r ed  to  E r i n g en , et al [1976] .

4 .  COh ESIVE STRESS—FRACTURE CRI TERION

The s tress concen t r a t ion  f a c t o r

(4. 1) C(v)  ( 2C/ ar 2  pft)

is shown in Table 1 for various Poisson ’s ratio v = X / 2 ( A + p) v a l i d  for
2 C/ a  > 100. It is clear t ha t  0 .676  < C ( v )  < 0 .845.  For v 0 .25 ,
C 0.713 for 2-C /a > 100.

By means of (4.1) we make t h e  f o l l o w i n g  very si g n i f i c a n t  observa-
t ions :

( i )  The s t ress  f i c - I c i  ba~~e’d on nonloca l  theory  has no s i n g u l a r i t y  so
long as a ~ 0. In the con t inuum l i mit  a — p 0 , and tile classical square
root singularity occurs.

( i i )  A niaxipccim st r c -ns  h y p o t h e s is  can now be used to predict thic -
f a i l u r e .  In f a r L , we s t a t e  t h a t  ‘~ ~~~ max = ~~~~~ - ‘ ‘

~~~ °

I h s  ri- -/ - osa e c i l  o, . From (3. 1) it t!u~’re-fore f o i l  s-:s t h a t

(4.2) t 2C = [a/2 C2 (v)] t 2 a C
G

T h i s  is t i l O  G r i f f i t h  c r i t e r i o n  for b r i t t l e  fraetur - , uith c - > , t ro h o c  fit
t h a t  the  ( 3r i f f i  t h u  c o n s t a n t  Ce-, is now f i u l  lv  deters; ~ 3 . l ’ i t c -  cs 1 n ’ l  y • no
(0/ ; ‘ ‘ ~ c o n s t an t  ( e . g . ,  su r f a c e  cc cc rgv  y )  occurs  in (4 . 2) ; c ; c ~ f r o :-  t he

~~ va lu e  of C~ i t  is c l ear  t h a t  i t  i S  11 n : i t o r [ ; c l  p ro pc r t v , i .e . , i is
kno wn once t ic e  c o h e s i ve  str e ’Sc ; t~~, l a t  t i e c  ~~i ran ; , - t e r  a , a nd t h e  Pr i ’ ’ c o c c ’ s
r a t i o  v are k uc nm .

~ 

1 IIIIITT



(iii) The ~‘ & ‘ r i  f i c ; u t .  i on  c c l  t h u r  f a c t  that fracture toughness , classical ] y
d~’f m c d  by K 1 c I ; I is a ‘-at i - r i  :11 p r o p e r t y  led many experinental ists
to carry out I c o g  ecc I a r d u o u s  e ’ x j o - r i  O c - i l t  s (cf . , Freed et al . [1971] ; Brown
flfl di ~ t r a w ]  t V  [ I  I) h o ]  . II (4  . : )  i s use d we see that

( 4 . 3 )  K 1 = (ii ( ) ‘  = C a / 2 )  t / C ( v )

1 S ~1idCc d a motor is I r i - p c - i - v V .

( i v )  Co h e s i v e  s t  r i o ;; nov kc - calculated for a given sol id  by use
of ( 4 . 2 ) .  C r1 f t  i t i c  o c i r l  c i re  ecc , ’rgy ~ a p p ear i n g  in (1 .2 )  has been the
su b j e c t  of a cr o ;c t  cl - S i  of e~:p e r i m en t a t i on . If  we equa te  (1 .2 )  to ( 4 . 2 )
t~ e cTh t a i n

( 4 . 4 )  Ky

where

(4.5) K = $C (v)~~/n ( 1-u )

C a l c ’ u l . c t i o n s  nov now he ca r r ied  out  fo r  v a r i o u s  m a t e r i a l s .  E m p l o y i n g
the  c x p c - r i i : o - n t ; u l  values l i s ted  in Table 2 , we have c a l c u l a te d  t~~/E based
on the  n o n l o c a l  theory . The r e su l t s  are recorded in t h e  next  t c c  t h e  l a s t
column of Table  2 .  The en t r i e s  in the  last column of th i s  t ab l e  are
the  e s t i m a t e s  of t~~/E based on a tomic  c o n s i d e r a t i o n s , Lawn and W i i s h a w
[1975 , p. 160] .

Th e- r c r or i - ; c b h y  close va lue s  ob ta ined  should he cons idered  to he
inc h r , ; t  ive of t I c ~ f a r  reaching  power ~~ t h e  non loca l  t heo ry .

A c k n c -~ l c d s n e c c t

I wish  to express  isv o ’ ; 7 r d - c I a t  ~~oO :cnd  t h an k s  t o  P r o f e s s o r  J .  Rice ,
Dr .  R.  Cliong cinc h Dr . C. Si ii  f or  so - : ; :-  ~‘a I n ab  I - d i s c us s i o n s  r eg ar d  lag
stir f a c e  en e r g y  and t o  Mr .  C. Sp -z i  O l d -  f o r  c - c : ; p e i t  cc work
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TABLE I .

Stress Concentration factor at Crack Tip

vs. l’oisson ’s Ratio (~?-~- = 100)

V C

0 .676

.05 .682

.10 .687

.15 .695

.20 .703

.25 .713

.30 .723

L .35 .743

.40 .764

h’~ .45 .796
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FIGURE 1

Elastic plate weakened by a crack
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-‘ , FIGURE 2

Barenblatt model assumes that cohesive norma l stress cY(x)
act at the tip region of the crack surface. The form of
cl (x) is to be determi ned to give cusps at tips.
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FIGURE 3
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Khristianowich -DUgdale Model
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BENDING OF A CRACKED STRIP INCLUDING
CRACK SURFACE INTERFERENCE

0. L. Bowie and C. E. Freese
Army Materi a ls and Mech anics Research Center

Watertown , Massachusetts
Presen ted at the 22nd Con ference of Army Mathem at ician s ,

May 12-14
Wa tervliet Arsenal , Watervliet , New York , 1976

ABSTRACT. In the analysis of cracks lying in a compre ssive stress
field , the classical solut ion of elas tici ty frequent ly yields unac ceptable
physical results - often predicting an overlapp ing of the crack faces . A
first order correct ion to these solu t ions can be found by admi tt ing crack
surface interference and searching for a physically compatible disp lacement
field.

The problem of a center (or edge) cracked strip under in-plan e bending
is solved from this viewpoint. A necessary condition for a physical ly  corn-
patible solution is shown to be the vanishing of the stress intensity factor
at the crack tip in the otherwise compressive field. Numerical results in-
dicate that the classical solut ion for the stress in tens ity factors at the
crack tip in the tensile field underest imates the corrected sol ut ion by
approximatel y ten percent .

1. INTRODUCTION. Every so often the simplifying assumptions of the
classical linear theory of elasticity can lead to mathematical solution s
which are physically unrealistic. We are familiar with the need for retain-
ing the non- linear terms of the strain-displacement relation s to account
for the instability or buckling phenomena observed in the beh avior of thin
shells . Another type of deficiency arises in the analysis of con fi gurations
involving cracks lying in compressive stress fields .

A simple example illustrat ing the subject of this investi gation is p ro-
vided by a rectan gular strip wi th a central crack loaded by a uniform uni-
axial compression normal to the direction of the crack , Fi gure la. Assuming
no fri ction across the crack surfaces , the obvious physically acceptable
solution for this problem predicts the tangency of the crack surf aces AOB
and AO’B with a stress state of uniform compression acting throughout the
strip and across the crack surfaces . Compare this solution with that of
reversing the si gns for uniaxial tensile loading - an assumption consistent
with the superposition argument of classical elasticity . Clearly the re-
sul ting infini te compressive stresses at the crack tips and the neg at ive
displacements predicting an overlapping of the crack surfaces (Fig ure ib)
arrived at by such an argument is a physically unacceptable solution of the
problem .

19



- -

1~ ~°y= -T , -
_________________ 

- -c v, -T

0’
0

A 
~~~ 

B A( “B
‘.-. -,

0

- ‘ 
-
~~~ I-o ‘

~
“0y

= -T I = -T

C ia) (lb) 
y

Figure 1. Central crack in rectangular strip under uniaxial compress ion,
ey = - T.

The “overlapping” problem illustrated above carries over, usually more
subtly, to a variety of crack solutions when a portion of the crack configura-
tion lies in a stress field which is compressive. A positive symptom of
overlapp ing in the vicinity of a crack tip can be inferred from the sign of
the stress intensity factor of linear fracture mechanics . If, for exampl e,
K1 (the conventional Mode I stress intensity component) is negative , then
there exists local overlapping at the crack tip.

A plan of modifying the classical solution by tolerating crack closure
but no overlapp ing is adopted in this paper. The problems corresponding to

- -  
internal and edge cracks in a strip under in-plane bending are analyzed from
this viewpoint and the “error” in the classical solutions is assessed.

2. CENTRAL CRACK IN AN INFINITE SHEET UNDER BENDING. First , we con-
sider the problem of a crack of length 2L with center at Z0 in art infinite
sheet under in-plane bending (Figure 2). When Z0 = 0, the crack is centrally

• located with respect to the applied load and crack tips A and B obviously
lie in compressive and tensile stress fields , respectively. We shall now
show that both the classical and the modified solutions of this problem can
be found by the Muskhelishvili [1] method of analysis.
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Figure 2. Crack in an infinite sheet under in-plane bending.

The Muskhelishvili analysis depends on the determination of two
analytic stress functions ~~z) and tp(z) with the stresses and displacements
def ined as

~ 
+ o = 2[~, ’ (z )  + 4 ’ ( z ) ]

— + 2iT = 2[~~~’’ (z)  + i~’ (z ) ] (1)

2~i(u + iv) K 4~(z)  - z c~’( z )  - 
~~~

‘
~

‘
)

where pr imes denote differen tiation and bars complex conjugates. The con -
stants t~ and K are defined as p = E/2(l+v) and K = 3-4v (plane strain) and
K = (3-v)/(l+v) (plane stress) where E and v are Young ’s modul us and Po isson ’s
ratio, respectively. —

For a plate with no crack , the stress functions

~(z) = iTz 2/8 , ~ (z)  = -iTz2/8 (2)
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yield the stress distribution

a = 0 , -r = 0 , a = -Ty (3)y xy x

wh ich is of course the des ired load ing for large I z i .

The phys ical region in Figure 2 can be described conveniently by the
mapping

z = w(~) = z0 
+ ~

la (L/ 2) (~ + (
l) (4)

The unit circle and its exterior in the t-plane are mapped into the crack
and its exterior in the z-plane. In particular , =l maps into the crack tip
A and ~ = -l maps into the crack tip B.

- The stress functions ~~z) and *(z) can now be considered as ~(~ ) and
ip (~~~) where 4’(z) now corresponds to ~‘(~ )/ w ’(~) ,  etc. Using the well-known

- - - 
continuation arguments of Muskhelishvili , the crack is traction-free if we
set

- -4

- 

~p(c) = - 

~~l/~) 
- ~~~~~~~~~~~~~~~ (5)

and the extended definition of 4(c) leads to a function continuous across the
unit circle. On the other hand , from (2) the loading Londitions at infinity
require

- ~(~ ) ÷ iTz2/8 ~T(L/32)[Li
2
~
a
C
2 

+ 4z9~
’
~~] (6)

- iTz2/8 - iT(L/32)[Li2’~~
2 

+ 4zi~~~

for large R I .

Conditions (5) and (6) are satisfied by choosing

= [iTL2/32} ~2ia~2 + 4(z
0/L)i

’
~~ - [~

_2ia 
- 2]~

_2 
(7)

+ [8i(~0/L) sin a + 4(z
0/L) ~C~Jç~~ ~

- 
~~

‘
. and this completes the formal solution .

3. ThE CLASSICAL SOLUTION WHEN z0 = 0. The classical solution for
the centrally located crack , z0 = 0, will first be considered. The crack
tip A lies in apparently a compressive field and we can anticipate a physi-
cal incompatibility of the solution .

‘ 4
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__

The stress in tens i ty , ~~~~~ at the crack t ip  A in general w i l l  be
made up of Modes I and II and can be calculated from

- i = 2~ ’(l)[~~~~ ’ ’( l )]  1/2

3/2 2 (8)
= - T(L /2)sin a(sin a + I cos a)

whence

~~~ = - (T /2 )L 3”2sin 3 
a

(9)
= - (T / 2 )L 3~

”2sin 2 
a cos a

Similarly,  at crack t ip B (corresponding to ~ - 1),

~~~ = (T/2)L 3~
’2sin 3 a

- 

( 10)

~~~ 
= - ( T/ 2 ) L 3”2 sin 2 

cx cos a

A clue to the unacceptability of the solution is negativeness of ~~~~

In order to examine the physical compatibility of the displacemen ts of
the crack surfaces , we introduce a (~~,r~) coordinate system where ~~

- and n
are along and normal to, respectively, the crack directi3n . Then

u~ + i u = £~~a(u + iv) = ~_ ia~ + (11)

for the crack boundary where a = L
10 

are points on the un i t  circle in the
~-p1ane. The condition for no “overlapping ” of the crack b oundaries can be
wri t ten  as

u (O ) - u (-O)  > 0 0 < B (12)

When z = 0 ,
1~~ 0

u (O) - u (-O) = (K + 1)TL 2
sin a sin 20[cos 2a - l]/l6~ (1 3)

which (except for the trivial cases cx o, r) clearl y violates the no over-
lapp ing  condi t ion (12) in the interva]  o < B < i i/2 .

4
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4. DETERMINATION OF A PHYSICALLY ACCEPTABLE SOLUTION. The plan for
determining a physically acceptable solution depends on admitting crack
closure over segments of the crack without overlappin~- . If the crack tip is
involved in the region of overlapping, as is the case in the presen t problem ,
a necessary condition for an acceptable solution can be expressed in terms
of the stress intensity factors from a consideration of the local stress
and displacement fields.

Consider the crack tip A and the displacements u~ and u~ to the first
order of the local crack tip expansion. A necessary condition for no local
overlapping can easily be shown , K1 > 0, from a consideration of u~. If,

- 
- 

in addition, we assume crack closure in the ne ighborhood of A, then a~ must
be non-tensile across this interval. Therefore, a necessary condition for a
physically acceptable solution is K1 = 0 at A. No claim as to the sufficiency
of this condition can be made as the stress intensity reflects only the
dominant term of the local solution . A solution arrived at on this basis
must still be tested for its overall consistency.

In the present case , we conside r z0 as undetermined and impose the
van ish ing of K 1 at A. Since

- iT(L 2/4) sin2a + (2/L) (sin a) Irn z ( 14)

it follow s that K1 = 0 at A if we choose

Im z - (L/2)sin a (15)

Although there are no restrictions on Re z , we choose z0 so that the crack
passes through the origin of coordinates , thus

• z0 = - (L/2)i~~ (16)

With th is choice of z0, we reexamine the non-overlapping condition (12).On the crack ,

2 . 3
U = (K + 1)TL 4 sin a sin 0(1 - cos 0)

2 2 
( 17)

I,. + cos a (1+2sin a ) ( 1 - 2 s i n 0 - 2 c o s O) /32p,

thus,

u (0) - u ( — 0 )  = (K + 1)TL2sin3a sin 0(1 - cos 0)/4p (18)
Ti Ti

wh ich clearly satisf ies ( 12) for 0 < 0 c ~~ and hence is a physical ly
acceptable displacement field.

The stress intensity factors in the present case are

. 4 
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- K~
2
~ -

1A - 2A -

- - 

(2) 3 / 2 . 3K 1B = TL sin a (19 )

= - TL 3~”~sin
2a cos ci

Furthermore , it is eas ily ver ified that the forces norma l to the segment AC
in Figure 2 are compressive.

It is clear that the present solution can be considered as a physically
acceptable solution for a central crack along the segment BC where closure
occurs on the segment AC. We do assume, of cours e , that the frictional
properties of the crack surfaces are consistent with a continuous displace-
Inent solution along AC , i.e. closure without slippage.

A comparison with the previously derived classical solution for a
centrally located crack can now be made by observing the change in the stress
intensity calculation at point B. The crack AC corresponds to a crack length
of 2L if an effective half crack length of 2L/3 is used in the calculation
of (19). Thus, the “corrected” stress intensity factors at B are

3/2.3K1B = T(2L/3) sin ci
(20)

3/2 . 2K.,,, = - T(2L/3) sin a cos a

Since

K lB /K ~~~ = K 2B /K~~~ = 2(2/3)3/2 (2 1)

- 

- the classical estimate of the stress intensity factor at B is in error on
the non-conservative side by approximately nine percent.

- --- 5. CENTRA L CRACK IN A FINITE STRIP UNDER BENDING. We consider, now ,
the more difficult problem of a central crack in a strip of finite width
under bending, Fi gure 3 , wh ere the solution cannot be found in closed form
and the previous arguments must be carried out numerically. For the con-
fi guration in Fi gure 3 , Benthe in and Koiter [21 have estimated the crack
tip stress intensity factors at B for the classical solu tion of the problem
by using an effective asymptotic argument.

‘ 4
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Fi gure 3. Central crack in a strip under bending.

The solution was carried out us ing the ~4v1C (Modi fied Mapp ing Collocation)
method combined with finite elements [3 , 4 ] .  This plan is based on “partition-
ing” the region and using a representation of the solution appropriate to
each sub-region . The boundary conditions along with appropriate “stitching”
conditions between the representations must be satisfied by the solution .
The details of this approach have been previously documented and will not be

• repeated here .

The partitioning plan is indicated in Fi gure 3. The reg ion MRS N was
described using the mapp ing function

z = + i(i/2)(ç + 1/c) (22)

which clearly maps the un i t  circle in the c-plane into the crack AB. A
series representation of the solution was chosen in the corresponding para-
meter region and traction -free conditions on the crack were enforced by the
continuation argument, e.g., Equation (5). The boundary conditions on RS
and MN and the stitching conditions on Rl~i and SN were imposed by the colloca-
tion arguments outlined in [4]. In t: complementary regions (the shaded 

-~~~~~- ~~~~~~~~ - - -~~~~~~~~~~~~ _ _ _ _ _ _
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areas in Figure 3) a finite element representation of the solution was taken.
Imposed on this representation were the appropriate stitching condi tions ,
traction-free boundary conditions and end loading,

ax = - (3M/2b 3)y (2 3)

Again , we seek a value of z0 such that the stress intens ity K 1A = 0
and the crack displacements and the forces on AC are physically compatible
with our argument. It was found that z0 can be determined quite readily by
iteration. From the infinite sheet solution, it is evident that for small
i/b ratios , z0= i/2. With this as a guide for the first approximation ,
only a few trials were required to find the proper value of z0 for successively
increasing values of i/b.

The numerical results are presented in Table 1. Again the results are
to be compared with the classical solution for the central crack, z0 0.
The effective half crack length, L, is evidently

L = i +  J z 01 (24)

Table l

“Corrected Stress Intensity Factors, K J B ,
for Central Crack in Strip under Bending

L/b i/b z0/b OA/b K1B K1B K1B

• ~~-3/2 ~~-3/2 K~~

0.1 0.067 -0.033 0.033 0.0259 0.0237 1.09
• 0.2 0.133 -0.067 0.067 0.0733 0.0672 1.09

0.3 0.200 -0.100 0.100 0.136 0.124 1.10
0.4 0.270 -0.130 0.140 0.213 0.193 1.10
0.5 0.340 -0.160 0.180 0.304 0.276 1.10
0.6 0.414 -0.186 0.228 0.417 0.379 1.10
0.7 0.492 -0.208 0.284 0.567 0.516 1.10
0.8 0.574 -0.226 0.350 0.796 0.727 1.10
0.9 0.668 -0.232 0.432 1.280 1.163 1.10
1.0 0.763* _0.237* 0.526*

*Extrapolated
**Benthem and Koiter [2]

It is interesting to compare the present results with the classical
resul ts K~~ of Benthem and Koiter. Within one percent, the classical solu-
tion underestimates the K 1B values by nine percent for all values of L/b.

6. MODIFICATION OF ThE ASYMPTOTIC APPROXIMATION. In [2], Benthem and
-~~ Koiter introduced a non-dimensional factor K by writing

27
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K 1 = K 3LM(aL/b ) 1/2 ,2 (b 3 
- L3) (25)

where K is a polynomial in L/b . An approximate solution for K was found by
order of magnitude considerations of the two limiting cases , L/b -÷ 0 and
a/b -

~ 0 .

- The modifications of their arguments for the “corrected” solution for
L/b ÷ 0 can now be carried out by using our solution for the central crack
in an infinite sheet. In particular, if the order of magnitude considerations

- - 

of [2] are modified by Equation (20), then, at the crack tip B,

- 
- KIB (2/3)312[3ML

312/2b
3
][i + 0(L4/b4]

(26)
for L/b ÷ 0

- 

From a comparison of Equations (25) and (26),

-
- 

- K (2/3)3/2 [l + (l/2)(L/b) + ( 3/8)(L/b ) 2 - ( l l/ l 6) ( L/ b ) 3

• - 

4 4 
(27)

- + O(L /b ] for L/b -* 0

For the secon d limiting case, a/b -÷ 0 , by using the anti-symmetry of
the cl assical problem and the “edge dam” solution , the authors of [2] found

1 K -
~ 2/(n

2 
- 4) 1/2 = 0.826 for a/b 0 (28)

• Unfortunately, due to the non-linearity of our present solution no such
limit can be rigorously argued. On the other hand, a reasonable estimate of

-- this limit can be found by extrapolation of the data. From Table 1, the
segment OA can be extrapolated as OA ÷ 0.52b as a/b ÷ 0. Furthermore, the
stress distribution a along the centerline from A to the edge is very nearly

- - linear. From equilib~ium conditions, it can be argued that the local stress
at B is nine percent higher than in the classical case. Thus,

K (l.09)(0.826) for a/b ÷ 0 (29)

(Al though (29) is an extrapolated estimate, it was verified that reasonable
variations in the approximation altered this result by no more than one percent .)

Therefore, the simplest polynomial interpolation between these asymptotic
- resul ts yields

K = (2/ 3) 3/2 [l + (l/ 2) (L / b)  + (3/8) (L/b ) 2 - (ll/16)(L/b )
3

It 
4 

(30)
+ .464 CL/b)

28 
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Equation (30) is identical with the K in [2] if (2/3)
3/2 were replaced by 1/2.

7. EDGE CRACK IN A STRIP UNDER BENDING . At about the same time as
• 

• the author’s solution [5], Paris and Tada [6) considered the solution for
- an edge crack in a strip under bending again allowing for interference of

segments of the crack surfaces , Fi gure 4.

M

~~~~~~~~~~~~~~~
i r1

_ _

Figure 4. Edge crack in strip under bending.

It is obvious physically that for C/W < 1/2, assuming no friction
between the crack surfaces , the adm iss ible solution is one which predi cts
the strip is in uniform bending with the crack surfa ces interferring and
carrying a compressive load. For C/W > 1/2, it is also clear that the
solution is iden tical to our results for the cen tral crack with a modif ied
interpretation of the parameters .

In Paris and Tada ’s analys is, the crack tip stress intensity, K, was
approximated by

= G(CJW)H(C/W) V~~ 
(31)

• where

G(C / W) = (2/ 3) 3”2 (2 C/ W)( l  - W/ 2 C) 3”2 (32)

‘-4
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based on the solution for a central crack in an infinite sheet under bending.
(Note that in Equation (31), the alternate introduction of ‘~/~Ein the
definition of stress intensity factors has been made.) The function
H(C / W) was taken as the correction for the effect of the finite width of
the stri p. Par is and Tada did not calcul ate H(C / W) exactly, ins tead , they
assumed an approxima tion ba sed on the finite width corre ction for a center
cracked finite width strip under tension . Their numerical results are
listed in Table 2.

The results which we have derived can be applied with the following
changes in notation .

L = a 1 = C - W/2

b = W / 2  (33)

a = b - L

L/b = 2(C/W) - 1 = A

- 
- ‘ M = (2/3)b2a

• K1 = K

Then ,

K / a  f~ = R ( A ) X 3”2 \/T~~~A/ ( l  - A3) ~IT7 5

where (34)

H R (A ) = (2/ 3)3/2[l + A/2 + 3A 2/8 - l1X 3/l6 + .464 4~

A comparison of the results is shown in Table 2.

Table 2. Values of K/a v~E

C/W A Equation (31) Equation (34)

0.50 0.0 0.0000 0.0000

0.55 0.1 0.0165 0.0164

0.60 0.2 0.0453 0.0445

0.70 0.4 0.129 0.118
It

0.80 0.6 0.259 0.217

-‘-4

30



—-— —-- -

The approximation_of H(C/W) used by Paris and Tada appears to exaggerate
the stress intensity K for the deeper cracks. For cyclic bending of an
edge cracked strip, the moment M contributes to the crack opening after the
crack has reached the half width of the strip. The K contributes for
further crack growth can then be determined from Equation (34).

8. OBSERVATIONS. The prob lem of “crack overlapp ing” occurs in several
of the classical analyses found in the literature . The results of this
investigation would appear to indicate that the errors so introduced are
sufficient to warrant a more careful consideration of such solut ions.
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SINGULAR I TY ANALYSIS BY THE FINITE ELEMENT METHOD
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SUMMARY

A finite element formulation is described for problems with solution
functions known to have local r A variation (s) ,  0<X<l ,and thus singular gradi-
ents . Special 3-node triangular elements encircle the singularity and focus to
share a common node at the singular point . The shape function of each triangle
has the appropriate rA mode and a smooth angular mode expressed in element
natura l coordinates . As with standard elements , the unknowns are the nodal
values of the function. Even if the precise angular form of the asymptotic

• solution is known, the formulation makes no attempt to embed it , but instead
piecewise approximates it. This allows assembly of the element coefficient
matrix using standard procedures without nodeless variables and bandwidth
complications .

The conditions of continuity, low order solution capability , and accurate
numerical integration of the singularity element are discussed with a view
towards establishing the general range of applicability of the formulation .

- - - 
Numerical applications to the elastic fracture mechanics problems of composite

• bondline cracking and crack branching are discussed.

INTROD UCTION

We are conside ring here the problem of attaining accurate numerical
representation of a function ~ (x ,y) when near discrete points in the domain 4
varies as r A , 0<X< 1. 

~
Standard shape functions cannot properly model the

singular gradient of r so our approach has been to design a special singularity
element. Beyond embedding the proper singularity into the shape function , the
usual questions of interelement continuity , constant state representation , and
accurate numer ical integration are addressed.

Interelernent continuity should be maintained 1 for ~ and its derivati ves
up to one order less than that occurring in the governing volume integral ,
denoted by I, of the problem . Subsequent ly , it will be shown that the
singularity element has ~ interelement continuity but no guaranteed con-
tinuity of ~ gradients across edges. Strictly speaking then , it is limited
to problems where I I (~, 34/s x.). For example, this is the
case in the potential energy formu’ation of elasticity where the governing

-It
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functiona t of displacement involves only first order derivatives. The

v i r t ual wor k formulation of plasticity is another such case with $
re presen t ing  the d i s p lacement increment .

The ot he r finit e element convergence ~riterion is that an

element should be capable of representing fields with constant values

of $ , or derivat ives of $ up to the orde~ occurring in I. This is

necessary because in the limit of vanishing element size , $ and its

derivatives should , within the element ,/equal the pointwise constant

va lues.  From a pract ical  standpoint the constancy condit ions are

important onl y when constant state conditions exist  over the f in i te

subdomain occupied by the element. The boundary conditions of a

singularity problem can cause smooth as well as singular $ var iations

ne ar the s ingular  point . The constancy capabi l i ty  of the elements at

the singular point is important only if the smooth terms are , on an element

average basis , comparable in value to the s ingular t e rms .  The element
• introd uced below has $ modes of the constant and r

X 
type. It does not

have the polynomial terms necessary to represent non-zero constant

de r iva t ives .  Since the s ingular  mode dominates the un i form mode as

the singularity is app roach ed , the lack of the latter mode is of d imin ish ing

consequence as element size is reduced , and thus convergence is achievable

in this sense. However it is clear that the element is not suited for problems

‘H without an “ac t ive ” singular ity.

FORMU LATION

The e lement descr ibed here  is a general izat ion of the s ingular

element sugges t ed 2 for  analys i s  of the r l h’Z e las t ic  c r a c k  t i p  s i ng ul a r i ty .

The element is a 3 node triang le, and has one of its nodes at the s ingular

point . The power form variat ion is chosen in the direction away from the

s i n g u l a r  point ; low order smooth variation is chosen in the  angula r  d i rec t ion .

Ft ~~ure la i l l u s t r a t e s  the modeling with one of a necessary group of triang les

t at the  s i n g u l a r  point , node I. The shape func t ion  is developed in t e r m s  o f t he

~~~~~~~~~ 
- --
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oblique coordinates ~, ~i which vary  over the r a n g e[0 , l]wi th in  the

element. The rad ial edges correspond to ~ = 0, 1. The ed ge ~ 0 is

actually a point - the singular point -and the far transverse edge is ~ = 1.

The transformation to cartesian coordinates follows

1 K
= ~~ . 

( 1 - ~) +
~~~~ . ~( l  - 

~,) + x ( 1 )

It is straightforward to show that ~ is always a linear function of r

t imes a t r i g onometric function of angular orientat ion within the element

and that ,~ is solely a tr igonometric function of ang le. As an example ,

the isosceles tr iang le of Fig . lb has the transformation equations

= (r cos 0) / x x/x
0 o

(2)

(tan 0/tana + 1) /2 = ( y/ x .x 0/y 0 + 1)/2

With ~ being a linear function of r , $ varies as r~’ w hen

terms are chosen in the shape functions; s uch a choice y ields the

interpolation function

= ~I 
~ 

- + $
3 ~X 

~ - ) + $K ~X 
~ (3)

For the isosceles tr iang le this corresponds to

( 1 - (x lx ) X ) + 1/2 ~3 ( I -  y/x~~x0/y  ) (x/x )X

(4)
+ ~~ (1 + y /x . x / y ) ( x / x ) X

By using a group of these elements about the singularity, the

angular form of the asymptotic solution is approximated in a piecewise
It smoot h fashion . The singular radial  variation is embedded throug hout

the region occupied by the elements.

On the radial ed ges $ is a two parameter function , e. g. on 13

35 
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= $
I 

+ ($ 3 - $
I
) ~~ (5 )

so that there is continuity of $ on these edges. On 3K $ is a linear

function of position which guarantees continuity with an element such

~s the bilinear isoparametric. Derivative continuit y across element

c-Ice s is not guaranteed so that, as previously discussed , the element

~itr ict ly app Lies only to those problems whose governing integrals are

independent of second and higher order $ derivat ives.

The element i~ capable of representing a constant $ cond ition

as can be seen by substitut ing a constant for the nodal values in the

interpolation function and observing that $ then equals the constant .

Without a linear term in the shape function the constant first derivat ive

condition cannot be met. In analysis of deformable solid s where $
w )uld be the displacement function , situations such as rig id rotation

and uniform thermal expansion correspond to a linear $ mode. The
e lement cann ot direct l y accommodat e t hese cases , but b y choosing a small

enoug h element the singular mode will dominate the exact solution making

the exclusion of the linear mode inconsequential.

• The singular nature of the $ gradients does not preclude the

possibility of accurate numerical integration in forming the coefficient

matrix . It is assumed from the outset that the r
X var ia t ion g ives r i s e

to an in tegrable  s ingu la r i t y .  Standard methud s of in t eg ra t ion  have been

developed for polynomial variations so that these can be used only for

the angular integration. In general the problem is to integrate terms of

the foriri

1 1
f J f (~ ) ~ d~ g (~ ) dii (6)

It 0 0

The determinant of the Jacobian , O(x, y) I ~j (~ , ti). accounts for the factor ~

of the inner integrand . For the examples below a 2-point Gauss rule was

used for the ‘~ integration. The form of f (~ ) must be scrut inized before

36
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choosing a ~ integration r ule . For elasticit y the g o v e r n i n g  int eg r a l is a

quadrat ic  function of the si-ape function first derivatives and this result s

• in
ZX - 2

f = ~~ (7 )

H ence

1 1
J f ~ dg = J - ~ d~ = l/2X (8)
0 0

- 
- 

For the elasticit y examples below , the numerical  technique employed to

- 
achieve precisely the result (8) was a specialized I-point rule: one

- integration station was used at locat ion ~ = (2X) 
1/ (~ - 2X) 

and its weight

was unity. It is easily appreciated that standard methods of integration

• can be very much in error for this problem, particular ly for X < 0. 5.

Hence, generally speaking, detailed investigat ion of f (~ ) is required

for design of an adequate integration procedure.

EXAMPLES

The examples are problems of elastic f r ac tu r e mechanics.  The f in i te

- - 
element approach employed was that based upon the princip le of minimum

- ! potential energy, so that $ of the last section now stands for the disp lacement

• vector function. The first problem is the bimaterial elastic strip with a

pressurized crack normal to and terminating at the bondline. mhe geometry i~-

illustrated in Fig. 2. The material on the left is cracked and designated as

material 1 with shear modulus and Poisson ’s ratio Q
1

; mater ia l

2 to the right has properties ~i 2
, 

~~ 
. Crack length, plate width , and

- 

height are related by a/b a/h = 1/9. The left end of the crack being

surrounded completely by one mat eria l is a s ingu lar p oi nt with dis p lacement

varying as r
h/2

. The bondline crack tip has a s ingulari t y dependent  upon

the birnaterial  elastic proper t ies .  Disp lacement va r i e s  a s r>’ with X ar
function of ~~~~~~~ and also the type of p lanar deformat ion , i. e. plane stress

vs. p lan e s t r a in~ The examples here  are plane s t ra in  and the mater ia l

~~ combination is a luminum-epoxy.  For aluminum ~ = 3. 846 x 10 psi ,

TTT~
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v = 0.3; and for epoxy ~ 0. 1667 x io 6 psi , V = 0.35. With aluminum

as the cracked material m= 
~ 2 ’~~l = 0. 043 and X = 0. 1752. When epoxy

is the cracked  material m = 23 .08  and X = 0. 6619.

Fig ure 3 shows the mesh used in the crack location . Symmetry

allowed modeling just  the upper half of the str ip.  Isosceles tr iang le s

with a radial dimension of a! 100 and angular extent of 150 were used

as singularity elements about each crack tip. Of course, about each

tip the appropriate value of X was used to generat e the eleiient st i f fnesses .

The radial dimension of the singulari ty element s is a crucial  aspect of

the finit e element model. The s ingular it y element s should be ent irely

within the region where displacement is accurately represented by

the r~’ form. The crack opening disp lacement data from available

singular integral equation solutions
3 

we-re used to establish the

s uitabilit y of the radial dimension a l l O O .  When there is no basis for

jud gment of the range of dominance of the leading power term in the full

s olution , a convergence study must be conducted by successively decr easing

element size to establish accuracy estimates of the singularit y solution.

Bilinear isoparametric elements were  used to model the plate

awa y from the s ingular ities. The total mesh involved 429 nodes and 433

elements. The forces specified to be acting on the crack face nodes were

calculated, in terms of the uniform pressure p, consistent with the element

shape functions. Thus, the singularity element node on the crack face had

an applied norm al force per unit thickness equal to . 01 pa / ( 1  + X ) .

Three features of the solutions to be discussed are the angular

distrib ution of stress about the bondline crack tip, the crack opening

behavior near the bondline, and the stress intensity factors. The angular

variation of the normalized stress ~ /1’ through the ring of bond tip
L i.~ yy

singular elements is given in Figure 4. Data are given for both

combinations. Along with the finite element data at the twelve discrete

midpoint angles, singular integral equation (SIE) data are given at angles

of 0, 90 and 1800 and r = 0. OO5a. The first striking charac .r i s t i c  of

the distribution is the discontinuity of stress across the bondline.
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Independent of which  mater ial  is cracked , at 9 0 0 ~~ the bondline - the

aluminum is s t ressed hig her than the epoxy. Hence , when the epoxy is

cracked a (90 ) exceeds a (90
+
), and just the opposite when

yy yy
the aluminum is c racked .  There  is ve ry  good agreement  between the

SIE and finit e element solutions with t he  exception of the 90+ values

• ror m = 0. 043. The finite element mesh is perhaps too coarse in the

angular sense to accomodate the large gradient in the rang e 90-180°

for m = 0. 043, so that mesh refinement might improve this deviation.

In Figure 5 the normalized crack opening displacement u / a

is plotted as a function of distance f rom the bond l ne crack t ip to

n a  = 0. 16 for the two ~~~~~~~ cases. The data corresponds to a unit

value of crack face pressure. The finite element data appear in discrete

fashion in the plot and for comparison purposes the SIE solutions are

presented and are represented by the solid curves. There is excellent

agreement between the solutions for m = 23. 08, and this is true over

the entire crack face, 0 < r/a<2 . While the SIE and finite element

• data agree at r/a = 0.01 for m 0.043, the solutions differ by 5-10%

over most of the crack face , including near the embedded end . There

- ; 
is a dramatic difference in the opening behavior local to the bondline

for the two cracked cases.  The SIE curves demonstrate the behavior
0.175 0.662

which is expected from the r and r asympt~~-ic displacement

solutions. With epoxy bonded to cracked aluminum there is a rapid gradient

in opening which is intuitively consistent wit h the s t i f fness  mismatch.

The intersection of the two curves is near r / a  0. 01 , the location of the

first finite element node, and the opening displacement s u~ /a there are

0.193 x 10 
6 

for m 23.08, and 0.222 x 10 
6 

for m = 0.043.

The s t ress  intensit y factor , generalized for both the embedded and

bondline crack ti ps is defined as

K = lim /2 r
l X  

a (r ,o) (9)
r-~~O 

yy

To deduce K from the displacement data,the follow ing equation was used
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K = 2/2 X ~~* u (r , TT) / r  ( 10)

The modulus ~i * is defined from the relationship

u (r ,TT) = r a (r,o)/2Xij.* (11)
y yy

1i.* is an algebraic function of the bimaterial constants and the eigenvalue X.

For the plane strain homogeneous material case, m 1 , 
~~~~~~ 

is equal

to ~ /2(1-v).

From eqn. (10), the stress intensity factor at the embedded tip,

K/p/a , computed from the finit e element data at r / a 0. 01 was found to

equal 0.89 when m 23. 08, and 1.52 when m0. 043. For a homogeneous

p late the result is 1. 00 , and this  show s the degree to which the aluminum reduces

the severity of the singularity in the cracked epoxy, and how much more severe

the singular ity is in aluminum when epoxy is bonded to it. The values for

K/ p a t X  
at the bondline crack ends are 2.85 for m 23.08, and 0.112 for

m O .  043. The SIE displacement data predicts  essentially the same K values

with the except ion of the embedded tip m O . 043 value which is 10% lower,

consistent with the displacement deviation mentioned above. A detailed

discussion of the results of the bimaterial crack problem will be reserved

for a future specialized paper
4
.

The second example is the branch crack in an elastic tension strip,

:-~ Figure 6a. The main crack emanates from the free edge at 45 ° and its

projected length normal to the tension is W/4. W is the strip width,

-‘ and 3W is the strip length. The branch normal to the tension has length
x

W/80 .  There are two s ingularities in this problem each with local r

disp lacement distributions. The ri ght end of the branch has the usual
It c rack ti p singular ity with X = 1/2 , while the ang le on the upper face of

the crack is a reentrant corner with X 0. 674. These conclusions are

drawn f rom the asymptotic analysis of refer~~~ce
5 . The finit e element

mesh at the branch is shown in Figure  6b. The singular it y element s were

chosen to have a radial extent 5% of the branch length and an angular dimension

of 22.5°

1 
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The angular variation of the normalized pola r s t ress  a00 /a about

the bend s ingularit y is g iven in Figure 7. The dat a are f rom the singularit y

element midpoints. The stress stat e is essentially entirely compressive

with peak compression equal to 3. 1 a~~
at 0 = 125° . This suggests  that

forking would not occur from this point . At the ri ght end of the branch

the stress intensity factors K , K 11 were deduced from the singularit y

element crack face nodal displacements. If 6 represents the relative

opening displacement of the nodes on the two crack faces and ~ the

relative sliding displacement, the equations used to determine K
1 
and

K 11 for this plane stress example were

8K 1 Ô E ~~~~~~~

8K 11 ~ EV/c7~~

Not ice that the factor 
- 

/~ is not used in these defin itions. The value of

K1 was found to be 4% lower than the value for a normal to the tension

unbranched crack with length (1. 05) W!4,

K 1 = 1.49 (1.05 ) W/4

K 11 was determined to be neg ligible in relation to K~, K
11/K 1 

< io~
2 . An

‘

~ additional problem was considered which had the above geometry altered by

ext ending the branch length to W/40 .  K 1 again was 4% lower than that of

the projected length crack

K1 = 1.52 ~~~~~~~~ 10) W!4

and K 111K <  ~~~~

_ _  - 
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CONCLUSIONS

The solutions to the crack problems are jud ged to be very accurate.

The agreement between the singular integral equat ion and finite element

result s for the bimaterial problems supports this conclusion. Certainly

no standard finit e element formulation can be expected to provide reasonable

solutions to problems such as these. The formulation proposed here

allows routine analysis of a class of singularity problems which heretofore

• has been approached only with elaborat e analytical methods. The singular

element proposed is s imple to implement since it is easily prograrnnied

using techniques which today are commonplace.
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General Triangle Terminating at Singular Point 1

FIGURE lb

Isosceles Triangle at Singularity
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CRACK TIP FIELDS IN STEADY CRACK GROWT H WITH LINEAR STRAIN HA RDEN iNG

John C. Amazigo
Department of Mathematical Sciences

Rensselaer Polytechnic Ins t i tut e , Troy , New York 12181

and

John W. Hutchinson
Division of Engineer ing and App lied Phy sics

Harvard University, Cambridge , Massachusetts 02138

SUMMARY

Singular stress and strain fields are found at the tip of a crack

growing steadily and quasi—statically into an elastic—plastic strain hardening

material. The material is characterized by 
~~ 

flow theory together with a

bilinear effect ive stress—strain curve . Anti—plane shear , plane stress and

plane strain are each considered . Numerical results are given for the order

- - of the singularity, details of the stress and strain—rate fields, and the

near—tip regions of plastic loading and elastic unloading.

It.

This paper is to be published in the Journal of Mechanics and Physics
of Solids.
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FINITE-DIFFERENCE SOLUTION OF POISSON’S- EQUATION

IN RECTANGLES or ARBITRARY PROPORT iONS

J. Barkley Rosser -

- 
- -~ t th e m a t i c s  Research Center , Univer s t~- of Wiscons in ,

Madison , Wiscons in

1. Introduction.

We consider the problem of getting an approximation of reaso;-iab ly

good accuracy by f in i te -d i f ference  methods for the funct ion u(x , y)

which sat isf ies  Poisso&s equation

( 1 . 1 )  u(x,y) = f(x,y)

inside a rectangle R , and sat isf ies various boundary conditions on

the boundary of R. When f(x , y) 0, (J. . i) reduces to Laplace ’s

equation , and the problem is appreciably simpler .

This problem has been much studied. A common approach is to

cover R exactly with a mesh or grid of small rectangles , af ter  which

one can replace ( 1 . 1)  by a f ini te-difference approximation involving

-s values of u(x , y) at the grid points . One then tries to solve this  f ini te-

difference analogue of ( 1 .1) to a suitable degree of accuracy. In order

to employ this approach when high accuracy is required , it ha s been

necessary to require that  the ratio of the sides of R mus t  be rat ional

since use of high order methods usua l ly  requires that  one cover R

exactly with a grid of squares. However , the conformal t ransform at ion

method of Pap amich ael and Whiteman [ 2 ]  will lead more o ften than not

~~ The author wishes to acknowledge the sponsorsh ip  of the U n i t e d
States Army under  Contract  No. DAA G29-75- -C-0024  and of the Science
Research Counc il unde r  g r a n t  B/RG - 4 1 2 1  at Brune l U n i v e r s i t y .
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• to a rectangle In which the ratio is not rational, and covering with a grid

of squares is not possible. Even when the ratio is rational , there may

be difficulties. Suppose, from some engineering problem , one is confronted

with a rectangle R of base six and five-eighths and height five and

seven-eighths. If this is to be covered exactly with squares , there must

be 53N squares along the base and 47N squares along a vertical side ,

where N is a positive integer. With such a covering, many  popular

methods would operate at less than maximum efficiency.

Accord i ngl y, we will propose a method of getting good accuracy

with moderate labor for rectangles of arbitrary proportions.

2. Forrnulation of the problem.

By rotatio n , translation , and scaling, as needed , we can take

the rectangle R to be that shown in Figure 1. By rotating through

another 90 and translating and scaling again , if need be , we can

assure that a > ii . If a = -ii , we have a square , and familiar approache s

suffice. So we assume a > ~r.

We consider first the case of Dirichiet boundary conditions. That

is , we wish to appr oximate the function u(x , y) which is continuous

on and inside R , satisfies
0-~~

(2.1) V2 u(x , y) = f (x ,y )

1”
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~~ (0 , a) (i~, a)

(0 , 0) (-ir , O)

The rectangle R

Figure 1

inside R , and on the sides of R sa t i sf ies  the Dirichiet boundary

• conditions

(2. 2) u(0, y)  = g (y) 0 < y  < a

(2. 3) u(ir,y) = g (y) 0 <y <a

.5 (2.4) u(x,O) = h (x) 0 <x < it

(2. 5) u(x, a) = h (x) 0 <x <11

Becduse we seek a u (x , y) which is continuous on R , a s well

as Ins ide , we a~e thereby as suming  that  g (y)  and g (y) are

continuous for 0 ~ y ~ a , that h (x) and h a
(X) are continuous 

T ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _
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for 0 <x < - n , and that

(2.6) g(0) h (0)

( 2 . 7 )  g (a) h (0)

(2.8) g (O) =

(2.9) g (a) h (ii)

- 
- 

If there should be discontinuities in the boundar y conditions , or

- 
- 

- 
their derivatives, this would induce st ill another  source of errors in

the solutions , besides those due to truncation and round off . See

Rosser [ 3 ] .  “J ump ” discontinuities can be “removed ’ by the methods
- 

- - on pp . 221-222 of Milne [ 4 ] .  More com plicated discontinuities can

sometimes be “removed ’ , but one cannot count on doing this.  For the

-
- 

present treatment , we assume that the boun dary conditions and their

— low order derivatives are continuous. This includes continuity at the

corners , as exemplified by (2.6) through (2.9). Or , if we replace ( 2 . 2 )

by

- 
u
~
(O , y) = j (y) 0 < y  < a

then continuity of the f i rs t  derivatives at  the corners would require
- 

1~~ 
j (0) = h ’ ( O )

.i (a) = h ’(O)
- 

o a

3. Finite-diffeience approximations.

There are f i n i t e-d i f f e r ence  approximat ions  of var ious  order s.  The

hi gher  order methods  of solut ion , invo lv ing  the  h igher  order approximat ions ,

I 

_ _ _ _  
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can he used effectively only when the function f(x , y) which appears

in (2 .  1) has sui table  high order smoothness;  that  is , when it is cont inuous

and L~s cont inuow ; derivatives of sui table  orders . Thus the reader mus t

exercise discrimination in choosing which order method to use.  When

they can be used , the hig h order method s p ermit  the use of coarse

meshes. This can (~reat ly  reduce the labor of computat ion.

For difference approximations of order 2, one can use mesh elements

which are r ectangles , rather th an  squares .  See Hockney [ 1].  In this

case , there would be no tro u ble if the ratio of the sides of R were

irrational . For difference approximation s of order 4, one can also use

mesh elements which are rectangles . See Rosser [ s ] .  For di f fe rence

approximations of order 6, it appears that the mesh elements have to be

squares. Details are presented in Rosser [ 5]. If f(x, y) in (2.1) is

sufficiently sm ooth, this permits one to use quite a coarse mesh , greatly

reducing the computat ional  labor. However , this raises the quest ion

how to proceed if the ratio of the sides of R is irrational.

4. ~~~~~gpor tioned_rectangles.

We take h to be the side of the square mesh element. We

arrange that the squares can be fitted along the base of R. That is ,

we take M to be a positive integer , and def ine

(4.1)  h = ~~~- .

-~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~ 
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We take N to be the int ecjer part of aM/it ; in symbols

I aM
(4.2) N =

[ 1 1

Then

( - 1 . 3 )  Nh~~- a ,

(4. 4 ) (N + l ) h >~~~~~~~ .

• if

(4. s) Nh a

then we can f i l l  up the rec tangle R exactly with  MN square s of

side h , and the methods of Rosser [ 5 J  are appl icable .  So we are

interested on ly in the case Nh < a. We co uld assume this , but it is

not required for the analysis which follows. If we should have (4 .  5)

- 

— 

‘ holding , the n some of the steps of the subsequent  an a ly s is  would be

qu i te tr ivi al but r~~t incorrect in any way.

We ~-egin by defining

(4.6) b = Nh

(-1 .7) c = a - b = a - Nh

We take  R to b-c the r ec t a n g le wi th corners (0 , 0) ,  (0 , b ) ,  (
~ , 0) ,  and

b

(yr , b) ,  ~~~~~ t cke R to he the rectangle with corners (0, c), (0, ~~) .
C

(it , c) and (iT , a) .

\-Ve cho~~sc h b(x) to be a smooth function such that

h 1 (0) = g (h )

h (ir ) g ( b ) .b ii

4 

53 

~~:i~~~: _  ~~~~~~~~~~~~~~ 
— - -

~~~~~~~~~

- - -  _ _



The better we can choose h
b
(x) to approximate u(x, b) ; the more we

can curtail certain computations later. With the limited information

available at this stage, we content ourselves with taking

- 

h
b

(x) = h
a

(x)  + (1 - ~~~ )(g (b) - h (0)) + ~~~ (g (b) - h (ir ) ) .

We take u
b

(x , y) to be the funct ion which is continuous on and

inside R b, satisfies (2.1)  inside R b, and on the sides of Rb

satisfies the boundary conditions

— 
- ( 4 . 8 )  ub (0 , y) = g (y) 0 ~ y < b

(4.9) u
b
(n ,y) = 

~~(Y) 
0 < y < b

(4.10) u
b

(x ,0) = h (x) 0~~~x <it

(4.11) u
b

(x,b) = h
b
(x)

F We take u ( x , y) to be the function which is continuous on and inside

• R , sa t i s f ies  (2 .1)  inside R , and on the sides of R sat isf ies the
C C C

- - boundary conditions

(4.12) u
~
(O ,y )  = g (y) c < y < a

(4.13) u
~~

(ir ,y )  = g (y) c < y < a

(4.14) u(x ,c) = u
b
(x ,c) 0 < x < i r

1’  
(4.15) u(x ,a) = h (x) 0~~~x < it

: By our definition of h
b

(x) , we see that u
b

(x , y) has continuous

boundary conditions around the rectangle R b
. Then it follows by (4.14)

that the same holds for u ( x , y) relative to the rectangle R .  This

is why in ( 4 . 8 )  through ( 4 . 1 5 )  we can use < rather than <.
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By (4. 1) and (4. 6) we can fill up the rectangle 
~b exactly with

MN squares of side h. Thus we can use the 9-point difference

appro ximation of Rosser [ s i  to get accurate approx imations for u b (x , y)

inside R
b 

at the grid points (ni h, nh). From these , we can ge t

n I L  u~~i te  approximations for u b (mh , c). By (-1. 14) these are part of

the boundary  values lor u ( x , y).  Thus it is necessary to determine

them to order h6. By the principle of the maximum , it is also sufficie nt.

For a given m , the point (mh,c) is on a vertical grid line. Thus

one can determine u
b

(mh ,c) to order h
6 by us ing a h igh order

interpolation formula in one dimension on the values at the six grid

points (mh , 0) , (mh , h), (mh , 2h), (mh , 3h ), (mh , 4h ) , and (mh , 5h ) .

By (4 .14) ,  this gives us good approximations to u ( x , c) at

-‘ x = h , 2h , .. . , (M - 1)h. By (4.1) and (4.  7) we can f ill up the rectangle

- • R exactl y with MN squares of side h . Thus we can use the 9-point

difference approximation of Rosser [5] to get accurate approximations

for u ( x , y) inside R at the grid points (mh , c + nh). Then we

can get accurate approximations for u (mh , b ) by the method mentioned

earl ier.

We define R to be the rectangle which is the intersectionbc

of the rectangles R
b 

and R .  In R b ,  the funct ion u ( x , y) - u
b

(x , y)

is h a r m o n i c .  Also , it Is zero along the bottom and along the two

vert ical  s ides.  So on and in s ide  R we havebc
r

60
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sinh r (y  — 
c) -(4.16) u(x,y) — u b

(x ,y )  = L, d
r sirih r(b - c) sin rx

r=1

where

(4.17) a
r 

= 
~ 

f  {u (x,b) - ub
(x ,b))sin rx dx

Clearly the I a I  are bounded by

(4.18) 2 max Iu (x , b) - u b(x , b ) I
0 <x <it

- — We recall (see (4.11)) that

u
b
(x,b) = h

b
(x) .

Presumably u ( x , b) is fairly close to u(x , b) .  If also we were lucky

- - enough to choose h b(x) fa i r ly  close to u(x , b), then by (4.18)  the

P--i ar will be fairly small. This will save computational  effort  later.

On and inside R define

-
~~~ v’ sinh r ( a - y )
-. (4. 19) v(x , y) = 

~ arbr sinh ra sin rx
-~~~ r = l

where

sinh rc(4. 20) br = 
sin h r(b — c)

On and inside R defineb

sinh r (y-c~(4.  21) u(x , y) = u
b

(x , y) + v(x , y) + 

r=1 
a 

sinh r(b — c) sin rx 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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We see that u(x, y) is continuous on and inside the rectangle

R
b
, satisfies (2.1) inside Rb, and on three sides satisfies the boundary

conditions (4.8), (4.9), and (4.10). By (4.16), we see that on and

inside R we havebc

(4.  22) u(x , y) = u ( x , y) + v(x , y)

We use (4 .  22)  to define u(x , y) for the rest of the rectangle R .

Then u(x, y) is continuous on and inside the rectangle R , satisfies

(2.1)  inside R , and on three sides sat isf ies the boundary condition s

(4.12), (4.13), and (4.15).

Thus we see that u(x , y) is exactly the function u(x , y) that

we were seeking to obtain.

We have obta ined accurate approximations for u b(x , y) and

u ( x ,y )  at various grid points.  If M is of reasonable size , then c

is small , since 0< c  <h by (4.7), (4. 3), and (4.4). As a is

• ;  greater than it , and b = a - c by ( 4 . 7 ) ,  we see that the series on

the right of (4.19)  is rapidly convergent for 0 < y  < a. Also , the series

- -
~ 

appear ing on the right of (4.  21) is rapidly convergent for small y,

certainly for 0 < y  < h .  If in addition the ar are all quite small (see

(4.18)), then very few terms of the series are needed to get high accuracy .

So, using the known approximations for u b(mh , nh ), we can get

approximate values for u(x, y) for small y by (4. 21). For all other

values of y, we can use the known approximations for u (mli , c + nh)
C

to get approximate values for u(x , y) by (4 .  22 ).
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The calculation of the a presents no problem. Not more than

four or five will be required; fewer if the a are all small. Observ e

that the values of u
b
(x, b) are given by (-1.11). Also, we had got

accurate approximations for u (mh , b).  So we can use a numerical

quadrature formula to calculate the a by (4.17).

CAUTION. If r is not fairl y small com pared to N , then th ere

will be fair l y few abscissa points in each cycle of sin rx in ( 4 . 1 7 ) ;

in such case the usual quadrature formulas are not t rustworthy.  One

can get twice , or four t imes , or eight times , as many abscissa points

- - by interpolating to get approximations for u ( x , b) at the additional

abscissa points (recall that u b(x , b) is given by (4 .11)) .  For this

interpolation one can use a high order one dimensional  interpolation

formula on the values u ( 0 , b), u ( h , b) ,  u (2h , b) 

We need high accuracy for only the f i rs t  one or two of the ar ,

because of the very rapid convergence of the series appe aring on the

right of (4.19 ) and (4. 21). In any case, one should increase the number

of abscissa points , as needed , to the point where one can use a

quadrature formula with assurance . Also, by a little f o r e s i gh t  in the

choice of M , one can arrange that , after  increasing the number  of

: abscissa points if needed , one can use a h igh order quadra tu re  formula ,

like Bode ’s Rule , for example.

1 
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5. Tests for accuracy .
f.

One advantage of us ing  the 9-point  d i f ference approximation when

one can exactly fill  up the rectangle with squares is that  one can make

a first calculation, for less than a quarter of the calculating effort ,

wi th squares twice as large on a side , and then repeat with the smaller

squares. Because the error is of the order of h
6
, one can get an

estimate of the error.

Th is can be done with the present procedure by choosiny M

divisible by 2. If N is not divisible by 2, the values of b and c

which are used with the square s of side 2h will not be the same as

those which are used with the squares of side h. However , this

does not matter .

One d ividend that  will accrue from making  an init ial  calculation

w~tfi squares of si de Zh i s that fro m this calculation one can deri ve

a very good approximation to take for h
b
(x). Then, for the calculation

with sq uares of side h , the ar will be very small , so that not more

- ~
. than two or three of them will be needed .

6. Neumann boundary conditions.

Suppose we have the same rectangle R , and impose on u(x , y)

the same conditions as before , except that on top of the rectangle R

we specify values to be taken by u(x, a). That is we replace (2. 5)

by the Neumann condition

(6.1) u ( x , a) = k (x) 0 < x  < ii- .
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We postpone to the latter part of the section a dist~ussion of how

one would handle this in the case in which a/it is rat ional , so t h at

one can fill up R exactly with squares of side h. For the mom ent ,

let us assume that  th is can be done , and explain how to genc-ra l ize  to

the ca se in which a/it is irrational .

We proceed very nearly as in Section 4. Instead of the definition

given there of hb(x) , we use

(6. 2) h b(x) = ( 1-  ~~) g ( b )  + ~~g (b) .

- 
We take u b(x , y) as before , but for u ( x , y) we replace (4.  15) by

- - - the analogue of (6. 1), namel y

- - 
(6. 3) u ( x , a) = ka(X) 0 < x  < i t

Everything now goes the same , down to the definition of v(x , y ). Let

• us pause a moment , and think what we require of v(x , y) . Clearly it

should be harmonic , so that u(x , y), as defined in part by (4 .  21) and

in part by (4. 22) , will satisfy (2.1)  inside R. Also , we wish v(x , y)

— 
to be zero on the vertical sides of R , so that there u(x , y) will

sati sfy the proper boundary conditions. Also , on the bottom of R , we

must have

— - 
- v-, sinh rc

- ~.p (6.4) v(x, 0) = a - sin rx 0 < x  < -,i
r sinh r(b — c)

r=1

so that by (4. 21) u(x, y) will satisfy the right boundary conditions

on the bottom of R. Finally, looking at (4. 22), we see that if u(x, y)
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is to sa t i s fy  the r i qh t  boun dary  condi t ions  on the top of R, vi - must  have

(
~

. 5) v ( x , a) = 0 0 < x -
~ it

All those cond i t ion S  can be met by s im p l y  r ep lnc in~i the factor

s n h r~g~~~1)
si nh n a

in the de f i n i t i o n  of v (x , y) by

cosh ra

In th i s  c~ise , since it is unl ikely  that (6 .  2) makes  h
b

( X )  come

out v-n y Clo~~( - to u(x , b),  we cannot  coun t on the ar 
bei ng

~t i cu l a r l Y  small , so that  two or three more of them might have to be

c u l cu l : t - ~d. b mi ght  be better to tur n the rectangle R ups ide  down

and ; r o~~c-cd as f c 1 l o - ;~-- .

Consider next the case in which the Neumann condition is at the

bottom of R .  That is , u(x , y) s a t i sf i e s  (2 .  2) ,  ( 2 . 3), and ( 2 .  3 ) ,

b u t  ( 2 . 4 )  is replaced by

(6 .  6) u ( x , 0) = k (x) 0 < x <i i

Again , we proceed nearly as in Sect ion 4. We can now take

h b
(x)  the same as in Section 4 , which should lead to smaller  va lues

of the a , so that vie can get by with  calculat ing fewer of them . For
r

F ~~ 
the de f i n i t i on  of u

b
(x , y) ,  we replace ( -1.  10) by the analogue of

-ui (6. 1), namely

( 6 . 7 )  
•;~;

ll~ u b
(x , 0) = k (x) 0 <  x < it
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We take u ( x , y) as in Section 4 , and continue the same down to the

defini t ion of v(x , y) .  A key r equ i r emen t  is that u(x , y ), as d e f i n ed

by (4. 21), shall satisfy the proper boundary conditions at the bottom of

R. In Sect ion -1 , th i s  required that

(6.8) v(x,y) + 
r~~1 

a
r 

sin rx

should be zero whe n y 0. This was accomplished by the proper

choice of the b . Now we must  assure that the partial derivative of
r

(6 .8 )  with respect to y shall be zero when y = 0. Again , this is

accomplished by the proper choice of the b
r
; specif ically we now t ake

‘6 9\ b — 
-s inh  ra cosh rc

• / r sinh r(b - c) cosh ra

All else remains the same.

Next consider the case in which there are Neumann  conditions

both at the top and the bottom of R. That is , u(x , y ) satisfies (2.  2)

and (2 .  3), but (2.4) is replaced by ( 6 . 6 )  and ( 2 . 5 )  is replaced by ( 6 . 1 ) .

We proceed much as in Section 4. In the definition of u b (x , y) we

replace (4 .10)  by ( 6 . 7 ) ,  and in the definition of u ( x ,y ) we replace

(4.15)  by (6.  3). We define h
b

(x) by ( 6 . 2 ) .  It is then easi ly  ver i f ied

— that  we should replace

sinh r(a-y )
sinh ra

in the defini t ion of v(x , y) by

cosh r(a - y)
cosh ra

S
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and define

(6 10) b cosh ra cosh rc
r sinh r(b - c) sinh ra

One -uan  of course have N e u m a n n  condi t ions  on one or both el the

vert ical  sides. Let us consider  f i r s t  the  case in which there are N e u man n

- ondi t ions  on both vertical sides , but  Dir ichlet condi t ions  at the top and

botto m. Rotation by 90 would reduce this to the case jus t  cons idered.

However , this is not desirable , si nce we would then lose the qualifica-

tio n that the height is greater than the base. It was this that assured

the rap id convergence of the Fourier series in (4.19)  and (4 .  21).

So we assume that ( 2 . 4 )  and (~~ . 5) hold , but that (2 .  2) and (2 .  3)

are replaced by

(6 . 11) u ( O ,y ) j (y) 0 < y  < a

(6.12)  u (1r ,y )  = j (y) 0 < y < a .x iT

- - 

We proceed analo gously to Section 4 , except that  we use cos ines

instead of sines throughout.  Because it is desirable  to have u ( x , y)

cont inuous around the boundary we def ine

(6 .1 3) h
b

(x)  h (x) + (x - i t)
2

( h ’ ( O )  - j (b ) )  + ~~~ ( j (b )  - h ’ ( i t ) ) .

We d e f i n e  u
b

(x , y) and u (x , y) as in Section 4 , except tha t

they now have Ne umann  condit ions on the i r  ver t ica l  s ides .  We replace

( - h 16) and (-1.  17) by

( 6 . 1 - I )  u ( x , y) - u b(
~~, y) - 

~ 

a • h ( b  cos r x

- - - T~~~~~~~~~~~~~~~~~ 2--
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where

(6. 15)  a0 

~~~ 

{u (x , h) - u b
(x , b ) )dx

(6 .16)  a {u (x , b) - ub
(x , b ))cos  rx dx

Wh en r 0 , we define

sinh r (y 
— 

c) 
— 

— c
sinh r (b - c) 

- 

b - c

Exact ly  an alogous  changes are made in ( 4 .  19) and (4.  21).

If , n~ addit ion to the Neumann conditions on the vertical sides ,

we replace one or both of the Dirichiet conditions on the top or botto~u

by Neuma nn conditions , we can modify th e procedure jus t  outlined

quite analogously  to the way in which we modif ied the procedure of

Section 4 earlier in this section.

It viill be noted that  we are allowing the possibili ty of Neu m ann

conditions on all four sides .  For this , there will be a solution only if

the boundary  condi tions  s a t i s fy  a certain criterion. If they do , the

solution is nu t  unique , but any two solutions d i f f e r  by a constant .  ~~

procedure out l ined  --- i i l l  produce one of th is  in f in i ty  of solutions if and

only if t h e -14 - is a ; - 1u ’on .

To h an dle  th e case of a Dirichlet condit ion on the l e f t  side n i i d  a

Neumann condition on the r ight  side , we replace sin rx by

sin(r  — 4)x
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with suitable related changes. To handle the case of &Dirich let

condition on the right side and a Neumann condition on the left  side ,

we replace sin rx by

cos(r -

We cons ider finally how to handle the case in which the rectangle

has a rational ratio of the sides , and we have filled it exactly with

square s of side h , and wish to approximate u(x , y ) at the grid points .

At interior grid points , we can use one of the formulas of Rosser [ 5 ] .

On boundaries where there are Dirichiet bounda ry conditions , we assig n

Urn n the specified value. This leaves only the boundary points where

there is a Neumann condition to be dealt with . Suppose , f or exam ple ,

that the condition (6. 11) holds on the left side of R. We note that

(6.17) hf (x ,y )  - 
1~~ f(x ,y )  + 5f(x + h ,y )  - 5f(x + 2h , y)

+ f(x + 3h , y ) - f(x + 4h , y ) + f(x + 5h , y)

— 
holds to within terms of order h 6. If we take x = 0 and y = nh ,

we get by (6.11)

7
; (6.18) hj (nh) 

= 

~‘o , n~ 
5
~

h
l , n ~ 

+
2 , n 3 3, n 4 4 , n 5 5 , n

One coul d use a higher order formula than (6. 17),  but it probably

suffices. A heuristic argument for this Is as follows. By the principle

6
tu~~ 

of the maximum , if we wish to determine interior points to order h

7u
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it is s u f f i o n u n t  to de te rmine  the boun dary  points  tu order I .  1h~ - .- - u v e n ,

if the inter ior  points arc given to order h
6
, ( 6. 18) w i l l  ~~~ - 1 - t n t  I v  -

U to order h0, n

Use of (6 .18)  wi th  the fo rmulas  of Rosser { s j  resul ts  in

messy  m at r ix  of coef f ic ients  of the u m 
. However , one is  p r o b ab ly

us ing  such a coarse mesh that  this  ma t r ix  would be less than 100 x 100 ,

perhaps even less than 50 X 50. If so , probably the qu ickes t  method of

solution is to use the standard computer routine for solving s imul taneous

linear equat ions .  If thi s is done , it does not much mat ter  if the matrix

is messy  or not .

If it happens that one is solving the Laplace equation , with

f(x , y) 0 , and has a zero normal derivative along one side , say

j (y) 0 , one can use the reflection principle to replace (6.  18) by

- -
~ something which seem s conceptually simpler . However , it involves

three boundary gri d points and three interior points , and so is probably

about as much bother on a computer as (6 .18) ,  which al so involves six

gri d points .

~ 
,. If one has  Neumann condit ions on one or more sides , and so is

us ing  ( 6 . 1 8 ) ,  one m i g h t  consider  the following procedure , which woul i

bypass  the t r ea tmen t  in Section 4 al together.  Almost always , there is

• at leas t  one side with Dirichiet condit ions.  By rotating and r e l in qui sI i i a - ~
~~ 1~

the qua l i f i cation a > it , if need be , we can arrange to have Dir ich ie t

‘a 
7,
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condi tions on top. If , in the notation of Section -I , we uiave 0 < c < h ,

the d i f f i c u l t y  is that  we have no good way to write down an e qu iv a l en t

of ( 3 . 7 )  of Rosser [ 5 J  for the values of u (x , y) at the row of grid

points (rn h , Nb ), I < r n  < M — 1. As a subst i tu te , write down ( 3 . 7 )  cd

Rosser [ 5 ]  for the 9-point  fo rmula  centered at (mh , a - h) .  It involve s

values of u(x, y) at ((m - l)h, a - h), ((m - l)h, a - 2h), (mh , a - h) ,

(mh , a — 2h), ((m + l)h, a — h) ,  ((m + l)h, a — 2h ) ,  as well as at the

- boundary points ( ( m  - l)h, a), (nih , a), and ((m -f l)h, a), at which

lat ter points u (x , y) is known. Now , by a high order one d imens iona l

interpolation formula, we can write each of u(rh , a - h) and u(rh , a - Zh),

- approximately as a linear combinat ion of u(rh , nh) for n < N ;  we do

thi s fo r r = m - l , r m , and r = m + 1 .  So we get a formula

‘ involving u(rh , N h ) ,  u(rh , (N  — l)h), etc., for r m — 1, rn , m + 1,

whi ch we can use in place of ( 3 . 7 )  of Rosser [ s j .  Probably interpolat ion

• 
of order eight  should be use d. This makes  the mat rix  s t i) 1  mess ier , but

if we are having to deal with -  a messy matrix anyhow , because of the

Neumann conditions , the idea mi ght  be worth considering.

I - -
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SOLUTIONS TO INITIAL VALU E PROBLEM S USING
FINITE ELEMENTS - UNCONSTRA I NE D VARIATIONAL FORMULATIONS

Julian 3. Wu
Research Directorate

Benet Weapons Labor atory
Watervliet Arsenal

Watervliet, New York 12189

ABSTRACT. This paper presents a variational formulation which
treats initial value problems and boundary problems in a unified
manner. The basic ingredients of this theory are (1) adjoint variable
and (2) unconstrained variations. It is an extension of the finite
element-unconstrained variational formulation used prev iously in solving
several nonconservative stability probl ems. The technique which makes
this extension possible is described . This formulation thus enables
one to adapt such numerical technique as the finite element method ,
wh ich has had great success and popularity for solution of boundary
value problems, for solutions of initial value problems as well . These
formulations are given here for a forced vibration problem , a heat
(mass) transfer problem and a wave propagation problem . Numerical
calculations in conjunction with finite elements for two specific
examples are obtained and compared with known exact solutions.

1. INTRODUCTION. In its applicat ion to the solutions of engineering
proble ms, the finite element discretization has been implemented almost
exclusively to the spatial dimensions. For dynamic or time-dependent
problems whose solutions as functions of time are of interest, a step-
by-step procedure of finite difference, i.e., the quasi-static approach
is usually employed . The answer to the question why the time dimension
has not been treated equally with the spatial variables in the finite
element discretization must be related , in part at least , to the

-

- 
development of variational methods, since the finite element procedure
can be viewed most readily as an extremizing sequence associated with a
variat ional  statement.  While there are numerous variational principles

- 
- for boundary value problems , few exist for initial value problems. Like

many problems involving nonconservative forces, the difficulty appears to

• be that  i n i t i a l  value problems are nonse l f -ad jo in t  and thus they do not
possess variational princi ples in the classical sense. In conjunction
with problems involving nonconservative forces, certain constrained
variational princi ples (sometimes called extended Hamilton ’s prin c ipl es
--See , for example , ref. [1]) were used for f i n i t e  element solut ion

- 
‘-~ formula t ions  [2 , 3]. Shortly afterwards , using the combined notion of

the Lagrange multi pliers and the adjoint variable , some unconstrained
variational statements were established and used as bases for finite
element solutions [4, 5]. This approach has been shown to be more



~~~~~~~~~~~~~~~~~~~~~
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advantageous in terms of simplicity,versatility and the rate of conver-
grnce compared with the constrained variational approach [5, 6].

Fried was first to treat the time-dimension identically with the
space dimensions in using the finite elements [7]. His solution
formulations, however , emanate from constrained variational principles.
In con trast, this paper presents a generalization of the unconstrained

- 
- 

variational approach to tine-dependent problems .

At this point, the variational principles of integrals of convo-
lution developed by Gurtin [8, 9] should be mentioned . The applications
of these princ iples in conjunct ion wi th  f in i te  elements in the t ime -
dimension [10 , 11, 12, 13] have so far failed to show any advantage over
the procedure described by Fried . In fact , all the se analyses had to
resort to either the Fried’s or some other similar step-by-step procedure
to complete the solutions in the tine-dimension.

In this paper , the use of unconstrained variational princ ipl es -

finite elements for usual boundary value problems is first illustrated
and the advantages over the constrained formulations are pointed out.
The unconstrained variational principles can always be constructed
through the use of the Lagrange multipliers. The unconstrained van -
ations are then shown to lead naturally to (nonself-) adjoint variational

~tatement s .  Thus, nonconservative problems can be formulated easily
using finite elements. The application to a control problem is given
[14]. With the introduction of a cross-produc t term involving two-point
boundary (initial) values , the unconstrained variational - finite element

formulation is again easily extended to include time-dependent problems.
This formulation is obviously simpler compared with those derived from
Curtin ’s variational principles because no convolutional integrals are
needed . It is also easier to use and more versatile than the Fried ’s
procedure due to the fact that no boundary or initial conditions are
involved in the solution formulation and because of the nature of the
Lagrange multipliers. As further examples of application , finite
clement matrix equations are derived for several transient problems
including a force vibration, a heat transfer and a wave propagation
problem. Detailed formulations and numerical results of two examples
are given and comparisons with some known exact solutions are made.

2. LAGRANGE MULTIPLIER AND FINITE ELEMENT FORMULATIONS. One of
the advantages of the finite element method is its capability of solving
large complicated problems in a routine manner . However , the same con-
cepts used in a program for large systems may be understood using
relatively simple problems .

Let us consider the stability of a Euler ’s column . The governing
equations are as follows:

7G 
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D.E. E I u” + P U ” + w2 pAu = 0 ( I a )

B .C .  u (O) = u ’ (O) = 0 ( l b ) , ( l c )

= 0 ( I d )

F I u” (~) + P a ’ (~) = 0 ( Ic )

where ii is the lateral displacement , a prime (‘) denotes differentiation
with respect to the coordinate x; E is the Young ’s modulus , p, density
of the material; I is the secon—1 mc~,ient , A , area of the cross-section , 9~,
length of the beam and w is the  eigenvalue. For cqs.(1), a u s u a l  varia-
tional principle can be written :

6J1 (u) = 0 (2a)
where

J1(u) = 
4 

jL [E I (u ”) 2 - P(u ’) 2 
+ ui 2 pAu 2 } dx (2b)

establish the equivalence between eqs. (1) and (2), one simply
carries out the variation of J1 in eq. (2a):

= [E I u”~Su” - P u ’Su ’ + u~ pA u c5u] dx (3a)

= f ~ {E I u” + P u ” + U) 2 pAu] 5u dx

+ [E I u” ~u ’ - (B I u” + P u ’) 5u]
~ =

- [E I u” ~u ’ - (E I u” + P u ’) ~u] = (3b)

• From eq. (3b) one observes that for the coordinate func t i o n s  and t 1~ : ir
variations satisfying the boundary conditions in eqs . (lb - l e) ,  eq.
(la) implies eq. (2a) and vice versa. The finite element f o r m u l a t i o n
for this  problem be gins with eq. (3a).

Let
u (x) = aT(x) U (1)

where a(x) is the displacement -function vector and U , the  gencra1i:~d
displacement vector . Upon the substitution of eq. (4) i n t o  eq. (~a),
one immediately obtains

ouT { K + W z~~ } U 0  (5)

wh ere

- :~ ~l = f [E I a” a”” - Pa ’ a R T ] dx (6a)

M = pA a aT dx (6b)

_ _  
_ _  
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Eq. (5) is not yet ready to be solved since neither U nor 61J
consists of independent elements due to the boundary conditions re-

— quirements placed on u(x) .  -

Let us now cons ider a sli gh t ly  d i f fe ren t  variat ional  princi ple:

= 0 (7a)
with

~2 = 
4 

[E I (u”) 2 - P (u ’) 2 + w2 pAu 2J dx

+ a~ [u(O)]
2 + 

4 
a~ [u~ (0)] 2 (7b)

where cx1 and a2 are the Lagrange multipl iers.

Carrying out the variation of eqs. (7), we have

= [E I u” Ou ” - Pu ’ Ou + w 2 pAu 2 ] dx

+ ~~ u(0) c5u (0) + a2 u’ (0) c5u’(O) (8a)

= f 2~ [B I u” + Pu” + ~~
2 pAu] Ou dx

+ [E I u” 5u ’ - (E I u” + Pu ’) Ou]
~~~

- [ (B I u” — a,—.u ’ - (E I u” + Pu ’ + a1u) 6u] (8b)
x = 0

• Eq. (8b) states that a necessary and sufficient condition for
- — 612 = 0 is the problem defined by the f o l lowing  se~ of equations:

E I u” + Pu” + w 2 pAu = 0 (9a)

E I u”(O) - a2 u ’ (O) = 0 (9o)

E I u” (0) + Pu ’ (0) + Ct
1 

u(0) = 0 (9c)

E I u”(~.) = 0 (9d)

B I u” (L) + Pu ’ (L) = 0 (9e)

p r o v i d e d  that the variation Ou is completely arbitrary, comparing
* eqs . (9) and (1), it is seen that eqs. (1) is a special case of (9) as

a1 , ct~ approach to infinity. From eq. (8a), we can see that the f~nit e
element matrix equation now becomes

‘S
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~~T {~ 
+ W 2

M} Ii = 0 (10)

where

= + a (0)
T(0) + a2a~ (O)a t T(O) (11)

The matrix ~ in eq. (11) has been defined in eq. (5) and the super-script T denotes the transpose of a matrix (a vector). Since Ou is
arbi trary , 6~ in eq. (10) is arbitrary, eq. (10) leads di rect ly  to the
final matrix equation to be solved .

{ ~~~ 
+ ~~2~j } U = 0 (12)

It is then clear that the method of Lagrange multipliers , used in
conjunction with the finite element method , will not only facilitate
the solution formulations but also encompass a larger class of problems
to be solved compared with the use of constrained variational statements.
The applications of the sane general concept can be extended further .

3. FROM UNCONSTRAINED VARIATIONS TO ADJOINT VARIAT IONAL STA’J U-H~ TS.
We have noted that the variation Ou in eq. (8) is quite independent

of the function u itself and nothing will be changed if we simply
replace c5u with Ov to emphasize this independence. This substitution ,
however, has suggested the adjoint vari ational principles. Let us
consider

6J3 = 0 (13a)

= (E I u”v” - Pu’v’ + w 2 pAuv) dx

+ a1u(0)v(0) + a2u’(O)v(O) + a3Pu ’( 9 )v( t )  (l3b)

Carrying out the var iations , we have:

= 
~‘~~3~u + (033) (14)

where

(633) = (E I u ”Ov” - Pu ’Ov ’ + U)2pAwSv) dx
- u ~

+ 
~~~ 

u(0) Ov (0) + ct2u ’ (O)Ov ’ (O) + a
3u
’(9) Ov (2) (iSa)

= (E I u” + Pu ” + w 2 pAu) Ov dx

+ [E I u”Ov ’ - (E I u” + Pu ’ - ct3u ’)  Ov]
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- ( (E I u” - a2u ’) 6v ’ — (E I u” + Pu ’ + a1u) c5v]
~ = ~ 

(15b)

and
(6J3)~ CE I v” 6u” - Pv ’6u ’ + w2 pAv 6u) dx

+ cq v(O ) 6u (0) + a2 v ’ (O) ,Su ’ (O) + a
~ 

v(2~) t5u’(t) (16a)

= (E I v”t + Pv ” + w2 pAv) 6u dx

+ ( CE I v” + a3v)  6u ’ - (B I v”t + P v’) óu] 
=

— [(E I v” - a2 v’) 6u’ - (E I v”t + Pv ’ + a1 v) 6u] (16b)
x = 0

From eq . (iSa) , it is clear that a necessary and sufficient
condit ion for (6J3)u = 0 is the problem defined by the following set
of equations :

D.E. E I u” + Pu” + w2 p~.u = 0 (l7a)

B.C. E I u”(Z) = 0 (llb)

B I u” (9.) +(P - a3) u ’(9) = 0 (17c)

E I u”(O) - a2 u ’ (0) = 0 (17d)

E 1 u” (0) + P u ’ (0) + a~ u(0) = 0 (17e)

Now eqs.(9) has become a special case of eqs. (17) when a3 = 0.
In addi tion , the problem defined by (6

~
3)
~ 

= 0 of eqs . (16) is called
the adjoint  problem to eqs . (17). For a3 = 0, the adjoint problem is
identical to the problem itself — hence , the self-adjoint system. Now ,
considering

a3 = k P  (18)

in eq. ( 17c), we have

B I u” CL) -K P u ’ (L) = 0 (19)

K = k — 1 (20)
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Eq. (19) defines the boundary condition of a general non-conser-
- 

- 
vative load . It is also clear from eq. (19) that K is a dimensionl ess
desi gn constan t which defines the small angle between the direc t ion of
the appli ed load P and the tangen t of the deflected col umn at the end .
Since (6J3)u = 0 alone defines the boundary value problem of eq. (17)
and vice versa, we need not at all to be concerned with the adjoin t
problem . Now it is a si mple matter to modify the finite element matrix
equation as

- 

{ K 3 + W 2M } u = o  (22)
where

= 
~2 + a3 a ’( L) aT (t) (23)

4. FINITE ELEMENT S FOR INITIAL AND INITIAL-BOUNDARY VALUE PROBLI~1S.

- 

(1) A Forced Vibration Problem. Let us first consider a problem
, of “one” degree of freedom , i .e . ,  a mass-spring system . The differential

equation and initial conditions are

1 m ü + k u = f ( t) ,  0<t<T (24a)

u(0) = u0 (24b.
- 

- ~ (0) = u1 (24c)

where u(t) is the displacement of the mass centre from its equilib—
• rium position, m , the amount of mass and k , the spring constant.

The function f(t) is given , so are the constants u 0 and u 3 . The constant
T appeared in the bounds of eq. (24a) is any given pos itive number
other than infinity. In order to formulate approximate solutions for
eqs. (24) the way we did in the previous section , let us consider a more
general case

m ii + k u = f(t )  (25a)

u (T) - a [ u(0) - u0 ] = 0 (25b)

= u1 (25c)

where a is a parameter, obviously eqs. (25) reduce to (24) when

- ;  a approaches to . Now , with eqs. (25), we are able to write an
unconstrained variational statement as follows :

* 6 J 4 0 (26a)

‘S
‘4
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A -

where
T

= f [ - mi~ + kuv - f ( t )v  ] dt

+ ma [u(O) - u 0] v (T) - mu
1 v(0) 

(26b)

Since

= [ - mii6~ -
~ kut5v - f ( t )  Ov } dt

+ ma [ u(0) - u0 ] 5v (T) — mu 1t5v(0) (27a)

f
T
[

..
k f ( t)] Ov dt

- m { ~ (T) - a I u (O)  - uO ] } Ov(T)

+ m [~~(O) - ul ] Ov(0) (27b)

The alread y familiar  for i :’ of eqs . (27) state that (a), (cSJ)u = 0 is a
necessary and sufficient condition for eqs. (25),and (b) , eq. (27a)

— provides us the finite element matrix equation. Thus, if we assume as
before that

u( t )  = aT (t) I)

- - v (t) = aT (t) V

Eq. (27a) yields

F OVT K4 U _ O V T F (28)

wh ere

~S4 Jo ( - m a a  + k a a ) d t
— 

+ ma a(T) aT (O) (29)

and
T

= f ( t )  a dt + nciu0 a(t) + m u0 a(O) (30)

A ,ain , since OV is unconstrained eq. (28) leads directly to

K4 1 J = F  (31)

which is the final equation to be solved .
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_ _ _ _ _
(2) A Heat Conduction Problem. The one dimensional transient

heat conduct problem can be described by the equation

3 3u 3u
E 

(K 
~j )- PC ~~~~

- - f(x,t) a 0 (32a)

Boundary and initial conditions are

u(O t) g0(t) (32b)

u(L ,t) g (t) (32c)

u(x,0) h (x) (32d)

where K = thermal conductivity

p = material density

c = specific heat

f(x t) = heat source function
• and

g0(t), g~(t) and h(x) are prescribed functions

Let us consider
6.J~ = 0 (33a)

- J~ 
[K pC + f(x,t) v] dt dx

+ 4 aX [u(L ,t) - g1(t)] y(Lt) dt
- aX [u(O,t) - g0(t)] v(O,t) dt

- 1
L 
pc [u(x,0). - h(x)J v(x,O) dx (33b)

since

(
~~s)~ =tJ

T
K 

~~~~~

. tS (~~.) + pc iSv + f(x,t) iSv] dx dt

+ a K [u(L,t) - g1(t)] iSv(L,t) dt

a K [u(0,t) - g0(t)] iSv(O,t) dt

Pc [u (x,O) - h(x)] i5v(x O) dx (34a)

r

83

-

~

::

~

:

~

_

~ 

_ _



- -
~~~~

= L
U T

E ~~~~~ (K ) - pc - f(x ,t)]óv dxdt

- K { ~u(L ,t) 
- ~[u(o,t)-g1(t)1 }Sv(Lit) dt

+ 1
T 

K { au(o,t) - a[u(O,t) — g0
(t)] }tSv (O~t)  dt

+ f pc [u(x ,O) - h (x) ] âv (x ,O) dx (34b)

it is clear that (6Js)~ = ~ 
is a necessary and sufficient condition

for eqs (32) as a -
~~ ~ ana eq. (34a) provides the finite element ma-

trix equation. We can write from eq. (34a),

T 

- /f[K .~~.6(~~-) + pc .~~. s5v] dxdt

+ cd( [u(L ,t) 6v (L ,t) - u(O,t) 5v (O,t)] dt
L -

+ L p c u(x ,O) 5v (x ,O) dt

T 
= f 0 J~f(x ,t) ~v dxdt

+ ctK [g1(t) Sv (L,t) g0
(t) 5v(O,t)] dt

L
+ J p c h (x) ~5v (x ,O) dx (35)

Now , let
u(x,t) = aT(x,t) U (36a)

v(x ,t) = aT(x ,t) V (36b)

in the usual manner, we have

~v
T K U = ~v

T F (37)

I ,.’ LT T T1 ~ 
K = - (K 

~~~~~ ~,x 
+ P C a 

~,t
) dx dt

T
+ f ctK [a(L ,t) a(L,t) - a(O,t) aT(O,t)] dt

L
‘4
; 

+ p c a(x ,O) aT (x ,O) dx (38)

IL 
~~~~~~~~~
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and LI
F = ~~~f(x,t) a(x,t) dxdt

I
+ czK [g1(t) a(L,t) - g0(t) a(0,t)] dt

+ p c h(x) a(x,O) dx (39)

Again, since 6V in eq. (37) is Completely arbitrary, we arrive at the
final matrix equation to be solved.

K U = F  (40)

(3) A Wave Propagation Problem. For a quite general wave propa-
gation problem, the following system can be written.

9 2u ~
2u

— - c2 —--- = f(x,t). (41a)
ax2 dt2

u(0,t) = g0(t) (4lb)

u(L ,t) = g1(t) (41c)

u(x,0) = h0(x) (41d)

ii(x,0) = h1(x) (41e)

The extension of the previous formulation to this problem is straight
forward. Let us consider

0 (42a)

where

= 1
L
1
T 

~ 
au av 

+ ~
2 
~~~~_f(x,t) v] dxdt

- a f ~ [u(L ,t) - g1(t)] v(L,t) dt
+ a J~ [u(O,t) - g0(t)] v(O

t) dt

U
- a f 0 [u(x,O) - h0(x)] v(x,T) dx

L
+ 5~ [u (x,0) - ::~‘ v(x,O) dx (42b) 

•1
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Again,

= J~5~ [ - ~~~. 6( ~!.) + C 2 
~~~. 6 ( 

~~
- )  - f(x ,t)6v] dxdt

— a [u(L,t) - g1
(t)] 6v(L,t) dt

+ a J~ [u(0,t) - g0(t)] 6v(0,t) dt

U
- a f [u(x ,0) - 1i0(x)] 6v(x ,T) dx

L
+ 5 [u(x ,0) - h1(x)] 6v(x ,0) dx (43a)

UT 2 2

fo fo ( - c2 
~~~~~~~~ 

- f(x ,t)] ôv  dxdt
ax 2 at 2

+ j  { ~~~~~~~~~~ - a [u(L,t) - g1(t)] } 6v(L ,t,) dt

- 

~ 
{ auco,t~ - a [u(O,t) - g

0
(t)] } sSv(0,t) dt

+ j
~ { 9u (x,t) - a [u(x,0) - h0 (x)] } 6v (x ,T) dx

- 5 [ ~!!.t~x ,0) - h1(x)] 6v (x 0) dx (43b)

~ at
Irom eqs. (43), it is again clear that (&J6)u = 0 is a necessary and
sufficient condition for eqs. (41) as a + ~ and that eq. (43a) will
yield the finite element matrix equation. From(43a) one has :

c~s{- ~~~~~

. (~!..)+ c2 
~~ 6 (~~

-)• } dx

- a 5 u(L ,t) 6v(L,t) dt + a 5 u(o,t) 6v(O,t) dt

- a 5 u(x ,0) 6v(x ,I) dx
V

= 51 f(x ,t) 6v(x ,t) dx dt

II 86 

L _ :~——T~I~~T _ _ _



af g1(t) 6 v(L,t) dt + a f ~ g0(t) 6v(0,t) dt
- a ~ h0 (x) t5v (x ,I) dx + ~ h1(x) 6v (x ,0) dx (44)

Again, let Tu(x,t) = a (x,t) U (45a)

v(x,t) = aT(x,t) V (45b)

Eq. (44) becomes, in matrix form,

6 V T U 6 V T
F (46)

where T L

~~~
= 5 0 5 0  t- 

, aul + c 2 ~~ T) dxdt

T T T T
- a f a(L,t) a (L,t) dt + a f a(0,t) a (O,t) dt

L
- a f ~ a(x,t) a (x,O) dt (47)

-
~~~~ F = f(x ,t) a(x ,t) dxdt

T I
- a f ~ g1(t) a(L,t) dt + a 5~ g0(t) a(0,t) dt

L L
+ a f ~ h0(x) a(x,T) dt + J , h1 (x) a(x,0) dt (48)

Due to the arbitrariness of 6V , eq. (46) leads directly to the final
matrix equation

(49)

5. NUMERICAL DEMONSTRATIONS. Several numerical examples will be
given in this section to demonstrate the application of the formulation
described so far.

I “~
(1) Forced Vibration. We shall consider a special- case of the

forced vibration problem formulated earlier. The forcing function in
eqs. (24) is taken to be a cosine function thus, rewrite eqs. (24),

m jj + k u = fo cos w t (SOa)
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u(0) = u0 (SOb)

1~1(0) = Ul (50c)

where u0, u1, f0 and Wf are given constants. In the finite element
formulation, we shall replace eqs. (50) with the following set

m U + k u = f 0 cos wft (51a)

- a [u(0) - uO] 0 (Sib)

thus, eqs. (50) becomes a special case of (51) as a + ~. It is con-
venient to nondimensionalize the independent variable t and let

= t/T (52)

In terms of r, eqs. (51) become

+ T2 w2 u = cos (I Wf ‘r) (53a)

- I a [u(0) - U0] = 0 (53b)

- T u1 = 0 (53c)
where

f1 = T2 f0/m w2 = k/rn (54)

The exact solution for eqs. (53) can be easily written as

u( r) = A cos (T w T) + B sin (I w ‘r)

+ ~ cos (I W~e • T) (55)
with

f0 U 1
,

m(w 2-wf
2) W

A = 
0 + I u1 cos (1w) - r~ [a + Twf sin (Twf)] 

(56)
a + T w sin (Tw)

To solve eqs. (53) using finite elements, one begins with the variational
- 

~~~~
- statement:

6 J = 0 (57a)

~~= j ~ [- i ~~’ + T 2
~~

2u v - f ( t ) v] dt
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+ I a [u(O) - u0] v(l) - I u1 v(O) (57b)
Now that

(6J)u = 0 (58a)

1
f o [-~~~~6~~~ + T 2 w2 u 6 v - f ( t ) 6 v]

+ T a [u(0) - u0] v(l) - Tu16v (0) (58b)

= 5 [~i + T2 w2 U - f (’r)] 6v dt

- {u(0) - a T[u(0) - uO] } ôv(l)

+ ( u(0) - T u1} 6v (0) (58c)

From eq. (58b), one has
1

5~ 
[- ~i 6 V + T2w2 u 6 v] dt + aT u(0) 6v(l)
i

= 5~ f(t) ISv d’t + a T u0 &v(1) + T u1 ISv(O) (59)
with

u( ’r) = aT(T) ~! (60)

• v ( r )  = aT (’r) V
eq. (59) leads to

IS VT K U = IS VT F
01’

K U = F  (61)
- - 

where
K = f (_ ~~~~

T +T2 w2~~~a
T)dt

+ a T a (l) a(0) (62)

= 5~ f(t) a dr + aTh0 a(l) + T Ui ~(0) (63)

The results obtained from this finite element formulation are corn-
pared with the exact solutions as shown in Tables 1 - 3. The values of
the parameters chosen for these dat a are k = 1.0, m = 1.0, f0 = 1.0,

= 0.5 , u0 = i.o , i~ = 1.0 the number of elements used is ten. The
calculated u and u for T = 2.0, 10.0 and 20.0 are given in Table 1,
2, 3 and 4 respectively. The forcing function cos wft and the solu-
tion u(t) are also plotted in the range 0 ~ t ~ 20 as shown in Figure 1.

(2) Solutions to a Transient Heat Conduction Problem. As another
numerical example, we shall take the nondimensional heat transfer problem
defined by th e following set :

r
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FIgure 1. Forcing Function F(t) and Solution ult)
for the Vi bration Problem
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TABLE 1

Solutions to the Forced Vibration Problem Using FE-UV F
Compared with Exact Solutions (in Parentheses)

P O < t < 2 . 0

t u(t) Exact u(t) Exact

0 1.000 000 0 (1.000 000 0) 1.000 00 (1.000 00)

0.2 1.198 652 6 (1.198 652 7) 0.979 74 (0.979 73)

- 0.4 1.389 153 7 (1.389 153 4) 0.918 43 (0.918 42)

0.6 1.563 313 2 (1.563 312 6) 0.816 55 (0.816 54)

- 
0.8 1.713 202 9 (1.713 201 8) 0.676 22 (0.676 21)

1.0 1.831 481 7 (1.831 480 3) 0.501 18 (0.501 18)

1.2 1.911 702 4 (1.911 700 6) 0.296 62 (0.296 61)

-
- 

1.4 1.948 585 6 (1.948 583 6) 0.068 98 (0.068 97)

1.6 1.938 251 2 (1.938 249 1) - 0.174 24 (-0.174 25)

1.8 1.878 396 9 (1.878 395 0) - 0.424 82 (-0.424 80)

2.0 1.768 416 1 (1.768 416 1) - 0.674 13 (-0.674 03)

I,

F-
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TABLE 2

Solutions to the Forced Vibration Problem Using FR-UVF
Compared with Exact Solutions (in Parentheses)

0 ~ • < 10.0

t u(t)

0 1.000 (1.000) 1.004 (1.000)

1.0 1.832 (1.831) 0.505 (0.501)

2.0 1.770 (1.768) - 0.675 (-0.674)

~~ 1

3.0 0.566 (0.565 - 1.614 (-1.608)

4.0 — 1.094 (—1.094) - 1.518 (-1.512)

I 5.0 — 2.123 (—2.122) - 0.435 (-0.435)

6.0 - 1.920 (-1.919) 0.778 (0.773)

7.0 - 0.843 (-0.843) 1.213 (1.207)

8.0 0.167 (0.166) 0.690 (0.689)

9.0 0.436 (0.435) - 0.126 (-0.122)

10.0 0.114 (0.114) - 0.385 (-0.381)

Jq.
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TABLE 3

Solution to the Forced Vibration Problem Using FE-UVE
Compared with Exact Solutions (in Parentheses)

0 ~ t ~ 20.0

t u(t )

0 1.000 (1.000) 1.05 (1.00)

2.0 1.778 (1.768) - 0.68 (-0.67)

4.0 — 1.097 (—1.094) — 1.57 (-1.51)
- --

-.4

6.0 - 1.928 (-1.919) 0.82 (0.77)

8.0 0.173 (0.166) 0.71 (0.69)

10.0 0.116 (0.114) - 0.44 (O.38)

12.0 0.453 (0.462) 0.88 (0.85)
. 1  

14.0 1.956 (1.950) 0.06 (0.03).

16.0 — 0.156 (0.162) — 1.76 (—1.71)

18.0 — 2.199 (-2.186) 0.15 (0.14)

- 20.0 - 0.348 (-0.342) 1.10 (1.08)

~4
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- = 0 , 0<x<1 ; 0<t<T (64a)
ax 2 at

B.C.: u(O),t) = 1, .~~~~ . (l,t) = 0 (64b ,c)
ax

u(x ,0) = 0 (64d)

where T is any given finite real positive number. To facilitate compu-
tation , it is desirable to change the independent variable t into T
such that

T = t/T (65)

thus, the system of eqs. (64) becomes

- -~-- ~~ = 0 , 0<x<l ; O< r<l (66a)
ax2 T3t

B.C. :  u(O ,’r) = 1 ; (l,t) = 0 (66b ,c)

u(x,0) = 0 (66d)

- 
- According to our unconstrained variational formulation, this system isH again replaced by the following:

D.E.: 
~~~2 

- 4 !a = 0 , 0<x<l ; 0<’r<l (67a)

B.C.: 
(0,t) + a [u(0,’r) -1] = 0 (67b)

(1,’r) = 0 (67c)

u(x ,0) = 0 (67d)

Clearly , eqs. (67) reduces to (66) as a + . The variational state-
- - ment can be written as

S J = 0  (68a)

-‘H where 1 1
0 0 ax ax T a t

L + nj 0 {u(0,t) - 1] v(0,’r) dT

+ 5~ u(x,O) v(x ,O) dx (68b)

Due to tl- e fact that v(x t) is unconstrained , it is a simple matter to
show that

= 0 (69)

r~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ 
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TABLE 4

Transient Heat Transf er Solutions u(x ,t) Using FE-IJVF
Compared with Exact Series Solutions (in Parentheses)

0 < t < T = 1.00

0 0.2 0.4 0.6 0.8 1.0

0.2 1.000 0.754 0.583 0.370 0.264 0.228

(1.000) (0.757) (0.496) (0.405) (0.284) (0.179)

0.4 1.000 0.855 0.713 0.622 0.552 0.516

(1.000) (0.853) (0.721) (0.616) (0.549) (0.526

0.6 1.000 0.910 0.828 0.767 0.725 0.708

(1.000) (0.910) (0.830) (0.767) (0.724) (0.710)

0.8 1.000 0.945 0.896 0.857 0.832 0.823

(1.000) (0.945) (0.896) (0.857) (0.832) (0.823)

1.0 1.000 0.967 0.937 0.913 0.897 0.892

(1.000) (0.967) (0.937) (0.913) (0.897) (0.892)
~1~,~~

. 4
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TABLE 5
-
‘ Transient Heat Transfer Solutions u(x,t) Using FE-UVI

• Compared with Exact Series Solutions (in Parentheses)

0 < t < I— 0 . 0 5

0 

- 

0.2 0.4 0.6 0.8 1.0

- 

. 

0.01 1.000 0.144 0.014 0.002 0.000 0.000

(1.000) (0.157) (0.005) (0.000) (0.000) (0.000)

- - ‘ 0.02 1.000 0.315 0.047 (0.003) (0.000) (0.000

- 
(1.000) (0.317) (0.046) (0.003) (0.000) (0.000)

0.03 1.000 0.413 0.103 0.015 0.001 0.000

- -

-

‘ 

(1.000) (0.414) (0.102) (0.014) (0.001) (0.000)

0.04 1.000 0.479 0.157 0.034 0.005 0.001

(1.000) (0.480) (0.157) (0.034) (0.005) (0.001)

-~~ 0.05 1.000 0.527 0.206 0.058 0.012 0.003

- . (1.000) (0.527) (0.206) (0.058) (0.012) (0.003)

.4
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is a necessary and sufficient condition of eqs. (67). Now the finite
element matrix equations can be obtained from eq. (69).

(ISJ) = - •1~f ~ [~~
- 6(t) + L ISv] dxdt

U o o  ax 9x Tat
1

+ 5 [u(0 ,t) — 1] ISv(0,’r) dt

1
+ 5 u(x ,0) i5v(x,O) dx = 0 (70)

0
or,

1 1- : - 5 1 [!! ~- 6(.~!) + I ~a ISvl dxdt
0 0  ax ax T a r

+ a 5~ u(0,r) ISv(0,’r) dt + j u(x,0) ISv (x ,0) dx

4 
= a f ISv(0,t) dt (71)

Using the usual procedure of discretization and the assumption
of displacement functions, the final finite element matrix equation
evidently can be derived from eq. (71). We shall omit the details here.
The computational results are presented in Tables 4 and 5. The finite
element grid scheme used is shown in Figure 2. As clearly shown in
those tables, excellent agreement exists between the FE-UVF approach
and the series solution. It is noted that the approximate solutions
are less accurate invariably as they approach the initial time t = 0.
This is probably due to the discontinuity of the initial boundary data
at x = 0 ,t = 0 .
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THE NUMERICAL SOLUTION OF FREE BOUNDARY PROBLEMS
BY MATHEMATICAL PROG RAMMING

Richard S. Sacher
Department of Mathematical Sciences
Rensselaer Polytechnic Institute
Troy , New York 12181

1. INTRODUCTION

This paper is concerned with the numerical solution
of free boundary problems by mathematical programming.
In such problems, one seeks the solution of a partial
differential equation (usually Laplace’s or Reynolds ’
equation) satisfying prescribed conditions on the
boundary of a region when a portion of the boundary is
unknown and must be determined as part of the problem.
The unknown boundary is called the free boundary.

Many of these boundary value problems have not
yielded to analytical methods of solution. Recently,
however , a novel transformational approach has met
with more success. Specifically, the free boundary
problem is reformulated as a variational inequality
which, in turn, is equivalent to a certain constrained
minimization problem in a Sobolev (function) space.
Although this latter problem is still computationally

- 
- 

intractable, finite difference or finite element
approximations yield a difficult, but solvable, sparse,
specially—structured quadratic programming problem of
potentially very large size. It is the solution of

- 
. this last problem with which we are concerned and for

which an algorithm will be stated .

2. APPLICATIONS

Free boundary problems arise in a variety of
situations. Rohde and McAllister [8] have developed
the variational inequalities for the finite—length

14p journal bearing problem , in which one is concerned
with a cylindrical rod (the journal) rotating within a
tube (the bearing). The inner surface of the bearing

— - is coated with a thin film of lubricant and we wish
to know the pressure distribution on the film. At a
certain point, the pressure becomes so low that the
lubricant vaporizes, thus creating the free boundary
interface.

‘S
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In the area of fluid dynamics , Baiocchi et al. [1]
have reformulated certain problems dealing with
Stationary fluid flow through porous media as varia-
tional inequalities. These include porous dams in
which the free boundary is the interface between the
wet and dry part of the dam . Br~zis and Stampacchia
L 2 ) ,  (3] have studied the determination of steady sub-
sonic flows for nonviscous compressible and incompress-
ible fluids past a two-dimensional convex body by
using a hodograph transformation to obtain an equiva-
lent free boundary problem for which a variational
inequality problem can be stated.

3. THE QUADRATIC PROGRAMMING PROBLEM

The common denominator of these and several other
free boundary problems is that their associated
quadratic programming problem

Minimize f (x) = ~.(x ,Mx > + <q, x>

subject to x > 0

has certain special attributes which can be exploited in
the development of efficient algorithms. The matrix M
is a block—tridiagonal Stieltjes matrix (ie., symmetric ,

- 
- diagonally dominant with nonpositive off-diagonal

entries). Furthermore, the diagonal blocks are them-
selves tridiagonal matrices and the off-diagonal blocks
are diagonal matrices.

One computationally successful .approach to this
problem is a modification of the block- (or line-)
successive overrelaxation method . This algorithm
requires that we partition the vector -

x = (x 11x2,.. ~x~) where x1 c R 1. and conformably

- 
- • partition M and q. For this special class of problems,

we may state the algorithm as follows:

Algorithm
0 0 0 0Step 0. Let x = (x1, x2

, 
~~~ 

xm
) be any nonnegative

vector , eg., x° = 0. Let wc (0,2) be given. Set k0  and

i=l.
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I
Step 1. Determine > 0 which minimizes (over the

nonnegative orthant R+ ~

k+l k+l k+]. k kf (x1 , x2 , .. ., x1_1 , v , ~~~
- 4  = ~~~

. <v,M~~v> + <(q~ + M~~ .1 x’~~ + M
~,i+i x~

C
~1),  V>+C

j

where c~ may be taken to be zero.

Step 2. Define

= max {~ : < w, xk + - xk ) > o
1 — 1 1 1 —

k+l k k+l —k+l kx~ = x1 + w~ (x
1 — x .)

Step 3. If i=m , go to Step 4. Otherwise, return to Step 1

with i replaced by i+l.

Step 4. Define

In

S = {(i ,j):(x )~~>O}U{(i,j):(x~~~)~~~O , (q~+ ~~ M .Lx~
4l).<O}.

If max (q . + ~~~ M .~ X~~
’).I < C , stop. An approximate

(i,j)cS 1 9= 1 ~

solution is at hand. If not, return to Step 1 with k

replaced by k+l and i=l,

Step 1 requires that we solve a smaller quadratic
programming problem whose quadratic form contains a
tridiagonal Stieltjes matrix. For a discussion of some
fast methods to do this, we ref er the reader to [5 1. For
more details on the development of and computational
experience with the algorithm given above, see [ 4 1.
From a consideration of storage requirements and speed ,
one may conclude that this algorithm is competitive, if
not superior , to other methods described in the literature.

_ _ _  — 
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A MJ~~RICAL fl~~~ R~~I~~ ER1~ R A~~LYSISUTILIZING A WIONSKIAN ‘IEC21NI~JE

Larry A. Whatley

Quality ax~ Reliability Division
US?4MERADca4

AT N:DRXFD-TQ (Whatley)
Ft. Belvoir, Virginia 22060

Forn~rly, Intern Training Center , DA1~X)A

S • Bart Childs, Ph.D.
Depar-t2nent of Industrial Engineering

Texas MM University
Texarkana, Texas

ABgrRI~Cr. An error analysis is perforn~ 1 upon tbe superposition and ni.m~rical
integration procedures of a neUxd of solution of niultipoint boundary value pmbla’ns

- - utilizing power series expansions. The procedure involves the evaluation of tbe re-
lative error of the Wxonskian, which provides a scalar function characterization of
the error of integrators of a matrix of solutions. Tbe error behavior is investigated
by using different integration step sizes and orders (tezn~ of tbe pow’er series).

Evaluations are perforn~d with nun~ rical solutions of specified accuracy or
order. ~ caeple applications are included.

1. INr1~xxL’rION. Nunerical integration is a~ruonly used by engineers arid
scientists as a tool for solving ordinary differential equations. ‘I~~se equations
which cannot be solved exactly or in closed form can often be solved using nunerical
integration techniques. Tbere are drawbacks to each particular integration sch~ne.The nrst inçortant considerations are: the origin of the problan, guidelines fran
the theory of the algorithm , the oatpiter being used, aid the class or problans to
be considered , Shanipine aid Allen (1973).

Many techniques , in the form of “canned” routines or pre-prograinied netlxx1s,
and their variations , are available to the user. It is ~~~ possible to obtain nuneri-
cal solutions using techniques which require lengthy operations. The nore popelar
integration techniques (i.e • Adams n~ tbods, Runge-Kutta, etc.) provide reasonable
results for a wide range of applications. They are subject to sa~ disedvantages, thenost cum~ n being t~~ir suscaptabiity to round-off error , Ralston aid Wilf (1960) .
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An alternate netbod of numerical integration has been investigated which is
based upon the expansion of power series. The methed is relatively free of the
disadvantages of the nore popular techniques aid significantly nore efficient for
certain classes of problems, Doiron (1967) . Research done previously by Fehlberg
(1964) has sbown the power series technique to be five to six times faster than a
Runge-Kutta method for the same specified aocuracy in certain selected problems.
The power series methods generally require nore user effort.

The purpose of this study is to investigate the error in the integration via —

~x~.1er series expansions . It has been st~~ n that the Wronskian can be used as a
meaningful check on the solvability and superposition procedures in the solution
of boundary value problems. It has been proposed that the relative error of the
Wronskian can provide some insight into the errors arising fran this particular
integration schane, Childs et al. (1971) .

2. DLVEIDPMENP • The problems to be considered are presented as an ordinary
differential equation written in the general linear form as

y _— L u # f  (2—1)

where L is a linear operator in the form of an n x n coefficient matrix (expressed
as a constant or function of an independent variable) . The letter y represents the
state variable vector aid y denotes the derivative of y with respect to the indepen-
dent variable (in this case t ) .  The vector f  is a vector of forcing functions. The
above equation is subject to a set of specified boundary conditions.

q~(y(t~)) = 0 < t~ < T  i = 1,2,...,m (2—2)

where m >  n. The operator qj is a linear carlination of the elements of the vectors
at t = t~ , that is equal to the boundary value

To meet the above boundary condition it is necessary to superimpose independent
solutions of equation (2—1) . The technique used is to superimpose the appropriate
number of solutions of the 1E~rogereous equation

H = L H  (2—3)

upon a particular solution

p — ~L p f f  . (2—4 )

This can be written as
j.

r (k)y — p + H 8 = p #  ~ h r < n  (2—5)
k=1

where H is a matrix w}x,se columns are lx*ix)geneous solutions. The superscript in
parentheses indicates that vector is the ( ) th co1trra~ of a matrix denoted by the
capital letter arid ~ denotes the superposition constants. The letter r denotes
the number of F~m~geneous equations which is equal to the number of unkrø.~n elai~nts
of y (o) .
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It is kr~~ n fran elatentary differential equation techniques that the sum of
a particular solution of a linear differential equation aid a solution of its luto-
geneous differential equation is merely another particular solution of that differ-
ential equation.

Utilizing this fact, it can be established that y can be expressed as a combi-
nation of particular solutions (Childs, 1971)

= Pa = ~ (k)  
a k (2—6)

where P is a matrix whose columns are solutions of equation (2-1), thus:

~(k) = Lp~~ * f  • (2-7)

We multiply each side of equation (2-7) by aj< arid st~ these products

k~o 
~~~~~~~ a~ = L 

k~0 
p~~~ a~ # ~ k~0 

ak . (2-8)

By cxinparing equation (2-1) with equation (2-8) , it is obvious that the left hand
side of equation (2-8) is the quantity y arid the first term of the right hand side
is the state vector y. Therefore, it is ela~~ritaxy that the superposition constants
must they

~ a~~= l  (2—9)
k=0

After determining the superposition constants , subject to the above restriction,
the solution bea~nes trivial and is generated utilizing the initial conditions

y (o) = P(o) a . (2—10)

The reason for superposition of solutions is to satisfy the boundary conditions.
it is necessary that the superimposed solutions be independent to be able to meet
boundary conditions.

The requiratent of independence is satisfied using a determinant of lutogeneous
solutions, which is usually kr~~n as the Wronskian. The independence of lutogeneDus
solutions is satisfied when the matrix whose columns are these vectors of rank r .

rank (H) = r (2—11)

which must contain at least one r x r sul~natrix of Ii aid has a non-zero determinant
for the range of values of the independent variable.

This can be applied to superposition of particular solutions. Define ~P as an
(n+1) x (r+1) matrix in which the first row elarents are one (unity) and remaining
sukinatrix is P (shown in equation 2-6) .

_ _  _ _  _ _ _ _ _ _ _ _
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P J
The Wronskian of rank n has been si-own to obey the following equation,

Petrovski (1966).

t
dot (H(t)) = dot (11(o)) exp ( f tr (L ( ~ ) )  d~ ) (2—13)

0

where tr (L (t ’)) is the trace (the sunination of the principle diagonal of the matrix)
of the coefficient matrix in equation (2—1). When the Wronskian is non-zero at the
initial value of the independent variable, then it is theoretically non-zero for all
values of the independent variable over any finite interval. The following theorem
adapts (2—13) to particular solutions.
Theorem:

t
det (‘P(t)) = dot ( ‘P (o) )  exp ( 1  tr (L (t ~) )  d~) (2—14)

0

Prcof:

The columns of ‘P are ~~~ ~~~

~(k) = ~~
(O) 

+ . (2—15)

The subtra~tion of ore colunu-~ of a matrix fran all other columns does rot affect
the value of the determinant of that matrix. Therefore, subtracting the 0th column of
‘P fran all other coltzm-~s and ~~nparirr~ with equation (2-13) cc*t~letes tie proof:

dot ( ‘P) = dot {0~~~~~~~~H ]  
= det (H)  . (2-16)

0

- - - 

The Wronskian shows that solutions are (not ) linearly independent arid that a
fundamental set of solutions (doesn’t) exist.

The relative error of the Wronskian is defined as follows:

R ( t)  = 
— I Wn (t) ! (2—17)

I W(t)I
‘1

where W~ (t) is evaluated utilizing particular solutions which come fran iunerical
:— . integration procedures aid W (t) is evaluated fran (2—14).

3. AN EXAMPLE. The ix~~ r series integration method was programied in FtR~RAN
utilizing an Anidahi 470 digital cczVlter. ~~~ program, subroutines aid function
routines used in the study ~~re provided fran unpublished studies, Childs (1975) .

The results are for damped , forced haxnonic oscillators described by the
$4 

following equations:
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= -Xy 1 -py 2 + s in (t)

A set of independent particular solutions are created using arbitrarily chosen
initial conditions :

= 1.
= 0.

Pc~~r series evaluations are then generated using these initial conditions aid
the recursive relationships. The set of particular solutions are then solved over
tie range of the independent variable, t .

By calculating the Wronskian using both numerical procedures arid the analytical
method, the relative error may be examined.

The results of the relative error of the power series integration procedure
are compared to results obtained firm previous studies by Childs et al . (1971) con-
cerning the same problem using two different numerical integration procedures with
X = 1.0 and p = 0.2. The ~~~ integration procedures used to compare with the power
series method are rrcdified Euler end 1~ n e-Kutta methods. They are order h2 aid h 4
respectively, where /i is the integration step size. The two plots in Figure 4-1
are log-log plots of R( t )  versus h for the Euler arid &~nge-Kutta procedures. For
these results it has been observed that the following relationship is true:

~(R ( t) )  = R(~ t)

• where y is a positive scaler quantity. From these results it has also been suggest-
ed that the relative error is dominated by the following proportionality for “reason-
able” integration step sizes

R ( t) I~~~h~~t
where j  is the order of the integration formula used.

By comparing both cases (Figure 4—l.a aid 4-l.b) it has been determined that
they have slopes of 2 aid 4 respectively. It has also been observed that for “large”— step sizes the points tend away from the straight line due to approximation error and
also for using “snail” step sizes due to round off error .

Results for the power series integration procedure are presented in Figure 4-2
in the form of a log-log plot of R ( t)  versus h for different orders (terms in the
power series) . it is seen that a family of curves exist for different orders. It
was observed that for constant step sizes the error decreases as the nunber of terms
increase. As the step size increases, the number of terms must also increase in
order to retain a specified accuracy. Like the Euler arid Runge-Kutta procedure, the
relative error tends toward linearity as it increases with step size. As the step
size decreases for each “order curve” the error function tends toward the error
specification. This observation can be e~q~1ained by the evaluation subroutine used
on accuracy specification of 1 x l0~~. Thus , nore accuracy was not atta~pte1.
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Since the curves are all similar, results will be explained for only one curve.
- 

- For the “order curve” evaluated at 4 terms, the step size begins at .001. It is
observed to be within accuracy specifications due to the fact that the po~~r series
integration is performed with such ~nall step sizes. Since such ~nai1 steps are
used, all tie terms (in this case, 4) are not required to meet the accuracy. As the
step size increases , nore ten~e are required to meet the accuracy sp~~ification. At
the step size, .005, it is observed that the curve “dips” . This occurs because at
this step size nore terms (in this case, 1) are required to meet the accuracy. Fran
this point on the routine is utilizing all the terms of the po~~r series in order
to meet the accuracy requirement. Ibwever, as the step size increases, it is seen
that tie accuracy is not being net due to the larger steps being taken. It is also
seen that the error function is linear while all terms of tie power series are being
used arid ~~u1d continue to be linear (within machine limitations) if it were not
for round-off .

Results were also calculated for several values of (A , p) .  All tendencies held
- 

-
~ - as sl~~ n in Figure 4-2.

- 4. C)N~~LJSIONS • The relative error of the Wronskian can apparently be used
• to determine if the step size used by an integration procedure is appropriate. The

error ~ould grow approximately linearly in a log-log plot. Further investigations
should involve different systans of equations.
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INP U T CONTROLLABLE STOCHASTIC MODEL

Sheafen Frank Kuo
U. S. Army Construction Engineering Research Laboratory

P. 0. Box 4005
Cham paign , Illinois 61820

1. INTRODUCTION. This paper introduces a model which incorporates
the principles of both Markov chains and finite state machines . Markov
chains possess stochastic behavior in the transition between states but
are not input control l able. Finite state machines, on the other hand ,
are i npu t control l able between states , but do not have stochastic
behavior. Basic conce pts of an input controllable stochastic model and
anal ysis of its short- and long-term behaviors are presented . Forecast
accura cy (FA) of a model is define d and rela ti ons between strin gs and
models are descri bed. The firs t order deri vative (FOD) of a model is
in troduced. A sufficient conditi on for a model and its FOD to have

4 
equal FA is proved. In addition , some applications are briefl y dis-
cussed .

2. INPUT CONTROLLABLE STOCHASTIC MODEL.

A. Definition . An input Controllable Stochastic Model (ICSM) is a
quadruple H = {I, 0, S, ii) where I is the input set , S is the state set,
0 is the outpu t set , and p is a probabilistic function , such tha t

H p : I x S~ x 0 x ~~~ ~ p

where

St. S
t+1 CS

P = the set of real numbers between 0 and 1.

In other words , given input x 1 and present state 
~~ 

p ass igns a
probabili ty ~~~~ to each output 

~m 
an d next state 5n • Usin g the prop-

erty of the probability function gives
I.,

E P.. n l,for all x1c1, S
a

cS
XmEO S,i~~ 

ijm

H B. Example. Let I = 0 = {x, yl , S = (A , B , C). p Is defi ned as
foll ows :

If

115

_ __ _ __ _ _  

-

~~~~



p (x, A , x, A) = 1/4
p (x, A ,y, B = 1/4
p (x, A ,x , C = 1/2

-H p (y, A ,y, C 1
-
~~ 

p x , B , x, A) = 1/6
p x , B, y, A) = 1/6
p x , B , x , C) = 2/3

B, x , B) = 1
1 p x , C, y, A) = 1/2

p x , C, y, B) = 1/2
p y, C, x , C) = 1
p = 0 otherwise

- • C. Graphic Notation . Noting the input , ou tput , and probabilit y
- on an arc path between two states S1 and S,~ gives the followin g:

H x/y, 1/2

This notation means that given Input x and current state S~, the

probabil ity of getting the next state S~ and output y is 1/2. Making an

arc between each comunicable state would give a fl ow graph for that
model . The flow graph of the last example is shown as follows :

x/y, 1/6
x/x , 1/6

- 
1 x/x , 1/4 y/x, I

2/3

y/x, 1
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3. INPUTTABLE MARK OV CHAIN (IMç). A special case of ICSM of inter-
I; est In this paper is the model wi th empty output set 0. This kind of

model Is called the Inputtable Markov Chain (IMC).

A. Definition . An IMC is a triple G = (I , S, k } where I is the
Input set , S is the state set , and k is a probabili ty function which
satisfies :

k(S i , Xj~ Sk ) = prob {St+l = Sk i S~ = S1~ x~ is input ) for all

S1, S~cS and Xj EI

Hence

E k(S 1, x3~ 
S~) = 1 for all S1cS and xjcI

- 

.,. 
SkCS

B. Trans i tion Matrix. Let 1< = (I, S, k) be an 1MC , where I =
{x 1, x2 . . • x,~} and S = 

~ i’ S2, . . S~}. Using 
~jjk 

= k(S i, ~~~ Sk)

- 

‘ 1 gives:

1 2~~~~~~~~~ m
1 P1~1 ~ljm
2 P2jl P2j2 • P2jm

: : (1)

P P • •
mj l mj2 mj ni

as a conditional transition matrix of input xj. Notice that the suma- —

tion of each row is 1.

Suppose at each state S~ the probability of getting input Xj  
is qjj.

Let

q j j  -

q
21 

0

be a diagonal matri x
0

4
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Let

P~~= Q 1 
• Px~ (2)

n
P =  E P 4 (3)

j=l J

Thus , p is a transition matri x without knowing an Input variab le.

4. SHORT- AND LONG-TERM BEHAVIOR.

- 
-

. 

A. Short-Term Behavior. From a given model one can explore the
k-step state distrib ution ; i.e., after the k-step , the model will go to
a certain state with a certain probability . Two cases can be con—- 

-

(1) Inpu t string -Is given . If x1x2 . . . x~ is the Input string,
then the k-step condi tional transition matri x is

Px 1x2 . . . x~ = Px 1 • Px2 . . . Px~ (4)

where Px~ is the condi tional transition matrix defined by equation 1.

F (2) Input string is not given , but the input distrib ution matrix
is given . Equati ons 2 and 3 can then be used to find P, and the

H k-step transition matrix is as shown in equation 5.

= . . . . (5)

I: k times

B. Long-Term Behavior. For long-term analysis , onl y the case
without input Is considered here. If k Is large , calculat4ng ~~
somewhat cumbersome , but applying the z-transformation , which is a corn-
mon way of calculating the power of a stochastic matrix , simplifies it.
Let

q(k)=P

The z-transformation Q(z) of q(k) Is defined as:

Q(z) = 

k=O 
q(k)z k (6)
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or Q(z)[I - f 1
P] = q(O) (7)

since q(O) = 1
1 1Hence Q(z) = [1 - f P] (8)

Let the inverse transform of Q(z) = y(k).

Therefore y( k)  = a
_ 1 [(I — z’1P) ’

~ ] (9)
q (k) = y(k) (10)

or y (k) = ~k (11)
From equation 11 ,

urn ~k = u r n  y(k)
I4 ’  k - ’ °°

5. STATE PROBABILITY AND FORECAST ACCURACY OF A MODEL.

A. Defini tion. State probabil ity (or state frequency) P~, of sta te
S~ is defined as

= (12)

where ~~ = E ~~~~~ (13)

the probabili ty of input Xk at state S~

~jki 
= the conditional probabil ity of S~ transferring to

S~, given input xk

Obviously E P1 
= 1 (14)I.

Using equations 12 through 14, P1 for each i can be found.

‘i The forecast accuracy [FA(R)] of a model R is defined as: 
—

FA(R) = E Z [P4q41 , max P41,4]
I 11¼ 11¼J

.4

h g
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Intuitivel y, FA(R) is the maximum average probability of forecasting
the next state correctly, given the current Input and state.

B. Example 1.

a, 1

1

b , 1/2

- - The figure shown above is a simple model R with two states and two
input variables. Assume input a and b are equally probabl y at each
state. Simple calculation usings equations 10, 11, and 12 gives :

state frequency : 
~A 

= 
~~ 

=

H Therefore, state A is visited twice as frequently as state B is visited .

FA(R) = 1’A ~~ 
. max (PAaA~ ~AaB~ 

+ 1’A max 
~ AbA ’ ~AbB~

+ P8 max 
~
‘BaA ’ ~BaB~ 

+ 
~B 

q max 
~ BbA ’ ~BbB~

Since 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~

Hence FA (R) = 
~~~ 

• max (1, 0) + • max (~
-, ~

-} + 1 . max (1, 0)

max (1, 0)]

Therefore FA(R) = ~~~
.

The average chance of forecasting the next state correctly is 11/12 ,
given the curren t state and input.

- - It is trivial to see that a determin istic model , like a finite
state machine, has a forecast accuracy of 1.

The following are some of the trivia l properties of FA(R):

(1) FA(R)>max E E P q 1~P~~JJ 1 k
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(2) FA(R) = 1 - E E P1q1~ mm 
~ik~ 

if number of state is 2
1k  j

(3) Define FA(R Ik) = E P max 
~ik~I j

Then mm FA(RIk) < FA(R) < max FA (Rlk)
k k

6. THE STRING AND MODEL. Consider the following string:

aAaAaAbAbBbBaAbAbBaAbB aAbB . . . (15)

where A and B are state variables and a and b are input variables .

After sufficient observation, a model like that shown below can be
develope d.

b , 1/2

b
~
u/2co

~~~~~i~~~~Ø)b,

Combining the last state wi th the current state , or putting the current
state to the left upper corner of the next state gives

A A A A B B A A B A B A B
aAaAaAbAbBbBaAbAbBaAbBaA bB . . .

Putting the up per characters down gives

A A A . . .
aAaAAaAAbAAbABbBBaBAbMbABaBAbABaBAaABbB . . . (16)

String 16 is said to be a First Order Derivative (FOD) of string 15.
FOD ’s are developed to increase the number of states so that the system
is better described. For example, if string 15 is an observer ’s weather
record wi th A and B meaning sunny and rainy , respectively, and a and b
mean ing decreas ing tempera ture and increas ing hum idity , respectively.
An FOD of String 15 can be derived to String 16 with AA as sunny, AB as

“ I cloudy , BA as partly cloudy , and BB as rainy. Therefore, String 16 is
more descriptive than String 15.
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7. THE DERIVATIVE OF THE MODEL.

A. Definition . Like a string, the model also has der i vati ves.
Let R be an IMC .

(I, S, H}, 1 =  {x1, x2, . .  ., x

S = (S1, S2 . . . s~}, H = ~~X i = . . . n)
j

where 1’x is a transition rn-matrix under input x~.3

Define S = S x S = (S~ = S 1Sj ; S.~ SfS}

Let ~~~ be an e lemen t of P~ ~ k be an element of
k o~~o k

where P is a transition matri x of dim m2 x m2 under X kxk

such that kj = 

~ik 
j
~ s~ = S~s ,  S~ = S S .

0 0 ‘~ o ~o

and i f I = r, otherwise ~ k = 0 —10 3 0

Defi ne H~ = {P k = 1, . . ., n} and I~ = IXk

Then R = {I~, S , H ) is an FOD of R = {I, S, H)

B. Example 2. The FOD R of the model R in Example 1 is as shown
below.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

b , 1/2 a, 1 b , 1/2 ~~~ 1a , 1 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Similar to Exam p le 1 , assume that input a and b are equally probable
at each state. Then it can be shown that

FA(R ) = FA(R#) (17)

In general , equa tion 17 is not true. However , the sufficient con-
di tion of it can be found.

Define index sets of R, R as follows :

-

. 

T = { r I SrcS}

T = {rI S cS’}

T~ = {r S~~S x Sm ) where S X S1 
= {S~S~ f J~T}

LEMMA 1:

-: (1) For all i0cT~ jcT there exists j0cT s. t. P1~ =

(2) For all i0cT~ j0cT~ there exists jeT s.t.

Proof: Trivial

LEMMA 2:

For all i cT~ max P. . = max P~~ ‘ jeT ikj jeT

• Proof:

Let max P~~ = P~~ where j1cT (18)

By Lema 1
= 

~‘I kJ < max P
~ ~ 

for a l l i0eTI (19)
1 0 2 j0cT 0 0

Conversely, let max P~ = P~ 1_aol
j ET ~ ~o - 1

By Lema 1 P~ 1.4 < 
~~k 

< max 
~1k~o”l 1 i 3

_
j cT ~ 

-

Therefore max 
~jk 

= max ~ k~ 
for a l l I cT~ QED

JeT ‘~ j cT ~~~ 
0 1
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THEOREM :

~Ik = q1 k for all i0eT~ and If E P~ = P for all i
o t0eT~ o

Then FA(R) = FA(R1

Proof:

Since FA(R) = E ~ P.q~~ max P .
1k 1 j 11(3

And FA(R’) = E ZP~~q~~~max P~~1(.10 k o~~o Jo ~~~~

= E E  E ~~~~~~~~~~~~~I k i0cT~ 
1~ 1~ i0 ~

10 ~o

= Z E  E P~~q.1(max P .~ . (by Lema 2) 4—’
i k i ocTi 

1~~~1 
~ 

1 3

= Z Z [(
~ 1~ 

max
1k  ~~ 1

Hence FA(R) = FA(R ) QED

It is not surprising that for most models R and its FOD R , con—
ditions

• 
q~~ 

= 
i0k 

for all i0cT~

and E P~ = P. for afl I
i0cTj~ 

lo 1

are easily satisfied; thus, the forecas t accuracy of the FOD R~ ~s no t
lost.

8. APPLICATION. The Markov Chain has been applied to many manage-
ment science or systems analysis fields . IMC improves the Markov Chain
because it has more fea tures to ada pt the real wor k of physical , econom ic,
biolog ical , or engineering systems [1], [4], [6]. The most important
feature , the Input controllability , a l l ows one to unders tand a system
by controlling input to find the subsequent changes in state (and out-
put). Because the processing is stochastic , the f i n i te state mach ine
(or automata) cannot describe the procedure properly. If a model can be
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build corres ponding to a string of data, the model can then be tes ted
and evalua ted by calculating its forecast accuracy. The FOD is a useful
tool -In understanding the model , as illustrated by the weather forecasting
example.

Some stochastic automata have already been applied to the reliability
problem and decision process [8]. It -is hoped that the discussion in th i s
paper will create a new interest in the research in a discrete system.
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A SCANNING ELECTRON MICROSCOPE INVESTIGATION
OF STATICALLY LOADED FOUNDATION MATERIALS

RAYMOND E. AUFMUTH
Department of the Army

CONSTRUCTION ENGINEERING RESEARCH LABORATORY
P.O. Box 4005

Champaign , Illinois 61820

ABSTRACT. Selected rock samples were tested to failure in bending
tension and compression test modes within the vacuum stage of a scan-
ning electron microscope (SEM). The load was applied slowly such that
crack initiation and growth could be observed and recorded by photo-
graphy and video tape . The failure surfaces were further eva l uated by
standard methods to determine failure mechanisms involved for each test
mode and rock type.

1. INTRODUCTION. An understanding of the physical properties
and behavior of rock materials (rock engineering) is necessary to im-
plement a systems approach for designing a structure . Structural
design considerations may include rock removal , tunneling, use of
rock as a foundation material , or any combination of these factors.
Information about the fundamenta l mechanisms of the fatigue and fail-
ure properties of rock is essential and should be available to the
design engineer. Since construction of underground structures such
as tunnels for defense facilities , underground power plants , and hy-
draulic structures has increased , and since idealized construction
sites are not always available , it is essential that rock failure
mechanisms be controlled by proper design practice .

There have been few investigations concerning the failure modes of
rock materials in simulated field tests, primarily because of the exper-
imental problems associated with controlling rock failure . Wawersik ,
Brace , and Fai rhurst (ARGO Proposal 11278 EN) have irvestigated the
post-failure behavior of selected materials. Brace and Sprunt have in-
vestigated the microcavities in crystalline rocks; and Brace (ARC) Contract:
DAHCO 4-73-C-0017) is presently investigating the microstructure in
crystalline rocks with a scanning electron microscope . The study herein

i’:. complements these and other investigations by advancing the state-of-
the-art of failure mechanisms .

2. EQU IPMENT. The PMR 900 Scanning Electron Microscope (SEM) is
a high-res olution instrument providing surface resolution of 100 to
200 ~ and useful magnification of up to 50,000X . The depth of focus is
accurate to tens of microns. This means that a fairly rough surface ,
such as a rock fracture surface , will remain in focus at high magni—
fications. The micrograph obtained appears similar to that obtained
from the reflection light microscope , but it has much better resolution
and depth of field.
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The AMR 1300 stage and chamber door assembly is inserted in the AMR
900 Chamber to replace the standard door and stage . Depending on the
type of test to be performed, the bending or tension-compression device
is mounted on this assembly during its operation . A platform mounted on
the base plate provides the X motion (right and left), the V motion (back-
ward and forward) and the Z motion (up and down). The Z motion is actuated
by articulated shafts to the door and a single knob on the front face of
the door. One revolution of the exterior knob represents a change in Z
of 1 mm ; the readout is such that one digit corresponds to a change in
specimen neight of 0.1 mm. A counter-clockwise rotation of the stage
rai ses the bending stage and closes the compression-tension heads . The
same revolution and motion changes apply to the X and Y directions.

The bending stage (Figure 1) is custom-designed to load a rectangu-
lar specimen having maximum dimensions of 1 x 1 x 6 in. in simple three-
point bending to a maximum load of 2000 lb. This stage is essentially a
platform having a knife edge on its top surface that supports the speci-
men at the center of its bottom surface. A load bar connected to the
platform by a ball screw and gear system is connected to the edge which

— bears down on the top of the specimen. The points of the specimen ’s ten-
sion links continually vary to acco;inodate specimens of 3 to 5 in. in
length . The maximum bar deflection is 0.375 in., it is applied via the
hand crank on the outside of the chamber door . Each digit of the read-
out corresponds to a specimen deflection of 0.004 mm at no load.

The bending device is loaded into the chamber parallel to the V
axis at an angle of 45 degrees to the horizontal . Two positions 180
degrees apart are possible , allowing observation of the tension face or
a side face of the specimen.

The tension-compression stage (Figure 2) consists of two heads
mounted on a pair of right- and left-hand ball screws. When the screws
are rotated, the heads move either together or apart , but remain par-
allel . Compression specimens are placed between the flat surfaces of
the heads for testing. Tension specimens may be held in place by var-
ious techniques. In this study , square steel heads with a centered
slot and a pin hole normal to the slot were epoxied to the specimen ends.
These in turn were connected by the pin to threaded rods , flattened at

- 

• ,~ one end , which fed through the holes in the stage heads (Figure 3).

1~~ 
The gear train used for specimen deflection is the same used for the

bending state; however , one dig it of readout corresponds to 0.005 mm
change in distance between the heads . Minimum distance between the heads
is 0.25 in., and maximum distance is 4.0 in. The maximum load which may
be applied to either failure mode (tension-compression ) is 2000 lb. The
stage itself is tilted at an angle of 15 degrees to the horizontal ; how-
ever , since a specimen may be pl aced in any orientation between the heads ,
any desired tilt may be obtained.

_ _ _ _ _ _ _ _ _ _  
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3. MONITORING DEVICES. A secondary (backscatter) electron image for
direct observation of the specime n is developed and displayed on a signal
modulation unit. (This is the primary visual means of specimen observa-
tion.)

In addition , the secondary ima ge r~y be displayed on a 9-in, square
TV rate monitor displa~ unit. This unit displays the same field as the
previous module , but has a limited magnification range of from 100X to
1O ,000X . It has a built- jr zoom capability that allows closeup display of
a small ares in the center of the TV and is operable at all ma gnifications.

Photomicrographs are obtained throug h a record oscilloscope 4 x 5 in.
square and Polaroid 52-P/55-P/N , 4 x 5 in. fi lm. An alphanumeric generator
is integra ted into the signal modular display unit in order to facilitate
identification and description of the photomicroqraphs.

4. SPECIMEN PREPARATION. Table 1 lists the representative suite of
rock samples chosen for eva l uation in this study and summarizes their
physical characteristics. One set of specimens was prepa red for each of
three test modes: bending, tension , and compression. In addition , three
cross-sectional dimensions were prepared to determine any specimen size
effects.

Bending (flexure ) specimens were sawed into beams and ground square
in lengths from 4 to 5 in. long and cross sections of 1/8, 1/4, and 1/2 in.
square . A fine notch was filed into the top (tension) surface to control
crack origin during scanning at high magnifications. This notch was approx—
imately 1/16 in. deep for all specimens.

Tensile specimens were prepared in the same manner , but were cut 2-1/s
in. in length. Notches were ground into opposite sides of the specimens to

-- 
- minimize extraneous stress concentrations at other points in the specimen

test mode. The intact cross-section varied from 3/16 to 1/4 in., dependin o
on the specimen size. Only the tensile specimens were modified for
testing; a steel head was epoxied to each end to facilitate application
of pure tensile stresses.

Compression specimens were prepared similarly to the tensile speci-
mens in lenoths of 2 to 3 in., with no notching or other preparations
made after grinding.

a. specimens were strain-gaged , coated under vacuum with gold-
platinum to facilitate conductivity , and wrapped in aluminum foil. The
purpose of the foil wrapping was to prevent spal linc i durina testing or
at a failure which could harm internal portions of the vacuum system.
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5. SPECIMEN FAILURE EVALUATION. The selected rock specimens were
evaluated for bending, tension and compression failure . Prior to the
SEM evaluation , representative strain-gaged specimens were tested to
failure in each mode outside the vacuum drawer to determine: (i) i~failure at each size in each mode was feasible; (2) the extent of spa lling,
if any; and (3) where and how failure would occur on the specimen .

Problems encountered were associated with the compressive failure mode ,
which proved to spall excessively and to fail unpredictably along the en-
tire length of the specimen. For the Westerly Bl ue granite and Trap-
rock shale specimens , the test size had to be reduced to 1/4 in. square
(in compression ) to facilitate the 2000 lb maximum load.

- - 6. SEM FA ILURE METHODS. The bend ina (flexure ) failure mode was fi rst
evaluated in the vacuum drawer by applying load to a specimen up to a
strain level approaching failure . At the point approachino failure , the
load application was slowed to approximately 0.3 mm/mm . The notch area
was scanned during this load application. Slow load application was con—

• 

- tinued until crack initiation , when the load was stooped and the crack
scanned. If the crack was partial , loading was applied again while the
crack tip was followed with a scan. Loading was halted periodically for
a side to side scan. For the bending failure mode , there were no signifi-
cant change s indicated on eithe r side of the failure plane.

- 

- 
- 

For the tensile failure mode evaluation , a sli ght seating load was
applied manually to the specimen before placing it in a vacuum , so that
the specimen would not rotate during load application . Since this test

• mode builds up stress prior to failure , most specimens failed rapidly,
even at a very small load rate . In some cases, a scan was possible be-
fore complete separation. When side scans were performed in this failure

- • mode , such secondary phenomena as grain separation were present.

7. FAILURE SURFACE EVALUATION. After completion of the SEM failure
evaluation , one surface of each failed specimen was mounted on studs and

- 
I coated with gold -platinum. These surfaces were then evaluated by stan-

dard SEM evaluation procedures and a standard stub stage . This evaluation ,
together with the SEM failure evaluation , was the basis of the failure
analysis.

8. FAILURE ANALYSIS. When the beams failed in a bending mode , both
intergranu lar and transgranu lar failure mechanisms were present , usually
in approximately equal distribution; however , different rock types exhib-
i ted each failure mechanism to different degrees. The Bonne Terre limestone

I ‘~ and Westerly Blue granite exhibit approximately equal distribution of the
I ~ inter- and transgranular failure mechanisms . The Traprock shale and

Murphy marbl e beams primaril y displayed trans ciranular failure and inter—
granular failure . The Danby marble primarily showed intergra nular failure
and some transgranu lar failure , while the Berea sandstone exhibited 100
percent intergranu lar failure mechanism.
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The tensile failure test mode showed no preferences to either rock
type or crystal/grain size relative to the failure mechanisms . Both
In ter- and transgranular failure mechanisms were approximately equally
dis tributed for each rock type evaluated. These figures also indicate
the variation In crystal/grain size for the six rock types evaluated.
The Wes terly Blue granite, Murphy marb le, and Bonne Terre lime stone
display good crystal cleavage pl anes. The Berea sandstone exhibits
surface wear on the indiv idual sand grains.

As anticipated in the compression mode , transgranular failure mech-
• anisms were present due to the nature of the test. However, the Berea

sandstone and Bonne Terre li mes tone ex hib ited an unexpec tedly excellen t
lntergranular failure mechanism. The Westerly Blue granite , Murphy marble ,
and Traprock shale exhibited predominantly (95 percent) transgranular
failure ; the Danby marble displayed both failure mechanisms , with inter-
granular failure predominating.

Table 2 summarizes the failure mechanisms relative to test mode
and rock type.

9. SUMMARY AND CONCLUSIONS. Selected rock samples were prepared
and tested to failure by bendT~~, tension , and compression within the
vacuum stage of a scanning electron microscope . Load was applied very
slowly in order to observe crack initiation and growth . Crack growth

— • was observed visually and recorded by both photograph y and video tape .
The crack surfaces of the failed specimens were evaluated by standard
methods, and two evaluation technques were used to determine the failure
mechanisms for each test mode and rock type studied.

Conclusions. Based on the techniques of stub evaluation and failure in
the vacuum stage , the fol lowing statements apply only to those test modes
and rock materials studied herein:

a. Cross-section size differences had no effect on the failure
mode. The only benefit deri ved from studying several sizes were facili-
tatlon of compression testing of granite and shale specimens .

b. The rock types evaluated in this study had no apparent effect
on the failure mode or the failure mechanisms .

~ ~ c. Crystal/grain size di rectly and significantl y infl uences the
failure mechanisms as follows:

(1) Large crystals/grains - failure was primarily transgranular
for each test mode.

(2) Small crystals/grains - failure was primarily intergranular
for each test mode .

- 
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d. Cementing agents have little or no effect on the gross failure
mechanisms ; however, failure in the cementing agent was exclusively
transgranular.

10. RECOMMENDATIONS. This study has proved the feasibility and
usefulness of applying a metallurgical research tool to geologic mate-
rials. The present study , in conjunction with studies by Brace of
specimen preparation techniques , could yield va l uable information in
the area of geophysics and earthquake analysis. Studies relative to
slickenside development in clay shales and other shear phenomena of soil
and rock could be advanced by this approach.
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Figure 3: Tension Heads on Specimen .
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PHASE II SECURE VOICE PROGRAM - AN INDEPENDENT A RMY ANALYSIS

Theodore S. Trybul
Comptroller Directorate , Cost Analysis Divis ion

HQ, US Army Materiel Development & Readiness Command
Al exandria , VA 22333

ABSTRACT. The Phase II Secure Voice Program (P2SVP) will develop ,
acquire and install a high quality , effective, lon g hau l DOD secure
voice system that will serve up to 10,000 subscri bers in the 1985 time
frame to provide requisite interoperability with strategic and tactical
systems. It replaces the Phase I Automatic Secure Voice Communications
(AUTOSEVOCOM) Network and Interim Conferencina for the National Military

- - Comand System (NMCS).

The independent army ~na1ysis was a unique effort because thiswas the first time the Army was asked by the Secretary of Defense to
• evaluate another agency ’s program.

The Di rector , Telecommunications and Command and Control Systems,
Office of the Secretary of Defense requested the Army to prepare
Independent Cost Estimates (ICE’ s) of the P2SVP alternatives developed

- ,  - by the DCA in support of Development Concept Paper (DCP) #153. These
Independent Cost Estimates were to be prepared for the Defense Systems
Acquisition Review Council , Office of the Secretary of Defense, Cost
Analysis Improvement Group (DSARC, OSD , CAIG). This analysis provided
input for the full-scale engineering development decision point.

H HQ, DARCOM established a Systems Study Group (SSG), Chaired by
myself, consisting of representatives (multi-and inter-disciplinary)
from COA, CSA , ACC , ECOM , DCA , NSA , DCEC , DDR&E , DTACCS, and OSD.
This SSG generated an ICE by analyzing the Phase II computer printouts
at the Defense Communications Engineering Center (DCEC), supported by
engineering judgement , mathematical analysis , expert opinion and
historical data. These estimates were prepared in accordance with
the Army Materiel Guide for Organizing and Presenting Cost Studies ,
and the HQ, Department of the Army Investment and 0&S Cost Guides for
Army Materiel Systems.

1. INTRODUCTION. An analysis of P2SV and alternatives was made
previously by the Defense Communications Agency (DCA) in the form of
an Economic Analysis Estimate (EAE). The ICE described in this paper
provides an independent evaluation of the costs generated in that EAE . -:
Such an evaluation Is a normal procedure in the acquisition of Army
materiel systems . Together with the benefits (effectiveness) calculations
made in the EAE , it allows a ranking of the candidate systems to be made
and gives visibility to the decision maker of the trade-offs involved .

r
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2. DESCRIPTION OF ALTERNATIVES. Independent Cost Estimates
.-1ere made on 4 alternatives : Worldwide Tenley, Narrow band , Wideband
and Hybrid Systems for the Phase II Secure Voice Program. Summary
d- -~criptions are given.

TABLE 1 - SUMMARY DESCRIPTION OF ALTERNATiVES

I WORLDWIDE TENLEY II NARROWBAND
16 KBPS 8 KBPS
Modified Autovon CONUS Mod ified Autovon Worl dwide
TTC-39 Overseas Bel l field COMSEC
Predominently Wideband Red/Maroon Interface with Tri-Tac
Tri-Tac Type COMSEC

III WIDEBAND IV HYBRID
16 KBPS 16 KBPS Overseas

- - .  Modifi ed Autovon CONUS 8 KBPS Conus
- - TTC.-39 Overseas Modified Autovon CONUS

Bellfield COMSEC CONUS TTC-39 Overseas
Tri_Tac COMSEC Overseas Bellfield COMSEC CONUS

Tri-Tac COMSEC Overseas

The AN/TTC-39 is a family of modular and transportable communic~c ion
C - switching systen~designed to provide secure automatic switching fortactical voi ce and message traffic. The family consists of hybrid circuit

swi tches varying in size from 450 to 750 terminations by increments of
150 analog or digita l terminations and message switches equipped for 25
or 50 terminations.

A more detailed description of the four alternatives are given
below :

A. ALTERNATIVE I. The Worl dwide Tenley provides for 16 KBPS (Wideband)
continuously variable slope delta modulation (CVSD) terminals for all users.

:-~~~~
- , secure voice capability will be provided from the same 16 KB~4-er~’inal . Leased CONUS autovon switches will be modified to emulate

- ertain AN/TTC-39 switch features and the government owned switches
overseas will be replaced with AN/TTC-39 type switches . Concentrations
-~f -~-~bscriber s will be provided access via a new automatic 4—wire Digital

• -~:~~ss Exchange (DAX) concentrator. End-to-end encryption will be provided
‘or all calls within the network , except for conferencing and NB/WB con-
.‘ersions requiring red interfaces . Automatic remote electronic crypto-

- nph ic key distri bution will be provided with the Tri-Tac Tenley COMSEC
:incept in both CONUS and overseas.
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B. ALTERNATIVE 2. Alternative 2 provides 8 KBPS Narrowband voice
processor terminals and Bel lfield COMSEC in both CONIJS and overseas
portions of the OCS. CONUS Autovon switches will be modified for
digital operation and Bernhardt KDC ’s will be used in CONUS and
overseas. A red interface KDC will be required for the DCS Bel l ficld
C0~SEC to interoperate with the Tri~Tac Tenley COMSEC. Overseas , the
existing government-owned autovon switches will be modifi ed for digital
operation . End-to-end voice encryption will be maintained on intra-DCS
calls si~ce all users will have compatible terminals. However , calls
to Tri-Tac will require 8 to 32 KBPS voice interfaces that will prohibit
end-to-end encryption and insert voice degradation .

C. ALTERNATIVE 3. Alternative 3 provides a Worldwide Wideband
(16 KBPS) system using Belifield COMSEC in CONUS and Tenley COMSEC
overseas. As opposed to the Tenley alternative , it will not have COMSEC
functions at each modified CONUS autovon switch. Instead , u~ to 3 stand-alone Bernhardt KDC ’s will be dispersed throughout CONUS to serve the
CONUS DCS . CONUS autovon switches will be modified to provide digital
service. The CONUS voice terminal will be procured to operate in the
Bell-field COMSEC mode. Overseas , this alternative will require a special
interface KDC to allow interoperati on of the CONUS Bellfield and the
overseas Tenley key distribution systems. Voice interoperability with
Tri-Tac subscribers and end-to-end encryption will be available.

D. ALTERNATIVE 4. Al ternative 4, the Hybrid alternative , provides
8 KBPS Narrowband Vo i ce Terminals with Bellfield COMSEC in CONUS and
16 KBPS Voice terminals with Tenley COMSEC overseas . The Bellfield
COMSEC in CONUS will be achieved with Bernhardt KDC ’ s. The CONUS Secure
voice terminals will be the product of a separate Narrowband development.
CONUS autovon switches will be modifi ed for digital operation . Overseas ,
the program will be i dentical to the Wideband alternative , except that
an interface will be required between the two dissimilar voice terminals
of each geographic area. This will preclud e end-to-end encryption of
voice calls between CONUS and overseas DCS or CONUS DCS and Tri-Tac , and
will introduce noticeable voice degradation for these calls .

3. METHODOLOGY. The methodologie s used in this analysis included
cost estimating relationships , regression analysis , learning curve ,
engineering estimates , analogy , delphi , cost factors , complexity factors ,
contractor quotes , previou s experience , and subjective judgement.

The methodology employed for the investment portion of the ICE
consisted of the formulati on of the equipment requirements package ,

‘-4 research of available cost data , determination of hardware costs by
analogy and support costs from historical information and cost
estimating guidelines. The cost data elements of the investment
analysis include hardware , military construction , engineering, instal-

04 lation and testing, material , initial spares , test equipment , data ,
training, packing, packaging and transportation .

- -4
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The operation and support methodology consisted of cost estimating
relationships , computer models, expert opinion , analogy , contractor
quotes , cost factors, and exponential regression analysis. The cost
data elements of the O&S analysis consisted o-f personnel , consump tion,
training, integrated logistics support , maintenance , procurement of
switch modification , transportation , recurring spares , lea si ng and
utilities .

The methodology for the R&D cost estimates were expert opinion .
64 individual R&D tasks were analyzed using a modified delphi technique
and a computer routine. The cost data elements of the R&D analysis
included engineering, tooling and prototypes.

A. As an example of the mathematical techniques used in estimating
costs, an analysis of CONLJS transmission costs is given . These AT&T
leased lines will be used for digital rather than the usual analog
transmission ; thus there was no relevant experience to obtain data.

Two factors were involved in the analysis , the first of which
was the increase in the number of digital service areas expected. This
is expected to result in a linear decrease in total transmission costs
of 2%/year for 10 years . The second factor anticipates a reduction
in costs for providing di gital transmission due to technologica l
advances and increased equipment production . This decrease is expected
to start in 1980 and is expressed by the exponential regression ,

DC= 1/2 (1 + e -t/3)

Where O~~t~~lO corresponds to the years 1980 to 1990. This
• expression results from an exponential regression analysis using all

avai l able information on present and past transmission leasing costs .

B. The approach to estimating Operating and Support (O&S) costs
was as follows . Operator costs were calculated by multiplying ~ienumber of operators required for each equipment by the annual ~~ and
allowance for the operator ’s grade level .

Maintenance costs were calculated by multipl ying the cost per
active maintenance man-hour by the total annual maintenance hours
per equipment. Total annual maintenance ivan-hours were calculated by

AMMH = HOP (MTTR/MTBF),

where : AMMH = Annual Maintenance Man-hours .
HOP = Hours of Operation Per Year

MTTR Mean-time-to Repair
MTBF - Mean-time-between Failure
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Depot overhaul costs for labor and material were calculated by

multiplying the depot overhaul cost by the overhaul rate to equal the
depot cost per unit per year. The overhaul rate indicate d how often
the unit was expected to be sent back to depot for overhual . The
depot overhaul cost was estimated by

DOC = 0.809 (DOR) (UC ) 881

where : DOC = Depot Overhaul Cost/Year
UC = Unit Hardware Cost

DOR = Depot Overhaul Rate
- . , Standard Error = +60%, -37%

C. Cost Estimating Relationships (CER) were used to estimate
costs for various equipments. For example , the CER used for the TTC
automatic switching equipment was

= 27284.7 + 0.002 X 2 - ~ 125X 1 .7 
+ 24.898X3

L5

where : V
2 

= Acquisition Cost

X1 
= Weig ht

X2 
= Volume

X3 
= Number of Lines

4. UNCERTAINTY ANALYSIS. In all cases of projected cost estimates
some degree of uncertaiiity will exist and it is therefore advisable to
state projected cost estimates in terms of most likely value , l owest
value , and the most pessimistic (highest) value . The most likely
value would be that value normally used in planning, progranrnthg and

~~ 

-
~~~ budgeting.

The ratios of high and low values to most likely (taken as 1)
are given in Table 2 below for the preferred alternative 1 for R&D
and O&S costs.

TABLE 2 - UNCERTAINTY ANALYSIS (ALTERNATIVE 1)

LOW MOST LIKELY HIGH

R&D .957 1 1.024

O&S .850 1 2.054
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The uncertainty in the investment costs was analyzed for the
-
s major equipments . The uncertainties are given in terms of percentages

of the most likely costs.

TABLE 3 - INVESTMENT UNCERTAINTY ANALYSIS

EQUIPMENT UNIT COST - +

AN/TTC-39 Switch $l ,860K 18% 8%
Tenley Family 298K 15% 15%
Bel lfield Family 292K 25% 25%
Loran C 20K 5% .5%
Dax (Concentrator) 58K 15% 40%
DSVT 4.3K 10% 10%
Goldwine Mod 10.9K 60% 10%
Conference Directors 273K 50% 50%
Transmission Equipment 15% 15%

SERVICE AND SUPPORT
Engineer , Install and Test 10% 100%

- - Repair Parts 15% 15%
- - Test Equipment 20% 20%

Data 20% 50%
Packing, Packaging & Transportation 15% 25%

5. SENSITIVITY ANALYSIS. Cost sentivity analysis is a technique within
the context of both individual system and force structure cost analysis.
It involves the systematic examination of the effects of changes in total
force structure cost resulting from variations in characteristics , s ize ,
and composition of force. The variables considered in conducting the
sensitivity analysis were the number of subscribers , manning levels ,
changes in terminals , logistics cost, CONUS, l easing costs, and planning
horizons.

6. COST BENEFIT ANALYSIS. By using standard methods of measuring
benefits (measures of effectiveness), benefi t/cost ratios were
calculated for the 4 alternatives. The values are given below :

TABLE 4 - COST BENEFIT ANALY SIS

I ~~~ Alternative Benefit/Cost
Tenley 484
Narrowband 305
Wideband 378
Hybrid 296
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7. SUMMARY COSTS. The table below gives the summary costs in both
constant and inflated FY76 dollars . The inflated costs of over a billion
dollars is a large but not untypical program for our analysis and
evaluation .

TABLE 5 - ICE P2SV GENERAL COST SUMMARY

(Constant 76 $ M)

ALTERNATIVE S 1 II III IV
R&D ~7T~ 37.6 38.8
Investment 179.8 209.3 173.1 248.8
O&S 569.7 495.2 555.5 570.4

TOTAL 787.1 743.8 766.2 858.0

— (Inflated 76 $ M)

-“ R&D 44.2 45.6 44.2 45.7
-~~~ Investment 235.9 279.3 230.2 329.2

O&S 1026.2 882.3 1000.9 1017.1
TOTAL 1306.3 1207.2 1275.3 T392.0

I 8. CONCLUSION. In this presentation I have attempted to give the
high l igh t s  of the Army ’s independent analysis of the P2SVP, as well as

- some of the complementary calculations used in an economic analysis that
are needed in the decision acquisition process.
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SOLVfl~ CWP~UJ PR)BLEMS USI~~ DISCRETE (XWIR)LS

Randy J. Schuetz
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Atth: D~XSY-I~Aberdeen Proving Ground, Md. 21005

Formerly, Intern Training Center, E~J~fl~

Bart Childs
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Texas MM University
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ABSTRPCr. The solution of the class of prcbløns governed by
a set of first order linear differential equations, subject
to a set of linear constraints, and the mi.ri.imization of a
def ined quadratic performance index is presented. The number
of differential equations must be greater than the number
of constraints, otherwise , there is a unique solution and
control is r~ t possible. The solution is considered as

-
z kr~ wn once the correct initial conditions are found; a

number of initial value metlxxls are available to solve
-

: linear differentia l equations . Only discrete controls
are considered here, depicting the real ~~r1d where contin—
uously variable controls are nct always present. Using the- 

- 
above, syst~ns of the open ioop type are examined.

The method consists of superposition of linearly inde—
pendent particular solutions to get the optimal solution. The
particular solutions are generated using a power series
inte ration technique on a perturbed set of arbitrarily chDsen
initial conditions. The superposition constants are deter-
mined so that the solution both meets the constraints and

- .  minimizes the quadratic performance index. The mini.nun point
is found using a method developed by Childs and Maxon for
the explicit minimum solution to a set of quadratic equations
subject to a set of linear constraints.

~
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1. INTIc)wC’rION. The solution to a class of control problems with discrete

controls is presented. The class of problems examined are tbose governed by

a set of n first order linear ordinary differential equations, subject to a

set of m linear constraints (m<n) , wherein a given quadratic performance

index is to be minimized. The discrete controls appear in the solution as

initial values of the differential equations. Tlx)se initial values which are

unspecified by constraints are determined optimally by minimizing the given

• quadratic performance index.

The letter y is used f or  an n element st.ate variable vector which is

assumed to be a function of the independent variable t , time. The dot C)

is used to der~ te the total derivative with respect to t . The general set

of first order linear ordinary differential equations is written as

y = Ly + f  t € [o,T] (1.1)

where L is a n by n coefficient matrix whose elements may be constants or

I 

~~ 
functions of time, f  is an n ele-nent vector of forcing functions, and (o , TI

is the time interval of interest. The solution of equation (1,1) is subject

to the linear equality boundary conditions or constraints

q.  (y (t.)) = i = 1,2,..., m<n (1.2)

where q~ represents the boundary condition operator that specif ies a linear

cxinbination of elements of the state vector . The ith boundary value,

at tJ~ specified value of time, t~. A quadratic performance index , h, where

T
h = f y ’ M y dt (l 3)

0
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is to be miniraized. The n by n matrix M is s~~metric and krx~ n function of

tim e, t . The prime ( ) ‘  is use-I to indicate the transpose of a vector or

matrix. The above three equations def ine the basic problem.

The solution to the problem is uniquely defined once the state, y ,  is

krx~ n at any time t. The solution is considered as kwwn once the correct

initial conditions, y ( o) ,  are kx~~ n. The y(o ) vector gives the desired control

parameters, and it can be used with the differential equation (1.1) to generate

an accurate solution for y as a function of t. This is due to the availability

of a variety of initial value differential equation problem solvers for today’s

digital canputers .

The solution methxl is a superposition of solutions , a “s~x oting metl~ d” . [6]

The usual inetbods of solving similar controls problems involve the use

of Lagrange multipliers , Hamiltonians, co-state equations, etc . which are

unnecessary in the method presented in this paper . [5] The techniques used

in the usual metbods require a large anount of mathai~ tical gyrniastics in the

solution process.

2. A SI-130T1M3 METHa). A particular solution of equation (1.1) is a solution

of a particular set of initial conditions. We define such a solution as

~ (k) = L (k) 
+ ~ 

(2.1)

where the superscript , k , is an index which dei~~tes the kth particular solution.

The state vector , y ,  is determined by the superposition of particular solutions ,

and is expressed as

y = P a  (2.2)
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where the kth column of the matrix P is the state vector p of equation

(2.1) and the vector a is the vector of superposition constants . The index,

k, for the vector a and the columns of P varies fran zero to r , where r is

the number of differential equations minus the number of krxz~n initial

conditions . Equation (2.2) can be rewritten as

= ~~ ak 
(2.3)

k=O

If equation (2.1) is multiplied by ak and surtn~~i over k

k~O 
~~~ a~ = 

k~O 
L ~

(k) 
ak + 

~ 

f  a~ (2.4)

Rewriting after factoring out £ and f  fran the sunmations (since they are r~ t

indexed by k) and substituting equation (2.3) and the derivative of equation

(2.3) with respect to t into equation (2.4) gives

y = L y + f  ~~~
a k 

(2.5)

Ccinparing equations (1.1) and (2.5) establishes a constraint which the super-

position constants must meet:

a~~= l  (2.6)
k=O

The traditional superposition of haTogeneous solutions on a single particular

solution does r~ t have a similar constraint . }bwever, because we superimpose

particular solutions, we need to program only one set of equations for each

problem.

Independence of Solutions and Boundary Value Constraints. The reason for the
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superposition of the particular solutions is to satisf y the boundary conditions

or constraints. This requires all ri-i subsets of the r particular solutions t~
be linearly independent. ~Ib insure this , P(o) is created using the perthrba-

tion strategy: First, arbitrary estimates are made of the r unkr~~’in values of

~ (o) and this vector is used for p (o). Seconds columns 1 through r of

are generated by making each column the same as p (o), except that each has

one nonzero perturbation fran one of the estimated elements of p ~
‘0,1 

(o). Each

estimated element is perturbed in one and only one column. This strategy

gives the desired independence.

The boundaxy conditions are of the form specified in equation (1.2).

For control problems, these boundary conditions are usually initial conditions,

- . but this is not required. As stated previously, r denotes the nuirber of elei~nts

of y (0)  rot uniquely specified by equation (1.2), and thus, (n-r) elements of

y (o) are uniquely specified. If m is rot equal to (n—r) , then there are

m- (n-r) boundary conditions at times greater than zero . Subsittution of

(2.2) into (1.2) gives

~~ 
(P ( t .)  a)  = i = i,2~. . .,m (2.7)

which can be rewritten for linear operators q~ , as

r /

q .  (~~Ik) ( t ))  a
k 

= b .  i = i,~ ,. ..,m (2.8)
V v

of these in linear equations , (n-r) specif y known values of ~ (o) and in- (~-r ,

specify constraints on the unkn~~n values of ~ (0) in terms of the (ri-i)

unknown superposition constants , the ak’s. With the addition of constraint

equation (2.6), there are in- (n-r)+i constraints with (ri-i ) unkrKYwns. Since the

problem statement declares that m is less than n , it is evident that r ’i- (n- r)+1
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is less than ri-i , and thus it is an underdetezininei system. Therefore , the

a
k 

s are rot uniquely specified, and we can cheose them to minimize the per-

formance index of equation (1.3) .

Optimizing on the Basis of the Quadratic Performance Index. The a vector is

row included in the performance index by the substitution of equation (2.2)

into equation (1.3) which gives

T
h = 

f 
a ’ F ’ M Pa dt (2.9)

0

The (ri-i ) by (ri-i ) matrix A is def ined by:

T
A = 5 P’ H P dt (2.10)

• 0

It is possible to rewrite equation (2.9) as

h(a) = a ’ A a (2.11)

The methed that is used to solve for A is to calculate the solution of the

initial value problem

A = F’ M P A(o ) = 0 (2.12)

The superposition equation (2.3) requires that (ri-i )  ~n first order linear

ordinary differential equations be integrated and the matrix A , which is syxm~tric

because the matrix M is syrrinetric, may be determined by integrating an additional

(ri-i ) ‘ (r+2)/2 first order linear ordinary differential equations.

In solving for the optimum a vector , the explicit formula developed by

Childs and Maron (1975) is utilized. This formula states that the solution for

a such that

h(a) = a ’ A a = minimum (2.13)
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subject to

Ka = c (2.14)

is

- . a =-a - N(N ’ AN) 1 N’ A a (2.15)• p p

where k is in- (n-r)i-1 by (ri-i )  aid of rank in- (n-r)-i- i~ a is a particular solution

of equation (2.14), aid the columns of N form a basis for the null space of
—l . •K. The ( ) in equation (2.15) denotes a matrix inverse. By Using appro-

priate matrix operations , it is possible to transform equation (2.14) into the
• equivalent system

I J W  a = d  (2.16)

This can be used to define a~ and N as

a = and N = 

[
~

] 
(2.17)

The 1’ ~ in equations (2.16) and (2.17) are identity matrices of appropriate

order.

3. P,N DC~MPLE. The first problem chosen is

x i- 0.2k + x = + u~~t t ~ [0 ,101 (3.1)

subject

x(o) = 0 x (10) = 1 ~~(O) = 0 ( 3 . 2 )
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and

10 -~

= 5 (x~ + ~
2) dt = minimum (3.3)

In state variable form , this can be restated as

• ~;i
= y 2

- 0.2~~ + + y4
t (3.4)

~3
_ 0

0

subject to

-
~~ j 1

L 0 )  = 0 y1
(iO) = 1 y 2

(o) = 0 (3.5)

where

70
h =  5 y ’ ? - .~y dt (3.6)

0

and

/1 0 0 0
- ,  ~~0 i 0 0

-~~=~~~0 0 0 0 (3.7) —

\o 0 0 0

Using an accuracy of 10 6 and evaluating power series to 10 terms results in

the foll~~ing solution

~- (o) = 0.1

= 0.

y .(o) = —0.105453

~:~ (°) 0.115041
.4

r
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elements are the forcing f unction constants or contrDl.

The solution for aid y, over the interval [0,10] is given in Table 1.

4. CDNCUJSIONS. A direct method has been shown for the solution of linear

ordinary differential equations subj ect to minimi zation of a quadratic per-

formance index and rnultipoint boundary values. The method avoids the necessity

of Lagrange multipliers and other similar tools.

The method can easily be incor~x rated into boundary value codes. 1~bst

problems will have nonlinearities which can be handled in the usual manner

[3], [61 .
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TABLE 1

• NUMERICAL SOlUTIONS

y2
Tine I —

0 0 0

0.5 —0.010 —0.035

1.0 -0.028 -0.031

1.5 —0.035 0.006

2.0 —0.018 0.066

2.5 0.031 0. 130

3.0 0.111 0.186

3.5 0.213 0.219

4.0 0.325 0.225

4.5 0.434 0.205

5.0 0.527 0.166

5.5 0.598 0.118

-

, 6.0 0.646 0.075

6.5 0.675 0.045

‘I
7.0 0.694 0.034

7.5 0.713 0.043

8.0 0.740 0.068

8.5 0.782 0.102

9.0 0.841 0.135

9.5 0.916 0.161

10.0 1.000 0.173

= —0.105

y = +0.115 (cons tants)
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On Generalized Feller Equation
Siegfried H . Lehni gk

Physical Sciences Di rectorate, US Army Missile Command
Redstone Arsenal , AL

- 

•:  ABSTRACT

The generalized Feller equation

U ( z )  A z + Bz + C - z~ 0, z = z(x, t), x > 0, t ~ 0,

with the coefficients

— A(x) ~~~~~~~ ~ > ~ ~~~~ ) 
~ 1,

B(x) B 1
x~ + ~~2

x , 
~1,2~~’

C(x) + 
~2’ ~ 

= X1B 1 - a( 1 + ? ) ~ ,

will be cons idered . The choice of p makes t(z) = 0 a Fokker -Planck
equation .

Solutions of ~(z) = 0 wi l l  be deri ved for given initial and/or
• • boundary conditions . The derivation of initi al condition solutions

is based on a basic solution of £(z) = 0 and its adjoint.

4.

The complete paper is published elsewhere .
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A PERTU RBATIO N METHOD FOR FREE BOUN DARY
PROBLEMS OF ELL IPTIC TYPE*

B. A. Fleishman and Thomas J. Mahar~Depar tment of Mathematical Sciences
Rensselaer  Polytechnic Ins t i tu te

Troy , New York 12181

ABSTRACT. Nonlinear partial differential equations (PDE’s)
arise in ma n y sc ient i f ic  contexts , and boundary value problems
(BVP ’s) f u r  such equations present formidable computational dif—
f icu lt i -s. Thus analytical techniques for approximating the sol—
•:tions of such problems have practical significance.

A formal perturbation method is described here for approxi-
mating solutions of certain BVP ’s for elliptic PDE ’s containing
discontinuous nonlinearities . To illustrate , we treat in detail
the BVP

u + u + f ( u )  = 0 in S: 0 < x < 1, < y <
-
. xx yy

P ( c )

u ( O , y )  = ch(y) , u~~
(l,y)  = 0 for  —

~~~ < y <

where c is a small parameter, h is periodic and un i formly bounded ,
and f ~s a step—function : f(u) = 0 for u < u , f ( u )  = 1 for u > p

• (p a positive constant) . u and au/en are to be continuous across
any “ free boundary ” u = p. If 0 < p < 1/4 , problem P ( O )  is shown
to have at least one non-trivial solution u0 

= u (x )  such that
u0(~~

) = p (0 < ~~~ < 1)- . For p c (0,1/4) an appr~ ximate solution
u ( x ,y) of P(s) involving a free boundary in S is then sought in
the form u(x,y) = u0(x) + cu (x ,y ) ,  wi th  the free boundary assumed
to b e x = ~~~ -~ Eg(y) .

Two examples are con sidered , h(y) = cos y and h a trigonomet-
n c  polynomi al , in which the linear (variational) equation for u
may be solved by separa tion ut  v dr i a b l e s .

An unusual  fea ture of our proced ure is that  this equation for
u contains a delta-function coefficient , because in the originial
equation f is a step—function in u.

1. INTRODUCTION. Nonlinear partial differential equations
(PDE’s) arise in many scientific contexts , and boundary value

* Research supported by U. S. Army Research Office .

Present address: Courant Institute of Mathematical Sciences ,
New York University , 251 Merce r Street , New Yo rk , New York
10012 (U.S.A.)
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problems (BVP ’ s) for such equations present formidable computa-
tional d i f f i cu lties. Thus analytical techniques for approximating
the solutions of such problems have practical significance.

We i l lustrate here a perturbation method applicable to ce r-
tain BVP ’s for elliptic PDE ’s of the form

Au + f ( x , u) = 0 (1)

where x = (x 1, . . . , x~ ) is a point in R~ , A denotes the Laplacian
operator , u is a real scalar variable, and f is a piecewise-
continuous function of x1, . . . , x and u. When f has jump discon—
tinuities with respect to u , among the interfaces across which f
changes abruptly there may be so—called “f ree  boundaries ” which
are not known a priori but must be foun d along with the solution
u = u ( x ) .

Suppose f is a step- function in u and depends also on m of
the independent variables , say, x11.. 

~
l Xm 

where 0 < m < n.  Let
D be a fixed region in R1

~ whose bounding surfaces are independent
of x~~~1,.

Now consider a BVP for (1) on D , denoted by P ( s ) ,  in which a
small parame ter e occurs in the boundary conditions in such a way
that the “ reduced ” problem P ( O )  does not involve 

~~~~~~~~~~~~~~~~~~
If a solution u0 = u0 (x 1~~~~~i xm ) of P ( 0 )  is obtainable, we seek a
solution of P ( c )  in the perturbed form u u0 + ci:i , wi th  free
boundaries ( i f  any ) which are perturbations of free boundaries of
P( 0 ) .  As we shall see in the specific problem considered below ,
for certain boundary data it is easy to f ind ü and the perturbed
free boundary.

The un us ual mathematical feature of this procedure is that
we per tu rb about a surface of discontinuity, which introduces a
delta-function into the (variational) equation satisfied by u.
Our development is formal; assuming that the solution we seek exists
and that it can be closely approximated by an expression of the
form u0 + cu , e tc . ,  we calculate u and the modified free boundary .

Free boundary problems for equations similar to ( 1) occur in plasma
physics; in [1], for example , the authors consider equations of
the form Lu + f ( x ,u) = 0 , where L is an elliptic operator and f
is , however , piecewise—linear in u , not discontinuous. Free bound—
ary problems for equations of the form div (K grad u) = 0 , where
K = K(x,u) is a piecewise-continuous function (which arise in the
equilibrium Stefan problem [2] and govern certain diffusion and
me tallur gical processes) are also being investigated by the me thod
illustrated here.

Besides occurring natural ly ,  problems wi th discontinuous non-
• l inearit ies are sometimes introduced as approximations ( e . g . ,  see

[ 3 1 )  to problems wi th smooth nonhinearit ies (which , in ge ne ral ,
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can not be solved explici t ly) . The authors are investigating the
feasibil i ty of derivi ng approximate solutions of BVP ’ s for equa-
tions of type ( 1) in which f is bounded and has smooth dependence
on u, by first replacing the smooth function f with one which is
a step- function in u , then employing the procedure described here
to treat the approximatinq problem. In this connection it is im—
por tan t to note that if the per turbation proced ur e is applied
directly to an equation of the form ( 1) containing a smooth non-
l inearity f , the variational equation (to be solved for ü) will
always have variable coefficients.

The remainder of this paper (Sections 2, 3,. 4 and 5) is
devoted to applying the perturbation technique tó’ the particular
BVP consisting of equations (2) and (3) below.

2. A PARTICULAR FREE BOUNDARY PROBLEM. Let us denote by
P ( s )  the followi ng two-dimensional BVP for a nonlinear PDE in the
vertical strip

S = {(x ,y):0 < x < 1, — =  < y <

Au + f(u) = 0 in S (2)
P( c )

u ( 0 ,y )  = ~h ( y) , u
~
(l ,y) = 0 (— = < y < -~) (3)

Here A = ~
2/ax 2 

+ a 2/~ y 2 , h is a given continuous , bounded , per-
iodic function , E > 0 is a (small)  constant ,, and f is a step—
function with given threshold value p > 0:

O u < p
f ( u )  =

1 u~~~~p

(We could also write f ( u )  = H ( u  - p ) ,  where H is the Heaviside
unit function.)

Solutions of P(c) will be required to be periodic and C1

(therefore bounded) in the closure of S. In particular, then , u
and its normal derivative eu/an must be continuous across any free
boundary (no t known a pr iori) , where u = p.

Suppose that h is bounded by 1, also that 0 < c < p .  Then
by continui ty , u < p at points of S close to the left boundary
x = 0. If u < p throughout S, f 0 in S and P(s) is a (linear)
BVP for Laplace ’s equation. For solutions satisfy i ng  u > p some-
where in S, however , P(c) is not linear . Analysis of the
“reduced” problem P(O) (see Section 3) suggests that for small
posi t ive p ,  P(E) possesses solutions of both the linear and non-
li near problems .

The nonlinear case of P(s) is of interest here. We seek
an approximate solution in the form u = u

0 + cü , where u 0 is
a (known) solution of the (one—dimensional) nonlinear problem

~~ P(O); likewise free boundaries in P(c) are assumed to be pertur—
~~ bations of the free boundaries in P ( 0 ) .  In Section 3 we obtain
• the solution(s) of P(0) for all non-negative values of ~i ;  in par-
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ticular , it is shown that when 0 < p the re are non-trivial
solutions .

In Section 4 we perturb the PDE (2 )  about u 0 and obtain

the (l inear)  variational equation for ü . In Section 5 , taki ng
h ( y )  = cos y, we solve the BVP for ü by separation of variables.
The free boundary is determi ned by substi tuting for x, in the
interface condition

u ( x ,y)  = u 0 (x)  + c u ( x ,y)  = p

the assumed fo rm x = 5~ + cg (y) , where u0 (~~) = p (that  is , x =

is the interface for the reduced problem) and g is the periodic
function which we must find . Also for more general boundary data
( namely, h a trigonometric polynomial) the variables can be
separated ; in this case we merely sketch the procedure.

3. ANALYSIS OF P ( 0 ) . Whe n ~ = 0 , the boundary conditions
( 3)  are both independent of y; thus P ( 0 )  reduces to the following
one-dimensional problem:

u” + f ( u )  = 0 in I : 0 < x < 1 (4 )
P ( O )

u ( 0) = 0, u ’(l) = 0

- 

• 
where ‘ = d/dx. We shall find all C1 solutions for p > 0.

Note first that all solutions are non—negative , because
u ( 0 )  = 0 and u ’ (x) > 0 on I. The latter follows from the facts

• that u” = — f ( u )  < 0 (wherever u ” exists)  and u ’ ( 1) = 0.

When p = 0, (4 )  takes the form u ” = -l on I. Then P(0) has
the unique solution u ( x )  = x - x 2/2 .

- - For any f ixed p > 0 , P ( 0 )  has the trivial solution u(x) 0.
In order for a non- trivial solution to exist , it is necessary that
there be a smallest value ~ in I such that u(3~) = p. Then u(x) < p

for  0 < x < i~ and (si nce u ’ ( x) > 0)  u ( x )  > p for ~ < x < 1. There-
- •~~ fore a non- trivial solution of P ( 0 )  must sa t i s fy

u ” = O  fo r 0 < x < x
(5)

u ” + 1 = 0 fo r < x < 1

plus the bo undary and continuity conditions

u ( 0 )  = 0 , u ’ ( l )  0
( 6 )

u (~ +) = u(x- ) = p , u ’ ( ~ +) = u ’ ( ~ —)

for  some ~ in I.

Solving the d i f f e ren t i a l  equations ( 5 )  on their respective

for p > 0,
- ~~ intervals , then subjecting them to conditions (6), we find that
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(1 — x)x (0 < x < x)
u0 (x) = 1 2 —2 (7)

+ x )  ( x < x < l )

is a solution of P(0) provided ~ (0 < < 1) satisfies

(8)

This quadratic equation has distinct real roots ~ in I when
• 0 < p < 1/4 , the double root 5~ = 1/2 when p = 1/4, and complex

roots when p > 1/4.

We can now describe the numbers and types of C1 solutions
of P(0) for all non—negative value s of p :

p = 0: Unique solution: u(x) = x - x2/2.

0 < p < 1/4: Three solutions : the trivial one plus two
solutions given by (7), each corresponding to a different
root of (8 ) .

p = 1/4: Two solutions: the trivial one plus one given
by (7) when x = 1/2.

p > 1/4: Unique solution : u(x) 0.

4. THE PERTU RBATION PROCEDURE. Hence forth our attention is
restricted to value s of p e (0,1/4).

As seen in Section 3, for each such p , P(0) possesses two
-

q non-trivial solutions in addition to the trivial one . Focussing
on the nonlinear case , we have reason to expect (see [4)) that
there exists a solution of P(E) close to at least one of the
non-trivial solutions u0 (x) of P(0).

For fixed p c (0 , 1/4) , let u0 (x) be the solution ( 7 )  of
P(e) corresponding , say , to the smaller root of equation (8); thus ,
0 < 3~ < 1/2. (The formal calculation which follows is the same for
either root. ) We shall assume that the y-perio dic solution of
P(c) close to this u0 (x) can be written , neglecting terms which areO(~~ ),

u(x ,y ) u0 (x) + ~ü(x ,y) , - (9 )

where il is a function periodic in y and uniformly bounded in
the closed strip.

Similarly, we assume that the solution (9) has a free boundary
which may be represente d

X X + Eg (y), (10)

that is , as a perturbation of the “free boundary ” x = ~ in u0
(x).
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subtracting Au 0 + f(u 0) — 0 from Au + f ( u ) — 0 and noting
tha t (formally )

f ( u ) = f(u + e~.1) ~ f ( u  ) + f ’  (u ) ~E j j
0 0 0

- ‘n obtain the variational equation

Au + f t (u
0)Ü = 0

0 !

Au + 
A (x — x) 

~ = 0 , (11)
u0 (x)

where we have used the identities

f ’  (u~~(x)) = H’ [u0 (x) 
— p 1 = t~[u0 (x) 

— p 1 = ~(x —

From (3) , (9)  and u 0 ( O )  = 0, u6 (l) = 0 follow the boundary cond i-
tions on

ü ( 0 ,y)  = h ( y )  , -~~ (l,y)  = 0 (~~~~ 0o < y < oo) ( 12)

• In the next section two examples are consi ..red in which
h actually varies with y in a periodic fashion. First we can
gain some confidence in the validity of the perturbation pro-
cedure f rom consideration of the simple example

h ( y )  ( 0 < c ~
In this example P ( e )  is itself a one-dimensional problem;

we are still interested in the nonlinear case. Wi thout giving
details we point out that if f i r s t  one solves P(E) exactly (by
an analysis similar to that  of P(O )  in the previous section) ,
then seeks an approximate solution in the form u = u0 + €Ü ,
wi th  interface x = 5~ + eg (by solving the BVP (11 - 1 2) ) ,  one
finds that the latter expressions agree with the exact representa-
tions for u and x through terms of first order in c .

5. EXAMPLES. We give two examples in which the linear BVP
( 11  - 12) can be solved by separation of variables.

EXAMPLE 1: In P ( c )  let

h ( y ) = cos y

Subst i tu tion in (11) and (12) of

ü ( x ,y)  = v ( x )  cos y

yields the BVP
.4

— ~ + 
A (x — v = 0 (0 < x < 1)u0(x (13)

v ( 0 )  = 1 , v ’ ( l )  = 0
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The differential equation in (13) implies a jump condition
at x = x. Suppose v(x) is_a solution continuous on [0 ,11 . Inte-
grating the equation from x — n to x + ri (n small and positive) ,
then letting r~ ~ 0, we find that the slope of v (x )  undergoes a
jump at x =

v~ (x+) 
— v’(~ —) = — v(x)/A , ( 14)

where

A = u~ (~ ) = 1 - x

Now solving v” — v = 0 on each of the intervals 0 < x <
and ~ < x < 1 (so that we have four arbitrary constants) , then
imposing the boundary conditions from (13), the jump condition
(14) and the continuity condition v(x+) = v(x-), we obtain for

BVP (13) the continuous solution

cosh x + A sinh x (0 < x <
(15)v(x)=

B cosh (1 - x) (~ < x < 1)

where

A = B[~ cosh ~ cosh (1 - ~
) - sinh 1]

( 16)
- - B = [cosh 1 - -

~~ sinh x cosh (1 —

We seek the free boundary, for the solution u ( x ,y)  given approxi-
mately by ( 9 ) ,  as a perturbation of x = x, the free boundary fo~u0 (x) . In other words , it is assumed that u = p along a curve

x = + 6g(y )  , ( 17)

where g is a periodic funct ion and terms of order
are neglected.

Substitution of ~ + c g ( y )  for x in

u0 (x) + cv (x ) cos y = p

L gives

u0 (~ + cg (y ) ) + 6v(~ + 6g ( y )) c o s  y = p

u0 (~~) + ub (~
) . c g ( y )  + 6v (~~) cos y + 0 ( 6 2 ) =

cA g (y) + E v ( x ) cos y 0 , ( 1 8)

where we have used u (
~

) = p, u ’ (x) = A , and the fac t that while
v is not differentia gle on [0,19 it is Lipschitzian . Finally
from (18)

g(y) = - ( v (~~) / A ) c os y = — cosh (1 - ~ ) cos y . ( 19)
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It should be remarked that u(x ,y ) = u0 (x) + cv (x) cos y ,

where u0 and v are given by (7) and (15) respectively, is not

C1 in S, as required. It is only when we adjust the (free)
boundary between the left- and ri9ht-hand regions , by wiggling
the interface , that we obtain a C1 (approximate) solution .

To sum up, for given p e (0,1/4) and 0 < c < p we have de-
rived, by a formal perturbation scheme , an approxima te solution
of P(€), which is Ci and periodic in y, of the form

(1 - ~)x + € (cosh x + Asinh x)cos y , 0 < x < ~~ + g(y)

u(x ,y) =

x - ~(x 2 + ~2) + €B cosh(1 - x)cos y , ~~+g(y ) < x < l

where ~ is the smaller root of (8), while A, B and g(y) are g iven
by (16) and (19) respectively.

It may be shown, finally, that the requirement that ~u/~n be
continuous across the interface is satisfied to wi thin terms of
order € 2.

EXAMPLE 2: In P(e) let
N

- : ..; h(y) = a0 + ~ (a~ cos ny + b sin ny)
n=l

• where N is a positive integer. Because the treatment is similar
to that of the previous example , we shall only touch on the points
of difference .

Again we fix p € (0,1/4), choose the root of (8) satisfying
- - 0 < < 1/2, and require 0 < € < p . To insure ~h(y) I < 1, let

N

Ja 0 J + ~ (Ja ~ J + Ib~ I) < 1
n=1

Again assuming the approximate solution of P(c) to have the
form (9) and the free boundary to have the form (10), we are led
to the BVP (11 - 12). Instead of ü(x ,y) = v(x)cos y, however , we
now set

~i (x ,y) = a0v0(x) + Z (a~v~ (x)cos ny + b~w~ (x) sin ny)
n=l

Substituting this for ii in (11) and (12), then separating van-
ab les, we f ind that for n = l,...,N, both v~ and w~ must be solution s
of the BVP

~~~ + — ~2] v = 0 (0 < x < 1)

v(0) = 1 , v ’(l) = 0
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while v
0 
must be a solution for n = 0.

Proceeding as in the previous example, one can obtain the
expressions for u0 ( x )  + ~ü(x ,y) to the left and right of the free

- boundary , also the approximate representation x = x + cg (y) for
the f ree  boundary itself. But we shall omit the details.
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DETERMINATION OF PROPAGATION CONSTANT S
IN SCATTERING FROM DIELECTRIC-COATED WIRES

Leon Kotin

Communications/Automatic Data Processing Laboratory

US Army Electronics Command

Fort Monmouth , New Jersey

-. ABSTRACT

We determine the propagation constants which describe mathemati-

cally the behavior of electromagnetic waves reflected from dielectric-

coated wi res. These are obtained from the roots of two characteristic

• equations of transcendental type. The roots are the propagation con-

• stants of the creeping waves generated by diffraction of plane waves

• polarized tangent iall y and normally to the wire axis , respecthely.

• Their real and imaginary parts give the phase and attenuation of the

creeping waves around the circumference of the wire .
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D E T E R M I N A T I O N  OF PROPAGATTON CONSTANTS IN SCATTEPIN (i
FROM DILLECIR IC—COATE E ) W I R E S

- 

- Leon Kotin
Com~iunicat i o ns/A uL- - a t i c  Da t e Processing Laboratory

U. S. Army Electronics Coj : ;~end , Fort t -lonmouth , New Jersey 07703

1. Introduction. The effect iveness of many cor~nunicaLio n

syste’ s can be seriously diminished by reflections of e1ect romagn~ t ic

si gnals from obstacles , both natura l and man-made. Die 1ectr ic- cc .~ted

w ires constitute a man—made obstacle which appears wi th increasing

frequency in mi litary s i tuat ions.  ~or is this o bst ec le restr ic ted to

communicat ions effects . The U. S. A. Board of Av iat ion Accide nt Re-

• search recently cited the f o l low ing s tat is t ics for a four — year pe riod

of day light operations under peacetime conditions . There were l~ 6

• acc iden~~involvi ng low —fly ing a i rcraf t  and electr i c w i res . These re—

su ited in 7C fatal i t ies , 56 injuries , and G.6 w i l l ion  dol la rs damege.

In this paper we obtain the propagaUon constants ~-e ich describe

mat hematically the behavior of wave s ref lected from d ie lec t r ic -coated

w ires.

In an attempt to determ ine reasonabl y rapid converg ent series

representat ions for the scatter f ield and radar response of dielectric-

coated wires , F. Schwe ring and C. Be Sant is {
~~

] obtained two comp li-

cated characterist ic equations of transcendental type. The roots of

these equations are the propagation constants of the creeping waves

generated by di f fraction of plane waves polarized tangentially and
H

norma lly to the wire ax is , respect ively. Their real and imagin ary

parts give the phase and attenuation of the creeping waves around the

circumference of the wire .
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In the case of tangential polarization of th~ incident wave , the

propagation constants v are determined from the characteristic

equation 161

U kH(2) ( ka)
~~

(a ,b) - kdH.)2~
(ka)W

~,
(a ,b) = 0 (1)

where

W(a ,b) JV (kda)YV~~d~
) - JV (kdb)~

’V (kda) (2)

and
aW (a ,b)

W ’ (a ,b) = 

~
(kda) (3)

Here ~‘ and V are the Bessel and Neumann functions , i~
2) t~ie Hankel

function of the second kind , k the free—space wave number , 1 d the wave

number of the dielectric material , and a and b the outer and i nne r

radii of the dielectric coat (see Fig. 1).
• I A more complicated expression appears in U1 = 0, the character is—

• tic equation in the case of norma l ro lariz~ition. This wil l be treated
H analogously later.

/ Conductor

Dielectric Coat

Fig. 1. Wi ,’e with Dielectric Coat.
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Introduc ing

x = ka , y = kda , z = k b  , R (x) H~,
2
~(x)

for simplicity into (1) - (3), we shall obtain v as the zeros of the

function U” U
V \)

U xW (x)W (y,z) - yH (x)W’(y,z) (4)

where

W (y,z) J (y)Y (z) - J (z)Y (y) (5)

and
• aW

W’(y,z) a

Using function-theoretica l and analytical techniques , we shall

obtain firs t soeie general qualitative propert ies of v and then ~nel yt i—

ca l approx imations to the large zeros. Finally we shall give nu;~~r—

• ically the physically sicjnif icarit s~.:ailest zeros for several repr -~u~.e--

tive values oF x , y and z.

2. Th E- symmetry of thn_~eros. First we show that the iu ncti on

e ’
~
’2 U is an even function of v.

Theorem 1. If U is defined by (4), then

e 1’
~
”2U =  e~~~

2
u

Proof. We have [5]
J (t) cos ~~- J (t)

V (t) —
~~~~~__ (6)

v sin ~
whenever v is not an integer. (For integral n , V (t) = lim V (t).n v~ fl ~

In this case , the fol l owing argument can be modif ied by taking l imi t s . )
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Then

W (y,z) = 1 [J Y~~cos ~~ J (z) - J (z))

J
~~~~~~~

0S V~~ 
-

= 
~~~~~~~~~~~~~~~~~ 

- J (z)J (y)] - (7)

Thus

W (y,z) = W (y,z) (8)
- V

Since [5, p. 67] H V 
= e1’

~H ,  we have from (4)

= e ‘~ (xH~(x)W _~(y,z) - yH (x)W’ (y,z), (9)

whence from (8)

U = e ’~~U (10)
V

This immediately gives us the desired result:

e~~~
”2U = e~~ ’~

2U (11)

An obvious consequence is that the zeros are syim atrie w ith

-• respect to the orig in in the com~1ex v-plane .

Corollary . If v is a zero of U ,  so is •-v.

It is interesting to note the L this simple theorem yieh’s results

which are far less obvious than the above corollary . Th ese results
• refer to the s t i i ct  cumpiexity of the zeros and th-~ inf nitu~e nf zc rcs ,

and appear in thn following sections .
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3. The strict le~j_~y o f  the zeros. In the rest of this

- ‘ paper we shall denote the real and imag inary parts of v by a and 8,

respectively, i.e.,

We now show that neither the real nor imaginary part of any zero of Li

is zero.

Theorem 2. If U = 0, then aG ~ 0.

Proof. Taki ng co;~plex conjugates of both s ides of (10),
U = e~~ U~ (12)

V

Since [b ] for r~eI aryi -r.~ nt

v~2~ = ~~~ J = J , = V , W W (13)
V V V V V ~~

where we dropped the dependence on x , y and z, ~e have froiii (12) and (4)

xH~
1
~ W - yH~

1
~W = e~~~(xH~~~W - yH~~ W’) (14)

if U = 0 with t~ 
= Imv = 0 , then ~ = v and w~e have the simulta neous

V

homogeneous equations

• U~ = XH~W,J - yHV W
~ 

= 0
• 

— 

~l~~’ ~l ’  
/ (15)

U = xH’ / W - yH’ ‘W = 0
V V V V

the latter coming from the right-hand side of (14). The determinant

of coefficients c-f xL’I and yW ’ must then vani sh:
- 

:-. A a H~
1
~H~ - H~~~ H J = 0 (16)

This , however , is impossibl e , since H~
1
~ nra H H(2) are linearly

independent solutions of Bessel ’ s equati~ r; . In b-e- ~ , ~, 
= -4i/~x / 0

[5, p. 68] . Thus ~ ~ 0 and tb~ zeros ar c  n t  real.

.
4
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A pplying a similar argument assuming a = 0, whence —v  V , and

taking the left—hand side of (14) give another contradiction. This

shows t.iat the zeros cannot be pure imaginary either , completin g the

prool of the theorem .

4. The i nfini t ide of zaros. he know from physi cal consi derations ,

of course , that th~ r-~ exist roots of the characterist ic equation. We

now prove that there are an infinite number of these roots. To this

end , we invoke some function-t heoretical considerations , such as the

concept of order of growth ~(f) of an entire (or integral) function

f (~ ) [1 , p. 8; 7 , p. 248], defined as the infimum of al l exponents p

such that

f ( V ) j  = O(e IV ~~) as

Using Poisson ’s formula [5, p. 79]:
/ \V ir/2 2

J (y) = \2) .1 cos(y cos t) sin V
t dt , (17)

V v’~r ( V + ½ )  o

we find easily that when a ~ 0,
it/2 2J~ (y) < \~f 
/ sin cxtdt

J 

~~~~1T~~
V +

~~~~) t  o

v~w e ’~ ~~~
- 

lr(V +

— v £nC
_ _ _ _ _ _ _  

e
- 

r ( v  + ½) !
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Thus the order of the integral is at most 1 when a = Re v ~ 0.

Moreover the entire function l/~(v) is of order 1 [7, p. 255]. Since

th~~ order of the product (or sum) is no greater than that of the

greater factor (or terni), it follows that the order of J (y) is no

gri-ater than unity when Re v ~ 0.

To eliminate this restr ict ion on the sign of a = Re v , we use the

facts that

~(H (1)) < 1 [4, ~~~. 229] , (19)

• H (1) = + 1Y (20)

and

• J = J  COS 1 T V - Y  sin i~v (21 )
V V V

From (19) and (20), we find that L (V ) ~ 1 for a ~ 0. Then we con—

d ude from (21) and earlier results that ~(J) ~ 1 , wi th no restriction

on a~ Moreover , since J , V , I-I and their derivatives can be expressed
V V V

[5, ~ 3.1] ~ terms of e’
~~ and the Bessel function 3 with indices

• 

! V,  ± V +1 and ± v - 1 , it follows finally that

Lemma . The order of growth of U~ is less than or equal to 1.

No’., let = A . Then since e~~~
’2U is an entire even function

of v of order ~ 1 , the function f ( A)  a ~~
_ i V1 r/ 2

U is an entire function

of A whose orcLer is ~ ~~. Consequent ly [7 , pp. 250, 252], f(x) has an

infinite numbe - of zc ” s A k• From the definition cf f(~), we conclude

Theorem 3. U has an infinite number of zeros.
V

‘4

176

—~~~~“ ---~~~~~ - --- • - ~ - -- - - —- -•~ —---- --•~,•••- -- ~-- -—----—------— --—-—--—-- -•-—---- --•_—_—— - -——--—

- - .
— ———-.4——-- — --—--•--•—- ~~~~~ ~~~~~~~~~~~~~ _~~ 

— ~~~_ — 1.______ 
— A



.

Moreove r [7 , p. 250] we obtain the following product repre-

sentation:

f(A) = 
~
0)

k~l(~
1 - 

~
.) (22)

Expressed in terms of U , (22~ becomes

- 
- U = e~~ 1 - (23)

where the vk are the zeros of U .  Note that from Theorem 2,

U0 ~ 0, as is required 
for this product representation to be valid.

5. The larqe zeros of U .  Since there are an infinite number

of zeros of the entire function U~, the zeros are arbitraril y

large. To approximate these when ~~ >> max(x ,y~z), we first

express U in terms of 3 a lcne us ing standard identities [5, § 3.1],

obtaining

21 sin2 v~ U = x~e
’ 

1 (x ) - 
+ 1 (x)~ + 

~~ + 1 (x ) - 

~~~~~~~ 
-

- 

-

~~ ~ [J~
(Y)J (z) + j

v~~~
j_v

~~] 
+ 

~~ [e
1
~~~~x - J

~~(x)]

~~ 
- 

- 
+ 1 (s)) + 

~V~~~(~~V 
+ 1(y) -

177 

-~~~~~ -~~~~~~~~~ - -------~~~ - - - -~~~~~~~~ -_~~~~~~~~~~~~~ -_ _

- - -  - -- - — -~~~---- -
.
~~

4—- -
~~~
--”- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—— -

~~



— -——--- .- -------- --—
~~

--- - -
~~~~~~~~~~~ .-

Then using the asymptotic behavior of 3 ( t ) :

J
~

(t) = 

~(c~~~
l) 

(~ + (25)

- for large ~~, and dropping the lower-order terms , we obtain fro m (24)

~ k 2yv/ exz) (n ~ ~ )ii i as + ~ > o , (26)

implicitly giving approxi mate ly the n-th zero for large n.

Since the zeros are symmetric in the ~- -pl anc , we can select

> 0 and thus dt-op the lower signs in (26). Rewriting ( 6 )  as

(n - ¼)~mi / £n(-2yv/exz) , (27)

-
~~~~ itcradng, and ncg iectir ig the lower-order terms , we obtain the

-
~~~ following explicit approximatio n to the large zeros.

Theorem 4. The large zeros of U in the upper- half -plane

are given by

2
V = 

-(n - ¼)~ + (n - ¼)-Tr i -en ((2n - ½)-ry/exz) / /
n — (1 + oVn ~ n 11 (28)

[bi((2n — ½)-7ry/exz)] 2 \ ~~ ‘ n ~

for sufficiently large integers n.
• ;- As a consequence ,

- argvn -+ as n ÷ (29)

since the real part approaches infinity more slowly than the

imaginary part. Furthermore , it can easily be shown from (28)

that the distance between consecutive zeros approaches zero .
p 

We remark that this behavior , indeed the asymptotic represen-

tation (28), is very similar to that of Hm (X), which arises in

.4 
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the theory of diff rac tion of elec tromagnetic waves by a perfectly

conduLting sphere (cf. [2], [3], [4]).

6. The case of no rm al polarization. If the incident wave

is polarized normally to the axis of the dielectric—coated wire ,

the characteristic equation is

-

‘ 

U
1 

yH’(x)EJ (y)Y’(z) - J
~,

(z )V
~(y)] 

- xH
~
(x) [J’(Y)v’ (z) - J’(z)Y’(Y)j

= 0  (30)

Since the treatment of this case is identical to the previously

discussed case of parallel polarization , it suffices merely to

state the corresponding results .

—i 12 . L j. i~~ 
_I_

Theorem 5. e ~~~~ U = e ~~ Uv -v
~1Corollary . If ~ is a zero of U ,  so is -v.

Theorem 6. If = 0, then Re v I m  v ~ 0.

- - Theorem 7. U~~has an infinite number of zeros.

7. The smallest zeros. Following are a table and curves (Fig. 2’
~

of the smalles t zeros of u H and ~~ in the second quadrant of theV V

complex v-plane for each of several representative values of the

parameters x, y, z. These values are x = 0.5(0.5)5, with

:~ 
y = 1 .5x and z = 0.9y . We recall that x = ka, y = kda , and

.

~

— _ _



z = kdb where k is the free-space wave number , kd the wave number

of the dielectric coat, and a and b ~he radii of the coat. The

coefficient 1.5 = kd/k is the refractive i ndex of polyethylene

and the coefficient 0.9 = b/a is the ratio of the two radii.

II
U = 0  tJ = 0

_ _ _  

v__ _ _  _ _  __ v____ _ _—

x Rev Imv Rev Imv

0.5 -1.1075 1.3605 -0.7690 0.6697

1.0 —1.7462 1.6556 —1.3273 0.7794

1.5 —2.3282 1.3668 —1.8707 0.6427

2.0 -2.8819 2.0365 -2.4089 0.8815

2.5 -3.4176 2.1804 -2.9475 0.9033

3.0 —3.9399 2.3063 -3.4831 0.9121

3.5 —4.4516 2.4184 —4.0226 0.9101

4.0 -4.9538 2.5198 -4.5653 0.8986

4.5 ~5.4477 
2.6118 -5.1123 0.8790

5.0 -5.9323 2.6959 —5.6643 0.8524

These zeros were obtained by 3. Herder of ECOM’ s Math.

Support Division using a Burroughs B—5700 and the Bessel routine

provided by Ni. Goldstein of Flew York University . The following

:~ 
curves ~iere r~-tained f -om the above data by C. De Santis of the

Comunjcations Research Tech. Area .
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ACTIV ATION F NE RGY ASY MP’11)TICS AND UNSTE ADY FLAMES*

J . Buckmaster
Mathematics Department and I)epartment of Theoretical and App lied M - c !wni c~University of Illinois , Urban a, Illinois 61801

C. S. S. Ludford
Department of Theoretical and Applied Mechanics

Cornell University, Ithaca , N.Y.  14SF3

1. INTRO DUCTION. This is a review of sonic classical problems in laminar
flame theory that essential ly assumes no knowledge of combustion by the reader.

Laminar flame theory is a branch of fluid mechanics - -  es~ entia11 y I~~c i t ~’ r ~of the gases in a flame are governed by t h e  compressible Nav ier-Stokes equations - -

but there are of course some crucial fe atures which are not normall y found in classical
fluid mechanics. For one thing one is dealing with a mixt lAre of different gases and it
is necessary to say something about changes in each of the components of the mixture .
Secondl y, and most importan t , there are chemical reactio~s so that there is a source
or sink term in the mass conservation equation for each component. Moreover , heat
is released by the chemical reactions so that there is a sot l e e  term in t h e  overall
energy equation. These chemical reactions are extremely sensitive to temperature --
they usual ly won ’t take place at all if the temperature is too low (which is fortunate) - -
and an essential feature of combustion that helps distinguish it from other branches of
aerothermochemistrv is that the high temperatures n eces sary  to sustnin the reactions
are generated by the heat released by the reactions themselves . Provid ed there is an

- . adequate supp ly of fuel and oxygen , combustion is a ~Lif- - susta in ing process .

There are two dif fer -nt approaches to the theory of combustion that one can take.
One is to insist on being as realistic as possible and retain in the fo 1a1el~ati on of t~a~
problem all the complex~t I -  - that mi ght p lay a role in practice . This of course leads
to equations of rcin ~n a l - I  - - o n J k x l t ’  v. h ichi can oi ly be solved nwiic ricall y . Such art

- - - ‘  approach has its advocatc~ (and is necessary if detailed quantitative results are accded~hut a more frui tful  aj P 1 ’I R  ITI \ ’Cfl the present stat e of combustion science , is to st r i p
- - each problem down to i t -  f i in ~!, i - i - - a i a !  s and \\—rite doc’n model equations that are c le a r ly

inappropriate in r e a h t \ - h u t  r: v c i t i i e i c s s  contain the physical features which are the
essence of the problem. he hoj o is that the equations are simp le enoug h to ~oIvo
analyticall y, or , if C .  cow se to a computer is still necessary , simp le enoug h so that

- 
-~~: 

useful information can be e x t r a c t e d  from the nui ~ibcrs. Quantitative accuracy is sacri-
ficed for qualitative understanding.

• Ac tua ~ lv the re is a t I i i  id  approach to ;t in :~ ng con ibue t ion  prob le i i  s t h — t has b~ cn
quite popular hut which should he avoided if ut. all poss li Ic- . One sta it s  by writing Jov n
sensible model equations but the - n c n is t ru ~ t— ~ what mi ght be called ‘model solut ioi s ’ .
That is, solutions are con~ t r u c t e -d using ad l o c  i i  i a i t i onai  i s s  fiiiatio ns and as a con—
-sequence one cart ne ver be sure of t i le - signif icance of the end results. It isn ’t clear
\v t l e t I l e l  the features of the solution are creatures of th e ori gina l model or of the l i - i a-
tional approximations.  This n iakc ’~ sy stematic deve lopmen t  of the subject difficult  and
has led to s’~ trious results in t h e  l as t .

‘-4

s in a more or l ess v~ r1-’ntin t ranscr i pt of a r eVi  ~w that was spccifl ca 11~ - ma -
for oral presentation , so that the reader i s  asked to forgive the colloquial st~ li . The

-
~ 

- footnotes were not part of t he  oi- i  g ina  I pre sentation but have been - bded for the - -at ie- - of
clarity .

le .

- 
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Of course it is clear why such an unsatisfactory approach has been popular - -
- 

- 
for many years no rational systematic method of solving the various model equations
was known (although the literature is replete with brilliant ad hoc analyses). But in
recent years that has eh~.n~ec1, and it would probably be fair to say that there
has been a revolution in combustion theory. At the heart of this revolution was the
realization that combustion theory has its own unique asymptotics which can be exploited
using singular perturbation theory . In particular , a combination of Damkohler Number
asymptotics and activation energy asymptotics , where appropriate , can often lead to the
solu tion of model equations that were for many year s thought too difficult to solve.

What I want to do today is briefly descrthe the nature of these asymptotic
methods , concentrating particularly on activation energy asymptotics; describe the
mathematical details of a particularly simple application of activation energy asymp-
totics; and then descr ibe a perturbation procedure that generates nonlinear solutions
for a variety of problems, including a certain class of unsteady problems. In no sense
am I going to attempt an exhaustive review.

Let us start by looking at a specific problem.

2. QUASI-STEAD Y FUE L DROP BURNING

- Flame

/ Oxygen

Fig. 1. Burning Fuel Drop
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Figure 1 represents an idealized model of a burning fuel drop. The situation
is assumed steady and sphericall y symmetric , conditions never realized in practice

- 

— which emphasizes that we are examining a hi ghl y idealized model.

The ball of fuel , in liqui d form , is hot because of the presence of the flamej  and as a consequence it evaporates , mixes by diffusion with the surrounding atmosphere
of ox1gen, and then thi s mixture burns within th - f lame.  Appropriate model equations
are , -

M dY 0 1 d 2 ~~ O - a E —- —~~ 
~~~~~ (r _

~~
_ _ )  - D 1 Y 0 \~~~T exp (~~~~~~) = - o .

LY F =

= Q~ .

These equations are based on the simp le chemical kinetic scheme

- - - [ Fuel] + [Oxygen] —* [ Product]

The kinetics of a real flam e are much more complicated than this but nevertheless the
simple model preserves three essential features - - oxygen is consumed , fuel is con-
sumed , and heat is generated.

Looking at the equation for Y 0, the ~iass f ractio~i d’oxygen , we see that the re
are three terms. The first term is a mass transport term (there is a radial flux of
fuel and therefore a mass-averaged radial velocity) and M is a measure of the flux
of fuel leaving the surface. It can he regarded as the fundamental unknown of the
problem .

The second term is a diffusion term.

The third term , the chemical reaction term , simply indicates that the amount
of oxygen consumed depends on how much oxygen is present , how much fuel is present ,
and the temperature T. The most important part of the temperature dependence is
the exponential factor - - R is the gas constant and E is a constant known as the acti-
vation energy . E tend s to be rather large so tha t the reaction rate is very sensitive
to changes in the temperature.

D 1 is a parameter that depends on a number of thi ngs including the pressure
(which is uniform) and is known as the Damkohler Nunther.

The equation for 
~~F is identical to that for Y0, a consequence of assuming

equal diffu sion coefficients . The energy equation (which is an equation for the temper-
ature since the thermal energy is much larger than the kinetic energy) is very similar
(the Lewis number equals one) but the reaction term appears with a positive sign since
heat is generated by the reaction , and the amount of heat generated is characterized
by the parame ter Q. -

+Kassoy D. R. & Williams , F. A. Ph ysics of Fluids , 11 , 134d (l 96~~.
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There are appropriate boundary conditions (which have not been written down) ,
4 at the surface and 3 at infinity, making a total of 7. Since the system is a sixth

• order one, these conditions are sufficient to determine t’~e three field variables and
M, which is a measure of the burning rate.

There are many different ways of characterizing the solution of this problem,
and one way is to plot the variation of M with D1.

N
D1

-~~co

D1= O ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
01flt

~~ 1)1

• 
Fig. 2. Burning Response for a Fuel Drop

Figure 2 is typical of the kind of response one gets - - an S shaped curve,
and at the risk of oversimplification the turning points are labelled as the ignition
point and the extinction point. The reason for this is that if the response Is on the
lower branch of the curve , where the burning is weak, and D1 is increased (by
increasing the pressure, for example) then the response moves to the right until the
ignition point is reached whereupon any further increase in D1 causes a jump to the
top branch where the burning is strong. A subsequent decrease in D1 moves the
response to the left along the strong burning branch until the extinction point is reached
where the response drops back to the weak burning branch. +

~The oversimplification stems from the possthility that the response is forced off of
one of the branches by instability before the turning point is reached. This happens
in chemical reactor theory where similar S-shaped responses occur (Cohen, D. S.
& Poore , ~~ . B. SIAM J. Appi. Math. , 27, 416 (1974).
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Consider now the ends of the curve. At the left D~ vanishes, whence Cb
vanishes and the equations reduce to linear equations whic1~i can be easily solved. This
so called frozen limit is of little interest since there Is no combustion.

The right hand end (D 1 —÷ a)) is much more important since ty: i~al flames en-
countered in everyday life oft~n have very large Damkohler numbers. ‘he limit (called
the equilibrium limit) is a singular one in which the coefficient of t~e ghest derivative
vanishes, and so thin layers (boundary layers or interior layers ) ...an occur . Outside
of these layers it is apparent , since ~ must be finite, that as D1 —) 

~~~~~~,

and so Y0 and/or 
~ F must vanish. c~ is then the product of something that goes to

infinity times something that goes to zero and it is clear from the equations (the equa-
tion for when y vanishes) that this product vanishes in the limit . In this sense
there are similari~ies between the equilibri~~ limit and. the frozen limit, but the
possibility of thin layers in the fonner case is a crucial difference.

Important though Damkohler Number asymptotics may be, it obviously cannot
tell us anything about ignition or extinction, so that if we wish to bridge the gap between

= 0 and D1—.~ a) a diffe rent approach is necessary. Activation energy asymptotics
is an appropriate tool. More precisely we consider the solution of the equations when

RTref

where Tref is same reference temperature. This is a realistic limit in many com-
bustion situations, it can be used to solve many important combustion problems ,
and it is mathematically interesting because the large parameter appears in an uncon-
ventionai fashion, as the argument of an exponential .

One thing that is immediately clear is that we can not just put E = a) without
doing anything else since that just yields the frozen limit (

~ 
= 0). Bear in mind that

we want to determine how the response changes with D1, and the above observation
implies that only when is very large can we get away from the frozen limit. What
we have to do is write

D 1 = exp (E/RT~)
,l ~~.

where T~ is a temperature that characterizes the magnitude of so that

E 1 1o ~~exp [
~~

- (
~~

— - — ) ],
n 

~~~ 
I

and then the behavior of ~ in the limit E —* a) depends upon the relative magnitudes
of T and T~. There are three possibilities.
(i) In regions where T > T~ the exponential goes to infinity in the limit , so that

—* 0, ~ —4 0, corresponding to equilibrium. ~~F

+~~e Buckmaster , J. D. Combustion and Flame , 24 , 79 (1975). 
-

~
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(ii) In regions where T < T~ the exponential vanishes so that ~ —+ 0, a frozen
situation.

(iii ) Finall y, in transition regions where T T~ (more precisely, •I
.:j ,T* =

0 ( - ~~~!-) )  the exponential can be simplified slightly, *

exp [ -~~~ (T-T)~

but the important point is that ~ does not vanish so that such a region is a reactionzone. Reaction zones are often thin (but not necessarily so) In which case they are
called flame sheets.

• Application of activation energy asymptotics to a steady one-dimensional prob-
lem such as the fuel drop problem requires , in general , the construction of solutions
in the three different kinds of regions and matching them in the usual way (that is, in
the sense of matched asymptotic expansions). Usually, the most difficult part of this
procedure is deciding what regions are needed and where they are located. As an
example, if we ask what is the nature of the solution for a point on the middle branch
of the S-shaped response (Fig. 2), it turns out that T~ is the maximum temperature.
That is, at some finite value of r the temperature is equal to T~ so that all the
reaction occurs in a thin flame sheet located there, and on either side of the sheet the
combustion is frozen ( Fig. 3).

T

Surface
•1~~

FIg. 3. Typical Temperature Distrthutlon for a
Solution on the Middle Branch
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In the frozen regions solutions can easily be constructed of the linear governing equa-
tions . In the flame sheet the description is nonlinear , but because the sheet is thin

- the equations are simplified. Matching the flame sheet solution with the solutions in
- - - the frozen regions ultimately leads to the complete ~olution of the problem and in

particular, the determination of the burning rate M~. A remark about the nature of the
solution on the other two branches will be made later.

3. PREMIXED FLAMES. The fuel drop problem is an example of what is known
as a diffusion flame. There are other kinds of flames in which the reactants are sup-
piled as a homogeneous mixture which merely needs to be raised to an adequate tem-
perature to initiate burning. Such flames are called premixed flames , a common

-- example being the Inner cone of a bunsen burner flame (observed when the air hole
is open which permits oxygen to mix with the gas as It passes up the tube).

If a match is applied to such a mixture, confined within a tube, the mixture
-
- will burn and a flame will travel down the tube consuming the mixture as it goes.

Under ideal conditions this flame travels as a progressive wave with a more or less
well defined wave speed, and one of the classical problems of laminar flame theory is
to determine that wave or flame speed. What I want to do now is briefly describe how

• 
~~~ this can be done using activation ~ 1ergy asymptotics , since this is one of the simplest

nontrivial applications of activati~~ energy asymptotics presently known.
- 

For a premixed flame t14.- rnplest kind of sensible chemical kinetic scheme is

[Mixture] =* [Product]

at a rate = BY exp (-E7RT)

- - 

I 

where Y is the mass fraction of mixture (a preexponential temperature dependence
- like the Ta that was included in the fuel drop equations could be inserted without

essentially changing the subsequent discussion).
- 

- 

The flame is assumed to be one-dimensional and the situation in a flame-fixed
- 
.. I frame is shown in Fig. 4.

Hot Product Cold Mixture

-4--
Y=0 , T=Tf Y=l ,

Stat ionary Flame
- 

~.j Fig. 4. The One-Dimensional Premixed Flame

+The work of A. Linan, Astronautica Acta , 1, 1007 (1974) on the counterfiow diffusion
1. flame provides an exhaustive description of calculations of this kind. Kapila A. K.,

Ludford , G. S. S. & Buckmaster, J. D. Combustion and Flame, 25, 361 (1975)
f describe similar calculations for a spherical premixed flame .

T~



!
- Cold mixture comes in from the right and passes through the flame where it

is burnt and emerges as hot product on the left. The reaction only stops when all the
mixture Is consumed so that Y = 0 on the left and the temperature thersi$Tf (> Ta))~the so called adiabatic flame temperature.r Appropriate model equations are

— pv 
~~~~

- (p D ~i) - BY exp (-E/RT)

pv c~, ~ = f (A 4~
’) + Q B Y exp (-E/RT)

pv = - in (constant)

pT = constant

which are similar, in many respects , to the fuel drop equations written down earlier.
in the constant mass flux , is the fundamental unknown being essentially the flame

— speed. The equation of state is simply a statement that the pressure is constant, valid
-~ 

- ‘ for low Mach Number flames .

The flame temperature Tf can be determined without solving this system,
for in passing through the flame we know exactly how much 

~4 the mixture is con-
sumed (all of it) and we know exactly how much heat is releaset~ per unit of mixture
consumed (Q). Therefore an overall energy balance requires ~

C~ (T1 - T~ ) Q.

The system, when appropriately non-dimensionalized., is

— 1 a2Y BA -0/4
- _ _ _  e

= d
2
+ ÷ BA -0/4

~? p

(
~ 
. x, 0.. E , 4 . T, L = Is the Lewis No.)

p

as ~~~~~~~~~~~ Y-9- l,

aS~~~— ) - c D  Y -4’ O, 

- _ _ _  _ _ _ _ _  _ _  _ _ _ _ _



and the essential idea Is that this system only has a solution for a unlque+ choice of
the parameter and so in this way the flame speed can be determined.

m C ~

An enormous amount of ingenious effort has been expended over the years on
the solution of this problem, and literally dozens of approximate solutions can be
found in the literature each purporting to be simpler or more accurate than earlier
attempts. Most of this work was rendered obsolete in 1970 by Bush and Fendell~~ who :1
showed how the problem can be solved rationally in the limit of infinite activation
energy (0 —* a)).

Just as for the fuel drop problem we can not just put 0 = CX) in the equations - -

it is necessary to let —4w at the same time. More precisely we write
m C ~

____  = 

~ 
o2 exp [ ] , Q 0(l)

m C~ L(l+4a)) (I)

a choice partly motivated by the observation that we would expect, on physical grounds ,
• that the flame temperature (1+ 4a)) is the maximum temperature and moreover that 4

increases monotonically from 4~ to (1 +4a) ) as the flame is traversed. Be that
as it may, the problem is to find 5?.

The reaction rate ~ is proportional to

exp [
~4~ -

- . so that wherever 4 is less than the flame temperature the reaction is frozen and the
governing equations are

d2
4~~~ d 4 _ 0

~ ~~~~~~~~~

-

d2Y ÷ L d’~’ - 0

+111 actual fact the system as written doesn’t have a solution at all , since the upstream
state Y = 1, 4 = 4m is not a solution of die equations (the so-called cold boundary
difficulty). The problem arises because ~he temperature dependence of the reaction
rate is not accurately modelled by exp (-0/4 ) when 4 is small. A realistic resolu-
don of the difficulty is to introduce a cut’ ff temperature lying between 4 and
below which the reaction rate is identical ly zero. No specifi c choice for~bis tem-
perature is needed when the activation energy 9 is large, as the subsequent analysis —

shows .

~~Bush, W. B. & Fendell , F. E. Combustion Science & Technology , !~ 
421 (1970).
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with elementary solutions. The location of the origin of coordinates can be chosen
so that these equations are valid in ~ > 0.

Noting that

Y = 0 ,

is an exact solution of the complete equations , the large scale structure of the flame
is obtained by piecing together this exact solution and appropriate solutions of the
frozen equations, as shown in Fig. 5.

= 1 + Slope = -1

y = 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Y

+

=

elle

~

L

~

4 Fig. 5. Large Scale Structure of the Flame

The frozen solutions in 
~ > 0 are chosen to ensure that the boundary conditions

as ~ —~ a) are satisfied and that 4 and Y are continuous at the origin.

To complete the solution it is necessary to analyze the thin region near the origin
where the derivatives are smoothed out. The chemical reaction is confined to this re-
gion, which is therefore a flame sheet , and the local solution has the form

4.. ( l + 4 ~~) ~~~1(~~~~4 )
2 ~~( 9 ) ~~~~~ ( l )

Y -~ ~ y (~)+o (!~)

~ 1 (~~~ 4 ) 2~

In other words, the flame sheet has a thickness of order 0 ( -h- ) but gradients there
are 0(1).
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The perturbation quantities satisfy

d2~ = 
d2 [ -y 1 = 

5?y e~ .

~j2 ~~2 ‘I. L (l+4~~)2 J L (l+4~~)
2

It follows that

is a linear function £(~4. But then matching (both y and 4 vanish as 2.. - w to
match with the solution behind the flame sheet) implies that £ is identically zero . A
problem for ~p alone may then be formulated.

0 = ~~ 4 _ 5 2 ~~e*

as £ —) - -.a)  ~/) +0

as 2 —)- +w

The latter boundary condition arises from matching ahead of the flame sheet (Fig. 5).

Integrating once,

= - 25? (~ e~~-e~ +l)

and then applying the condition as 2. —~~ co leads to Bush and Fendell’ s result

and completes the determination of the flame speed.

4. THE MODIFIED PREMIXED FLAME. There are two features of Bush and
Fendell’s solution that I want to emphasize. First of all, one of the reasons that the
analysis is so simple is that the chemistry free equations can be so easily solved. This
suggests the following question. Suppose that we are concerned with a more complicated
problem, one related to the one-dimensional premixed flame but whose description re-
quires additional terms in the governing equations. What additional terms would lead
to chemistry-free equations as easy to solve as Bush and Fendell’s? Such a question
obviously does not have a unique answer , but one possibility is

- 5- 193
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~4 ÷~ 
=~~~ f ( ~, 4 , Y, --- )

d~ 
d~

d2Y dY _ 1
—f ÷ L - ~~~~~ 4, Y, -- - )

where f and g are quite arbitrary. Perturbation solutions of these equations can
easily be constructed.

The second thing to notice about Bush and Fendell’s solution is that ~he flame
speed is extremely sensitive to the value of the maximum temperature. The expression
for the flame speed (essentially m) is

____  = 
~2 

2 exp [ 1+
0 

]
i n C  2L (l+4~~)

and it is clear that small changes in the flame temperature (1+4 ) will generate large
changes in the flame speed. Order 0 (1/0 ) changes in tempera~ure are sufficient to
generate 0 (1) changes in the speed, for example. The significance of the modified
equations written down above is that we might expect that the 0 (1/0) perturbation
terms can generate 0 (1/0) changes in the maximum temperature and thus lead to solu-
tions quite different from Bush and Fendell’s. And yet we would not expect the inclusion

- 
- of these terms to unduly complicate the analysis.

Let us consider a simple example.

5. EFFECT OF HEAT LOSSES. In any real flame there are heat losses due
radiatiøn or conduction to adjacent boundaries. In a one-dimensional formulation these
losses can be modelled by adding a term -K (T~T~~)+, K = constant , to the energy
equation so that

pvC~ ~~ (A ~~~
) - K (T-T~ ) + Q B Y exp ( -  

~~~~~~~~
) .

The extra term tends to drive the temperature to the reservoir value, and the modified
equations are of the type discussed above provided the magnitude of K is such that the
non-dimensional term is 0 (1/9).

The analysis is more complicated than Bush and Fendell but no new principles
are involved , and defining

+Quite general functions of T can in fact be handled by the analysis, see Buckmaster, 
—

J. D. Combustion & Flame (in press). 
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H = Flame Speed/Adiabatic Flame Speed+

we find

(1+4~~)2 H2 In H  + K’ = 0

where K’ is K non-dimenslonalized.

When K’ vanishes there are two solutions, H = 1 (Bush and Fendell’s result)
and H = 0, and for moderate values of K’ there are two solutions, but if K’ is too
large there are no solutions (Fig. 6). This principle has been known for many years

e~~~
2

- 

(2e)~~ ~~

Fig. 6. Flame Speed vs Heat Losses

and is the foundation of the miner’s safety lamp invented by Humphrey Davy in the
early 19th century. The safety lamp consists of a naked flame surrounded by a wire
gauze cage, and if this is carried into a combustible atmosphere, the latter passes
through the gauze and burns on contact with the flame. Without the gauze cage the
flame would spread through the surrounding atmosphere, usually in a violent (explo-
sive) fashion, but the gauze is such an efficien t conductor of heat that the flame can not
pass through it. Thus the miner, on seeing the flam e flare up, can safely retreat .

Looking again at the response diagram (Fig. 6), recall that as we move around
the curve the maximum temperature changes by only an 0(1/0) amount. Returning
to the fuel drop response (Fig. 2), the top branch of the curve , including the extinction
point , corresponds to solutions for which the maximum temperature differs by only an

~~ +i e  Bush and Fendell’s result.
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0(1/0 ) amount from the maximum temperature in the equilibrium (D —~ Cu) limit.
The lower branch , including the ignition point , correspond s to solutiolis for which the
maximum temperature differs by Onl y an 0 (1/0 ) amount from the maximum temper-
atu re in the frozen (D 1 = 0) limit. Thus there is an analogy between the C-shaped
quenching curve of Fig. 6, and the C-shaped extinction and ignition curves of Fig. 2.

Once the idea of adding 0 (1/0 ) perturbation terms to systems of flame equa-
tions and looking for solutions tha t differ by an 0 (1) amount from the unperturbed

- 
- -~olut ion is understood , there are an infinite number of problems that one can examine.

~)ne is limited only by one ’s imagination in C~njLtr1ng up different kinds of perturba-
I - ~ ons , and of course any flame can be perturbed , not just the one-dimensional premixed

flame. Let us consider some unsteady examples.

6. UNSTEADY ONE-DIMEN S IONAL PREMIXED FLAME. Consider the unsteady
form of Bush and Fendell’s problem , for which the equations are :

aY aY a a~ Ep ~~~~
- + p v ~~~ =~~-~~(pD~~~ ) - BY exp (-~~~ )

-~ 
- p C~ ~~ + p V C = ~~(X ~~~) + Q BY exp (-

+ (p v) = 0 p T = constant.

‘l’hese differ f rom the earlier equations only by the addition of the time derivatives.

Now the steady flame has a characteristic thickness,

A

There is a characteristic velocity, the flame speed ,

m
0

- a)

and so we can define a characteristic time

A p (X)

~~ m 2~~p

If we try to solve the unsteady equations -- as an initial value problem , for example - -
then most distu rbances will change on this time scale and will be governed by the corn-
p lete system of equations , without simplification. Even without chemistry this system
presents a formidable challenge. However , it is conceivable that there are disturbances
that change on the much larger time scale
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0 - A p
t = O (  ~~~~ W

) ,
m c

p

in which case the time derivatives are 0 ( ~
. )  terms and so can be handled in the

same way as the small heat loss term . Ind”eed we find

2 ( 1  +4~~ )
2 

~~~~ ln H +b 0

~n equation first derived by Sivashinsky . + Here T is time, H is the flame speed
ratio as before , and b is a parameter that depends upon the Lewis Number L.

b < 0  if L > 1

b > 0  if L < l

b = O  if L = 1 .

Apparently, when L = 1~~there are no disturbances that change on the slew time
scale , an atypical situation. It ~s tempting when solving combustion problems to choose
L = 1, since this often leads to mathematical simplification (the steady one-dimensional
premixed flame then has unifo4’i enthalpy, for example) but this temptation is appar-
ently something that should be resisted , at least when dealing with unsteady problems.

There are two possible steady solutions

H 0, H =  1 ,

and the stability of these solutions depend s upon the sign of b:

b > 0 (L < 1) H = 1 stable, H = 0 unstable,

b < 0 (L > 1) H = 1 unstable, H = 0 stable.

Thus if L > 1, Bush and Fendell’s solution for the one-dimensional flame is unstabiL -

- 

- It should be emphasized , of course , that only the predictions of instability are signifi-
cant . A flame that is stable to the kind of disturbances that we have considered here
might well be unstable to other kinds of disturban ces.

7. UNSTEADY FLAME WITH HEAT LOSSES. As we saw earlier , when there
are heat losses the burning response is multiple valu ed . Thus it is of interest to add
heat losses to the unsteady formulation in the hope of gaining insight into the significaii~ - -

of multivalued responses. The result is

2 (1+4~~)2 
~~ In H + 2HK’ + b~~~ = 0 .

Note that in addition to the two stead y branches shown earlier in Fig. 6, there is a
third steady solution H = 0 (Fig. 7) .

+Sivashinsky G. I. m t .  j. Heat Mass Transfer , 17, 1499 (1974).
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~~~ K~~l-4~~)

Fig. 7. Stability of a Flame with Heat Losses when L < 1

Figure 7 shows stability arrows appropriate when L < 1. These indicate the direction
the solution will be driven in an unsteady situation . Thus when L < 1 the branches
AB and CD are stable, whereas CB is unstable. For L > 1 the arrows must be
reserved.

8. THREE-DIMENSIONAL UNSTEADY FLAMES. The perturbation procedure
is not confined to one-dimensional flames. Three-dimensional disturbances can also
be treated provided their nature is such that the three-dimensional terms are essentially
0(1/8). The equations are rather more complicated since the velocity field must be
determined and this requires solution of the momentum equation

in addition to the previous equations.

Permissable disturbances are defined in Fig. 8 (recall that the flame thickness

5’ -.

p
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~~ o(r) ~~ o(r ) 
D =

Fig. 8. Allowable Three-Dimensional Disturbances

The time scale is the same long time scale as before.

The result for the flame speed H is~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
}aX

~
‘ + b  +

= 
ax 

+

H = 8X
aT .

+This is actually a limiting result only valid when the heat released by the reaction
Q is small compared to the enthalpy of the unburnt mixture. In general a single
equation governing the flame speed can not be written down when there are three-
dimensional disturbances. Nevertheless, many of the qualitative features of the
general result are the same as those of the limiting result. The details are in
Buckmaster, J. D. Combustion & Flame (to appear).
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If we look for perturbations of the one-dimensional steady flame of the form

X T + 6 eaT f(~i,~,) , ~ < <  ~

4 + 4 + k2 I = 0

then

a [- 2 (1+4a))
2 + J~~(l+cp~~)~~+ 4b

2 k2 }

If k vanishes, the quantity in square brackets is either zero or negative so that we
recover the earlier result that the flame is unstable if b < 0 (L > 1). But if k ~ 0
there is a positive root irrespective of the sign of b, so that the one-dimensional flame
is also unstable if L < 1.

The problem of flame instability is an interesting and a complicated one. Exper-
iment suggests that sometimes instability dest roys a flame , sometimes it merely causes
it to flicker, and sometimes bifurcation occurs+. Most of these observations are pres-
ently unexplained but it is possible that the above results will play a role in throwing
light on some of these phenomena. In general we can expect activation energy asymp-
totics to contribute significantly to our understanding of flame instability. For example,
Matkowsky and Sivashinsky~~ claim to have explained cellular flames in this way.

I shall conclude by making some additional remarks about the long time scale
that plays such an important role in the unsteady problems discussed above. The point
is best illustrated by considering a specific problem.

9. SOLID DEFLAGRATION. The burning of a solid is of fu ndamental interest
- - - in the theory of solid propellant rocket motors , and Fig. 9 shows a classical one-

dimensional model. The solid is hot, because of the proximity of the flame , and gives
off a combustible mixture which burns within the flame . The fla me is propagating to
the left relative to the gases but the gases are moving to the right and in the steady
state the flame is stationary relative to the solid . The burning rate depends upon the
pressure and a classical problem is the determination of the steady state burning rate.

The flame is essentially the same as that analyzed by Bush and Fendell. There
are differences in the problems, of course, owing to the different boundary conditions ,
and a solution of the heat conduction equation has to be constructed in the solid (which
is being fed to the right in a flame-fixed frame) but the analysis is straightforward and
the results have some connection with experimental reality. ~~~

+At this point Fig. D. 1 (p. 78), Fig. D. 11 (p. 86) and Fig. D. 10 (p.85 ) from Markstein ,
G. H. Non-Steady Flame Propagation Agardograph No. 75, Macmillan , New York ,
1964, were shown.

+1- .Private communication.
+++See Buckmaster, J. D., Kapila, A. K., & Ludford, G. S. S. Astronautica Acta

(to appear). 
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Solid

Mixture p( t )

Premixed.
Flame

Fig. 9. Burning Solid

A more complicated problem is one for which the pressure varies with time.
This also is of interest in the study of solid propellant rocket motors since such motors
are often violently unstable. Now if the pressure varies very slowly with time, it is
apparent that the response will be quasi-steady. That is , the burning rate will be the
steady state value corresponding to the instantaneous value of the pressure. The ques-
tion then arises: What is the slowest variation in pressure for which there will be a
significant lag in the burning response and therefore significant transient effects? The
answer is pressures that vary on the long time scale

-
~~~ 8 A p ~~t 0 (  2
-
~~ m C

for these will excite the slowly varying disturbances . Indeed , if the appropriate analy-
- 

sis is carried out we find

C1~~~~~+ C 2 H + C 3~~E + c 4 p 0

L where H is the burning rate , p the pressure , and the are constants. The analy-
- sis is inherently a nonlinear one but this is the result for infinitesimal pressure

variations.

Flames are often subject to external stimuli that change with time and what this
example suggests is that provided the steady state solution is known, the unsteady prob-
lem can be solved and nontrivial transient effects obtained provided the stimulus changeson the long time scale. This could have application to a variety of important problems.

- 
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A MODEL FOR SHOCK IND UCED STRUCT URAL TRANSFORMATIONS

Pau l Har ri s
Concepts and Effectiveness Division

Nuclear Development and Engineering Directorate
- - P ica ti nny Arsenal

Dover , New Jersey 07801

ABSTRACT. The problem of strain propagation in a medium of time
and strain (energy) dependent elastic constants Is considered . For
the elastic constant model considered , analytic and finite difference
approximations appear to predict avalanching of the particle velocity
in a manner consistent with a dynamic strain induced exothermic
structural transformation. The appl ication to enhancement of laser
interaction with aerospace materials is discussed .

1. INTRODUCTION. Recent years have seen increasing military
interest in the interiction of high power optical signals (lasers)
with aerospace materials. A problem of particular interest has been
the generation of a shock in an irradiated material in order to pro-
duce a dynamic mechanical deformation in an adjacent material . The
figure bel ow illustrates the geometry of the problem.

-
~~~ Medium

high power for Shock
optical shock receiving
signal generation medium

- i

The shock receiving medium could be an explosive , in which case the
hardware appl ication might be a detonator or an explosive switch.

For the above type of problem one would obviously like to choose
the medium for shock generation so as to maximize the generated shock
amplitude. There are essentially two ways in which the shock ampl itude
can be maximized for a given optical signal : one can maximize the
strength of the laser material interaction , or one can attempt to find
a generation medium which can act as an amplifier of shock amplitude
(the shock being produced in approximately the electromagnetic skin
depth of the generation med ium). In this paper we will mainly con-
sider some mathematical aspects of the second approach .

2. MATERIAL SELECTION AND PROPERTIES. Some alloys exhibit
~anoma 1ousl y~ large Grilneisen parameters as they undergo structural“phase” transformations. Typical alloy examples 1,2 are TiNi and
KTaO~. The Grüneisen parameter (proportional to the thermal expansion
coefficient) is a measure of the pressure change caused by a change in
thermal energy density under constant volume conditions . Since , in the
absence of vaporization effects, the laser interaction ~erves to depositthermal energy in the skin depth region , an en hanced Grune isen parame ter

203

- --5—-- ----—-
~~~

- --——---5- —~~~~ h~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

——-—---5 5-—. --- - - - - - --.---—-5-- —-5—- --- - -~~~



__________ —~~ __ •_ _ _ _ _ _ _ -5 _’__ __ __ ___ _ 7-5__ __ ___ -5 __ ’___ ’•__ _•_ _ _ _ _ _ 
-“I’

I~ equivalent to an enhanced pressure (shock) ampl itude.

TINI Is an appropriate shock generation medium because Its metallic
properties , even in the absence of Gruneisen effects, serve to produce
a small skin depth and thus a strong laser-material interaction. The
observed 1 GrUneisen parameter enhancement by a factor of approximately
twenty during the near room temperature (martensitic) structural trans-

- formation promises enhancement of an already strong laser—material 
~,Interaction. The practical limitation on the above concept is a 10 C

half maximum width for the spike in the GrQneisen parameter, and that
10°C temperature rise represents a rather small thermal energy density
deposition.

The physics which gives rise to the enhanced Gr~ineisen parameteralso results in exothermic (or endothermic) effects, and different
elastic constants on each side of the transition. While the observed3
exothermici-ty of approximately 6 Cal/gm is not large, when comb ined
with the observed 1 (approximate) ten percent change in elastic
constan ts, one has a material which promises interesting thermo-
mechanical effects. That interest is further raised by the knowledge

- - that an applied strain can trigger the transformation.

We thus have a scenario in which a propagating strain wave (shock)
can tr igger a struc tural trans forma tion , and thus be amplified in the
process. It is that secnario which we will now model and treat below .

3. STRAIN PROPAGATION IN A TRANSFORMING MEDIUM. While there
ex ists a num ber 2,5 of elegant approaches to the physics of structural
phase transitions , those approaches do not yet appear capable of treat-
ing the propagating strain condition of interest here. We thus proceed
somewhat Intuitively.

Consider a one-dimensional strain problem (particle displacement
only in the direction of strain propagation) characterized by

p 32U a2u
‘0 ~~ - c~~~- — f (1)

c = c 0 + a (c1 - c 0
) (2)

where p is mass density , u is particle displacement , c is an elastic
constan t, f denotes a viscosity functional , the subscript zero denotes
the undisturbed (prestrain and pretransformation) medium , the subscript
one dentoes a final state (transformed) parameter, and a is dependent
upon the degree of transformation.

We model a in the form

a =f i_ exp 
~~
-(

~~
)(

~~
)f l’  

(3)
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where w is stra i n energy , W a cons tan t, and ~ is a trans forma tion
incubation time. Thus, to first order in (wt)

a (4)

~ a2u 1 + 1 ut 1 a2u — 5o
~~~~~

- c
~ ~~

- -

We will set f = o even though it is known 1 that attenuation is very
strong in the presence of phase transforma tions . We w i l l  thus have to
keep in mind that any u(x,t) solutions could in practice be of con-
siderably reduced ampl itude.

We will now consider two approximations to Eq. (5). The first will
V 

be relatively unphysical , but analytically neat. The second will in-
volve the full form of Eq. (5), but will involve a rough finite

- 

- 
difference approach.

APPROXIMATION I: We consider

p
0 ~~ - C

0 
(1 + 8t) .4. = 0, ~ = cons t. (6)

Separating variables wi th u(x,t) = T(t) X (x) gives

________ 
1 a2T — 2 — 0 ~2X . (7)

(l+ ~~t ) T I - v _ _ m _ r -  ~~~

/-i-
X = X m exp ±ix !~~

— , (8)

a2T 2
— - 2- + _!_.2. y I = 0, y = (1 + Bt). (9)

Eq. (9) is Ai ry ’s equation and its solutions can be written as6

Tm ( t) = AmUi (Y
~
1) + BmU2 (Y ,l), (10)

where V = —p- (1 + Bt), (ii)
p

0

with U1 an d U2 being linearly independent and tabulated6 .
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We now let k = 2ff /A = m/-~fE and evaluate m2/p 82. For c = c /2
0 0 1 0

and ~ = W (i.e. the strain energy taken equal to its critical trans-
formation val ue )

= 

(
~~ 

)2 v2 (4t 2), ( 12)

where v is the velocity of sound in the preshocked medium , A is the
- wavelength of the appl ied strain disturbance , and c1 = c0/2 corresponds

3

to an exaggeration of the transition (exothermic) from TINI ( i i )  to
TiN-i (III). And using 2wv = w

0
A , where is the angular frequency

of the appl ied disturbance ,

= (2~~~)~ (13)

Thus V becomes

V = (2w~~~~~ (1 — 
~~~~~

. ) .  (14)

For a particular w0 we can drop the subscript m in Eq. (10) and write

u(o ,o) = AU
1 L (2~jor)2~F3, I j + BV~ (2w0r)

2
~
’3, I , (15)

and ~u(o,t)~ A (2w~T)
2/3 U~ [(

2w0T)
2/3
. 1

- f (2 t)~’~ U [(2~~t )  2/3 (16)

If we now make the typical “hydrodynamic” approximation of <<1,
then from Eqs. (15) and (16)

A = u (o ,o), (17)

B =-2 (2~0t~~
213 au(o,t)

~~ ~(2w0t)
113 u ( o ,o), (18)

where 6

I.Ji(O ,1) = 1, U2(0,1) = 0 (19a)
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U1 (0,1) 
= 0, 1.12(0,1) 

= 1 (19b)

have been used .

We can thus write

u( o ,t) ~ u(o ,o) U1 (V ,i) — (2w0’t)
1”3 u(o ,o) U2 (V ,1). (20)

We thus predict avalanching of the particle displacement at the
boundary , u(o,t), due to the avalanching behavior of U1 (Y ,1). The
avalanching is strong as it is occuring even in the presence of a
harmonic input.

APPROXIMATION II. Here we will consider a crude finite difference
version of Eq. (5) written with respect to an almost constant velocity
coordinate system.

From Eq . (5)

3u 2

~~U . 
~~~ ~~~~~~ ~~~~ - V 2) (2 1)

where v0
2 c0/p0 , v~ c

1
/p0 w M ~2 

, and W M~0
2 with

~ 
being a critical strain value.

Employing the so-called ~ characteristic stretching transformation

~~~x - V t, ~~s aVt , (22)

where a is a dimensionless stretching parameter (we shall neglect terms
in a2), and defining

~~~
F we arri ve at

2aV2~~ + 
[(v0

2 - V 2 ) + (v
1
2 - v0

2) 
~~~~ } 

1 ~~ 

= 0 , (24)

where aVt.

Writing Eq. (24 ) in crude finite difference form

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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r ‘
~~n ’ Cm+i) v(ç~1 Cm) I = (25)

L r j

= F1 
- F2ç’y

2 
~ n ’ ~~ [ ‘

~~n+1’ Cm) - ‘
~‘~n’ Cm)

L J L
where 

F — 

- v0
2 

, (26a)
2aV2

F — 

v1
2 - v0~ (26b)

2 = 2aV2 ç0ri0
2

Rewriting Eq. (25) with the time deri vative single-stepped backwards
gives

v (n,m) - v (n,m-1) = 
[G1 

- G2Cmv
2(n

~m)j v(n +1,m) +

- - G2Cmv2(n~m)] ~(n ,m) , (27)

where G1 ~~
- F~ , G2 ~~

- F2 . (28)

:. v (n+1 ,0) = 

[

1+G
ij - 

v(n ,-1) (29)

We now set w(n ,-1)=0 (equivalent to turning the strain on at t=Q ,
and/or completely neglecting the stretching parameter). With that
condition Eq. (29) has a solution —

r l÷G i~~‘v(n,o) = j  ~~ _! v(o,o) . (30 )
L 1 J

Eq. (30) predicts a geometrical avalanchin g (wave) in position , in
support of the temporal avalanching of Eq. (20).

Experimentally it is known 8 that the martensitic transformation
in Fe-29.5% Ni propagates at a velocity approximately one third V

0
.

If we thus choose V to be that velocity of propagation of the trans-
formation, then G 1 is large (a being small) and negative . Thus the
spatial avalanching , while present, does not appear to be as strong
as the avalanching in time.

- 

~~~~ ::i~~ ii I:_ I___ i -~~- -~~ --

- 

~~~~ 1~



r - —— ----
~
-— -----— --

~
--- — -5——-

~~~ 
-5

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——~~
-..--5 — --—-. — — 

-~~~~
-- — —- —--- -—- --

4. DISCUSSION. The two approximations considered above hint
strongly that shock amplification can occur in the presence of a
structural transformation. Considerably more work is necessary,
however , before the prediction of an amplification factor is possible.

In closing we will briefly list what we believe to be the promising
approaches for future work.

(a) Model i ng . The inclusion of microscopic effects (e.g. soft
phonon and i nteratomic potential effects) in the modeling
of a.

(b) Attenuation . It is conceivable that known strong attenuation
during the transformation process could severly limit the
predicted amplification . While experimentally 1 determined
attenuation factors in TiNi lead us to believe that this is

- - 

not the case, f ~ o must be included at least for completeness.
(c) Sol i ton propagation. The current fad in spatially bounded

non linear propagation effects involves soliton ~~~~~ physics .
It is necessary to seek solutions of Eq. (5) from such a
point of view .

(d) Finite differenc ing . It is necessary to refine the work
of approximation II.
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SO~~ NEW ?,~ THODS FOR SOLVING LINEAR EQUAT ION S~
Thoma s Kaila th

Information Systems Laboratory
Department of Electrical Eng ineering

Stanford University
Stanford , Ca. 94305

ABSTRACT. It takes of the order of N3 operations to solve a set

of N linear equations ~.n N unknowns . When the underlying physical

problem has some time— or shift—invariance properties, the coefficient

matrix is of Toeplitz (or difference or convolution) type and the equations

can be solved with 0(N
2) operations. We have shown that with any non—

singular N x N matrix, we can associate an integer a between 1 and

N such that it takes O(N2a) operations to invert the matrix. The number

a may be small for many non—Toeplitz matrices of physicai interest. Some

- 
- 

aspects of this result are discussed here , including extensions to

continuous—time kernels and integral equations .

1. INTRODUCTION. Problems in many fields lead ul t imately to the

solution of linear matrix equations

Ra =

where R is a given N x N matrix , say, and in is a given N x 1 vector .

The numbe r of operations required to solve such an equation , or to find

is of the order of N
3 
(multiplications and additions). This can be

prohibitive if N is large (500 or 1000 or 3000. as can arise in many

power system or econonometric calculations). For this , and other reasons ,

we must often try to bring in any special features or structures that may

be present in the original physical problem. In many applications 

~This report  is a summary of a talk given at  the 22 nd Conference of Army

~~ Mathem aticians , Wa te rvl iet Arsenal , New Yor k , May 1976 . It was based on

~~ work done jointly with B. Friedlander , L. Ljung and M. Morf (see the
refe rences) .

This work was supported by the Air Force Office of Scientific Research ,
Air Force Systems Command under Contract AF44—620—74—C-0068 , and in part
the Joint Services Electronics Program under Contract N00014-75—C—0601,
and the National Science Foundation unde r Contract NSF—Eng 75—18952 .
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we have the property
I

:1 R = [r ..] = [r . ]

That is , the phenomena are invariant to a change in the time— or space—

origin (e.g., as with stationary random processes, or homogeneous media,

etc.). In this case, the matrix R is said to be a Toeplitz matrix and

ha~ the nice feature that its inverse can be found with only 0(N
2
) multi—

plications. Moreover the inverse can be computed recursively, i.e., the

N x N inverse can be easily updated to yield the (N + 1) x (N + 1)

inverse, and Toeplitz matrices also have other useful properties.

Unfortunately, most operations on Toeplitz matrices destroy the Toeplitz

property. For e-~camp1e , the inverse of a Toeplitz matrix is not Toeplitz,

unless the matrix is also lower— or upper—triangular. So also the product

of two Toeplitz matrices is not Toeplitz , unless the matrices are also

- - both lower—triangular or both upper-triangular. However, some reflection

will show that in various ways one can regard certain matrices as being

“less non—Toeplitz” than others , though present solution methods cannot

take advantage of this——they require 0(N
2
) operations in the Toeplitz

case, and 0(N3) otherwise.

By a long process of abstraction and simplification of results originally

obtained for certain nonlinear differential equations [1] , [2 ~~, we have

been able to show essentially the following (more precise results are

stated later) : with any invertible N x N matrix R we can assoc iate

an integer Ct , 1 < cx < N , such tha t  it takes o(N
2
O~) operations to

compute its inverse. The integer ~ may be called the displacement rank

(or index of nonstationarity) of the matrix and has the property tha t it

is low for matrices that are Toeplitz or near to Toeplitz , while it is

high for arbitrary matrices. For example ,

212
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- i) a = 1 for R = L or U or LU or UL, where L and U

denote lower— and upper—triangular Toeplitz matrices.

- 1 ii) a = 2 for R = (L + U) and R = (L + U)
1

- 
- iii ) a < 4 for R = (L

1 + U1
) (L

~2 
+ U2)

iv) a < 3 for R = [L 1 + U
1 

L
2 

+ u2 )

v) a< n, if R is the covariance matrix of a linear combination

of the components of any n-vector wide-sense Markov random

process.

In such cases , 0(N 2Ct) can often be significantly less than 0(N3),

thus yielding many advantages,not just for solving a given large set of

equations , but also for interactive adjustment of the mathematical model

-
~~ (i.e., of R and ni) based on actual examination of the now-more—easily

determined solution a.

We sha ll outline our major results in Section 2 , for matrix equations.

A similar , and somewhat simpler , dev~ 1o pment can be carr ied out for

: integral equations , as noted in Section 3. Section 4 contains some con—

- cluding remarks on possible extensions and generalizations .
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2 .  T1* MATRIX CASE. More details can be found in the paper [ 31 ,

but we note the key definitions and results here.

Definition 1. The (+)—displacement rank of an N x N matrix R is the

smallest integer a (R) such that we can write

a~ (R)
R =  L L U

1

- for some lower—triangular Toeplitz matrices (L
1) 

and some upper—triangular

Toepiitz matrices (Ui
).

Definition 2. The (—)—displacement rank of an N x N matrix R is the

smallest integer cr (R) such that we can write
cr_ (R)

L
1

for some lower—triangular Toeplitz matrices (Z~) and upper—triangular

ToeplitZ matrices (U1
).

Definition 3. Let

Z = the lower-shift matrix

~~~~0 .
o

-~~

Lemma 1. Computation of Displacement Ranks

a (R) = p (..j(R))

where

J(R) = R — ZRZ ’ , (1)

and

- 
- . p( A i = the rank of the matrix A.

Also

a (R) =
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_

where

= R - Z ’RZ . (2)

The proof follows by using the result of Lemma 2.

Lemma 2. Given two column vectors x .y there Is one and only one solution

of the functional equatiofl

J(R) = X~~~ , (3a)

and this is

R = L ( x ) U (y ’) 
‘ (3b)

where ‘ denotes trans pose , L(x) is a lower—triangular Toeplitz matrix

whose first column is x, and U ( y ’) is an upper—triangular Toeplitz

matrix with first row y’.

Proof. For uniqueness~ note that

~J (R1) = J(R2)

implies

- :~ 
R
1 

- ZR
1Z ’ = R

2 
— ZR

2
Z ’

or

- 

~ - -~ R1
- R

2 =

- - whose only solution is clearly zero.

- :  The rest amounts to verifying that .JL (x)U(y ’) = xy ’, wh ich the

reader may find amusing to check by direct computation for 3 x 3 matrices.

Lemma 1 now follows easily from the observation that

CL Ct
R = L(x .)U(y ’) r J(R) = ~ X

1
y ’ (4)

1 1

- - We can now s t a t e  a f i r st  s imple , but a p p a r e n t l y  new , result.

Theorem 1.

= :~~(R) . (5)

Thc re fore ,r
4 .
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-
~ R = E L

1
U
1 ~6a)

1
implies that R

1 
has the form

-l
R = ~ 1J~~ (Sb)

1 1

Proof. We give the simple proof (suggested by S—i. Kung) because it

shows that the result is quite general and depends very little on the

nature of the entries of R-—for example , they could themselves be matrices.

We note that

a (R 1
) = c(R

1 
— Z ’R 1Z )

= oC ( R  — Z’R 1
Z)R)

= c ( I  — Z’R 1
ZR)

since rank is unaffected by multiplication by a nonslngular matrix. Now

- by a well—known matrix result that

p (I — AB) = p( I — BA)

we can continue the above chain as

-
~~ a_ (R 1) = o f I  — ZRZ ’R 1)

= c (( I  — ZRZ ’R 1) R)

= cfR — ZR Z ’3

= Cx~ (R) . I
Example. If T is a symmetric Toeplitz matrix , then a (T) = 2 = a pr)

since we have the representations

~1

T = T •I + I~ T’
+ +

= I .T  + T’~ I
+ +

where

T = the lower-triangular part

of the matrix T.
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The fact tha t

a~(T) = 2 = cx_ (T)

can also be seen by checking tha t

.J(T) = T-ZTZ’

t for all N > 2
1 2 • N —

t
2~~~~~~~~~~~~~~~

t
N

— 

- 

and

3.4 t

P (T) = 

t
N 

t~~_~ , N >  2

Now it turns out to have been well-known in many contexts (see the

discussion in (4 ]) that there exist two lower-triangular Toeplltz

matrices A and B such that

= A’A — B’B (7)

so that

a CT) = 2 = a (T) . I
Remark. Notice that the displacement ranks seem to identify a better

property of matrices than their being Toeplitz. The class of ToeplI tz

matrices is no t closed under invers ion , unlike the (+)—displacement ranks

and the corresponding representations (6 ).

Theorem 2. The inverse of an N x N matrix R can be found with O(N
2
a~

multiplications , where CL is an integer such that Ct < c~ -~- 2. This

- 
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can be done via certain recursive formulas called the generalized Szego

Levinson recursions .

•1 The recursions are a bit too complicated to describe here, but we

may note that for Toeplitz matrices they are equivalent to the we1l—kno~’n

1 recursions for the Szego polynomials orthogonal on the unit circle (see,

e.g., [5, Ch. 11 ] or [6]). These were rediscovered in the statistics

literature by Levinson [‘z ] and by Durbin [8 ] for recurs ively solving

the so—called Yule-Walker normal equations [9).

For other results in the matrix case, we refer to [3 ], [lo]-(ll] and
instead turn briefly here to an examination of the integral operator case.

-

~~~~~~

‘p

‘1
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- s 3. INTEGRAL EQUATION S. The Fredholm integral equation of the second

kind T

a(t) + [K(t.s)a (s) ds = m (t) , 0 < t < T (8)

has been extensively studied , see , e.g., the recent monograph ( 12 1 .  Except

for the handful of cases where explicit analytic solution is possible , the

generic technique is to replace the integral equation by some approximating

- 
set of N linear equations

Ra = i n.

This can be done in various ways-—use of degenerate kernels , projection

- - (Galerkin and collocation) methods , etc. For example in the degenerate

kernel method we replace K(t s) by the function

KN
(t,s) = E Ø1(t)~4r1

(s) (9)

- for some suitably chosen functions ~ ( ) , ~ r (~)}. In any case , the
-

. resulting set of linear equations will in general require O (~~) operations

for their solution and this may be prohibitively large . More significant

however Is the observation that such approximation methods will generally

F destroy any nice structure that might have been present in the original

problem.

For example , if the kernel was of Toeplitz (also called displacement

or convolution) type ,

K (t ,s) = K ( t  — s) , say

— - then In general

K
N
(t,s) ~ Toepl itz for N <

This is bad , because the Toeplitz property cam be exploited to find a

nice solution of the integral equation . Briefly, first define

219
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H (t ,s) = the Fredholm resolvent of K(t,s)

as the solution of the Integral equation
T

HT (t ,s) +J”HT (t
~

r)K(r
~

s) dr = K(t ,s) , 0 < t,s < T

In operator notation , we can write this as

H + H K  = K

or as

- - 
( I — H ) ( I + K )  = I

which shows that the original equat ion

(I + K)a = m
4 ,

can be resolved as

a = (I + K) 
1
m = (I - mm

or 
T

a(t) = m(t) —f HT(t ,s)m(s) ds

Therefore the basic problem is to f ind H(t  , s). Now even though K (t — s)

- 
. ‘ may be Toeplitz , this will not in general be true of its resolvent L~, (t ,s)

(for T < .s) . Nevertheless H
T

(t , s) Is not a completely arbitrary kernel ,

but should in some sense be close to a Toeplitz kernel (after all, its

resolven t is Toeplitz) .

We can quantify this intui t ive  feeling In the following way (the

analog of the method used in Section 2). Define the operator

~ K(t ,s) = 
(~~~~ 

+ , (10)

and no te tha t

.JK (t - s )  n o .

If K (t ,s) is not Toeplitz ,JK(t ,s) ~ 0, but it will be some function

of two variables,which we can write as

220



- - -5 - -
-5 ---

a
JK(t ,s) = ~ 0 (t) 4c(s) (11)

i i I

for some functions (Ø ~~~
(•) ,~~~~~

(.)) and some integer a, possibly even

infinite. However let us define the displacement rank of K(t,s) as

the smallest integer a(K) such that the representation (11) is possible.

Examples. I) K is Toeplitz, ct(K) = 0.

it) K(t,s) min(t,s), the covariance of the simplest

nonstationary random process, the Wiener process.

Clearly jK(t,s) 1 and a = 1.

iii) K(t,s) = ts — min(t,s), the covariance of the

- - so—called Brownian bridge process. Now

.jK(t,s) = s + t - 1. and a = 2.
We can show the following result, analogous to Theorem 1 in the matrix

— 
case.

Theorem 3. a(H~(t,s)) < ct(K(t,s) + 2.

Example. When K is Toep].itz , a(K) = 0. However even though its

resolvent H,~(t ,s) is not Toeplitz, there exist two functions A (.),T

BT(*) 
such that

= A
T
(t)AT(s) — B,~

(t)BT (s) , (l2 )~ —

so that

cx(H,~(t,s)) = 2 .

Moreover the functions A,~() and BT(), 
of one variable , can be

determined more easily than functions of two variables. In fact they

can be obtained via the differential equations

(+T 
+ -
~ )AT

(t) = - B
T
(t)B

T
(T) , 0 < t < T (13a)

-
~~~~ 

BT(t) = - A
T
(t)BT(t) , 0 < t <T (l3b)

j
~ 

with certain easily determined boundary conditions AT
(O) and BT(T).

This is the analog of (7) in the mntrix case .

22 1 -
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The point is that these different ial equations can be solved by a simple

recursive procedure , which needs only proportional to N
2 

operations ,

where N is the number of points in [0,T] used in any discretization

procedure .

We call (13) Krein— Szego-Levinson equations because they are exactly

the recursions found by Kreln [13) for the continuous analogs of the

Szego polynomials on the unit circle.

Theorem 4. If K(t,s) has displacement rank a, }L~(t,s) can be found

with a times as much computation as in the Toeplitz case . The solution

is found recursively via a set of generalized Krein—Szego—Levinson

equations .

-

- - Proofs and further results can be found in the papers [l4]—(l5).

However , we might draw explicit attention to the fact that though we

N are using a degenerate—kernel representation in (11), this is for JK(t,s)

.1 and not for K(t,s). Even though .JK(t ,s) is degenerate it can be seen

by integration that , in operator notation,

K =  ~~~ r J U
1

where the CL .) and (U.) are lower— and upper—Volterra operators .

Therefore K can be very far from a degenerate kernel. The feature

of our method is that It preserves any “Toeplit z-like” structure that may

be present in K (t , s). This thought Is pursued a bit furthe r in Section 4.

‘-4

- 5 —

222 
. 

-

S

--5— ---- .

4-

E
_ _ _  _ _ _ _

--- -5- 
‘~~~~~ — — -5 - —---— - t . .  ——



— — - ‘~~~~~~~~a cre r r~-~~ r - ---—-—-~~~s-- --~ — — 
—~~~~~~~~

4. CONCLUDING REMA RK S. We have taken Toeplltz kernels as basic

because they, or things close to them ,arise In many applications of interest

to us. However in other problems , other “nice” kernels may be more basic .

For example , we might have Hankel kernels

K (t,s) = K( t  + s) , say

Integral equations with such kernels can be solved efficientl y, and there-

fore it may be of interest to classify kernels in terms of their degree

of “non—Hankelness”. This can clearly be done as above by using the

operator

(
~ 

—

which gives zero when applied to Hankel kernels. Similar results can

also be obtained for basic kernels of the form K1
(t — s) + K

2
(t i- 5).

Furthermore we could also define “ second” and higher—order operators

of the type
— 

,j
2
(K(t ,s)) = (.

~ 
+

and so on. It is easy to find examples where these are particularly

appropriate.

As a final comment , we should express our feeling that the basic

ideas described above should be adaptable to a variety of different

situations. Also there is clearly some quite general algebraic structure

lurking behind our results, which some of the people in this audience

may be better equipped to identify than we can.
I!,
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AN EXACT SOLUTION TO AN ELASTIC-PLASTIC DEFORMATION
PROBLEM IN A RADIALLY STRESSED ANNULAR PLATE

Peter C. 1. Chen
Benet Weapons Laboratory

Wa tervl le t Arsena l
Watervliet, NY 12189

ABSTRACT. An exact solution to the small strain contained
plastic deformation probl em in an annular plate under internal
pressure is obtained on the basis of the deformation theory of Hencky,
the Mises yield criterion and a modified Ramberg-Osgood law.
Expressions for the stresses, strains and displ acement are given .
Some numerical resul ts have been worked out and assessed by using the
Budianky ’s criterion for the acceptability of the deformation theory.

1. INTRODUCTION. The problem is a partly plastic , annula r
plate radially stressed by un iform pressure. The material is assumed
to be elastic-plastic and obeying the Mises yiel d condition . For
ideally plastic materials , the stress solution for this problem was
first obtai ned by Mi ses [1] and the corresponding two strain sol utions
were recently obtained by the present author on the basis of both J2
deformation and flow theories [2]. The numerical results obtained by
using these two theories indicate that the strain differences are
very small and compressibility of the material should be considered .

• However, there is no published solution for strain-hardening materials ,
which is the purpose of the present investigation.

In the present paper, an exact elastic-plastic solution for
strain-hardening materials is given on the basis of J2 deformation
theory together with a modified Ramberg-Osgood law [3]. Exact
solutions based on this particular model were given recently to an
infinite sheet having a circular hole under un iform external tension
[3] and internal pressure [4]. This paper considers annul ar plates
of arbitrary inner and outer radii. Some numerical results are
presented and the limi tations of the solution are discussed .

2. BASIC EQUATIONS. Assuming small strains and neglecting
Inerti a forces in the axisymmetric state of plane stress, the radial
and tangential stresses , Gr and a~, must satisfy the equilibriumequation ,

= (s/ar) (rar) ; ( 1 )

‘S
5 -’
r
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and the corresponding strains , 6r and c0, are given in terms of the
radial displacement , u , by

£ = au/ sr , C~ = u/r . (2)

We shall assume that the material is elastic—plastic , isotropic ,
obeying the simple deformation theory and the strains are related to
the stresses by

Cr = E~~
(a r -vao ) + (E 5 1-E~~) 

~°r 
a0) (3)

= E (as—va r) + (E 5~~-E~) (°
~
- 

~~ 
0r ) , (4)

where E, v are elastic modu l i and E5 is the secant modulus on theeffective stress-strain curve wi th Es = a/c and

a = (ar
2 + a 2 

- 0r ao)
l12 

. (5)

If a modif ied  u n i a x i a l  re la t ion  of the Ramberg-Osgood type is assumed
[3, 4], we have

ES
1 = E 1 for a ~ a~; E5

1 = E~~(a/ay
)h1~ for a 

~ °y 
(6)

and the initial yield surface is defined by the ellipse 0 =

Since the compressibility of the material is taken into account,
the longitudinal strain c~can be determined by

+ c
~ 

+ c~ = E
~~

(l_2v)(a r + 00) (7)

w h i c h  holds in the elastic as well as plastic region.

The boundary conditions on the probl em are

ar (a , t) = - P , ar (b , t) = 0 . (8)

Where a , b and P are the inner , outer radii and internal pressure ,
respectively. In addition; all stresses, strains , and displacement
must be continuous throughout the entire region.

In the following , the solutions will be presented in terms of
nondimensional quantities defined by

a a/b , ~ = r/b , B p/b , p = P / a~
- 

:-~ 
Sr = or/aye ~e = c0/ay~ S = clay

-
~~~ 

er = Ec rlay ~ e0 = ECo/0y~ 
e2 = Ec2la~ . (9)
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where r = p locates the elastic-plastic boundary .

3. ELASTIC REGION. For small pressure (p < p*), the plate
will be elastic throughout (ct < < 1) and the solution Is

Sr ~ = p (~~
2 l )~ (1 ~ ~-2)

~0

e l  2 1  2r = p (a -l~ [(1-v) + (1 + v)~ ] -

e
~~)

e
~ 

= 2~ (
2 ly 1 v . (10)

The critical value p~ to cause incipient deformation is

= (l~~2) [3 +~~4]~1/2 ( 11)

For values of p larger than p~, the plate becomes plastic in the
inner region (c~ < < 

~ ) and is still elastic in the outer region
< 1). In the outer elastic region , the equations for the

dimensionless stresses and strains are

r 
= (1 ~ ~ )/(l + 3~~4)

Se J

er ~ = [(1 - v) ~ (1 + v)~~
2]/ ( l  + 3~~4)h/2

- ;  e~ J

e
~ 

= - 2 v/Cl + 3~
_ 4

)ll2 . (12)

4. PLASTIC REGION (c~ < ~ < ~ , ~~ > p > p*). Following Nadai
for isotropic probl ems [5], we Tntroduce the parametric representation:. (O< 4<ir /2)

Sr = _S cos$/sin(ir/3)

S0 -S cos(q + 2ó)/sin(ir/3) (13)

~~~~~~~~~ ITTT~~~
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which satisfies equation (5) Identically and leads to the following
equation upon substituting into the equation of equilibrium ,

H (1d~ = [sin(it/3)(tan(ir/6) + tan~)] (tan~d~ - S~~~d~~) . ( 14)

By the extended Mi tchell theorem [6], the stress solution for the
present probl em is independent of v. So choose v = 1/2 and then
equations (3), (4), (6) and (9) lead to

er ~~ 
— So/2 )S~~

1

— ‘S - S /2 ~5n-1 15e0 —~~ 0 r /

The compatibility equation follows from (2) and (9) as

er = (3/a~)(~e0) . (16)
- 

- 
Substituting (15) into (16) wi th the aid of (13), we can obta in

(~d~ = [-sin(-IT/3)(cot(-rr/6) + cot~)]~ (cotq d~ + nS~~dS) . (17)

Combining (14) and (17) yields

S~~dS = (tanq + tan(ir/6))/(1 - n tanc~ tan(v/6) ) . d4 (18)

which can be integrated wi th the known condi tion at the elastic-
plastic boundary. Since S and c~ are functions of ~ and 8, the
notation S = S(~~,8), 4~ -~ 

= 4 (~~8) are introduced [2]. After
some manip~~ation , the r~ta tion between S~~ and is given by

~~~ = :::~:: ~~ : e x ~[~~:~~~ ~ 88 ~c&~ (19)

- - where ~i 
= (n + 3)/(n2 + 3),

and

tan~88 = (82/v~~ + /~)/ (l..82 ) (20)

follows from (12) and (13) at ~ = 8.

Substituting (18) into (14) and carrying out the integration with
the known condition at the elastic-plastic boundary , we have

(8/~ ) 2 = F(~~8)
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and 4n

sIn(~ +ir/6) n sln~ 
- ~~ cos~ 1 n2 + 3

F( q~8) = x 88 88
— sin (4 , 88+-Tr / 6) L~ 

si n4~8 
- ,‘3-5 cosq~8r (n 2 l) 3

x e x p I 2 (~ 
-

~~~ )
- 

~~~~~ 
88 ~8 (21 )

from which • can be solved as a function of ~ and 8. At the inside
surface, ~ =

~~&, q = 4 ~
, thus the expression relating a,B and p can

be written parametric~Yly as

p = S~ 8 
cos~a8/sin(rr/ 3)

(8/ c~) 2 = F( 4~8) , (22)

where S~8 an d F(~~8) are given by (19) and (21), respectively. By
examining (19) and (21), it can be found that S~ 8, p, 8/c~-’°° as

= tan-’ ( /3/n) for fnite n. It shoul d be noted that for the
- present problem we always hive and 

~~~~
488~

4ll = w/2.

Now we have completed the stress sol ution which is given by (13),
(19), (20), (21) and (22).

The solution for the strai ns in the plastic region (ct<F<$, p>p*)
of an elastic-plastic (finite n) plate can be obtained from T3), (4)

I - - - ’ and (7), using (6), (9) and the above stress solution. After some
manipu lation , the equations for the dimensionl ess strains can be

- - 
written as

er 
= _S~8 si n( q~8+rr/3) -S~8cos(~~8+ii/3)(~-—v)/sin(-ii/3)

- 

.- ,  e0 
= S~8 

s i n p~8 - S~8 cosp~8(-~’-v)/sin(7r/3)

e
~ 

= [S28 - (l-2v)S~8] cos(~~8+ir/6) (23)

where S and can be evaluated as functions of ~ and 8 byequatio~~ (19), ~2O) and (21).
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5. DISCUSSION OF RESULTS. Since the deformation theory Is
used, the validity of the above solution shoul d be assessed by
applying Budiansky ’s criterion [7] which requires the following
inequality to be satisfied .

[(nS
n_ l _fl/(Sn_l _ l)]l/2 > (n tan~ - ,1~)/(/~ tanq +1) (24)

For any values of n, the ranges of S and 4 over which the inequality
may not be valid can be determined . In the present case, the above
inequality is satisfied except over a certain range of S and 4 for
n>l 7 [4].

Another limi tation of the above solution is due to the small
strain assumption. In the case of annular plates wi th arbitrary
ratio of inner to outer radius c~ , there may exist two types ofplastic flow. Full plastic flow wi th compl ete yielding may happen
for larger values of c& . In the case of a flat ring with smaller
values of ct , it is impossibl e to obtain complete yielding in it
through applying a pressure on its inner boundary . The outer portion
of the ri ng must remain strai ned elastically and a case of partial
plastic flow wi th thickening will occur. Neither ful l plastic flow
for larger c~ nor partial plastic flow wi th thickening for smaller ct
will be permitted under the assumption of small strain.

Some numerical results have been worked out for the 2219-T87
aluminum plate wi th geometric ratio b/a = 3. The mat erial constants
[4] are n = 9, v = 0.3, E = 10.5xlO6psi , cy = 5.5xlO’~psi. The effect
of p/a on the radial and tangential stress distri butions are shown
in Figures 1 and 2, respectively. The corresponding strain
distributions for the radial , tangential and axial components are
shown in Figs . 3, 4 and 5, respectively. Finally it shoul d be noted
that the val idity of the above results based on the deformation
theory have been assessed by applying Budiansky ’s criterion. The
range of S and ~ for the above stresses and strains satisfy theinequality (24).

I.

.4

232

-- -5 -5 - - - -~~~~~ - - -~~~~~~~~~~
--

~~~~~
— —

~~~~~~~ - —- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- — — - - 5

6. REFERENCES

1. Mises, R. V., “Three Remarks on the Theory of the Ideal Plastic
Body,” Re issner Ann iversary Vol ume , 1949, pp. 415-429.

2. Chen, P. C. 1., “A Comparison of Flow and Deformation Theories In
a Radially Stressed Annular Plate,” Journal of Applied Mechanics,
Vol . 40, No. 1 , Trans , ASME , Vol . 95, 1973, pp. 283-287.

3. Budiansky , B., “An Exact Solution to an Elastic-Plastic Stress
Concen tration Problem ,” Prikladnaya Mathematika k Physik , Vol . 35,
No. 1, 1971 , pp. 40—48.

4. Hsu, V. C., and Forman , R. G., “Elastic-Plastic Analysis of an
In fin ite Sheet Hav ing a C ircular Hole Un der Pressure ,” ASME
paper No. 75-APM-15, to be published in Journal of Applied

;- - Mechanics , Trans . ASME , Series E.

5. Nadai , A., Theory of Flow and Fracture of Solids, McGraw-Hill ,
New Yor k, Vol . 1, 1950, Chapter 33.

6. Budiansky , B., “Extension of Mi tchell’s Theorm to Problems of
Plasticity and Creep,” Quarterly of Applied Mathematics , Vol . 16,
1958, pp. 307-309.

7. Budiansky , B., “A Reassessment of Deformation Theories of
Plasticity,” Journal of Applied Mechanics, Vol . 26, Trans. ASME,
Vol . 81, 1959, pp. 259-264.

~1

r
233

I 
1! 

_________ _____ ______.

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



*

1.2 [II
D

1.6 ~

-5

I I I

1.00 1 .2 0  1. L
~ 0 1.60 1.~~0 2 .00

n a
Fig. 1. The Radial Stress Distribution 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~:::T1~~~~~~ ~~~~~~~~~~~~~~~~~~~~



1.4 “
— 1.6 ~

- - 1.8 x
- -~ 2.O~~

cc~

‘
b~~~D

• LI-S 0

U ~-5 0

0
r~J

1~ 0
0

6 I 1 1
1.00 1.20 1 .40 1.60 1.80 2.00

r/o
I

Fig. 2. The Tangential Stress Distribution

235

_  
_  

$

1

~~~~~~~~~ - T~~~~~JL1jT -—.--5-.-—- - - ---— - - - --

~

-----5--

~~~~
- - —  - - 5 - - -- - - 5 - -- - 5— — - -’

—- -5 -



1 
— --- -=~~~~~~~~~~~~~~~ ~~~~~~

— - ::: ~~~~ :T- - ir--- --
~ 

- - -  
- - -

~/ O i.O
0
Ca

1.6 ~
Ca 1 B X

~~~~~~ 
zh

Ca

c•J-

w
U

- 
- Ca- 

0

-5,.

0
C

0
p .  

I 1 I I 1‘ 1.00 1.20 1. ’40 1.60 1.80 2 .00

n a
Fig. 3. The Radial Strain Distribution

236 

~~~~ j j ’ ~-



f /a~
1.O *

1. 2 L ~11. L~~~Y

Ca 
1.8 X
2.O~~

N

1.00 1.20 1.14 0 1.60 1.80 2 .00

P rio
Fig. 4. The Tangential Strain Distribution

.3

237

~~~~~~~~~~~~~~

-— --  --5 - - - -5--- - - - -5 —-5-—- ___  _ _  _ _ _



1r 
- 

- - y— ~~~~~~~~~~~~~~~~~~~ —----- - --~ - --—‘w- —--——-- —

*

1.2 El
Lq- y
1.6~~1.8 x
2.O A

Ca

‘ 1.00 1.20 1. 110 1.60 1.80 2.00

rio
Fig. 5. The Axial Strain Distribution 

-5- ITIIJI 



r __ 

~~~~~~~~~~~~~~~~~~~

---- — 

A N EFFECT IVE ST I FFNESS VISCOEL A STIC COMPOSITE BE AM THEOR Y

Charles R. Thomas
Benet Weapons Labora tory

Watervl jet Arsenal
Watervliet , New York 12189

ABSTRACT. V iscoelasticity in the individual beam layers is
model ed according to the standard linear model and the Timoshenko beam
theory with the resulting equations utilized in deriving a micro -
structure or effective stiffness viscoelastic laminated beam theory.
A t ime  harmonic wave propagation along the length coordina te of the
v iscoelastic composite beam has been utilized to illustrate an
application of the derived theory and to point out the influence of
the various viscoelastic and geometric parameters involved.

The first task in derivin g the viscoelastic 1aminatec~ beam
theory was to formulate energ ies for indivi dual viscoelastic l ayers
in terms of the Timoshenko beam theory in a form suitable for
developing the composite theory. A goal of the direct derivation of
the beam theory , instead of the intermediate step of developing a
viscoe lastic laminated continuum theory which - must then be reduced to
a beam theory , was accomplished by the intro duction of a gross
rotation term for the laminated beam into the derivation of individ-
ual layer energy relations. The final resul t was an energy conser-
vation law for the individual beam layers in terms of kinetic ene~’gy,potential energy , and dissi pation energy.

The vi scoelastic laminated beam is composed of a number of
alternating plane , parallel layers of two homogeneous , isotropic
viscoelastic materials which are respectively termed the reinforcin g
layer and the matr ix layer. To obtain the total energy for the
viscoelastic composite beam , the individual layer kinetic , potential ,
and dissipation energies were sunned over the n l ayer pairs of which
the composite beam was composed. The discrete system thus obtained
was then converted to a continuous system by means of a smoothing
oper a tion, that is a repl acement of the resulting energy summations
by wei ghted integrations over beam thickness. A reduction of one
variable from the formulation was made possibl e throug h a continuity
condition resultin g from continuity of displacement across layer
interfaces . The final resul t of the derivat ional work was a set of
three flexure equations of lotion and corresponding boun dary
con d itions for viscoel astic lami nated composite stan dard linear model
Timoshenko beams .

239

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _



Time harmonic waves of the form

(w,ip,q) = (hW~
j
~~)e~~’e1P(~~

C_ t)

were passed through the three equations of motion and resul ted in a
characteristic equation in terms of p, the circular frequency ; c,
the phase velocity ; a, the attenuation coefficient; and the numerous
viscoelastic and geometric parameters involved.

1. INTRODUCTION. A great deal of work has been accomplished
in the area of elastic laminated effective stiffness or microstructure
continuum theories and approximate plate and beam theories . By the
same token, little has been accomplished wi th viscoelastic counter-
parts to these theories .

An elastic continuum theory which includ ed effective stiffness
for both the reinforcing and matrix l ayers of a laminated continuum
was dc~eloped by Sun , Achenbach , and Herrmann [1, 2]. The continuum
theory was utilized by Thomas [3] to study the simple thickness
modes for laminated media with layering both parallel and perpen-
dicular to the plate free surfaces . Sun [4] deduced a two dimen—
sional theory for laminated plates from the three dimensional
continuum theory. Velocity correction coefficients were introduced

• into the two dimensional theory by Thomas [5] and flexural and exten-
sional vibrations for plate strips and rectangular plates were
studied by Thomas [6, 7] according to this theory and compared to
similar results from effective modulu s plate theories. A micro -
structure theory for an elastic , laminated composite beam was developed
by Sun [8] and the approach utilized in this paper will be followed
in deriving a viscoe lastic , laminated composite beam theory.

• Thomas [9] showed that the flexure beam theory in reference [8] is
directly obtainable through a simple reduction of the existing
flexure equations for composite plates [4, 5].

A continuum theory for a viscoe lastic laminated composite was
developed by Grot and Ach cnbach [10], however the equations developed
were not applied to any problems of wave propagat ion or vibration.
rt is certainly theore ticall y possible to start wi th the equations
in reference [10], to make appropriate series expansions and derive a
plate theory, and to then follow reference [9] to make a direct reduc-
tion to a viscoelastic beam theory. However , for convenience and
simplicity of analysis , the approach in the current report will be to
begin with the viscoelastic Timoshenko beam equations and work

P., towa rds a viscoelastic laminated beam equation in the manner of
reference [8]. Wi th somewhat guarded conclusions , Sterr , ~ dford ,
and Yew [ill have demonstrated a definite need for an effective
stiffness type formulation for viscoe lastic laminat es.

S
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The current approach to obtainin g a viscoelastic laminated
beam theory will be a viscoelastic development which mirrors the
elastic development given by Sun [8]. Surprisingly, the real
difficulty is in obtaining the energies for a single l ayer modeled
as a viscoelastic Timo~henko beam. The most pleasing and straight-
forward development of suitable viscoelastic Timoshenko beams resul ts
from a utilization of viscoe lastic constitutive relations of the
differential form ; it is these equations which yield a viscoelastic
development which closely mirrors Sun ’s [8] elastic derivation.

2. THE ENERGY PRINCIPLE. As Sun [8] does in the development
of an elastic l aminated beam theory , the first task in deriving a
viscoelastic laminated beam theory is to formulate energies for
individual viscoelastic layers in terms of the Timoshenko [12] beam
theory . In the past , Lee [13] developed viscoelastic Timoshenko
beam equations for viscoelastic extensional strain but the shear
strain was left elastic. Pan [14] extended the analysis to include
viscoe lastic shear strains. The current objective is to develop
the viscoelastic Timoshenko beam equations in a form more suitable
to the development of a viscoelastic composite beam theory. A first
goal will be the development of a single l ayer energy principle
suitable for a direct application in the derivation of a multila yer
energy principle.

The development of an approximate theory such as for laminated
elastic plates has originally been a two step procedure. In the
first instance , the Mi nd lin plate theory [15] in its first order
approximation was utilized to develop a continuum theory for laminated
composites. Then to obtain a laminated plate theory a first order
approximation is made on those variables which came from the first
order part of the Mi ndlin theory as in Sun [4] and Thomas [5] - this
explanation will become clear shortly. Now in develo ping an elastic
laminated beam theory , Sun [8] has made both of these approximations
simul taneously to obtain a flexure theory for lami nated beams.
Actually, Thomas [9] has shown that the flexure beam theory is
directly obtainable from the existing flexure plate theory .

The current objective is to immediately derive a viscoelastic
- 

- laminated beam theory and to not have to develop a viscoelastic lami —
nated continuum theory first. rn making the various zero and first
order expansions of displacement , terms which lead to an extension
theory are also maintained since the second expansion of extensional
displacements leads to a flexure term . The first order displacements
which will result in the Timoshenko beam equations [12] for fl exure
as well as an extensional equation for beams are

.4
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v(y,z,t) = ~(y,t) — zq (y,t)

w(y,z,t) = ~(y,t) - z~(y,t). (1)
- - 

the zero order terms in (1) are ~ and ~ and a first order expanisonof these two displacements resul ts in the expressions

~(y,t) 
= v k(y,t) - z~ ~~(y,t)

~i(y,t) = w~(y,t) — z~ “at~’~
t) (2)

where the subscript a = 1 , 2 will later denote whether a stiff or
soft laminated beam l ayer is indicated and the superscript k which
layer pair is indicated . While absolutel y necessary at this point ,
the notation in (2) jumps into the laminate notation while seeming
to be at the single layer stage of development. See Sun , Achenbach ,
and Herrmann [1] or Sun [8] if clarification is required .

Combining equations (1) and (2) and extracting only those terms
which resul t in fl exura l motion results in the disp lacement relations

v (y,z,t) -z~~~(y,t) - z~(y,t)

w(y,z,t) = w~(y,t) (3)

- 

- where l,L~(y,t) represents the gross rotation in the lami nated beam ,
w ’~(y,t) represents the transverse defl ection , and ~(y,t) representst~e individual layer rotation. The various displacements and
rotations on the right side of (2) represent the reduction from a
laminated continuum theory to a laminated ’beam theory ; thus , from
continuity of displacement and rotation at laminate int?rfaces , ~t isclear that the notation may be simplified to w(y,t) = w~(y~t) and
~p (y,t) = ~p~(y,t) for a = 1 , 2 and for all values of k. Hence wi th
these notational sirnplifications in mind , the final form of the first
order flexure displacement expansion is

v(y,z,t) = -z~p(y,t) - zq (y,t)

w(y,z,t) = w(y,t) (4)

where these equations are valid only when eventually uti lize~ indeveloping a laminated beam theory . Equations (4) may be reduced to
those for a homogeneous or singl e l ayered beam by setting lp(y,t) = 0;
this being done , equations (4) reduce to those given by Brunelle [16]
for flexure of a beam.

t
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The non-zero strain-displacem ent relations are

=Cy ~~

C = _i [~w ÷ 3v
~~f Z  2

The non-zero stress equations of motion which pertain to the problem
are

ayz,y = PW

~y,y 
+ ayz ,z = (6)

From the appendix and equations (A—l7) the constitutive equations for
a special case of the standard linear model are

(1 + C 
~
Oyz = (2kG + 2k*G* ~~

) Cy~

(l + C - ~ -)a~~= ( E + E  ~~)cy (7)

where shear correction coefficients k and k* have now been introduced
in a manner similar to that of Timoshenko [12] and Mindlin and
Deresiewicz [17].

The procedure involved in deriv ing the theory will be to manipu-
late the left sides of equations (6) until they are of the form of the
left sides of equations (7). Thus , taking the first time derivatives
of (6) and multi plying by the viscoelastic constant C results in the
equations

c 
~yz,y 

= pC ~

C &yy + C
~~~~~~

= 1 C
~~ 

(8)

w!iich when added to their counterparts in equation (6) become

~~ 
ayz~y

+ c a yz,y +
~~~

W

~yy 
+ C 

~yy 
+ ~~~~ + C = + pC v~ (9)

Multiplying the first equation of (8) by w and the second equation by
v , integrating over the beam volume and time , and finall y adding the
final answers results in the equation
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‘A ~~ 
~°yz,y 

+ C byzy )~~ 
(Oy ,y + c 

~~~~ dA dy dt

+ C ~~y )~
f

yz,z yz,z

‘A ’u ’o~~ ~~~~~~~~~~~~~~~ dA dy dt 
(10)

After several integrations by parts , equation (10) may be
expressed as

A ~o 
[(o~~ 

+ C ~1y~)~J + (civ 
+ C &y)~
] 

dA dt

-~~~ 
+ 

‘A ’O~~ O~~~~ ~~~z
+ c

~~yz
)
~] 

dA dy dt

- j  jL jt (
~ +C~~ ) (~~~+~ Y~)

A o o yz yz 
~Y ~Z dA dy dt

— 
+(ay + C &y)

A ’o 1o~~ 
[ ( C  ÷ l d A dY dt (11)

- 
- it is i rriiiediately cl ear that

1A ’0 10 ~~ ~~yz~~~~~yz~~] 
dA dy dt O 

(12)

since both beam surfaces are stress free and that

1A j~ [oyz + C 
~~~~ ~ 

+ (oy + C dA dt = 0 (13)
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~~~~~~~~

,

* since the boundary terms will be satisfied at the beam ends .
Applying equations (5) and (7) to equation (11) and taking Into
account equations (12) and (13) results in

t t (2kGC y~ + 2kG
~~~

) (2E
~~
)

‘A ~o ~ 
dA dy dt

*.
+(Ec + E e )~y Y y

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ dA dy dt (14)

but , from the chain rule of partial different iation it is clear that

(15)

or that

= ~~~~~~~~~~ (~
2
) (16)

- - 
Similarly, the fact that an indefinite integral can be defined as a
definite integral with a variable upper limit

Jg(t)dt = f~g(t)dt + const. (17)

immediately results , after taking a time derivative of both sides , in
the equation

g(t)dt = g(t) (18)

which for g(t) = ~2 results in the relationship

= J
t( . ) 2~Jj (19)

A direct application of relations (16) and (19) to equation (14) wi th
an introduction of equations (4) and (5) resul ts in the equation

. 4
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~ 
AkG(~~~ - •)

2 
+ Ak*G f

t
(!! -~ )

2dr

1
L 

f
t _4 + ~~~zk)

2
(~~~)

2 
+ AE *

f
t (z k ) 2(~~ )

2 
dt dy dt

-

+ ~~~~~) 2 
+ E*If

t
(p)2 dT

.2 t..2 k 2.2AW - 2ACJ w dT + A(z ) ~p

.
~~ 

+ + ~ 2 _ 2:cf
t(z k)

2
~
2
dt dy dt =

- 2IC f~~ dT
0

- 
(20)

after an integration over the beam area where
3

- A = bd , I = (21 )

with b being the beam width and d being the beam thickness.

Fo l low i ng An derson [18], a conservation law is sought in the
existance of a quanti ty H such that

H = constant, (22)

such that obviously

(23)

where

H = T + U + V  (24)

wi th the quantities 1, U, and V being called the kinetic energy, the
potential energy, and the dissipation energy. From a comparison of
equations (20), (23), and (24) it Is clear that the various energies
may be defined as

T =  jt ft 1
* 
dy dt
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U = f ~~f~~U~ dy dt -

V = f ~~ft V* dy dt (25)
0 0

and from equation (20) it is clear that the energies are

1* = -~~~ [Aw2 + A(z ~ ) 2
~p

2 + I~
2
]

- 

-

~~ U~ 
= -

~
- AkG(~~ ~)

2 
+ ~~ zk)2(~~-

2 
+

Ak*G*(~~ ~)2 +

- - V~ = f~ + AE*(z~)2(~~)2 -pAC ~2 dT (26)

- pAC (z~)
2
~
2-pIC 

.
~2

3. THE LAMINAT ED BEAM THEORY. The laminated beam , Figure 1 , Is
-; composed of a number of alternating plane , parallel l ayers of two

- homogeneous , isotropic viscoelastic mater ials which are respectively
- 

termed the reinforcing layer and the matrix l ayer. The reinforcing
- layer is the stiffer of the two layer combination and is indicated

- by the subscript ‘1” while the softer matrix layer is indicated by the
- - subscript “2” . The elastic constants , the viscoelastic constants , the

- layer density , and the thi~kne~s for the reinforcing and mgtri~ layers
respectively are E1, G1, E1, G1, C1, p1 , d1, and E2, G2, E2, G2, C2,
p2, d2.

The basic variables involved are w, the transverse defl ection;
p, the gross rotation of the stiff layer ; and •2’ the rotation of thesoft layer. The midplane posit ions for the kth pair of neighboring
reinforcing matrix layers are yk and y~ respectively as indicated in

U Figure 1 , with the layer midp la?ies taken perpe ndicular to the z-axis.
The width of the beam is b and the total or gross thickness is h.

From equation (26), the kinetic , potential , and dissipative
energies in the individual layers are

‘4

- 
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= 
~~

[Aa~
2 + Aa(z

~
)2i
~
2 + I~~~

2
]

U* k _ l A k G ,~w ~2a 2 a a a T ~~~a’

-I. AaEa(2 k ) 2 (~~,) 2 
+ 

E~ I~~(~~~~)
2

- 

Aak~
G
~
(
~

_ ~~)2 + E*I ( ~~~)2

v:k = f~ + AaE:(zt~)2 (~~)2 paAaCa ~2 di,

- Pa
A
a

C
a

(
~~~

)
2

~P
2 

PctIaCa~P~
- - (27)

where a = 1 , 2 respectively gives the reinforcing and matrix layer

- 

- energies .

Now, the three energies are summed over the n l ayer pairs to
determine the total energies for the composite beam

* 
—n *k *kI = ~ (T 1 +1 )

k=l 2

* 
k=n *k *k

U = ~ (U 1 -~- u 2 )
k=1

k=n 
*

= ~ (V 1
k + V 

~ ) . (28)
k=l 2

It is now convenient to convert the discrete system (28) to a contin—
uous system by utilization o-f a smoothing operation , that is to
replace the summations in (28) by weighted integrations over the

- ,, thickness variable z.
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The resul t of the smoothing operation is the energies

* 
h/2 1 * *

I I I (T + T ) d z
-h/2 (d1

+d
2) 

1 2

* 
h/2 * *

- 
U 

. 1 (tJ 1 + U 2 ) d z
-h/2 (d1+d2)

* 
h/2 * *V -

~ 

1 ( V + V ) dz
-h/2 (d1+d2) 

1 2 (29)

where after smoothing
k kz = z 1 = z 2. (30)

-
~~~~ Carrying out the integrations in (29) in terms of (27) and

taking into account (30) results in the energies

-

• T = I(p1A 1 + p2A2) (d 1+d2
) 
~2 +~~~(p1 A 1 + p2A 2 ) (d1 ÷d2)

- 1 h ~~2 1 h .2
+ 

2 ~l 1l (d 1 +d2) ~l 
+ 

2 ~2’2 (d-1 +d 2) ‘
~2

U = ~~A J
k

J
G1 (d1 +d2) 

(
~~~ ~~~~~ 

+ ~~A2k2G2 (d1 -4-d2) 
(
~~~ ~~~

+ .~ -(A 1 E1 + A2E2) (d 1+d2)~~~ 
+ ~~

- E~I1 (d1+d2) 
(~~1 )

2

- :
2 2 2 ’~ y~~

‘1
- I ’

4 %
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-

A1 k-1 G1 (d1+d27 
(
~~~ 

- 4~
) + A~k~G~ (d 1+d2) ~~~ ~~2

)

1 * * h3 ~~2 * h
+ ~j-~-(A1E1 + A2E2) (d +d I ~~~ 

+ E
1
11 (d

1+d2) 
(
~~ —)

= f ~ + 412 (d1÷d2) 
(~~2)

2 
- (p 1A1C1 + p2A2C2) (d1+d2) 

di.

- ‘~.(p1A 1C1 + p2A2C2 ) (d1÷d2) 
i4, - p

1
I
1
C
1 (d

1
+d
2) 

( 31)
-

, h ..2
- p2A2C2 (d1+d2) 2

At this point , continuity of displacement at the interface of
the kth pair of layers must be considered . Applying equation (4) to

-
~~~~ a multilayer beam resul ts in the equation

Va (Y
~

Z
~

t) = -z~ (y,t) ~Z
~a (y,t) (32)

and wi th the aid of Figure 2 it is clear that

= -z~~ + _L~ , V 2 
= -z~p - 

T~2 (33)

at the interface between layers 1 and 2. It is also clear from
Figure 2 that

4 = 4 - ~-(d1+d2) ( 34)

and that equations (33) describe the same interface such that

v1 = v 2 . (35)

From equations (35) appl ied to equations (33) it  is clear that the
continuity condition is

‘P = n4~1 + (l -n)~ (36)
where 2

d d
= 
(d1÷d2) 

- , ( l r ~) = 
(d1+d2) 

(37)

251

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-C.

H

‘-4r
tl 

>1

~~~~~~~~~~~~~~~~~~~

1-

252

~~~~~~~~~~

- --—----.-—

~~~~

,-—--- - 5 - - --- .- - - 5  - -5-—----- -5-- --- -- -- 

-5- -—- —-5 - ---5— 
-—-- - --~ --,— - - - -~~~~ —- -- - - - — -~~~ --~~--- ---5— —--5—-- -—--- -- -5- -5- -— — - 5 -



- _______ - - 
- 

--

Follow ing Sun {8], the variable is elimi nated such that

- iP-n4
- 

(1-n ) 
38)

where for convenience the notation 4 = has been introduced .

Expression (38) is directly substituted into equations (31) and
the dimensionless variable

= hf(d.~ + d
2

) (39)

is introduced to yield the energy expressions

T~ = ~~(p1A1 + p2A2) ~2 
+ 21b[nPl 

+ (l-~)p2]’P~

+ 1 I1~ 
+ 2~P212(~~~jj 

- 

(ii)~

if = 
j -~~A 1

k
1

G
1
(~~~~~~ 

~,) 2 + ~~A2k2G2(~~- - (1-n) + 
(1-n) 

~)2

+ -
~�~

-(flEl + (1-ri)E 2) (!~)2 + ~~ - E1 I1 (-~~)
2

1 !~~~_ n ~~4~~ 2

2~ 2 2’(l~~5 ~3’ (1-n) ~y’

~~~~~~~~ 
~)2 + ~A2k~G;(?~ 

- (l~n) + ~
(
~j!A~~ )) 

-

+ Ib[flE i + (1-n)E ](~~)
2 

+

= jt + ~E;I2(-(-]
-~ -)- ~J1~- - 

~~~~~~~~~~~~ 

—) -~ (p-~A 1C1 + p2A 2C2) i  di

“2 (40)
- 1b iCi + ( l -~)p2C2)’P - 

~p1 I1C1 4

- ~p2I2C2(~~~~~ - 

(1-nf~ -

where bh3
‘b T2 (41)

- 
_ _
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Now , all the squares of the various sums in equations (40) are
expanded out to yiel d the final forms of the energy expressions as

* 1 ~2 1 .2 1 .2
I = ~~a4w 

+ -~-~a9’P 
+ 2-Fa13~ -Fa 10’P~

U = 
~~a1 (~~)

2 
-Ea 34r~~ 

+ ~~a124~ -~a21k~

+ ~~a6~p~ -~a~~’P + ~fa5(~~-)
2 +

- 

~a7~~~~

~b1 (~~)
2 -2~b3~~~ + ~b12~

2 -2~b2i~-~~ + ~b6~
2

v~ = f ’~ 
-2~b8q~p + Fb 5(~~-)

2 + ~b11 (-~ -)2 _2~b7g~~- di (42)

-~b4w2 -~b9~
2 -~b13~

2 + 2~b10~ -

where the constants a~ are1

a1 = A 1 k1G1 + A2k2G2

I
- - -~ a2 = A2k2G2/(l-~)

a3 = A 1 k1 G1 
- A2k2G2/(l-n)

a4 p1A1 + p2A 2
E l

a5 = -~{~E1 + (1— ~)E2] +

a6 A2k2G2/(1-~)
2 = a2/(l-n)

a7 
— [—

~5
2-5 E212

= 
(l-~ )

2 A2k2G2 
=
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-~~~~ 

. 
‘

I P2’2
a9 

= -~[np 1 + (l-n)p2] + ( l -~ )
2

iia10 = (1-ri)Z ~2’2
2

a11 = E1 11 + 
(1-n)2 

E212
2

a12 = A 1k1 G1 + 
( 1~~~~~~~

)
Z 

A
2

k
2

G
2

2
- 

- a13 
= p111 + 

~~~~2 
(43)

which corresponds to the elastic constants given by Sun [8] for
elastic l aminated beams and where the constants b~ are

* * 
*

*

b1 = A 1 k1 G1 + A2k2G2

= A2k;G;,(1-n)

b3 = A 1k~G~ - 

~~~~~~~~~~~ 

A 2 k G

b4 
= p1A1C1 + p2A 2C2 

*

* * E212
b5 = -

~~
--[

~~~E
1 

+ (1-~ )E 2] +

* *b6 = A2k2G2/(1-~) = b2/(1-~)

- n *1b7 
- 

(l-~)
2 E2 2

n * *

b8 = 2 A 2k2G2 
= ~b6(1—a)

I
b9 = ~ {~p1C1 + (1-n)p2C2] + 

1 
-~~~ ç2I2C2

..~ (l-~)

‘4

$
4 
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~

b10 I (l~ri)2 
p2I2C2 

*

b11 
— E1 1 

~( -n)
* *  2 * *b12 = A1 k1G1 + 

2 
A2k2G2( i -n )

b13 = p1I1C1 + 
_ n? 

2 P212C2 
(44)

-
~~~ (1-n)

which corresponds to the viscoelastic contribution of the curr~nt
analysis of viscoelastic laminated beams . It should be noted that
the author [19] has evaluated viscoelastic shear correction constants
in another ~aper2

and based on this evaluation it is clear that k1 =
k2 = k 1 = k 2 = ir /12.

Now, from equations (22—25) in conjunction with equa”tions (42)
it is easy to form energy principle (23), that is dH/dt=0, which upon
various integrations by parts and a gathering of common factors of

~~~ 
and ~ results in equation (23) becoming

2 2-[- a1-L~- + a2~~- + ø
3

--5~- + a4w - b1q + b2~~-1

dt 
= j

o~
j L b3-~-~- + b4~~i 

~2 .. 
J

-

~~~ 
- a 2~~~-a 5—- - + a 5p + a 7— 4_ a

8~~
+a

9’P

• + f
t
1f - a10~ 

- b2~~ 
- b5~-~~- .+ b64i + b7~—~- - b

83 dtdy

+ b~~~- b1~3~ -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

+ fi f q + 

:12:2: 

a13~ 
- b3~~ + b

7-~4 
- b8~ 

- b1~~

- + b12~ +

‘-4

$4 
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+ f
t1• 

[ai~~ 
- a

2~ 
- a

3’P 
+ b1~~ - b

2
~~ - b

3
~~~

1 

dt

+ j~~iI~ [a5~~ 
- a7-~~ + b5~~- - b

7~~~~

j  

dt

+ f~~l3 [ a7~~ + a11~~ 
- b7 ~~ 

+ bii~] 
dt = 0. (45)

The viscoelastic equations of motion and boundary conditions for
laminated beams are now obtained by applying the first l emma of the
calcul us of variations to equation (45). Thus , the three equations
of motion are

a1 
- a 2~y 

- a3~~ 
+ b1 ~~~~~~~~ 

- b2~ - - b
3

~~~~~
- = a4~ +

+ a5 
- a5ip 

- a7—~- + a8~ + ~~~ + b5—2- - b
6’P

* 

- b
7

—
~~

- + b8~ 
= a9~ 

- a10~ + b9~ 
- b1~~

- a79~ + a
8~ 

+ a11!$ 
- a12~ + b3~~ - b

7
!4 + b

8~

+ b 4  b~~~ = - a10~ 
+ a

13~ 
- b10 ~~~~~ + b

13~~ (46)

and the corresponding boundary conditions are

a
2’P 

- a3q + b1~~~- b2’P 
- b

3
q = 0,

or

w = U on y = 0,.Z (47-a )

257

- L~- - ~~~~~.-—-~—--. ~~~ ~~~~~~~~~~~~~~~ -- -
~~~~



a~~~ - a ~~ - + b ~~ - - b ~~ - O5ay 73y S~y 73y

or

‘P = 0 on y = O ,~ (47-b)

a k- a  !~~+b ~~k _ b  
~~- = o

7~Y ll~y 7ay ll~y

or
= 0 on - y = 0 ,2. . (47-c)

4. WAVE PROPAGATION. Following Sun [8], but with a visco—
elastic counterpart , a~ .ume flexural wave propagation in the y—
direction of the form

w = hWe’~ ’ ~ip(y/c-t)

‘P = ~e°~
’ ~ip (y/c_t)

= ~~~~ e
iP(y~’~~

t) (48)

Where ais the attenuation coefficient, p is the circular frequency ,
and c is the phase velocity . It is also convenient at this time to
introduce some additional relationships as

p = 2?rw

* 
Cw
A

* 2irc
A = j— = ci

2ir
T

• p

K =
A

(49)

Where W is the frequency, A is the wave length , T is the period , K
Is the wave number and ~ is the attenuation constant.
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Now , equations (48) are passed through differential equations
(46) to obtain the characteristic equations for wave propagation.
At the same time , the fol lowing dimensionless parametric , elastic ,
and viscoelastic dimensionless variables are introduced

A1
a1 

=

A2a
2 2

= Ac*
- 

- - _

2

*

*

I = P~:;—1 U2

* _ 
U

2

- ;  2
:c. P

Ie _ p
2

C

H

— 
d c

C
‘-5

- A

F —

— 
C
2
c

C
A

— A
A

h
h

- 

(d1~d2)
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C
1 

h
4

- I

2 h4

-

- 1 G
2

E2

H
- 

- hA

*

* pE1
6
i

*

6 =~~2 502 G
-
. 2

The final form of the characteristic equation for viscoelastic wave
propagation is

(R 11 + j  ‘-i
i

) (R 12 + ~ ‘12~ 
(R 13 + 1 113)

DEl (R12 + ~ ‘ii ) (R 22 + i 122) (R 23 + 1 123) 
= 0

(R 13 + i 113 ) (R 23 + I 123) (R 33 + 1 133) (51)
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Where

R11 = -a11 B
2 + b11 B - c11 V

2 + d11

R12 = R 21 = - b 12 B + d 12

R13 = R31 = - b13 B + d13

- - 

R22 = a22 B
2 - b22 $ + c22V

2 
- d22

-

. R23 = R32 = - a23 B + b23 B - c23V2 + d23

R33 = a33 B
2 - b33 B + c33V

2 - d33

Ill = A11 B2 + B11 B + ~11 V
2 -

* ‘12 = 121 = B12 B + D12

113 = 131 = B13 B + D13

~22 
= - A22 B

2 
- B22 8 

- 
~~~~~

2
V .

2 
+ D

22

123 = 132 = A23 8
2 + B23 B + ~23V

2 - D23

133 = -  A33 8
2
~ B33 8-~~33V

2 + D33 (52)

The constants introduced into equation (52) are defined as

_ _ _  + ~~~~~a11 
- ____

b - ____ ~~2~
’j
~211 - + x2

r
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+
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-5 

b13 = _____ 
- ~cz2k2

(l-~ ))
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~~ 2
- 

ITcL
1 ~~~~~~ 2iiri * *u

13 — 
- 

— 
a2k2y2A ~1-~)A

a = 
Cbfl61 

+ 
Cb(l-fl)62 

-

+ 

e262
22 ~ ~ (l-ri ) 2X2

4we fl6* 4ire (1_fl)6*
b = b l ~~ b 2~~ 22
22 

~~~ ( 1_ ~)23 2
• 

-
~ 2 2 2

- 

4w C
bflO 4w cb(l-n) 4w

C22 
- + —2 +

4w 2c niS 4w 2c (l-ri)6
22

4w2C6 a k
+ 22 + 22

(1-~~)
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I
a23 =

(1-~)
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C. b23 = 
(1~~ )2~2-

= 
4ir2~c2
(1-n) 

23:2

- 
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2
k
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61e1 

- 

ri
262c2 —a33 3:2 ( 1 ) 23:2
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4-inS1c1 4Ir~ 62c2

b
33

= 
3:

2~~~~

2 2 24ir Ocl 4w~~~e2
33 = + 

(1-n)
2X2

2 2 2
4w 4rr r~ c52c2

d33 = + 
( i -n ) 23:2

• ~
2ct2k2

2
(1-n)

b11
4-it

B11 = 4ira11

— 87r
3

Oa1~~~l 
8ii

3

af2
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3:2

D11 =
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ô*c
23 — j 2 (i—n)2X~

24ir6 c 4ir~~6 c

33 - 

3:2 (1~~ )23:Z

- — 
8w38c1E1 8w3n2c2~2

- 

- 

33 = 

3:2 
— +  

(i-~~)
23~~

2 *  2 24-ir6c 4,rfl6*c
- 33 - 

(1-~)
23:~

2 k* *- * *  
1_i

+ c&i k 1yi + •1

- 
I I I (l-ri)~ . (53)

A numerical solution to characteristic equation (51) is possible
if it is recast as the following function

-

~~ f(B,V) = ABS (DETIR 1~ 
+ iI~~I). (54)

Using a numerical technique such as the Rosenbrock [21] optimi zation
procedure a solution is obtained when

f (B , V )  = 0 . (55)
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5. SUMMARY. An energy principle has been formulated for
viscoelastic Timoshenko beams according to the standard linear
model with the stipulation , and hence additional terms , that the
energy principle be utilized in buildi ng a viscoelastic laminated
beam theory. The Timoshenko model considered has accounted for
both viscoelastic extensional and viscoelastic shear strains. To
later incorporate the single layer energy principle into the develop-
ment of a laminated beam theory, a term which accounts for the beam ’s
gross rotation was included in the single layer development.

Using the single l ayer energies developed , a viscoelastic l am-
m ated beam theory composed of a number of alternating, plane ,
parallel layers of two homogeneous , isotropic viscoelastic materials ,
termed the reinforcing layer and the matrix layer , was derived. In
deriving the theory , the individual layer kinetic , potential , and
dissipative energies were summed over n l ayer pairs to obtain the
total energy of the composite beam; these resul ts are converted to a
continuous system by utilization of a smoothing operation or weighted
integration. The number of independent variables in the total composite
beam energies is reduced from four to three thru the introduction of
a condition for continuity at layer interfaces . A direc t application
of the energy principle developed to the composite beam energies
resul ts in a set of three equations of motion and their corresponding
boundary conditions for viscoelastic , laminated composite beams .

Flexural wave propagation has been considered by passing
viscoelastic harmonic waves through the derived equations of motion .
Numerical solutions are possible by applying the Rosenbrock
optimization procedure to the resulting characteristic equation. A
lack of computation funds precludes the presentation of numerical
results at the present writing.
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APPENDIX. The present objective is to derive a set of consti-
tutive relations which can be util ized in conjunction with the basic

-
s equations for a Timoshenko beam. While constitutive equations may

be formulated in either integra l or differential form , preliminary
work in the direct ion of formulation of a viscoelastic beam theory
for laminated composite materials indica tes that the dif ferential
form of constitut ive relations will be most useful . The differential
const itutive relations will be utilized in the present development.

The general form of the different ial constitutive equations is
adapted from Fung [20] where the stress-strain relations are of the
fo nii

P
1
(D)o~~ =

P
2(D)ctkk 

= Q2(D) ekk (A-i)

where P.(D) and Q1 (D) ~re g iven by

k=n 1- - P
1

(D )  ~ a kD
k =0

k=n

k=o

k=m
Q
1

(D) ~ 
l b

k
D
k

- - - k=o

k=rn1
- 

- -
- 

~ 
d~~ D (A -2)

k=o

with 0 being the time-derivative operato r of the form

D1f = (A -3)
~t

1

and where o~
’
j and e~ are the components of the stress and strain

deviators
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e~ . = e1~ 
— ~ óij ekk (A -4)

in which  a~ and 
~~ 

are the components of stress and strain.

Now , assume equations (A-l) to have the form of the standard
linear model

(1 + A~~~)a = (
~~

+ ~ -~~)c (A-5)

where a is stress and c is strain. Comparing the form of (A—5) wi th
equations (A-l) it is clear that to have the form of the standard
linear model it must be true that

n 1 = m1 = n2 = m2 
= 1 (A-6)

and operators (A-2) in light of (A-6) reduce to

- I’l (0) 
= a0 + a1D

= b0 + b1D

P
2
(~~~~ = C

0 
+ C1 D

= d0 + d1D . (A-7)

As will be subsequentl y seen , the only non-zero stresses and
strains for a Timoshenko beam with its y-axis along the length and its
z-axis through the thicknes s are ay and ~ 

& c and c Thus , from

r 
equation (A-4) the non-zero stress and st~ain d~viator~ are

~~~~~~~ 
‘ °yz °yz

C ’ = C , C = C (A-8)y 3 Y  Yz yz
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Now , a direct substitute of equations (A-2), (A-i), and (A—8) into
equation (A-l) resul ts in

[1 + (aifa0)D]a~ 
= [(b0/a0) + (b1 /a0)DJC

[1 + (a1/a0)D]a~ = [(b0/a0) + (b1/a0)D]C~
[1 + (C1 /C0)D]~ 

= [(d0/ C0) + (d1 /C0)D]c . (A-9)

There are thus two equations for stress-strain in the y- coordinate

D
l Oy 

= D2r~
= D4Cy 

(A-b )

where

D
l 

= l-(a 1/a0)0

0
2 

(b0/a0) + (b1 /a0)D

03 
= 1 + (C 1/c 0 )D

04 
= (d0/C0) + (d 1 /C0)D , (A-il)

and they must be combined to form a single constitutive equation

20
1 
D3ci 

= (D
2

D
3 

+ D
1
D4)C~ . (A-l2)

Now , from both the right and left sides of equation (A-l2) it is
clear that the constitutive equation is of the form

(1 + ~~ D + ED2 )c~ = (1 + ~ 0 + aD
2
)E~ (A- 13)

but it would now be desireable to have the form of the standard lin ear
model as in equation (A- 5) ,  if possible. This can be achieved if the
restriction is now made that

= D
3 

= 1 -I- (a /a )D (A-14)b o
I

-
. such tha t equation (A—l2) now becomes

[1 + (a
1 /a )D]a = ~~(b0/a0 + d0/C) + (b 1/a 0 + d

1
/C

0
)D ]~~ . (A-15)

As a final step, d~ t ine the constants

4.
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C = a
1/a

E = ~~b0/a0 + d0/C0)

= ~-(b1/a0 + d
1

/ C )

2G = b0/a0
2G * = b1/a0 (A-16)

with the final form of the constitutive equation thus being

(1 + C ~~~~ 
= (2G + 2G*~ -5)cyz

(1 + C 
~E~°y 

= (E + E~~~)c~ . (A-17)
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USING FAST TRANSFORM S TO COMPUTE THE
WE IGHT DISTRIBUTION OF A LINEAR CODE

Bart F. Rice
Department of Defense

Fort George G. Meade , Maryland

ABSTRACT. N. J. Patterson , in an unpublished note , obs erv ed
that the weight distribution of a linear code could be computed
using a Fast Hadamard Transform . In this paper , wc expand on
Patterson ’s rather brief exposition , providin~ a proof that the
method actually produces the weight distribution and making a
comparison of the storage and time involved using Pat terson ’s
method and the “brute  force ” approach.

The wei ght d is t r ibut ion  of a linear code contains a lot of
information about the code , including its minimum distance and the
pr obabil ities of decoding error  and fa i lure if the decod ing algori thm
decodes all patterns of < t errors and nothing else (cf. [3]). It
is no t surprising, therefore , tha t there has been much e f f o r t expended
in investigation of weight enumeration of linear codes. In the case
of linear b inary codes , a method for computing weight distributions
involving Fast Hadamard transforms [1] in an unpublished note by
N. J. Patterson has certain computational advantages over the “brute
force ” technique of weight enumeration (in which a basis for the
code is chosen and every possible linear combination of the basis
codewords is taken in an unimag ina tive way,  w ith the weight of each
codeword recorded as the codeword is derived). In this paper we
expand on Patterson ’s rather brief discussion , providing a proof
that the method actually computes the weight distribution of a linear
binary code and making a comparison of this technique with the brute
force approach.

Let A be a (n ,k) linear code a-j et  CF(q)  , with “weigh t  er u ~n er ~~t~1r
polynomial ”

n
- -

~ n—i 1
W
A
(x,v) = 

- -  
A , x y

1=0

where A~ is the number of codewords vcA with weigh t w (v )= i . Let A1
- ,. denote the dual of A. MacWilliams’ i den t i ty  s t a t e s  that

(1) A -’-~ W~ (x~ Y) W 1( x + ( q — l ) y , x—y) .

If A is a (n ,k) linear binary ~~ ie then  (1) become s

n-k.(2) 2 w , (x , v) --5 W 1 (x+y. x — y ) .
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For convenience , we will assume that A is binary. The method is
quite general, though, and has obvious extensions to cases when
q>2.

Assume that k > ~, or that A has rate k/n > ~- . if k/n <

the following proced ure should be modif ied by interchang ing A ~nd AL
and replacing k by n—k. Let H denote an (n—k)xn parity check matrix
fo r  A , say

V 0
v i

- -

V f l k l
where the rows v~~, 0< i<n—k—1, are vectors in GF(2)~

’ which cons titu te
a bas is for A~~ Write

U 0
H
t 
[v~ v~ ... Vf l k l l  = 

[~:1]
- 

:~ where u . = (u.0, u1 u
i,n_k_1

) is the binary (n—k)— tuple

comprising the i—th row of Ht. Suppose 0<5<2~~
k~1, say

- -

_ 

n-k-i
s = ~ s.23. Let

J n—k— i

— —~~ 
s _ u . .n~~ . j i j

b = ( 1 ) s ul  = 
i~ O 

(_ l) 3 0

- n-k
Notice that if we define f: V = GF( 2 ) C = complex numbers by

(1 v=u . for some i, 0< i’~n—l;
• - 1 1 —

~~~~~t ( v )
Lo otherwise .

then b ~ f ( v )  ~~~~~~~ Therefo re , b is an n—dimensional
Hadamard t~~an— ~terni [1] of f. Now , the vector

—

~ 
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(s
~ uo,

s•ui,...,s u
~~~) = 

~

_

.. “)= ([
~~~~

i] [S~1k_~n-k-i
= (s0, s1, . .. ,  H = ~ s~v~ = V(s) ,

1=0

which may be termed the “s— th codeword” in A1. Clearly , as s runs
through all the integers from 0 to 2j t 4~~ 1, V(s) runs through all
the codewords of A-i-.

We have just shown that s u 1 is the 1—1± coordinate of V (s),
and thus b5 = the 1/ of 0—coordinates in V(s) minus the # of 1—coordinates

= n — 2w(V(s)) .

Hence w(V(s)) = (n—b 5)/Z. Thus, we can compute the weight distribution
of A—1- (and subsequently, using MacWi1li~ins ’ Identity, of A) via the
Fast Algorithm:

Step 0. Selec t a basis {v0, v1, .. . ,  vn..k...1 } for A . Let B~
deno te the coefficients of initialized to 0,
0< i<n .

Step 1. Compute the “bulges” b , 0~5~ 2n 1 c_1, using a Fast Hadamard
Transform.

Step 2. For each s, O< s<2’~~
1
~—l , let i = (n—b )/2 and replace B .

by l+B .. 
1

Stqp 3. Use the equation (MacWilliams 1963)

~ (“~~ )A = 2k—r 

~~~ 

(~:~
)B
~ 4 0<r<n

to compute the coefficients ~~~ 0<i<n.

A glaring disadvantage of this method is that all of the
bulges b~ must be saved . If not enough storage is available , then
the algorithm must be modified. The advantage is that the work factor
of the method is (n—k)2~~~ . By con trast , the brute force method
requires the computation of (s0, s1-, . ..,  Sfl_k_ l

)H for each of the

2
n k  

vec tors s (s0, s1, .. .,  Sn_k_ i
) CCF(2)n—k . This could be

accomplished by the following :

- 

4
- Brute Force Algorithm :

Stej~ 0. Selec t a basis {v 0, v 1, . . .,  vn_k_ 1} for A1. Let B1
deno te the coefficients of WA.L, Ini tialized to 0,
0<i<n—l , and let s = 0 = (0 , 0, .. . ,  0).

,
I t~
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~~~~~~ Let i 0, v = (0, 0, ...,  0)

Step 1.1. If Sj=l, replace v by v+vj. When q>2 , this requires
n additions. When q=2 these n additions can be accoin—
pu shed by several mod 2 additions, the exact number
depending on word size of the machine used
to implement the algorithm.

Step 1.2. Replace i by 1+1.

Step 1. 3. If i<n— l, go to step 1.1. Otherwise , go
to step 2.

S~~ p 2. Compute a = weight of v and replace Ba 
by l+B .

n-k
~cep 3. Replace s by l+s. If s<2 —1 , go to step 1. Otherwise

stop.

On the average, the vectors s in the Brute Force Algorithm
will have density (n—k)/ 2 .  Thus , the work factor for this algorithm
is n(n_k)2n~~~~ . That is, the extra cost in t ime is proportional to
a. The advantage of this method is, of course, that the only storage
required is for the arrays {A.}, {B1} and H. If A is cyclic, with
parity check polynomial h (x) ‘(of degree k), then (regarding a vector
in GF(2)n as a polynomial of degree <n—l), we may take v0 h (x) ,
v 1=xh (x), . . . ,  ~~~~ = x~~~~ 1h(x) , so that on1,~~y0 need be saved .

(In this case , (s 0, s~ , ~ 
sn_ k_ i )H = h(x) ~ s

1
x’.)

i=o

In conclusion , using a Hadamard transform to compute the weight
distribution of a (n ,k) linear code results in a time savin$
proportional to n at a cost in storage of approximately ~~~~ words.
The technique is particularly advantageous for high rate codes.
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FACTORIAL AND HADAMARD SERIES FOR BESSEL FUNCTIONS OF ORDERS
ZERO AND ONE

Alexander S. Elder
Emm a M. Winehol t

Propulsion Division
US Army Bal l is t ic  Research Laboratory

Aberdeen Proving Ground , Maryland 21005

ABSTRACT. Bessel functions of orders zero and one for moderate and

large positive arguments have been programmed in FORTRAN using factorial

series for J~~(x). Y~~(x) and K~ (x) and Hadamard series for 1 (x). A

subroutine to calculate Stirling numbers of the first kind was developed

for use in the factorial series. The recurrence relation was modified

and the resulting Stirling numbers scaled so that the entire range of
-150 150 0H the computer was utilized; e.g., 10 < S < 10 instead of 10 <

s < 10150
. In this way, more terms of the series can be calculated and

higher accuracy obtained . For use in the Hadamard series, a sub-

- -
, 

routine to calculate incomplete gamma functions was developed . Various

algorithm s were necessary to encompass the required range of arguments.

These programs were devised to verify the accuracy (for moderate

and large arguments) of our previously developed Bessel function sub-

• routine. These programs replace the asymptotic series with convergent

series , wh ich , of course, is desirable. Extension of the program to

complex arguments  is now in progress.

1. INTRODUCTION. Factorial  series derived from the Laplace
integral converge rap id ly  for large values  of the argument , and , th u s ,
are preferable  to the corresponding asymptotic series . However , the
t ra d i t i on al a l g o r i t h m  lead s to v ery la rge numb ers and mu st be modi f ied
if it is to be usefu l for numer ica l  work . One procedure for scal ing the
large St i i - l i n g  numbers w h i J ~ occur in the ana lys i s  is derived below .

Fac tor ia l  s e r i e - ~ based or ’ a Lap lace i n t eg ra l  evaluated between
f i n i t e  l i m i t s  w i l l  g e n e r a l l y  d iverge , so tha t  an a l te rnate  procedure
is required . One method , due to Hadamard , is to expand the Laplace
in tegra l  in a ser ies  of i n c o m p l e t e  gamma func t ions .  The resul t ing  series
converge rapid l y for large values  of the argument .  In practice , expan-
sions in te rms of t he  Kumm er f u n c t i o n  are more convenient for computat ion .
These f u n c t i o n s  are c lose l y r e la ted  to the incomplete gamma function .
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Computer programs based on these algorithms will be used to check
the accuracy of the BRL subroutines for Bessel functions of complex
argument and integral order. This is necessary as tables are not avail-
ab le for a suff icient range of order and argument to make a detai led check
by comparison .

2. FACTORIAL SERIES. The factorial series are used to calculate
K~~(x) , 

~n~~~~’ 
Y (x) .

1
K~ (x) can be expressed in terms of the Whittaker function as

• 
Kn(X) = (

~
) 1/2 Wo n (2x) i

• where the asymptotic expansion for the Whittaker function is
2

W n (2X) = e ’ 1 +
~~~~~~~ [ 2 ( 1/2) 2 ] [ 2 ( 3/ 2 ) 2

] - ( 2 (~ /~ - m) 2
1

m= 1 m ! ( 2 x )

- 
- This asymptotic expansion w4s derived from a Laplace integral evaluated

between zero and infinity and involves only negative integral powers of

- ‘ 
the argument.

For n = 0 ,

• / \l/2  -x 12 12 . 3 2 12.32.5
2

K (x) = (
~—) 

e 1 - 
l!(8x) 

+ 

21(8x)2 
- 

3!(8x)3 
+ -

-
- 1/2 k A.

=(~—~~~~e~~~~~~~~~4\2x1 . j
-
~~~ / 3 0  X

F o r n =  1,

• / \l/ 2  
-x 1 3  12 . 3 .5 12.

32 . 5 .7
K
1(x) =~~j) 

e 1 + 
l!(8x) 

- 

2! (8x ) 2 + 

3!(8x)
3 

-

I; 
=(~i)

l/ 2
e
~ x L j ~~ 

!~~ 
. . -

- A computer tabulation of the first fifty of these coefficients is
shown in Table I .

I

— 

1 Handbook of Mathematical Functions~ NBS55, U.S. Government Printing
Office, 1964, p. 377.

2 Modern Analysis, E. J. Whittaker and G. N. Watson, Univt.’ its’ Press,
arn~’r~cL~’c, Eng land , 1927, p . 343.
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-5

4 
•. .

j A N ( l ) / ( 1 - l ) !

1 0.L0000000000C000E 01 O .100000000000000E 01
2 —O.I 25 00CCC 0000COOE 00 0.375000000000000E 00
3 O.351562500000000E—Ol —O.585937500000000E—O1
4 —O- .122070312500000E—O1 O.170898437500000E—O1
5 0 .4673OO~ 15039063E—02 —0.600814819335938E—02
6 —0 . 18925666809082OE—02 0.23 1313705444336E—02
7 O.795140862464905E—O3 —0.93971192836761 SE—03
8 —O.342803075909615E—03 O.395542010664940E—03
9 0 .1506458829680 92E—03 —0. 170732000697171E—03
10 —O .671862039780535E—04 O.75O904632695892E—04
11 O.303177745450967E—O4 —0.335091 l92340542E—04
12 —O .13812l266264335E—04 O.151275672575224E—04
13 0 .634254773036746E—05 —0.689407361996464E—05
14 —0.293202095523644E—O5 0.316658263165535E—05
15 0.136316535482613E—O5 —O.146414O56629413E—05
16 —O .636901146338206E—O6 O.680825363327048E—06
17 0 . 29 8 8 5 8 3 9 9 2 3 3 8 9 5 E — O 6  — O.3 18 139 5 8628 1243E— 06
18 — O . 14 0 7 6 8 5 1 0 7 1 18 13 E — 0 6  O. 1492999356 03438E— 06
19 0 . 6 6 52 8 3 2 7 7 8 62 54 1E — O 7  —O .1032 99465 1689 12E—07

- - 

20 —o .3i5g64545496475E—o7 O.332’411277685473E—07
21 O.149896710531293E—07 —O.157583121327770E—07
22 —O.714218736970249E----08 O.749058675359042E—O8
23 O .341061581781506E—O8 —0.356924911166692E—08
24 —O.163196999789118E—08 O.170450199779746E—08
25 0 .78233 97 8414 53 18E—O9 —O.8 1563O83878 9 8 00 E—09
26 — O. 3 7 567956434 6 5 82E— 0 9 0 .391 0 13424115 830E—09
21 0.180684642541690E—O9 —O.187770314798227E—09
28 —O ..870272909635814E—10 O.903113396791883E—1O
29 0.419734622392911E—10 —O.43 4997699570835E—l0
30 —O ..202692893602046E—IO O .209804924956504E—lO
31 0 .979963836984338E—ll —O. 101318295010245E— lO

-
~~ 32 —0 .474303516833861E—l1 O.489854451812020E—l1

33 O.229798664344921E—1 l —O.2370938 60038411E--11
34 —0. 111443911484997E—11 0.1148129549153O4E—11
35 O . 5 4 O 9 5 1 2 5 2 8 7 2 13 5 E — 1 2  — 0 . 5 5 7 0 9 9 0 5 14 6 5 3 3 3 E — 12
36 — 0 . 2 6 2 8 0 2 9 5 0 5 0 2 4 7 3 E — 12  O . 2 7 04 2 0 4 2 7 3 2 8 6 3 2 E — 1 2
37 0.121776781778835E—12 —O .131376127764436~ — 12
38 —0.62l733446O367l9E--13 O.638767239O78820E—13
39 O.3O2739840197069E—13 —O.3lO8l2902602324E— 13
40 —0 .147513520096024E—13 O .151345O40098518E—13
41 O.71~~2436554O5693E—14 —O.737452355542546E--14
42 —0.350904046930157E—14 O.359568344385223E—14

- -5 
43 - 0.17 1299.459984542E—14 —O .1754271578l5494E--14
44 —O.836694563539963E—l5 0.8563814 +46786E—1~
45 O.408893411120479E—15 —O.418293259651984E--15
46 —0.199928685770698E—15 O.204421465226220E—15

• 47 O .97803O155285417E—l6 —O .999525323533448E—1~
48 —O.478665845012651E—16 O.488959734152708E—J6
49 O .234372789238237F—16 —O .239306953222199E--16
50 —O.114807O37377268E—16 O.1171741927871 ()QE—15

T a b l e  I .  C o e f f i c i en t s  for A sy m p t -~t i c St -- i - i e s

- 
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These series ca n  be sum9d by convergent f a c t o r i a l  ser ies  u s i n g  an
algorithm described by Wasow :

• I = 
r_j~~l

r =p - l  x ( x + l ) ( x + 2 )  - - . (x+ r )

where F dcn~ tes the  S t i r l i n g  numbers of the f i r s t  kind .

/ \l/ 2  -

\ow , K (x = I -
~ 

- S
0 \ x 1  0

where S = 1-  ~~~~~~~~~~~~~~~~~~~~~ T
- - o l ! (8 x ) o

T0 = ~~4 = _ - ~ +-4 + -

A pp l y ing Wasow ’ s al go r i t hm to these terms ,

- 1 3

~2 
(~~~~IT + 

x(x+l)(x+2) 
+ x ( x + l ) ( x ÷ 2 ) ( x + 3 )  + . . .)

I , )  3 4
- 

- - 
A 3 - 

F2
= A 3 k~x ( x + l )  + 

x(x+l) (x+2) 
+ 

x (x +1 )  (x+2)  (x+3) 
+ - -

Therefore, T can be expressed as

T = ~~~ o , r
o ‘—i x ( x + l )  - . . (x+r)

r r r
shere V = A I’ + A . F - + A F + -o ,r 2 r-l : r -2  4 r -3

These coefficients can be calculated and stored in the memoi-v of the
computer for recall on demand .

The ca1culatH—n~ for these coefficients , involving Stirli ag numbers ,
lead to very large nu c ib c u s  in the computatio~i c-f h i g h - o r d ~’r terms .

Since the  Si u - I  in~ n u n h c r —  are alwav — greater than or e q u a l  to one ,
we m~ u i f i  c-d them f r  o p t i m a l  use of the f u l l  ranfe of lhc ’  corpu ter.

Asymp~~t~~~~~ ( ~ ~~3r hnarj D~~~çre~ L~~uat tonB , W ~f n t e r~- 
~~~c” J~?crr’, r - ~7f l Wi ~cy, NY , 1 ) f 1) , [- 

- ~~3O.
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The Stirling numbers were modified in the following hay’ ;

1S1 = F , F = scale f ac to r , su ch as 10

= S~~~ / ( n - l )

n n-l  n-l
= Sk l  

+ Sk / ( n - l )

The scale factor and the number of modified Stirling numbers which can
be calculated are machine-dependent .  The corputers at BRL havc  a range

from ~~~~~~ to 10 155
, sing le precision , which i s  larger  than the range

of most computers.  As can be seen from Table 11 , for F = 10125 and

n = 150 , the modified Stirling numbers range from io 135 to 10 125 . The
process of scal ing the S t i r l i ng  numbers in t h i s  way must then be ret’c-rscd
in calculating each term of the factorial series.

By this transformation, we obtained accurate results (15 significant
digits) for x > 6 by summing 150 terms . S i m i l a r  accuracy could be ob-
tam ed on most computers using double precis ion .

• 1/2
Similarly, K

1
(x) (~) e~~ S1

where S
1 

= 1 + 
1!(8x) 

+ T 1

c o V
- ~~~‘ l ,r

1 — Ls 
x (x +l)  - . . (x+r)

r r rwhere V = B F  + B F  + B F  + . -l ,r 2 r-l  3 r -2 4 r -3

The results for K 1(x)  wer e equa l l y accu r ate .

4
The asymptotic series for the ordinary Bessel functions , x < 25,

are :
1/2

J (x) = (
~

) [P (x) cos(x - - Q (x) sin(x -

J 1(x) = (2~~
1/2 

{P 1
(x) coc(x - 

~~
) - Q 1(x) s i n ( x - -1 ’

c ~~~~~~~~~~ Par t I , ~a; l~~~~d by Bri t. ~‘7: - ~~ ~
- the

-
- ~~ c - , ic 

- c ,  J ~-c~~s, ( - Y ~ f2 - - L~; K - , E : :- i ~‘ r’~~. 1~ 37,
r. 202.
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-5-5-5 -5 
—~~~~~~~~~~ -

1 O.26254l431038q01—135 O.29319~)°49l859’T2— l3l n.l624 (~m?9s7o885—127
4 O . 5 9 4 4 1 6 3 C 7 P 7 7 1 3 3 — 1 2 4  O . 1 5 1 6 3 1 8 0 7 2 5 6 1 A 4 — 1 2 0  O . 3 4 ~~’. - ~~~’ 8 R 7 7 6 U 8 5 - — l 1 7
7 O .620095l~~R 9 8 lO 9 5— 1 l 4  C- .937?63P990 (~5 1 9 4— l 1 1  i - .I22~’U~~98 )?537R2—1O7to o .14 ~ o q og g 5 1 6 1 7 2 o — ~~o4 O.l45145~324899596— 10l ~~.l36 ;6~~~ I5l14 99E— 98

13 ~~.ll 35 2l 5 ~~~ 148685E— 95 O.872724632~~T50l9E— 93 0.6l6914~~6?448953E—9O
16 0 .4031C5100240183E—8? O .24448592 15?8491E— 84 0 .13817&751 79 6042E—R1
19 e.~~3ol~ 7 e E o o o 9 7 5 8 E — 7 g  0.361~~7P l~~3982837E—?6 0 .16865128328499lE—73
22 0.740~~l7C’ -0lQ 862 9E— 7l 0.337506122625604E— 68 ~.l208lO 725Dll22OE— 65
25 -D.45010213C711339E—63 C .159290231P50353E—60 0.53628~3624778063E—58
2~ 0.l7?0C6626264944E—55 O .526244225l86l91E—53 0.153759178190215E—50

~I 0.429520654391673E—48 0.114831115329136E—45 0.29.4089524964916E—43
34 0.722149952063100E—4l O .1T0161172544539E—38 0.385045773882694E—36
37 .837 -3?627558592 9E~~34 0 .175105193 623330E— 31 0 .352369350644976E—29
40 0.6827278G6061237E—27 0 .127434483546970E—24 0.229266634594032E—22
‘• -

~ C .3Q 7758943581573E—20 0 .66576f-45?973381E— lR 0 .107555387883677E—1 5
46 0.1671 74C15729906E—13 O .252791612712235E—11 0.368043389831136E—09
- -9  f.51 793~~210655300E—07 0.704743584443506E—05 0.927441656806729E—03

~2 0.118075771165955E 00 0.145466542291410E 02 0.173458453446450E 04
55 0.200240793190783E 06 0.223832004301461E 08 O.242317917476252E 10
‘8 0.254107442106383E 12 O.258158475955319E 14 0.254129580523208E 16

~1 
fl .242426888397106E 18 0.224l37435Pl7219E 20 0.200863910466421E 22

64 0.174495356761975E 24 0.1469588l44l9687E 26 0.119996196936958E 28
f~7 C.950002380342511E 29 O.729268853726516E 31 0.542840153293270E 33
70 0.391821615456175E 35 O.274247724384982E 37 O.l861389692731l7E 39
73 0.1225C8995716187E 41 O.781856783017240E 42 O.483840847~~39701E 44
76 0.290319945584933E 46 0.168899572458664E 48 0.952645306311109E 49
? - ~ 0 . 5 2 0 8 5 9 4 8 3 1 62 l 9 4 E  51 0.276096523091475~ 53 O.141844276858788E 55
92  0.706254632117985E 56 0.340768370204050E 58 0.159312784381071E 60
85 0.721564602846948E 61 0.316569545939851E 63 0.1345l0966747l08E 65
98 0.5534381183248129 66 0.220455227036434E 68 0.8500l0949437138E 69
91 O .3171672946?9423E 71 0.114501970441310E 73 0.399846121274463E 74
~~~4 0.135)256852094399 76 0.4408237335124819 77 0.139095522997561E 79
97 ~ .424C6C880287624E 80 0.1248733743418559 82 0.355050280369826E 83
100 0.974387656698C37E 84 0.2580063794281669 86 0.6588880381389019 87

~C3 0.1 62215177246175E 89 0.38483~-375R02625E 90 0.879348340649532E 91
IC6 .193432814981343E 93 0.409407659018037E 94 0.833293416906864E 95
lC9 ~‘.1630C54939C6049E 97 1.30626721ll55246E 98 0.552343491325650E 99
i~~2 0.955495024811848+100 0.158431163C’16062+102 0.251599213263367+103
115 0.3823646C8112042+104 0.555606274242301+105 0.771214486559342+106
118 0.  lr ,21582811601504108 0.129004865734295+109 0.155126469001113+110
1 2 1  0.17741 4653956+111 0.192739054938949+112 0.198618366362429+113
124 (~.193865l71243942+ll4 0.178944908244716+115 0.155930607458550+116
127 1.12R0346-~5C87299+117 0.9886215571891484-117 3.7l6280594664574+U8
1~~-0 0 . 4 85 7 82 7 5 3 3 4 8 7 4 8 + 1 1 9  C .3 0 7 5 8 1 7 8 7 0 2 5 02 7 4 - 12 0  0 . 1 8 1 2 9 0 8 9 1 2 2 8 4 9 8 + 121
1’3 0.991494859813093+121 0.501 359095737511+122 0. 233459123119321+123

- - - ~36 0.9965882632~ 45-45+123 0.388006214031004+124 0.136972391170442+125
119 0.43546?36~~38456C+125 0.123698885459199+126 0.311019186727229+126
140 ‘1.6844C3248787668+126 0.12”9915P8080456+127 0.2094l979~)774947+127
14 5 0. 2 7~ 159712120229+127 0.300552651 541317+ 127 0.248534593164330+127

• 148 0 . 1 4 7 14 2 7 5 3 0 8 0 9 0 2 + 1 2 7  0. c’~~L~~l 1Q 2 l 9 7 7 2 3 + j 2 6  0 .1000 0000000000 0+126

Table [I .  M o d i f i e d  St i r l i n g  Numbers for n = ISO

282

_ _ _  - -

-- -—-- - -

~

- -- -—— -- - --~~~~~~~ -5 - — - ~~~~~~
-- -- -— -- -5 —~~~~~~~~~ -



~~~~~~~~ - ---5 
~~~~~~~~~~~~~~~~

1/2
Y (x) = (~

_
~ 

[P (x) s in(x - 

~
) + Q0

(x) cos(x -

Y
1

(x ) = (2~~
1/2 

[P 1(x) sin(x - 

~~
) + Q1

(x) cos(x -

2 2  2 2 2 2
- F 3  1 ~3 ~5 ~7whe re P (x) ’~ 1 - -.~~- + - . . -° 2!(8x)  4~ (8x)

k C.
-
~~~~

:- j-
-- 2j

J 0  X

_____ 
12.32.52 12.32.52.72.92and Q (x)~ - 

l’(8x) 
+ 

3 - 

5 + -
3!(8x) 5!(8x)

k D.
-

~~~~~~~~~~
3

• 2 j + l
-
~~ 3-o x

Note that C = A J ,  C1 = - IA 2 !, - . = (- l ) 3 j A
2 j

-

- and D = - ) A
1
), D 1 = I A 3 ), . . . , D. = (-l)~~

4-’
)A 2 .1 )

Simi lar ly ,
k E k F

and Ql~~
J 0 X  3 0 X

And , agai n , E = I B ) ,  E 1 = - ) B 2 ) ,  - . • , E .  = (-l)~ I B 2~

~~~~~~ F
1 

= -)B31 , - . - , F. = (-1)~ l B 2 .

For the ordinary Bessel functions , x > 25,

J (x) = G(x) sin(x)  + H(x) cos(x)

= M(x) sin(x) - N(x)  cos(x)

Y (x ) = H( x ) sin(x)  - G(x) cos (x )

Y 1 (x) = -N(x)  sin(x) - M(x) cos (x)
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- ,

where C(x )  = (rx ) 1/2 [P (x ) -Q (x) ]

11(x) = (i~x ) 
— [P (x ) -4- Q (x) j

M~ x )  = ~~~~)~~
1/~ [P 1(x ) + Q 1( x ) ]

- -1/2 -

~ (x) = i, - \)  [P 1 (x t _ Q
1(x ) J

So , fo r x > ~5 , the same coeff ic ients  are merel y arranged in a different
manner -

As before , the  r e su l t s  obtained were accurate to 15 s i g n i f i c a n t
di gits for x > 6 by summing 150 terms . A sample tabulation of the
ordinary Bessel functions from the computer is shown in Table III .

l~’e attempted to calculate I (x) in the same manner but the factorial
series diverged . n

3. FIAD AMARD SERi ES.  The f ac to r i a l  series for ca lcu la t ing  I (x)
and 1

1 (x) diverge since the Laplace integrals representing these ~unct ions
are taken between finite limits and , therefore , cannot be expanded accord-
ing to the previous algorithm . The Hadamard series, useful for large x ,
was used instead and has been programmed .

1 (x) can be expressed by:5

(x/ 2)~ x cosO • 2n1 (x) 
F(n+1/2)F(1/2) 

e sin 8 dO

After expansion and term-by-term integration , the Hadamard series can
then be written in the form

~ 
— 

eX (2x) _ l/ 2 
~~ (1/2 a) y(ni-mi-1/2 , 2x)

n 
x) - 

F (n+1/2)F(l/2) m=o m! (2x)m

where -y denotes the incomplete gamma function and (1/2_fl)
m denotes

Pochhamnier ’s symbol.

ecr ~i cif ~e el~~~~~ct7 ~~ns, 2nd Ed. , G. N.  Watson, ~oo-’ìillan P
N . Y . ,  I ~~ . ‘ .

6 Nandbook~~L ~~~~~~~~~~~~ Fu nctions, NBS ~U , u.s. - ;~-ce- 2 nent 0- -i1~~~~p
-
, (-5 

— • - I I- — - ‘ 
- —.~~ - .

~~~~_, J _  - . ,  . 1 - - - - 5 - i
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14’ (#1 0 0 111 VS III III III 415
W Ill ILl UI UI UI IU UI Ill UI UI UI *11 ILl UI UI UI UI UI
.7 I . ?  .2 - 7  -7  ~~~7 .-7 ~~.?  —

0 —  O W  0 .  0 .-. 0 —  0 ... 4 ...
UI — UI 5— UI I.. UI 5.. 1115- UI 5.11 5 U I  — U I I —  UI

lfl~~~ Ifl ~~~ lfl~~~ Ifl ~~~ II~~~~ V5~~~ VI~~~ III
.0 .0 .0 .0 .0 .0 .0 .0 .0 .0
o I- o 5.- o 5-4 I- 4 5-4 S 4 5 4 4 P.4

5.) 0. 5.) 0. 5.) 0. 00. 5.) 4 (JO 5.) 0. 5.) II 5.) 0. U
4
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r~~ (a) = a(a+ 1)(a+2)  . . . (a+n+ 1),  (a) = 1

Each term in the expansion of these series contains the incomplete g~immafunction, which is expressed below in terms of the Kummer function .

-l a -xy(a,x) = a x e M(1, l+a, x)

where M denotes the Kummer function.

Hence , after substituting and simplifying , we have

— 
e

_X
(2x)~ ~~

‘ ( l/2~fl)~ M (1, n+m+3/2, 2x)
n~
’
~ 

— 
r(n÷l/2)r(l/2) (n+m+1/2) ml

The solution of these series is straightforward and presented no
H problems in overflowing the memory of the computer. The calculation

of the Kummer function required many terms (250 terms for x=75) to get
the required accuracy. The solutions of the Hadamard series seem to
have the correct convergent behavior. A sample computer tabulation is
shown in Table IV.

The results were good but not as accurate for moderate argument as
we had hoped. We obtained 15 significant digits for x > 17 by summing
25 terms or less in the Hadainard series. This is not much better than
the asymptotic series given by *

eX i2 i2~~
2 

12.32.5210(x) = 1/2 1 + 1’18x~ 
+ 2 

+ 
3 + .

(2irx) ‘ ‘ 2!(8x) 3!(8x)

1
1(x) = 

eX 

1/2 
1 - l ’( 8 x~~~~~~~~~~ 2~ 

12.32.5.7 
— . .

(27rx) 2!(8x) 3!(8x)

When the asymptotic series were programmed, we obtained 15 significant
digits for x > 19. However, the Hadamard series does provide an
independent check on the accuracy of the asymptotic series used in
our Bessel function subroutine.

4. FUTURE PLANS. Extension of the factorial series program to
complex variables is now in progress. After thorough checking of the
accuracy and speed of computation, a decision will be made on which
series will be used in our Bessel function subroutine.

Besides the immediate value in verifying the accuracy of the
subroutine, we are developing insight and practical numerical procedures

1 . for calculating Laplace integrals for both finite and infinite limits
of integration. These integrals arise in the solution of ordinary
differential equations.

r *

Reference 4 , p. 271.
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FINITE AJD INFINITE INHOZ4OGENEOUS LADDER N~~WOR1CS

C. C. Yang
Mathematics Science Staff , Plasma Physics Division

Naval Research Laboratory, Washington, DC

T .L L e e
The George Washington University

0 -Washington, DC

INTRODUCTION

It is veil known that by given sufficient spectral data, the entries

of a continued fraction expansion relate intimately to the density fimc—

tion of the inverse Sturtm-Liouville problem.1’2 The investigation of the

I pole—zero distribution of a continued fraction with each of its entries a

dif ferent comp lex function is significant because of the simple implementa-

tion analytically and numerically. However , although traced back to 19th

O century , the literature shows very little of this kind of study. A

recent paper by Lee and Brown,3 sheds some light on the pole-zero distri—

bution pattern of the i itance function of finite inhomogeneous ladder

networks by using the chain matrix parameter method .

In this paper, continued fractions with complex function entries are

r first studied in a general setting . The pole-zero distribution region

is described by a conventional root locus equation and is found to be

bounded in the corresponding complex plane . The applications of the

theorems are illustrated by examples.

PRELII’IINARY DEF iNITIONS
+Let .R denote the positive real line , C the whole complex plane and

~~ P.R. any positive rea l rationa l function. Two polynomials are said to

0 
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F
be relative prime polynomials or simply r.p., if they do not have any

conmion factor.

A. The set of arcs in C satisfying the root locus4 equation

l + ~~~_ = O , k€~~R
+
Uo} ,

C(s)

is denoted by [G(s), kj . Therefore~{G(s)1 kJ starts from the set of

zeros of G(s) at k 0 and ends at the set of poles of C(s) at k

B. Suppose P(s) k ~ [C(s) + p andp i=i

N(or N1)r
-1 0 . Q(s) = k 11 I C(s )  +

0 q i=l .

If 0 < p. <q. < p~~~Vi 1, 2,-” , N - 1, then the zeros of P(s) and

Q(s) are said to alternate with respect to [C(s), ki . The zeros of

• 
P(~ ) and Q(w) alternate on the negative w = C(s) axis of the w-plane and

thus the zeros of P(s) and Q(s) alternate along each loch ot

I +~~~~ — 0, ke ~R+t0} in s-plane .
G(s)

C. We shall denote the following continued fraction expansion,

or C.F., by F
N [f .z(s), g.y(s)J if 

~F(s ) Z ~~+~-!~ .~~~~~~~~~ .L_ — — — ~~N ~~- 

~ ÷ z  ÷~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ÷~~N N i  N — i 3. 1. 1 1

F - f

0 
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where Z~ f~z ( s) ,  y .  = g~y(s), Vj =  1, 2 , ” , N , are the entries of the

C.F. and z( s) ,  y ( s)  are two di f ferent  complex functions of s.

POLE-ZERO DISTRIBUTION OF FINITE CONTINUED FRACTION OF ARBITRARY CO~~ LEX

- — FUNCTION ENTRIES

Consider C.F. FN [f.z(s). g.y(s)} 
= AN/CN, then multiplying both

- sides by y(s)  y ields

Yy(5Y’cN ~~~~~ 

1 
, (2)

where w a(s)y(s). Therefore,~~ and y
~
1
~~ 

are functions of w.

Leimna 1: In the C.F. 
~N [f .z (s) ,  g .y( s)J  AN /CN , if f ,~, g1eRt, ~

•i= J~

2,”~~, N, then

a :  the zeros of AN (w) and Y
4 CN (w) interlace on the negative real axis

of w - p lane with 0 < a . < ‘v’. <a.÷i for i = 1, 2 ,..., N - 1, where - a.

- ~
• -~ and - are the zeros of AN(w) and y~

1 CN (w) respectively,

b, : AN ( w ) I~~ o 
l and y cN (w) 1 W 0  

=

5 1  Proof: By elementary property of two-element-kind R-L ladder networks ,

a follows immediatel y from the expression of (2).  To show b , mathe-

matical induction is used. Suppose the expression holds for N = n case ,

then

C~~ 1 (~) = f
÷1

w + 1
_ i

g~~~ + A ( w ) Iy C (w)

- _ _ _
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which y ields ,

A
÷1(w) ~~~~~ [Sn+i

A
n
(w) + y~~ c (w) J  ÷ A (w)

• and

y ’C~÷1 (w) = 
~~~1A~(w) 

.
~
. y 1C~ (w)

- 

- Hence,

A ÷1(w) 1 0 = A (w) 1 0 = 1

and

ii n+l
+ 

i~l 
~~ 

= 

i~l 
~~

This completes the proof of the lemma .

The following corollary is the direct consequence of the above

lemma .

Corollary 1: If the same hypothesis of the foregoing lemma holds for the

C. F. 
~N [f ~~

5( S) ,  ~~ , then

a :  the zeros of AN(S)  and c
N
(s) alternate with respect to [z(s)y(s ), k3,

b : A (s) I I and y ( sY ’CN (s )  I E g
~
.

2 N 
~s Iz(s )y(s ) 0} ~s~z(s)y(s) = O~ i=l

The following fac t s  ar e obse rv ed

a :  Consider F
N [f .z(s), g.y(s) J = A

N
(s)IC

N
(s)I then

A
N
(S) = ( ~~~ a .) ’  

•
~~~. [z(s)Y(s) ÷ , (3)

i i  i i
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y C
N
(s) =(

~~ ~
)- ‘(i

~l 
g.)~~~ f

z(s)y(s) + vi ] .  (1k)

b :  if z(s) = n
a
(5)

~
’c
~a
(
~~ 

and y(s) n
b
(s)/d (s), where 

~~~~ 
and d (s),

- • 

%
(s) and db

(s) are r.p., then we have

Case 1: n > in, where n = degree of (n (s)%
( s)) , in = degree of

N -l nN

and 

~~~~~~~~~~~ 
A
N(S) 

= 

(1~l ~ i=l (s 
- z )

N-l -1/ N \ n(N-I)
4 cN(s) =~n vi~ k i=l 

Sj)d(s)n~(s) 
i~I 

(s 
-

where and z alternate with respect to 
~
n (s )nb( s)/d (s)d

b(5), k]

Case 2: for in > n, then the above explicit fc rms remain the same except

for the upper running indices of the product of the factors, using in

instead of n.

In what follows the decomposition theorem pertinent to the syn-
-p

thesis of a finite ladder network is estab1i~hed.

Theorem 1: Let Z(s) A(s)/C(s) be a rational function.

Z(s) = FN [f~z(s)1 g~y(s)] , 
f., g.cR~, Vj< N; z(s) = na~~~~

”a~~
’ ,

y(s) %
(s)/db( s), na

(s) and d (s), %
(s) and d

b
(s) are r.p., iff.

A(s) and C(s) satisfy the following conditions ,

a the zeros of A ( s )  and y ( s)~~ C(s~ a l te rna te  with respect to

[
z(s)y(s). k]



b :  
[
d (s)db(s)J~

’A(s) 

~~
sIna

(s)%(s) 01

[:a s%s)] [d s d b s)] 
-(N-l) 

C(s) I
Is!na(s)%(s) 

= 
= g~ >0 ,

C :  for n > in, n degree of 
~~~~~~~~~~ 

in = degree of (da(S)d b(S ) ))

— lA(s) and y(s) C(s) are polynomtals of degree nN and n(N-l); for in >

A(s) and y(s)~~~C(s) are polynomials of degree inN.

Proof. The “only if” part: It follows trivially from L e m m a  1 and its

corollary.

The “if” part: Let A(s) and C(s) satisfy condition a through c. It

follows front definition B,

and 

N 1  

N 

1n (s)ni,(s) +ad (s)db(s)]

C(s) =
~~~fl 

~
) ~~~~~~~~ S j )% S d S  

j~~~~~~ ~~~~~~~~~~ 
+

where

o < ai <y~~~
a1÷l,

V i = l ,2,~~
.,N _ 1 .

Therefore,

/ N -l\ N
11 a J f~ [z(s)y(s) +a .1

A(s)/C(s) = ~ 1=1 I i l  I J

Y(s)( fl ~~~~ 5
~)Nj :1

i 

[
z(s)y(s) 

~~~~~~~~
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which yields,

A(w)/y~~ C(w) A(s)/y(s~~
1 
C(s) I

- z(s)y(s) ~~

a
N w + a N l w +  

N- i N-2
CN 1 W + C N 2 J

~ 
+ + C

1
W + C

where

a
N 
(~~ l 

a
i)~~ , bN l  (N j1

1 

)

~~~~l 

(h ~ l ~~ b 
(
~~ 

g
j)

- - . and

a., b . > o, Vi

• ‘ Write,

A(w)/y
1 
C(w) £

N
W + 

1 
1

+ [A*/y c*J 
-

where = aN/bN 1 > 0, g.~ = bN h aN ~
aN i/aN 

- bN2/bNI 
> 0 ,

and

A* A(w) - f
N
wy c(w) = ~~~~~

N_l + .... + a~~w+ 1 , (5)

y~~ c~ = y 1c(w)- ~~~* b ~~ 2 w~~
2 + + b ~~w , (6)

then

~~~~~~~~~~~3- 1

Noreo~er, the interlacing zeros of 
A(w) and y ’C(w) in the negative real

A

- 
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axis of w-plane implies that the zeros of A* and y
1
C* alternate on the

same negative real axis, by hypothesis a through c and Fig. I shows the

locations of the zeros of A*. Therefore, the zeros of y~~~C* and A*

interlace on the negative w-axis starting with the first zero belonging

to A4~ as shown in Fig. 2 following the same argument . Hence, A* and y
1
C*

can then be written  as

N-i
-~ - A4

~~ = k 
~
. ri (~ + a~a~ .

~~~~~~ 

3 _ I

-
~~~~~ and

y~~ C* = kc* (w ÷ , 1 = 1, 2 , ~~~~~~~~ N - 1, 0 <~~~~ <~~~~ <
~~~~~~1+1

where

/N— 1 \ -i.
k*=I ri c~:ta ~~~~ . a

\ 3 . l /

-: followed from

A4~I = A(uj ) — f
N~~~

y
~~~~~~~~~

(w) 
~ 

1 ,
w 0  w 0

:: and
‘I.

/ N-2 \ - i / N- l \
k*~~~~~ fl ~~~~~ (,~ 

~~ g
~) 

,

i 1  i 1

*1
- -

O followed from

-l N N-i
y c*J = y~~c( w) - g *~ E - = 

~w 0  w~0 i’~l i 1
‘4

-i ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~
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It is easily seen that A* and C~ satisfy conditions a through c

‘ ‘
~ simply substituting back w z ( s ) y ( s ’

~ to A* and C4~, excep t for the

degree of A*(s) and y 
1
C*(s) are n or in degree less than that of corre-

sponding degree of A(s) and y(s)
1
~C(s

\ respectively.

Therefore, this process is continued until N 1, in this case

A1(w)/y
~~

C1(w) 
= a1w + 1/c1

where a1 
= f

1 
> 0 and c

1 
g1 > 0

Q.E.D.

B0I~~ ED~~SS OF THE MODULUS OF ZEROS A~~ POI~ S OF 
~N 

[f1z(s)~ s1y(s)J

In what follows the uniforms bound is found.

Lemma 2: In the C.F. FM [f.z(s), s.y(s)J , if f., g.CR
+
, Yj , then

~/~w ~
y(s)FN 

f.z(s), 5.Y(s)]}()() > O,~~
j, real and w ~y. where

are the poles of y(s)F
N [f.

z(s)~ g.y(s)~} z(s)y(s) w 
in the w—plane.

Proof: Straightforward computation shows

~/~ w [YF N( w)J = ~
/
~
w[yFN 1 (w)] ÷ 

~N ~~~~[YF N ~(w)j + i}2 
~~w ~ y .

~~ N [ Y N_ 1 w J

where - y. are the poles of yF~(w). The foregoing relation implies that

if 
~
/
~
w[yFN l (w)] > 0, then ~/~ w [YF N W J  > 0. But N = 1, 2 - -a r e  triv-

ially true and hence the lemma.

Letnma 3: In the C.F. 
~N [f . z ( s ) ~ giy( s)

~ , if f1, g .cR+,Vi, then
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and 

~
/
~~

[ .
~~

y ( s)F N Vz(s), ~~Y(s)j } z ( s ) y ( s )  w < 0

~~~~~ ~
y(s)F

N {f.z(s)~ g~Y(s)j~ z ( s ) y( s )  = w < O~~ YW ,

:~ I
real and nonpositive .

Proof: It follows from (2), -

a/
~
f
N [YFN(w)j 

< 0, ~~~~~

— 

~~~~~ [YFN(w)1 

[yç(w)J~ 
~

Let

yF!(w) = g. + _ _ _ _ _  
1 L .J~. (7)

~ 
f~~1w+ g .1+ ... .+ f 1w +  g1

Then, simp le computation y ields , f or any k < N

~~k[Y
F
N(w)] 

= ( fl2(N k) 

[YF~ ( w ) ] 2  [YF w ~( w ) J 2 ... {)~Fk(w ) ] 2

2(N-k)÷1 1
~~
‘

~~~~IC 
yFN (w) (- i) 

[YF~(w] 
2 

JYFk(w)]2 [YF~~w J 2

It is obvious that the right hand sides of the above equations are

no rtp osi t ive for w~ R + 
This comp letes the p roof of the lemma .
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Theorem 2: Let there be two (.F., F
N 

‘ f
1
z(s), g1y(s)] and F~ ff*z(s),

g~y(s)] . If f
1 

> f~ cR+, g1 > g~ cR~ , i < N, then a1 < a ~, Vi < N  and

< y
~
, Vj < N  - I , where - - :~ and - , - are the z eros and

the poles of YFN(w) and yF~(w) respecti-:ely.

Proof: Since we have by Lc’czna 2 , yFN
(
~
i.’ is a tnonotonically increasing

function of w - y~, by Lemma 3, same function is an nonincreasing

function of f
1 and g~,Vw , real and nortpositive. Therefore all the

zeros of yFN(w) shift  to the righ t on the real w-axis as all the entries

f1 and g
~ 

increase in value, as shown in Fig. 3. This gives a1 <a~ ,
<N. The result of the poles of YFN(w) and yF~(w) follows by using

the same argument to the function of IIYFN(w)] 
-l and it is omitted here.

- 
- Q.E.D.

It is noted that if the entries of the CS. F
N {f~

z(s). g.y(s)]

are uniform, f . = fcR~, g. geR ’, i <N , then we have

AN (w) = sirth (N + 1) a (w) - sinh Na(w)/sinh a(w) (8)

~~‘C~ (w) g sixth Na(~~)/ si th a(w) , (9)

where

cosh a(W) = 2 + fgw/2

P Lemma ~: Let the entries of the C.F. F& [f.z(s). ~.~ (s)] ~~
/C
N 
be

uniform as defined above, then

‘4 -
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— -

a .  
~k 

= 2 ( i - cos itt ) /f
g, Vk <N - 1 ( io)

2 - cos (2 k l)]~~~ /fg <a~ < 2(1 - cos 

~
) /fg, Yk <N.

Proof: Substituting the following identities into (8) and (9) ,

cosh. Na = 2N-l ~ [
cosh a - cos 

(2 k - l)i-]
~~

k=l 2N

N-l rN-i i krrsirth Na 2 Sli-Ih a 11 
~ 
cosh a - cos —

k 1  L N

results in a and b of the lemnm~ by using the same argument as in

Theorem 1 concerning to the sum of two polynomials with interlacing zeros

on the real axis.

As a consequence, the following theorem.is established.

Theorem 3: Le t - ce., - y. be the zeros and the poles of the CF.

FN [f.z(s). 
g~(s)] Iz (s)y(s) w 

If ~~ g~ eR+, then

0<2 [i - cos (2 
k_ l ) ]~~~ /fg <a~ <

2(1 - cos ~-L)/fg < C&~ <
1
~/fg Vk <N - - 1. , (12)

where

f inf f ., g i nf g . ,  ~~~~ sup f . and~~~~~ sup g. .

i<N i<N i<N

- 

_
~~~~j ~~~~~~~~~ ——~~~T~~

_ -_ _ _ _
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Proof: The above result follows immediately from Theorem 2 and Lemma 1~,

since the zeros and the poles of the CF. y(s)FN ~~~I z(s)y(s) shift to the right on the negative real w-axis by

the increasing in value of all its entries f 1, g.Vi. Therefore, these

zeros and poles are bounded in modulus by that of the zeros and the poles

of the two corresponding C.F. of uniform entries each with f inf f
- 

i<N

g = inf g
1 

and f sup f. ,  ~ sup g., respectively.
- i(N i<N 3- i<N 3-

Q.E.D.

ASYMPTOTIC DISTRIBUTION OF THE POLES AND THE ZEROS OF THE SEQUENCE OF

TEE CONTINUED FRACTIONS

Let {FN [N
f
1
z(5), 

~~~~~~~~ 
be defined as a sequence of C.F. for

N = 1, 2,.... Now for each fixed N, the entries of the corresponding

C.F. are = t1/N and = 
N
Ci~~~ 

i <N In what follows the re-

suit pertaining to the integrated networks are derived.

Theorem ~ : If 
N
a
~ 
and 

N
C
i~ 

for all N and i, of the above def ined

sequence are bounded away from zero, then and 
lf~

’k = O(Na~~~) for

suff icient larg e N and k, where - Nak and - 

NVk 
are the kth zero and

pole of the corresponding C.F. 
~N [N

f
iz(s~~ ~

g.y(s)
} 

in the w = z(s)y(s)

plane.

‘1 Proof: Since 
N
a
l 
and 

N
C
i are bounded away from zero for all N and i,

we choose

a = sup a . for all N and ~ = sup c. for all N .
-
~~~~~~ i<N i<N

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

j
~I~

_
~

_ 
I_ _~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Hence a sequence of uniform C.F. {F~ ifNz(5), ~~
y(s)1} 

with 
~N a/Na

and = c/Ne has the following relationship by Leam~a ~~
.
,

- 2 
[i 

- cos (2 k-i ) < N ak < N ”k Vic, k < N  - 1

-_ 
- 

where and N~k are the kth zero and pole of the uniform C.F. FN I .clz(s) ,

- 0 ~~y(s)}  in the w-p lane.

-
: It follows from Theorems 3, we have,

2 - ~~ 
k? k - l )  

<
~~~~~~~ 

<~~~~~~~ V~, k <N - I

The conclusion of the theorem follows .

Q.E.D.

- R~ 4ARK -

Theorem ~l- is used to investigate the asymptotic behavior of the

zeros and the poles of the nonuniform C.F. in w-plane as well as the

convergence of AN(w) and y4c
N
(w) as N -. ~~ . It follows in particular

that if N~i 
= 
N
a
i
/N and = Nci/N , Nai, NCi bounded away from zero,

I then and N~k 0(N2), as N -‘ ~~~, where Nak’ N?k 
are the zeros and the

poles of the corresponding C.F. This result consistent with the result

obtained from solving the transmission line equations for the distributed

networks.

I
0 f
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- ‘ EXANPLES AND APPLICATIONS

Examp le I: Let the entries of the CF. be (f3, f2, f1) = (8/15,

8/5, 1~.8/5) and (g3, g2, g1) = (5/8, 5/ 16, 1/16) ; z(s)  = s/Cs - 1) and

y(s) l/(s — 1).

Simple computation yields

F,{fjz(s)~ g1y(s)] A.5/C3

8(15 - 67 ~ + l~2 s~ - l~~ ~
3 + l~2 

2 
- 67 s + 15)

i~(8 ~5 
- 3~ s~ +63 s3 -63 ~2 

~~~~ s - 8)  

~0

and [z(s)y(s), k] [s/C: - 1)
2
~~kJ ~~ich satisfies the root locus

equation of 1 + k(s - 
i) 

= 0, ke {OIJR’} and is shown in Fig. 1~.
S

It follows that

~~ (l/l5)[s - (1 + j~~~/2)][s - ( 1-  j~~~ /2)J [~ - (5 + j~~il/6)J

- (5- j~~~l/6)] [~ - (9 ÷ j ~~9/lO)] [s - j~~~9/lO)]

L.

y~~~3 (l/8){s - (3 + j~~7/~ )] [s  
- (3 - j~~~~~)]{s 

- (7 + j~~~5/8)]

(7 - j

— lThe zeros of A
3 

and y C
3 
are shown in Fig. 5. As can be seen that

2 1
they alternate with respect to Ls/(s - 1) , k~

In example given below, Theorems 1 is used to realize a ladder net-

work with a given inunitance function.

f
I.

303
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Example 2: Let the poles and the zeros of a driving point iuzpedance

Z(s) be specified at - 1, - 2, - 3 + j \~7/2, - 3 + j ‘~15/2 and at - 3 +

j {j/~, - 3 + j ~J 11/2, - 3 + 3 ‘419/2, respectively .

Synthesis procedures:

1) Construct the pole-zero plot for Z(s), as shown in Fig.  6.

2) Find an arc as shown in Fig 7 passing through all these sin-

0 gularities. This arc is described by [(s + 1) (s + 2), kJ by inspection

hence, let z(s) s + 1 and y(s) s + 2.

3) Multiplying out, results in

k ( 6 +9 ~~ +~~ + 117 S
3 +206 ~

2 
+213 s + 105)

-
~~~~~ Z(s) a

k(s5 +8s
l4.
+3l s3 +68 s

2 +8~4 .s+118)

14.) Since A(s)I = 1, yields k = 1/15, and
+ 1) (s + 2) = o} 

a

(s +2~~
’C(s)~ = 14 , yields k = 1/2 (note that the

+ l)(s + 2) = o} 
C

number ~ is arbitrarily assumed which happens to be the total capacitance

of the ladder network.), therefore, we have

(s + 2) z (s) I  .. 2(w + l)(w + 2 ) ( w + 3 )
(s ÷ l)(s ÷ 2) = w 15(w + 2)(w + 4)

5) Hence C.F. gives (f3, f2, f1) = (2/15, 6115 , 24115) and (~~,
g2, g

1) 
= (15/6, 15/12, 1/4). Fig. 8 shows the corresponding network.

- - ~~~~~~~~ ~~~~~~~~~~~~~~~



CONCLUSION AND S1J~ 1ARY

The complete pole-zero pattern of a continued fraction of nonuniform

entries is established using arcs in the s-plane defined by a simple root

locus method.

- : A process of decomposition of rational functions satisfying the

foregoing pole-zero patterns into continued fractions is used to syn—

thesize general inhomogeneous ladder networks.

The analysis and synthesis results established are being extended

- 
to the case of infinite ladder networks (N -. c~) and the problem of the

transition between lumped and distributed networks.
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- 
Location of the poles and zeros of Z(s) -

Figure 6

J c&i
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IL Locations of all the singularities

~~ Figure 7
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AUTOMATIC NUMERICAL INTEGRATION USING
VP-SPLINES

Royce W. Soanes, Jr.
Researc h Di rectorate

Benet Wea pons La boratory
Wa tervi let Arsenal

Wa tervl iet, New York 12189

ABSTRACT. A method of exploiting VP (variabl e power) splines
for the purpose of automatic numerical quadrature is presented. The
essence of the adaptive method given here is to select mesh points
near the node where an upper bound on the local area discrepancy be-
tween the trapezoidal estimate and the local VP spline estimate of
the integral is a maximum. A comparison is made with Gaussian quad-
rature for an integral containing a parameter.

1. INTRODUCTION. The term “Automatic Integrator” refers to
numerical Integration algorithms which adapt themselves to the parti-
cular situation at hand. Automatic integrators are particularl y
handy for obtaining dependable integral estimates during computation
on a problem which may involve many Integrals and whose nature may
change from time to time as the parameters involved fluctuate. They
are also useful in situations where the Integrand may be ex pens ive
(time consuming) to evaluate as is the case with multidimensional in-
tegrals.

The basic philosophy behind the automatic integration in this
-~ article will be to spend some computational overhead time in monitor—

ing the region of the integrand where the VP spline interpolater is
making the most significant contribution to the integral estimate
(relative to the linear interpolater) and evaluate the integrand in
these significant regions.

As increasingly more information is accumulated about the inte-
— grand, it will be possible for the algorithm to gradually abandon
• evaluation of the integrand over large regions of uniform behavior

and transfer it s attention to regi ons where the integrand behaves more
abruptly. This process will generally produce a nonuniform mesh and
it will be necessary to have on hand an interpolater which is smooth
but stable. Variabl e power splines satisfy this requirement since
they are twice differentiable and they may be given some local den-
vative control which renders them less likely to inject interpolatory
oscillations.

2. SUMMARY OF BASIC VP SPLINE FORMULAS. The interpolatory
func tions used here are the VP (var iabl e power) splines gi ven on the
jth subinterval by Eq. (1).

.

~

, 



0~~~ 

(1) k1y1 (x) = a1+b1r1+c1r1 +d1(l—r 1)

where k1 = m1+n1-m1n1

•
• 0 

r1 = (x—x j)/Lj, and

-
~ Lj = xj+1-xj

0 

The four parameters aj, b1, cj and dj may be eliminated In favor

of yj, Yi+1, y.~ and Yj+~ .

(2) a1 k1y1+t1 (mjqj— (m1—l )y— y ~~1)

(3) b~ L1(—m1njqj+mjy+n jy~~1)

(4) cj =

(5) d1

where q1 = (y1~1-y1)/&j

If second derivative continuity is enforced at the interior nodes
- 

- - - .  and the curvature Is set equal to zero at the end points, the fol low—
-

. 

ing tridlagonal system of equations may be obtained.

(6) (m1-l )y +y~ = m1q1

- (7) A1y ;1 +B1y;+c1y;~1 
= D1 (l<i<N)

(8) Y~_1
+(flN_1-1)y~ 

=

The coefficients in Eq. (7) are g~iven by equations (9—12).

(9) A 1 =

‘4

t
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(10) C1 = n1(n1—1)/(kjL1)

(11) Si = (n1_1-l )Aj+(mj-1)C1

(12) D1 =

The solution to the system described by equations (6—12) yields
the nodal derivatives which insure continuity of the second derivative
of the interpolater.

All that Is needed now to completely define the” interpolater is
the setting of the nonlinear parameter vectors m and n. The values of
mi-i and ni are set by obtaining a VP spitne over the restricted node
set [xl..l, xj, xj+i]. Setting the end curvatures equal to zero and
setting yj equal to the slope of the line through (xj,yi) which makes
equal angles with the linear interpolater on the left and right of xi

H yields Eq. (13).

- -~ 

- 

(13) nj/mu = (& 1/t11)

Equation (13) sets the m’s and n’s while assuming a lower bound
of I on t~,em I.e., either nj L or in1...1 I. This lower bound L must
be greater than 2 and it need not be greater than 3. Values of L

• greater than 3 tend to produce too much flattening of the interpolater
between nodes.

3. INTEGRATION FOR$JLA. If the VP spline is integrated over the
jth subinterval , we may obtain Eq. (14) after some rearrangement and
simplification.

xi +1
(14) J yj (x)dx = (t1/2)(y1+y1~1) +

S
. 

xi

where

= &~ ~ i+ic1~ {m1(y;
_q

1
) + n1(q1-y~,1)

+ 
1 + 1 1]  

/ {2k1
(m,+1)(n

1
+i) }

-_ S---

—
i5

~~~~

-

-5~~~~~ - - -5-~~~
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The quantity ~ is the discrepancy between the trapezoidal esti-
mate and the VP spljne estimate of the integral over the jth subinter-
val. This expression for aj Is not dependent on the existence of
second derivatives.

If qj is between qi..l and qj+i and y~ 
is between qk~ 

and 
~-

- (k = 1, 1+1) and mj = n1 = rn, the max imum value that k1I may take on
is L~~q1_ 1 -q1+1 I/(6+4~’~) for an m of 1 + ~‘2.

4. SIGNIFICANT NODES. An initial mesh over the desired Inter-
- val of integration must be assumed. This mesh may be uniform, or

prior analytic knowledge of the integrand may prompt the insertion of
a node or two near an abruptness in the integrand . In any case, the
In itial mesh may be uniform or non—uniform and may contain as few as
three points.

- 
~
.; The relative significance of the various points In the sample

must be determined first. This will be done by considering the be-
havior of a VP spline with zero end curvatures over the restricted
node set [xj_1 , xj, xt+i]. Enforcement of second derivative continu-
ity at node I yields Eq. (15).

(15) R1 = n1/m1_1 =

- - 

This equation implies Eq. (13) with y
~ selected as previously

- mentioned. If Eq. (14) Is used with the conditions for zero end cur-
~0 vatures, two simple Integral formulas may be obtained for the three

point VP spilne.

(16) J y1..1(x)dx - CL1 1/2)(y
1 1+y1) + U

1

(17) J
XI+lyj(x)dx = (t1/2Xy1+y1~1) + V

1

where

u1 = (L~_ 1/2)(q1..1 -y~ )/ (m1.1+1)
and

2
=
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The two area discrepancy terms u1 and vj will be used to deter-
mine the significant points of the sample.

At this point, we want to notice the effect of y~ 
on uj and vj

0 
as it varies between the left and right difference quotients qj_1 and

q1 which are taken to be the reasonable l imits for the 
assignment of

Yj locally.

From Eq. (15) we see that as y approaches qj, Rj approaches
infinity . The value 1 is therefore assigned to mi_i as nj becomes 

*
infini te. The quantity uj therefore approaches its extreme value ui

- 
- as vj approaches zero.

(18) u = (t~_1/2)(qj_1-qj)/(L+1)

Similarly, as y
~ 

approaches q1..1, Rj approaches zero. Hence, nj is
assigned the value I as mj...l be~omes infinite . We therefore have vj
approaching its extreme value vj while ui approaches zero.

(19) v = (24/2)(q1_ 1 _qj)/(L+1)

These extreme values of uj and vj gives us the significance
weights that we will assign to the nodes In the sample.

(20) Wj  = (&~
_
~+4) I q1-q1_1 1

~~ 1 5. INTEGRATION ALGORITHM. The weight given by Eq. (20) is pro-
portional to the sum of luil and lvii; It Is an easily calculated —

measure of the possible disagreement which may exist between the VP
spline estimate of the Integral locally and the linear estimate. It
behooves us, therefore, to examine the Integrand more closely near the

- 
-

- 
- node where wi is presently the largest. An algorithm for automatic

Integration may therefore be summarized by the following procedural
outline.

I. Generate an initial (not necessarily uniform) mesh over the
- 

- 
interval of integration, evaluate the integrand and compute
the trapezoidal estimate of the integral .

II. Compute the 1th nodal significance weight according to Eq.
(20) for 1<1 cM.

III. Find the node where w1 is the largest.
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IV . If the maximum weight is less than a given fraction of the
r 

trapezoIdal estimate or If the number of functional evalua-
tions exceeds a given amount, skip to VI I., otherwi se con-
tinue to V.

V. Evaluate the integrand at the midpoint of the jth (i...l th)
subinterval if t.~ is larger (smaller) than t .j _ ~ .

VI. Update the x and y arrays and the trapezoidal estimate and
recalculate the three appropriate nodal weights. Return to
step III.

VII. Set the m ’s and n’s according to Eq. (13).

VIII. Compute the nodal derivatives using equations (6-12).

IX. Compute the VP splIne integral estimate using Eq. (14).

6. A TEST CASE. The following integral containing a parameter
- ; is considered here as a test case; it is obtained from a Weibull

probability density.

2
(21) J k(b)x~ e~~ dx = 10

where k(b) = b/(1-e ’ )

As b becomes large, the integrand will become a tall s?ike cen-
tered near 1. The performance of VP spline adaptive integration will
be compared with that of 32 point Gauss-Legendre quadrature. It is
obvious that any quadrature formula using a constant mesh may be de-
feated by this integral if b is chosen large enough. The purpose of

0 
- 

the comparison is therefore not to belabor this fact but to indicate
- 

- that the adaptive method Is capable of handling even this pathological
case accurately and stably.
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The following error table was computed for an L of 2.5. Only 32
functional evaluations were made -for the VP spline integral estimates.

b VP GAUSS

2 .00012 - .00000000000000036
4 - .000019 - .00000000000000014
6 .00016 .0000000000060
8 .00028 .00000030

10 .00054 -.000043
12 .00048 .00011
14 .00014 .0032

0~~ 16 .00010 .0069
18 .00041 .0034
20 .00066 - .012
22 .00013 - .04
24 .000018 -.079

-
~~~~~ 26 .00048 — .13

28 .00034 — .18
30 .00037 — .23
40 .00071 - .47
50 .00019 -.60 0

70 .00031 - .78
90 .00043 -.90
110 .0010 -.95

0 
-~ 130 .00074 -.98

150 .00062 -.99

For well behaved integrands, Gaussian quadrature seems to be un-
beatable - as evidenced by the early entries in the table. The
Gaussian accuracy deteriorates, however , as its mesh becomes less
capable of detecting the spike. By the time b has reached a value of
150, Gaussian quadrature has “lost” 99% of the Integral value. Adap-
tive VP spline integration , although not as accura te as Gauss ian for
small val ues of b, displays a uniform error pattern which is independ-

0 
ent of b over a considerable range.

Needless to say, a much better parametric study than has been
done here could be done for a variety of integrands. Fortran list-
ings of relevant subrout ines are gi ven here as an appendix for those
interested in using adaptive integration in a practical setting or for
those who might be able to do a more complete parametric study.
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TIME EVOLUTION OF AN ORTHOGONAL MATRIX

James M. Wilkes
Army Materiel Test and Evaluation Directorate

White Sands Missile Range , NM

ABSTRACT. The usual method of computing a rotation matrix as a function of

the Euler angles is discussed. On a digital computer these angles must be

obtained by a numerical integration of the angle derivatives , which are func-

tions of the angular velocity components of the rotating coordinate system.

The numerical integration in effect imposes a rotational motion with constant

- - angular velocity over a time interval of length equal to the integration

step—size. This constancy of the angular velocity is exploited to formulate

a simple secondorder differential equation for the orthogonal matrix describing

the rotation. The equation is easily solved exactly, and gives an expression

for the matrix at the end of an integration interval as a function of the matrix,
and of the angular velocity components , at the beginning of the interval . The

second method avoids some of the difficulties of the Euler angle method , and can

be usefully applied in digital simulations of rigid—body motion.

1. INTRODUCTION. A mathematical model of the motion of a rigid body requires

information regarding the relation between two cartesian coordinate systems ,

one of which is rotating with respect to the other. This information is contained

in the nine elements of the matrix R describing the change of basis from one

coordinate system to the other. The physical requirement that the magnitude of

a vector be invariant under a change of basis due to a rotation, imposes the

I following mathematical condition (1] on R:

RRT = I = R T
R , (1.1)

where I is the identity matrix , and the T—superscript denotes the matrix transpose.

This condition is referred to as the orthogonality condition , and R is said to be

an orthogonal matrix.
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Equation (1.1) represents nine linear equations in the nine elements of R ,

which would uniquely determine those elements but for the fact that ~~T = I = RTR

is a symmetric matrix. Due to this symmetry , only six of the equations are

linearly independent. The three undetermined elements serve to parameterize the

(infinite number of) different rotatior matrices, and the set of all such matrices

constitutes the three parameter group of orthogonal matrices.

A popular choice for the parameters is a set of three angular coordinates

- - O i , 02 , and 03~ known as the Euler angles [2]. With this choice the matrix R

can be written as a product of three separate rotations , through each of the three

Euler angles. At least two potential difficulties accompany this parameterization .

The first is a matter of economy of computation. Once the values of the Euler

angles have been determined , one still must compute the matrix elements of R as

sums and products of trigonometric functions of the angles. Such computations 
0

can become very time—consuming, and therefore expensive, on a digital computer.

The second problem is of a mathematical nature. It can be shown that for a given

sequence of Euler rotations, the angular velocity components w~ , i = 1,2,3, in

the rotating basis, can be expressed as lineai- functions of the Euler angle

derivatives 0 . ,  i = 1,2,3. That is, at any time t, one has relations of the

following form:

w
~~

(t )  = EG1.(0
2

(t ) ,0
3

( t ) )  O .( t )  , i = 1,2 ,3 , (1.2)

where all summations are understood to be from 1 to 3, on repeated indices of the

summand . (The coefficient matrix G depends , in general, only upon the last two

rotation angles of the rotation sequence.) To determine the angles, one must

first solve (1.2) for the derivatives of the angles, and then integrate these

derivatives. The solution of (1.2) for the derivatives involves inverting the

matrix G. However, for certain values of the Euler angles, the determinant of

C vanishes, hence G
1 does not exist, and the Euler angle method fails for those

- 
values of the angles.

I.
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The f1lowing observations are important for developing an alternate

me thod of computing a rotation matrix. In a digital model all integrations

are performed numerically. Typically, a numerical method requires foi the

computation of the value of a variable the previously calculated value of the

variable and its derivativ e . For illustrative purposes , cons ider a numerical
integration based on a first—order Taylor ’s series. Assuming the values

0.(O) and .(O), I = 1,~~,3, to have been computed at the beginning of an
- 

integration interval (which we take for convenience to be t = 0), this method

comput s th e following values for the Euler angles at the end of an integration

interval of step—size T

8.(T) = 0~~(0) + -rO .(O) , I = 1,2,3. (1.3)

-~~~~ For values of the Euler angles for which the coefficient matrix C in (1.2) is

non—singular , we find from (1.2):

O .(O) = EGJ (O 2 (0)~ 03
(0)) u .(O) , i = 1,2,3. (1.4)

Substituting (1.4) into (1.3) then yields for the new values of the angles

0 .(T) = 0.(O) + ~~2 G~~ (0
2

(0) p 0
3
(0)) w .(O) , i = 1,2,3 . (1.5)

In (1.5) the angular velocity dependence of the new values involves only the

~~~ values w.(O). Since the elements of R(t) can be constructed as functions

of the 0.(-r), the values W
j

(O) are the best values of the angular velocity com-

ponents available for computing R(-t). Hence, for  digital computation purposes
the angular velocity components can he considered to have the constant values

~ .(0) on time intervals equal in length to the integration step—size , that is ,

for all tc (O ,-r J .

This constancy of the angular velocity on integration intervals allows us to

formulate and solve a simple second—order differential equation for R. The solution

I ~~
.
‘-4
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allows a direct computation of R(t) as a function of the initial matrix R(0),

and the angular velocity components w (0) , j  = 1,2,3. For ’ the case R(0) — I
j

(that is, when the two coordinate systems initially coincide), the result is the

well—known expression [3,4) for the matrix describing rotations about an arbitrary

fixed axis. Although the method we describe is thus fairly well—known (it was in

fact developed for, and is being successfully applied in, a large digital missile

simulation [5]), the derivation given in Section 3 is believed to be new and , in

our opinion , much more straight—forward than the geometrical arguments given in

the usual derivations (3 ,4].

- 
- 

2. SOME PROPERTIES OF ANTISYMMETRIC MATRICES. By definition , an antisyminetric

ma trix A is a square matrix satisfying the identity AT = —A. From this iden tity

one can easily deduc e the f ollowing general form f or a 3x3 an tisymme tric matrix:

0 a
3 

—a
2 

0

A = —a
3 

0 a
1 

. (2.1)

a
2 

—a
1 

0

— Introducing the Levi—Civita permutation symbol C i .k  (c123 
= 1, C ij k 

1 (—1) for

even (odd) permutations of 1,2,3, and C i • k  
-. 0 If any two ind ices are the same),

the matrix elements of A can be written concisely as

- 
0 A .. = ZC

j~~k 
aSK , i,j = 1,2,3. (2.2)

-- By taking the product of A with itself , we obtain the mat r ix  elements of A 2 
in the

form

A~~. = —a
2 

6 .. + a.a. , 
(2.3)

13 1] i j

where 6 . .  is the Kronecker delta symbol (6 . = 1 if I = j , and -~ . .  = 0 ~_ i  I # i),
- 13 ij i_I
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2 2 2 2
— and where a a

1 + a
2 

+ a
3

Defining a symmetric matrix S(a) by

= a.a
1 

, (2.4)

one can write A2 as

A
2 

= -a21 + S(a) . (2.5)

- It is easy to show, using (2.2) and (2.4), tha t AS (a) = 0, hence, multiplying

both sides of (2.5) by A gives the very useful identity :

A3 = —a
2 

A . (2.6)

3. THE DIFFERENTIAL EQUATION FOR R. Assuming the elements of R to be differen-

tiable functions of time on the interval I0,r), we differentiate both sides of

- 
- 

(1.1) to obtain

-
. R(t) RT( t )  + R( t) ~

T(t ) 0, (3.1)

where R is the matrix containing the derivatives of the elements of R, and we

note that I = 0. Defining a new matrix 0 by

0(t) R(t) R
T
(t) , (3.2)

we obtain from (3.2) and (3.1), and the identity (AB )
T 

= BTA
T

o(t )  = ~ (t) R
T

( t )  = _R(t)RT(t) = _ [~~( t)R T(t) ] T = O
T ( t)

I

and it follows that the matrix 0 is antisymmetric. By (2.1) f~ 
can be written

in the general form:

h’
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0 u
3
(t) —u

2
(t)

-; 0( t) = —w
3

(t )  0 ~1
(t) (3.3)

w2
(t) —w

1
( t ) 0

It is demonstrated in several textbooks [6,7] that the elements of 0 , defined

by (3.2), can be identified with the components in the rotating basis of the

angular velocity vector. As discussed in-the Introduction , the best available

values of these components on the interval [O ,T] are the previously computed

-
- 

values w. (0).

Setting

- 
0 = 0(0) , = w~ (0), j = 1,2,3, (3.4)

- 
- and multiply ing both sides of (3.2) by R(t), using the orthogonality condition
- (1.1), we obtain the following first—o’--der differential equation for R:

- R( t) = OR( t) . - (3.5)

Since 0 is a constant matrix on [0,-rI, (3.5) can be differentiated to yield:

R( t) = OR( t) = 02
R ( t )  , (3.6)

- 
where R(t) has been replaced by (3.5) in the last equation of (3.6). Multiplying

V (3.6) by 0 now gives

OR( t) - 0
3R(t) = OR(t) + w

2
OR(t) = 0 (3.7)

where we have used (2.6) for ~~~~~~ and where

+ + . (3.8)

‘—4
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Since u2 is a scalar, it commutes with 0 , and (3.7) can be written as

-
~~~ 0( R(t) + w2R(t)] = OC = 0 , (3.9)

- where we have defined

R(t) + w2 R(t) C (3.10)

- 

Equation (3.10) is the familiar equation for a forced harmonic oscillator ,

- 
- except that the “dependent variable” is here a matrix function R, and the “forcing

function” is an as yet undetermined matrix C0 
. It is easy to show, using (3.5),

(3.6), and (2.6), that = 0, so tha t C
0 

is in fact a constant matrix.
- ‘  Furthermore, using (2.5), one can show that C0 

= 0 implies that 0 = 0, which,

from (3.5) corresponds to the trivial solution R(t) = R(O), tc(O,t]. By direct

- substitution one can then verify that the non—trivial solutions of (3.10) have

the general form:

- - R( t) = C / u 2 + C
1
sinwt + C2coswt , (3.11)

-- where C
1 
and C2 

are arbitrary constant matrices. To determine the constant

matrices in (3.11), we evaluate R and its first two derivatives (found by

differentiating (3.11)) at t = 0, and compare the results with (3.5) and (3.6)

- evaluated at t = 0. The results are

-

- 

-

- 

C/u 2 = R(O) + 02R (O) /w2

C1 
OR(O)/w

V.

C
2 

= —0 2R ( O ) /u 2

I-

‘S
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Substituting these expressions into (3.11), we obtain the following solution
- ‘ for the rotation matrix at time t =

R(-r) [ I + (0/w)sinu -r + (02/w2) (1—cosw-r)] R(0) . (3.12)

It is convenient to define a “transition” matrix A by

X(r) = I + (0/w)sinuyr + (~7
2/w2) (1—cosut) . (3.13)

If the matrix R(0) is known, then A (-t) defines the transition over the interval

of length -r , to the new matrix

R(t) = A (t) R(0) . (3.14)

If the two coordinate systems initially coincide, so that R(0) = I, then R(-r) = A (-r).

Using (2.2) and (2.3) in (3.13), we obtain the matrix elements of A in the form

= t5~~ cosu-r + 
ijk(uk

/w)5
~~~

t + (~jwj/w
2) (1—cosu-r )

which is a slightly simplified form of equation (19) of Ref. 4 for the elements

of the matrix describing a rotation through the angle w-r , about an axis defined

by the direction cosines wi
/u , I = 1,2,3.

4. CONCLUSION. The transition matrix method described in this paper eliminates
- 

_
‘_ 1 the inversion singularity problem of the Euler angle method , as well as the numer—

ical integration of the Euler angle derivatives required by that method. Also ,

the only trigonometric functions to be computed in (3.12) are sinw-r and cosw-r

hence computation time should be reduced by the transition matrix method. If so

desired , the Euler angles can be recovered at any time from the rotation matrix ,

for they are simply inverse trigonometric functions of the matrix elements. We

remark that (3.12) is approximately valid on any interval for which the angular

‘-4
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velocity is approximately constant, that is, on any interval where the angular

acceleration is “small”. It would appear that this formalism has significant

advantages over the usual Euler angle method.
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THE WEIGHT FUNCTION S OF MODE I OF THE PENNY-SHAPED AND
OF THE ELLIP T IC CRACK

Hans F. Bueckner
Mathematician, Large Steam Turbine-Generator Department

General Electric Company
Schenectady, N. Y.

ABSTRACT. Fundamental fields and weight functions are presented in closed
form by algorithm and formula.

1. INTRODUCTION. STATES OF 1~ANE STRAIN. During the last three decades
- the analysis of stress fields near the edges of cracks has grown into a disci-

pline of its own. Various methods for the computation of stress intensity

- 
factors have been developed. The use of weight functions is one of them. Origi-.
nally proposed for states of plane strain [1], the method can be extended to

-

- 
three-dimensional fields [2, 3, 4]. In the sequel we shall do this for the con-

- figurations of the penny-shaped and of the elliptic crack. The analysis is with-
in the frame of the classical theory of elasticity. Using a rectangular carte-

-~~~~ sian coordinate system x ,y, z we denote the respective displacements by u,v,w and
- 

tne stresses by cx, ~~~ 
etc. in the familiar manner. It is useful to begin with

- a review of states of plane strain within a cylindrical elastic body V with
generators parallel to the z—axis. Figure 1 shows its cross-section in the
(x,y)-plane. V has mirror symmetry with respect to the (x,z)-plane. In the

- same plane a crack with faces C~ , c~ extends from the s-axis in the direction ofthe negative x-axis. The boundary of V consists of the crack faces and of a
cylindrical surface B. Let B be attacked by a load of tractions, the latter

• acting with components X,Y in x- and y-direction respectively and with X ,Y the
same along a generator. Assuming mirror symmetry of the distribution of tractions

-
. with respect to the (x ,z)-plane and imposing the constraint w = 0 we obtain a

- -~ state of deformation in V where u,v do not depend on z (plane strain) and where a

- 
suitable disposition of rigid body motion makes u an even and v an odd function
of y (mode I). Let x = rcos e , y = rsin e define polar coordinates r,O. With
their aid the asymptotic behavior near r = 0 of the relevant field quantities can
be described as follows:

1 1 

plane st~~in
____  v mode I

i~t 
_ _ _ _

________  

Figure 1
~1 

- r r ~
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a = —~ --- f(O)cos-~ O with a suitable constant k and where

f(O) 1 - sin~~O sin~ - 6 for a = 
(1.1)

f((~) = 1 + sin~~8sin-~ O for a =

f(O) = sin-~- 9cos -~ 9 for a =

furthermore

u ~~~~~~~~~~~~~~~~~~~~~~~
-

- - 
2~ 2 (1.2)
k 1 . 1

- 

- 
v = ~~ — -~r ( K  - cos G)sin-~ e

K = 3 - ~4v , V = Poisson ’s ratio

-
~~~~ 

= shear modulus

The constant k is known as stress intensity factor. The asymptotic relations 
+

- (1.1), (1.2) stay valid if a bounded and smooth distribution of tractions on C
C~ is admitted in ~ccord with the symmetry of mode I. It is customary to con-
sider the term r~

-/2 in (1.1) as a point singularity in the (x,y)-plane at the
- - “crack tip” r = 0. Nevertheless the singularity is along the whole z-axis as a

singular line (the edge of the crack). This should be kept in mind.

Although the stresses are unbounded near r = 0 the energy of deformation
per unit length in s-direction is bounded in general. More precisely it is
bounded within any cylinder r = rQ of sufficiently small radius r0. If un-
bounded the cause is not asymptotic behavior in accord with (1.1) but singular
behavior of the stress field at points r ~ 0 of load application. The latter
happens for concentrated loads. If B is smooth and if the tractions are

- 
- 

bounded and smoothly distributed then the energy per unit length is bounded. In
practical mechanics no other situations are encountered. The singular behavior
(1.1) of the stresses notwithstanding, we are justified to denote the field
responding to the applied tractions as a regular field.

~~~- Let now a field of plane stra in and of mode I have the property that

u,v = O(r
_1/2), a = O(r_3/2) near r = 0 (1.3)

We shall call such a field fundamental if it goes without body forces and if it
- displays no surface tractions. It is not difficult to construct such a field.

.~.,

‘4.4
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Let t ~ 0 be an arbitrary constant. We set up

u = u  +u  v = v  + v  where
S r’ 5 r

P u~ = tr~~~
2
~~~cos~~ e + ( K - ~~)co4 o~ (1. 14)

= tr
_ 1/’2(.~~si4e_ ( K + - ~ )sin -~~6)

and where ur , v are the displacements u,v of a suitably chosen regular field.
It so happens €hat the displacements u~,v5 create a stress field without body
forces; no tractions are induced on C~ , C- while a system of self-equilibrated
tractions shows up on B. We choose Ur~Vr so as to compensate the tractions on

- ‘ B. This establishes u ,v by (i. Ii.) as the displacements of a fundamental field.
— The asymptotic laws (1.3) can be rewritten in the vein of (1.2), (1.1) . The

details follow from the explicit form of u5,v3 in (i.14). It has been shown in
‘5

- [ii that the construction (1.14) yields all fundamental fields in V of mode I.
The energy of deformation per unit length is infinite. More precisely the
energy is already infinite within any cylinder r = r0, no matter how small
r0 > 0 .  We can dispose oft by normalizing the fundamental field. If t(K+l)~~lthen

v = ~~~~ on C4, v = - 1x 1 4 on C ( 1 . 5)

5~~
_ n e a r x O .

- We shall write u = Uf, v = Vf if the fundamental field is normalized by
I ( 1 . 5) ;  setting u = Ur~ 

V Vr we shall characterize a generic regular field , i.e.
the meaning of Ur,Vr will not be restricted to (1.14). Let us now consider ‘-t ie
mixed energy of deformation (per unit length)W associated with Uf,V f an-i U~r~To be on the safe side we exclude the cylindrical domain r < r0 fran 1. In ~.e
remaining portion the mixed energy can be assumed to exist. By Betti’s ~~~~~~~
two representations W = Wrf ,  W Wf r  of the mixed energy are availab1-~.
Wrf is the work of the tractions of the regular field through t~ie -~ spl -~cene~ t.
of the fundamental one; Wfr is the work of the tractions of the f i n lan .~:
field through the displacements of the regular one. In either case -f. .- tr~ ’~ -
on the cylinder r = r0 must be taken into account. We can wr1~~-

—i-
i

_ W t
rf + W ’ fr = W :;:f

_ W
:~

where primes refer to the cylinder r = r0 and double pr in t  ~ r ~~~~- bounda ry ~V outside that cylinder; the latter includes B and pa— o~’ ‘
~~~~. ~~~~~. Einc .- -

fundamental field exhibits no tract ions on B , C~~, (‘ we ~ir~i -~~~~. (~ . F -  a~~’t1-ciently small r the left-hand side of (1.6) can be eva1uFj’~~ - ‘ b -  
~~ ~~~~ :

asymptotic re1a~ioris (1.1), (1.2) for the regular t~~- -~~: (1.3- , -. , :c’ ‘h~

*4
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fundamental field. In this context (1.14) must be supplemented by formulas for
- - the stresses to which US,VS give rise. Without going into any further detail

we observe that spec ified stresses ar,af and displacements Wr ,Wf of’ regular and
fundamental field respectively obey the order relations

roar w~ = 0(1), r0of 
- W

r 
= 0(1) as r0 — * 0  (1.7)

on the cylinder r = r0. Since W~.f and W~r 
are representable as line integrals

over the circle r = rr~ the asymptotic relations determine the left—hand side of
(1.6) in the limit r0 —* 0. The final result of this procedure is

k = ~ !(X u + Y v ) ds (1.8)r f  r f

for the stress intensity factor k of the regular field. X ,Y~ are the component s
of traction of that very field, and the integration in (l.~ ) is over the line ~
which bounds the cross section of V in the (x,y)-plane , ds being the length
element of £. ~ is the projection of B as well as of C~ , C onto that plane.
Details of the derivation of (1.8) can be found in [1,2]; a different derivation
is in [3]. It is possible to extend (1.8) to regular fields with body forces.
In the special case that the tractions appear exclusively on C4, C~ in the form
of a pressure distribution formula (1.8) specializes into

k = ~~~
J

m( s) P ( s )d s ; ~~ = projection of C4 ( 1.8’)

p = applied pressure, m = Vf oflC .

~‘1e call the displacements Uf,Yf weight functions. They permit to represent k
as a weighted sum of the tract ions Xr,Yr. The use of a formula of ty-pe (1.8)
for the computation of the stress intensity factor k is advantageous in two
respects:

(i) uf, vf depend exclusively on the shape of V; thus geometry and loading
appear Independently in (1.8).

(2) the effort to calculate uf,vf is not higher than the effort to calculate
the displacements of some regular field.

A~ a specified point s ’ the value of m(s ’) in formula (1.8’) can be interpreted
as the  stress intensity factor of a regular field responding to concentrated
pressure

p(s)  =~~~~ .~~( s— s ” )

.
4
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wher e o ( . . .)  is Dirac ’s Delta function. For this reason one could be inclined
to classify m(s) as Green ’s function. Unfortunately the interpretation makes
the function rn(s) an abstract from Infinitely many fields, each character ized
by a different point s of’ load concentration. To compute m that way would
sacrifice the advantage (2) which rests on the circumstance that m(s) iF a
boundary displacement of unly one field. The term “weight funct ion” was chosen
in order to avoid the misleading suggestions associated with the concept of
Green ’s function. -

For some plane strai n configurations of mode I in which the crack faces
alone are loaded by some pressure distribution p(s) integral equations have 

+
been found [2] which link p(s) to the crack opening displacement v(s) = yr Ofl C
in the form b

p(s) =~ f L(s,t)q(t)dt; q(t) = 
n(K~~~l) 

. v(t) (1.9)

The interval (a,b) is identical with £~; L(s,t) is a Cauchy type singular
integral operator. The integral is taken as Cauchy principal value. An example
is 0

p(s) = ..a.f 2q(t)dt 
(1.10)

for the Griffith crack ( - 1 < x < 0; y = 0) in an infinite solid. The
homogeneous case p(s) a 0 admits the solution q(t) m 0 only if one insists that
q(t) be bounded. If one drops this condition then q(t) = cm(t) with c as
constant coefficient becomes a solution. For the Griffith crack the homogeneous
equation admits two solutions associated with the crack tips x = 0, x = -1,
namely

l+s 1/2 s 1/2
m(s) = — - -

i , rn(s) = . (1.11)

2. FIELDS IN ThREE DIMENSIONS. Let us now generalize the states of plane
stra in of mode I into states of three dimensions • We shall assume a plane
crack in the (x ,y)-pla~e. Figure 2a shows an elliptic crack as example. The
faces are denoted by C , C and the contour by C’. In Figure 2b an infinite

- 
- crack occupying the half-plane x < 0 is represented. We shall assume that the

displacement field has mirror symmetry with respect to the (x,y)-plane; more
prec isely u,v are to be the same at points (x,y,z) and (x,y,-z) while w changes
sign without change of absolute value. This is the generalization of mode I of
plane strain. Finally we confine the attention to those fields which can be
derived from a Boussinesq-Papkovich potential G(x,y,z). This potential is
harmonic , i.e.

V~~~~~= G + G + G = 0 .  (2 .1)

5 4
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Figure 2a

ii
Figure 2b

1-lere and in what follows coordinate-denoting subscripts indicate partial
derivatives. The displacements and stresses are derived as follows:

u = - zG
~5 

- (l_2v)G
~
, v = - zG~~ - (l -2 v )G ~ ,

(2.2)
-
~~ w -zG + 2(l-.v)Gzz z

PS,

P4

r
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Ii

= - 2M [(zG~~ ) 5 + 2vG~~,} , a~, = - 2M[(zG~~)... 
+ 2vG~~],

= — 2~4zG — G ]

(2 .3 )

w = -2pi zG ,~~~~~ = - 2 ~tzGyz yzz zx xzz

= - 2it[zG~~ 
+ (1_2v)G~,]

For the sake of a first orientation let us consider the configuration of Figure 2b.
It admits in particular states of plane strain, and the asymptotic relations of the
preceding section apply if the roles of y and z are exchanged. In order to exhibit
a more general class of states we set up

G(x,y,z) = F(x,z)cos~.y (2.14)

with some real constant 
~~~~~ 

0. The case ~~. = 0 is that of plane strain. The
function F(x ,z) must satisfy

F + F - ;¼2F = 0 . (2.5)
L xx zz

Defining polar coordinates p, • by means of

pe
1 

= x + iz (2~6)

we can rewrite (2.5) in the form

+ pF - F,, - = 0.

It admits the product solution

F = F*(~~ )cos -~~O with 1
(2.7)

F*(t) = 3V~~ I3/2(t) = ~~~~~ 
d sinh t J .

I
~/2 

is the modified Bessel function of type I and of fractional order 3/2.
- 

- Altogether we can write

G(x,y,z) = g(x,z)h(~~ )cosx~r with

g(x,z) = (~~)3/2 cos -~~ • = Re[~..(x+ iz)]
3
~
P’2 

, (2.8)

hit’ ~~~ sinh t
‘‘  t d t  t
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h(t) admits an expansion in even powers of t; moreover h(0) = 1. The function
g(x,z) itself is a Boussinesq-Papkovich potential. Tt describes a state of

-~~ plane strain and of mode I. The field of displacements and stresses is regular.
The y-axis represents the edge of the crack. As we let p -. 0 we approach the
edge. Asymptotic relations of type (1.1) and (1.2) after exchange of the roles
of y,z become valid with an intensity factor k depending on y. This is due to
the preponderance of g(x,z) in the representation (2.8) of G(x,y,z). Locally
the behavior of the field near an edge point y is given by the field of’ plane
strain of g(x,z) but modified by the factor cos~~y. We list in particular:

k = k ( y )  = k(O)co sx y - 

- 
(2.9)

u = -  ~~~~~ ( K - c o s ~ ) cos .~~$ , w _
~~/ ~~ 

.(ic_cos~~~in~~~ 
‘

~ (2.10)

v = ~(3/2)

a = —~~—— f(~ )cos.~~$ where
2p

f( 0) = 1 - -
~~ sin-~ 0 sin -~ - 0  for a =

f(D) = 1 +~~ sin-~~0sin~~~0 for a = a (2.11)

f ( 0) = 2v f o ra = a
y

. 1 3f(o) = sin -
~~ 0 cos -

~~ 0 for a =

Furthermore the stresses 
~xy’ ~yz 

stay bounded . The special potential (2.8)
H induces no tractions on the faces of the crack. This is obvious inasmuch as

Tzx~4Tyz are concerned. As for a5 we derive from (2.3) that a5 2~G5~~ _2~(G~~+Gyy)
• on C , C .  But G = 0 on the faces and a5 = 0 follows. The displacements are

unbounded as p —*~~~~. For this reason the use of (2.8) must be confined to domains
of bounded p.

Still with regard to Figure 2b let us consider

G(x,y,z) = Erfc(q)e
X
cosy; q = ij ~~~~~ . cos-~~o . (2.12)

The function G is harmonic. Writing for simplicity Erfc(q) = Q(q) and observing
that q as well as the product eXcos y are harmonic functions we find
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v2c~ = e
Xcos y (v~~ + 2Q) , (2.13)

= Q”(q)(q~ + q
2
) = - 2qQ’(q)(~~~+~~~) = - qQ’(q)/p (2.1~~~~)

= Q’(q)q~ = qQ’/2p (2.l~~~ )

and altogether = 0 as asserted. The potential (2.12) is periodic in y with
the period 2n. Inspite of the factor eX the potential as a whole and all of i~-
partial derivatives go to zero as p —*~~~~. For small p we may use

G = e
X
cosy(l - -~~~.q + 0(q

3)) (2.ltl )

in order to determine the asymptotic behavior of displacements and stre~:~ .; as we
approach the edge of the crack. The function q can be taken as Boussinesq-
Papkovich potential; as such it leads to a state of plane strain. The Etatt~ has
displacements

u = u = 

~~ 
[-
~ 

cos -~~ 0 + (K  - -~)cos ~

(2.17)

w = w = sin -~- 0 - (K  + -~)sin 
-

~~ 
•]

A comparison with (1.14) shows that u~,w5 have the asymptotic properties of
the displacements of a fundamental field of plane strain and of mode I. Going

F - back to (2.16) we can expect the po tential q to dominate the behavior of G in the
approach p - 0. More precisely we find

u = a(y)u5, w = a(y)w5 with a(y) = - -_
~~~~~ cos y (2.l8~-

as asymptotic representations of u,w in the case of G.

The field of G has vanishing shearing stresses i-~~~, ~~ 
on the (x,y)-plane.

We assert that vanishes on the faces of the crack. As before we find

= - 2~~C with ~~ = 
~~~ 

+ G~y- 
on C

4

, c~ (2.19j

But
x + -

G = e c o s y on C , C

and ~~ = 0 follows. The displacements and stresses go to zero as ~~ —
~~~~~ -
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The potential G(x,y,z) of (2.12) gives rise to other potentials
G~~.x , ~(y-y’), ~.-z) where ~~~, 

y ’ are real con stants and also 
~
. ? 0. These poten-

tials can be linearly combined in a finite number of terms, the combination co-
efficients to be real. All combinations form a real linear space of infinite
dimension. Each potential of this space yields a field of displacements and
stresses which we now designate as fundamental field. This is a generalization of
fundamental fields of plane strain and justified by the asymptotic relations of
type (2.18) as well as by the absence of tractions on the crack faces.

We turn next to Figure 2a and disregard temporarily that the crack is to be
elliptic. More generally we admit as crack contour C’ any rectifiable Jordan
curve of cr~ritinuous tangent. The Boussinesq-Papkovich potentials associated
with this crack configuration can be represented as harmonic potentials of single
layers, more precisely in the form

G(x,y,z) = - 14 i_ v )f ff~~~~~
R d

~~ 1 with 1
2 2 2 2 ::‘ ( 2 . 2 0 )

R = (x-~~) + (y-~
-
~) + z - 

j

The integration is over one of the crack faces. Of the density function f(~~,r i)
we assume continuity inside C’ and furthermore for interior points (

~~,~i)

!f( ~,~ fl < f~d~~”~ (2.21)

where f0 is some constant and where d is the distance from the contour C ’ of
~~~~~~~~ Formulas (2.3) lead to

w = 2 ( 1-v)G = f on C4
Z 

— 
(2.22)

= -f onC J
= - g(x,y) on C~ , C with

5 (( 2.23)
g(x,y) = - A

2~(~~ )fff
(~~,l).[~

x~~~) + ~~~~~~~~ 
1/2 d~ d~~.

J

As in (2.19), A stands for the Laplacian operator of the (x ,y) -plan The
~~~~ i -~~t i Of l  g(x,y) represents a pressure distribution within the crack. The
stresses r~~ , -r~~ vanish in the (x ,y)-plane and in particular on the crack. In
the nontrivial case ~e,i ) ~ 0 we call G and the associated field fundamental if
there are no tractions on C , C , i.e. if g(x,y) ~ 0. We call G and the
associated field regular if f(~~,~ ) satisfies a condition more stringent than
(2.21), namely

< f1d
1/2 

(2.214)
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where f~ is a suitable constant. Let s denote the arclength on C’ , counted from
some point of C’ in the counterclockwise sense as one looks down at the (x,y)-
plane. In the neighborhood of any point s of C’ we expect the field of G to
show the asymptotic behavior of a field of plane strain for an associated half-
plane crack; the latter must have the tangent at s as edge and must follow the
inner normal of C’ at s. In the case of a regular field the asymptotic
behavior will be determined by a stress intensity factor k = k(s). In this
context we list in particular the asymptotic relations

K + l l  1/2 +
w = k(s) ..-~--—(-~~d) on C (2 .25)

a = k(s)(2d)

_
~~~
’2 for z = 0 and points outside the crack . (2 .26)

- 
As for the fundamental field we merely write the analogue of (2.25) in the form

-1/2 +

- ‘  
w = ~ ( s ) d  on C (2.27)

- 

where the intensity function p(s) depends on the fundamental field.

In the case of plane strain Betti’s theorem of reciprocity was applied to
the mixed energy formed by a regular and by a fundamental field. The procedure
led to formulas (1.8), (1.8’) for k. The same method can be used for the con-
figuration of Figure 2a [21. This yields the analogue of (1.8’) in the form

-; 
fk(s)~ (s)ds =~~~~ ffM (x,y)g(x,y)dxdy . (2 .28)

M(x ,y) is the normal displacement w of the fundamental field on C+. The factor
• -- g(x,y) is the pressure within the crack of the regular field. It is obvious that

- one fundamental field does not permit to determine the function k(s). We need
• infinitely many or - for practical purposes - a sufficiently large number of

linearly independent fundamental fields. In order to find such fields we must

Figure 3 
________ 

________

-
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solve the homogeneous integro-differerttial equation

0 = 
AJJ

f(~~~)[(x~~~)
2 + (y~~~)2]

V2
d~d~ (2.29)

for nontrivial density functions ~~~~~~

Assuming that we possess a fundamental field for the crack configuration
of Figure 2a we can construct a fundamental field for a finite elastic body with
the same crack . Figure 3 shows a sphere S around the origin. The elastic body
is bounded by S and by the faces C4, C .  In analogy to the construction (1.14)
we add to our fundamental field for Figure 2a a regular field for Figure 3,
such that the modifying regular field has no tractions on the crack while its
tractions on S annihilate those of the fundamental field of Figure 2a . The
resulting field has no tractions on crack faces and on S; it displays the
asymptotic behavior of the initial fundamental field near the edge C ’ of the
crack.

Assume now a fundamental and a regular field for Figure 3, both of mode I .
Let the regular field be generated by a distribution of tractions on S. Under
these circumstances the analogue of (1.8) is

fk(s)~ (s)ds = - 

ff(uf
X + v

fY + w fZ )dS (2.30)

where uf,vf,wf are the displacements of the fundamental field and Xr,Yr,Zr the
components of traction of the regular one. The fundamental potential G in (2.12)
can be used in order to construct an analogue of formula (2.28).  Since G has
period 2i one should apply the associated fundamental field to the analysis of
k(y) of a regular field with the same period and the same symmetry with respect

-- to y . Moreover it will suffice to consider a slab 0 <y < ~t . Further details
-
~~~ can be left to the reader.

- !  3. P~~T~Y-SHAPED AND ELLIPTIC CRACK. We return to Figure 2a and interpret
C ’ as an ellipse with half-axes a ,b. The ellipse has the equation

2 2  2 2E(x ,y) = 1-  x /a - y /b = 0 . (3.1)

The u-zeros of the function
2 2 2

T(w;x,y,z )  = 1 - - I 
-

a -f m b + w

define associated elliptic coordinates. The largest ce-root of T = 0 will play an
important role.
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- - At this juncture we turn to the penny-shaped crack by letting b = a. Without
essential loss of generality we assume a = 1. Cylindrical coordinates r, 9, z
will be useful. We have here x = rcos e and y rain 6. The function T takes the
special form

2 2
T = l - 1 ~

.
~~-~~ - . (3.2)

- 
The mapping (see also [7] )

r+iz = cosh (s+it) ; s 
~ 
0, - -~~~i~ < t (3.3)

- 
permits to represent pairs (r ,z) by pairs (s ,t) in accord with Figure 14.

2

t > 0

r 4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 t = 0

r

t< 0

Figure 14
-
~~~~~ The representation is unique whenever z ~ 0 or r 

~ 
1. For point s of the crack

two different representations appear which permit to distinguish between C~ and C .
From (3.3) it follows that (3.2) has the roots

2 2
= sinh 5 , W

2 
- sin t (3.14)

The following relations are useful:

r = cosh s cos t , z = sinh s sin t (3.5)

s = t = sinh s cost/N, t = - s -cosh s sint/Nr z Z (3.6)
2 2

N=sinh s+ sin t

V2F(s) = (i”  (s)+tanhsF’(s))/N . (3.7

f
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-
s s = l/sint= (l_r

2
)
_1/2 on C~ (3. 8)
2 -1/2 -

- (l-r ) on C

Furthermore

-
- 

sinh2 s < r2 
+ z2 

< cosh2 s = 1 + sinh2 s (3.9)
In what follows we establish an infinite family of fundamental potentials

without solving (2.29) directly. We set

G
n

( X
~ Y~~

Z )  = F
n(r,

z )  cos r i ( O - e ’)  and

• 
F~ (r ,z) = rr~Hn(s) for n = 0,1,2,... (3.10)

Here 9’ is a constant which may depend on a. We shall try to make G~~~ a funda-
mental potential through a suitable choice of Ha(s). Writing altogether

- 
G = r’

~c o s n ( O - O ’ )  . Ha(s)

we observe that the factor preceding H~ is a harmonic function, i.e.

~
2(r

r
~cos n(e_6,)) = A r

ncos (6_O , ) = 0 (3.11)

This in turn together with (3.6), (3.7) yields after steps of an elementary
nature

V2G = r~ cosn( 6_O’)[H ”(s)+ (2n+l)tanhs.H’ (s)}/N (3.12)

• Consequently we must solve

- ;  H~’(s)+ (2n +l)tanhs .H’ (s) = 0 (3.13)

We find

H ’ ( s )  = 2n-f], (3.114)

“p

with some constan t c. Integration of Hj~(s)  and a special choice of c yield— n
H
a
(s) = ajF_arctan (sinhs)- a sinh s~~, 

1 
~~ 1 (3.15)

I k1 2I
~

xkcosh sJ

with = 
( l_ v~~/~ ~~ 

= ~~(1)
k (_1/2)
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We leave the verification of (3.15) to the reader. Note that the definition of
the coefficients is independent of n

Having established the potential Gn we check on some of its properties.
Due to (2.2)

w = 2 ( l_ V ) G
nz 

on C
4 

(3.16)

Now (3.114) and (3.8) yield

G~5 = r%osn(e_9’)H
~
(0)s

~

= cr%osn(9_9~).(l_r
2
)
_V2 

on C~ (3 .17)

In the construction of H~~ we have chosen the constant c of (3.114) such that

-
~~~~ 

‘V’~(l-v)c = 1 (3. 114’)

This choice implies

~~= cosn(9- 9’)

for the intensity a(s) associated with G~. We still have to verify that Gn does
not induce tractions on the crack. The nature of G makes it obvious that

-- 
; -  ~zx’ 

Tyz vanish on the (x ,y)-plane . As for we o~serve that

= r%osn(9_6’)H
n(O) on C

4
, C (3.18)

Due to (2.19) and (3.11) a vanishes. Finally it can be established that the 1~2field of Gn has vanishing ~isp1acements and stresses at R = where R= (r2+ z 2) I

• moreover the stresses have the order of R 3  for large R while the displacements
are in the order of R 2. In this context we refer to (3.9) with the consequence
R — 

~~e
5 and to (3.114), (3.15) with the consequence

H (s) = O(e 2fl
~~~

5
) (3.19)

1.-
for large R. All of this is compatible with the asymptotic behavior for large R
of the field of the potential of a single layer. Gn admits a representation
(2.20) with the density function

f = f = Y~~r%osn(O- 6’) (i_r
~Y~~

’
~ . (3.20)
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Formula (2.28) takes the special form

fk(6)cosn (O-6’)dO = ~
JJr

fl (1_r2)_l/2cosn (e_ O’)g(r ,9)rdrde (3.21)

for the stress intensity factor k = k(e) of the regular field responding to the
pressure distribution g = g(r,O) within the crack. Since C’ is the unit circle
we are justified to set s = 8 on C’ . It is obvious that the formulas (3.21)
for the various n permit to calculate the Fourier components of k (e)  and thus
k( e) . One can also establish the following formula (see Fi’~ure 5)

k( e ’) = .~~~fJM(r,e,e’)g(r,e)rdrd8 where

1 (3.22)

M = (l_r
2
)1/2/d

2 
; d~ = l + r 2 -2 r c o s (9 - 6 ’ )  J

In this case the intensity a(s) is a Dirac delta function on C’ . An extension
of the concept of weight functions in the nature of the case (3.22) has been
suggested by Rice [ 3 ]  in general form. Formula (3.22) appears to be the first

- - concrete example for this idea. Formulas for the penny-shaped crack of type
(3.21) are well-known [5, 6] . They can be and were indeed derived by direct
analysis of the regular field with the aid of Fourier-Hankel transforms. But,
as we have just shown, the concepts of fundamental fields and weight functions
permit to establish such formulas in a simpler and yet more systematic way.

d

Figure 5

We conclude the discussion of the penny-shaped crack with some formulas for the
functions F~ (r ,z) in the composition (3.10) . We list without proof
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F + .~ F = ~~ +DF ; (D-n)F = F .~~_ _ !  
~
.

nr r n n-i n-i a a-l,r r n-i

-
~~ ~~

2
F~~ - (~~) F ~ = 0; [D ( D + l ) _ n ( n + l ) ] F~~+F~ ,11 = 0 ~~~~~

D = r ~~— + z~~j

The operator D preserves harmonicity. The third relation expresses h~- harnioni-
city of without reference to the 6 - term. It is possible to establish he
formulas of the first line by merely using c~ = 0 and the asymptotic behavior of
w on the crack in the case of any G~~~ .

Returning to the general elliptic crack we make an extensive use of available
literature [7 - 11). In particular Dyson ’s formulas [8,9) will be applied.

• 
- Following Dyson we write the density function f in (2.20) in the form

f(x,y) = - 145(l_v)h (x,y)E
X_1/2

(x,y) (3.214)

where E is the function in (3.1). We are primarily interested in the cases
= 0 and ~. = 1; h(x ,y) is to be a polynomial in x and y. Under these circum-

stances the case X = 1 will yield a regular potential and the case X = 0 a
fundamental one for properly chosen h(x,y). Dyson himself admits more general

-
. h(x,y). The case 1-. = 0 is pertinent to the analysis of an electrically charged

disk; so far it has not been applied to elastic analysis. We introduce the
- 

- 
following denotations and symbols:

- - Q(s) = s(a
2
+s)(b

2+s); ~(s) = Ql/2 (~~) 
~ 

0 (3 .25)

f o r s� O

2 2 2 2a b l~~ l~~~~~ , q =  ; D = — —+— —  (3.26)
F a + s  b + s  ~x

We denote the largest u-root of T = 0 by t;  it is nonnegative. These symbols
and denotations are unrelated to formerly defined quantities. Dyson and

— Hobson have shown that the potential G of (2.20) can be rewritten as a single
integral,

itabI’(?~.+— ) r x
G(x,y,z) = 1 

2 
j ~~~~~~ M~h(px,qj) 

. ds , (u ~ s) (3.27)q~s1
2 t
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where is the following differential operator:

= 
S~~ T~~ D 

. (3.27’)
n=o

The symbol r denotes the Gamma function. We replace xi~(x) by unity for X = 0.
Since h(x,y) is a polynomial only a finite number of terms in (3.27) have to be
used. M~h(px,qy) is therefore a polynomial in x,y whose coefficients are
functions of s. Let us now consider G on the crack; in this case t = 0 and thu s

Ii~abr(X+~~) 
~ TX 

+
G(x,y,0) = 

J — M~h(Px,qy)ds valid for C , C . (3.28)
r’t ‘xr~x’ ~ q

\2/ ‘ / o

In the cases X = 0, X = 1 the function T> is a polynomial in x,y. Altogether
we see now that G(x,y,O) is a polynomial in x,y on the crack, and so is
- a5 = t~2i~G(x,y,O) = g(x,y). We can write

g = £xh (3.29)

where 
~X 

denotes a linear operator which transform the polynomial h into a
polynomial g. The nature of the mapping depends on ~~

Case X = 1

This is the case of ordinary elasticity. £1 maps the real linear space of
all polynomials of degree <m (real coefficientsj into itself. 4h = 0 for some
h ~ 0 cannot happen. The mapping is therefore 1-1; given g there is a unique h.
The mapping does not necessarily transform homogeneous polynomials into
homogeneous ones.

Case X = 0

If h has degree m then g = ~0h has degree not higher than m-2. The case
= 0 for h ~ 0 can happen. We call such an h a fundamental polynomial. It

leads to a fundamental field G. Trivial cases are: h = 1, h = x, h = y, h = xy.

Here the reader is reminded of the definition of the degree of a polynomial h(x,y).
If h(x,y) is a monome, i.e. h . cxmytl with c ~ 0 then the degree of h is m+n. If
h is a combination of monomes we look for the monome of highest degree; that
degree is taken as degree of h. A polynomial is homogeneous if all of its monomes
have the same degree. The values of h on E = 0 are given by the Fourier poly-
riomial h(acos 6, bsin 9); the latter has degree <N if h has degree N. Note that
E(acos 0, bsin 6) ..

For each degree m >  2 two fundamental polynomials h(x,y) of ~egree m can beconstructed as follows: Set

1.
- 4
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h(x,y) = ~
m 
+ h

1(x,y)E(x,y) where £
1
h1 

= - £
0
Xm (3.30)

-
‘ Since ~f X

m has degree < m-2 the polynomial h1 is of degree < m-2; cgnseq~entl~
h1E has degree <m , and the degree of h cannot exceed in. But h = x = a cos e
on E = 0; thIs is a Fourier polynomial of degree in. The degree of h(x,y) cannot
be less. Thus h is seen to have exact degree m . Now h1E and X = 0, h~ and ?‘. = 1
define the same potential. Hence

~~(h1
E) = ~1

h1 
and ~~h 0 . (3.31)

This establishes h as a fundamental polynomial of degree m . In the same vein
we construct

• 
h(x ,y) = 

rn-i 
+ h

2(x,y)E(x
,y) where ~1

h2 
= - £xm~~y . (3.32)

With (3.30), (3.32) we have obtained two linearly independent fundamental poly-
nomials of degree m .

The application of the operators £~, ~ involves certain elliptic integrals.
The following coefficients are needed for t~e construction of fundamental poly-
nomials:

~~~~~ J s
_l/2+2

p
rn+1/2

q
n+l/2ds; c~°~= c ; (3•33 )

m ,n,t run through the nonnegativE- integers. The coefficients satisfy the recur-
slons

(2m+l)c - (2m+2n+1)e + (2n+1)c = 0
ni+l,n mn m ,n+l (3 314)

c = ~c 
+ (i-T )c with v = a

2
/(a

2
-b
2
)

mn rn-l,n rn,n-l

Up to degree 3 fundamental polynomials can be homogeneous. This is no longer so
from degree four on. We give some polynomials below:

Fundamental polynomials up to degree 14

m 0 :  h = l

m l :  h = x , h = y

in = 2: h = c 1
x2 - c10

y2, h = xy F
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in = 3: h = C11X3 
- 3c20xy2, h = c

1~
y3 - 3c02

x2y —

in = 14: h = c
1~
x3y - c

21
xy3, h = Cxx

14 
+ ~~~~ + yy14 + +

with the following coefficients:

= 

dll 3c 2
. C

2

c21-c12 ~5c 2
+2c

1~$ 5c~~ -2c~~ -5c 2
+2c

12

3c2 dll
= 

5c20-2c21 c21-c12

6 =~~(T-l) {(a~~~)a
2+ 7b2}; c = L~~T {aa

2
~~(~~~7)b2] .

For the case h ~ 1, more precisely for the weight function M = E~~~
’2 on the

- - crack the intensity function ~ is

2 2 - 1/14
p(s) 2

_l/
2(~~ +

~ ) (3.35)

‘- ~

-
-

“ p

- 1:
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THE BUCI~~ING PRESSURE OF AN ELASTIC PLATE FLOATING

ON WATER AND STRESSED UNIFORNLY ALONG TEE PERIPHERY

OF AN INTERNAL HOLE

- Shunsuke Takagi

Corps of Engineers
- 

- 
U.S. Ar~ r Cold Regions Research and Engineering Laboratory

Hanover, New Hampshire

INTRODUCTION

To test the strength of an ice sheet floating on water the

following measurement is regularly performed (Zabilanski et al., 1):

Dig a hole, place a vertical pile of various shapes and push it breaking

through the ice. However, the mechanism of the failure is not yet

clarified, and the interpretation of the data is not yet satisfactory.

To understand the basic mechanism, an ideally simple case Is chosen and

analyzed in this paper.
- 

A paper of the same title ‘was presented at the 20th Conference of

Ar~~r Mathematicians (19714). When numerical work was attempted in the

st er of 1975, it was found that the analysis presented in the 20th

- 
- . Conference did not work as expected. A new analysis as reported in this

paper was developed, and the numerical computation was carried out.
‘4
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- ‘ 1. The Problem

;~~ Suppose a thin elastic plate floating on water, extending horizon-

tally to infinity , and stressed with uniform horizontal pressure along

the periphery of an internal circular hole. We are interested in formu-

lating the buckling pressure and the deformation at the failure.

The vertical deflection W of an elastic plate that rests on a liquid

and is subjected to a vertical load q and the horizontal stress of

components N~~, II , and ~~~~ is governed by the differential equation ,

2 2 2
DV~w + yw = q + N -

~~
--

~~~ + 2N -
~~

---
~~~

--- + N ~~~~~~~~ ( i . i)xx a 2 zy ~x~y yy

where D is the flexural rigidity and i the specific ‘weight of the

liquid (Ref. 2). Let r be the radial distance from the center of the

hole. In our problem q = o and the deformation is cylindrically sym-

metric around the center of the hole. Then (1.1) becomes

• l h(~~~~~+ _) 2 w + w = 1 (N ~~~~~~~~ + N ~~~~~~~~
)  

(1.2)

where 1
0 

= ( D / y ) 1~~ is the characteristic length , and Nrr and are the

radial and hoop horizontal stresses in the plate (see Appendix B).

Following the usual treatment (Ref. 2), we assume that the horizontal

- stress component s N , N , N are in equilibrium by themselves . Then

• they are derived from a biharinonic function 4~ by

xx 2ay

N = ~~~~~yy ax2

35C
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N = - ~~~-~-xy axay

In the general polar coordinates th’~y are:

N = +
rr r a r  2 2

r oO

N =
rO ar

- - 

N80 
= 

a 2

In our problem 4 is a function of r only and must tend to zero when

r becomes infinite. Then they are formulated as

N =
rr

N = 0rO

N00 
= Ar 2

w~ere A is a constant. Constant A is positive because Nrr is pressure.

r~~t-ead of A ‘~e introduce 
r,c-ndixnensicnal constant a and express the

- - ! : : - J ~f- r :tS as -
~~~~

_ ,)
—a-y l rrr 0

(1.3)

I~ — 2N
00 

= ayl r

In~ r- Jufle the nondi~ ensional length x ,

x = r i (i.14)
0

‘4
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-
~~~ In this way (1.2) becomes

+ - 

~~~~~~~2 + + w = 0 (1.5)

At x = ‘., the condition

w = 0

- 0 
(1.6)

- dw

must be satisfied . At x = x , where x is the value of .z at the
0 0

periphery of the internal hole, we consider three conditions : (1) the

clamped-edge condition

w =  0
(i.fl

dx 0

- - 2) the simple-edge condition

W = 0

- - 

+ 
v &~ (1.8)

• dx2 x dx

-
. and (3) the free—edge condition

d2w 
+ 

v dii’ — 0x dx 
-

- 

(1.9)

d (a2
~ + 

i dz~’ + a
t. dx 2 x dx 2 

- 0
dx S

where v is Poisson ’s ratio.

The second equation of (1.8) and the first equation of (1.9) are

f-~ ir~d from M = 0. The second equation of (1.9) is derived fromr
‘4

- I
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+ ( l / r ) ( 3 M 0 /30)  = 0. The effect of horizontal stress must be

counted in In the rectangular coordinates x, y, shears Q and Q

are given by

3M 3M
Q = + + N ~~~~~~ + N
x 3x 3y xr ax xy 3y

3M 3M (1.10)

Q = + —
~~~~~~ 

+ N + j~1y ax 3y xy 3x yy 3y

These equations are found by extending Hitényi ’s (3) one—dimensional

treatment to two—dimensional. In polar coordinates r , 0, components of

shear and are given (see, Appendix A) by

314 3M
= 

r~~~~~1 
~ + 

rO M + 
3W N + l 3 w Nr rr 30 00 3r rr r 36 rO

3M 3M (1.11)
_ _ _  

2 1 06 3w 13 w• Q = + — M  + — — — —  + — I V  + — —N
0 3r r rO r 30 3r rO r 36 60

Constant a is the eigenvalue to be determined to satisfy the boundary

conditions at x = x~ . The first step for the solution of this eigen—

-~ value problem is to discover, given a positive number a, two real

functions, w1( x )  and w2(x), that are the solutions of the differential

equation (1 .5)  and meet the boundary conditions at x = in ( 1.6) but

are not restricted at x = x
0 in any way . We call them the fundamental

- ~~~
‘ solutions. We shall find them later in the following form,

—v~~~ /2 I1~~~~ /2 —l+i

+ iw2 
= f 

~ 

(r
2 

+ r u_i) + (r
2 

+ r~
_
~) Ie

1
~~~~

r
~
4
~
1 dr

(1.12)
I
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The second step ~s to express the fund~ii~ental solutions as power

series of s. Let f ~ (x) (n = 0, 1, 2, 3) be the Fuc~isian type solu—

t ic05 of (1.5) relative to ~~
- = 0. We sk-.ail find linear combinations ,

= A, f ( s)  
(1.13)

-
~~~ by determ ining constants A 7 by use of (1.12). The solution w ( s)  is

a linear combination of the fundamental solutions ,
- 

- 
w (x)  = A w1(x ) + B 

~~~~~ 
(1.114)

The third step is to solve the simultaneous equations of A and B

that are found by substituting (1.114) into the boundary conditions

(1.7), (1.8), or (1-9) at x = x
~
. If a root of the algebraic equation

found by letting the determinant of the simultaneous equations equal to

zero is positive, the root gives S .  Our problem is then solved.

la. Abstract of the result.

The main feature of the numerical result is as fcliows:

1. Buckling takes place under the free—edge condition . Buckling

does not take place under the clamped—edge and the simple—edge conditions .

2. Eigenvalue a under the free—edge condition is found in the

range i—v
2 

< a < ~~~ , where v is Poisson’s ratio of the elastic ice plate.

• When a = 1—v
2
, root ~ is equal to zero. Analysis presented here is

- .,
. 

complete for the case 1—v
2 

< a < 2 , but not complete for the case 2 < a < ~~~~.

It is believed that the result presented in this paper can practically

cover all the cases of our interest .

3. Buckling under the free—edge condition takes the shape as shown

in Figure 5 and 6. (a is restricted to 1—v2 ~ a .~~ 2 ) .  This shape of

- 4

i
t:
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deformation is observed frequently in laboratory experiments and field

tests. Therefore we may conclude that buckling is an important mechanism

of failure.

PART I. FUT~DA~~NTAL SOLUTIONS

2. Fuchsian Type Solutions
-

- - Equation (i.~~) has a regular singularity at x = 0. The solutions

- relative to x = 0 are the Fuchsian type power series of x. Their

• indicial numbers are:

-~~~~ v 0
0

-

~~~~ 
“

~~ 

= 2

-

- “2 
= 1 + p

v 3 
=

where

- -~ 
- u = (2.1)

The four solutions may be expressed with a single formula

a~~~ 
v 

+ (2.2)

where ni 0, 1, 2, 3, and

1

amd the rest of the coefficients a ( m) (n  > i)  are determined by the

recurrence formula,

a, = — a
(m
~ [(urn + 14n)(vm 

+ i
~n—2) (v + Irn—l—ji)(v + 1~n—i 

—1

(2.3)
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Their individual forms are:

— 

~~

‘ 

~~ 
= 

(_]~)fl ~
ç
(3_u))

_ç~~~
(3~~))__ 

~~~ (2.14)
0 

~~~~~~~ 

143fl (2~ )~ r~n4-~(3_~ ) ) r  (n+-~(3 + ~~))

- 
( 1 ) fl c(~(5_~) r ~(5+~)) 14n+2 (2 . 5 )

f1
(s) - 

14~’~( 2n+l) ! r (n~~ ( 5 ~~~)) r (n ~-~( 5+u )) 
~

— (—l)~ — 
r(~

- 2±i.I~~ r(~-(3iji ) r(~~5+u))
— 

“ 14~~ n! r(n÷~- ( 2+i~) ) r (n4-~-( 3+~ ))  r (n÷~
( 5+P ) r 5

(2.6)

where k=i 2. In (2.6) we have introduced the convention that the upper

or lower of the double sign ÷ (or ~~) should be taken according to k = 1

or 2, respectively. This convention is observed throughout the paper.
-

• 
The main objective of PART I is to determine the fundamental solution,

i.e. to determine ~~~ in (1.13).

Differential equation (1.5) has an irregular singularity at s =

In other words, the solution relative to x = ~~~, say f  (s) , can be found

in the form

f ( s )  = e
_AX -n

where A satisfies A 14 
+ 1 = 0. The series 

~~ 
p x~~ in this equation

-~ 1 is asymptotic and divergent in this case. Therefore this equatic~n does

not provide any means for determining A~~, in (i .i~~).

3. Countour Integral Solution

In order to find the fundamental solutions, (1.5) must be transformed

by means of the contour integral,

‘-4
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w(x) = f  v ( c )  e~~ d~ (3.1)
L

where L is a contour in the complex plane of r~ tha t shall be determined

to let a solution of (1.5) satisfy the boundary condition ( 1 . 6)  at x

Following the usual procedure (b ce (14), pp. 187—188), one arrives at

the differential equation of V (c),

(~~~~ 14
) ~~~ + lOC3 ~~~ + ( 23+a)C 2 

~~ + (9+3a)cv = 0 (3 .2)
d~

3 a~
2 dC

The contour L selected for this solution is shown in Figure 1.

- To f ind the solution relative to ~~ 
= 

~~~, let

C = 8r (3.3)
where

- . - = e x p (3 i ~i/~~) .  (3 . 1~)

Then the equation (3.2) becomes

- 

I 

(r14-i) 
~~~ 

+ 10r3 

~,,2 
+ (23+a) r 2 

~~~~
- + (9+3a )rz’ = 0

-
~ (3 .5 )

-

, 
This equation has a regular singular point at r = ~~~ . The indicial

numbers A (m = 0, 1, 2) at r = ~ are:

- 1 =

• A
1 

= 2 + u

A 2 = 2 — u

where u is given by (2.1). The solution v (r) corresoonding to the m di—
111

I ~~~ cial number A is:
m

Vm
( r )  = q~m)  

r~~m~~
’
~ (3.6)

36~
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a

- 

-~~ Fig. 1. Contour L on the complex plane ç .

Points A1 and A2 represent points °8 
on the

- 
respective branch.
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—1

where

q
(m) 

= ( 14p+A ) ( 1 4p+A +2 ) I (14 m+2_ ( 14 P m+2
~~J ( 3 .7 )

The contour L must be such that the point ~~ = B is a branch point

of v ( c) .  This condition is satisfied by the series v
1
(r) and V

2(r), 
us

shown by (3.10) below. These two series ca~ be expressed by means of

hypergeometric series F ( , , ; ;)  as

vk
(r) = r 2+M 

F ((2+~ )/~~, ( 1 4+~~~~) /1 4;  (2+u)/2; r~~)  . ( 3 . F )

The hypergeoinetric series are summed up by use of the  formula

—1 1
— i l—2a

F(a, ~~~+ a; 2a; z)  = 22a~~ ( l--z) 2 
~~ +

[Handbook (Ref. 5) p. 556, Formula (15.1.114)]. Thus Vk ( r ) .  where

k = 1 or 2 , reduces to
— 

j~~~~~~~~~~ +p/2
vk
(r) = ( r  -1) 2 (l/2)(r2 +Vr -1) (3.10)

This equation shows that C = ~ is a branch point . Formula ( 3 . 9 )  can

be proved by showing that the one on the right—hand side satisfies t~;c

hypergeornetric differential equation of the one on the left—hand side

and also that they satisfy the sam e init ial  conditions at z 0.

Suppose that vk(r) on one of the branch 
A1B of £ in Figure 1 is

given by (3.10). Then, vk ( r )  on the other branch A2B of £ is given by

— l
-(r u-i) 2 

1~ I2 ~~
2
~~~~) 1

Thus one finds the integral solution ,

F(s) = f ~(r
2 

+~~~~~~~~~~~~~l~~~~~ + 

~~ 
~xr ( 14 1 ) 2dr

(3.11)

- 4
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The fundamental ~ol-~tI~ n~- L
1

(x )  arid c 2 (s)  ~tre given by the real and

imaginary parts of F(x),

F (x )  = w (x )  + ~ ~~~~~ 
(3 .12)

14. Integrat~ or. of the  Intesral So ] - it i ’ n

We shall inteorate (3.11) to a ii •- ~ r combination of f (s) ,

r~~ x)  and t’3 ( x ) .  The ~rr t  st~~r - i c r  t h i s  ~ uai is to change the range

of integration in (3.11). Introduce a complex variable z = Br , where

B is given by (3.14). Use of ~ transforms (3.11) to

F (S) = 

r I~
_2z2 

~~~~~~~~~~~~~~~~ 

- 

~ 
+ (

~
-
~ 

+ [_z~ _ i)2j  eZX 
B~~(_ z

14_ 1) 2 
dz

( 14.i)

The range of integration B ~~ ~‘ B in (14.1) shall be changed to B “.‘ 0

and 0 “~ 
— 0 • Thu s (14 .1) becomes

- 

-

~ y ( .~~~) =f f + J} 1
(
~
_ 2 2 +[E~~ 2 

+ (B
_2
z2+~ /~~~~~~

j 
e25 i 1

~~~~(z 14+i) 2 dz

• (14.2)

- - In the above equations , quantities inside the square roots are chosen to

- - 
be positive in order to insure correct forms in the respective ranges.

Letting z = Br in the f i rs t  integral and z = —r in the second integral,

(14.2) transform s to a summation of nornal forms of integration ,

F(s) = ih 1(x)  + ih2 (x)  - ~oexp( ~~p i i i / 1 4)  g1
(z) - B exp ( p i T i/ 1 4)  g 2 ~~~

( 14 .3 )

1 ;JL J.
where 2 2

hk (x)  = J (r
2 

+ e~~
’(l-r

14) dr ( 14 . 14 )
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and - u

g~(5) =f (r~ +/r ~~+i) e~~~ (r~+i)  2 dr ( 1 4 . 5 )

— 

Expansion of exp (Bxr) transforms (14 .14) to power series of x,

hk(x) +~~ h + 
~~ (~s)

2 
h~~~ + ... (14 .6)

where 1

h ( k )  
= f ’ (r2 + 

2 
r~ (i-r 14 ) 2 dr (14.7)

Integration of ( 14 .7) will be carried out later. Integral (14.5) trans—

forms to power series of x

= ~~~~~~( i)  
+ ~~(i)~ + ~~(l)~ l+u 

+ 
~2 

~ 2 
+ (14.8)

and

= ~~ (2 )  
+ 9 

(2 ) 51-u + + ~~(2)~2 + - - (14.9)

as explained in the next section . Thus one finds F( s ) in the following

form.

F(s) = B + B(2
~~~~~ + B x + B )sl~~ + B 

2 
+ (14.io)o ~i 1 2

where
lJ 1T 1~

= i(h~
1)  

+ h ( 2 ) )  - B(e ~(l) + e~~ ~ (2 ) )  ( 14.11)

— 1i 71i jJ ,Ti

B
1 

= i5 (h~~~ + h (2 )) - ~ (e 
~~ ~(l) + e~~~~g~ 2)) 

( 14. 12)  —

1J TT i p1T~

B
2 

= ~ (
~
‘ + hr))  — B (e 

‘~~~~ g ( i)  
+ ~~~ ~ ( 2 ) )  ( 14. 13)

= — Be 
1~ ( k)  ( 1 4 . l14 )

In this calculation we tentatively assume that 0 < a < 1. Series are ar—

ranged in the ascending order on this ass-~~pt i on. The formulas for the
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values of a outside th e  range  0 < a < 1 will be derived from the formulas

in this :-at~~e. Note t hat the entr ies In ( 14 .10 ) ,  except B1x , are the f i rst

t erm s of 
~~~~~ 

where m 0, 1, 2, 3. The first—order term , B1x , is not

contained in any of f ( s) ;  it is proved later that B
1 

= 0. The entr ies

in (14.io) are s u f fi c ie nt , to express Wk(X) as a linear combinations of

f(s).

14a. Formulas of 
9

( k )

- . 
We shall g ive the  in tegral  form s of by successively developing

-

- 
( 1 4 . 5 )  into series of x .  Integrat ion of these formulas will be carried

out in the  next section.

Letting x = 0 in ( 1 4 . 5 ) ,  one f inds

9
(k )  

= 

f 
~~ 2 +~~~~

14+i) 2 (r~ +i) 2 dr ( 14a .i)

To find ~ ( 2 )  
t~ c formula

- ~~(2 )  
= f (r 2 

~~~~~+l)
2 (e~~~ -1) (r~+l) 2 dr

shall be transformed by introducing ~ = rx to

c 
= Si-u

i 
(~~2~~~~ç 1 4) 2 (e~~~-l) (

~~~~14~~~~~~14
) 

2 d~

Lett ing x 0 inside the integral , one f inds

(2 )  
= 22 

f ~~-2 (e~~ -1) d~ ( 14a .3 )

To f i nd ~ (2 )  I-~~1tiDly on (14a.3) and subtract it from ( 14a .2) .

Thus one f inds

___ - ~~~~~~~~~~~ ~~~~~~~~~~~— — —  —
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S (2) (2) 1—p

~~ 

1 _____ 1 p

= ~
i_
~ j  ~~~~~~~~~~~~~~~~~~~~~ 

2 (~~2~~~~~~ 14 )~~ 22 
~~~21 (e~~-l) d~

Letting ~ = rs, this transforms to

= .r 4 1( r ) r  e -l di’ (14a.14)

* where

— 

~l ( r )  = (r2+~~~~~)2 (r 14
+i) 2 

- 22 r~~
2 (14 a . 5)

Because of the inequality 1 ~~~ Ci — e~~)/u > 1 — u/2 the integrand of ( 14a . 14 )

is uniformly bounded. One can , therefore , let s -- 0 in side the integral.

Thus 
-

(2 )  
= -f ~1(r )  r di’ ( 14a .6 )

To f ind ~ (2 )  multiply x on ( 1 4a . 6 )  and subtract it from ( 1 4 a . 1 4 ) .  Thus

one finds
(2) (2) 1—p (2)

- - - ~~~~~ 
— 

~o 
- 

~~~p 
~~~ 

- 

~1 ~

: 
2 1 2 e~~

’ - l + r x
= x j  ~1(r )  r 22 

di’

1 i ’s

Because of the inequality 0 ~ (1—u- e~~~) I u 2 
~ — the integrand of the

last integral is uniformly bounded . One can , therefore , let s —i- 0 in side

the integral. Thus -

(2) 
= 

f 
*~~~~

(
~~
‘) ~2 ar (14 a .7 )
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To f ind  ~~~~ one may simply d i f f e ren t i ate in ( 1 4 . 5 )  with

regard to x and let x = 0 in the result .  Th~~ ~~~c i,~~nds

— p 1

-

~~ 

-f (r 2 +~~~~~~ + 1) 
- 

2 [r/(r
14
+i) 2 ] ~~ ( 14a .6 )

To f i nd ~~~ use (14a.l) and ( 14a. 8)  to derive the formula -
‘

— g
(l) 

- 

4~~s = 

f 
(r 2 2 (e rx 

- 1 + r s)  ( r 14+l)  ~

- Letting ~ = i’s , this  becomes

-

• 

= 5
l+~ 

f 
(

~~~~14~~~~~~14
) 

2 (~~2~~~~~~ 14 ) 2 (e~~-l+~ ) d~ (4 a .9 )

Letting s = 0 inside the integral , one finds

~ (i)  
= 2 2 

f 
çP 2 (e~~ - 1 + ~~) d~ ( 14a . 10)

To find ~ ( i )  use ( 14a . 9 )  and ( 14a . lO )  to derive the formula

- :  (1) ( 1) ( 1) l+u- - - 
~ 11 ~

= 
l+p ~~ ~ (~~14

÷~ 14 ) 2 (~~2~~~~~~
”-

14 ) 2 -2 ~ ~-p- 2~ (e~~~-1+c) ~~

• Lett ing ~ = rs , this  transforms to
7..

= 
2 j  4 2 ( r )  r 2 

r~x~ 

+ rs (14a.l1)

where
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- ~~~~~_
- -- - 

5- ”
~~~ - 

~~~~~
5- 5-’ ’

~2 ( r )  = (r 14+l) 2 (r 2+ J 1 4+ l)  2 -2 
2

Because the integr and of (14a.ll) is uniformly bounded , one can let x ~ 0

inside hf— i n t eCr a l . Thus one finds

g
(l) 

= 

~~~~~~~ 
r 2 

di’ ( 1 4 a . 12 )

14b. Evaluation of g
(k )

The independent variable rt introd uced by

r 2 
+f r

14 
+ i —1/2 (14b .l)

is useful for the following integrations . This transforms to

r2 
= (1 -

+ r~ = (1 + n ) / ( 2 f l h /2 )

and

r ~~~ = [( ~~ + ) / ( 1 4 3/2 )]  dfl

Substituting these in (14a.1), one finds

9
( k)  

= (2/ ~
)_ 1 

B(~~ , ~~
=(2~~~~) (

1
)r(1 )Slfl~~~~~~~~ (14b.2)

Eq. ( 14a.8)  is similarly integrated to

~ ( l)  
= -C’ ( 1 4b . 3 )

Use of r~ transf orms ( 1 4a .6 )  to

~(2) = - 

f 
[1 - (1 + n ) ( l  - n ) 

-l

By letting 1 + ~ = 2 — (1—ri), tL e last integral is divided in two por—

( 2 )
tion s; thu s g1 hc-oc~ es
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— 5 - - ---- -- ---5----- — 
~

- --,—--- —- -—- - -  -
~~~~~~~~

— 
1 1

- - 4 - 
2

where

= f ~l - (~~ - )2} fl 
~ 

d~

and the remaining integral J
2 
simply integrates to

= — B (u/2, 1 — p 1 1 4 )

After partial integration of n ~ 1
, 

~l integrates to

J 1 = —l4 /~~ + 2B(u/2 , 1 — p/14 )

• Thus one finds

~(2) = ~—l (14b.14)

Combi ning ( 14b .3) and ( 14b.14 )  the result may be shown with a single formula,

( k )  
— ~~ -i

~~1 

— ( 1 4b . 5 )

After partial integration of ~u—2 (14a.3) integrat es; after two t ines

of part ial integration s of (~~2 (14a.lO) integrates; the two results

are shown here with a single formula:

( k )  
= ~ 2 p/2 [u ( l +u ) ]  ~ r(l~~-) ( 14b.6)

~e express ~ (2 )  in ( 14a. 7)  and in ( 14a. l2)  with a single formula,

g

(k )  
= f ~ (~~ +l) 2 ~~2 

+ ~~+l) 2 p/2 r
_2~~

J 
~2 

di’

- - Use of n changes this to
‘7.

g
(k )  = 

8~~~~~f 
11 

- (1 + n ) ( 1  - n )
~~~ (1 - ) l/2 d~
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Letting 1 + n = 2 — (1 — ii), this can be divided in two integrals ,

9
( k )  

= (8k) K
1 

+ ( 14~~~~~~) K
2

where

~1 =f l _ ( l _ f l~~~~ ) ri~~~~~ ~ (l - ri )~~~ d

and the remaining integral K
2 

simply int egrates t o

— fl~~~~~u 3~~~u— 
_ E \  2 , 

14

+After the partial integration of Ti 14 — 14 , K
1 integrates to

K
1 

= 
2 _ ( i ;~~ ) B ( 1~~~~~~~~ 

~4~)j
Thus one f inds

9
( k)  1~ (_ 1+ p) I  

—l 
B(~~ 

3 ~ ii)

~~~ 
r(3+u)

T’ 
(3_u) . w (l~ij)

(1<)l4~ • Integration of h• n

Let

+ r 14 
= (14c.l)

Then

r 2 = (1 +

= 
• (~ -

and 

rdr = 
[(

2 
- l)/(14

2

)]

-
. 
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- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

. :~~t i dt~~~ these in (~~.7), c-n e g t E

1 
~:+l — ii n—i

-

~~~ 
-
~:2 

- _ -

~~

-5- 

I ~~

— + 

(~ 
+ ~~ 

~- (14c.2)

l or  n = 1, this I t~-~ r a tcs  ~o

- 

~~~ = ; (:/~ ) 11 - E - ( ’ - / ~~~~ 
( 14~~.3)

To ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 2, it is no tes  ui~~t ÷

is  real . To shos ~~~~~ 1t~~ 
~ , 2 

= cc-sO in (~~.7 )  t o ~et

+ ~ ( 2 )  ( c o s O )  cosp9 dO

which  is real! - ~~vide thE: costC’~f o~ 
L~ .2) In t~

;o i art : ,

-

~ 

- 

-

- - p n+1
where ;~~~~

- -
~

-_

- ~-; i =c: ~ (i+c
2 ) d~

and . 
— 

p n+l n—l

- 
‘

~~ 

~~~( k )  ÷ 2 
- 

2 

(1÷~
2 ) 

2 
d~

- - 
I : C t t L ~~; ~ 

= ~~~~~ t~, e 1at~~’:r Int e-e~rates  to

~~( k )  
= 4 exF- (~~--+i -n ~ F ~~~~~~~~~~

r ;~~r
-.f ~~~rs L i : ~~ da- a— ”sn~~-t ,~cns , this ~ieTds

= 
~~2~~~~~~) :(J~~:)r(l~- )  e:~ t ~~~~~~ sin~~~~~

srsi

3:- c

5- -- --a-- ::
_ _ _

~~~T:i~1 
- ‘

~~~~~~~~~~~_



— 4,.. ,

~ ( k)  
= - ~ {(1 2)r] r~~~)r~~~) exp (~~~~

’
~~~) E~~I A

Thus one f i n d s

h~
1) +; 2) = i2 2 

(~
( 1)  +~ (2)) + (2~~~~)~~ r (~ ) i — (

~~
-.) (cos  

~~~~
- - fl

and

+ h
( 2 )  

= i2 ~~~ (iv- +± ( 2 )  + ~~ [b /~( i p 2 ) ] r (J t L) r~~~~~) ( .  ~~ +

~aki~~- tFe re-al a s t  ~~~, C-SC f i  Ca:;

~ ( l )  
+ ;;( 2 )  

( 2v ~~~~ )~~~~ ~~(~~~~~~~~~; 

F~~ l-s~~ 5- :~~~ ( 1 4 c .~~)

and 

~~~~~~ + h~
2)  

= (~~~~~ 2)-l ~~~~~~ F~~~~~~~
) 

F~~~~ J )  
~~~~~~~ (14e.~~)

14d. Fs u;~~€ - r t a ]  soi~~ icr ;;- for 0 < a < 1.

S-i ’Ls t i tu t~ r.~ ( . 2 )  a:.d ( L s . 14~ istc ( 14 . ii) ,  , L E ~ is

B = (2 / ~~~)~~ 
F

(
1~~~~) 

r ( 1.-u )

Substitutis~ ( 1 4~~~.5) ana ( 1 4 c .  ~~) into (14 .22), cne he t s

• B1 
= o (d~~2)

Substitutin~ ( 14b.l)  and ( 1 4 c . 5 )  in to  ( 1 4 . 1 3 ) ,  one gets

B
2 

~~~~~~~ 

( i 2
)~~~~~F

(
~~~~~~~~~�j ( L i  3)

Substitut ’ s~ (14b.6) into (14 .114), c-ne

= 
~ ~u (i~p~~~~~ 2 F(F~u) cxp (Lt. 14)

Thus (;r ~ .

~~ ~~~. 
F ( s )  = B f ( s )  + B~~~~2

(x )  ÷ B~
1
~~~~~5) + 

2)

f
~~~~~~~~~ ( . r)

When 0 < a < 1, f un c t i o n s  f x )  (r ; 0 , 1, 2 , ‘t )  are real . Th o r ; :  -c; e ,

fundas ent a~ sol~ t i  ~~~ ~‘~~(5 )  
~~~~ :‘c-~ -u t-y d e - _ c:pc-C I ~~~~ ‘11CC ccef—

f i c ie nt s  i i ,t o  rea~ ar~ ~~a : 1 r ;  C a r ; - S .  I hos

3:7

, l

~~~~~~~~~~~~~

-- - — -

~~~

--- -•, -5 - — —- —

~~~~~~

-.- - - —_ _-5-
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+ 
~~1

1 2
( 4 -

~ 
~ 

~ 2~~ 3~
5-’
~

= ‘a~~
’
2~~~ 

+ + q 5 j 3
(x )  ( - : i . 7 )

-.

= (i-[~~ ) 
P
(
l4H

) 
F
(
1~5-U

) (14d :)

= 

~~~ 
(i-~~~ 

r ( :f~ ) r(:-~; , (14d.9)

= ~ ~~~~~~ 2~ 

2 
r(~ ;s) c~~ -~~~~~~

°’ ( 1 4 d . i 0 )

a = ~ 
~~~~~~~~~~~~ 2~ 

2 r(2~~) (14d.l1)

5. F u n l a n en t a l  f cj : ~t i c s r  for a = 1

- - ~~~~~~ a = 1, ( i . : - ) reduces to

2
+ + W = 0

i-:evel (1961 ) gave the Fuchsian t e  solutions of this ecuation t i t h  t h e

n o : at i c r s ,
2

r:ev (x )  = 

~~~~~ 14~~ ( 2 n ) :

= 

~~~~~~ 

~~-fl
2

~
- • n c 0 2

(x )  ~~~~~~~~~~~ (—l )
’

~ 

r (~ -)

~~~~3 1 4 ( ~~~~ + i )~ r(~:+-~-)

‘-4

— - - - - -- - - 5- --,- - - .-5- -

~

- - - -- -

~ 
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- --- —-5- ------ 
7~~~~~~~~~~~~

5-, 5 - 5 - 5 - 5 - 5 -5- 5 - 5 -
~~~~T~~~~~~~~~~

’
~~~~~~

nel1
(x )  = ne’1

1
( x)  ‘~~ E ’~~~

3 5
‘
~~~~~
‘ (-i ~~ ) 1114 

~~~~~~~~ ~~~~~~~~~~~ + ~~_- + _ j__’
~ ~,•1J~2+ 1

‘—I 
~~~~~~~~ fl - 

~~(~~ 4 ) ( + — ~ Z~ Y’~~
— 1 ~ < 14k+l)

n 1  14 4

To f in d  th e  fu n u a r n e r ; t a 1  n i lu t i o n o , tall ur Ln c ’,rn func t ion  w (x)  must

be t rans i ’ox ’r ed to the unknown i ’U n c t I O f l  v ( , )  defined by the contour

integral (3 .1 ) .  The t ransformed d i f f e r e n t i a l  equation is

• (1 + ~14
) ~~ + 2~

3v = 0

and one f inds

v( ~~) =

Therefcre the ecnplex solution W ( s)  for a = 1 is found in the integral

form

w (s) = f e dç (5 .1)

L J ~~~~

The contour L is the one shown in Figur e 1. To f ind the fundam ental

solutions in the form of the linear conb iration of the nov funct ions ,

J. Dieudonn~ ( 1958) , as explained in Nevel ( 1968), expanded (5 . 1 )  into

power series in the neighborhood of x = 0 , and determined the f i r s t  few

- - c o ef fI c i e nt s .  The fundanental solut icns  thus found are denoted here t:.r

W
1 

and W
2
:

w~ (x )  = ( 14~~~~~ )
_l F

(
1) nev (x )  - ~(2,~~)

_1 
nov C s)  + (2

~~~~~~~~)~~~~~ 

F (~~) nc;’ (5)

r 
1 o 1 2

I. and
2 2

= (8~’~
’)~~ 

r 
~~~~~~ 

nov0 (x )  — ( 14/
~~

’ )_ 1 r 
~~~~~~ nov 2 (x)  + ne7~ (x )  —

- (1 - y + log / ~~) nav
1

(x )

where  y is Enler ’s conste -at 0.5772156.

‘4

379

~~~~~~~~ 

—

~~~~

-- - —5- 

~~

-.——- - --— - —~~~~~--‘ -5--: *5- ”-5-5- - 5- ’ ’~~ ‘ - ‘ — — . - —

— — — - 
-~-.--~~——- -- ~~~~~~~~

. ——5-—.- —-5 - .  ~~~~~ __ ~~~-- ~~~~~~~‘ “ -‘ --—5-- ‘ 5 - 5 -  — —



- . —5- -— - - - - - 5 -  —~-,——-- - -5 - - - ,--”-—’— - - -.----~-—----- --.--—--——
- _

~~~- -•-—_w ;.•— — -5-- ----

We shall show in the following that W
1

(x)  and •a 2 (x )  in ( 1 4 d . 6)  ax1d

(14a,.~~), respecitvely , gives

N- • h o  u (x )  = w Cs) + 12 w,,
~
(x )

a-~-1 - -

~~~~ ~
‘2~~ 

~~~~~~~~~~~ 
- 

~~~~ w~~( x)

To show th is , note that

l i~c p f  (x)  = (2~~~~~)~~~ 

~~~~~~ 

nev (x)
c-Il

1~u q f 2 ( x )  = (2~~~)
1 r ( 3 ) nov 2 (x)

lb 
~~~~~~~~ 

= nev1 (x )
a-Il

W~ shal l prove , therefore, that

lire (r 1 f 2 (x)  + p
2 
f3(x)) 

= - /~~ (1 - ‘
y + 1og /~ + 

~f)  nev1
(x) + / ~nel 1 (x)

a-Il
( 5.2)

~~~ (q1 ~~~~~ 
+ q2 f3(x)) 

= ~~ - y + iog~~~ - ~~~~ 
nov 1(x )  - 

~~~~~ neZ 1(x )

( 5 .3 )

— The l e f t— h an d  s ide of ( 5 . 2 )  becomes

~~~ (~~l ~~~~ 
+ 

~~2 f3 (x)) = ‘~~~~‘~~_- 

~~~~ u n  
~ 

(_ C1( n )  + C2 ( n) )
a-I], ~ 14 n !

- 
F(~~(2+u ) 

l~~ ±~~~
) r(~(5+~ ) _ _ _ _

Ck ( n )  = ~ 1’(2÷ij )

r~~~~(2+u )) i(o ~
÷
~

- -) r~n~~(~ +~ :)

Tal—J r1g th e  l i m i t , oar f i nds t h ;~t

.
4
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— — -- -
: 

— —— - 
~~~~~~~~~~~~~~~~~~~~~~~~ 

‘
~~~~~~~ 

—, -
~~~~~~~~

iim ~~(-c~ ( n ) + C2(n)) =

~~~~~~~~ 
[n

~~~~~~~ ~ k~~~~
_ 1cc

~ 
÷
~~

÷ 
~~~~ 

+ ~

where we have i : t rodu ced  the  c on v e n t i c a  t ha t  th e  :usr :nt ion  ~~ d i sap~ ae rn

w l o ~ n = 0. This  u o u a t b o f l  proves ( 5 . 2 ) .

The I a l t — b a n d  s ide  of (5.3) becomes

(

~

i f
2~~~~ 

+ 
~2 

f ~~~)) 14

fl

S 
L~ +1 

1im ~~~ ~S1
(n) +

where  S
k 

(r; ) can be r iven from (n )  by replacing cos

wi th  s ir i (( 3+u )~~/L, Thk isd  t h e  l imi t , c-ne f inds  that

u r n  
~ 

(— s~ (n )  + 

~2 ~
“ ‘~) 

=

4! 
~~ 

~l — y — 1 o g ~~ —

~~~~~~~~

+

-
, 

where , by cor1vention , the  suir~ a tion  ~~ disappears when ~i = 0. Th i s
p=l

proves (5.3).

6. Fundamental Solutions for a = 0.

When a = C, (1 .5)  reduces to

-
~ / 2d h o

+ w + w  = 0

as may he der ived by 1-uttir.r N = 0 SSd ~-j~~~ = 0 in ( 1 . 2 ) .  This equa tIon

can be d ec cmu os c -d in two eou a t ions ,

/d 2 
l d  \

+ ‘ r _ i ) W 1 = 0 (6.1)

and

3J J
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—
~~~ 

‘
~~~~~~~~~~

‘ _ “ ‘ -
- - . .- , .~~~~~~~ 

—---- , , ,~~~~~~~~~~ -----  “ 5-

+ 
~~~~~~~~ + )

~ 
= 0 ((.2)

I The cl-ct ions 0± t he  t~:o eo uS~ ions  ca ; ic f ’y i n ~; th e  ;ou~ dc~-y co nd i t i o n

- - ( 1 .6 )  ut c =

= hors + ~ k ej x  (6 . 3 )

= kerx - i ~eis (6.14)

g iv in ;~ the- fu r d a r . a n t a i  so lu t ions  hers and k e - x .  Thus

= A hers + B keix ( 6 . 5 )

We shall prcve tha t  W
1

( x )  in ( 1 4 d . 6 )  and w
2

(s) in ( 1 4 d . 7 )  sa t i sfy

1dm w1 (x )  içerx ( 6 . 6 )

and

-~~ 

1 W~~(x)  = ~~ keis (6.7)

First we nc-te tha t

u n  f ( s )  = him f .~(s) = bear
• p-I’l ic-~-l 

‘

- and

him f1
(x )  = u n  f

2
( x )  = 14 beix

t u-Il p -Il

L e t ti n~-

A 1 — c

we trans oorn (Li .6) to

1 , 2 1~~~ ~-r
I - 

112
1 

= ‘1’p (l-4-p ) r( -5 ) .  ~~
‘ si n L ’  ‘2  

+

+ ~ ~~~~~ F(~~,I).f() + 

(2 t )~~2~~~~) 
2 r (3-A ) cos 

~~ .f 3J
Let tin i ’  ) --‘-c ,r
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:_

1 ,
5-

lin t’, = t f -5~~~ ~~~( ; :-~~2 - a)  ~~ - +

-, ~ A~~ 
~ ~ iA

S; i t i t u c ; a- - :‘rom ( 2 . 1 4 )  and ( 2 . d ) ,  ‘ 5 ’  floss t~~~tt

~~~

. bess + 

~=l ~~wh i ch  p rcve : :  ((.~ ).

os ( 14~ .7) ti:

= 2 ~ 11. + ) -  
4 

115 - +

+ 

~ 1~~~(~ -A) 

F(
+)
) 

~~~“- 1  - ( l - A ) ( 2 - 1 - ) 2 F ( ~~+ X )  cos~~

L et t i n~’ A-~’o ,
1~ 

- 

~f. 1,1

1i~ U = to rs - ~~ ( l_ ~ + i o b l 2 )  beix ~ u r n  (~~~~~ -

2 2~~~ 
2~~ )~~o ~ ax

o t - st i c c t i : . -  Crc:; ( 2 . 5 )  an-c ( 2 .  ( - )  , s a t  ~‘I: as :-~ -s- t-

~~~~ (~~~i~~ ~~~~ = 14logx beix 

~~~~ 
14~~~~~~~~~ ÷:~~~~

2 
~~~~

which proves ( 6 . 7 ) .

6a. Ei~’enva1o€s fo r  a = 0.

-

‘ 

Vh en = 0, no h o r i z o nt a l  j - r e s F o r e  ~ os2s c-n the  1cIa t~ , cod I

sh ould  not ake ~I~ ce under  an” tcc:,c: ;r s -:cndit cn : . ~- - e shall ~~~~~

th a i , t h ~~o is t r u e  u n d e r  the  t - o ur ;c c r ,  ro :~c i t i s n S  (1. ~) ,  (1. t), and

( 1 . 9) .

T h - -  fo l ce i n s  ; orm c’lc: a re  nt - r d ’ - d for to e- :r r o t ’ - S u b r t i t - ~;t i: , ’ e i t her

~~tc (6 .1)  or (6.14) i n o  ( 6 . 2 ) ,  one f in d :  tt±- ;‘ I - c t l n r s ,

~~~~~~~
—.5- —- -5-—— -— - 5--— .-  —5-- _:: ~~~~~~~~~~ 
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ker ”x + 
1 ker ’x + keix = 0 (6 a . l)

and

kei ”x + x~~’ kei’ x — kers = 0 ( 6 a .2 )

We shal l prove that  no positive number can sa t i s fy  the clarnp ed—

ed ge condi t ion ( 1.7) .  The determinant of (1.7 ) is given ‘by

D — kerx :~er ’x
1

keix kei’x

when (6.5) is used. Differentiatiro~ D1, one finds the differential

equation

~~~~~~~~
- + zr ’

~
’ D1 

= ker 2x + kei 2x

Solving t h i s  equat ion  under the boundary condition that = 0 at

x = ~~, cue f in ds

D 1 = - 1 f E ( k er 2
~ + ker

2
~ ) d~

which is negative for any positive x , proving our contention.

We shall prove that no positive number can satisfy the simple—

edge condition (1.8). The determinant of (1.8) transforms to

D = 
kerx (l—v)x ~~ ker ’s + keis

2 
keis (l—v)x~~ kei’x - kers

¶ This equation ~ransi’orrr s to

= — 

~(ker~~ + kei 2
~~) d~ - (ker 2s + kei 2x ) ,

w h i c h  is negative for any positive x , proving our content ion .

We shall prove that no posi t ive number can satisfy the free—edge

condi t ion  ( 1.9) .  The de terminant  of ( 1 .2 )  t ransforms to
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- -  -5- — - ’ ~1

D = 
( I _ v ) x 1 k~- i’ ’x + k e is — k e i ’x

(i— ~~)s~~ ~:~~i ‘x — ke~ ’x h e r ’s

This e o u u t  i on  ‘ - ; . : -  :5-crns

D,. 1—V ( k 1 2 
+ + 

~ f ~ (ker~~ + kei°~ ) c~

which  is  l u c i t I v e  f-c r an ’, ass it i v e  a , i r e / m it our con te~ t i en .

7. Fun d on,axj t a l  o l u rj c ; , ;- fcr a > 1.

For a > 1, p defise- 1 in (2 . 1)  must be replaced with p ik , ~;I.crc

(7 .1)

To compute 11s + cy), we use the  form ulas

—12 
1

r(x+iy)/r (x) = f l  ~i + (7.2)
n 0  I,

and

Arg r(x+iy )  = y~ (x) + 

~~~~~~~~~ 

{2Rx+ n - tan
_u

[Y/(x+ )]j (7 .3)

IH and ’oook (ref . 5) , p . 2 56] .  These formulas can ‘be I r ov e d  by use of

-
• Euler ’ s formula for the Gamm a function ( r e f .  ( 9 ) ,  p.  237) .

- -. 

Us in g  these formulas , coe f f i c i en t s  of F( s)  in ( 1 4 d . 5 )  become

1
- — -1

B = ~ (2~ ) 2 r2(~ ) fl [I + e2 ( 14p +ir2
J (7 . 1 4 )

p=0

- ~ (2 ~ ) 2 r2(~ ) 

r~C 
~~ + K2(145+3)

2
] (7.5)

! ~~ B~~~ = (aKr 1 
~~ e xp ( +~~~~~~ +~~~~~ 7 i~~~lo~’v ”~ ~~~~ O~

- (7 . 6)

w i - c r c  R and 0 are def in ed by

‘‘

3:~5

-
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r(2 iK) = R exp( i0)

They are given by

R = H (n + 2) [(n+2 ) 2 + K 2
] ~n=0

and

o = K(l - 1) + 

~~~~~~~ 

j [ K/ (n+2)J  - tan~~ [K/ ( n+2)]j

Functions f (~ ) and f1(x ) are real. To decompose the complex

function fk+l(x) into the real and imaginary parts, the denominator of
(2.3),

is transformed to

= 8n[2n (16n2 + - 5a) + iK(32n2 
- a)]

- 
-
~ Thus one finds

= 
~~~ ( 1 ) np ( O )  

~~p(~ i )  ~
l4n+l

~
iK

where

~(o)

p
~ = 0

~(o) = 8~~~(n! )~~ 
Ep~~~IP

2

~~~

2 
+ 1- 5 )2 + (a- l)(~p

2 
- 

~~~

p = ~~~~~~ tan
_1
~~(~p

2 
- 
a
) / f (

~~ 2 + ~ 
-

f o r n > 1 .

Fundamental solutions w
1

(x ) , ~2(x)~ and their derivatives are

found by decomposir~g F(x) and its derivatives into real and imaginary

parts. We formulated them (up to the third derivatives) as follows:
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r -

~~~~

1 ç 1-i d
m
f

= 11 I i +  a—i ___  
—

m 2/~~ ~ (14p+1)2j d~?

— 
R e~p (Kn/)~~ • 

( 1) fl ~ (m) 
~~
n+1_m 

cos(e
1 

- 
~~ 

+

+ 
R exp(;Klr/14) ~~~~~ ( ) f l  p/f l  

~
l
~
n+i_fl7 cos( 62 + —

(7 .7 )

____ — 

r2 

+ 
a-i 

-i 

~~~~ -
(1~p +3) dx

— 
R exp(KT/l~) ( 1)

f l  ~(ri) ~
l4n+i_m sinCe 1 ~~ +

+ 
R exp~ ir/l)~ ~ (~

..1)’~ 
p 071) lrn+1-m .(0 + 0 

_~ (m)
)

(7 .8)

where

8k = 
~ ~ 

K1Og~~ ~ ( i—y ) ic ~ ~ ~ 
— t&~~~

~(i) = ~(o) 1(~
n+1)

2 
+ K 21

~(2) = ~(i) I(~~~
2 

+ K21 
—

(3) ~(2) j (~ n 1) 2 
+ K21 

- 2

(0) 
= 0

•
(1) 

= tan ’

3C7

-

— — ---- — — --



~~~~~

—.-- - 
-

~~

-

- 

-

~

- -

4 44 (2) 
= 44

(1) 
+

0 0 2

F 

•
(2) 

= ,(i) + tan~~[~ /(14n)J for n 
•~~. 1

44~3) = ~C2) + - tan 1K

,
(3) 

= •
(2) 

+ tan ’k/ (4n-j)} for n > 1

A

~1
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PART II. ASYMPTOTIC EXPAI~SI0N S

Values of a series solution developed in PART I must overlap on

a certain range of s with the values of. an asymptotic expansion determined

corresponding to the respective series solution. The series may be used

for any x less than the overlapping range, and the asymptotic expansion

may be used for any x larger than the overlapping range.

8. Asymptotic Expansion for 0 < a < 1.

Using analytical continuation of the hy-pergeometric function in

(3 .8) from the range 1 < r < into the neighborhood of r = 1 (more

exactly in the range Ii—r’~J < 1), one finds that v1< Cr) in the contour

integral solution (3.11 ) defined in the range 1 < r < is analytically

continued to

v
k
(r) = 41<) F(~*(

2+P). ~(2—u ); ~ ; l~
r~ +

+ v~~~ r2(r~_ l) 2 F~~(2+~ ) ,  ~(2-~ );  4 ;  1-r~~ (8.1)

defined in the neighborho3d o~
’ i = 1, ~rhere

41<) = — 2/~ r(1(2+ )) 
‘
~~~2t~~ r(+ i)1

1 (8.2)

-

~~~ = r(1~ 2 4~~) ~~~(2+ u )~ r(~ ( l4 +~ ))j  ( 8.3)

Double signs may not appear in the hypergeometric functions on the right—

hand side of (8.1) because of their symmetric properties with regard to

the first and second parameters.

Letting r = 1 + t and developing the hypergeometric functions on

the right—hand side of (8.1) into power series, one can integrate (8. 1)

to a complex—form asymptotic expansion for 0 ~ a ~ 1,



~~U!.- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—- ~- — _ 
~~~~~~~~

F(x) —

(41
) 

+ 42)) e
~~”1 ~ ex~~

(
~~~ + + 

~4 
~~~ exp~~~~ +

+ (41) + 42) ) ~~~~~~ 

~~~~ 

+ + 
~4 ex~

(
~~ +

+
~~~~~~~

+
~~

) + .. . . j
where

P1 = — ( i  + 2a)/14.1.
= (9+2Oa +~~a

2
)/96

B
1 

=

B
2 

= -(3 + a) ( 5  + a)/ 120

Asymptotic expansions for w1(x) and w2(z) are given by the real and

imaginary parts of (8.
~~) ,  respectively.

9. Asymptotic Expansion for 1 ,~~~ a ~ 2.

A form of asymptotic expansion for a .?~ 1 is found by letting

= 2-K in the coefficients of Vk 
+ ~~

2) (k = 1,2). In this case

• 
- formulas (7.2) and (7.3) need to be modified to include the case

x = 0. The modified formulas are:

I r ( i y) 12 = y 2 11 [1 + (y/n) 2~
1 (9 . 1)

n 1

and

I ~~~~~~~~~~~~~~~~~~~~~~~ 
—
~~~~~~~

-
~~~

-
~ 1~~~~

_ 
~~~~~~~~~~~~~~~~~~~~



r r - -
~~

-- 

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
,.. —

Arg r(i~) = - ~~~ sign(y) - yy + 

~~~ 
(
~ 

- tan~~ ‘ (9 .2)

where

sign(y) = 1 for y > o

for y < o

The result of the transformation becomes extremely simple:

~
(l) 

+ ~
(2)  

= ccs(K1og2 (9.3)

• and

+ ~ (2)  
= K sin[K(~ y + 1og /~ ) J  (9 . 1~)

Substituting these into (8.~~) the complex form asymptotic expansion for

a > 1 is found .

Our numerical computation shows that this asymptotic expansion

is effective only for a close to 1. We used this formula for

2 > a > 2 ~

- ‘- 10. As~ymtotic expansion for a ~ 
2.

Letting ~i = iic , the integral solution (3.11) transforms to

4 
F(x) e~~~ cos[~lo~ (r 2 + ~ )J (r~-l) ~~ (10.1)

Expanding the integrand in the neighborhood of r = 1 by letting

r = 1 + t , and using the approximations,

log(r2 + ~~~~) = 2~~ + 0(t 312 )

and ~~~ 
= 21~~+ 0(t)

one finds the integral asymttotic solution ,
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F(x)~~ ( e~~~~~
t )  

cos(K~~) ~~ (10.2)
IJo

To evaluate this Integral, define the function,

C (x) = ~ I e~~~~
2-K
~
’i dt (10.3)1<

0

• Then (10.2) becomes

F(x )~~ e~~ (c~
(x) + G

2(x)) 
(io .~)

Letting ~ = ~2 (10.3) transforms to

G
1<
(~~) = i exP[8x(ii+ 

8K)2 + d~

Define z by

=

The root z of this equation satisfying the condition that the real part

of z must approach positive infinity as ~ -
~ is

-
‘ 1 1

in 2 — 5vi 1 — —
z = exp(— —~) x ~ + exp(-~~~) ~wx 2

Use of z thus defined transforms (10.3) to —

1 °°exn (5iTi/8 )
G1<

(x )  = x 2 exp(~~~~ + ~~) f  - 

exp(-5 2 ) dz

where

= ~exp(~ 1ni ) 4cx 4

Transforming the contour of integration to the sum of two contours,

and o”4~~, one finds

+ G2(x) = I7 ex~ (K 2I(8~m)  + wiI8 ) (10.5)

Thus one gets
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F(x) — / 7~ exp(8x + K 2/ ( 8~X) + ~ni/8) (10.6)

We use this equation for a ? 2.

~ 11. Fundamental Solutions for Large a and Small x.

Our numerical computation shows that the overlapping range of the

series solution and the asymptotic expansion moves to sinai). values of

x as the values of a increases. When a = 2, the series solution and the

asymptotic expansion overlap In the neighborhood of x = 6. When a = 6,

they overlap in the neighborhood of x = 1, showing that the fundamental

solutions at this value of a is ineffective. For larger a, fundamental

solutions must be transformed to a more effective form.

Following formulas were used for the transformation . For large

4 values of y

- ~1Ty x- +iy + ~iii(x-
1) (11.1)

r(x+iy) e 2 
~ 

2 
~~~~ e 

2 2

and — 1  . —
—l + —v~irj.

F (x+iy ) [r(n+x÷iy)j e 
2 ~—n (11.2)

where x and y are real. These formulas can be derived by transforming

the asymptotic expansions of the Gamma-functions by using the assumption

that y is large.

When x is small, the number of terms needed for the summation of

series f ( x )  (m = 0, 1, 2, 3) in (2. 14) 
~ (2.6) are fairly small.

Letting K be large under this condition, formulas (11.1) and (11.2) m a y

be applied to transform series fm(X)~ 
Thus one finds

f (x) — cos((2KY
1
x
2) (11.3)

f1Cx) — 2K sin [(2K Y
1x2] (ii.~~)
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r - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
•
~~

• —~——-—--~•~~~

and 

~k+i~~~ 

l+iK 
exp [+i (14K

3
Y
1
x

14
) (11.5)

Also one finds

r~~ ( 1+iK)~ r(~~(l~~iK)~ e (11.6)

- r(~-(3+i~c~) ~~(3_iK)) — T~ e (11.7)

and 1 
~~~~~~~~~~~ +1~K

r (2+ iK ) — (2~K
3)
2 e 2 (K/ e) e (11.8)

Thus for extremely large K and small s, one finds the complex expression ,

F(x) A(1+i (2KY1x2) + Bxl+tK + Cxl2 -K , (11.9)

where 1

A = (2~/K) 
2 

e 

1 

(11.10)

— i~K — — — ITK+2 -K

B i2 2 (2i~)
2 

K 
2 
e 

—2-K (11.11)

1. 1 3 3—1_ IC — — —
C = — 2 2 (2 TT )2 

K 
2 e K (11.12 )

‘4

11

‘V

V -• 
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PART III EIGENVALUES

12. Computation of S

Our numerical computation shows that the clamped—edge condition

(1.7) and the simple—edge condition (1.8) do not yield any positive

number x as a root of the respective determinent equations. The free—

edge condition (1.9) always yields roots or a root. We shall discuss

below only the free—edge condition.

Define operators

v dL - + 
x dx (12.1)

and 
3 2

14 = p— + 1~
__ 

-~~~~~~~ 
~
— (12.2)

• dx3 a~

:

m 
Then the determinant D

3 
found by substituting (1.114) into (1.9) is given by

M(w
1)I

D
3 

= (12.3)
J L ( w, , )

Root x thus found in the range 0 < a ~ 2 are shown in Figure 2

and 3.

To discuss the neighborhood of s = 0 in these figures, take the

first term of the series f (s) (in = 0, 1, 2, 3), and approxdinate w1
(x )

and w2(x) in (14d.6) and (14d.7) with
w
1

(x) = p + p
1
x~~~ + p2

s
~~

’ + o (~
2 ) ( 12. 14)

and

= + + ‘
~2~ 

+ o(~~~) ( 12.5)

Because M(a,l±L~) = 0, M(w1) is negligible against M( w 2 ) .  Therefore the

root of (12.3) is given by L(w
1
) = 0, which yields
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~~~ 2. Values of x in the range 0 < a < 2 using v (Poissor~ s

ratio) as parameters.
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Fig. 3. Values of a,0 e~~ressed with logarithmic scale in the range
0 < a < 2 using a as parameter.
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~~~~
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= 
( v-u )  r ( 1+p ) c o s [ ( 3 + u ) u / 1 4]  ( 12.6)

\
~/~~ 0J (v+u ) r(i—u ) cos[(3—ii )ir/~ }

This equation shows that~ the condition ~ < v , i.e. a ~ — v2, must be r~~- t .

When p = u , a, becozes ~qua1 to zero. Each curve in Figure 2, therefore ,

terminates at t~;c ir~:er~ection with the axis of abscissa , whose coordir.ate

• 2is a = 1 — v

For small ~i , (12.6) becomes

in(~~ x) 
= - y - + ~ 2(~~ (3 - ~~~~~~~ + ~~ ~~ (12.7)

where ~(3) is Bieman ’s Zeta— function . Our numerical computation shows

H that (12.7) gives close approximation over the entire lengths of the

• 
V curves in the neighborhood of a = 1—0 in Figure 3.

To discuss the neighborhood of’ S = 0 for the case 1 .~~ a ~ 2, we

used the complex form F(s) in (14d.5) with coefficients given by (7.14) —

- 

::‘ (7.6). Taking the first term s of one finds that

—1M ( F )  
~~2 ~~~~

Because B2 is a pure imaginaiy, t~e rea1 part of M (F), i.e. ?4(w
1

) ,  is

negligible against the imaginary p~rt of M (F), i.e. f l ( w
2
). Therefore

D
3 

= 0 is equivalent to L(w,) = 0. Equating the real part of L(F)

equal to zero, one finds that is approximated ty  the rcot of

tan(a+Klnx) =

[(v_K 2) exp(~~ ii) — K (l+v ) exp (—~~7r)] . 1K (l~ V ) exi(~~~1r) + ( v_ K 2
) exp (—~i~i)]

(12.8)

~nere

— idogV’~ - (i-cz ) K  - 

~~~~~~~~~~~~~~~~~~~~ 

— tan ’ 
(12.9)

_  
-

________ -— -V.—..-’ - — ——_ V
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. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

For small K (12.8) reduces to

=

= K 2 + (~~~ )~ - - - 
(i+v)v + 

91  
H(x)J (12.10)

- V where

H( s)  = lo~~~~) a J  — 1 + y (12.11)

V 

Our numerical computation shows that this equation gives close approxi-

mation over the entire lengths of the curves in the neighborhood of

a -= 1 + 0 in Figure 3.

Equation (12.8) shows that, If a, is a root, then 5r+i. given by

= x exp(—ir/ K)  (12.12)

is also a root. Therefore infinitely many roots exist in the neighbor—

hood of a, = 0. Roots 
~~~ 

and .
~~ 

are shown in Figure 14 where

V : K = 
~
‘
~~~T is used as the ordinate. The solid line covers the values we

actually computed. They may be extended to the left of the solid lines

by means of (12.10) and (12.12).

The asymptotic behavior of the large roots can be found by using

F(s) in (10.6) to compute L(F) and M(F). Assuming that r defined by

(12.13)

is of the ordinary magnitude for large x, one finds

and 

L ( F)  — F(s)  ( B 2 
— 2~ + B 2

~
2 ) (12.114)

F(a ,)  (1+~
2 ) [exp(~~ ) - ~ exp(- ~~) J (12.15)

Thus one discovers that there are two asymptotic roots,
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~~~~

- s  1
= 2 K (12.16)

where

= 2 + (12.17)

In these two equations, suffix h I’~ defined by

h = k — i , (12.18)

where the old convention for suffix k is still observed . The two lines

in Figure 14 expressing the two equations in (12.16) are shown by the broken

lines.

Asymptotic roots were also conputed retaining all the terms in

L(F) and M(F) that were found by letting F(s) be (10.6). Carrying out

the computation of as given by (12.3), one finds that the equation

D
3 

= 0 reduces to

0 (12.19)

where

N = (l+~ )(l+~
2)(1_14~+~

2) 
- 

(12.20)

N
1 

= ~~ ((i-v) + 14~ -2C 2 + 8C~ - (3-v)~
14
}

P1
2 

— ~~ +5(2—v)~ — ( 6— v )~
2 + (l2—7v)~

3

N /~ [_ (3+ v) + 2(9-l14~~~ - (l5_13v )~
2
)

3

I.

N 14 
1g [ ( — 3 + 8 v )  +3 (15—16v ) ri

The positive roots of Al are and C1 in (12.17). The solid lines

running close to the broken lines in Figure 14 cover the values of

b
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and. computed for v = 0.5 by use of (12.19). The values of s and

in the range a ~. 2 were computed by using the series (7.7)

and (7.8).

The asyxnptctic behavior of the small roots can be found by using

(11.9) to compute L(F) and M(F). One finds that

= i A (Kx )~~ (l+K
2) (12.21)

Because A is real, ~~( w
1

) is negligible against t~(w 2), and D3 
= 0 is

equivalent to L(w1
) = 0. For large K , this yields

S = ~~~e
1K

which , however , is not small. Therefore small roots do not accumulate at

point x = 0, when K IS large.

This conclusion does not yet exclude the possible existence of

roots that are too small to be found with the asymptotic expansion (10.6)

but too large to be found with the approximation (11.9). It is probably

true, however , that roots a, (n > 2) become equal to zero at certain

- 
- .T values of K and do not extend indefinitely to large values of the

ordinate.

Extension of the curves expressing x~ (n 
~ 
2) beyond the ordinate

K > was not attempted. Our interest was originally in small a,

and moreover we did not have enough time to have series improve
I—.,

V 
for the case a > 1. However, we believe that small roots are not

important for engineering purposes and need not be known in detail.

13. Deformation

Forms of deformation corresponding to the roots s~ were calculated in

the range i_~
2 

$ a < 2 by assuming the normalization ,

I ~
..

V

~

V

~  
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w (x  ) = 1 ( 13 . 1 )n
Two cases, (a = i, v = 0 .3 )  and (a = 14 , v = 0 . 3 ) ,  are shown in Figure

— 5 and 6, respectively.

These for~Ls of deformation have often been observed in laboratories

and fields when  floating ice plates are compressed . We are now convinced

- that buckling is frequently taking place.

Forms of deformation other than shown in Figure 5 and 6 can be guessed

- 
by use of Figure 7 and 8, where the values of Wm~~ 

(minimum depression)

and a, . (defined by w • = w (x • ) )  determined for x are shown . (See
V 

mi_ n mi_n mI-n 0

Figure 5 for the definition of on a curve of deformation). Values

a in these figures are restricted to i_v 2 < a < 2. We did not compute

them for the case a > 2, nor for (n � 1) except for the cases shown

in Figure 6. The broken lines in these figures are determined by the

Z. terminal condition v = ~i.

- - The deformation at fracture shall be determined by assuming that

the stress at s . reaches the fracture stress a . In the general
-: mi_n f

polar coordinates, stress components °rr~ 
°eo ’ °rO are given (see

V
. !  Appendix C) by

&,V.

— Eh v ~w v
-S. 

a - - 
2(1-v) 

•

~~ 

+ 2

Eh 1 ~w i a2w ~2 
(13.2)

-- 
°ee — 2 (l—v) ~~~~~~~~~~~~~~~~~~~~~~ 

_•
~~~ + V ~~~ •~~~

J

and

= - 
Eh 3 ( i ~~w

t rO 2(l+v) ~r ~~~~ ~O

- 402
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Fig. 5. Normalized deformation for the case (a = 1 , v = 0 . 3 ) .

14 1

H

Hf\w,

io~j I(’\  p
~I w

I ‘ IX pI ’OI W~~~08- ‘ I

W V I I  1 I \
II ~~~~0 6 - i t  ‘t I
II

- - - V .  I t

~J I i1 lii I
0_ 2 _ _ l ~~

Ix l L
I 2 3 4 5 6 7 8 9 lO- 

O~~~~~~~~~
V - - 

~~

-0.2~~ w~~

Fig. 6. Normalized deformation for the case (a = 14 ,v = 0 .5 ) .

‘-I

-I
• • 

- - 5--- -

~~~~~~~~~~~~~~ 

V

p.

_ _  

-

~~~~~__  . ________



F V.5V.5-~- V 5-5-__ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~V V -~~~~~- -~~-- -

-

‘ 
a~2.0 1 .5 1 . 1 .0 .95 .9 0.8 0.75

10~~~~~~~~~~~~~~~~~~~ 0 L2.8
w.,~~xI0

2

V 
Fig. 7. Values of determined corresponding to

4.:

.8 .9 1.0 1.1 1.5 2.0

Fig. 8. Values of’ determined corresponding to X~ .

p.
~~
.

a

L 
_  _

__ _

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .4



VV ~~~~~~~

where h is the thickness of the plate. In our case of axisymmetry ,

introducing the nondimensional length x defined by (l.L~), the above

V 
formulas become

- Eli v ô u~
,

- 

- 

0rr — — 

2 ( l— v )~~
2 ~~~ 

+ ( 13.3)

Eli 1 dz~’ d2w
Gee = — 

2(l—v)~~
2 

+ V

and

;,. a = 0rO

At Poi:t 5min’ where dw/dz = 0 , therefore ,

I 
rn > e e f

Let wN (x )  be the normalization of w (x )  at ~ = 5
c~ 

Then the de—

pression is given by

w(s) = K w1q(x) ( 13. 14)

where K shall be determined by applying the condition that

l a l  at x = (13.5)

where O
~~ 

is the fracture strength. Su~tning up t he above r esults ,

K is found :

K = 2~
2 

O
~~ 

(Eh )~~ H (v ,a) (13.6)

where
2

H (v ,a) = (1~.v
2

) ,  (
~

) 
. 

‘ 13.7)

2
Values of F1 (v,a) are shown in Figure 9 for the case 1—v -< a ~ 2.
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APPEI-DICES

In the following Appendices A , B , and C , transformation of tensor 
V

components ut i l ized in this  paper are derived by use of the tensor nota—

tion where tensors are expressed is. combinations of components and base

Vec tors. This tensor expression yields simpler and more enjoyable

analysis of component transformations in Euclidean space than the con—

ventional tensorial expressions where base vectors are omitted , because

geometric and mechanical quantities are explicitly shown in the former

and therefore the meaning of the step by step computation is clear .

In the Appendix D, the deformation for the case a = is derived .

In the Appendix E , the buckling of the semi—infini te  plate is discussed .

it is interesting to note that both cases pertains to the case of

but they are substantially different.

A. Transformation of (1.10) to (1.11 ).

Shea?s Qa, and Q in rectangular coordinates are the magnitude per

unit length of the shears acting on a side normal to the x—a.xis and 
~j-

axis, respectively, (see Figure 10). We shall begin with expressing

and Q as components of a vector. Let ca, and c~ be unit vectors in

the x- and y-directions. In Figure 11, let C~ be a unit vector normal

to the hypotenuse AR (Fi g. 11). Vector C is given by

C d,~ = c dy + C dx (A . l) -n x

because C thu s defined satisfies the condition

Cn Ca, 
= dy/ds

arid

C = dx/ds
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where th~ dot (~~~
) between two vectors means the nealar product of the

t~~ vectors. Let Q be tk~e shear per unit  length of’ the  hyp otenuse

AB. It is given by

Q ds = Q dy + d~ (A . 2)

~-:~~ ca~ now prove that the equation

Q = Q c + Q c (A.  3)

the dc•~ ir~ d vector combinat ion  of Q and Q ,  because the relation

Q .c

is nat -~~~fied .

Substitute (1.10) into (A.3) and transform the result to a tensor—

invariant form :

Q = V~ M +V w  N ( A . 1 4 )

where

V c  ~~
— + c -

~
— (A . 5 )x~x y

~J
M = M  c c  + M  ( c c  + c c ) + M  C C  (A . 6 )

x x - s x  xy x y  y x  yy y y

N N cc + N  (cc + c c ) +  N c c (A.7)x x x x  ..T:y x y  y x  y y y y

In (A . 1 4 ) ,  a convention is made that a.bc means (a.b)c.

Let U and u be the unit vectors in the r— and 8—directions. Theyp 0

are given by

• U = C c o s 0 + c  sinOr a, y
?1 

and (A.8)

u = —c sinO + c cosO
0 x y

These equat~~ns yield

4 10
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r

= 0 (A 9)

r

V ~~~~~

-- = U
0

and

~ U0
-oO r

In the polar coordinates , ( A . 5 )  becomes

a
V Ui., ~~~ + ~~~~~~~~ (A.1O)

Q 
~
U
r h + u

0~~~~~
.M+~u ~~ +u

0 
.N , (A.ll)

where

M = 14 u u  + M  (uu + u u ) + M  u u  (A.l2)r r r r  rO n O  O r  08 0 0

and

N = N u u  -i- N (uu + u u ) +  N u u  (A.13)r r r r  rO r O  O r  08 0 0

In the polar coord inates , (A3) becomes

• 

V

i Q = Q
1
U~ + Q

0u0 
(A .114 )

Carry out the differentiation in (A.n) by use of (A.9) and the scalar

products indicated by dot (~~~) and identify the components with those

of (A.114), then one finds (1.11).

B. Trar~~formation cf (1.1) to (1.2)

We sh~ l1 prove the formula in the general polar coordinates ,

2 2 2
N ~~~~~~~ + ~~ ~~~~~~~~~~ + N

F ~ xx a~~ xy ~xdy yy  ay 2

(B.l)
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The left—hand side of (B.l) is a tensor-invarient form N •
~~ ~7V ~‘

where N is given by (A.7), and ç717 i~ is a dyadic ,

~~~~~ =(c i.--i- c ~~~~~~ Ic ~~~+ ca~, ~ x a x  y ay

The double dot (
~~~~ ) of ab• •~~ means (b .c) (a.d) . In polar coordinates ,

= 
(U ~~~ + ~ ~

-) (
~ F + u

6

Carrying out the differentiation given by (A.9), one finds

VVV) = 
~~~~~~~~ 

U U  + ~~
-(
~ ~~) ( u u

8 
+ u

0
u )

V + (i~i-~ + ~
) u0u0 (B.2)

Carrying out the double dot products by use of N in (A7 ) arid ~7!~7 w in

(B.2), one finds that ~~ VVw becomes the right—hand side of (B.l).

C. Proof of (13.2)

Substituting Equation (1.14) of Mansfield (i), one can transform

V V~ the tensor equation

~~~= o c c  + o c c  +~~ (cc + c c )x x x  y y y  xy x y  y x

S ~S 
to an tensor—invariant form

ci = - [ E Z / ( l — v 2 ) I  ( c L ~ +~~~w) (c.i)

The tensor—invariant operator

a a
i i = c  — — c  —

z a y y a ~
becomes

a a
= U —

~~~~
- - u0 ~

— ( C. 2)

in the polar coordinates.

Substituting (A.10) and (C.2), and carrying out the differentia—

t ion as given by (A . 9 ) , one finds that ( C . l )  becomes
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ci = a cc +o  (uu + u u ) + c  u ur r r r  rO r O  O r  00 0 0

when 0rr ’ °rO’ and are given by (13.2).

d. Deformation for a =

Let w
1

(x)  and ~2 ( x)  be defined with the real and imaginary parts of

the r ight—ha nd side of (10 .6 ) :

(x)  = R cosl

and

w2 ( x )  R sinf

where

R ( x )  = (~~~/a ,)
2 exp 

j~
x/~~ -

and

1(x)  = 1T/8 + —

The depression is given by

w (x)  = A w
1

(x ) + B w
2

(x )

When K = ~~~, there are two positive roots given by (12.16). The

ratio

A - 
L(w

2
) 

— 

M(w2
)

B L (w 1
) — — M ( W 1)

can be computed by using (12.114) and (12.15). Thus one finds

A 
— 

(l+c h ) COSI
h 

+ ( i — ~~h)  sini
h

S 
(1+~~) sinfh 

— ( l_
~~~h

) CO SI
h

where
T —-

and h is defined by (12.18). Normalizing w (x )  at x = one finds

A = (R
h )~~ 

(cosI h ~
and

B = (R
hY

1 
(s~

n’h 
; r cosl

h)
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Thus the normalized deformation U11(x) is given by

= iR (
~~~ Ri [c

~~~ I x )  - ~ sin ( 1 (x)  - ‘h~} 
(D.l)

Letting

=

and assuming ~ to be finite, one may let x~~ 
in (D.1). Thus one finds

— 1
wz~

( x)  = exr (—~IJ~) cos (~//~) + (/ ~
‘) sin(~/J~) (D.2)

The max imum of 
~~~~~ 

occurs at

tan(~ //~) = — 2 + V ’
~

which is negative. Therefore W
N
(x) is always decreasing for ~ ~.. 

0.

-

, 
The deformation at a = ~~~ , therefore , does not take a minimum , as those

(shown in Figure 5 and 6) of case l_~ 2 ~~a ~ 2 do.

E. Buckling of s~~ii—infinite plate

We shall show that the deformation discovered in the preceding

section is different from the buckling deformation of a rectangular

semi—infinite floating plate.

We assume that uniform or ess u re Nra, is applied on the axis y, the

axis x extending from x 0 to x ~ . Then from (1.1) one gets
14d w  -+ yw = —~~ ( E. l)

dx ~~

where we have put q = 0. Defining new s by the quotient of old x

divided by the characteristic length 
~~ 

= ( D / y )~~
14 , (E.l) becomes

+ 2a 4 + w 0 (E.2)

where we have put

415 .
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= —2 ayt~ (E . 3)

Because N < 0, the relationxx~~
a > 0

must be satisfied. The solution of the differential equation (E.2) is

= e p ( A kx)  (E. 14)

where 

= a + (E.5)

The real part of A
k 
must be chosen to be negative. The convention with

V 

regard to suffix k is still observed.

When a = 1, the general solution is given by

V w = A cosx+ B sinx

which we do not accept, because the boundary condition at x = ~~ cannot

be met.

When 0 ~ a < 1, letting

a = cos 2~ (E.6)

the general solution is given by

w = e~~
X (A cosax + B sinax] (E.7)

where

= sinn (E .8)

and

a = cosn (E.9)

The condition

0 c < (E.lO)

must be met to satisfy the conditions with regard to a and Ak.
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When a > 1, letting

a = cosh 2n

one finds four fundamental solutions

V 
cosvx, sinvx, cos(s/v), and sin (x/v)

where V

v = exp(n)

We shall discuss below on ly the case 0 .$ a < 1, because the boundary

condition at x = cannot be satisfied in the other cases.

The free—edge condition for this case is

— dx
2

• 
- 

and (E.ll )

• d3w
= 0

- d.x~
The second equation of (E.l1) is derived from the first equation of

-; (1.10). Substituting (E.7), one finds that the eigenvalue is given by

-
‘ =

V - 
i.e.

a = 1/2 (E.l2)

The deformation for this case is

w(x )  = A exp(—x/2) cos[(v’~~/2) + (Tr/6)] (E.l3)

where A is arbitrary. The max imum of w(x) occurs at

x = 4ir/(3V’~)

Therefor e the deformation in this section is different from the deformation

in the preceding section.

For the simple—edge condition , the eigenvalue is given by

a 1

which we do not accept.
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Nonlinear Theory of the Response of

Pavements to Vibratory Loads

Richard A. Weiss

Pavement Investigations Division

Soils and Pavements Laboratory
— 

U. S. Army Engineer Waterways Experiment Station

Vicksburg, Mississippi

ABSTRACT. A nonlinear model of the pavement response to a dynamic

load is presented which has applications to the vibratory nondestructive

method of testing pavements. The parameters of the model have been

determined by comparison with actual dynamic load—deflection curves. The

model gives a quantitative description of the dependence of the measured

dynamic load—deflection curves on the strength of the pavement , static -

load of the vibrator , and the frequency of operation of the vibrator .

The model determines the elastic modulus of the subgrade from the measured

load—deflection curves. The nonlinear dynamical model is applied to the

laboratory determination of the resilient modulus with the result that

the resilient modulus is expressed analytically in terms of the static

confining pressure , dynamic deviator stress, and material parameters which

describe the linear and nonlinear behavior of soil under dynamic and static

force loading.

I. INTRODUCTION

The Waterways Experiment Station (WES) has for many years used the

1 
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method of nondestructive testing of airfield pavements.1 5  This method of

testing pavements is relatively quick accurate , reproducible , and in—

expensive. When the nondestructive test method is used an airfield

runway need not be shut down for long periods of time as is the case for

the destructive testing of pavements.

The instrument used for the vibratory nondestructive testing of pave—

ments is a mechanical vibrator whose force payload to the pavement surface

is generated either by a hydraulic system or a mechanism of counter—rotating

weights. The WES 16—kip vibrator applies a static load of 16 kips to the

pavement surface and a dynamic load to the pavement surface which can be

varied from 0 to 15 kips. Both static and dynamic loads are applied to

the pavement surface through a circular 18—in , diameter baseplate.

Four types of nondestructive tests are generally performed on pave—

inents, and these consist of the following measurements:

a. Dynamic load—deflection curves giving the dynamic amplitude

as a function of the dynamic load .

- - . b. Frequency response spectrum giving the dynamic amplitude

as a function of frequency for a fixed dynamic load .

c. Deflection basin measurements.

d. Rayleigh wave dispersion curves giving phase velocity

S - versus wavelength.

Only the dynamic load—deflection curves and the frequency response spectrum

measurements will be considered in this paper .
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A typical measured frequency response curve appears in Fig . 1 , and

a typical measured dynamic load—deflection curve appears in Fig. 2. Most

of the WES measurements of the dynamic load—deflection curves were done at

a frequency of 15 Hz. Experience has shown that the dynamic load—deflection

curves are relatively smooth for this frequency. The frequency response

spectrum may contain multi ple resonance peaks .

Two basic theoretical approaches have been taken to describe the ex—

peri inental data:

1. a linear theory of the frequency response spectrum

2. a nonlinear theory of the dynamic load—deflection curves

S - - The two types of dynamic pavement response models that have been considered
- 

- are shown in Fi g. 3. Single-mass and multi ple—mass models have been devel—

oped iii the linear theory , while only a single mass model was developed

with a nonlinear spring constant. It was found that multi ple—mass pavement

response models are somewhat intractable because they contain many para—

V 
meters. Onl y the sing le—mass pavemen t response models are considered in

this paper. The elements of the spring—mass—dashpot model must be determined

V in terms of the characteristic forms of the measured frequency response

spectrum and the measured dynami c load—deflection curves.

II .  DYNAMIC FREQUENCY RESPONSE THEORY

The dynamic frequency response spectrum measured at the pavement sur—

face is often quite complex and difficult to interpret. Many factors prob—

abl y contribute to produce its characteristic shape. In order to extract

some inf5- ~
V
~i.Ition about pavement and sub zrad ? structure from the measured

dynamic frequency response spectrum it is necessary to use a simple

I
421
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dynamic pavement response mod el to f i t the measured frequency response

spectrum with the theoretically predicted frequency response spectrum. This

f i t will yield the parameters of the dynamic model from which the pavement and

subgrade structure can be determined . The frequency response spectrum of

the single—mass model has one resonance peak , and this predicted resonance

peak is fit to the second resOnance peak of the measured response spectrum .

The second peak is chosen because an examination of many f requency response

spectra has shown this peak to be more consistent and less affected by

electronic equipment than the other pe~lc c. Generally the second peak is

the most pronounced . V

The second resonance peak is associated with a resonance frequency and

a resonance amplitude as indicated in Fig . 4. The resonance amplitude and

frequency was used to calculate the elements of the spring model — effective

mass, effective spring constant , and effective damping constant. The elements

V of the single—mass spring model can be simply related to the resonance peak .

DETERI4INATION OF ELEMENTS OF THE SPRING MODEL

A , Within the framework of the single—mass spring model
6 9  the dynamic

amplitude of the pavement surface response to a sinusoidal dynamic load

can be written as

—i.
A = F D/S (1)

S — /(k—mw~)~ + C
2w2 (2)

where A = amplitude of the dynamic disp lacement of the pavement surface as

represented by a linear spring model, F
D 

= dynamic load applied to the pave—
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ment surface , S dynamic stiffness , k = linear spring constant , m —

effective mass of the pavement—subgrade system , w angular f requency, and

C — damping coefficient. The resonance frequency and amplitude
6 can be

obtained f rom (1) and (2) to be

- 2D~ (3)

• F
AR 

D (4)
2kDFi_ D 2

I D =  C (5)
• 2/ km

~4~~4

where 
~R 

= resonance frequency, AR = responance amplitude , and D damp—

lug ratio . The three elements of the linear spring model that are to be

obtained are k , m and C . In order to determine these three parameters

another piece of information , in addition to and AR , is necessary.

This is given by

H J (u) AR
/A (6) —

where J(w) = ratio of the resonance amplitude to the amplitude at some
• 1.

nearby frequency . The theoretical value of this ratio is given by
e

~~~ ~~2)~ + c2w2.J(k,m ,C,u) = (7)
1/ (k m u 2) + C2

w
2

y R R V
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The three measured quantities which are extracted from the frequency response

curve are 
~R ‘ AR and J (w).

The spring model elements k , m and C must now be obtained In terms

of AR and J(w). The equations in (3) — (6) can be inverted to deter—

mine k and D in the following manner

h F  2

k = 4ir 2m12 ‘Il 1 + D (8)
R t I  ~ 4r2mf 2

R

r p 21’1/2
D (9)2 2

L 4ir
~

mf
~
AR J

The k and D terms have now been expressed in terms of the effectiv e mass.

Using (8) and (9) it is now possible to express J(k,m ,C ,w) in terms of the

effec tive mass as the only unknown parameter as follows

V 

i/f ’ - 2)
2 
+

J(m,w) = (10)

~r ~~~~~~~ 4inD2c4 V

I / I - —  +k k

The only unknown independent variable in J(m,w) is now the effective mass.

By sweeping through a series of values of m and calculating numerical

values of J(m ,w) it is possible to determine the specific value of mu for

which J(n ,u) is equal to the experi t-~cnt -d value of the J—ratio , i.e.,

‘.4
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J(m,u) — J(w). This condition determines the value of the effective mass

required by the spring—mass—dashpot model to fit the experimentally mea-

sured dynamic frequency response curve . Placing this calculated value of

the effective mass into (5), (8) and (9) gives the proper values of k and

C required to fit the experimental frequency response data. The necessary

computer programs to accomplish this work on a digital computer have been

developed and will be referred to as the WES Dynamic Frequency Response

Program.

DETERMINATION OF SUBGRADE MODULU S BY FREQUENCY RESPONSE METHOD

The value of the spring constant that is determined from the measured

4
frequency response spectrum will be used to determine the subgrade modulus.

The theory of the linear elastic layered half—space predicts a theoretical

value of the static spring constant kT which depends on the radius of

the loaded area and on the elastic constants of the subgrade and the pave-

ment layers . Computer programs are available which calculate the value

of k,~ if the Young ’s modulus and Poisson ’s ratio of each layer of the

VS 

half—space is known. A well known computer program of this kind is the

Chevron Program . The procedure for determining the Young ’s modulus Es

of the subgrade is shown in Fig. 5. The measured values of 
~R 

‘ AR and

J(w) are inserted into the WES Dynamic Frequency Response Program and

values of k , m and C are determined . The Young ’s modulus and Poisson ’s

ratio of the layers of the pavement are selected and entered into the

- - Chevron Program. The subgrade modulus E5 is then iterated in the Chevron

Program and a series of values of kT are determined. The proper value of

Es is determined by the condition

~~~~~~~~~~~~~ - •~~~~~~~~~~~~~~~~~~~~~~ _~~~~~V ~~~~~ *V _ VVSVVVS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~V V S V  -- - --- -5~~~~~~~~~~~~~~-—~~~~~~~ 
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k = k  (11)
T

The predicted vaLue of Es will depend on the v~ilues of the elastic moduli

selected for the pavement layers.

NUMERICAL RESULTS OF FREQUENCY RESPO~SF METHOD

Values oF k , in , C and E5 
have been obtained for several airport

pavement sites and are listed in Table I. This table has listed the sites

according to increasing values of the Dv~amic Stiffness Modulus (DSM) , which

is the slope of the dyn amic load—deflection curves at a dyn imic load of 14

kips. It is seen that the measured spring constant k increases with in—

creasing pavement strength and tha t  k is not equal to the DSM value . The

- 
• effective mass is presented as a ratio to the above—surface (vibrator) mass.

and increases with the strength of the pavement. The effective mass is not

equal to the above—surface mass and any theory which apriori assumes that

in = mu cannot he used to fit the experimental frequency response data.

The value of the damping con stant  also increases with increasing pavement 
V

strength. The predicted values of are compared to those modulus values

that are predicted by the CBR method (E
~ 

= 1500 CBR) . The values of E s

predicted by the combined WES Frequency Response Program and the Chevron

Program are 3 to 5 times larger than those predicted by the CBR method.

The re are several possible reasons for the discrepancy in the values

of E
s 

predicted by these two methods:

a. the pavement—subgrade system is nonlinear under dynamic and

static loading

3~. the subgrnd~ ~s not unifor; ~i.: 1 the t~~oretical layered
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elastic half—space model requires a rigid bounda ry below

the subgrade

c. reflections from a lower boundary layer add to the motion

of the pavement surface

When a rigid boundary such as bedrock is present relatively close to the

V 
- 

pavement surface it is possible that the effects listed in b. and a. may be

- of importance for determining the motion of a pavement surface that is sub-

jected to a sinusoidal dynamic loading. However , the discrepancy between

the values of Es predicted by the CBR method and that predicted by the

frequency response spectra method also occurs in cases where the subgrade

is relatively uniform and contains no obvious discontinuities. Therefore

- only the fact that the response of pavements and subgrades to dynamic and

static loads is nonlinear remains as a possible explanation for the dis-

crepancy in tbV ~ values of E
5 determined by these two methods.

III. NONLINEAR THEORY OF PAVEMENT RESPONSE TO DYNAMIC SURFACE LOADINGS

An alternative method for determining the subgrade modulus from

vibratory nondestructive test data is the use of the dynamic load—deflection

curves measured at the pavement surface for a fixed frequency and a fixed

static load . These dynamic load—deflection curves are generally nonlinear

- ~~V for weak pavements and become more linear for stronger pavements. Over the

years the WES has collected an extensive set of dynamic load—deflection curves

that have been obtained on many airfield pavements throughout the country.

The nonlinear d ynamic load—deflection curves were measured at a fre—

:~ 
quency of 15 Hz and at a static surface loading of 16 kips. The nonlinear

.4
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dynamic theory must account f or the frequency and static load conditions

under which the dynamic load—deflection curves were measured. The pre—

dicted subgrade modulus should be free of the particular loading charac-

teristics of the vibrator . Therefore , in addition to the static Young ’s

modulus some other parameters have to be introduced which will account

for the observed nonlinearity of the dynamic load—deflection curves.

These nonlinear parameters must also account for the nonlinear behavior of

the static load—deflection curves . The predicted subgrade modulus value

- - will be independent of the particular loading characteristics of the

vibrator — frequency , static load , and dynamic load . Only the natural
- 4

overburden pressure will be reflected in the subgrade modulus value .

The determination of the elastic constants and the static and dynamic

nonlinear parameters of the pavements and subgrades from measured dynamic

V 
load—deflection data requires a nonlinear dynamic theory of pavement

4
- 

- - response

EQUATION OF MOTION OF A NONLINEAR OSCILLATOR

The nonlinear theory of pavement response to a vibratory load assumes

that the pavement—subgrade system can be described by a lumped mass non—

linear oscillator whose equation of motion is written as

m
~~
+ C k + k

OO x + bx3 +ex 5 = F
D

+ F S 
(12)

where mu = effective mass of the paveme nt—subgrade system , x = total

~ - displacement of the pavement surface beneath the vibrator basep late , C =

damping constant , k00 
= linear spring constant , b = third order non—

lineat ~~~~~~ parameter , e = fifti- or~~~ ~L i~iin.~ar ~veruent parameter ,
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F
D 

— dynamic load app lied to the pavement surface , and F
s 

— static load

applied to the pavement surface. The total displacement of the pavement

surface is decomposed into a static and a dynamic part as follows

(13)

where X = static elastic disp lacement of the pavement surface , and ~ —

dynamic elastic displacement of the pavement surface . Placing (13) into (12)

• gives the following equation of motion

m~ + CF~ + (k 00 + 3bx~ + 5ex~~F + b~
3 

+ e~
5 

+ ~g(x~,~ ) = F~ (14)

V where

g(x
e,~~

) = 3bx~~ + 1Oex~~ + 1Oex2~2 + 5ex
e

F 3 (15)

- 
;. For convenience in manipulating (14) it is necessary to use a time

• averaged expression for (15)

g(x~ ,~ ) — 3a1bx~ + 5a2ex~ + a3b~
2 

+ a~e~~ (16)

where a1 , a2 , a3 and a~ are coefficients to be determined from the mea—

-
- 

sured dynamic load—deflection data. Combining ~16) and (14) gives the motion

equation as

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(17)

where

- k0 
— k 00 + 3bc 2x

2 4- 5ec~x~ (18)

‘S
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0 = 1 + 8
3 

(19)

(20)

~~
2

= 1 + a 1 
(21)

c~ 1 + a 2 (22)

The parameters 0 , and c~ depend on the pavement strength and are

deter-mined by requiring (17) to adequately describe the dynamic load—defle ction

curves. The nonlinear parameters b and e determine the static load—deflec-

tion curves , as can be seen from (12)

Fs = k x  + bx 3 + ex5 (23)

In general it is found that b < 0 and e > 0 for pavements and most sub—

grades.

ThEORY OF DYNAMIC LOAD-DEFLECTION CURVES

The problem remains to solve the nonlinear equation (17). This can

be done by casting (17) into an equivalent linear form for which the dynamic

~fl 
amplitude is given by

(24)

where

s ~ /(k - mw
2)
2 
+ C2w2 (25)

where S — dynamic stiffness, k = dynamic spring constant , m — effective

mass , w — angular frequency and C = damping constant . The requirement that

(24) and (25) be a solution of (17) is that the spring constant in (25) is

4
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V 

k = k0 + ~ 
b0~~ + ~ en~” (26)

Therefore the spring constant for a nonlinear system depends on the dynamic

and static displacements of the pavement surface .
V 

Placing (26) into (25) and (24), and solving for the dynamic amplitude

4yields the result

= (1 + a14~ + a
24~ 

+ •.•) (27)

V 

where

• S0 = ~~~~~~~~~~~~~~
_ mw2)

2 
+ C2w2 (28)

V = F~/S~ (29)

a1 = — 
~~ 

b0 (k~ — ~~2) (30)

a2 — f (~)~ b
202 (k

0 
- mu2)

2 - S2 

~e.(k0 ~~~
2) + 1 (3)

2 
b202j (31)

As seen from (27) — (30) the degree of nonlinearity of a dynamic load—

deflection curve depend s on the strength of the pavement and the frequency

of operation of the vibrator . The strength of the pavement affecta the

degree of nonlinearity of the dynamic load—deflection curves through the

term S~~ that appears in (27) and (29). The S~~ term shows that strong

pavements tend to be more linear than weak pavements. From (30) it is clear

that there is a critical frequency for which the first order nonlinear term

vanishes and this frequency is given by

‘4
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~c 
= (32)

At this frequenc y the dynamic load—deflection curves should become espec ially

linear in the regions of low dynamic force if the second order nonlinear term

is comparatively small. The straightening effect at the critical frequency

will not be strongly evident if the second order nonlinear term is compara-

tively large.

DYNEiNIC NATURE OF THE SPRING CONSTA~JT

The measurement of the dynamic load—deflection curves determine the

V linear and nonlinear parameters of a pavement system — k
00 

, b , e , e

Equation (26) shows that the spring constant k that is

• determined from a dynamic analysis of the nonlinear properties of a pave—

ment—subgrade system is dependent on the dynamic and static displacements

of the pavement surface as well as on the elastic constants of the pave—

ment—sub grade system . Therefore the spring constant k that is determined

from the dynamic response of a nonlinear pavement system is a dynamic

quantity tha t is not analogous to an ordinary static spring constant. The

theoretical static spring constant determined from a static linear elastic V

program such as the Chevron Program will depend only on the elastic constants

of the pavement . Therefore the value of k determined from the dynamic

response data of a nonlinear pavement cannot logically be compared to the

static k.~ value determined from static layered elastic computer programs .

Static plate bearing tests will result in a spring constant which will also

not be directly comparable to the sprin3 constant determined from an analysis

432
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of dynamic data.

FINITE DEPTH OF INFLUENCE

The static linear and nonlinear parame ters k00 , b and e respec-

- 
tively can be related to the elastic parameters of the pavement layers and

to the depth of influence of the static stress—strain field 4. The finite

depth of influence is written in terms of the static deflection of the

- pavement surface as

J = + 
4x

2 + ~~~~ (33)

For the simplest case of a vibrator placed on the surface of a subgrade ,

the static parameters are

- S 
k — 

2na2i~,(1 — v)G (34)00 £~(1 — 2v)

- 4ira2ip~~(1 — v)G
b = —  (35)-

- 4(1
_ 2v)

~ 
V

q

~~~ 6rra24,iS(1 — v)Ge =  (36)
4(1— 2v)

V 
where

(37)

and ~js = volume factor for the frustum of the cone of stress and strain . It
‘1

- _
- ;  is through equations similar to (34) — (37) that the connection is made be—

f ~~
- tween the elastic parameters of the pavement system and the theoretical
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expression for the dynamic stiffness as given by (25) and (26).

MODEL PARAMETERS

The model parameters k , m , C , k00 , b , e , , , ~~~ , 0

n , £
2 

and Ck depend on vibrator characteristics and on the structure of

the pavement and subgrade. This dependence is in general very complicated

and difficult to determine theoretically. The simplest way to attach the

- 
- model parameters to the strength of a pavement—subgrade system is to deter—

mine these parameters in terms of the measured dynamic stiffness modulus

(DSM) of a pavement. The DSM is the slope of the load—deflection curve

measured by the WES 16—kip vibrator in the region of large dynamic load ;

it is in fact the tangent modulus of the dynamic load—deflection curves for

F
D “. 15 kips. The DSM value is a suitable choice for a parameter in terms of

which to describe the model parameters because it is a measure of the bulk

strength of the pavement and subgrade. The model parameters expressed in

• terms of the measured DSM correspond to the WES 16—kip vibrator . The

vibrator characteristics appear in these parameters because the subgrade

modulus to be determined is intended to be independent of the dynamic char—

acteristics of the vibrator. A corresponding set of vibrator parameters

will have to be developed for any other vibrator that is to be used for

nondestructive testing of pavements.

The model parameters are presented as a function of the measured DSM in

Figs. 6 through 15. From these figures it is seen that k , m , C and

are increasing functions of the strength of the pavement. The dynamic spring

constant presented in Fig . 6 corresponds to a dynamic load of 15 kips. The

depth of influence of the static stress—strain field increases with increasing

4. —
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pavement strength while the static deflection of the pavement surface

13 under a fixed static load decreases with increasing strength. As seen

from Fig. 7 the effective mass is generally much larger than the above—

surface mass, and it would be incorrect to assume that the only lumped—

mass of the vibrator—pavement—subgrade system is the vibrator mass itself.

The effective mass of the dynamic model includes the inertial effects of

the mechanical radiation field in the pavement and subgrade. In all cases

of the pavements investigated it was found that b < 0 and e > 0
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DETERMINATION OF SUBGRADE MODULUS FROM DYNAMIC LOAD—DEFLECTION CURVES

The nonlinear dynamic response model that has been outlined in the

preceding section can be used in conjunction with a dynamic load—deflection

curve measured at the pavement surface to determine the modulus of the sub—

grade bene~th the pavement. A computer program has been developed which

calculai es the theoretical dynamic response of a pavement in terms of the

elastic moduli of the pavement layers and subgrade and in terms of the

empirically determined parameters 0 , n , £
2 

€~ , m and C which have

been expressed in terms of the measured DSM values of the pavement. A

typical example of the vibratory nondestructive input data to the computer
S 

program is shown in Table LI. The computer program calculates a theoretical

load—deflection curve in terms of the b and e coefficients that are

determined from measured load—deflection curves and in terms of the elastic

moduli of the pavement layers and the subgrade. The elastic moduli of the

S pavement layers are selected from laboratory tests and CER measurements.

4 The subgrade modulus is then determined by requiring that the theoretically

p redicted dynamic load—deflection curve agree with the measured dynamic load—
S 

deflection curve. This procedure f or determining the subgrade modulus is

shown in Fig. 16. The numerical results of this procedure for a few pavement

sites are presented in Table III. The values of the subgrade modulus pre—

dicted by the nonlinear dynamic response theory are in general agreement with

those predicted by the empirical relation Es = 1500 CBR.

IV. LABORATORY CONFIRMATION OF VIBRATORY NONDESTRUCTIVE FIELD TEST DATA

It is of interest to be able to correlate the laboratory value of the

resilient modulus H of a soil sample taken from the subgrade at a pavement
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or soil site for which the subgrade modu lus has been predicted by the vibratory

S nondestructive testing method . Such a correlation is difficult to achieve

because the loading conditions on the soil sample for the laboratory tests are

different from the loading conditions on the subgrade during vibratory non—

destructive testing . The loading conditions differ in terms of the magnitude

of the static and dynamic stresses and in terms of the frequency of application

of the dynamic stress.

In its natural state, an element of soil in the subgrade is subjected

only to the overburden pressure. When a vibrator is operated on the surface

of a pavement or subgrade, an additional static and dynamic stress is applied

to an element of soil in the subgrade. For the WES 16—kip vibrator the static

load applied to the surface is 16 kips , while the dynamic load can be varied

up to 15 kips and is app lied sinusoidally with a frequency of 15 Hz. The

stress field in the subgrade is nonuniform and can be calculated by standard

elasticity theory .

The laboratory sample for resilient modulus testing is cylindrical in S

shape with a typical diameter of 3 inches and a length of 6 inches . The

cylindrical sample is subjected to a static confining pressure and then a

dynamic load is app lied in the axial direction. The stress is uniform along the

axis of the laboratory sample. The total stress along the axis of the labor—

atory sample is written as

a OD +O S (38)

where 0D 
= dynamic stress in axial direction of sample, and = confining

4
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V 
pressure. The axial dynamic stress is also called the deviator stress and

is written as = a — a
~ 

, where a total stress along the axis of the

specimen. The resilient modulus has been measured for a number of soil

and pavement materials , and Mr has been found to depend on and

The dependence of M
r- 

on the dynamic deviator stress is such that Mr at

first decreases with increasing value s of 0D ~ attains a minimum value , and

then increases with further increase of the deviator stress’°.
The dynamic stress acting along the axial direction of the soil specimen

during the laboratory resilient modulus test is applied as a series of pulses

in the form of haversines with a pulse of 1 second duration being applied

every 3 seconds. The characteristic frequency of the dynamic loadi~~ on the

S 
sample will therefore be in the range of 0.3 — 1.0 Hz, and this is much lower

than the frequency of 15 Hz at which the vibratory nondestructive field tests

are conducted. The large difference in the frequencies used for these two

types of tests requires that an adequate account of frequency effects be

included in the theoretical analysis of both laboratory and field vibratory

tests.

NONLINEAR DYNAMICAL ANALYSIS OF THE RESILIENT MODULUS TEST

A dynamical theo ry of the resilient modulus test has been developed which

S is similar in form to the analysis developed for the vibratory nondestructive

field tests. The basic result of this theory is that the dynamic displacement

of the test specime n can be written as 
V

= FD/S = ACO D/S (39) —

S — 4k — ~~ 2 ) 2 
+ (40)
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where ~~ , F
D 

and = resilient dynamic displacement, dynamic load , and

dynamic stress on the cylinder end in the axial direction; S , k , m , C

and A
c 

— dynamic stiffness, spring constant , effective mass , damping

V con8tant , and area of loaded end of the cylinder respectively ; u = effective

angular frequency component of the dynamic load applied to the soil sample.

The nonlinear theory of vibrations that was outlined earlier in this

paper for the vibratory nondestructive field tests can also be used to calculate

the quantities in (39) and (40). This nonlinear theory shows that the spring

constant is given by

- - : k = k + ~b0~ 2 
+ (41)

- k0 = k 00 + 3b~ x 2 
+ 5ec~ x~ (42)

where b , e , B 

~2 
and = parameter s wh ich char acter iz e the soil

- 

‘
. sample, and X

e 
= resilient static displacement of the soil sample in the

axial direction. The coefficients k
00 , b and e could be determined from

the resilient static stress—strain curve if such a curve could be measured.

The resilient static stress—strain curve of the soil sample is determined by

F a A — k x + bx 3 
+ ex 5 (43)S S C  O O e  e e

where a
~ 

static confining pressure , and F
5 total static force applied

to the cylinder end .

The solution of (39) — (42) can be written as4
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- + a
1~ 

+ a
2~~) 

(44)

where

S0 
= /(k

0 
— ~D~2)

2 
+ C2u2 (45)

= F~ /S~ A~a~ /S~ (46)

= - 
~b0(k

0 
- ~~~~~~2) (47)

a2 
= ~(~~)

2
b202(k

0 
_~~ 2)2 - S2(~~ e(k - mu2) + ~~~

(
~~~~~

)

2

b
2

B 2)  (48)

The dynamic stiffness of the soil sample can be obtained from (39) and (44)

to be

S — S
0
(1 + + (49)

~ 
— — a 1 (50)

a
2 

(51)

The quantities necessary for the calculation of the resilient modulus have

now been determined .

CALCULATION OF THE RESILIENT MODULUS

The resilient modulus is defined as the slope of the unloading portion of

the dvnanic stress—strain curve of th~ soi~ ~~r;:p1e , ~nd is given by

. 4

r
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tS M
r = i ~~~

_
~~~(~f) 

(52)

where C
D 

= dynamic strain in axial direction , L length of the soil sample,

and Ac — area of end of the cylindrical sample. In (52) ~ is assume~ to

S describe the unloading portion of the resilient dynamic load—deflection curve

of the soil samp le. Combining (44) and (52) gives

N = M (1  + 
~~~~~~~ 

+ 

~~~2~~~~~~ ) 

(53)

where

= — 3a1 
(54)

= 9a~ — 5a2 
(55)

M — ~~ S
0 

(56)

For the low frequency and small mass with which the resilient modulus tests

are conducted , the inertial and damping terms in (40) and (45) can be neglected

and the following approximations can be made

S ~‘ k (57)

S0 ’~~k 0 
(58)

The same approximations can be made in (47) and (48) . Combining (42) , (56) and

(58) gives the following approximation
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M ~.E + E x 2 + E x ~ (59)
r~ 0 2~~ i.e

where

E
0 

= ~~~~~
- k00 

(60)
C

E
2 

= 1L~ 3b~2 (61)
C

Ei. = 

~f~- 
5ec~ (62)

C

The quantities E 0 , E
2 

and Ei. are soil parameters which are independent

of the size of the soil sample and machine characteristics. The calculation

of the resilient Poisson ’s ratio requires further study.

The expression for Mr given by (53) — (56) characterizes the resilient

modulus in terms of aD , a~ and w . The parameters required to describe

the resilient modulus are k
00 , b , e , B , , c~ , , m , L , A

c 
These

parameters will depend on the type of testing machine, size of soil sample, and

the type of soil constituting the soil sample; and therefore the parameters

will have to be determined for  each type of testing machine. Ty~ .cal values of

- .- the parameters describing a resilient modulus test as described by (39) — (62)

are g iven for lean clay in Table IV. It is possible to determine resilient

modulus parameters which are independent of the size of the soil samp le and

independent of the type of testing apparatus. The parameters E
0 , E

2 
and E

i.

that occur in (60) — (62) are soil parameters and are independent of the sample

size or loading conditions . It is the quantity E
0 

that must be compared with

.4
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the value of Es determined from the vibratory load—deflection curves that

were measured directly on the subgrade. The value of Es was determined in

a manner such that its value is independent of the static and dynamic loads

exerted by the vibrator.

- V The preceding analysis shows that the characteristic shape of the non~

linear dynamic load—deflection curves measured in the field by the WES 16-.kip

vibrator is due in part to the basic nonlinear response of the material in the

subgrade to dynamic loads. The signs of the coefficients describing the resil—

ient modulus test: a1 
> 0 , a2

> 0 , 6~ < 0 , 
~2

> 0  , b < 0  , and e > 0

determine to a large extent the signs of the corresponding coefficients deter-

mined from the vibratory nondestructive tests conducted on pavements and sub—

V grades. However, inertial, damping and frequency effects will affect the

values of a1 and a
2 

that are determined by vibratory nondestructive test—

V ing. For the vibratory nondestructive tests done on pavements and subgrades at

- 
15 Hz, it is generally found that > 0 and a2 

> 0 which is in agreement

- - with the signs of the corresponding coefficients describing the resilient

modulus laboratory test. For frequencies different from 15 Hz and for excep-

tional pavement cases it is found that a1 
> 0 and 0

2 
< 0 or a

~ 
< 0 and

0
2 

> 0 . Therefore , the combination of the large effective mass associated

with a pavement and subgrade, and the relatively high frequency of operation

of the WES 16—kip vibrator can produce a dynamic load—deflection curve which

has a shape whith is considerably different from the shape of the dynamic load-

deflection curve measured in the laboratory during a resilient modulus test.

Because of the finite size of the soil sample for the resilient modulus

test, the effective mass of the soil sample is, to a good approximation, equal
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to the actual mass of the sample. The effective mass that enters the dynamical

calculations for the vibratory nondestructive field tests is generally quite

large compared to the moving mass of the vibrator because of the large inertial

effects associated with the pavement and subgrade. The large effective mass

and high frequency of the vibratory nondestructive field tests indicate that

the inertial and damping terms are comparable or larger than the elastic effects,

~ k and Cu ~~ k . The relatively small mass of the soil sample used for

the laboratory resilient modulus tests and the low frequency at which these

tests are conducted suggest that for this case, mu2 << k and Cu << k , and

the linear and nonlinear elastic properties are measured .directly in this test.

The resilient modulus tests combined with the nonlinear dynamical theory

of these tests indicate that the static nonlinear elastic coefficients b and

e have the signs b < 0 and e > 0. It is this basic property of soils that

is responsible for making the corresponding coefficients determined from field

tests exhibit the same signs. It is the nonzero values of b and e as deter—

mined from the resilient modulus that are responsible for the finite depth of
~

influence of the static stress—strain field in the subgrade beneath a static

load placed on the pavement surface. The intrinsic nonlinearity exhibited by

the soil during the resilient modulus tests is responsible for the finite depth

of influence of the static stress—strain field in an actual soil formation.

V. CONCLUSION

The nonlinear dynamic pavement response model that is pre-~ented - in this

S - paper gives a quantitative description of the dynamic response of a pavement

surface unuer the action oi the dynamic and static load applied to the
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pavement surface by the WES 16—kip vibrator. The model parameters — spring

constants, effective mass, damping constant and finite depth of influence of

the static load have been determined as a function of pavement strength as

- represented by the measured DSM. The nonlinear pavement respons.e model gives

a theoretical expression for the pavement response in terms of these parameters

V and in terms of the elastic constants of the pavement and subgrade. For a

suitable choice of the elastic moduli of the pavement layers, it is possible

- 

S to predict the value of the subgrade modulus from the dynamic load—deflection

H curve measured at the pavement surface.

Of much importance to pavement engineers is an estimation of the strength

and condition of a subgrade as measured by its subgrade modulus. The nonlinear

- 
‘ elastic response model of the dynamic load—deflection curve combined with

measured values of this curve is sufficient to determine the subgrade elastic

modulus quickly and accurately. This work was funded by the Federal

Aviation Administration.
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TABLE I

NUMERICAL RESULTS FOR FREQUENCY RESPONSE METHOD

LOCATION DSM rn /rn - C k E (CHEVRON) E (CBR)
kips/in v 1Oi.lb .sec/in kips/in S lO 3psi S103~ 51

B2 700 1.7 1.0 2137 65 21

- 
- N18 770 2.0 0.8 1500 58 27

Wi 860 1.8 0.4 2620 136 30

B3 1630 2.0 1.1 2140 35 25

W2 1940 2.4 1.3 2470 69 30

P14 2120 2.5 1.5 2610 139 30

P13 2780 4.4 2.0 3500 153 30

-~ Bi 3120 10.0 2.8 4270 140 21

I.

~
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‘4

~~Vø

447
U 

- - ~--- 
i__ 

_ _ _  _ _ _ _ _



_ _ _ _ _ _ _ _ _ _  _ _ _- -

TABLE II

- INPUT OF WES NONLINEAR DYNAMIC PROGRAM

SITE B2A

DSM 700 kips/in

FD

V - kips in.

0 0.0

-
. 

— 2 0.003

1~ 
4 0.007

6 0.011

-
~~ 8 0.015

10 0.020

V 12 0.025

14 0.030

‘4
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TABLE III

RESULTS OF WES NONLINEAR DYNAMIC PROGRAM

_ _ _ _  _ _ _ _ _  -

S SITE DSM SUBGRADE CBR Es (CBR) E5 
(WES NONLINEAR)

kips/in lO3psi lO 3psi

V TETS 450 8 12.0 13.0

B2A 700 14 21.0 22.8

H N18 770 18 27.0 25.9

WES—AC 780 4 6.0 6.7

- 

- - Wi 860 20 30.0 18.8

N23A 980 18 27.0 28.1

B3 1680 17 
- 

25.5 11.1

W2C 1940 20 30.0 35.5

P14A 2120 20 30.0 13.7
- 

- P13 2780 20 30.O 17.7

Bi 3120 14 21.0 9.0

WES—PCC 3500 4 6.0 6.8

t
‘C

‘5’
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TABLE IV

PARAMETERS DESCRIBING THE DYNAMIC CHARACTERISTICS
OF THE RESILIENT MODULUS LABORATORY TEST

Ac in2 6.16 6 lb2/in~ —5.66 x 1013

L in 6.0 6
2 

lb~/in
8 1.45 x 1027

W lb 5.0 a
~ 

lb~/in~ 1.89 x 1013

m lb sec2/in 0.013 0
2 

lb ’
~/in

8 3.5 x 10~~
- - 

w sec~~ 6.0 
~ 

lb~/in
’ —1.89 x 1013

~~2 lb/in 0.468 
~2 

lb L
~/inS 7.2 x 102~+

C lb sec/in 30.0 8 dimensionless 30.0

Cw lb/in 180.0 - dimensionless 50.0

lb/in 1.5 x 10~ dimensionless 31.0

lb/in 4.0 x 10~ dimensionless 54.0

-
: k lb/in 4.0 x 10~ E

0 lb/ in2 1.5 x 1O~

b lb/in3 — 2.0 x ~~ E lb/inn —2.0 x iü~

e lb/in5 3.6 x 1011 E lb/in6 9.7 x 1013

5S~

I.

‘I
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DYNAMIC PAV EMENT RESPONSE MODE LS

r m i

C12

m1

kJ I4J

C k

2 1+

~ / / /  ////7/ 7//// ////// ,

SINGLE MASS DOUBLE MASS

1. LINEAR SPRING 1. LINEAR SPRINGS
2. NONLINEAR SPRING

F igure 3. Single and double mass dynamic pavement
response models
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FREQUENCY RESPONSE CURVES

LU

FREQUENCY

MEASURED QUANTITIES: 
~R = RESONANCE FREQ UENCY
A R = DYNAMIC AMPLITUDE AT RESONANCE

J (f) = A R /A = RATIO OF AMPLITUDE AT
RESONANC E TO AMPLITUDE
AT ARBITRARY FREQUENC Y.

-
~~

Figure ~~. Measured quantities obtained from frequency
response curves
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FREQUENCY RESPONSE METHOD

BALTIMORE (B2)
T 77 0 F

AC E 1 2.0 10~ ~
i

1 
= 0.30 H~ 5

BLA CK = • 0 ~ =
BASE E 2 2.0 1 

~ 0.35 112 -

~~~ 1 \ j/ GW GM E 3 = 1.0 - 
~~~~ 

= 
~~ H 3

A A R 
SM-SC E 5 ? 

~~ 
= 0.35

~R FREQUENCY

INPUT DATA
~ R A R J = A R/A

H ____$____

WES DYNAMIC FREQUENCY
RESPONSE PROGRAM

Es = 65 101 PSI

‘S

Figure 5. Method of calculating subgrade modulus from
measured frequency response curves
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Figure 6. Dynamic spring constant versus measured DSM
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DYNAMIC LOAD -DEFLECTION METHOD

BALTIMORE (B2)
T=77° F

AC E1 2.0 10~ p
~ 0.30 H1 5

BLACK 
E

2
= 2.0 x 10S 1/2 = 0.35 H2 =7

- GW-GM E1 = 1.0 ~ 10~~ 1/3 
= 0.35 H3 = 9

// / / / / / / / / / / /,

0 2 4 6 8 1 0  

SM-SC E5 =?  
~-‘s = 0.35

V DYNAMIC LOAD, KIPS

INPUT DATA
1. DSM VALUE
2. POINT BY POINT TABULATION

OF LOAD-DEFLECTION CURVE

-

. WES NONLINEAR DYNAMIC
LOAD-DEFLECTION PROGRAM

I V 

O IJTPU T
_ ___

__}.... ..~~~...... E 5 = 22.8 iO~ PSI

‘a

I

I

‘C
M V

Figure 16. Determination of subgrade modulus from measured
dynamic load—deflection curves
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CHARACTERIZATION OF BEHIND ARMOR EFFECTS FOR
LONG ROD PENETRATORS

Victor D. Maki
Engineering Branch

Ballistic Modeling Division
US Army Ballistic Research Laboratory

Aberdeen Proving Ground , Maryland

ABSTRACT. This study was needed to provide information on the
behind armor effects essential to armored vehicle analysis and in the
design of future kinetic energy penetrators. Both spall and rod pene—
trator fragment data was examined for gross characteristic statistical
trends. Use of least squares was employed to ascertain causes for siin i-
larities in the data base. A linear function relat ing fragment mass to

- 
- velocity was employed to study effects of variation in projectile materials ,

initial projectile weights , striking velocities , length to diameter ratios
and plate thicknesses . Kolmogorov-Smirnov type test statistics were used
to determine whether or not a unique parent weight distribution existed
between various firings. The Weihull , Poisson and Truncated Normal cumu-
lative distribution functions were also compared with empirical wei ght
distributions for several selected firings. This paper summarizes the
characteristics found .

1. INTRODUCTION. Whenever armored vehicles of any kind are attacked
by metal rod penetrators , fragments are spra;ed inside the vehicle which
damage components and personnel. To facilitate a greater understanding

- 
- of those mechanical processes involved , a gross V~haracterization was done

• -~ that includes fragment numbers , mass distributions , and spatial locations
behind 6.35 and 12.7 millimeter rolled homogenous steel targets. The
fragment data base used for this analysis is comprised of 140 test  f i r i n g s
comp leted at the BRI in 1970. In the data base projectile wei ghts , length
to diameter ratios , projectile material types,target p late thickness ,
fragment masses , fragment locations , (see Figure 1), and velocities were
found recorded in a BRL Memorandum Report 1 . This data was transcribed
onto IBM punched card s for computer reduction and analysis. Initiall y,
the natural log of fragment mass and velocity were fitted with a first
degree pol ynomial of the form , y = a0 + a1x where y 

denotes the In velocity

V parameter and x the In of fragment mass. This polynomial fitting and
plotting techni que was later published by the author as a BRL Systems

‘L. Herr and C. Gaharek , “Ballistic Performance and Beyond Armor Data for
Rods Impacting Steel Armor Plates ,’ US Army Ballistic Research Labora-
tories Memorandum Report #2575, January 1976.

‘S
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Programming Bulletin 2. The volume of linear equations and plots produced
was found to be valuable as a convenient index in a search for trends from
firing to firing which later led to a zone analysis of the data. A zone
definition and the results of the zone analysis are on the following page.

Zone number 1 is represented by the innermost circle on the recovery
media surface and is measured by an angle of ten degrees with respect to
the shotline. Zones 2-thru-S are defined by an ang le increase of ten
degrees per zone. For all firings the shotline was orthogonal to the
target surface plane. Projectile striking velocities were in the 900 to

V 
1500 meters/sec range. The strai ght line function , in (fragment velocity) =

a0 
+ a1 (ln fragment mass) when fitted on a zone per zone basis revealed

a distinct trend. As zone angle increased , the slope values , a1 ’s were
more negative in value. This agrees with the basic conservation of energy
law of physics.

2. The Weibul l Distribution Function. In a testing of the Poisson ,
Truncated N~rma l , and Weihu ll distribution functions the latter provided

- : the best fit to the fragment mass parameter . A detailed report of how
the Weibull distribution function parameters were estimated can be found
in Reference 3. A two sided Kolmogorov-Smirnov type test was employed as
a criteria for best fit. The empirical cumulative distribution function ,
(Equation 1) was computed for the fragment mass parameters for several
selected firings. A graphical and numerical comparison with the Weibull
cumulative distribution function , (Equation 2) was then performed .

O~ x < X (1)
F
N

(x) K/N , X (K) < X <X (K l) (1)

- - 1 , X (N) < X

Y

F(x )  = 1 .0 - exp - (~ —) (2)
0

— x , is the fragment mass parameter.

2
Victor D. Maki , “POT Plot Subroutine with Bi-variate Analysis ,” US A m y

• Ballistic Research Laboratories Systems Programming Bulletin #SPB-G-74 ,
17 Jul y 1974.

3- Victor 0. Maki , “Three Probability E)ensity Function FORTRAN Subroutines ,”
US Army Ballistic Research Laboratories Interim Memorandum Report #396 ,
Ju ne 1975.
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The computed maximum absolute difference was numerically compared with ,

l.36/V~ which is fully described in Reference 4. If the computed maximum

I absolute difference was found to be less than the above statistic , a
decision was made to accept the Weibu ll distribution function for describing
f r~’~~tent mass . Included in this paper is a plot of this type test for
: ound number 5 (see Figure 2). For “good” fitting of the Weibull distribu-
tion function to a large number of firings fragment masses greater than
100 grains should be ignored . Because rod penetrator fragment mass distri-
butions are characteristicall y bi-modal , more than 90 percent of the frag-
ments can be found in the first node and therefore, for this data set ,
ignoring the second mode caused no si gnificant loss in accuracy .

3. ZONE DEFINITION.

Collection Media
- Shotline 

- -

Armor Plate
Fragment Impact

Locat i on

Figure 1

Zone 1 is represented by the innermost circle and forms an angle of
ten degrees measured from the shotline. Zones 2-thru-5 are defined by
an ang le ir.crease of ten degrees per zone.

J. Conover, Practical Non-Parametric Statist ics , published by
John Wi l ey , 1971 , New Yo rk , NY .

I
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4. TWO-SIDED KOLMOGOROV-SMIRNOV TYPE TEST

‘V 

R~ IJND N~~. S
HEL5ULL c.D.F..I6$~~rI4 cURVE~ FiND
EMP~R~CRL C.D.E..LSTEP FUNCT~~N).
BRMHR = 0.604 THETR = 6. 56 N = 190
MFiX IPIW-1 RBS~LUTE DEFFERENCE = 0.0746’480

1.0 I I I I I I I _,L. I I ’1—~

0.9 - -

0.8 - -

0.7 - -

0.6 - -

K/N 
- -

0.5 - -

0.4 -

0.3 - -

0.2 - -

0.1 - -

0.0 1 1 I I I I I I I I I I I I

0 40 80 ~20 L613 200 240 280 320
MA SS J G R S - )

Figure 2

l .36/ v ~ = .09866 477

Since the maximum absolute difference is smaller than the above value ,
the Weib ijil dis t r ibut ion  is accepted for this  f i r i n g .
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The fitting of the Weibul l distribution to spall fragment mass is doc-
- - umented in Reference 5. Further interest on the readers part on this

topic should be directed to Mr. John Misey, US Army Ballistic Research
Laboratory, Aberdeen Proving Ground , Maryland 21005.

5. CONCLUSIONS OF ANALYSIS.

a. As zone angle increases , average fragment velocity decreases ,
numbers of fragments decrease and average mass increases.

b. A two-sided Kolmogorov-Smirnov type test shows the Weibull dis-
V tribution function is a good choice for describing fragment mass less than

100 grains.

c. Rod penetrator fragment mass distributions are characteristically
bi-modal.

~

5
- “Behind Armor Data for Long Rod Penetrators ,” paper presented by

Mr. John Misey at the Second Annual Automat ic  Cannon Caliber Munitions
Symposium , 25 September 1975 at Frankfort Arsenal.
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MATHEMATICAL MODELS OF SYSTEMS AND TACTICS IN LAND COMBAT

Roger F. Willis
US Army TRADOC Systems Analysis Activity

White Sands Missile Range , New Mexico 88002

ABSTRACT. This paper covers a variety of mathema tical models that have
recently been developed , tailored to specific decision probl ems in tactics
and alternative system tradeoffs . These models emphasize rap id and flexible
variation of assumptions , investigation of alternative tactics , tradeoffs
between system parameters , tradeoffs between the elements of a force and
various optimizations. Alternative mathematical formulations include linear
versus non-linear , constant versus time-vary ing coefficients and stochastic
versus deterministic.

1. INTRODUCTION

Flexible and efficient mathematical models are required for use in different
V phases of a particular force evaluation or combat developments study . In an

early phase these models can be used to compare and screen alternatives --
alternative systems, alternative tactics or alternative mixes. In late phases
the same model s can be used for sensitivity analysis , to give approximate
answers to “what if” questions -- i.e., to determine how study results might
change if certain assumptions are varied . In most studies the major analyt-
ical tool will be a large , relatively slow and expensive computer model or
simulation or computer-assisted wargame (e.g., DIVWAG). The mathematical

V - model s presented in this paper are intended to supplement the large models ,
to provide additional insights and to enrich the study results. These models
can also be used to develop hypotheses (e.g., about the relative merits of
alternative tactics) that can then be tested with high resolution stochastic
simulations.

2. We consider the class of model s consisting of sets of ordinary differential
V 

equations in which each equation represents the time rate of change of the
- 

- number rem3ining of a particular type of weapon. The equations can be
deterministic or stochastic , linear or non-linear , with constant coeffic4ents
or variabl e coefficients. We consider ten specific decision problems and
the mathematical categories of model s as follows :

a. deterministic , linear , constant coefficients

(1) tradeoff between ground forces and aircraft
‘C 

(2) remotely piloted vehicles

(3) air defense suppression
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(4)  optimum artillery mix

b. deterministic , linear , variable coefficients

(1) antiarmor target priorities

(2) optimum disengagement time

V (3) electronic warfare

c. deterministic , non-linear

(1) weapon effectiveness

(2) force required

d. stochastic

- , 
(1) time to achieve goal

3. More complete statements of the decision problems are:

a. To what extent can tanks be traded off for close support aircraft?

;- b. How many remotely piloted vehicles are required to support one
maneuver battalion?

c. How should artillery fire be allocated between counterbattery fire
V 

and suppression of air defense?

d. What is the optimum mix of artillery types and numbers for support-
ing a mechanized infantry division?

e. I-tow should tank fire be allocated between three or four types of
V V anti-armor weapons?

f. What is the optimum time for a defending anti-armor force to disengage?
V g. What is the payoff from detecting enemy surveillance systems and

- 
attacking or jamming them?

h. What weapon effectiveness is required against a given enemy force:

~ 

‘

~ (1) if replacements are avail able?

(2) if no replacements are available?

‘4
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i. What force size is required against a given enemy?

j .  W i t h  a given force availabl e, how much time would be required to
reduce an enemy force to a specified level ?

4. In this paper we wil l present models for only four of these decision
problems : a, e, i and j .  These particular examples were selected to illustrate
the four categories of model s and several different measures of effectiveness.
In the first probl em, involving tradeoffs between ground and air , we are
interested in the broader question of what mix of ground forces and air forces
do we need in NATO? What factors should be incorporated in a simple model
designed to give gross , order—of—magnitude answers to this question? Some
of them are: aircraft availability rate and sortie rate , attrition of
aircraft , allocation of aircraft against alternative target types (e.g., tanks
or artillery), lethality of air-delivered weapons , tank effectiveness , tank
vulnerability and artillery effectiveness. The model is presented in Figure 1 ,
with variabl es and factors defined as follows :

X 1 (t) 
= Red tanks

X2(t) 
= Red artillery

Y1 (t) 
= Bl ue tanks

Y2(t) 
= Blue artillery
= Blue aircraft

J = rate at which a Blue tank can kill Red tanks
K = rate at which a Red tank can kill Blue tanks
P = Blue aircraft attrition rate per sortie flown
b = rate at which a Blue artillery weapon can kill Red tanks
k = average number of Red tanks killed per aircraft sortie
s = sortie rate, per available aircraft
V = aircraft availability rate, taking into account NORM , NORS , etc .
r = replacement rate for Red tanks
L = rate at which a Blue artillery weapon can kil l Red artillery
M = rate at which a Red artillery weapon can kill Blue artillery
N = average number of Red artillery weapons killed per aircraft sortie
f = fraction of Blue aircraft sorties employed against Red tanks (the rest
are used against artillery )
g = fraction of Blue artillery employed against Red tanks (the rest are used
against artillery )
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-H RED TANKS = - JY1 - bgY2 — VskfY3 + r
dt

RED ARTILLERY — L(l — g)Y2 — VsN(1 
-

~ f)Y3
V dt

BLUE TANKS = —

- dt

BLUE ARTILLERY ~~ = - MX~
dt

BLUE AIRCRAFT = - VsPY3
dt

Figure 1

Rates at which Committed Strengths Change

‘C
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From the first differential equation in Figure 1 we see that Red tanks
are killed by Blue tanks (v,), Blue artillery (Y~,) and Blue aircraft (Y3).To some extent Red tank los~es are compensated f~r by replacement tanks ,at a rate of r per minute. The Blue commander has two weapon allocation
problems : allocation of availabl e aircraft against tanks (f) and against
artillery (1-f); allocation of availabl e artillery against tanks (g) and
against artillery (l-g).

5. The solutions of this model express the numbers of weapons of each type
surviving (and commi cted) as functions of time . This model can be used
to investigate tradeoffs between tanks and close air support aircraft in
the following way. We set a tactical goal and calculate the various
combinations of “number of tanks ” and “number of aircraft” ,each of which
will achieve the goal . An example of a goal is: “Reduce the
Red tank strength by 100 within 2 hours. The tradeoff curves (tanks versus
aircraft) will usually depend on the values assumed by all the other factors
in the model , such as Red tank effectiveness, Blue tank effectiveness, Blue
aircraft attrition rate, number of Blue artillery tubes availabl e, etc.
The tradeoff curves also vary with the type of goal required . “Reduce the
Red to Blue tank force ratio by 50% in 6 hours” would give different curves .

6. For example , if we leave out Red and Blue artillery to simplify the
calculations and make the following assumptions

3 =  .003 S =  .004

K =  .001 P =  .05
- :  V=0.7 0 k = 2

we get the following results , for the Blue goal of killing the required
number of Red tanks within 16—2/3 hours :

V 
Number of Red Number of Blue
tanks killed aircraft tanks

400 100 133
75 200
50 267

300 100 33
75 100
50 167

7. The tradeoff between Blue tanks and Blue aircraft depend on two major
uncertainties : the duration of combat and the ratio of Blue tank effectiveness
Cd ) to Red tank effectiveness (K). We see this directly in the following
results , based on the assumptions: V = 0.70, S = 0.004 , k = 2, 0 = 0.05.

‘C
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Ratio of Blue tank Number of Blue tanks
effectiveness to Red Combat Time equivalent to one
tank effectiveness (minutes) Blue aircraft

1 to 1 2000 8.5
1000 6.2
500 5.8

3 to 1 2000 5.3
1000 2.7
500 2.2

8. For the next decision probl em (3e) the question is: How should Red
tank fire be allocated between three or four types of Blue anti-armor
weapons (targets)? The Red side makes tactical judgments about allocation
of fire . Here we let f be the fraction of Red fire directed against type 1
Blue weapons, f~ the friction of Red fire directed against type 2 Blueweapons , etc. ~Je could let the f. factors vary with time during the battle ,but in the examples given here we1assume that for a given battle each f~is given a fixed value , wi th the sum of f~ equal to one.

9. The ability of individu al weapons to kill targets (detect, hit , kill)
is assumed to vary with time during the battle (comparabl e to variations

V with range as intervisibility , detection and weapon accuracy change). The
model represents the dynamics of combat as the battle progresses , the rates
at which the numbers of weapons surviving changes due to attrition . The
model , a set of N + 1 differential equations , is gi ven below in para 10.

V 
The factors and variables are defined as follows :

X = number of Red tanks

Y 1 = number of type 1 Blue weapons (e.g., M6OA1E3)

number of type 2 Blue weapons (e.g., TOW on Mll3)

Y3= number of type 3 Blue weapons (e.g., TOW on jeep)

number of type 4 Blue weapons (e.g., DRAGON)

number of type N Blue weapons.

fraction of Red tank fire allocated against type i Blue weapons
(This could include target opportunities as well as target priorities.)

Ct) = average rate at which a type i Blue weapon can kill Red tanks
(This includes engagement opportunities , hit probability , rate of fire and kill

‘C probability given a hit.)

~ 
(t) = average rate at which a Red tank can kill type i Blue weapons

We assume that each K~ and is a linea r function of time . In particular ,
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K . ( t)  = a .  ,‘- b.t
1- ?-

J . ( t )  = c. + d. t

10. The model is:

Red tanks

- X
1

(t )Y
1
-X

2
(t) 1

2 

_ . . ._K
N

(t) YN
Blue weapons

dY
- J 1

(t)  f
~ 
X(t)

dY

dt - J 2
(t)  f2 X(t)

-
. dY

= - 

~~~~ .
f’]~J 

X(t)

11. We consider five alternative tactical allocation schemes for the Red
tanks , as follows :

a. Initial Blue strength.
Y.(o)

i - I  = 
1. —

“i ~
£ Y.(O)

V b. Equal priorities by target type.
1
N

c, Initial threat to Red tanks .
a.

~j N
1 a .
j= 1 ~

d. Initial ease of killing .
C .

J i —~~1
‘C z c.

j—1 ‘~

479

L

~ 

V~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ .-. ~~~~~~~~~~~~~~~~~~~~~



e. Later threat to Red tanks (time t , e.g., ~E = 5 or 10).
a.  + b. t

4. _ _ _ _ _ _ _ _ _

~i N
E (a . i - b . t )
j =1 ‘7 ‘7

12. In order to compare these Red alternatives we must make assumptions
about the initial force sizes on both sides and the coefficients representing
weapon kill capabilities . In a number of runs we used the followi ng values :

Blue weapons Blue versus Red Red versus Blue

a.  b.  C .  d .
-~~~ -~~~ -~~~

type l(tanks) .152 .163 .013 .01 5

type 2 (long range ATGM) .053 .270 .008 .040

type 3 (short range ATGM) .000 .600 .000 .060

~/ ith  overall Red to Blue initial force ratios on the order to 3 tc 1 or
4 to 1 the order of preference for the Red alternatives in para 11 turned
out as fol lows:

Best: e. later threat to Red tanks
a. initial Blue strength
b. equal priorities by type
d. initial ease of killing

Worst: c. initial threat to Red tanks

13. In the next decision problem (3i) we consider the tactical question
of how a given initial Blue force should be broken up into smaller units
for employment against the enemy. If the effectiveness of the defending
Blue force does not depend on the absolute scale of the battles fought

V by the units (but only on the force ratio) then it might not matter how
V the initial force is broken up into units. We have investigated many

alternative types of models with respect to this question. Here we present
results for four of them :

V.,.
.

Model A
U—
. dR 

- 

dB
~~- = - K B ( t )  ~~- = - J R ( t )

Model B

~~~.=  _ K [ B ( t) ] M 
~~~.=  _J [ R c~t) ] 1’V

r
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‘ Model c

— 
= - LB(t)R (t) + a R ( t)

= - JR(t)B(t) + bB (t)

Model 0

(p + qt)B(t)

(a + bt)R(t)

14. In evaluating combat of maneuver units the sing le most meaningful measure
of effectiveness is the cumulative loss ratio--i.e., the ratio of total Red

V losses to tota l Blue losses. This loss ratio will depend on many factors,
including (in most cases) the initial force ratio--the ratio of the initial

V 
number of Red weapons to the initial number of Blue weapons. If we cal-

- - ; culate the cumulative loss ratio at the particular time t at which Blue
has a fraction “A” of his force surviving (e.g., A = 0.70) the result for
Model A is: _ _ _ _ _ _ _ _ _

L(~) = F f  
1~~~~~~c(1 A 2)

where F 0 is the initial force ratio C ~-~-) and c = ~~~, the ratio of individua l
weapon effectiveness coefficients . It l~s clear th~t, for Model A , L does
not depend on the scale of the battle (B0 or R0) but only on the initial
ratio of forces.

15. For Model B , the loss ratio is:
M+ 1 i~—N

L (~) = - 
c (1 

F Q
M+l

If M does not equal N then L does depend on the scale (R0) but if M = N
V 

- then it does not.

16. The cumulative loss ratio L sat isf ies the fo ’lowing equation when
8(t) equals AB 0 for  Model C:

b log [F 0 - (1 - A )L~ + ~: (1 - A )  B 0 L =

b log F0 +alog A + K (1 - A ) B0

S nce B~ appears explicit ly the ‘oss ratio does depend on scale for ~odel C.
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17. Based on the Taylor series solutions of Model 0, the cumulative loss
ratio , at any time t , is:

t3 
V

L ( t)  r - 

~~~~~ g) +~~~~[~ 
a _ ( L +~~~z ! I O]

aF 0t - (ur - ~ i-~~) + t~ [ z ’~~F 0 - (aq + 2~~~) j

Th is expression depends on F0 but not on B0 or R0 (and hence not on the
scale of battle).

18 . The f inal decis ion pro b lem to be illus tra ted i n this pa per is 3j:
with a given force available , how much time would be required to reduce
an enemy force to a specif i ed level ? For exam p le , Red has six tank p la toons
and Blue has three tank platoons. How long would it take Red to reduce
Blue to 65% of his initial strength (e.g., with about 2 platoons l eft)?
These numbers are too small for stable results from a deterministic -odel.
Thus , we consider the following stochastic model , developed by Isbel l and
Marl ow. At time t, the probability that exactly R Red units and exactly B
Blue units are surviving is:

~~~; R0, B0, t)

where R0 and B0 are the initial strengths. If f and g are transition
probabili t ies , i n small increments of time , for Red and Blue respectively,
then it is assumed that the function P satisfies the following diff2’ ent~al
equations:

dP (R ,B) 
= f  (~ +1, B)  P (R+1 ,B) +  g (R ,B+ 1) P(R ,~ + 1) - [f(R3 B) + ~ (R, B)3 ~

(R , B)

r~ P (R , B, t)  = 0 - if R > R0 or B > B0

and P (R Q, B 0, 0)  = 1.

If we assume that f and g are linear functions of weapon cha racteristics
V 

- an d tha t Red and Blue weapon are equall y ca pable , then the solutions are
as g iven in Figure 2, where the functions F satisfy the following relations :

F(1-?, B; R0, B0) = 
R + B + 1 F(R + 1, B; R0, B0)

F(R, B + 1 ; R0, B0)
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19. Examples of specific solutions are the following ;

a. Initial Red force: 6 platoons
Initial Blue force: 3 platoons

Time required to reduce Blue force
by 65%

Probability (t minutes or less)

.63 7

.56 5

.42 3

.16 1

b. Initial Red force: 4 platoons
Initi al Blue force: 2 platoons

Time required to reduce Blue force
by 65%

Probability (t minutes or less)

.42 7

.32 5

.19 3

.06 1

II:’
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I
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EVALUATION OF SEVERAL ‘BEST FIT’ METHODS AS THEY PERTAIN TO THE
SUPERPOSITION OF SOLUTIONS IN A MULTIPOINT BOUNDARY

VALUE PROGRAJI

John H. Wal ker

U.S. Army Test and Evaluation Command
Whi te Sands Missile Range
White Sands, New Mexico

S. Bart Childs , Ph.D.

Department of Industrial Engineering
Texas A&M University
Texarkana, Texas

ABSTRACT. A shooting method is the superposition of ini tial value solutions
of ordinary differential equations such that boundary are “met” or a performance
index is minimized .

The results of meeting noisy boundary conditions in least squares and minima x
norms are presented. The example problem is a damped, forced harmonic oscillator .

The procedures are basic to system identification problems.

1. INTRODUCTION. The linear boundary value probl em is governed by the
ordinary differential equation

~~~~i~y + f  (1)

where y and ~ are, respectively, the vector of n state variables and its deriva—• tive, L anc1 f  are matrix and vector functions of the independent variable t , time.
The solution of this differential equation is subject to a set of boundary condi-
tions

q~ (y (t ~)) = i = 13 2,...,rn>n (2)

where qj is the boundary condition operator that specifies a linear combination
of the state vari ables equal to the boundary value , ~~ at time, t~.

A shooting method is to superimpose appropriately i ndependent solutions of
(1). This can be written as

y =  (3)
j=O

where is a particular solution of (1) and a. is the corresponding superposi-
f tion constant. ,1
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The independence properties can be assured by the following strategy. Assume
p~

0
~(O) = a. Then take

= + i, j  = 1,2,...,n (4)

where ~ is the Kronecker delta and all B~. ~ 0. The above strategy gives a deter-
minant (Wronskian) of the associated homogeneous differential equations, at t—0 ,
of the product of the s’s.

The superposition of particular solutions also requires that

n
~~a . = 1.  (5)

j =0 ~

Chilcis et al. (1970] give more details on the strategy and a proof of (5). If a
is the initial value vector that makes (1) satIsfy (2) then It Is obvious that a0=1
and a1~~2=... =a =0. How close the actual superposition constants come to these
values is an indication of the merit of the numerical method.

- ..1

The superposition (3) is substituted Into the boundary conditions (2). If the
boundary conditions are linear in y, then the operators q and ~ may be interchangedgiving

~ (q ~ (p ~~~(t ~) ) ]  a~ = £ = 112,...,m. (6)
j=0

The use of shooting procedures results in the particular solutions, p~~” , beingknown and we observe that the bracketed terms in (6) are simply coefficients of an
a gebralc equation In the unknown superposition constants. We wrIte (5) and (6) as

• the matrix equation

S a = d  (7)

where S . = 1 , d = 1
0

and S~ . = q~ (p ~~~(t ~)), d~ = i = 1,2,....,m (8)
•~t7 j  = 0,1,...,n .

2. NONLINEARITIES. If the differential equation is nonl inear then we may
write It as

= g(y,t). (9)
Equation (9) is linearized via a Taylor series expansion in order to obtain an
equation l inear in z;

(10)

‘ 
where w is a reference solution or a previous approximation to y. Equation (10)
may be rewritten as
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~~=Jz # g ’ (11)

where 
= ~~~~~. and g’ = g (w,t)  — Jw . (12)

Therefore, if we are given a nonl i near differential equation subject to
boundary conditi ons, we may approximate it by the linear equation

~ =Jz # g’ (13)

subject to the boundary conditi ons

q~(z(t~.)) = b~ i = 1,2,...,m. (14)

It is obvious that (13) and (14) are analagous to (1) and (2) and so we proceed
in the same fashion. The only difference is that now the solution Is obtained
iteratively.

We again superimpose ni-i particular solutions of (13) that meet the boundary
- 

- conditions (14):

z = ~ ~~~~~ (15)
j=0 a

where each satisfies

~(j ) 
= ~~ (16)

The superposition constants are determined by

n
(17)

and n
q.( ~ (p

(a) (t ))a ) = b. £ = 1,2,...,m>n . (18)
j=0 a

If the operators, q., are l inear then (17) and (18) form a set of linear equations
analagous to (7). ~

If any of the boundary condition operators, q~, are nonl inear, then they must
also be linearized by a Taylor series expansion. The l inearization is done with

• respect to the superposition constants wi th the initial reference values of the
vector, a, as

a0 1

= 0 j  = 1,2,...,n . (19)

The reader can refer to Childs et al. (1970] and to Roberts and Shipman (5]

~~ for more details on these linearization procedures.
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3. OVERDETERMINED BOUNDARY CONDITIONS. If the number of boundary condi-
tions, in , is greater than the order of the differential equation, n, then (7)
constitutes an overdetermined set of linear equations with the a

s
’s unknown.

Not all of the equations can be met exactly, some will have to be met in a
“best fit” sense. Let’s assume that p of the in boundary conditions are to be
met exactly then p#1 of the mi-i equations (the superposition condition is
incl uded) must be met exactly. Equation (7) may be partitioned as fol lows;

1~i 
S21 1~1 [del

I I I 1 = 1  I (20)
[33 54] La0] [d0]

The components ~~~~ and de correspond wi th the equations to be met exactly.
By suitable matrix operations, (20) can be transformed into

Fl S~] IZe d~1
I I I = J (21)
[o s’j La d ’j4 0

Two matrix equations results from (21):

S~~a0 =d ~ (22)

ae = d~ — s~ a0 (23)

Equation (22) is solved in a “best fit” sense for a , which is then substituted
Into (23) for ae . 0

Once the superpositi on constants, aj, are found , they are multiplied by
their appropriate particular solutions at t=C, that is , p~~~(0) , which yields
an estimate of y (O), i.e.

I)

: . y (O) = ~~p~~~(O) a . . (24 )a

If the problem is nonlinear , the LHS of (24) is taken as the unperturbed par-
ticular solution at t=o, ~~(01) (~~~

• Independent perturbed solutions are generated
by the strategy described in (4) and a new set of superposition constants found .
The method is repeated until convergence of consecutive vectors are
observed (i.e., ~ will approach unity and all other a

i
’s will approach zero).

There are two principal methods of solving overdetermined systems of
l inear equations. They are:

1) least squares solution
2) minimax or Chebyshev solution .

a. Least—Squares Solution: Given

a0 = d 488 (25)

• ~
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F - the residual vector can be written,

R = S~ a~, - d~ . (2 6 )

The least—squares solution is the vector, a0, that minimizes the sum of the
squares of the components of the residual vector, R, is:

a0 = (S~)
T
S~

_ l
(S
4~
)Td~ . (27 )

This is substi tuted back into (23) to find a

b. Minimax Solution: The minimax solution is the vector a0 which minimi zes• the largest absolute value of the components of the residual vector (26). That
is , we want to minimize max(ri~r~,... rm_p ) . The method advanced by Powell is
used In the program. See (3] and (4] for more specifics on the minimax method.

4. RESULTS. We considered the following problem

~~#~~~ +~~x=sin(t) (28)

which is the equation of motion for a forced, damped harmonic oscillator.
By the change of variables

= x~ = 
~~, 

y3 = 
~~ 

= (29)

(28) may be replaced by

= 
~~4~i ~~3~2 

i- 8in ( t )  (3 0)
y3 = 0

Y4 = 0 •

Initial val ues were selected for the state variables and solutions for
~j  and ~i were generated on the interval 0<t<15. At times, t=i,2a3,...,i5, the
value of Y2 was observed. These val ues were taken as the exact boundary values
(to 8 signifI cant figures). Six sets of “noisy” data were produced by two
techniques. The first was to round off the exact boundary values to 1,2, and
3 decimal places to the right of the decimal point. The second technique was
to add a random variable that was, normally distributed wi th a mean of zero and
a standard deviation , a. Three different values of a were used: .01, .1, and
.5. See Table 1 for the sets of boundary values . The program was run using
each set of the corrupted boundary values as data. The errors between the
originally selected initial conditions and those that the computer estimated
from the noisy data were computed . Both least—squares and minimax were employed
to solve the overdetermined system, for each data set. See Tabl es 2, 3, 4
and 5. Two criteria were chosen as the basis for evaluating the “closeness”
of fit: (1) the sum of the absolute val ues of the errors and (2) the sum of the
squares of the errors. In all cases, the least—squares solution proved the

- • better fit, as expected. The accuracy of the parameter estimates is impressive,
even with the noisiest data. 

U
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Boundary val ues Boundary values Boundary values
rounded to 3 rounded to 2 rounded to 1

t .  decimal places decimal pl aces decimal place

1 -0.220 —0.22 —0.2
2 O.35D-01 O.3D-O1 0.0
3 —0.474 —0.47 —0.5
4 -0.589 —0.59 -0.6
5 0.393 0.39 0.4
6 1.597 1.60. 1.6
7 1.452 1.45 1.5
8 -0.388 -0.39 -0.4
9 —2.324 —2.32 —2.3
10 -2 274 -2.27 —2.3
11 O.88D-O1 0.9D-O1 O.1D-OO
12 2.711 2.71 2.7
13 2.997 3.00 3.0
14 0.401 0.40 0.4
15 —2.816 —2.82 —2.8

Boundary values Boundary val ues Boundary values
with N(O,.O1) with N(O,.1) with N(O,.5)

t .  r.v. added r.v. added r.v. added

1 -0.21869550 —0.20667165 -0.15323232
2 O.37798268D-01 0.660643610-01 0.19169151
3 -O 46666120 -0.40497946 -0.13083809
4 -O 59655859 —0.663708 44 -0.96215247
5 0.39299204 0.39030898 0.37838423
6 1 5960593 1.5846639 1.5340173
7 1 4712304 1.6443249 2.4136342
8 —0 38313658 -0.33635166 —0.12841859
9 —2.3169182 -2.2529945 -1.9688892
10 —2 2631763 —2.1656611 -1.7322599
11 O.91826552D-O1 0.12353162 0.264 44312
12 2.687639~ 2.4736753 1.52272~9
13 3 0007328 3.0323136 3.1726727
14 0.39058453 0.29953824 —0.10511233
15 —2.8133056 —2.7851188 -2. 6598437

I-.

TABLE 1
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I.C. estimates usin g I.C. estimatesTrue value Least Squares. B.V.’s using Minimax. B.V.’sof Initial input with 8 signifi— input wi th 8 signifi cantconditions cant figures figures

X ( 0)  1.0 0.99999999 0.99999997
0.5 0.49999999 0.49999998

0.2 0.20000000 0.2~0OOOOO
1.0 1.00000000 1.00000000

f l e . I  = 2.00-08 f l e . I  = 4.00-08

h 
- 

~ e~ = 2.00-16 
~ e~ = 1.00-15

TABLE 2
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I. C. estimates using I. C. estimates using
Least Squares. B.V.’s Min imax. B.V.’s are
are rounded to 3 deci- rounded to 3 decimal
mal places places

x(o) 1.0000524 0.99976973

2( 0) 0.49978310 0.49976451

0.20004417 0.20009774

0.99996730 0.99998927

nei l = 3.46170—04 nei l = 5.7423D-04

~ e~ = 5.2812D—08 ~ e~ 11.8148D-08

I. C. estimates using I. C. estimates using
Least Squares . B.V. ’ s Minimax. B.V. ’s are
are rounded to 2 decl— rounded to 2 decimal
mal places pl aces

X ( 0)  1.0011527 1.0008828

1(0) 0.50086499 0.50155621

0.19989372 0.19996940

1.0001414 0.99988326

= 2.2654D-03 ~Ie~I = 2.58640-03

~ e~ = 2.1082D-06 ~ = 3.21570-06

TABLE 3
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I.C. estimates using I.C. estimates using
Least Squares. B.V.’s Minimax . B.V.’s are
are rounded to 1 deci— rounded to 1 decimal
mal place place

L~. 
x (0)  0.95849170 0.93474852

X ( 0)  0.50061069 0.48097522

0.20243731 0.20584127

0.99890736 0.99848235

= 4.56490-02 ~l e~ 1 = 9.16350—02

~ e~ = 1.73040—03 ~ e~ = 4.65610-03

I.C. estimates using I.C. estimates using
Least Squares. N(O,.O1) Minimax. N(O,.01) r.v.
r.v. added to the added to the B.V.’s
B.V.’s

x (0)  1.0009066 0.99134015

0.49193995 0.48700959

0.20106603 0.20179481

1.0003406 0.99973471

f l e . I  = 9.7755D—0 3 ~j e . I  = 23.71040—03
2- 2-

~ e~ = 6.7049D —05 ~ e~ = 24.70350-05

TABLE 4

.4
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I.C. estimates using I.C. estimates using
Least Squares. N(0,.1) Minimax. N(0,.1) r.v.
r.v. added to the added to the B.V.’s
B.V. ’s

X(0) 1.0112150 0.91127941

X ( 0)  0.41910446 0.36854682

0.210717E 0.21777510

1.0033087 0.99682169

fle~I = .1061 f le~ ! = .2411

~ e~ = 6.7957D-03 ~ e~ = 2.54770-02

I.C. estimates using I.C. estimates using
Least Squares. N(0,.5) Minimax. N(O , 5) r.v .
r.v. added to the added to the B.V. ’ s
B.V. ’s

X ( 0)  1.1020264 0.49280864

:- X ( 0)  0.904619840-01 -0.18505768

0.25470622 0.28377993

1.0143196 0.97314194

= .5809 fl~~p = 1.3029

= .1813 ~ e~ = .7343

TABLE 5
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A STATISTICAL STUDY OF NUMERICAL ANALYSIS

APPLIED TO THE REGRESSION OF nTh
ORDER DIFFERENTIAL EQUATIONS
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- 
- ABSTRACT. An extension of regression analysis from the

— 
• 

usual algebraic models to differential equation models is given.
A shoo ting method , superpo sition of appropr iately independent
initial value solutions of differential equations, is used. The
shooting method used is based on particular solutions of the gov-
erning differential equations. Nonlinear differential equations

- 
- and/or boundary conditions can be accommodated.

The statistics of linear regression are generated through
a straightforward analysis of variance. These provide the basis
of “accep tance” or “rejection” of the regression.

The statistics genera ted include an (uncorrec ted) ANOVA
- • tables, general F-test on the regression, R2 value, the c o ef f icient

of variation, covariance matrix of the superposition constants,I “ estimate of the variance about the regression, es timate of  the
variance of the parameters, and the confidence intervals of these
estimates.

The procedures are basic to system identification problems.
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1. INTRODUCTION. The linear boundary value problem is governed by the

ordinary differential equation

y = L y + f  ( 1)

where ~ and ~ are, respectively, the vector of n state variables and its deriva-

t3 tive , L and f are matrix and vector functions of the independent variable t,

time. The solution of this differential equation is subject to a set of boundary

conditions

q~(~(t~)) = i = 1, 2,..., rn>n (2)

where is the boundary condition operator that specifies a linear combination

of the state variables equal to the boundary value, at time, t~~. We

are concerned only with those cases where m>n and the boundary conditions are

to be met in a least squares sense.

• A shooting method is to superimpose appropriately independent solutions of

equation (1). This can be written as

y =  ~~~~~~~ 
(3)

j=0

where is a particular solution of (1) and a~ is the corresponding super-

imposition constant .

The independence properties can be assured by the following strategy.

(0)Assume p (0) a. Then take

= a. ÷ i, j  = 1, 2,..., n (4)

where ô is the Kronecker delta and all ~ 0. The above strategy gives a

determinant (Wronskian) of the associated homogeneous differential equations,

at t—0 , of the product of the 8’s.
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The superposi tion of par ticular solu tions also requires tha t

r. fl

~~a . =1. (5)
j =o a

Childs et al. [19701 give more details on the strategy and proof of (5).

If a is the initial value vector that makes (1) satisfy ( 2 )  then it is obvious

that a
0 

= 1 and a
1 

= a2 =. . . = a = 0. How close the ac tual superpos ition

constants come to these values is an indication of the merit of the numerical

method.

The superposition (3) is substituted into the boundary conditions (2).

If the boundary conditions are linear in y, then the opera tors q and E may be

interchanged g iving

~ q1(p~~~(t~
)) a . = i = 1, 2,...,m. (6)

a
(.)

The use of shoo ting proced ures resul ts in the par ticular solu tions , p , be ing

known and we observe that the bracketed terms in (6) are simply coefficients

of an algebraic equation in the unknown superposition constants. We write

- - - 
(5) and (6) as the matr ix equation

S a = d  (7)

where S .=1 , d = 1
•
0

and = q~~p~
1)(t~) ) ,  d. = i = 1, 2,..., rn

a —

2. THE OVER-DETERMINED SYSTEM. The solution of the system (7) is

easily obtained for the data sets we have considered. We rewrite (7) parti-

tioning (and rearrang ing if necessary) the elements of the vectors and

matrices

S1 ae de
-- = (8)

S3 S4 a1 bm 
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The equal ity sign is unders tood to mean “equal ity” (as much as our numerical

procedures allow) for the upper portion of (8) and “least squares” fit for

the lower por tion. The equali ty cond itions come f rom the superposi tion

constraint (5) and any boundary conditions that may exist which should be met

“exactly. ” Weighting of the rest of the boundary conditions can be done

but is not shown.

A straightforward method of solution is by elementary operations

(Gaussian reduction with maximum pivot selection) to transform (8) into the

equal ity ( 9 )  and the “least square” fit (10)

Ia 1- ’Sa = ‘d (9)e 2 1  e

- 

. ‘S4a1 
= ‘d 1 (10)

The ‘() denotes the values have been affected by the reduction process. Note

that ‘S
~ 

= I and ‘8
3 

= 0.

The least square solution for a1 in (10) is obtained in the usual manner,

- 
‘ ‘  the normal equations result from premultiplying by the transpose of ‘.94. The

result is substituted into (9) to obtain the rest of the a vector.

The “correct” initial value vector can be calculated from U

y ( O)  = p~~
0

~~(0) + Ba ( 11)

where B is a diagonal matrix with indices varying f rom 0 through n. B00 
= 0,

~~~ = 8. for i = 1, 2,..., n. Our computational procedure is to repeat the

proces s with p~
0
~ (0) y (O) from (11) such that we should have

a~~= 0  j = 1 , 2,..., n (12)

This will aid in construction of confidence limits of parameter estimates.

This also gives a convenient quantity

= q~ (p ~
0
~ (t ~)) = - (13)

- 
-
~~~ which is the “predicted” boundary value.

Ii~
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3. ANALYSIS OF VARIANCE. An uncorrected ANOVA table is presented below

in terms of the nomenclature introduced. The significant calculations are

presented in terms of vector products. These products are over the q and

b vectors and are formed over the elements a8eociated with least squares

boundary conditions only, any exact boundary conditions are ignored in these

pro ducts .

TABLE 1

ANOVA TABLE

Sum of Degrees of  Mean
Source Squares Freedo m Square

Iu e  to regression ~
T

b n SS/n

-
• 

. T ~T 2
About the regression b b - q b rn-k-n s

(residual) U

Total (uncorrected) bTb rn-k

Notice in the degrees of freedom column that m is the total number of boundary

conditions and k of those are to be met exactly.

We define ~ to be the mean of the least square boundary values

= (E b.)/(m—k) (14)

The following formulae are used to calculate the usual statistics:

R2 = 
(~ .b. - ~~ )2 (15)

b
T
b - ~

2 (m-k)

2 = MS (residual) = estimated var iance of syst em (16)

F
cal 

= MS (regression)/s
2 (17)

- 
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In (15) the summation and product are over the least square boundary conditions.

The F value must exceed a Fischer’s F with:
cal

Probability of 1 — a (a is the producers risk)

Numerator degrees of freedom n

Denominator degrees of freedom rn—k—r

f o r  the regress ion to be accepted.

The estimated variances of the boundary values are:

• eat. var. (~~~~) = (‘S
4
.) [(?.9)(t5 )T 1

_ i 
(t.9 )

T 2 ( 18)

where the i subscrip t deno tes the ith row of the ‘S
4 

matrix . The resulting

confidence limits in terms of the t statistic are:

~i 
+ t( y, 1 — a/ 2)  ‘It ~~~~t. var (q~)I (19)

where y = rn-k-n and a is the producer ’s risk.

We have stated these procedures are basic to system identification

procedures. We are most interested in y (0)  and its covariance in those cases.

Recall equations (9) and (10) and we denote

r2 = (~dl
)T(td

l
)/ (m_n) (20)

-~~~~~ The covariance matrix of a
l 

is

= ((tS )T(~S)]~~r
2 (21)

Likewise, the covariance matrix of a is

C — ‘‘S C (‘S )T 
- ( 2 2 )

e~~~ 2’ 1 2
The final covariance matrix is formed by appropriate multiplying by the

perturbation matrix B giving

C 01 0 0— — — Ô

e — ___________

-
~~ 1 T 0

ii - ———j B =  Ci,, (23)

0 C
1] 

0
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The zeroth row and column of the result are null reflecting the variance of

the superposition constraint (5). The ith diagonal element is the estimated

var iance of y . ( O) . Its square root is the estimated standard deviation of

The conf idence limits (wh ich Drape r and Smith po int out should be

viewed with caution) are

y~ (0) ± t(m— n, 1—cx/ 2) [ ea t. etd . dev. ]~ (24)

A more stringent confidence limit would be a hyperellipso id like

eT(C i ~e < n r 2 F(n, rn-n, 1-a) (25)

• where the vector e is within the confidence limits about y(O). This kind of

statement is difficult to use if n>2.

4. AN EXAMPLE . Consider the problem of de termining the coas ting d ynamics

of an automobile. The three force elements of a model of the phenomenon are (5]

a. Rolling friction due to tire flexing and Coulomb friction on

gear train.

b. Aerodynamic resistance proportional to the square of velocity.

c. Product of mass and deceleration.

• The differential equation may be written as

x ÷ Cct4f (3~)2 i - p g = 0 (26)
M 2

where

3p = air density (slugs/ft )

A
f 

= f rontal ar ea of vehicle (f t
2
)

M = mass of vehicle (slugs)
2g = acceleration of gravity (ft/ sec )

C
d 

= coefficient of drag

= rolling friction coefficient

- 
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= velocity (ft/sec)

x = accelera tion (f t/ sec 2)

Since the disp lacement, x, does not appear in (26), we can write this as a

single f irs t order ordinary differential equation (substituting y1f o r  5)
2

= - 
y2~f

p y 1 .
~
‘ y3

g (27)

The most economical procedure to obtain suf f i c i e nt measur ements would be to

coas t an automobile in neutral f rom some speed l ike say 80 miles/ hour and

record the speed at intervals of say 5 seconds. The boundary values in

Figure 1 are velocities in ft/sec at 5 second intervals. Since (27) is

nonlinear, the usual Newton type linearization procedures are employed , see

Walker (4] in this proceedings or Childs [1], [21 for more details.

Figure 2 is the output of our program which is based on (27), the data in

F igure 1, parameter values common in engineer ing use , and automobile parame ters

~: from the Road and Track Test Annual for 1966 for a Sunbeam Alpine. The

c o ef f icient of drag C
d = y 2 = 0.5025 

~ 
0.0690 and c o ef f icient of  roll ing friction

= = 0.0169 ± 0.0031 resulted. 
U

- ! 5. CONCLUSIONS. Regression analysis with differential equation models

is f e a s ible. I t could signif icantl y af f e c t des ign of exper iments when such

models are relevant. Determination of the parameters in the simple example

would be expensive if one had to use wind tunnels or treadmills.

- “
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MULTI-LEVEL ADAPTIVE SOLUTIONS TO
BOUNDARY-VALUE PROBLEMS *

Achi Brandt
Weizmann Institute of Science, Rehovot, Israel

IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598

ABSTRACT. The boundary-value problem is discretized on several grids
(or finite—element spaces) of widely different mesh sizes. Interactions
between these levels enable us (i) to solve the possibly nonlinear system
of n discrete equations in 0(n) operations (40n additions and shifts for
Poisson problems). (ii) To conveniently adapt the discretization (the
local mesh size, local order of approximation, etc.) to the evolving
solution in a nearly optimal way , obtaining “CO-order” approximations
and low n, even when singularities are present. General theoretical analysis
of the numerical process. Numerical experiments with linear and nonlinear,
elliptic and mixed-type (transonic flow) problems — confirm theoretical
predictions.

1. INTRODUCTION.

In most numerical procedures for solving partial differential equations,
the analyst first discretizes the problem, choosing approximating algebraic
equations on a finite dimensional approximation space, and then devises a

- - numerical process to (nearly) solve this huge system of discrete equations.
Usually, no real interplay is allowed between discretization and solution

4 processes. This results in enormous waste : The di~cretization process,
being unable to predict the proper resolution and the proper order of

- - - approximation at each location , produces a mesh which is too fine. The -

algebraic system thus becomes unnecessarily large in size, while accuracy
usually remains rather low, since local smoothness of the solution is not
being properly exploited. On the other hand, the solution process fails
to take advantage of the fact that the algebraic system to be solved does
not stand by itself , but is actually an approximation to continuous equations,

.
4. 

and therefore can itself be approximated by other (much simpler) algebraic
- - 

- systems.
The purpose of the work reported here is to study how to intermix

discretization and solution processes, thereby making both of them
orders—of—magnitude more effective. The method to be proposed is not
“saturated” , that is, accuracy grows indefinitely as computations pro-
ceed. The rate of convergence (overall error E as function of compu-
tational work W) is in principle of “infinite order” , e.g., E “~ exp
for a d-dimensj,~al problem which has a solution with scale-ratios ~ft>0;
or E ~ exp (-W ) ,  for problems with arbitrary thin layers (see Sec. 9).

* The research reported here was partly supported by the Israel Commission
for Basic Research. Part of the research was conducted at the Institute
for Computer Applications in Science and Engineering (ICASE), NASA

~~ Langley Research Center, Hampton, Virginia.

This paper wi l l  appear in the iourn~l .Mat~ema.tic~ ~of Compu.tation. Perm iss ion
of the editor of that journa l ~to publish it in tn-i s technical manual is
appreciated . 

509

_____ - - - - -— - - - - - - — _ _ _



The basic idea of the Multi Level Adaptive Techniques ( MLAT) is to
work not with a single grid , but with sequence of grids (“levels ”) of
increasing fineness , which may be introduced and changed in the process , and
which constantly interact with each other. For description p.~rposes , it
is convenient to regard this technique as composed of two main concepts:

(U The Multi Grid (MG) method for solving discrete equations. This
method iteratively solves a system of discrete (f in i te—difference or fini te—
element) equations on a given grid , by constant interactions with a hier-
archy of coarser grids , taking advantage of the relation between different
discretizations of the same continuous problem. This method can be
viewed in two complimentary ways : One is to view the coarser grids as
correction grids , accelerating convergence of a relaxation scheme on the
finest grid by efficiently liquidating smooth error components .
(See general description in Sec . 2 and algorithm in Sec. 4.) Another point
of view is to regard finer grids as the correction grids , improving ac-
curacy on coarser grids by correcting their forcing terms. The latter
is a very useful point of view , making it possible to manipulate ac-
curate solutions on coarser grids, with only infrequent “visits” to
pieces of finer levels . (This is the basis for the multi-grid treatment
of non-uniform grids ; cf. Secs. 7.2 and 7.5. The FAS mode for nonlinear
problems and the adaptive procedures stem from this viewpoint.) The two
seemingly d i f ferent approaches actually amount to the same algorithm (in
the simple case of “coextensive” levels) .

The multi-grid process is very eff ic ient : A discrete system of n
equations (n points in the finest_ grid) is solved , to the desired accuracy ,
in 0(n )  computer operations . If P parallel processors are available ,
the required number of computer steps is O(n/P + log n). For example, only
40n additions and shifts are required for solving the 5-point Poisson
equation on a grid with n points (see Sec. 6 . 3 ) .  This efficiency does
not depend on the shape of the domain , the form of the boundary conditions ,
or the mesh-size , and is not sensitive to choice of parameters . The memory
area required is essentially only the minimal one , that is , the storage of
the problem and the solution. In fact , if the amount of numerical data is
small and only few f unctionals of the solution are wanted , the required
memory is only 0(log n ) ,  with no need for external memory (see Sec . 7 .5 ) .

Multi-g rid algorithms are not d i f f icu l t  to program , if the various
— grids are suitably organized . We give an example (Appendix B) of a

FORTRAN program , showing the typical structure , together with its computer
output , showing the typical eff iciency . With such an approach , the program-
ming of any new multi-grid problem is basically reduced to the programming
of a usual relaxation routine . The same is true for nonlinear problems
where no linearization is needed , due to the FAS (Full Approximation Storage)
method introduced in Sec. 5.

Multi-grid solution times can be predicted in advance , - a
recipe is given and compared with numerical tests (Sec . 6) .  The basic
tool is the local mode (Fourier) analysis , applied to the locally
linearized-freezed difference equations , ignoring far boundaries. Such
an analysis yields a very good approximation to the behavior of the
high-f requency error modes , which are exactly the only significant modes
in the multi-grid process , since the low-frequency error modes are
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liquidated in the coarse-grids processing , with negligible amounts of corn-
putatjona~ work . Thus, mode analysis gives a very realistic prediction of
convergence rates per unit work . (For model problems, the analysis can be
made rigorous; see Appendix C.) The mode analysis can, therefore, be
used to choose suitable relaxation schemes (Sec . 3) and suitable criteria
for switching and interpolating between the grids (Appendix A). Our
numerical tests ranged from simple elliptic problems to non-linear mixed-
type (transonic flow) problems, which included hyperbolic regions and
discontinuities (shocks). The results show that, as predicted by the
mode analysis , errors are reduced by an order of magnitude (factor 10)
expending computational work equivalent to 4 to 5 relaxation sweeps on
the finest grid.

(2) Adaptive discretization. Mesh-sizes, orders of approximation
and other discretization parameters are treated as spatial variables.
Using certain general internal criteria , these variables are controlled
in a sub-optimal way , adapting themselves to the computed solution. The
criteria are devised to obtain maximum overall accuracy for a given amount
of calculations ; or , equivalently, minimum of calculations for given
accuracy . (In practice only near-optimality should of course be attempted ,
otherwise the required control would become more costly than the actual
computations. E e  Sec. 8.) The resulting discretization will automatically
resolve thin layers (when requ ired) , refine meshes near singlular points

.si ” ~~~‘—4~hat otherwise may “contaminate” the whole solution), exploit local
smoothness of solutions (in proper scale), etc. (see Sec. 9).

Multi-grid processing and adaptive discretization can be used in-
dependently of each other, but their combination is very fruitful: MG
is the only fast (and convenient) method to solve discrete equations on
the non-uniform grids typically produced by the adaptive procedure. Its
iterative character fits well into the adaptive process. The two ideas
use and relate simi lar concepts , similar data structure , etc. In particular,
an efficient and very flexible way to construct any adaptive grid is as a
sequence of uniform subgrids , the same sequence used in the multi—grid
process , where finer levels may be confined to increasingly narrower sub—
domains to produce the desired local refinement. In this structure, the
difference equaticiUs can be defined separately on each of the uniform sub—
grids , which interac~. ~n th each other through the multi-grid process.
Thus , dif f eren ce equat ions should only be constructed on equidistant
points , which makes i t  easy to employ high and adaptive orders of ap-
proximation. Moreover, the finer, localized subgrids may be defined in
terms of suitable local coordinates , facilitating, for example, the use
of high-order approximation near a certain piece of the boundary , with
all these pieces naturally patched together by the multi—grid process
(Sec. 7).

The prLsentatiOn in this article is mainly in terms of finite—
difference solutions to partial-differential boundary-value problems.
The basic ideas , however , are more general , applicable to integro-dif-
feren tial problems , functional minimization problems , etc., and to
finite-elements discretization. The latter is briefly discussed in
Secs. A .5 and 7.3.

Contents of the article :
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2. MULTI-GRID PHILOSOPHY.

Suppose we have a set ~f grids G°,G
1... ,GM, all approximating the

same domain .. with corresponding meshsizes h
0
>h > . .  .>h . For simplicity

one can think of the familiar uniform square gdds, with the mesh—size
ratio hk+l:hk

=l:2. Suppose further that a differential problem of the
form

(2.1) LU(x) = F(x) in ~, !W(x) = ~(x) on the boundary ~l,

is given. On each grid this problem can be approximated by difference
equations of the form

i ~ . (2.2) LkUk(x) = Fk (x) for x~G
k, AkUk() = •

k() for xcaGk.

r ~ (See example in Sec. 3.1). are interested in solving this discrete
problem on the finest grid , G . The main idea

k
is to exploit the fact

that the discrete problem on a coarser grid , G say, approximates the
same dif~erential problem and hence can be used as a certain approximation
to the G problem. A simple use of this fact has long been made by
vario~s authors (e.g., (14)); namely , they first solved (approximately)

~~ the d problem , which involves an alg~braic system much smaller and thus
much easier to solve than the given G problem, and then they iterpolated
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their solution from Gk to GM, using the resMlt as a first approximation
in some iterative process for solving the G problem. A more advanced
technique was

kto use a still coarser grid in a similar manner when
solving the G problem, and so on. The next natur~1 stePM

is to ask
whether we can exploit the proximity between the G an~ G problems
not only in generating a good first approximation on G , but also in the
process of improving the first approximation.

More specifically let ~
M be an approximate solution of the GM problem ,

and let

M M  M M M M  M M(2.3) L u = F  — f , A u =~~~ -~~~~ .

The discrepancies fM and c~
M are called the residual functions, or residuals.

Assuming for simplicity that L and A are linea~ (sf. Sec. 5 for the non-
linear case),~, the exact discrete solution is U~=u +v

M, where the
correction ‘I satisfies the residual equations

(2.4) LM VM = f M, AM VM =~~
M
.

Can we solve this equation, to a good first approximation , again by inter-
polation from solutions on coars~r grids? As it is, the answer is
generally ne~ative.~ Not every G -problem has meaningful appro~imation
on a coarser

M
grid G . For instance, if the right-hand—side f’ fluctuates

rapidly on G , with wavelength less than 4hM, these fluctuation~ are notvisible on coarser grids. Such rapidly-fl~ctuating residuals f are ex-
actly what we get when the approximation u has itself been obtained as
an interpolation from a coarser-grid solution.

An effective way to damp rapid fluctuations in residuals is by usual
relaxation procedures, e.g., the Gauss-Seidel relaxation (see Sec. 3).
At the first few iterations such procedures usually seem to have fast
convergence, with residuals (or corrections) rapidly decreasing from one
iteration to the next, but soon after the convergence rate levels off
and becomes very slow. Closer examination (see Sec. 3 below) shows that
the convergence is fast as long as the residuals have strong fluctuations
on the scale of the grid. As soon as the residuals are smoothed out ,
convergence slows down.

This is then exactly the point where relaxation sweeps should be
discontinued and approximate solution of the (smoothed out) residual
equations by coarser grids should be employed.

The Multi-Grid (MG) methods are systematic methods of mixing relax-
ation sweeps with approximate solution of residual equations on coarser
grids. The residual equations are in turn also solved by combining
relaxation swee8s with corrections through still coarser grids, etc. The
coarsest grid G is coarse enough to make the solution of its algebraic
system inexpensive compared with, say, one relaxation sweep over the
finest grid.

‘S
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The following sections further explain these ideas. Sec. 3.1 explains,
through a simple example , what is a relaxation sweep and shows that it indeed
smooths out the residuals very efficiently. The smoothing rates of general
difference systems are summarized in Sec. 3.2. A full multi—grid algorithm,
composed of relaxation sweeps over the various grids with suitable inter-
polations in between, is then presented in Sec. 4. An important modification
for nonlinear problems is described in Sec. 5 (and used later as the basic
algorithm for non-uniform grids and adaptive procedures). Appendix A supple-
ments these with suitable stopping criteria, details of the interpolation

- procedures and special techniques (partial relaxation).

3. RELAXATION I~ND ITS SMOOTHING RATE.

3.1 An Example. Suppose, for example, we are interested in solving
the partial differential equation.

2 2
(3.1) LU(x,y) a a U(x,y) 

+ b ~ U (x ,yi 
= F(x,y)

aX ay k
with some suitable boundary conditions.k 

Denoting by uk and F approximations
of U and F, respectively, on the grid G , the usual second-order discretization
of (3.1) is

k 2 k k k k k

(3.2) L
k
U
k 

a 
U
~+l~~ 

- + 
~ ct.l ,8 + b 

Ua~~+l 
- 2U

a~~~ 
+ Ua,B_ l 

= F k

where k

u~~ = uk(ahk,~ 1
~~

) ,  F~~8 
= F’

~
(cIhk ,8h k ) ;  c& ,8 integers .

(In the multi-grid context it is important to define the difference equa~ions
in this divided form, without, for example, multiplying throughout by hk
in order to get the proper relative scale at the different levels.) Given
an approximation u to U~, a simple example of a relaxation scheme to improve

- 
it is the following.

- - Gauss-Seidel Relaxation: The points (a,~) of G
k are scanned one by one

in some prescribed order; e.g., lexicographic order. At each point the value
ua~~ 

is replaced by a new value, ~~~~ such that equation (3.2) at that point

is satisfied. That is, u satisfies
k -

u -2u + u  u -2u + u
(3.3) a 

a,~ + b a,84~ a,B c~~~ l k
h
k
2 ~~2

where the new values u 
-l 

u 
- 

are used since, in the lexicographic
order , by the time (a,~) i~’sc~ti~e~ new values have already replaced old
values at (ct-l,8) and (* ,~ -l).

A complete pass, scanning in this j~anner all the points of G
k, is

called a (Gauss-Seidel lexicographic) G relaxation sweep. The new ap—
proximation u does not satisfy (3 . 2) , and further relaxation sweeps may
be required to improve it. An important quantity therefore is the
rate of convei~gence, li say, which may be defined by
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li~I l k k(3.4) ~i = , where v = U —u , v U — u

r. I lv i i

I - ~ II being any suitable discrete norm .

The rate of convergence of the above relaxation scheme is
asymptotically very slow. ~hat is, except for the first few relaxation 2sweeps we have ~ = 1 - O(h

k 
). This means that we have to perform O(h

krelaxation sweeps to reduce the error order of magnitude.

In the multi-grid method, however, the role of relaxation is not to
reduce the error, but to smooth it out; i.e., to reduce the high-frequency
components of the error (the lower frequencies being reduced by relax-
ation sweeps on coarser grids). In fact, since smoothing is basically
a local process (high frequenci~s have short coupling range), we can
analyze it in the interior of G by (locally) expanding the error in
Fourier series . This will allow us to study separately the convergence
rate of each Fourier component, and, in particular, the convergence
rate of high-frequency components, which is the rate of smoothing.

Thus to study the 0(0
1
,02) Fourier component of the error functions

v and v before and after the relaxation sweep, we put

i ( 0  c~+0
2~
) 

— 
i (0

1
a+0

2
8)

(3.5) v = A e 1 and v = A  e
• ~~ 0 c&,8 0

Subtracting (3.2) from (3.3), we get the relation

(3.6) a (V - 2v + V ) + c Cv - 2v + v ) = 0,
cz,~ c&—l,~ c~,8+l ~~~ c~,8—l

from which , by (3.5) ,
i0

1 
i0

2 
—i 0

1 
— i0

2 —

(ae + ce ) A0 + (ae +c e - 2a — 2c)  A
0 

= 0.

-
~ Hence the convergence rate of the 0 component is

A 
i0
1 

i0
2e ae +ce(3.7) ii(0) = — = .A0 

_lO
l 

_18
22a+2c — ae — ce

Define 1 0 1  = max (10 11 , 1 021). In domains of diameter 0(1) the lowest

Fourier components ~ave 1 0 1  
-

~ 
O(h

k
) ,  and their convergence rate therefore

is, ~ (0 )  = 1 - O(h
k 
). Here, however, we are interested in the rate of

smoothing, which is defined by

(3.8) = max

~~< Ie i <~

I - 
—_

~~~~~::~~~~~~~. 
_ _



where is the mesh-size ratio and the range 
~~. 1 0 1 < ii is the suitable

range of high—frequency components , i .e . ,  the range of components that
cannot be approximated on the coarser grid , because its mesh-size is

= h
k 
/ ~~. We will assume here that = 

4 
, which is the usual ratio

(cf. Sec. 6.2).
Consider first the cas~ a=c (Pois~on equation). A simple cal— 

-

culation shows that i = i~ ( -
~~ 

, arccos ~) = .5. This is a very satis-
factory rate; it implies that 3 relaxation sweeps reduce the high-
frequency error-components by almost an order of magnitude. Similar
rates are obtained for general a and c, provided a/c is of moderate
size.

The rate of smoothing is less remarkable in the degenerate case
a<<c (or c<<a). For instance,

r 2 2
(3.9) i i(  , 0 ) = 

+ c 
2

L a  + (c+2a)

which approaches 1 as a + o. Thus, for problems with such a degeneracy ,
Gauss—Seidel relaxation is not a suitable smoothing scheme. But other
schemes exist. For example,

Line Relaxation: Instead of treating each point (cz ,8) of Gk separ-
ately, one take simultaneously a line of points at a time, where a line
is the set of all points (a,~ ) in G with the same ~ (a vertical line).
All the values u

8 
on such a line are simultaneously replaced by new

values which simultaneously satisfy all the equations (3.2) on that
line. (This is easy and inexpensive to do, since the system of

- •~~ equations to be solved for each such line is a tridiagonal , diagonally
dominant system. See, e.g., in [17).) As a result, we get the same relation
as (3.3) above, except that u

~~8+1 
is replaced by ~~~~~~ Hence , instead

of (3.7) we will get:

(3.10) ~ (0) = 
a

• 
- —i0~

2(a+c — c cosO
2
) — ae

- from which one can derive the smoothing rate

(3. 11) = max {5
_ 1/2 }

which is very satisfactory , even in the degenerate case a<<c.

3.2. General results. The above situation is very general (see [4]
and Chapter 3 of [3 ] ) :  For any uniformly elliptic system of d i f ference
equations, it can be shown that few relaxation sweeps are enough to
reduce the high-frequency error components by an order of magnitude.
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The same holds for degenerate elliptic systems, provided a suitable relax-
ation scheme is selected. A scheme of line-relaxation which alternately
use all line directions and all sweeping directions is suitable for

~~y degenerate case. Moreover, such a scheme is suitable even for non—
elliptic systems, provided it is used “selectively”; i.e., the entire
domain is swept in all directions, but new values are not introduced
at points where a local test shows the equation to be non-elliptic and
the forward characteristic direction to conflict with the current
sweeping direction.

- 

By employing local mode analysis (analysis of Fourier components)
similar to the example above, one can explicitly calculate the smoothing
rate p for any given difference equation with any given relaxation scheme.
(Usually p should be calculated numerically; an efficient FORTRAN sub-
routine exists; typical values are given in Table 1, in Sec. 6.2). In
this way, one can select the best relaxation scheme from a given set of
possibilities. The selection of the difference equation itself may also
take this aspect into account. This analysis can also be done for
non-linear problems (or linear problems with non-constant coefficients),
by local linearization and coefficients freeze. Such localization is
fully justified here, since we are interested only in a local pro-
perty (the property of smoothing. By contrast , one cannot make similar
mode analysis to predict the overall convergence rate p of a given relax-
ation scheme, since this is not a local property).

An important feature of the smoothing rate u is its insensitivity.
In the above example no relaxation parameters were assumed. We could
introduce the usual relaxation parameter w; i .e .,  replace at each point
the old value u not with the calculated u , but with

u 
~ 

+ w(u 0—u ~). The mode analysis shows, however, that no w ~ 1a,~ ~~ _.JJ

provides a smoothing rate better than w=l. In other cases, w=l is not
optimal, but its p is not significantly larger than the minimal p. In
delayed-displacement relaxation schemes a value w < w • - < 1 should

— 
critical

often be used to obtain p < 1, but there is no sensitive dependence on the
precise value of u , and suitable values are easily obtained from the local
mode analysis. Generally, the smoothing rate of delayed-displacement
schemes is somewhat worse than that of immediate-displacement schemes,
and the latter should, therefore, be preferred, except when parallel

- 
- processing is used.

3.3. Acceleration by weighting. The rate of smoothing u may some-
times be further improved by various parameters introduced into the
scheme. Since p is reliably obtained from_the local mode analysis, we
can optimize these parameters to minimize p. For linear problems,
such optimal parameters can be determined once and for all, since they
do not depend on the shape of the domain. For nonlinear problems precise
optimization is expensive , and one should prefer the simpler, more ro-
bust relaxation schemes, such as SOR.

‘-4

One general way of parametrization is the weighting of corrections.
We first calculate, in any relaxation scheme, the required correction

= u — u (where v = (a,8) or, for a general dimension d,
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v = (v
1
,v2 , ...,

v
d
), V

j 
integers). Then , instead of introducing these

corrections, we actually introduce corrections which are seine linear
combination of Su at neighboring points. That is, the actual new

values are

(3.12) = u  + E w
v v y€r y v+-y-

where the weights u are the parameters , 
~ 

= 

~~~
‘
~ 2 ’ — -

~‘~ d~ ’ 
‘
~~~ 

in-

tegers and r a small set near (o,o, .. . ,o). For any fixed r we can
optimize the weights. In case r = {o}, w is the familiar relaxation
parameter. Weighting larger r is useful ?n delayed displacement relax-
ation schemes. For immediate-displacement line relaxation , weighting
along the line may be useful.

Examples. In case of simultaneous displacement (Jacobi) relaxation
for the 5—points Poisson equation , the optimal weights for r={o} is
w = .8 , for which the smoothing rate is p = .60. For the set

r = ~ y1,y 2): 1y 11+1y 2 1 < 1  } the optimal weights are Woo = 6w
0~~1 

=

H 6W~10  = 48/41, yielding p = 9/41. This rate seems very attractive;

the smoothing obtained one swe equals that obtained by
9 1(log ) / (log j-) = 2.2 sweeps of Gauss—Seidel relaxation. Actually ,

however, each sweep of this weighted-Jacobi relaxation requires 9 additions
and 3 multiplications per grid point, whereas each Gauss-Seidel sweep
requires only 4 additions and 1 multiplication per point, so that the
two methods have almost the same convergence rate per operation , Gauss-
Seidel being slightly faster. The weighted Jacobi scheme is considerably
more efficient than any other simultaneous—displacement scheme, but like
any carefully weighted scheme, it is considerably more sensitive to

- -  - various changes.

The acceleration by weighting can be more significant for higher—
order equations. For the 13-points biharmonic operator, Gauss-Seidel

• relaxation_requires 12 additions and 3 multiplications per grid point
and gives U = .802 , while weighted Jacobi (with weights w = 1.552,

(A) = = .353) requires 17 additions and 5 multiplications per

point and gives ~ = . 549 , which is 2.7 ti~es faster. (The best relax-
ation sweep for the biharmonic equation A U F is to write it as the
system A V F , AU=V and sweep Gauss-Seidel , alternatively on U and V.
Such a double sweep costs 8 additions and 2 multiplications per grid
point, and yields p= .5. But a similar procedure is not possible for
gene ral 4-th order equations.)
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4. A MULTI-GRID ALGORITHM (CYCLE C) ~0R LINEAR PROBLEMS

There are severaL actual algorithms for carrying out the basic multi-
grid idea, each with several possible variations. We present here an algor-
ithm (called “Cycle C” in [3]) which is easy to program, generally ap-
plicable and never significantly less effi5 ient than the others (“Cycle A”
and “Cycle B”). The operation of the algorithm for linear problems is
easier to learn, and is therefore described first. In the next section
the FAS (Full-Approximation-Storage) mode of operation , suitable for non-
linear problems and other important generalizations , will be described.
A flow—chart of the algorithm is given in Figure 1. (For completion , we
also flowchart, in Fig. 2, Cycles A and B.) A sample FO~~RAN program of
this cycle, together with a computer output, is given in Appendix B.

C~cle C starts with some approximation ~M being given on the finest
grid G . In the linear case one can start wi~~ any approximation, but
a major part of the computations is saved if u has smooth residuals

- M • - - .  ° M M M .(e.g., if u satisfies the boundary conditions and L u — F  is smooth .
As explaine~ in Sec. 6 , smoothing the residuals involves most of the
computational effort). In the nonlinear case , one may have to use a
continuation procedure, usually performed on coarser grids
(cf. Sec. 8.2). Even for

M
linear problems, the most efficient

- - algorithm is to Mb~
ain u by interp~1~ ting from an approxi-

mate solution u calculated on G by a similar al-
gorithm. (Hence the denomination “cycle ” for our present

- 
- 

algorithm, which would generally serve as the basic step in
processes of continuation, refinement and grid adaptation,
or as a time step in evolution prob~e~ s ) .  Fo~ highest ef-
ficiency , the interpolation from u to u should b~~1f
sufficiently high order , to exploit all smoot~ness in u
(Cf. (A. 7) in Sec . A .2 , and see also Sec . 6 .3 . )

The b~sic rule in Cycle C is that each (the function defined on
the grid G ; k 0 , l~ ~~~~ 

M-l) is designed to serve as a correction
k~Ir

. 1  the approximation v previously obtained on the next finer grid G ,
if and when that approx imation actually requ~~~s a coarse-grid cor-

- - rection , i.e., if and when relaxation over G exhibits slow rate of
c~nver~~nce . Thus , the equations to be ( approximately) satisfied by

(4.1) L
k
V
k 

= fk AkV
k 

=

where f k and are the residuals (to the i~~~ rior equation and the
boundary condition , respectively) left by v , that is ,

(4 .2 )  
- 

f
k 

= 1k+l (f k+l 
- Lk vk

~~ ) ,  ~k 
- 1

k+1 
(~ k+l 

- Ak vk+l )

1 We denote by the functions i~ the equa~ ions , to distinguish from
their comp~t1d approximatio~s v . When v is changing in the algorithm
(causing V to change) , V remains f ixed.
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Figure 1. Cycle C, Linear Problems .
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Set k~M , f
k 

= FM
, ~k 

= ~M 
~

k 
= 

M 
]

For j = 0 ,1 ,... ,k—l , Set m(j)~~k ,

4 f J 1J ( f k 
L

k
vk ) ~~ -~ I J (~~

k
A

k k )

0 0  0 0 0  0Solve L v  = f , A v  ~~~~~~~~~~.

Set k~ l.

~~~~~~~~~~~~~~~~~~~~-l )  = 
NO k . 

I
~~~l

V
k 1  I

______*

YES 

___________________

+ 1
k 

~~
k — l  

Relax [ Lk.=f
k
, 

k •~~ k
1

~~~~~~~ v
k

conv€ ~~~~~~~~~ 
NO 

~~~~~~~~~~ onvergence
_

sl~~~~~ 

NO

YES YES
k M 

Cycle  Al ~~cle B

Set k ~ k+l

Figure 2. Cycles A and B , Linear Problems .
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We use the ~otation 1
k to reprt-sent 1nt-~ j~)1aiion fro m to  G .  in

case in~k , I may represent a simple trar s~ er of values to the ~o~ rser
grid G frorn the corresponding points in the f i n e r  gr id C ; or instead ,
it may represent transfer of some weighted averages . In case k>m , as in
step Ce) below , I is usually a polynoininal interpolation of a suitable
order (at least t~e order of the d i f f e renti~d equation . See Sees. A.2
and A.4 for more details).

The equa~~1ns on (3k are thus defin~d in terms of the approximate
solution on G . On the finest grid G , the equations are the original
ones; namely

..M M M M M M(4 .3 )  r = F , ~ =~~~~~~, v = u .

The steps of the algorithm are the following :

(a) Set k~M (k is the working level , and we start a~ theMfinest
level) , and introduce the given approximation v ~

- u

k - - -(b) Improve v by one relaxation sweep for the difference equations
(4.1). Symbolically , we write such a sweep as

k I k  k k .ikl(4 .4 )  v ÷ Relax LL • = f , A • = p 
j 

v

(c) If relaxation has sufficientl~ converged (the precise cri-
terion is described in Sees. A .7 and A .8), go to Step (f).
If not , and if the convergence rate is still fast (by a cri-
terion given in Sec. A.6) go back to Step (b). If con-
vergence is not obtained and the rate is slow , go to Step (d).

Cd ) If k=o (the slow convergence has taken place at the coarsest
- - grid G°), go back to Step (b) (to continue relaxation never-

theless , since on G° relaxation is very inexpensive . If, how-
ever , the problem is indefinite , then slow rate of divergence
may occur , in which case the Go problem should be solved directly .
This is as inexpensive as relaxation , but requires additional
programming. See Sec . 4.1 below) . If k>o, lower k by 1 (~oc~mpute correction on the next , coarser ~evel) .  Compute f and

~ 
on this new level, using ( 4 . 2 ) ,  put V =0 as the starting ap-

proximation , and go to Step (b) .

Ce) If k=M (convergence has been obtained o~ the finest level),
the algorithm is terminated. If k-9~+1v 

has converged and is
ready to serve as a correction to v ) ,  put

k+l k+l k+l k(4. 5) v ÷ V + ~ k V

• Then advance k by 1 (to resume computations in the finer level)
and go to Step (b).

The storage required for this algorithm is onlyMa frac~ ion more than
$4 

the number of locations , 2n say , required to store u and F on the f~nest

~~ grid. Indeed , for a d-dimension~11proble~~,1.~ storage of roughly 2n/2
l~~ations is required to store v and f , the next level requires 2n/
2 , etc. The total for all levels is
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d 2d 2d(4.6) 2n (l+2 +2 + ...  ) < 2n
2 —l

(In the FAS version below, a major reduction of storage area is possible
through segmental refinement. See Sec. 7.5

4.1. Indefinite Problems and the Size of the Coarsest Grid. If, on
any grid G

k, 
the boundary value-problem (4.1) is a non-definite elliptic

problem, with eigenvalues

(4.7) A
1 — — — ~~~ < ° < 

~‘24. ] 
~
- ~i+2

and with the corresponding eigenfunctions V~ , V~ ,. . ., V~ , ~~~~~~~~~

then it cannot be solved by straight relaxation . Any relax~tion ~weep
will reduce the error components in the space spanned by V~~1, V~~2 

, . . . ,

- 
but will magnify all components in the span of v

k
, v~ , .. .,  V~ . A multi-

grid solution , however , is not seriously affecte~ by this magnification ,
- - provided the magnified components are suitably reduced by the coarse-
- - grid corrections . This will usually be the case , since these components

are basically of low f requency and are well approximated on coarser grids.
But care should be taken regarding the coarsest grid :

On the coarsest grid, an indefinite problem should be solved
directly, ( i . e . ,  not by relaxation of any kind. Semi-iterative solutions ,
like Newton iterations for non-linear problems, are , of course , per-
missible) . Furthermore, this grid should be fine enough to provide rough

approximation to V,~~ V,~~ . . . ,  V~ for any k , hence also for the corresponding

differential eigenfunctions . This means that G° should contain at
least 0(L), probably 2L , points. Or , in other words , G° should be j ust
fine eno’:;h to still have smoothing capability at any fine~ level G
For example , if SOR relaxations with (th <W c are used , h should satisfy
(see [4] or Sec. 3 in [3) )

(4.8) Re {B(8,h) / b (h)} > o, (o < h < h),

where B(O ,h) is the symbol of Lh (see (A.3) in Appendix A) and b (h) is its
1~~
. central coefficient .

Usually , G° can still be coarse enough to have the direct solution
of its equations still far less expensive than , say , one relaxation
sweep over the finest grid, so that the indefinite problem is solved with
the same overall efficiency as definite problems .

5. THE FAS (FULL APPROXIMATION-STORAGE) ALGORITHM.

In the ~AS mode of the multi-grid algorithms , instead of stor~n~ a
correction v (designed to correct the finer-level ap~roximation u 

+

the idea is to stork the full current approximati~~1
u , which is the sum

$4 
of the correction v and its base approximation u
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k k k+l k( 5 .1 )  u • ! u + v , (k—o ,1,... ,?4-1).

In terms of these fu11-approx~mation functinns , we can rewrite the cor-
rection equations ~4.l-3) as

(5.2) LkU
k ~k A

k
u
k

where

-k k k k+l k -k+l k+l k+lF • L 
~ k+l 

u ) + ‘k+l (F - L u

-k k k k+l k -k+l k+l k+1(5.3) 5 • A 
~
‘k+l ~ + 1k+l ~ 

— A u

and where for k—M we h’we the original problem, i.e.,

— FM ,

For linear problems, equations (5.2-4) are exactly equivalent to
(4.1-3). The advantage of the FAS mode is that equations (5.2-4) apply
equally well to nonlinear problems. To see this , consider for instance
the nonlinear equation LMU

M 
— FM given on the finest grid. Given an

approximate solution ~
M we can still improve it by relaxation ws.ps ,

with smoothing rates (varying ou-er the domain, but still reliably
estimated by mode analyse s , applied locally to the linea r ized-fr .•z.d .quation) .
As in the linear case , the smoothed—out functions are the residual

~il _M M Mr — ï  - L u

and the correction uM_~
M. Therefore , the equation that can be app rox-

imated on coarser grids is the residual equation

L
MTJM - LMuM 

- f
14

Its coarser-grid approximation is

M-l .M- l M-). M-]. M M-]. ..M• ( 5 .5)  L U — L ~ M ~ — ~ M
which is the sa~e1ae ( 5 .2 )  fo~ k—M-l. In interpolating (or a computed
approximation u ) back to G , we should actually interpolate

- 1M~l ~M , because this is the coarse-grid approximation to the

2 Again we distinguish between theknotatio n uk used to write the equations
and the computed approximation u . Equation ( 5 . 2 ) ,  for k-C M , is not equival-
ent to ( 2 . 2 ) , although they both use the notation
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smoothed-o~t function u
M_uM. Similarly ,

k+~ 
interpolatin9 an (approximate)

solution U of (5.2) to the finer grid G , the polynominal inter-
polation should operate on the correction. Thus the interpolation is

k+l k+l k+l k k k+l-(5.6) u ÷ u + ~ k 
(u — 1

k+l U

which is equivalent to (4.5). Note that generally ,

k+l k k+l k+l1
k 

Ik+l U U

- 

The FAS (Cycle C) algorithm is the same algorithm as in Sec. 4, with
the FAS equations (5.2—4) replacing (4.1-3), and with (5.6) replacing (4.5).
It is flowcharted in Fig. 3.

The FAS mode has several important advantages : It is suitable for
general nonlinear problems, with the same procedures (relaxation and inter-
polation routines) used at all levels. Thus, for example, only one
relaxation routine should be written. Moreover , this mode is suitable for
composite grids (non-uniform grids created by increasingly f i ner levels
being defined on increasingly smaller subdomains; see Sec. 7.2), which is
the basis for grid adaptation on one hand , and segmental refinement
(see Sec . 7.5)  on the other hand. Generally speaking, the ~asic feature ofthe FAS mode is that the functi~n st~re~ on a coarse grid G coincides there
with the fine-grid solution: u = ‘M 

u . This enables us to manipulate
accurate solutions on coarse grids.

The storage required for the FAS algorithm is again given by (4.6).
With segmental refinement (Sec. 7.5) it can be reduced far below that,
even to 0(log n ) .

An important by-product of the FAS mode is a good estimate for the
truncation error, which is useful in defining natural stopping criteria
(see Sec. A.8) and grid—adaptation criteria (Sec. 8.3). Indeed, for

- -~ any k<m<M it can easily be shown (by induction on m , using (5 .2 -3))  that

-k k - rn k k m  k m mF — I F  = L ( I  u ) — I  L u ,
(5.7) m m m

-k k-rn k k rn k m  mS — I S = It (I u ) — I It um m m

which are exactly the Gm approximations to the Gk truncation errors .

A slight ~isadvantage of the FAS mode is the longer calculation r~quired
in computing F , which is almost twice as long as the calculation of f in
the former (Correction-Storage) mo~e. This extra calculation is equivalent
to one extra relaxation sweep on G , but only for k<M, and is about 5% to
10% of the total amount of calculations. Hence , for linear problems on
uniform grids , the CS mode is slightly preferable.

526

~~~~ 

- - 
- -—--- 

-_ - —~~~ -- - --- -- - --  
_ _ _ _ _ _ _  

~~~~~~~~~~~~ -~~~~~~~~~ - - - --~~~~~~~ --



- -- -
~~~~~

-
~~~~~~~~~~

-
~~~~~

- - - -
~~~~

S e t  kiM , ~k = F
M
, ;k 

= ~M 
= ~

M

- 

_ _ _  _ _ _ _

Relax(L
k .=F k

, 
k .~~k] 

k

~~ u
k 

converged~~ 

NO 
~~~~~ convergence  ~~~~~~~

• YES YES

k=M k=O
- 

END

k M  k>O

k k+1 

- 

[ k ~~k—l

k k 1k U~~~~
1

- - 
k+l

I (u
k_ I 

- 1~
_ 1
~ k , ~k 1

k~~~~ k+l 
- + L

k
u
k 

—

— k - k —k+l k+l k-t- l k k

~ ~~I (
~ 

— .~, u ) +~~~ u
k-4- l

Figure  3. Cycle C , Ful l-Approximat ion-Storage .
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~~. PERFORMANCE ESTIMATES AND NU?-1ERICItL TESTS

(.1. Predictabllity . An important feature of the multi-grid method
in that, although itera tive , its total computational work can be pre-
dicted in advance by local mode (Fourier) analysis. Such an analysis,
which linearizes and freezes the equations and ignores distant boundaries,
gives a very good approximation to the behavior -‘f high-frequency com-
ponents (since they have short coupling range), but usually fails to approx
intate the behavior of the lowest frequencies (which interact at long

• distanced. The main point here, however, is that these lowest frequencies
may indeed be ignored in the multi-grid work estimates, since their con-
vergence is obtained on coarser grids, where the computational work is
negligible. The purpose of the work on the finer grids is only to converge
the high frequencies. Th~is, the mode-analysis predictions, although not

• rigorous, are likely to be very realistic. In fact, these predictions
are in full agreement with the results of our computational tests. (For
rigorous bounds - see App. C).

6.2. Multi-Grid Rates of Convergence. To get a convenient measure
of convergence per unit work, we define as our Work Unit (WU) ~he com-
putational work in one relaxation sweep over the finest grid G . The
number of computer operation~ in such a unit is roughly wn~ , where - v~.
is the number of points in G~ and w is the number of operations required
to compute the residual at each point. (In parallel processing the count
should, of course, be d~.fferent. Also, the work unit should be
further specified when comparing diff~rent discretization and relaxation
schemes.) If the mesh—size ratio is p = hk+l/hk 

and the problem’s domain

is d-dimensional, then a relaxation sweep over Gm )  costs approximately
WUs (assuming the grids are co—extensive, unlike those in Sec. 7).

Relaxation sweeps make up most of the multi-grid computational work.
The only other p~o~ess thai consumes any significant amount of compu-
tations is the I and I 

- 
interpolations. It is difficult to measure

them precisely ~5
kwu5, bu~ their total work is always considerably smaller

than the total relaxation work. In the example in Appendix B, the inter-
polation work is about 20% of the relaxation work. Usually the percentage
is even lower, since relaxing Poisson problems is particularly inexpensive.
To unify our estimates0

and measurements we will therefore define the multi—

- 
grid convergence rate p as the factor by which the errors are reduced per
one Wi) of relaxation, ignoring any other computational work (which is
never more than 30% of the total work).

The multi-grid rate of convergence may be estimated by a full local
mode analysis. The following is a simplified analysis, which gives a
good approximation. We assume that the relaxation sweep over any grid

Gk affects error components e
lOx only in the range ~~

—
~~~~

— < 101 ~~.

~k—l
where

d
(6.1) 0 = 

~~~~~~~
‘ 0d~’ 

()
~)( • )I 0 .  x , J O J = max I O J

j=l ~ lij<d
r
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(The $/h~ of Sec. 3 and Appendix A is denoted here 0, to unify the dis-
cussion of all levels.) In fact, if proper interpolation scheme is used
(see Sec. A.2} only components in the range lot < U+c)tr/ h.K 1.
are affected by interactions with coarser grids. But if proper residual—
weighting is also used (to make a 1; cf. Sec. A.4) then the combined
action of the coarse—grid correction cycles and the G relaxation sweeps
yields convergence rates which are slowest at 10 1  = 

~
“1
~k-l 

(Cf. App. A).
For such 0 the coarse-grid cycles have neutral effect, sknce a =1, hence
the convergence rate is indeed as affected only by the G relaxation
sweeps.

One relaxation sweep over Gk reduces the error components in the

range ~ç2!__ < l o t < by the smoothing factor ~~. (See Sec . 3. If the

smoothing rate near a boundary is slower than j
~, 

which is not the usual
case, smoothing may be accelerated there by partial relaxation sweeps —

cf. Sec. A.9.) Thus a multi-grid cycle with s relaxation sweeps on
each level reduces all error components by the factor p5. The amount of
work units expended in these sweeps is

1—p

Hence, the multi-grid convergence rate is

(6.2) = 
(1~~~~d

)

which is not much bigger than ~i. In case ~>l, the effective smoothing rate
(see (A.8)) should replace p in this estimate.

Estimate (6.2) is not rigorous, but is simple to compute and very
- • realistic. In fact, nu~erical experiments (Sec. 6.4—5) usually show slightly

faster (smaller) rates p, presumably because the worst combination of
Fourier components is not always present.

The theoretical multi—grid convergence rates, for various represent-
ative cases, are summarized in Table 1.

Explanations to Table 1. The first column specifies the difference
operator and the dimension d. 

~ 
dS
~
?tes the central second—order

((2d+l)-point) approximation , an~ A ’h 
the2

fourth—order ((4d+l)—point “star”)
approximation, to the Laplace operator. A

b 
is the central 13-point approxi-

i ~ mation to the biharmonic operator. The operators ~ , , ~ and ~ are the
- ,. usual central second-order approximations to the co~res~ond!~g part~~l-

differential operators. ~ is the backward approximation. Upstream dif-
ferencing is assumed for tAe inertial terms of the Navier stokes equations;
central differencing for the viscosity terms, forward differencing for the
pressure terms, and backward differencing for the continuity equation.
Rh is the Reynolds number times the mesh-size.

The second column specifies the relaxation scheme and the relaxation
parameter w. SOR is Successive Over z~elaxation, which for w=l is the
Gauss-Seidel relaxation. xLSOR (yLSOR) is Line SOR, with lines in the
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TABLE 1. Theoretical sn~othing and MG-convergence rates.

L
b 

d Relax . Scheme w IA V I LnV I~ add rnult WM

1 SOR 1 1:3 .557 .693 2.73 2 1 9.0
1:2 .477 .668 2.49 3 2 6.9
2:3 .378 .723 3.08 3 2 7.5

2 SOR 1 1:3 .667 .697 2.77 4 1 6.8
.8 1:2 .552 .640 2.24 5 2 4.1

— 
1 .500 .595 1.92 4 1 3.5

1.2 .552 .640 2 .24  5 2 4.1
1 2:3 .400 .601 1.96 4 1 2.9

- - LSOR 1 1:2 .447 .547 1.66 8 4 3.1
ADLR 1 .386 .490 1.40 8 4 2.6

.8 .456 .555 1.70 8 4 3.1

— SD .8 1:2 .600 .682 2.61 5 2 4.8
- WSD 1.17 , .195 .220 .321 0.88 9 3 1.6

— 
1.40 , .203  .506 .600 1.96 9 3 3.6

3 SOR 1 1:3 .738 .746 3.42 6 1 7.8
1:2 .567 .608 2.01 6 1 3.7

_____________________ — 
2:3 .44]. .562 1.73 6 1 2 .0

2 SOR .8 1:2 

~~ ~~1.2 .582 .666 2.46 9 3 9.1
LSOR 3. .484 .580 1.84 14 7 6.8

3 SOR 1 .596 .636 2.21 12 2 7.0

a + 2~ a + a 2 SOR 1 1:2 .62 .699 2.79 8 2 5.2
~oc x I’ ‘- ‘s’ LSOR ,ADLR .447 .547 1.66 12 5 3.1

- — 2 2 SOR 1 1:2 .802 .847 6.04 12 3 l1.~.

- 

-. h 1. 2:3 .666 .798 4.43 12 3 6.5
WSD 1.552, .353 1:2 .549 .638 2.22 17 5 4.1

1.4 , .353 1.03 div. div. 17 5 div.
WSDA 1.552, .353 

— 
.549 .638 2 . 2 2  14 4 4.1

NAVIER - STO]~~S CSOR

p3-1 = 0 2 downstr. 1, .5 1:2 .800 .846 5.98 18 6 11.0
any 1, .5 .800 .846 5.98 33 16 11.0

I. 100 1.1, .5 1.73 div. div. 33 16 div .
100 .8 , .5 .93 .947 18.4 33 16 34.0

10 upstream 1, .5 
— 

.884 .912 10.8 33 16 20.0
100 1, .5 .994 .995 220. 33 16 ~00.
100 

— 
.8 , . 5  

— 

.984 .988 83. 33 16 150.

0 3 downstr . 1, .5 .845 .863 6.79 33 8 10.7
any 1, .5 .845 .863 6.?9 60 25 10.7

3.0 upstream 1, .5 
— 

.874 .889 8.49 60 25 13.4

t 100 1, .5 .989 .990 100 . 60 25 160 . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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TABLE 1. (Cont’d. Here d=2, p

A
=l:2)

— L~ Relax. 
—

______________________ 
Scheme w p

a + ca , e<<1 SOR , XLSOR 
— 

any 1— 0(c)

- 

aa + ca yLSOR 1 ma~ (5~
112 

‘ a+~c~

(q = min (~ - , ~~~) )  ADLR 5 1/4 (l+2q) V2

SD, yLSD, ADLSD 1 1

SD ( 2 q + 2 )/ ( 3q +2 )  (q+2)/(3q+2 )

yLSD (2a+2c)/ (2a+ 3c) (2a+c)/ (2a+3c)

ADLSD 2/3, 2/3 < .3_1/2 = ~577

~~~ ~ 
YLSOR (1~

fl 

[

1 fl+fl
2
/4 

]

l/2)

- 

~ h 
- 

~ 
a
x 

yLSOR+ 1 max 
(~~

- , (5+6fl+2T~
2
~
_1
~’2)

(11>0) yLSOR- max (~~
- 
‘~2~~.i 

I)

yLSORs ~~ 3
_l/2 

=

—- — — — 
I

Navier - Stokes SOR (pressure > 1 -
with large Rh in corrected by the
2 or 3 dimensions continuity equation),

downstream or up-
stream, with any
relaxation para meters .

4
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x (y) direction. yLSOR+, yLSOR- and yLSOks indicate , respectively , relax-
ation marching for-ward , backwa rd and symmetrically (alternately forward
and backward). CSOR means Collective SOR (see Sec. 3 in 13)) and the attached
u’s are for the velocity components and ~~ for the pressure. ADLR denotes
Alternating Direction Line Relaxation (a swe~p of xLSOR followed by a sweep
of YLSOR). SD is Simultaneous Displacement (Jacobi) relaxation, WSD is
Weighted Simultaneous Displacement with the optimal weights as specified in
S~ c. 3.3 above (and with other weights, to show the sensitivity). WSDt~ (for

is like WSD, except that residuals are computed in less operations by
ma’king first a special pass that computes 

~h
’
~ 

yLSD is y-lines relaxation
with simultaneous displacement, ADLSD is the corresponding alternating-direction
(yLSD alternating with xLSD) scheme.

The next columns list = h~, : hk+l (see discussion below) , the
smoothing rate p as defined by (~~.8), and t~e multi—grid convergence rate ii,
calculated by (6.2). We also list h o g  ~~ , which is the theoretical
numbez of relaxation Work Units required to reduce the error by the factor e,
and WM I the overall multi-grid computational work (see Sec . 6 . 3) .  To make
comparisons of different schemes possible, we also list, for each case, the
number of operations ~er grid point per sweep . This number times n (the
number of points on G ) give the number of operations in a Work Unit. We
list only the basic number of additions and multiplications (counting shifts
as multiplications), thus ignoring the operations of transferring information,
indexing, etc. ,  which may add up to a significant amount of operations, but
which are too computer- and programj~dependent to ~e specified. Also, we
assumed that the right-~a~d sides f , including t , are stored in the most
efficient form (e.g., h f~ is actually stored) . Note that the SOR operation
count is smaller for u=l (Gauss—Seidel) than for any other w.

Numbers in this table were calculated by Allan S. Goodman , at IBM Thomas
3. Watson Research Center. A more extensive list is in preparation.

- . Mesh-size ratio optimization. Examining Tab~e 1, and many other unlisted
examples, it is evident that the

1mesh-size ratio p = 1:2 is close to optimal,
yielding almost minimal log p

~ 
and minimal WM

. This ratio is more con-
venient and more economic in the interpolation processes (which are ignored
in the above ca1culat~ons) than any other efficient ratio. In practice,
therefore, the ratio p = 1:2 should always be used, giving also a very desirable
standardization .

6.3. Over-All Multi-Grid Computational Work. Denote by W the corn-

putational work (in the above Work Units) required to sol~je the
M
G
M 

pro-
blem ((2.2) , k=M) to the level of i~s1truncation erro~s1r (cf. Sec. A .8).
If the problem is first  solved on G to the level t , and if theM

cor_
rect order of interpolation is used to interpolate the solution to G (so
that unnecessary high-frequencies are not excited; cf. Sec. ~.2, and in
particuAa

~ 
(A.7) for i=l) then the residuals of this first G appro~imation

are Ott ) .  The computational work required to reduce them to Ott ) is
M M- 1~ 0

• log O(r  / t  / log p . Hence,

r
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(6 .3 )  WM WM.~i 
+ log -jj—y / log U

Similarly , we can solve the GM_ i problem expending work

Ajd T
M_i

(6. 4) WM • = WM_j ,i + p log M j l  / log i-i

(since a GM J  work unit is times the GM unit). If we use p-order ap-

v proximation , then

~
k o(h k~

)
(6.5) —~~

—
~

- < = O (p ).

H t O(hk_l~
)

Hence , using (6.4) for j=0,l,2,...M-l and neglecting W ,

Ad A2d AWM < (l+p +p +...) p log p / log p .

Or , by ( 6 . 2 ) ,

A

~~ < 
p log p

M —  (1_ ~~d)2 10g p

(The same was assumed in computing the first approximation and in the
improvement cycles . This of course is not necessary.)

Typical values of this theoretical W are shown in Table 1 above . In
actual computations a couple of extra Wor~ Units are always expended in solving
a problem , because we cannot make non—integral number of relaxation sweeps or
MG cycles , and also because we usually solve to accuracy below the level of
the truncation errors .

- 
- 

For 5-points Poisson problems, for example , the following procedure gives
M - . M . M-l M-i -a G solution with residuals smaller than -r . (1) Obtain u on G , with

residuals smaller than M—l (ii) Starting with the cubic interpolation ~
M 

~~ IM 1 U
(pref erably by using the difference operator itself; cf.  ( 7 ) ) ,  make a MG correc—
tion cycle such as Cycle C with ~=o ( i . e. , switch ing to G - after two sweeps
on Gk ) ,  with Ik

;
ltransfer by injection (cf. Sec. A.4) and 1k l  by linear

- • interpolation, and with “convergence” on Gk defined as obtained after the
k—ifirst sweep following a return from 0 . A precise count shows Step (ii)

1/2 Mto require 30n + 0th  ) operations , where n is the number of points in C
Thus, the total number of operations is

Cl + ~~
- + + . . .)30n + Qth~~

’2 ) ~ 40n + O(n 1”2 ) .

Incidentally, none of these operations is a full multiplication: only
additions and shifts (multiplications or divisions by 2 or 4) are used .

— 

- 
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~~~The theoretical for this problem (sixth line in Table 1) ~~ounts to only
17 .5n operations , since it ignores interpolation work (10.3n operations in
the above procedure) and allows non-integral numbers of sweeps and cycles .
In fact , numerical tests showed the above algorithm to yield residuals con-
siderably below the truncation errors. (The only cases in which the residuals
approached 50% of the truncation errors were cases with high smoothness, in
which the correct MLAT discretization would be different ; namely , of higher
order. (~ f .  Sec . B and the remark following formula (A . 7 ) . )

- 6.4. Numerical Experiments: Elliptic Problems. A typical numerical
experiment is shown in Appendix B , including the FORTRAN program and the
computer output. The output shows a multi-grid convergence rate 

—

1

o f .009051 ~ 12.92 —

~~ 1. 28.1 1 = .537

which is close to, and slightly faster than, the -theoretical value = .595
shown in Table 1.

Many numerical experiments with various elliptic difference equations
in various domains were carried out at the Weizmann Institute in 1970—1972,
with the collaboration of Y. Shiftan and N. Diner. Some representative
results were reported in [2), and many others in [11]. These experiments
were made with other variants of the multi-grid algorithm (variants A and
B), but their convergence rates agree with the same theoretical rates
The experiments with equations of the form aU + cU , with a>>c , showed
poor convergence rates, since the relaxation ~~heme ~~ed was Gauss-Seidel,and not the appropriate line relaxation (Cf.  Sec. 3.1). Some of these
rates were better than predicted by the mode analysis , because the grids
were not big enough to show the worst behavior. The convergence rates
found in the experiments with the biharmonic equation were also rather
poor (although nicely bounded away from 1, independently of the grid size) ,

- - again because we used Gauss-Seidel relaxations and injections instead of
the appropriate schemes (cf. Sec. 3.3 and A.4 ) . All these points were
later clarified by mode analyses , which fully explain all the experimental
results . In solving the stationary Navier—Stokes equations , as reported
in [2) , SOR instead of CSOR was employed (Cf. table 1 above) , and an addi tional
over—simplification was done by using, in each multi-grid cycle, values of the
nonlinear terms f rom previous cycle, instead of using the FAS scheme (Sec . 5) .

- 
- Nevertheless , these experiments did clearly demonstrate important

features of the multi—grid method: The rate of convergence was essentially
insensitive to several factors , including the shape of the domain 0, the
right—hand side F (which has some influence only at the first couple of
cycles; cf .  Sec . A .2) and the finest mesh—size h (except for mild varia-
tions when h~ is large). The experiments indicated that the order I of

the interpolations I should be the order of the elliptic equation , as
shown in Sec. A.2  be~ow. (Note that in 123 the order was defined as the
degree 2 of the polynominal used in the interpolation , whereas here
I = L +l . )

More numerical experiments are now being conducted at the Weizmann
Institute in Israel and at IBM Research Center in New York , and will
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be reported elsewhere. We will bxiefly report here only an extreme case
of the multi-grid tests - the solution of transonic flow problems.

6.5. Numerical Experiments: Transonic Flow Problems. These experi-
ments were conducted in 1974 at the Weizmann Institute with J.L. Fuchs ,
and recently at the NASA Langley Research Center in collaboration with
Dr. Jerry South while the present author was visiting the Institute
for Computer Applications in Science and Engineering (ICASE). They are
preliminarily reported in [12] , and will be further reported elsewhere.
One purpose of this work was to examine the performance of the multi-grid
method in a problem that is not only nonlinear , but more significantly ,
is also of mixed (elliptic-hyperbolic) type and contains discontinuities
(shocks).

We considered the transonic small-disturbance equation itt conservation
form

(6.7) NK_K
~x ) $ 1  + c ~ = 0 ,

for the velocity disturbance potential c~(x,y) outside an airfoil. Here

K = (l- M
2

) / -r 2”3, ~ = (y~ 3.) M 2 , M is the free—stream Mach number ,

and y=l.4 is the ratio of specific heats. t is the airfoil thickness
ratio , assumed to be small. c=l , unless the y coordinate is stretched.1
The airfoil , in suitably scaled coordinates, is located at {y=O, lx i < -

~
},

and we consider nonlifting flows, so that the problem domain can , by
symmetry , be reduced to the half-plane {y>o }, with boundary conditions

(6.8) •(x ,y) -
~

- o as x 2+y 2 
+

1° for Ix ! > -4
(6.9) • (x,o) =

t,.F ’ ( x ) , for l x i  < 5
where -r F (x )  is the airfoil thickness function which we took to be
parabolic. Equation (6.7) is of hyperbolic or elliptic type depending

-: on whether K -2K~ is negative or positive (supersonic or subsonic).

The difference equations we used were essentially the Mu rman ’s con—
servative scheme ([9]; for a recent account of solution methods, see [8)),
where the main idea is to adaptively use upstream differencing in the
hyperbolic region and central differencing in the elliptic region, keep-
ing the system conservative. For relaxation we used vertical (y) line
relaxation, marching in the stream direction. The multi-grid solution
was programmed both in the CS (Sec. 4 1 and the FA~ (Sec. 5) modes , k+lwi th practically th~~~ame results . We used cubic interpolation for ~ kand inject ion for ~ k
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Local mode analysis of the linearized-freezed difference equations
and vertical-forward line relaxation gives the smoothing rate

(6.10) = max 
b~+b +ib_ ~~

‘ 2C+b÷}’ 
b~ (x) = K - 2K 4~~

(X4)

at elliptic (subsonic) points , and p = o at supersonic points . We were
interested in,~,cases where K<l and ~ >o, and hence, in smo~th elliptic
regions (b4 ‘~. b )  without coordina~e stretching we get p ‘\‘ 1/1 2+11 = 0.45

0 -3/4a n d p = p  = 0.55.

The actual convergence rates , observed in our experiments with mod-
erately supercritical flows (M~ = 0.7 and M~ = 0.85, -r = 0.1) on a
64x32 grid , were p = 0.52 to 0.53, just slightly faster than the theor—
etical value . (See detailed output in [12] . The wo~k count in [12] is
slightly different , counting also the work in the transition).

For highly supercritical flows (M = 0.95 , -r = 0.1) the MG convergence •
rate deteriorated , although it was still 3 times faster than solution by
line relaxation alone . The worse convergence pattern is explainable in
terms of the mode analysis for the elliptic region immediately behind
the shock, where b+ >> b , yielding p closer to 1. Also , the fast changes
in $ in that region gives a > 1 (see Sec . A. 1) , i.e. , t~e coarse grid
cycl~ s actually magnify the Fourier component with 0 = (-i- 0 ) ,  the same
component for which p is closer to 1. This worse behavior in this re-
stricted region further affected our computations because we did not use
separate stopping tests for this region as we should (see Sec . A.6). A
correct multi-grid algorithm for this problem should , therefore , include
symmetric selective line relaxation (see Sec . 3 . 2 ) ,  or partial relaxatior~
sweeps (see Sec . A .9) , or both , in addition to residual weighting (Sec. A.4).

- - Coordinate stretching, which transforms the bounded computational
domain to the f ull half plane , gave difference equations that again
exhibited slow multi-grid convergence rate. This, too , is explainable
by the mode analysis . For example , in the regions where the y coordinate
is highly stretched , c in (6 .7 )  becomes very small and hence p in (6.10)
is close to 1. The theoretical remedies : alternating-direction line re-
laxations and partial relaxation sweeps . The latter was tried in one
simple situation (stretching only the x coordinate), and indeed restored
the convergence rate of the corresponding unstretched case.

7. NON-UNIFORM GRIDS.
P.S

Many problems require very different resolution in different parts of
their domains . Special refinement of the grid is required near singular
points , in boundary layers , near shocks , and so on. Coarse grids (with
higher approximation order) should be used where the solution is smooth ,
or in subdomains far from the region where the solution is accurately
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needed , etc. A general method for locally choosing mesh-sizes and approx-
imation orders is described in Sec. 8. An important feature of the method
is adaptivity: the grid may change during the solution process , adapting
itself to the evolving solution . In this section , we propose a method of
organizing non-uniform grids so that the local refineme8t i~ highly Alexible.
The main idea is to let the sequence of uniform grids G , G , • . . ,  G (cf.
Sec. 2) be open-ended and non-coextensive (i.e., finer levels may be intro-
duced on increasingly narrower subdomains to produce higher local refinement,
and coarser levels may be introduced on increasingly wider domains to
cover unbounded domains) , and , fu rthermore , to let each of the finer levels
be defined itt terms of suitable local coc~ di~nates. The multi-grid FAS
process- remains practically as before (Sec . 5 ) ,  with similar efficiency .
Also discussed is a method which employs this grid organization for
“ segmental refinement”, a multi-grid solution process with substantially
reduced storage requirement.

7.1. Organizing Non-Uniform Grids. How are general non-uniform
grids organized for actual computations? There are two popular approaches :
One , usually used with the finite element method, is to keep the entire
system very flexible , allowing each grid point to be practically anywhere .
This requires a great deal of bookkeeping : grid-points ’ locations and
pointers to neighbors need to be stored ; sweeping over the grid is com-
plicated; obtaining the coefficients of the difference equations (or the
local “stiffness”) may require lengthy calculations, especially where
the grid is irregular; and these calculations should be repeated each
relaxation sweep, or else additional memory areas should be allocated
to store the coefficients. Also, it is more difficult to organize a
multi-grid solution on a completely general grid (see, however, Secs. 7.3
and A .5) , and complete generality is not necessary for obtaining any
desired refinement pattern.

Another approach for organizing a non-uniform grid is by a
coordinate transformation, with a uniform grid being used over the trans-
formed domain. On such grids, topologically still rectan~ularl~ t1~e multi-
grid method can be im~lemented in the usual way, the lines of G 

- being
every other line of G . Decisions (stopping criteria, residual weighting,
relaxation mode and relaxation directions) should be based on the trans-
formed difference equations. Very often, however, coordinate transformation
does not offer enough flexibility. A local refinement is not easy to
produce, unless it is a one-dimensional refinement, or a tensor
product of one-dimensional refinements. The difficulties are enlarged
in adaptive procedures, where it should be inexpensive to change local
mesh—sizes several times in the solution process . Moreover, the trans-
formation usually makes the difference equation much more complicated
(requiring additional storage for keeping coefficients, or additional
work in recomputing them every sweep), especially when the transformation
does become sophisticated (i .e . ,  adaptive , and not merely a product of
one-dimensional transformations) , and in particular if higher-order approx-
imations should be used in some or all subdomains .

Thus, be it in the original or in some transformed domain , one would
like to have a convenient system for local refinements, with minimal
bookkeeping and efficient  methods for formulating and solving difference
equations . The follr-iwing system is proposed (and then generalized ,
in Secs. 7 .3 , 7 . 4) :
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A non-uniform grid is a union of uniform sub-grids, G°, G
1
,... ,GM ,

with corresponding mesh-si~~~ h0, 
h
1
,. . . ,h~~. Usu~ lly h.. :h k+ = 2:1 and

every other grid line of G is a grid line of G . Unlike ~he descrip-
tion in Sec. 2, however , the sub—~~~ ds are not necessarily extended over
t*e same domain. The domain of G may be only part of the domain of
G (but not vice versa). Thus we may have different levels of refine-
ment at Jifferent subdomains.

For problems on a bounded domain (~ , several of the first (the coars-
est) sub-grids may extend to the entire domain ~~. That is, they do not
serve to produce different levels of refinement, but they are kept in
the system fo5 serving in the multi-grid process of solving the difference
equations. G should be coarse enough to have its system of difference
equations relatively inexpensive to solve (i.e., requiring le~s than
O(znk

) operations, where 
~k 

is the number of grid points in G . But cf.
Sec. 4.1). The finer sub-grids typically extend only ~ver certain sub-
domains of ~~, not necessarily connected. Generally, G is stretc ied over
those subdomains where the desired mesh-size is h

k or less. Thus, very

fine levels (e.g., with M20 , so that h
M 2

20
h
o

) may be introduced , provided
they are limited to suitably small subdoinains.

Such a system is very flexible , since grid refinement (or coarsening)
is done by extending (or contracting) uniform sub-grids . There are several
possible ways of storing functions on a (possibly disconnected) uniform
grid , allowing for easy grid changes. For example , each string ( i . e . ,  con-
nected row or column ) of function values can be stored separately , at an
arbitrary place in one big storing area, with a certain system of po.nters
leading from one string to the next. The extra storage area needed for
these pointers is small compared with the area needed for storing the
function values themselves . One such system, with subroutines for

- - creating , changing and interp~i1ating between the grids, is now under
construction , and will be reported elsewhere.

If the (original or transformed) problem’s domain is unbounded, we
usualiy put suitable boundary conditions on some finite, “far enough”
artificial boundary . In the j’resent system , we do not have to decide
in advance where to place the artificial boundary: We can extend (or
contract) the coarsest sub—grid(s) as the ¶o1ut~on evolves. Moreover,

-
- 

- we can add increasingly coarser levels (G , G , . . .)  to cover increasingly
wider domains , if required by the evolving solution. In this way , we may
reach computational domains of large diameter R , by adding only O ( log R)
grid points (assuming the desired mesh—size , out at distance r , is pro—
portional to r, or larger. This should usually be the case , especially
if appropriate higher—order approximations are used at large distances).

There appears to be a certain waste in the proposed system, as one
function value may ~e stored several times , when its grid point belongs
to several levels G . This is not the case.

~ 
First, because the amount

of such extra storage is small (less than 2 of the total storage; see
(4.6)). Moreover, the stored values are exactly those needed for the
multi-grid process of solution: In fact, in that process , the values
stored for different levels at the same grid—point are not identical;
they only converge to the s-ime value as the process proceeds.
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7.2. The Multi-Grid Algorithm on Non-Uniform Grids. The following
is a description of the modification in the FAS multi—grid algorithm (Sec. 5)
in case of a non—uniform grid with the above structure . The algorithm
remains almost the same , except that the d i f fe rence  equations ( 5 . 2 — 4 )
are changed to take account of the fac t that the ~evels G do not
necessarily cover the same domain. Denoting by C the set of points of

G which are inner points of a f i 9er level G
m 

(i.e., points where the G
m

differenco equations are defi~ ed ; see Figure 4), the modified form of
the diff ~ reiv-~ equations art G is

k k  —k k k  —k
(7.1) L u  = F  , A u  =~~~

where
-k k -k k - k k

(7.2) F = F and ~ in G 
~
Gk l  

and for k=M ,

(7.3) ~k = F
k~~ l 

and ~k 

~k+l 
in

(7.4) F
k 

= 
~~ 

(Fm - LmU
m ) + Lk (I~ U

m
)

(7.5) = ~~~ (~
m — A )  + Ak(I k m

)

F
k 

and ~~~~, as in Sec. 2, are the G
k approximation to the original right-

han d sides F and ~~, respectively .

Observe that, by (7.2-3), each intermediate l
~~1l 

Gk plays a doub].~
role: on the subdomain where the f iner  sub-grid C is not defined , G
plays the role of the finest grid and the difference equation there is an
approximation to the original differential equation. k

At the same time ,
on the su.bdomain where f iner sub-grids are present , G serves for
calculating the coarse-grid correction . These t~o roles are not confused
owing to the FAS mode , in which the correction v is only implicitly
computed lk

its equation being ¶tuallY written in terms of the full approx-

imation U . 
k~~ 

other words , F may be~ regarded as the us~a1 G right-

hand side (F ) ,  corrected to a~hieve G accuracy in the G solution.

Indeed

(7.6) Fk 
— 1k ~m = Lk (I k m ) - Ik (L rn m

)

which is th: G
m approximati:n to the G

k truncation error.

We use the term “ inner ” , and not “interior” , because these points may

well be boundary points . Indeed , at boundary points difference equations
are defined , although they are of a ~pecia1 type , called boundary con-

ditions. The only G
m points where C difference equations are not de-

fined are points on or near the internal boundary of G ; i.e., the boundary
beyonu which the le~ei G is not defined , but some coarser 1e~els are. If

the grid-lines of G do n~t coincide with grid lines of G , Gm 
is defined

as the set of points of G to whic~ proper interpolation from inner points

of G is well—defined. For m>M , G is empty.
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Figure 4. Example of Non-Uniform Grid.

A section of the domain ~ and its boundary ~~ is shown ,

covered with a coarser grid Gk (line intersections) and a
finer grid Gk

~~ (crosses and circles) . For the case of
a 5-points (or 9-points “box ”) difference equations ,
inner points are marked with crosses , its outer points with

- -  - circles . (For convenient interpolation , outer points should
lie on Gk lines) . At outer points belonging to Gk , the

converged solution satisfies the Gk difference equations,
such as the 5-point relations indicated by sq~~.res . At
other outer points , such as those shown with triangles , the

solution is always an interpolation from values at adjacent
Gk points . (Note that starting values at outer points should

be such that these interpolation relations are satisfied. The

FAS interpolation steps will then aut~~atically preserve these

relations.)

.4
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The only other modificatic~ required in applying Cycle C
to non-uniform grids is in the convergence switching criteria .
See Sec. A .lO.

- 
When converged , t~e so~ution so obtained satisfies equations (2.2)

in the inner part of G — Gk+ , (k=O ,l,...,M) . On outer (i.e., non-
inner) points the solution automatically satisfies either a coarser—grid
difference equation (if the point belongs to a coarser grid) or a coarser
grid interpolation relation. (See Figure 4). Note that, in this procedure,
difference equations should be defined on uniform grids only. This is an
important advantage. Difference equations on equi—distant points are
much simpler , more accurate. The basic weights for eac~ te~m (e.g., the
weights (1,2,1) for the secord order approximation to a /ax ) can be read
from small standard tables; whereas on a general grid those weights
should be recomputed (or stored) separately for each point, and they are
very complicated for high-order approximations.

Another advantage is that the relaxation sweeps, too, are on uniform
grids only. This simplifies the sweeping, and is particularly important
where symmetric and alternating—direction sweeps are required (cf. Sec. 3).

Numerical experiments indicate that the typical multi-grid convergence
rates , measured by the overall error reduction per work unit and pre-
dicted by local mode analysis (of. Sec. 6), are retained in multi—grid
solutions on non-uniform grids. The work unit, though , is somewhat
diffe rent: I~ is the comput~tional work of one sweep on all levels,
not only on G , since here C may make up only a small part of the points
of the final non-uniform grid.

7.3. Finite—Elements Generalization. The structure and solution
process outlined above can be generalized in various ways. An im-
portant generalization is to employ piece—wise uniform, rather than
strictly uniform , levels.

Qui te often , especially in prob lems
0
that use finite—elements

discretizations , the “bas ic” partition G (e.g., the coarsest triangulation)
of the domain i~ a non-uniform one , but one whic~ i~ particularly suitable
for the geometry of the problem. Finer levels G ,G , .~~~~.,  are defined as
uniform refinements of that basic level; e . g . ,  hk 

= 2 h0; so that hk
is constant within each basic element.

Having defined the levels Gk in this manner, the rest may in
principle be as before: The actual composite grid may use on’y certain,
arbitrary portions of each level; i.e., the actual subgrids G need not
be co—extensive , allowing for adaptive refinemen~s. Coarser levels

(G~~ , G
Z...,) may be added if the basic l~’vel G is not coarse enough

for full—speed multi-grid solution.0 
(Although there is no general algor-

ithm for coarsening a non-uniform G , and usually C is coarse enough).

— 4
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Data structures , similar  to the uniform case may be used , but should be
constructed separately for each basic element (or each set of identical
basic elements).

The multi—grid algorithm is the same as in Sec. 7.2. The discrete
equations are thus defined separately for each level. The reproduction
of these equations during relaxation is not as convenient as in the
strictly uniform case , but still, in the interior of any basic
element the equations can readily be read from fixed tables,
one table for each set of identical basic elements.

7.4. Local Transformations. Another important generalization of
the above structure is to subgrids which are defined each in terms of
another set of variables. For example , near a boundary or an interface ,
the most effective local discretizations are made in terms of local
coordinates in which the boundary (or interface) is a coordinate line.
In particular , with such coordinates it is easy to formulate high-order
tpproximations near the boundary ; or to introduce mesh sizes that are
di f ferent  across and along the interface (or the boundary layer); etc.
Usually it is easy to define suitable local coordinates , and uniformly
discretize them, but it is more dif f icu lt to patch together all these
local discretizations .

A multi-grid method for patching together a collection of local grids
- 

- C ,G
2

, . .  . ,G (each being uniform in its own local coordinates) is to relate
tAem all to a basic grid C

0
, which is uniform in the global coordinates

and stretches over the entire domain. The relation is essentially as above
(Sec. 7.2) ; namely , finite—difference equations are separately defined in
the inner points of each grid , and the FAS multi-grid process auto-
matically combines them together through its usual interpolation periods .

A remark : To a given col lection of local grids we may have to add
- - intermediate grids to obtain fast multi—grid convergence. That is, if a
- - - given local grid G

k 
is much finer than the basic grid G~ , we have to

add increasingly coarser gr ids , all of them uniform grins in the same
local coordinates , such that the coarsest of them has a mesh size wh ich
is (jr -i the global coordinates) nowhere much smaller than the basic mesh
size h

0
. Similarly , if the basic global grid C

0 
is not coarse enough ,

the usual multi-grid sequence of global grids G°, G
1,... ,G

M 
G
0 

should
be introduced. Thus, in each set of coordinates we will generally have

- 
- several grids.

Such a system offers much flexibility . Precise treatment of
boundaries and interfaces by the global coordinates is not required.
The local coordinates may be changed in course of computations , e.g., to
fj t - a moving interface. New sets of local coordinates may be introduced

- - (or deleted) as the need arises.

The data structure required for creating, changing and employing
such grids is basically again just any data structure suitable for
changeable uni form grids . This , however , should be supplemented by
tables f-a r the local transformations, such that one can e f f i c i en t ly  (i)
reproduce the local di f ference equation , and ( ii) interpolate from local
to global grid points , and vice—versa.
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7. 5. Segmental Refinement.  The multi-grid algori thm for non-uniform
grids (Sec. 7 .2) can be useful even in the case of uniform grids , if the
computer memory is not sufficiently large to store the finer levels.

“Segmental ref inement” is the refinement of one subdomain at a time.
To see why and how ~his is possible, observe that with the FAS mode (Sep. 5)
the full solution u is obtained on all grids. But on a coarser grid G~ ,

the ~
M solu~ion satisfies “corrected” difference equation , with F

k 
F~

r~placing F . It is therefore not necessary to keep the fine grid , once
F
M has been computed.

The corrected forcing function F~ can be computed by segmental refine-
ment. Refining only one subdoxnain, one can use the algorithm a~ove (Sec.
7 .2) to obtain a multi-grid soluti~ n , including t~e values of FM in the
refined sub domain. Keeping this F

M 
(instead of F ), one can then discard

this refinement, and ref ine  a second subdomain . And so on , through a
sequence of subdomains covering the entire domain.

Since subsequent subdomain refinements change t~e solution everywhere ,
some further changes are also due in the values of FM 

on former subdornains .
However, at points inner to (and few meshes away from the boundary of)
such a former subd~ma~ n , these fur ther  changes are much small~ r than the
first correction FM

_F , since they represent changes in the G truncation
error due to small smooth cha~ges in the solution , while the first cor-
rection represents the full C truncation error. Thus, if the refinement
segments are chosen so that neighboring segments overlap (several mesh
intervals into each other), then the further corrections may be ignored.
If extra accuracy is desired, another cycle of segmental refinements
may be performed. Another way of viewing this technique is to observe
that the roll of the finer levels , relative to the coarser ones , is only
to liquidate high-frequency error components which cannot be “seen ” on
the coarser grids . These components have a short (just few mesh sizes)
coupl ing range , and can therefore be - computed at any point by refining
only few neighboring meshes.

With this technique one can operate the multi-grid algprithm almost in
its full efficiency, using~ a storage area which is much smaller than that of
the finest grid. This has been confirmed by preliminary (one-dimensional)

- 
~. numerical tests .

In principl~~, the required storage area can be reduced to only a con-
stant cube , of J locations , on each level (where even J20 probably
offer enough overlap without substantial reduction in efficiency) . Thus ,

the overall storage requirement can in principle be reduced to

~~l + log / log J}

locations, where h is the finest mesh—size and R is the diameter of the
domain. No external memory is needed.

.4
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8. ADAPTIVE DISCRETIZATION TECHNIQUES.
The previous section described a flexible data structure and solution

process which facilitate implementation of variable mesh-sizes h. The
difference equations in that process are always defined at inner points of
uniform subgrids , which make it easy to employ high and variable approximation
orders p. How , then , mesh—sizes and approximation—orders are to be chosen?
Should boundary layers , for examples , be resolved by the grid? What is
their proper resolution? Should we use high—orde r of approximation at such
layers? How to detect such layers automatically? In this section we pro-
pose a general framework for automatic selection of h and p in a (nearly)
optimal way . In the next (Sec. 9) we will study some special cases , and
show how this proposed system automatically resolve or avoid from resolving
thin layer , depending on the alleged goal of the computations.

8.1 Basic Principles. We will treat the problem of selecting the
discretization parameters h and p (and possibly other parameters, see
Sec. 8.4) as an optimization problem: We will seek to minimize a certain
error estimator E , subject to a given amount of computational work W.
(Or , equivalently , minimize the work W to obtain a given level E of
the error estimator. We will see that the actual control quantity is
neither E nor W , but their rate of exchange.) It is important, however ,
to promptly emphasize that we should not take this optimization too

- - pedantically it is enough , for instance , to obtain E which is one or two
orders of magnitudes larger than the minimum (or , equivalently, to invest
work W which is by some fraction more than theoretically needed. Note
below that l o g ( l / E . )  is usually proportional to W ) .  Full optimization
is not our purpose, is enormously harder and, in fact, is self—defeating,
since it requires too much computational work to be invested in controling
h and p. We will aim at having the control work much smaller than the

• actual numerical work W , using the optimization problem only as a loose
-

; directive for sensible discretization.

The Error Estimator E is a functional that estimates the overall error
in solving the differential boundary-value problem, in terms of any given
numerical approximation . In principle , such a functional should be
furnished whenever a problem is submitted for numerical solution; in
practice , it is seldom provided. To have such an estimator depends on
having a clear and well—defined idea about the goal of the computations,
i.e., an idea about what error norm we intend to minimize. Given the goal,
even roughly, we can usually formulate E quite easily. We assume that

- ,. the numerical approximation U is in some suitable neighborhood of the

true solution (this is a necessary and justifiable assumption ; see Sec.
— ,.~ 8.2), so that E can be written as a linear functional

(8.1) E = 
J

G(x) r (x) dx

-r (x) is a local estiState
h
of the truncation error i.e., the error by which

the numerical solution U fails to satisfy the differential equation LU F;

or more conveniently , the error by whichh
t
~

e differential  solution U
fails to satisfy the discrete equation L U =F. That is,
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(8.2) T (X) = ILU(x) — L~\J(x) I

G(x) is the non—negative “error—weighting function” (or distribution),
through which the computations goal should be expressed.

The choice of C can be crude . In fact, multiplying G by a con-
stant does not change our optimization çroblem . Also, we can make large
errors, up to one or two orders of magni tudes, in the relative values
of G at two different points , since we are content in having E only to that
accuracy. What matter are only large changes in G, e .g . ,  near boundaries .
For example , if we have a uniformly ell ipt ic prob lem of order m , and if
we are interested in computing good approximations to U and its derivatives
up to order 2. and upto the boundary , then a suitable choice is

(8.3) G(x) = d

where d is the distance of x from the boundary. (The formula should be
suitably modified near a boundary corner). This and similar choices of
G are easily found by local one—dimensional crude analysis of the relation
between a perturbation in the equations and the resulting perturbation
in the quantity we wish to approximate. Even though crude, such choice of G
would specify our goal much closer than people usually bother to. Mbre-
over, we can change C if we learn that it fails to properly weigh a certain
region of the computation; it can serve as a convenient control, conveying
our intentions to the numerical discretization and solution.

The Work Functional W. In solving the discrete equations by the multi-
grid method , the main overall computational work is the number of Work
Units invested in relaxations , times the amount of computations in each
Work Unit (see Sec. 6). If the discretiza tion and relaxation sch emes
are suitable , the number of Work Units is almost indgpenden~4~ f the

• relaxation parameters h and p. (See e.g., the rate ~ for 
~h 

~~~
• in Table 1 above). Since for our optimization problem we need W only

up to a multiplicative constant, we can take into account only the amoun t
of computations in a single Work Unit , i.e., the work in one relaxation
sweep ov~r the domain. The local number of grid points per unit volume
is h(x) , and the amount of computation at each grid point is a function
w(p(x) ) , where p(x) is the local order of approximation . Hence, we can
regard the work functional as being

(8.4) W = f w (p ( x ) ) 
dx.

~2 h(x) d

I - ;  Global Optimization Equations. Treating the discretization parameters
1~ as spatial variables, h (x) anr ~ p ( x ) , the Euler equations of minimizing E

* 
- for fixed W are

(8.5a) 
~h(x) ~h(x) 

= 0

(8.5b) 
aE 

+ A = 0
ap(x) ~p( x)
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where A is a constant (the Lagrange multipliei). I t  is edSily ~eeI~ that
A is actually the marginal rate of exchanqc~ b~ twt-ei~ work and upttmct l
accuracy, i.e.,

• dE . d log -~mm — E(8.6) A = —  — E

and the meaning of (8.5) is that we cannot lower E by trading work ( e . g . ,
by taking smaller h at one point and larger at another, keeping W
constant, or trading a change in h with a change in p).

Equations (8.5) make some essential simplifications in the
optimization problem: They regard h and p as defined at all points
x€C ; Also, h and p are assumed to be continuous variables, whereas in
practice they are discrete . (p should be a positive integer, in some
schemes a positive even integer. Values of h are restricted by some
grid—organization considerations.) These simplifications are crucial for
our approach , and they are altogether justified by the fact that we are
content in having only an approximate optimum. The practical aspect, of

• choosing permissible h and p close to the solution of (8.5), is discussed in
Sec. (8.3). One restriction we should , however , take into account in
the basic equations , namely, the restriction

(8.7) p < p ( x )  < p
1
(x).

Without such a restriction , the optimization equations may give values
of p which cannot be approximated by permissible values. p0 is usually
1 or ( in symmetric schemes) 2 . The upper bound p

1 
may express the high-

est feasible order due to round-off errors ; or the highest order for which
we actually have appropriate (stable) discretization formulae , with special
such restriction near boundaries (hence the possible dependence of p1 on
the position x). With this restriction , Euler equation (8.5b) shoula be

rewritten as

I > o, if p ( x) =

( 8 . 8 )  ap(x) 
+ A ap(x) 

= o, if p < p(x) < p1
(x)

< 0 , if p(x) = p1
(x).

Local Opt imizat ion Equations. Subst i tut ing (8.1) and ( 8 . 4 )  into
(8.5a) and (8.8), we get the fol lowing equations at each point x c

(8.9a) G - ~~~(p)  
= 0

8 .9b)  G IL + ~~~~~
‘ 

~~~~~ 0
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where the equality—inequality sign , in (8.9b) and hereinafter, correspondc
to the three cases introduced in (8.8). In principle, the pair of
equations (8.9) determines, for each. x € ~2 , the local values of the pair
(h ,p ) ,  once A is given.

Thus A is our global control parameter. Choosing larger A , we will
get an optimized grid with less work and poorer accuracy; lowering A , we
invest more work and get higher accuracy . For each A , however , we
get (approximately) the highest accuracy for the work invested. In
principle A should be given by whoever submits the problem for numerical
solution; i.e., he should tell at what rate of exchange he is willing
to invest computational work for additional accuracy (see (8.5)). In
practice this is not done , and A usually serves as a convenient control
parameter (see Secs. 8.2 and 8.3).

To compute h and p from (8.9) we should know the behavior of T as a
function of h and p. Generally ,

(8.10) r(x,h ,p) t ( x ,p) h~~,

where t(x,p) depends on the equations and on the solution. Since it is
assumed that all our numerical approximations are in some neighborhood
of the solution (see Sec. 8.2), we may assume that the truncation-error
estimates , automatically calculated by the multi—grid processing (see (5.7),
for example) , give us local estimates for t(x ,p) . In practice , we never
actually solve (8.9) , but use these relations to decide upon changes in
h and p (see Sec. 8.3) , so that we need to estimate r(x ,h ,p) only for
h and p close to the current h(x) and p(x).

8.2. Continuation Methods. Continuation methods are generally used
in numerical solutions of nonlinear boundary value problems. A certain
problem—parameter, y say, is introduced , so that instead of a single
isolated problem we consider a continuum of problems , one problem P(y)

— for each value of y in an interval ‘y < y  < y e , where P(’y- ) is easily
- - solvable (e.g., it is linear), and P?y~

) is the target (tee given) pro-
blem. The continuation method of solution is to advance y from to

in steps ~Sy. At each step we use the final solution of the previous step
(or extrapolation from several previous steps) as a first approximation in
an iterative process for solving P(y). The main purpose of such con-

tinuation procedures is to ensure that the approximations we use in

the iterative process are always “close enough ” to the solution (of the
¶ current P ( y ) ) ,  so that some desirable properties are maintained. Usually

• y is some natural physical parameter (the Reynolds number , the Mach number,
etc.) in terms of which either the differential equations or the boundary

conditions , or both , are expressed.

The continuation process is not a waste , for several reasons . In
many cases , the intermediate problems P(y) are interesting by themselves,
since they correspond to a sequence of cases of the same physical problem.

More importantly , in solving non—linear discretized problems the continua-

tion process is not only a method of computing the solution , but also, in
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e f f ec t , the only way to def ine the solution , i.e., the way to select one
out of the many solutions of the non—linear algebraic system. The desired
solution is defined as the one which is obtained by continuous mapping
from [y, y

~
] to the solution space with a given solution at y (e.g.,

the single solution , if P(y ) is linear) . By the continuation°process ,
we keep every intermediate numerical solution in the vicinity of a
physical solution (to an intermediate problem) , hence the target numerical
solution is, hopefully , near the target phys ical solution , and is not
some spurious solution of the algebraic system. Thus, although sometimes
we may get away without a continuation process (simply because a starting
solution is “close enough ” , so that the continu ation may be done in just
‘r~e step) , in principle a continuation process must be present in any

numerical solution of non—linear problems. Moreover , such a process is
i~;ually inexpensive , since it can be done with crude accuracy , so
that its intermediate steps usually total less computational work than
the  finil step of computing an accurate solution to P(y

~
).

A continuation process is necessary, in principle , not only for non-
linear problems , but also for linear problems with grid adaptation. In

when h or p are themselves unknown, the discrete problem is
nonlinear , even if the differential problem is linear.

In our system , a continuation process with crude accuracy and
l i t t l e  work is automatically obtained by selecting a large value for the
:-~ntrol parameter A (cf. Sec. 8.1). Then, in the final step 

~~~~~~ 
A is

decreased to refine the solution . Thus, the overall process may be
viewed as a multi-grid process of solution, controlled by the two para—
eters -y- and A.

- - e most e f f ic ien t  way of changing y is probably to change it as
soon as possible (e.g., when the multi-grid processing exhibits convergence
to -~ crude tolerance) and to control the step-size ~~ by some automatic

- - 
procedure , so that óy is sharply decreased when divergence is sensed (in
the multi-grid processing), and slowly increased otherwise.

- - In changing y it is advisable to keep the residuals as smooth as
possible , since higher frequency components are more expensive to liquidate
(lower components being liquidated on coarser grids). Thus, for example,
if a boundary condition should be changed while changing -y, it is advisable

to introduce this change into the system at a stage when the

algorithm is to start working on the coarsest grid.

y-Extrapolation. In some cases the given problem 
~~~~~ 

is much too

di f f i cult to solve , e.g., because the differential solution fluctuates
on a scale too fine to be resolved. In such cases one is normally not

interested in the details of- the solution but rather in a certain

functional of the solution . It is sometimes possible in such cases to

solve tue problem for certain values of y far from y,~, and to extrapolate
the corresponding functional values to y=y

~

‘4
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8.3. Practice of Discretization Control. The main practical re-
strictions imposed on the theoretical discretization equations (8.9) are
the following : The approximation order p should be a positive integer.
In many problems p is also restricted to be even , since odd orders are
less efficient. The mesh—size function h(x) should be such that a reasonable
grid can be constructed with it. Thus, in the ~~id structure outlined in
Sec. 7.1, h is restricted to be of the form h=2 h , where k is an integer.
Also, in the multi—grid discretization method outl?ned in Sec. 7.2, any
uniform subgrid truly influences the global solution only if it is large
enough , i.e., if at least some of its inner points belong also to coarser
grids. These discretization restrictions will actually help us in meeting
another practical requirement, namely , the need to keep the control—work
( computer work invested in testing for and affecting discretization refor-
mulations) small compared with the numerical work (relaxation sweeps and
interpolations).

The practical adaptive procedure is proposed to be generally along
the following lines:

A. Testing. In the multi—grid solution process (possibly incorporating
a continuation process) , at some natural point we get an estimate of the
decrease in the error estimator E introduced by the present discretization
parameters . For example, in FAS Cycle C (see its f lowchar t  in Fig. 2 ) ,  at
the point where new F is computed , the quantity

(8.11) -tIE C 1~~
k 

- I
k~ 1 

~k+l 1

at each point may serve as a local estimate for the decrease in E per
unit volume (cf. (8.1) and (5.7 ) ) ,  owing to the refinement front h,~ to h

k+l
.

Each such decrease in E is related to some additional work 1~W (per
unit volume) . For example, the refinement from h

k 
to h

k+l 
requires

the additional work
w ( p )  -

( 8 . 1 2 )  ~~W (per unit volume).
h

k÷ l  
h

k

Hence we compute the ratio of exchanging accuracy per work Q = - t~E / ~~~ 
-

At regions where this ratio is much bigger than A (the control rate of

exchange ; c f .  Sec. 8.1) we say that the present parameter (h
k+l in the

example) is highly profitable and itis worth trying ~~2
further refine the

discretization (e.g., introduce there the subgrid G with hk÷2 
= hk+l /

2 ) .
At regions whe~~ 1Q 

is much smaller than A we may coarsen the discretization
(abolish the G subgrid) .

• Extrapolated tests. More sophisticated tests may be based on assuming
the truncation error to have some form of dependence on h and p, such as

(8.10) above. Instead of using L~E and i~W at the previous change ( from
h
k 

to h
k+l~ 

in the above example) we can then anticipate the corresponding

values ~E and ~W at the next change (from hk+l 
to hk+2

)
~ 

which are

the more appropriate values in testing whether to make that next change.

r
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Thus, in the above example , assuming (8.10) and hk+2 hk+l/2 h.,/4~ we
get ~E = 2 AE , t~W = 2 t~W , and hence

d —k k -k+1
(8 13) = = 2~~’~~ Q = 

hk+l G F - 1k+1 F

E~W w(p) (2
d 

—1) 2~

The extrapolated ratio Q is used in testing for grid changes. This may
seem risky , since it depends on assuming (8.10). But in fact there is
no such risk , because we can see from (8.13) that testing with Q is not
that much different from testing with Q. (In fact, if p is constant,
testing with Q is equivalent to testing with Q against another constant A.)

test with Q does not presume (8.10); it only assumes that the finer
(G ) approximation is considerably better than the coarser one , so that
their difference roughly corresponds to an added accuracy due to the
refinement. Note also that the multi—grid stopping criteria
((A.l7) or (A.20) in App. A) are precisely such that Q cart
be reliably computed front the final approximation.

B. Changing the discretization. The desired grid chang~s are first
jus t recorded (e.g., incidentally to the stage of computing F ) and only
then they are simultaneously introduced , taking into account some organ-

• izational and stabilizational considerations: A change (e.g., refinement)
is introduced only if_there is a point where the change is “overdue”
(e.g., a point where Q > b A ) . Together with such a point the change is
then also introduced at all neighbor (and neighbor of neighbor , etc.)
po~~~s where the change is “due” (e.g., where Q > 3 A ) . The changed subgrid
(G in the above example) is then augmented as follows: (i) Around each
new grid point we add~~~tra points, if necessary , so that the gr id point
(corresponding to a G point where a ref ~1~ ment was due) becomes an inner
point (of. Sec. 7.2) in the new subgrid (G ) .  ( i i )  Holes are filled ;
that is , if, on any grid line, a couple of points are missing in between
grid points , these missing points are added to the grid.

The control work in this system is negligible compared with, say ,

the work of re1ax~~~ over
k
G , because: (i) The tests are ma~~ in

transition from G to G , which takes place only once per several G
re laxation swe~ ps. (ii) Q is computed and tested only at points of the
coarser grid G , and at each such point the work is smaller than the relax-
ation work per point. (iii) Changing the discretization is itself inex-
pensive since it is done by extending or contracting uniform grids (cf.
Sec. 7.1), the main work being in interpolating the approximate solution
to the new piece of uniform subgrid.

8.4 Generalizations. In some ProbJ
clr 

i~2fs not en~~yh to adapt h
and p. Sometimes d if ferent  increments h , h ... ,  h should
be used at the d different directions , and each h should be separately
adapted. Basically the same procedures 

i ~
bove ?4~

t be used to test
and execute , for example, a change front h to h ~ /2. More generally ,
one would like to adapt the local coordinates (cf. Sec. 7.4), e.g., near
discontinunities. Automatic proceduresfor such adaptation have not
been so far developed , but are conceivable.
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Other discretizatior~ parameters, such as the centering of each
term in the difference operator, may be treated adaptively. (In fact,
such adaptive discretization is already in use in mixed—type problems,

• where i t  was introduced by Murman to obtain stability . See, e.g., (9]).
In problems with unbounded domains , the discrete domain may be determined
adaptively (with increasingly coarser levels; cf. Sec. 7.1), using a pro-
cedure that decides to extend the domain if the previous extension was
highly profitable in terms of —~E/~W. In many problems, some terms
the difference operator can altogether be discarded on most levels G
In particular , in singu larly perturbed problems , the highest order
terms may be kept only on the finest-narrowest levels. Decision ca.t
again be made in terms of -~ E/~W , in an obvious way.

9. ADAPTIVE DISCRETIZATION: CASE STUDIES.

To get a transparen t view of the discretization patterns and the
accuracy-work relations typical to the adaptive procedures proposed above,
we consider now several t2st cases which are simple enough to be analyzed
in closed forms. That is , we consider problems with known solutions and
simple behavior of the local truncation errors, and we calculate the
discretization functions h (x) and p(x) that would be selected by the local
op mization equations (8.9), and the resulting relation between the error
estimator E and the computational work W .

9.1 Uniform-Scale Problems. A problem is said to have the uniform
scale ~(x) if the local truncation error ( 8 . 2 )  has the behavior

r h 1
~~( 9 . 1 )  i(x,h ,p) ~ t(x) , (p

0 
< p  < p

1
)

Such a behavior occurs, for example , when the solution is a trigonometric or

exponential function exp(O~x), where G is either a constant or a slowly
varying funct ion (see example in Sec. 9 . 2 )  . We will also assume for sim—
pl ic i ty  that (see ( 8 . 4 ) )

(9 2) w(p) = w p
i

Usually 1=1, since the number of terms in the difference equations , and
hence also the amount of computer operations at each grid point , are
proportional to p. 1 2  is appropriate if we assume that we have to
increase the precision of our arithmetic when we increase p. Rescaling
W , we can assume that w = 1.

0

Using ( 9 . 1 — 2 )  in equations (8.9) we get

Z-l -d
(9.3a) G t = A d p h

( 3 . 3b )  GT log + X~~ pu h
d 

~

Hence , denoting by the va lue of p that satisfies
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(9.4) ~~~~ ~~~~~ = A
1 

Gt 
d 

~~~~

we have

-Z/d •

(9.5a) h = ~~~ e , p = p ,  if p < p ~~~p1 
,

2.—b 
p —l 1 ~~~~ 

+d)
(9.5b) h = (Ad p r~ 

0
t G ) ° , p = p ,  if p < p ,

~~ 
p1 -1 1 l/ (p

1
+d)

(9.5c) h = (Ad p
1 

r) t G ) , p = p~~, if p
1 

< p

Notice that at any point either p or h , but never bot~~, is “adaptive” ,
i.e., dependent of A. Where p is adaptive (p0 

< p  = p < p
1
), h is fixed and

• each “scale cu be” is divided into e
2. mesh cells.

• Assume now further that the computer precision is unlimited (which is

never really the case , but may provide insight), so that 2~ l and p ~~~~. If

,~ufficient1y high accuracy is desired , then A is sufficiently sniali to have
- 

- - p>p , so that (9.5a) applies. By (8.1) and (9.o~) this implies

(9.6) E = A deffl
_d

dx

and hence , by (8.6),

(9.7) E = ce~~ /d J
x) 

= C
0e

_c 
~~~

where ~ is some average value of the scale ri- Cx) . in this (idealized)
case , E decreases exponentially with W. For realistic W this convergence
rate becomes poor when ~ is very small , as in s inqularly  perturbed problems .
In such problems, however , for realistic W (9 .5a)  no longer applies,
and another rate of convergence , independen t of ~~~, takes over (see Sec.

9.3).

9.2. One—Dimensional Case. Consider ~ 2-point i oundary-value problem

r~ d U  du -
( 9 . 8 )  ~~

- —i. + ~~
— = 0 , in O<x<1 ,

dx

‘~ with constant n>0 and ~i~ h boundary conditions U(0) and 
U ( l )  such that

- 

~: the solution is U = e 
X fl~~ An ell iptic (stable) d i f ference  approximition

to such an equation can be central for rt> h but should be properly directed
- 

• for ~<h. (The first order term beinq the main term , the second order
term should be differenced backward relative to it with approximation

order p ’ = p - [1ogr~/boghJ . See [4) and Sec. 3 .2  in [3 ) ) .  In either case ,
the truncation error is approximately
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(9.9) ~ (x,h ,p) = t(x)(~.). where t(x) = ~~~ e 2
~”~

We now choose the error weighting function to be

(9.10) G(x) 5 1,

which would be the choice (see (8.3)) when one is interested in accurate
computation of boundary first-order derivatives (corresponding, e.g., to
boundary pressure or drag, in some physical models). We again assume no
precision limitations , so that 2=1 and p,= . We take p0=2 since second-order is no more expensive than first-order approximations. Inserting
these into (9.5) we get

(9.lla) h , p = log,j~- — 1 - for 0 < x ~

(9 .llb)  h = ~~e
2 X o~~

(3
~~ , p = 2 , for x < x  < 1

where

(9.llc ) x0 = ~~
. (bogj.j-. - 3)

If x > 1, then (9.lla) applies throughout , arid hence

(9.12) W I f~
- dx = ~~

- (log1f- - 1 -

1 -~~~- W - ~-Ae 1 e Ti(9.13) E f tdx = — = ~~— e
-

• 0 
11 fl

and the condition x > 1 itself becomes, by (9.llc , 12),

(9 .14)  W > (2+ -) 
~~

-

Thus , if W satisfies (9.14), E converges like (9.13).

9.3. Singular Perturbation: Boundary Layer Resolution. When n is
very small , problem (9.8) is singularly perturbed , arid its solution has
a boundary layer near x=0. The above mesh-size h=n/e is too small to
be practical . Indeed , in the optimal discretization (9 . 1 1 ) ,  for small n we
get small x , and an “ external region ” x0 < x < 1 is formed where the
mesh size g~ows exponentially from ~/e. The small mesh size is used
only to resolve the boundary layer. In this simplified problem the solution
away from the boundary layer (i.e., for x>>r~) is practically constant ,
so that indefinitely lar~e h is suitable. Usually h will grow exponentially,

~s in (9.llb), from h = — to some definite value suitable for the
external region. In the

e
transition region we have p=2, i.e., the minimal
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order of di f fe re ricinq  is used iii the reqirn where h chanqes .  T h i s  may
be useful in practical imp lementations.

From (~~ ll) and (9.9) we get for small n

(9.15) W = f ~~~ dx ~~
- (log~~ )

2 

-
~~~~~ 

W) 1’2

(9.16) E = f r dx = ~~~~
. log ~4 2~ (~~

. W)1”2 e 
e

where th~~ in tegra ls  are separately calculated .i,n (o,X ) and (x ,1). Thus ,
E coT v -r o~~s exponentially as a function of W~ ”~ inste~ d of W , °but this
r~ t &  ~s independent of n and does not deterioriate as n -

~
- 0.

9.4. Singular Perturbation without Boundary-Layer Resolution. To see
the effect of choosing different error weighting functions , consider
again the above problem (Secs . 9.2, 9.3) , but with the choice G ( x )  = x.
This choice is typical to cases where one is not interested in calculating
Loundary derivatives of the solution (see (8.3)). We then get

(9.17) = log ~~ -l - < log ~~~~
- - 2

Therefore , for small Ti and reasonable A , <
~ o and p=2 for all x. Hence ,

no resolution of the boundary layer is formed. Indeed , by (9.5b) , for
Very small Ti (singular-perturbation case)

(9.1 8) (ii) 
~~ 

= ~~
-
~
- e2~~

1l > >> i

so that h > > n  . In practical situation where the solution in the external
- • 

reg ion is not constant , the actual riesh-size will be determined by the
external regime .

9.5 .  Boundary Corners. Consider the two-dimensional Poisson equation
AU=F with smooth F and ~ortuoqeneous boundary conditions , near a boundary
corner with angle 7T/ C1 , -

~~
- 

~ n < 1. DenOting by r the distance from the
corner , at small r the solution U is 0(r ), and so is also the error

- - 
~~ - weighting function G (if accuracy is sought in the sol~ t~o~~,2but not

in its deriva~ iv2s_~ ear the boundary)
. Hence , T O (h r ) and

- , .  ~-t/3h = O( h ~~ r~ ~ ). If we fix the order of approximation p, then the

optimal mesh-spacing derived from (8.9a) is

(9.19)  h = 0(~~~l/ (P + 2)  r e ) ,  ~ =

- - - _ - ~~~~~_

- ~a~ — ‘- — 4 S 
— _ _ _ _ _ _ _  —  ~a .



Hence , by ( 8 .4 )  and (8.1) the total work and total error contribution from
a region of radius r around the corner are , respectively,

W=f~~- dxdY = O ( A 2
~~~~~

2
~ r 2 2 6 )

E =JG T dxdy = o ( A~”~~
2
~ r2 2

~ )

Hence the relation E ~ w
_1
~
d 

(the usual relation in d-dimensional smooth
problem with p-tb order approximation) still holds uniformly. The corner
does not “ contaminate ” the global convergence.

In the practical grid organization (Sec. 8.3) finer levels with

increasingly smaller mesh-sizes h
k 

= 2
_k

h will be introduced near the
corner. By (9.19), the level Gk will extend from the corner to a dis-

tance r
k 

= C A2~Z P 2  hk~
”
~
. Since ~<l , for small hk we get h

k 
> rk. This

gives us in practice a natural stopping valu~ for the refinement process:

The finest mesh-size near the corner is such that h.
~ ~ 

4r
k , so that level

Gk still has an inner point belonging to Gk l

9.6. Singularities. Like boundary corners , all kinds of other pro-
blem singularities , when treated adaptively, cause no degradation of the
convergence rate (of E as function of W) .

Consider for example the differential equation LU=F where F is
smooth except for a jump discontinuity at x=0. Whatever the approximation
order p , the system will find —AE (see (8.11)) to be 0(1) at all poin ts
whose difference equation include values on both sides of the discontinuity.
At these points further refinements will , therefore, be introduced as long
as —~E/ t iW > 0 ( A ) .  Thus , around x=0 , some fixed number (depending only
on p) of mes~1~

oints will be introduced at each level ck, unti l  a mesh
s i ze  h = 0 ( A  ) is rea~~ied. The total amount of added work is there-
fore proportional to the number of levels introduc~d , which is O(log h) .
The error contribution of the discontinuity is O(h ) ,  which is exponentially
small in terms of the added work .

This and similar analyses show that the adaptive scheme retains its
high-order convergence even when the problem is only piecewise smooth,
or has algebra ic singularities , etc.

10. HISTORICAL NOTES AND ACX1’~0WLEDGE~~ NTS.

Coarse-grid acceleration techniques were recommended and used by several
authors , including Southwell [24 ,13,14) , St iefel [15) , Fedoreriko [5), Ahained
[19), Wachspress [17], de la Val4e Poissin [16] and Settari and Aziz [24).
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Southwell called his technique “block” and more generall y “group relax-
ation ’ , described it as “almost essential to practical success ” , and gave
heuristic explanation as well as practical implementation methods based on
variational considerations (“the aim being to reduce the total energy by
as great an amount as possible” ) .  He also depicted procedure s of “advance
to a finer net” [14]. Techniques of multiplicative coarse-grid corrections
(special-cases of which appeared in [14) , [19) ) were developed by Wachspress
([ 17] , Chapter 9), who called them “variational techniques” . This work
motivated several studies, by Froelich , Wagner , Nakainura and Reed (See a
brief survey in [18] ) and was applied in nuclear reactor design computations.

All these were two-level methods. The multi—grid idea was introduced
by Fedorenko [6], mainly for theoretical purposes. Namely , he rigorously
proved that W(n,c) ,  the number of operations required to reduce the residuals ,
of a Poisson problem on a rectangular grid with n points, by a factor c , is
0(n j logcj). Bakhvalov El] generalized this result to any second-order
elliptic operator with continuous coefficients. For large n , this is the
best possible result — except for the actual value of the coefficient. The
Fedorenko estimate can be written as

W (n ,.Ol) < 210000n + W (lC~~,.0l),

and the Bakhvalov constants are still much larger. For admissible values
of n these estimates axe therefore far Worse than estimates obtained in
other methods , and they did not encourage any development of the method .
Fedorenko experimented with a two-level algorithm only , and seemed to imply
that for practical grid sizes Ar1 may be more efficient. He did not realize
the true practical potential , in both efficiency and prograimnirig simplific-
ation , of a full , systematic multi-grid ap~roach. (Lt can be proved that
W(n ,.Ol) < l O 6n, and in practice W(n ,.0l) ~ 50n is obtairiable. See App. C).

• The first full multi—grid algorithms and numerical tests were described
in (2]. Our original approach was to regard the finer levels as “correcting ”

the coarser level (cf. Secs. 1, 7.2 and 7.5 above). For uniform non—adaptive

grids this approach turns out to be equivalent to the one implied by [6],
but fundamentally it is different and more powerful , since the process is
not confined to a fixed discrete system.

A systematic multi-grid approach for a restricted class of problems ,
- 

- with somewhat different procedures of relaxation and transfer to coarser
grids , is described in [21) . The multi-gr id method is also portrayed in (23].

Adaptive discretization procedures were introduced by several authors.

See for example (10) , (20) , [21] and references in [21]. The present approach

is different, not only in its multi-level setting , but also in its basic
criteria and procedures.
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APP~~~ IX A. 2~~~RPOLATIONS AND STOPPING CRI~~RIA: ANALYSIS AND RUI~~~S.

The multi-grid algorithms described above (Secs. 4 and 5) need to be
supplemented with some rules of interpolat~9s and stopping criteria.
More specifically, for the i~terpo1ation ~ k 

transfer~i~g weigh ted
residuals from a fine grid G to th~ next coarser grid G , we should
prescribe the weights , while for I , interpolating corrections frost

back to Gk, the method and order o~ interpolation should be prescribed.

Stopping criteria should define convergence at the various levels and
detect slow convergence rates. Numerical tests show that the parameters

to be used are very robust: Full efficiency of the multi—grid algorithm

is obtained for stopping parameters that do not depend on the geometry

and the mesh size , and which stay change over a wide range (see, e.g.,

Appendix B), provided the correct forms of the stopping criteria are

used, and some basic rules of interpolation are observed. To find
the correct forms and rules, and to determine the stopping parameters ,
we have to analyze kh~ 

Coarse-Grid Correction (CGC) cycle , ~hfch consists

of interpolating (I ) the residuals to the coarser g~ id G , where the
• residual problem is ~olved , a~ d then interpolating (1k_i ) that solution

back as a correction to the G approximation.
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We can use a local mode analysis (for the linearized , coefficient-
freezed difference equations), similar to the example in Sec. 3. Such
an analysis may be inaccurate for the lowest frequency modes , for which
the interaction with the boundary is significant. But these lowest modes
are of little significance in our considerations, since they are effic~ ent 1 y
approximated on the coarsest grids with l i t t le  computational work , and
since care will  be taken ( i)  to choose interpolation schemes that do not :oj —
vert small low-frequenc errors into large high-frequency errors; and (ii) t

stop relaxation sweeps 1~ fore low—f req-uency error components become so lar~je
that they significantly feed the high frequencies (e.g., by boundary and
non-linear interactions). In fact , we will see that the dominant components
(i.e., the components that are slowest to converge in the combined proce

~
s
~of relaxation and coarse—g~id corrections) are the Fourier components e

for which 01 is close to QiT , where (in a general d—dimensiona] prob1c~m)
d

(A .0) 0 = (0 1,0
2
. ‘“‘°d~

’ O x  = - E 0 x . , l e t  = max 1 0. 1
j=l ~~~ l~y~d ~

h = h k =~~~
hk l

These, c1mponents feed on each other in the interpolation processes b - t ween
and G

K 
, they are slower to converge by relaxation , and in the CGC cycles

they may even diverge.

To simplify theAd~
scussion we will assume that the mesh—size ratio

has its usual value p=~ , which is the only one to be used in practice
(Cf. Sec. 6.2).

A.l. Coarse Grid Amplification Factors. For any given set of dii’-
ference operators LK and a multi-grid scheme , a local mode analysis of
the complete MG cycle can be made (cf. App. C), arid the various parameters
can be optimized. The essential information can, however , be obtained
from a much simpler analysis that treat separately the two main processes ,
relaxation sweeps and CGC cycles. The smoothing rate u (see Sec. 3) is the

- ‘ main quantity describing the relaxation sweeps. The CGC local mode analysis
is stwunarized below (for algebraic details see Sec. 4.5 of [3]).

In the CGC analysis , together with ~ach basic Fourier component
(0 < j e t <

~~~~
- ) we should treat all the G components that coincide ~it~

it on Gk l , i . e . ,  all components e~
0
~~~~

”1
~ (0 < b — I  < IT ) such that

0.(mod i i )  for j=l ,2,...,d. We call such component 0’ a harmonic

o~ 0. 3We are especially interested in those harmonics that are not
separated from 0 by the relaxation sweeps, e.g., the set

- ,.~ = 0 ’ 0 (mod IT)  : ii (0 ) >
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~~~ Denote by JT 0 1 the number of members in this set. (Usually 1T 0 1 =

where cs. is the number of coordinates j  for which I o i l  “ ) . In terms
of the 0 Fourier components and its harmonics , the CGC cycle has two
effects :

(i) Assuming the components not in T
0 

to be coi~. i-atively small when
the CGC cycle is entered , the set of components in T~ s transformed in
the cycle by a certain matrix, whose spectral radius turns out to be

1a~
(0) 

‘ ~~~ j T 0 I = 1,
- 

-
i (A .l) 0(0)  =

~~max (1, 0 (8)), if 1T 0 1 > 1..

where

(A.2) 0 ( 0 )  = j l  — ) R(0,0’) Bk(O ) B
k 1

(2 0)  ~ p ( 8 ) I
0ET 0

The functions P ( O ) ,  R ( 0 , 0 )  and B~~ (O) are the “symbols ” of Ik
k
l, I

k
k
l

and L , respectively, i.e.,

1
k—l 

e~
O X

~~ = p(0 ) eIO X , (cf . (A.l0) be1~~ ),

(A.3) I
k
k
l ~~~~~~~ 

= R ( e , 0 )  e~
O X /’h

O (mod u )

~ i0~ xfh1 
iO’x/h

1L e = Bi (e)  e , (i k ,k-l) .

(If  L is a system of equations , and the right-hand side of (A.2) is there-
fore a matrix , then o (0 )  is meant to be the spectral radius of that
matrix). For small we have 1T 0 l = 1 and hence

(A.4) a(0) = o (0) = 1 - p (o) + Q (101P + l o l~
where p is the approximation order of L.K and Lk l  

(or the minimum of the

two) and I is the order of the I 
- 

interpolation (1=2 for linear inter-

- 
- , polation , etc.). The principal ~~~ amplification factor is

(A.5) a = max c(0)

o<O<~

= max (l ,a ) , where a = max 0 (0 )
0 0 0

o<0<~
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(ii) Th~ CGC cycles also generate new secondary harmonics “~‘T
0The rate of generating these , i.e., the ratio of the new 0” amplitude to

the old ampli tude of the combined harmonics, turns out to be

(A.6) Oi
( 0 ” )  = I R ( O , 0” )  Bk

(O”) ~~_l (20) 1 p(8” )

where in is the order of the differential equations.

It follows from (A.4 ,6) that if p ( o ) = 1, as it is always chosen
to be (Cf. Sec. A.4), and if Din, then components with small t e l are very
eff iciently reduced in the multi-grid process.

A .2. The Coarse-to-Fine Interpolation I
k
k
l. On the other hand , it

— - follows from (A.6) that if I<in then even a small and smooth residual
function may produce large high-frequency residuals , and significant an~ unt
of computational work will be required to smooth them out. This effect
was clearly shown in numerical experiments ([2], [11]). Hence we have

The Basic Rule: The order of interpolation should be no less than the
order of the differential  equations. ( I > M . )  In particular, polynoininal
interpolation should be made with polynomials of degree > m- l .

Higher interpolation orders (I >M) are desired in the initial stages
of solving a problem , when the residuals are (locally) smooth. For
instance , in regions where the given problem has smoothness of order q

(i.e., F ( x )  = Z A
0 ~~~~~~~ , A0 

= 0 ( J 0 1 T~~~) )  , in order to ensure that

• the hiqh-f•requencv residuals remain 0(~~~~ ) ,  at the i-th interpolation from
M-l to the order should he

(A. 7) I > m  + m a x [ q — ( i— l ) p ,  0) .

(I n tact , as long as q > ip, this interpolation need not be followed
by G relaxation sweeps , since the low-frequency amplitudes are still
dominant. Relaxation would only feed from these low components tc- high
frequency ones , causing additional work later. Still ~etter , however,
instead of this multi—grid mode without ij~t~rmediate G relaxation ,
is to make a higher—order correction on G ) .

Eventually, however , the smoothness of F (which is the original re-
sidual function ) is completely lost in subsequent ~e~ iduals and the con-
vergence of components in the dominant range c i o j  “~ ) becomes our main
concern . For these components , higher interpolation orders (Din) is no
more effective than the min imal order (I=m ). This again was exhibited
in numerical experiments ([2], [10]), which confirmed that the multi-grid
efficiency is not improved (excep t in the F q/p l first cycles) by using
I > m .

r
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An efficient method to implement hi gh-order ir ~t .~r~ - - l a t i n~ in ease of
equations of the form -~ U = F is to base the intert h i t I - ~n or~ suitably—
rotated difference approximat i ons. See (14 , p. i3] and [7] .

A.3. T}io Effectivt- Smoothin9 Rate. Thc- ir~~~ththg rat 
p 

~~~~~ defined
n~ (3.RT as h t -  slowest convergenLe r-~t~- for a 1  - r o ~~’ s j o t  i~~; - r e s e n1ed
at the coarser l evel. More relevant , Lowevo i , is l w e ;t i-

~i t -  among
all components for which the coars’~

---q’~id correctior is jot -f f.- t ~ve ,
namely,

(A.8)  = max { p ( 0 )  : 
~~

- <  J O j  <~~r or o (O) > 1 ]

which we call the ‘e f f ec t~ ve smoothing rate . It is clCdr , on one Lane ,
that ~o rate faster than ii can be generally obt aiee~ -i :; r~~t r- of~c1nverqence
per G relaxation sweep, no matter how well  and how ofU- j the C problem
is solved. On the other hand , the rate p can actually be attained (- i
approached) by correctly balancing the number of relaxation sweeps in
between CGC cycles (see Sec. A.6). In most cases (all cases exami~ e~ Lv
us) one can make o (0 )  < 1 for ~ii O j < by proper choice of ~ (v ee
Sec. A.4), and it is therefore justifiable to use p as the effective
ra~-e when relaxation schemes are studied by themselves.

A.4. Tte Fine-to-Coarse Weighting of Residuals (I
k
k
l) , 

and the

Coarse-Grid Operator L
k l .  

The transfer of the G
k 
residuals

= f
k 

— L~
(
u
k 
to the coarser grid G

k 1

, to serve there as the right—hand

s~d~ f
k~~ (see Sec. 4, Step e) can be made in many ways . Generally 

k
f” is defined as some wei ghted average of the residuals in neighboring G
points :

k-i k—i k k
- .- (A .9 )  f ( x )  = ~ k 

r Cx) = ~ p r (x+’~h)

- 

- whore v= (v ,
~~~

,...,v
d
) , ~ ‘ . integers , and the suimnation is over a small

- 
— set. Li t~~rm~ of these weights , p(0) in (A.2) is given by

(A. 10) p (0 )  = ~ p e~
0 V

The coarse grid operator ~~~~ can ais~ be chosen in many ways , e.g.,
as some weighted average of the  o~ orator L in neighboring points .

How are these choices to he made? The main purpose should L-o to m m —
~ri~~ze ~~, but without investin~ two much computat~9a1 work in the weighting .
Usua l ly ,  it is preferable to adjust  and not L , becau~e1

this provides

~.ouqh control on a (cf. (A.2)) and because complicating L adds many
n~~re computations and g e t ;  increasingly complicated as one advances to still

0 or ser  levels. For the progranuner , using the same operators at all  levels
~s. an importan t s impl i f i ca t ion  ( C f .  I~pp. B) , especially for non—l inea r  ~- ro-
blems .

—~~~ ~~----~~~
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It is clear from (A.4) that we should take p ( o )  = E p = 1. There is
no apriori restriction , however , on the signs of the weigh~ s p . The
trivial weighting - 

V

(A.il) p = l , p = 0  for v#0; p (O) C 1,

called injection, has an important advantage in saving computations, not
only because the wei~hting itself i~~~ aved , but mainly because it requires
the computation of only at the G points , while other weightin~ schemes
compute r at all G points , an additional work comparable to one G relax-
ation sweep.

Examples. For symmetric second-order equations , injection should
u~u~lly be used. For th~ 5-point Laplace operator, f~r1

example , if we take
I 
k 

to be injection, 1k l  linear interpolation and L 
- 

also a 5-point

Laplace operator , we get a = a = 1, the minimal possible value. Any
weighting is a pure waste , including the “optimal ” weighting

(A.12) p
00 

= 4 , p
01 

= p
01 

p
10 

p
10 

= , = o for ~+J ol > i

which minimized a , giving 
~~~, 

= 4 , but does not lower a. Numerical tests
(modifying the program of Appendix B) indeed showed no improvement by

weighting. If, however, the equation has strong variation , making Bk l
quite different from B

k, 
we may get for injection a = > 1, while

weighting (A.12) will keep 
~~ 

safely below 1, giving a = 1.

For higher-order equation~ , non_krjvial weighting offers an important
advant~ge. If, for example , L and L 

- 
are 13-points biharmonic operators

and I
~.~_l 

is cubic interpolation, then a = 3 for injection , while a 1
for t~e weighting

p01 
= po~1 = P10 

= p
10 

= , p~~~ = 0 for Ia I + I 6 1 ,‘~ 1.

A.5. Finite Elements Procedures. The main difference between finite-
element and f ini te—difference multi-grid procedures is in the interpolation
schemes. In the finite-element case, interpolation procedures follow auto-
matically from t~ e variational formulation and t~e definition o~ the approx-
imation sp~c~s S (corresponding to the levels G ) .  Usually , S is a sub-
space of S . The coarse-to—fine interpolation is , therefore, simply the
identity operation. Also, if the variation~l problem in S is to minimize

then, f~r1
any given approximation v , the correction problem in the

coarser space S is , simply, to minimize

(8.13) A~_ 1(Vk l ) = A~ (vk + v~~~ )

.4

‘p
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Example. Consider the standard examp le , whe~ e 5
k is the space of

piecewize linear functions on the triangulation C and A
k 

is a Dirichlet
ix)t~gral~wh9e minimization is equivalent to the difference equation

= F , A being the 5-point Laplacian. Computing Ak l  by (A ,B), it

turns o~ t 1to be equ ivalent to the equation Ak l  v~
c_ l 

= 1
k—1 

(?
k_A kv

K
)

where I 
k 

has the weights (cf. Sec. A .4).
1 1p

00 = p
01 

= p
11 = = = = =

These weights give the same multi-grid convergence rate as injection (and
are, therefore , redundant).

A.6. Criteria for Slow Convergence Rates. (A) Relaxation sweeps ,

say on Gk, should be discontinued , and a switch should be made to a coarse-
grid correction , when the rate of convergence becomes slow; e.g., when

residual norm + 3~~(A.l4) . - 
— - - . — > r~ =resioual norm a sweep earlier — —3

a + 3

The norm here is a suitable (e.g., L
2
, L or (A.l8)) discrete measure ,

usually of the “dynanic ” res~4 duals , that is , residuals computed incidentally
to the relaxation process. p and a ar~~~ efined in (A.8) and (A.5), respec-
tivel~~. Usually, one can choose the ~ k weighting so that a l , in which
case p~~ii. In any case , (A.14) is designed to ensure that , on one hand ,
the CGC cycle is delayed enough to make its a magnification small compared
with the intermediate reduction by relaxation sweeps. On the other hand ,
for 0 with p (O) considerably slower than p , the CGC cycles are still suf-
ficiently frequent to compensate for the slower p , since their reduction
rate a(0) decreases rapidly ((A.4) with p (O)=l). the stopping rule (A.l4)
also prevents low error frequencies from dominating relaxation, thus
avoiding significant feeding from low to high frequencies (through boundary

- -- and nonlinear interactions).

- - If the “stopping rate ” n varies over the domain of computations (as a
result of variations in L, in case of nonlinear or non-constant-coefficients
problems), the largest n should be chosen for the stopping criterion ( A . 14 ) .
If log r~ changes too much over the domain (wh ich should not happen when
a proper relaxation scheme is used) , then (A.l4) must be checked separately
in subdomains , and partial sweeping (see Sec. A.9) might be used.

An appropriate value of n may also easily be found by direct trial and
error. Such value is typical to the (local~ y linearized , coefficient—
freezed) problem , is independent of either h, 11 or F , and may therefore
be found , once for all , on a moderately coarse grid. In some nonlinear

- - problems the value may need some adjustment as the computations proceed.
Whenever the coarse-grid corrections seem to be ineffective , r~ should be
increased , e.g., to (i+3~ )/4. Generally , the overall multi-grid con-
vergerce rate is not much sensitive to increasing r~: At~~~~ st, the rate
may become n instead of the theoretically best rate max p (cf.

Sec. 6.2).
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For the Poisson equation with Gauss—Seidel relaxation , for example,

we have a=l, 
‘
~=p= .5, hence il= .6~~ ,~~ ~he example in Appendix B shows that

the optimal MG convergence rate p ~ .595 is indeed attained. Experiment-
ing with this program gave similar results for any smaller ri (the reason
being that the minimal number of two sweeps at each level is good enough
in this problem) , while for any rr ’z .95 the total amount of computational

~~rk was no more than twice the work at n= .62 .

(B) Another way to decide upon discontinuat ion of relaxation is to
directly measure the smoothness of the residuals. The switch to coarser
grids can be made , for instance, when differences between residuals at
neighboring points are small compared with the residuals themselves.

A.7.  Convergence Criteria on Coarser Grids. In the C~C1mode analysis
above it was assumed that the problem on the coarser grid G was fu l ly
solved and then interpolated as a correction to the G ~p~ roximation . In
the actual multi-grid algorithm (Sec. 4) we solve the C problem iter-
atively , stopping the iterations when some convergence criterion is met.
This criterion should roughly detect the situation at

k
which more improve-

ment (per unit work ) is obtained by relax~n~ on the C grid (after inter-
polating) then by further iterating the G problem (before interpolating).
A crude mode analysis (similar to Sec. 4.6.2 in [3]) shows that such a cri-
terion is

(A .15) r~~
’
~ < ó I r

k
1 6 

a (1

~ ~~k 
-

where d is the dimension , a is given by (A.5),

S = max j ~ R ( 0 , e ’ )  B (0 ’ ) B ( 28)
_i 

p (0’)j

I°I~~ - O ’ ET 0 
k k-i

and p = 
‘~~( l— 2  on the G~ grid ( c f .  (A . 8 ) ) .  I r

k_ l
I J is any norm of the

k-i k - .
:~ current resid~a1s in the G problem , while Ir I I is the corresponding

norm in the G problem. It is important that these norms are comparable :
They

k
s
~
ould be discrete approximations to the same continuum norms. Also ,

if r 
k—~~~ 

the “dynamic ” residuals (i.e., computed incidentally to the
last G re1axa~ ion sweep, usin~~latest available values of the relaxed
solution) then r should be the G dynamic residuals , unlike the residuals

transferred to Gk l  
(to define f

k~-i cf. Sec. A.4) which must be “static”
residuals (i.e., computed over ~he qri~~~ ithout changing the solution at
the same time). If, however , r ’ and r are static and dynamic , respectively,
the parameter ~ in (A.15) should be multi~~i ied by a certain factor ~ (see
Sec. 4.6.2 in [31).
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The stoppin9 critWrion (A.l5) is based on the assumption that error
cx)inponents with l e t = ~~

- dominates the process. In the first Iqj’pl CGC
cycles, however, lower components are dominant, and the m~i~ consideration
is to converge them. Hence, at that initial state, the G convergence
criteria should be

(A.16) I I r
k 1 1 I I 1 k_l

I I

where T are the Gk l  truncation errors (of .  Sec. A .8) .

The key factor 6 can also be found by trial and error. Like ri above,
it is essentially independent of h, ~l and F, and may, therefore, be found
once for all by tests on moderately coarse grids. Numerical experiments
show that the overall multi-grid efficiency is not much sensitive to very
large variations in 6 and, in particular , 6 may be lowered by orders of
magnitudes without large changes in the efficiency. For example:

For the 5-points Poisson equation with Gauss-Seidel relaxation , in-
jection and linear interpolations, (A.l5) yields 6 = .219. Numerical
experiment (e.g., with the program in Appendix B) show that with any
.001 < p < .5 the computational work is no more than 25% above the work
with p = .22, and no more than 100% extra work for any .0001 < p < .7 .

A.8. Convergence on the Finest Grid. On the finest grid GM the so-
lution is usually considered converged when the (static) residuals are of
the order of the truncation error , in some appropriate norm. One way to
estimate the truncat ion error is to measure them on coarser grids by ( 5 . 7 ) ,
and extrapolate (taking into account that they are 0(h

~
) ) .

M Another , related
but more straightforward criterion is to detect

M
w
~

en the G solution
has contributed most of its correction to the G solut~9. In the
FAS algorithm the natural place to check is when a new F is computed ,
the convergence test being

(A.17) I ~~~~ — ~~~~ . H I 1~
M—1 

— 1
M—1 

F
M

Lprevious M

The norm here may be any (L , L , e t c . ) ,  but the most relevant one
is the discrete version of t~e norm (cf. Sec. 8.1)

(A.l8) II f I I = f G(x) If(x)~ dx

k 
A.9. Partial Relaxation Sweeps. A partial relaxationk

sweep over
G is a relaxation sweep that may skip some subdomains of G . (Unlike
“selective” relaxation sweeps, which in principle pass through all the
grid points, although corrections may not be introduced in some of them.
Cf. Sec. 3.2. A partial sweep may be selective , too.)

Partial sweeps are not used much in standard relaxation calculations .
Usually, a slow-to—converge subdomain is coupled to other subdomains
and therefore cannot )-e relaxed separately. In the multi—grid process,
}x wever , only high-frequency error components are to be reduced by relax-
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ation , -ir d this can be done separately in subdomains: With regard to
ni~~- - fre~~ encies ,_subdomains are practically decoupled. Hence , in ~~~~~~

mu] t )  —-:~rip ~- r’> ’er- s, partial sweeps are potential ly vi~ry i r ’r ~ilar t - In
t a ct , high—frequency amplitudes may vary qr -~~

1 y -~~er t r e  domain , es~ ti - i a ll y
if i and a vary much , or if high-f rc~- ~~~cv error components are introduced
at boundaries , making oarti.~ . ~~eeping there very desirable.

r ’ trt  ial sweeping may be performed by applying a criterion f’~r slow
Convergence (Sec . A 6 )  separately in r;~ x~ioma ins. (If the connected
re~~ on of r~~rtial relax~tion is r~ma1~~, r~ in (A.14) should be changed to

r+~~;~~~/~~- 4 - 3 ) ,  where p is the largest amplification factor for Fourier
components on the relaxed r--~~ion . )  A subdomain may be excluded from
subsequent relaxation sweeps i f  slow convergence is shown simultaneously
on that subdomain and or all neighboring subdornains . rT r~~~r t~’iaxation
may be u sed to ~h~~~e—ou t - the relaxed reg ion ( c f .  [3] , Sec . 4 .6 . 4 ) .  The
subdomains mai be ( -h( ~~;f -n  qu ite arbi t rar i ly, but each of them should be
large enough (at least 4x4 ) to allow fc,r separate smoothing.

A .i0. Convergence Criteria on Non-uniform Grids

When Gk and Gk l  are not coextensive (i.e., the domain

covered by Gk is only part of the Gk l  domain; cf. Sec. 7.2),

t r u ~ convergence criteria (Secs . i~.~~-8) should be slightly modified .

First , in (A.l5), I I r
k
H is not a comparable norm , since it may be

measured on a much narrower subdomain. Instead , one can use the

test

(A. 19) I r k I < 6~ Ir~
1 I I/n ,

- - 

where r~~
1

f is the residual norm computed on ~~~~ at the first

re laxa txon sweep af ter swi tching from G
k
. The division by n in

(A l9 )  is desiqr~ei tO- compensate for the fact that I I r ~~~I I is

~onpu~ ec~ a sweep later than I r
k

i

Th e i~tber  modif ica t ion is in (A . 17 ) ,  where it was assumed that

G~ is the f ines t  l evel everywhere . Generally , the convergence

te -;~ can he , for ~x~im: le ,

(A.20) I~~ — I I I~~ — 1
k F~~

1
~ L for all k = (0,1,... ,~i— l)

I previous k+l
k k k+l

where tbt  norm s are taken over G
k 4 l  

(or, more precisely, over Gk+l 
— Gk+ 2 ).
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APPENDIX B: SAMPLE MULTI-GRID PROGRAM AND OUTPUT.

Thi s simple program of Cycle C (wri tten in 1974 by the aut)or at the
Weizmann Institute) illustrates multi-grid prograxiuning + echn iques arid
exhibits the typical behavior of the solution process. For a ful l
description of Cycle C , see Sec . 4 or the flowchart in Fi g. J.

The program solves a Dir ichle t  problem for Poisson equation oj~~~
rectangle. The same 5—point operator is used on all grid~~. The I
residuals transfer is the trivial one (injection), the 1k l  iotc rp~-~~~t iorr
is linear. The higher interpolation (A.7) and the special stoppinc
criterion ( A . 16) ,  recoimnended for the f i rs t  [ajp ] cycles , are ~rot iinp J~ -rri-nted
here.

For each g~ id Gk we store bot}~~~ and fk (k=l,2,...,M). For handling
these arrays f is also called v . The coarsest grid has NXO x NYO
intervals of length HO each. Subsequent grids are defined as straight re-
finements , with mesh sizes H(k) = HO/2**(k_1). The function F(x,y) is the
right-hand side of the Poisson equation. The function G(x,y) serves both

~~M
the Dirichiet boundary condition (~~ ) and as the first approxi~ation

(u). The program cycles until  the L norm of the residuals on G is re-
duced belc~ TOL , unless ~JRX exceeds ~MAX . After each relaxation sweep on
any grid G , a l ine is r:rinted out showing the level k, the L

2 
norn of the

(“dynamic ) residuals computed in course of this relaxat ion , and WORK,
which is the accumulated relaxation work (where a sweep on the finest
grid is taken as the work unit) .

Note the key r~ le of the GRDFN and KEY subroutines. The first is used
to define a gr id Cv ) ,  i.e. • to allocate for it space in the general vector
Q (where IQ points to ~he next available location) , and to store its para-
meters. To use grid v , CALL KEY(k,IST,M ,N ,H) retrieves the grid para—
meters (dimension MxN and mesh-size H) and sets the array IST( i )  so that
v~~ = Q ( I S T ( i ) 4 - j ) .  This makes it easy to write one routine for all grids

see for example , Subroutine P UT Z (k) . Or to write the same routines
• 

- (RELAX , INTADD, RESCAL) for all levels.

To solve on the same domain problems other than Poisson , the only
subroutines to be changed are the relaxation routine PEL1~X arid the re—
sidual injection routine RESCAL , the latter being just a slight vailation
of the first.

For different d~rulains , more general GRDFN and KEY subroutines should
be written . A general GRDFN subroutine , in which the domain characteristic
function is one of the parameters , has been developed , together wi th  the
corresponding KEY routine. This essenLially reduces the prograxrnning of
any multi—grid solution to pro9rari~nin9 a usual relaxation routine.
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• EE~O G R A N  C Y C L E  C
EXIr~R N A L  G ,F CYCLE C
CA L L  MUL T IG (3,2,1.,6,.Ol ,30.,G,F)
STOP
E N D

FUNCTION F (X,Y) Right-hand side of the equation

F=S1N (3.*(X+Y) )
S E T U R N
E N D

FUNCTION G (X ,Y) Boundary values and first approximation
- • G=COS (2.*(X1-Y))

SE T U R N
E N D

SUBROUTINE MULTIG (NXO ,N YO ,’d0 ,N ,TOL ,~~1AX ,U1 ,F)
E X T E R N A L  01 ,?
DI t1~~NSION EPS(1O) Multi.~g-u ~d algorithm (see Fig. 1)
DO 1 K=1 ,M
K2 2** (K—i)
C A L L  G R D F N ( K ,NXO*K2+ i ,NYO*K2+1 ,HO /Kd)
CALL GRDFN (Ic+M,NXC*K2+1 ,NYC*K2 +1 ,HO,K2)
E P S  (~ ) TOL

• K=M
w U = O
C A L L  PUTF (N ,U1 ,0)
CALL PUTF (2*N ,F ,2)
ERR= 1 .E30
E P=EER
CALL RELAX(K ,K4M ,ER R )
WU=WU+ 4.**(K—M )
WR IrE (6,14)K ,:SR ,wU
FORdAT( ’ LEVEL ’ ,12 ,’ RESIDUAL NORNz ’,1PE1O .3 , P 

~4O !~K= ’,CE’F7.3)I F ( ~~RR .LT.EPS(K))GOTO 2
I? (WU.GE.WMAX) FETURN
IF (K.EQ.1.OR. ERR/ERRP.LT. .6)GO~~O 3 f l . 6
CALL RESCA L (K ,K-~-M ,K+M—i )
E P S  ( K — i )  = . 3 * E R R
K= K—1
C A L L  P U T Z (K )
G O T O  5
:F ( K . E Q . I ’ 1 )R E T U F . N
L A L L  INTADD (K ,K + 1)
K~~K+ 1
G .) TO S

I ~~- •

S U L 3 h O U T I N E  G h D F N ( N , I M A X , J N & X ,HH~ Define an IMAX X JMAX
P3fIMON/GRD/NST(20) ,I N X ( 2 0 )  , J f 1 X ( 2 0) ,~f ( 2 0 )  N

~A T A  IQ/ 1/  array v

~ST (N)  =IQ
:~ix (~ ) I M A X
l~~~~ ( N )  ~J M A X

1~~~lQ+INAX~ J M A X
~~ l- i.i JZ~N

~N D

SU IiRO UT INL KE Y (K , tS T ,X M A X ,i t - A X ,Hu)
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C 3 M 1 3 N / V / N ~~T ( ~~C ) , 1 M X ( 2 O ) , J M X ( 2 ~~) , l ( 2 0 )  Set 1ST such that

M A A ~~~1 X ( K )  
Vk (I , J) Q (IST(I) + •J)

I = ~~S T ( K ) — J d A X — 1 
and set IMAX = IMX(K)

DO 1 I= 1 , I N A X  JMAX JM X (K)

~3=IT~ + J~~A~
1 ISi (I) =~~S 

RH = H(K)

H H= t i (K)
R E  2 U R N
E N D

SU~s - ~3U T i N L P U T F ( K ,F ,N H)  
~~ 4- H(K)

NH 
F
K

~;w-1~1ON ~2(1800O) , I S T ( 6 0 0 )
C A L L  K E Y  (K ,IST ,II ,JJ ,H)

Do :=i ,:i
D O 1 J 1 ,JJ
X ( !—1)*H

1 ~ ( 1ST ( J )  +J)  ~~ (X , Y) *H2
- - F E T U R ~

~UBi~OUTINE PUTZ (K) 
K o

C O ?~~ON Q (18000) .151(200)
C A L L  K E Y (K , IST ,II ,JJ , U)
L~C) 1 I 1 , II
DO 1 J = 1 ,JJ

1 ~ (1ST (I )  4 J )  =0 .

~ErJ P -N
F N D

su 13~ OUT:NE HFLAX(K ,K R H S ,ESR )
C ) M 4- ~~~~ Q (18O0~) ,I S I  (200 ) , I R H S ( 2 3 ~~ ) A Gauss-Seidel Relaxation sweep

CAL~, KEY (K ,IST ,II ,JJ ,U)
C A L L .  K Y ( K R H S ,I R H S ,II ,JJ ,H) on the equation

-
‘ 

:1=1:—i K KRHS
j i = j i - i  A

h
v = V

‘E ~R O .
P3  1 1=2 ,11 giving

• :S=jP~ls (I)

~D=IST (2) 
ERR = I Iresiduals! I

~I1= ST (1-1)
IP=IST (141)

I ~~~~ D O 1 J~~~ , J 1
A = - ~ ( I R + J )  —Q ( I U i - J + 1 )  — Q ( t u + J — 1 )  — ) ( I M s J )  — Q ( I P + 3 )

1 ~ ( : u 4 ~ J )  = —  .2 5~~ A

FE :URN
LN ~~~

)

~
U u T iN: - I N ~~~DD(KC ,KF) Linear interpolation and additio~

‘ 

r ;:-~ - L ) N  ~~I ( 1~3Q0O ) , I ST C  ( 2 00 )  , ~ S T F  (400)
CA L L. .  ~ E Y  ( N C , IST C , I L C , J •JC , f lC)  +
C A L L  V~~1 ( K F ,1STF ,l1F ,J.L- ,I1F) KC
[Y I IC=2 ,I I C
L F = 2 * I c — 1 570
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• I F O = I S T F ( I F )
1?M=ISTF (IF-1)
ICO ISTC ( IC)

~~ I c M = I S T c ( I c- 1 )
DO 1 J C = 2 ,JJC
J f = J F + 2
A= . 5* (Q (ICO+JC) +Q (1C04-JC- 1))
AM .5* (Q (IC~ 1 + J C )  + Q ( I C M + J C — 1 )

Q (IFO +JF)  ~2(IFOtJF) +Q(1CO+JC)
(o ( I F t 1 + J~~) = Q ( i F M + J F ) + .~~~~( Q ( i C O ~~JC) +~~ ( I C M + J C ) )
Q (IFO+JF—1) =Q (IFO+JF—1 ) 4A

1 Q (IfM+Ji— 1) = Q (IFLI+JF— 1) + •5* (A+AN )
R E T U R N
END

S UB I ~O U T I N E  S E S C A L  ( K ? , K R ? , K E C )
C O N L I O N  Q ( 1 3 0 0 0 )  , I [JF (200) ,IRF (200) ,Ik~C (2~ 0)
C A L L  KEY (KF ,IU F ,I IF ,JJF ,H F )  Residuals injection
C A L L  K E Y ( K R F ,I R F ,II5 ,JJ~~,H ? )
CA L L  KEY (KR C ,IEC ,IIC,JJC ,HC)
11C1 11C 1 KRC coarse KRF KF
J J C 1 JJC 1 4- ‘fine Cv
DO 1 IC=2 ,IIC1
ICR IRC (IC)
1F 2*IC— 1
JF=1
I ?R I R ? ( I F)
1F0 10? (IF)
I F M = I U F  ( I F - i )
1?P=IUF(IF+1)
DO 1 J C = 2 ,J J C 1
J? J F + 2
S Q ( I F O + J F * 1 ) + Q ( I F O + J F - 1 ) + Q ( I 1 - N + J F ) + Q ( I F P + J F )

- - 1 Q (ICR +JC) =t$ . * ( Q ( I F R + J F )  — S + 4 .  *Q ( Ij O +j F )
F E T U R N
As
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L~~v:-L c R E S I D U A L  N 3 r M =  2 .~~ 1L4 L + 0 1  ~~iv .= 1 .000
- ‘ LEVEL. 6 RESI E-UA L NDDt -1= 2.76L.E4O1 W JRK~ 2 . 0 00  OUTPUT

L E V E L  S RESIDUAL N DRM= 2.6~~9E+O 1 W O rK ~ 2.250
LA ~V E L  5 ~ESIIJUAL N O FM =  2 . 5~~5 E + 0 1  W O R K :  2 . 5 0 0
L E V L 4 R E S I D U A L  N J D M =  2 . 3 1 7 E + O 1  W u L K  2 . 5~~3
LFVL L 4 RESIDUAL NOEM = 2.095E~~01 W JEK~ 2.625 Error reduction by a factor
L:vaL 3 RESIDUAL N DEM= 1.6492+01 ~uEK~ 2.641
L E~~~L 3 R E S i~jUAL N OFM = 1 .2e5E-~0 1 ( ‘iO RK ~ 2.656 greater than 10 per cycle.
LEVEL. 2 RESIDUAL NJ EM= 7.626E’00 WURK= 2.660
L E V E L  2 R E S I D U A L  N D F M  3 . 84 0 E 1- D 0  W O L K  2 . 6 6 4
LEVEL 3 RESIDUAL N OEM = 5.0585+00 WO RK= 2.680
LEVEL 4 RESIDUAL NOFN 8.0O€E+00 W URK 2.7L42 Each cycle costs 4.3 wu
L r•VLL ~ RESIDUAL N O F M  2.5145E+00 WO RK= 2.805
LEVEL ~ RESIDUAL N3RL 1= 9 . 7 3 6 E ~~O0 W O R K =  3 . 0 5 5
L E V E L  ~ RESIDUAL N3E~1= 2.~464t+CO WOE K= 3.305
A s L V . Z . L  6 R E S I D U A L  N O R M =  1. O~~4 E + O 1  W O R K =  4 . 3 0 5  Insensit ivity :~~~~-~ .L t :  w~ -iLi
L L J~~L 6 R E S I D U A L  N D F M =  2 . 4 4 2 E + 0 0  W O R K =  5 . 3 0 5

- 
- L E V E L  € RESIDUAL NDEM L .3995+00 WORK 6.305 be practically the same

LEVEL 5 RESIDUAL NOi ~M 2 .351E+00 WOEK= 6.555
- - LEVEL 5 R E S I D U A L  NO RM 2.3C3E+00 WORK 6.805 for any .005 < ~ < .5

• LEVEL 4 R E S I D U A L  N D : ~N= 2 . 1 7  3 L + C 0  W O R K  6 . 86 7
-

• 
L E V E L  4 R E S i D U A L  N O R M  �. 0 14 3 L + O0  W O R K =  o . 9 30  or any 0<  r~ < .65

L E V E L  3 R E S I D U A L  N O R M =  1 . 7 39 5 + 0 0  W O R K =  6 . 9 ( 4 5 —

• L E V E L  3 R E S I D U A L  N O R M =  1 .4 5 3 2 + 0 0  W O R K  6 . 9 6 1
L E V E L  2 R E S I D U A L  N D R M =  ~ .889 E — 0 1  W O R K =  6 . 9 6 5
LEVEL 2 RESIDUAL N35M 6.183E— 01 WO RK 6.969
LEVEL 1 RESIDUAL NORN 2.7602—01 WO PK= 6.970
LEVEL 1 RESIDUAL N O R M =  5 . 17 0 E — 0 2  W O R K =  6 . 9 7 1
L E V E L  2 R E S i D U A L  N D R M  2 . 2 9 L E — 0 1  W O R K =  6 . 9 7 5
LEVEL 3 RESIDUAL NO PM= 5.~.465E— 01 WO RK= 6.990
LEVEL (4 RESIDUAL N DRN= 7.7102— 01 WOPK 7.053
LEVEL (4 RESIDUAL N3?~~~ 1.163E—01 WOF.K= 7.115
LE V L 5 R E S I D U A L  N D E M =  8 . 6 5 7 2 — 0 1  W u R K =  7 . 3 63
L E V E L  5 R E S I D U A L .  N O l  1 . 0 5 8 E — C 1  W O R K =  7 . 6 1 5
LEVEL 6 RESIDUAL NJ RM =  9.C5~~r— 0 1  WORK 8 . 6 1 5
LEVEL 6 RESIDUAL N D R I I =  1.0522—01 WOR K= 9.615
L E V E L  6 R E S I D U A L  N D R M  1 . 0 1 2 E — 0 1  W O R K =  1 0.6 1 5
L E V L L  5 R E S I D U A L  N D R N  9 . 7 5 9 5 — 0 2  W O R K =  1 0 . 8 6 5
LEVEL 5 RESIDUAL NDR M= 9.4525—02 WORK= 11.1 15
L E V E L  Li R E S I D U A L  N DRM= 8.710E—02 WORK= 11.178
LEVEL (4 RESIDUAL N DRM= 7.960E—02 WORK= 11.240
L E V E L  3 R E S I D U A L  N D R N =  6 .3 8 9 — 0 2  W O R K =  1 i .2 ~~6
LEVEL 3 RESIDUA L NDRtI = 4 .9312—02 W O R K =  1 1 . 2 7 1
L E V E L  2 R E S I D U A L  N 3 R ~~~ 2 .9 1 € E — 0 2  W O R K =  1 1.2 7 5
L :V E L  ~ R E S I D U A L  N D R M =  1 . 6 2 2 E — 0 2  W O R K =  1 1 . 2 79
L L V E ~ 2 R E S I D U A L  N D R N I  1 . 0 1 7 E — 0 2  W O R K  1 1.2 8 3
L E V E L  3 R E S I D U A L  N D H M  1 .9149E—02 WO RK= 11.299
L E V E L  (4 R E S I D U A L  N D R t ~~ 3.1282—0 2 WOFK= 11.361
LEVEL (4 RESIDUAL N3 RM = 8.8L43E—0 3 WORK 11.424
LEVEL 5 R E S I D U A L  N D R M  3.7105—02 W JRK= 11.674
L E V E L  S R E S I D U A L  N D F ~~~ 8. 4 8 6 5 — 0 3  W O R K =  1 1 . 9 2 4
LEVEL 6 RESIDUAL ND EM= 14.0C75—02 ~3F~K~ 1 2 .9 2 4
~ E V E L  f R E C I D F I A L  N O R M —  I~~~O 5 1~~~~O3 W O R K  13 . ? 2 L 1
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APPENDIX C. RIGOROUS BOUND TO MODEL-PROBLEM CONVERGENCE RATE.

We consider the model problem : 5-points Poisson equation &nUh=F
on a (n

1
+l) X (n

2
+i) rectangular grid G with Dirichiet boundary conditions.

Let n .  = 2MN. and let be the (2~N1+1) 
x (w~~2

+l) uniform grid on the same
domain , with mesh size h,K=2 kh , (k=o , 1, ... , M ) . We will estimate the
convergence rate and work in one multi—grid cycle CM.

The cycle CM 
is gefined inductively as f~llows: (i) Make r relax-

ation sweeps on the G approximate solution u . To facilitate the rigorous
Fourier analysis we choose as our relaxation the Weighted Simultaneous Dis-
placement (WSD , or “weighted Jacobi”) method with the optimal weights w00—48/4l,

~~~~~~~~~~~~~~~~~~~~ (see Sec. 3.3). ( i i )  Inject (cf . Sec . A .4 )  the

residual problem to G
M_i

. (iii) Get an approximate solution ~
M_i 

to this

G
M_i 

problem by two cycles , starting from the zero approximation.

(iv) Correct ~
M ÷ ~~

M 
+ IM

M
i
v
M
~~ , where 1M 1  is linear interpolation.

It is easily calculated that one WSD sweep amplifies the Fourier corn-
ponent exp(iO.x/h

M) of the residual by the factor

- - 1J(0) = 1 — (2 — cos 01 
— cos0

2
) (24 + 8cosO

1 
+ 8cosO 2

) / 41.

Denote by A (0) the amplitude , before the CM cycle , of t3~e 0=(Ol,02) com-
ponent of the residual. Acutally present on the grid G are only components
of the form 0 = (a

1
lT/n

1
,a
2

iT/n
2

) ,  (ct .= -~- 1, + 2, ..., + (n .-l)) , and their
amplitudes A ( 0

11 02
) = —A(0

11 —02
) = —A (—0

1
,02

) are real (assuming two of
the boundary lines to lie on the axes). Since 4(0

1
,02

) = u (+0i ,+0 2) is real ,

the r relaxation sweeps operate separately on each residual mode , trans-
- - 

forming its amplitude A ( 0 )  to A ’ ( O )  = 4(0)r ACe ).

- . For any component 0 = ( O l , 0 2
) such that 1 0 1  = rnax (1e114e ,)) <

1 2 3denote 8 = (0
1
,02), 

0 = + r ,0
2
) , 0 = (0 1, 02 ~~• 

-IT) , 0 = (0~~+~r , 0
2

-I-ir )

where each -i- sign is chosen so that 0
g
1 < -IT ,(9=1 ,2,3,4). Of these four

“harmonics ” , only the 0
1 mode appears on GM 1

, its amplitude there (in the
right—hand side of the G

M_i 
residual problem formed in Step ( i i ) )  being

(C.1) A
0 

= A ’ (0 1) + A ’ (0 2) + A ’ (0~ ) + A’ (0~ ).

Let e
k 
denote an upper bound to the factors by which any cycle reduces

the L
2 
norm of the residuals on Gk. In particular , the two C

M_i 
cycles

(Step (iii)) are equivalent to solving a G
M_i 

problem with amplitudes a
0instead of A0, where
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(C.2) a
0
—A
0~~ ~ t e l 

~~~~AQ
2

Hence, interpolating the computed correcti m from G
M_i 

to G
M (Step ( i v )) ,

the new residual amplitudes are easily calculated to be

= A’ (O k ) — S (O Z) a0

= 4 ( 0 9 ) r A ( 0~~) — S (0~~~)A
0 
+ S( 0 ~~) (A

0 —a 0 ) ,  (i=l , 2 ,3,4 , ) ,

where

(1 + cos0 1) (1 + cos02) (4 — 2cosO
1 — 

2cosO 2)S(0) 
4 2cos20

1 
— 2cos20

2

Hence

(C.3) Z A(0~)
2 

< 2q
2 

~ A ( 0~ )
2 + 2 E S( 0 ~~)

2 (A 9—a 0
) 2

where q is any upper bound to the spectral radii of the 4x matrices Q(O),
defined by

~ zm 
(0 )  = 

~~2m 
— S ( O i ) )  4 ( 0m ) r (1 < 2. ,m < 4).

Denoting 6.  = 1 - cos2 0 . , it is easy to check that
2 2

2. 
6 + 6  6

1
62 1(C.4)  Z S(0  ) 2 = ~ (l + 

1 2 
2 6 + 6 <

A (8~~ + 82
) 1 2

Hence , summing (C.3) over the relevant range of 8, using (C.2) and (C.4)
and then ( C . l ) ,  we obtain

E A ( 0 ) 2 
< 2q 2 E A ( 0 ) 2 

+ ¶
I e I~~~ I o l ~~~-IT I e I ~-

< (2q 2 
+ yc ~— M-1 l e l ~~

£ 2 r
where y is any upper bound to all I p (0 ) , (0 < t e l < ~T / 2 ) .

A

Thus , we have obtained the bound

2 2 4( C . i)  C
M 

= 2q +

P~ simple computer program confirms the bounds q2 
= (7/41)r and

2r
= 1 + 3(7/41) . Choose r=3. From (C.5) it now follows, by induction

on M , that C
M 

.101
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_
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_ 
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The number of operations in the cM cycle is WM < (12r+3)n
1
n
2 

+

Hence , by induction on M, WM 4~~4-6)n 1
h1~~ We thus have in summary

Theorem. The above C
1 

cycle reduces the L2 error by a factor < .101 and

costs 78 operations (additions and multiplications) per (G
M) 

grid point.

The theorem can be iinpr~ved (to .1 reduction in only 53 operations-
Per_point)

M
b
~ 

defining the C cycle to consist of r+M relaxation sweeps arid
only one C cycle , arid choosing large r. (Employing arbitrarily large r
pays only with simultaneous-displacement schemes on rectangular domains ,
where there is no feed from low to high frequencies).

In practice , .1 reduction is obtained in about 26 operations. (See
App. B. The Gauss-Seidel sweep employe~ there can be done in

k
S
l
operati

~
ns_

per-point. But for eve ry 3 sweeps on G the interpolations ~ k and ~ -1
are also performed , each costing an average of 6/4 operations per point .
Hence , a work unit in App . B should be considered as representing
(3x 5+ 3 )/3 = 6 operations). These operatiori~ involve only additions and
shi f t s .

-
It
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SINGULAR VALUE DECOMPOSITION:
*APPLICATIONS AND COMPUTATIONS

erie II. Golub
-and

L~~~Lflkl1fl T. Luk
Stanford University, Stanford , California

AbETFL.~CT. The Singular Value Decomposition (SVD) of a rec-
t~n~uiar mat r ix  i~ described. Several problems arising in data
~nai\rc1s ~re given -~rid their solution is given in terms of the SVD.
Nu -ncr i~~- L L  mc— -hods are discussed for computing the decomposition for
-i ~ r~:e- aud sparse matrices.

F

l. ~• )DiJ :~i~ION. ihis paper is concerned with the singular

value decomposition of a given matrix. The decomposition is very use-

ful a 1thou-~h i’ may not be as familiar as some of the other matrix

decompositions. We shall describe the decomposition , give some

specific ~:-am~ples of its applications, and suggest some methods to

compute the decomposition.

There are many matrix decompositions that are useful in mathe-

matical applications. A very familiar one is the Q5 decomposition of

a s-~uare matrix A:

A =

where Q is an orthogonal matrix and R is an upper triangular matrix.

There -are several numerical schemes to compute this decomposition . We

could use the Gram-Schmidt method; the columns of Q. -are the orthogonal

columns generated by the process. Another way to generate Q and R

is through the use of Householder transformations.
Another familiar decomposition is the reduction of a square

matrix to its Jordan canonIcal form:

A =

where is nonsingular and J is a block diagonal n-~trix in which 

lids wor k ~as in par suppor 9:ed by ItS. Army Research -tran t
DAt ‘ ) ~~~ - —
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each diagonal matrix is an elementary Jordan block 
~r~~ i~~

’ ~~~~~~~

0
=

This decomposition has been used extensively in the study of stability

of differential equations. Unfortunately , there does not appear to be

any good numerical algorithm to compute the decomposition (Golub and

Wilk inson [lÀ 1) .
• Finally, we shall discuss the singular value decomposition of

an m X n matrix A:

A=U XI Vt

where U is an m X m orthogonal matrix , V is an n X n orthogonal

matr ix , and ~ is an ax n matrix with non-negative elements down the

• 
main flagonal and zeros every~there else. For our discussion , we shall
assume that A has at lea’t as many rows as columns so that m > n ,

although this is not always the case. There are many proofs of this

dc-:ompos~tion, for instance, in the book by Forsythe and Moler [6] .

A very clear and useful discussion is given in the book by Ianczos :

“Linear Differential flperators” [17].

I t  is not very difficult to see that U consists of the

eigenvectors of AAt , V consists of the eigenvectors of AA  and

the diagonal elements G .  1 < i < n, of ~ are the non-negative

c~~1are roots of the eigenvalues of A
tA. We assume the ~. ‘s are

arranged in such a way that

. 4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



0 > 0 ,

where r is the rank of the matrix A.

The singular values and the eigenvalues of a given matrix can

frequently differ. Consider an m X m matrix

: i

The matrix A is of rank m-l but all its eigenvalues equal 0. however ,

(m-l) singular values of A equal 1 and only one singular value is

zero. Hence the number of non-zero eigenvalues of a matrix gives a lower

bound on its rank , whereas the number of non-zero singular values of

a matrix is its rank.

• -i 2. APPLICATIONS. In this sect ion we shall discuss some

applications of the singular value decomposition (cf. Golub [3]).

A. Let be the set of all m ~ ax orthogonal matrices .

We wish to replace a given ax X m matrix A by an m X m orthogonal

matrix ~ that is near A. In order to study the nearness of one

matrix with respect to another matrix, we introduce a norm; we use the

Frobenius norm of a matrix, viz.,

1k!! = (
~~~~ 

ai . 1
2)h/2 .

i , j  3

We shall use this matrix norm throughout this discussion. - ur problc c

It then cons ists of the following: let A be an a rb i trary  m ~ m m a t r :-:~

determine Q € Urn such that

‘
I-
-

:~~~~~~~~~~~~~J~~~~~~~~~~~ T~~~ I~~~~~~~~~~~~~~~~~~~~~ T~~~~~~~~~~~



~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

IA - < LI - -
~~~ for any x €

• i h s  problem is important in factor analysis and has also found appli-

ens h: -aeronautics ~cf. Bar-i tzhack [ 11) .

Ihe solution to the problem is fairly simple . It is as follows :

A = U L V t ,

~den ae r-o l- ce all the singular values by 1 and write

Q = UIV~

I t is well-known that the s ingular values of an orthogonal matrix all

e uai 1. Low ,

IA - Q!I = IIuEvt - ulvt !I
= — III since the Frobenius norm is unitarily

. . 1)invariant

f  
2~~~ 

~ + (a _ l ) 2 ]1/2

~his ~-uiue then i s a  acasur e of the departure from orthogonality of a

t~ven -~a rix. The result is true for all unitarily invariant norms
Idn and h o ff ~mtn [5]).

B. We consider the foflowing important generalization of

problem ~~. Let A be an m ~ n matrix associated with a set of data
• cnd let B be obtained from A through a rotation of the data.  The

: tio,rine f igure may represent a typical situation:

i~~ A B

V _ _ _ _ _ _ _ _ _  
-

said to be ~~r ar~ l ~~~~~~~~ if IAUI! = IVA l = IA~
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Our idea is to replace A by BQ, that is , we wish to replace A by

- - a rotation of B. We want to determine (~ (I U such that

IA - BQ~I = mm

The solution is again given in t erms of the singular value de~ompositiu:~.
reen [15 1 and. hch6ee~ninrj [21] showed that if

• B
tA = UEVt

and
Q = U V

then

IA - BQII ~ h A  - BX II for all X € u

(k )  -C. Let ‘f be the set of all m~~ n matrices of ranp- k.m ,n
Assume A € . We want to determine B ~rj ’~

1 (k < r )  such thatm ,n m , n —

~IA - B!! < A - x l for all X g

In other words , we want to approximate the matrix A with a matr ix  of

lower rank and we want the best  approximation for the fixed rank .  The

• solution is given in terms of the singular value decomposition .
Let A = ULV t , then B U kV , where

-~~~~~~~

/
1 =

It Now 

0
k
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hA - Bli = IITJEVt - Uc~kVt II
= IhE - 

~k
0

2 2 1/2= (
~k+l + +

~~n
)

Mirksy (18] showed that the above result is true for all

unitarily invariant norms.

Consider the following example. Let

1 0

0 lO~~~

Mathematically, the matr ix is of rank 2. But the following rank 1

matrix
j i  0

B = I
0

differs from A by only l0_10 and is the closest matrix of rank 1 to A.

D. The singular value decomposition also enters in the corn-

putation of the pseudo-inverse of a matrix . An n x m matrix X is a

pseudo-inverse of an m x n matrix A if it satisfies the following

four relations:

( i)  A X A = A,
‘1 (ii) X A X = X ,

(iii) (~~)
t AX,

(iv) (~~)
t~~~~~
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The pseudo-inverse X is unique arid we denote it by A+. We can easily

verify that given

A = UEVt

we always have

A~~= VAUt ,

h wI~iere

7 ~~,I I

/
A =  (

1

in

-
~ If A is square and of full rank , then A~ = A~~ .

Consider the following problem. Suppose we have an rn-vector

b and an in x n matrix A. We would like to determine an ri—vector x

such that

: iIA~ ~!I2 = mj n .
2 )

If A is not a matrix of full rank, we do not have a. unique solution

to the problem. Let

x (
~HI~ 

- ~II = m m )2

would like to determine ~ € ~ such that 12112 is a minimum.

1. ~~ 2 1/2 / t
2 ~~~ y 1

) for = 
~~~~~~~~~ 

y~)

I in
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The solution is given by x = A~b. Hence if we had A~, it would be
fairly simple to compute a sequence of solutions [X

j
) given the

sequence of data [~~).
Unfortunately, the pseudo-inverse of a matrix is not a continuous

function of the elements of A. If we let

11 0
A(€) =

€

where € > 0, then
1 0

A~ ( € )  =

0 — l

But

1 0
A~(0) =

0 0

Hence for a small positive € , we see that A~(c) is quite different

from A (0). Thus the computation of the pseudo-inverse is quite an

ill-conditioned problem.

If we want to compute the pseudo-inverse in a stable way, we

must impose some additional conditions. We shall give one possibility

which seems quite satisfactory.

Suppose we are given a matrix A but we also know that the

matrix is really some matrix B plus some perturbation ~~ , viz. ,

A = B + L ~~.

We do not know B but we know some bound on the error:

lI~fl~~n ;

for example, this would happen if the elements of A were empirical

data with known uncertainties. We wish to determine such that

I’
~ IIA - BlI~~i~,
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rank(B) = mm

The solution is given by
’ 
the singular value decomposition. If we write

= UcZkV
then

-
~~~ A

B = B
p

if
2 2 2

°~p+l~~~” + O < T ~

and
2 2 2 2

~~~~~~~~~~~~~~~ + cJr > 11

Note that although

I IA - BI I~~~ ,
yet

HA~~~~~ l I =

E. We may use the singular value decomposition to solve

.1 homogeneous equations. Suppose A is an m X n matrix of rank r. Let

AV = UE .

We ‘part ition V into an nX r matrix V
1 

and an n x (n-r) matrix
i.e.

v = (v1,v2 )
and

A (V1,V2) = (~~i,
0)

where

‘p
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(
= 

r 

m x r
Then

AV2 = O ,

and we have found an orthogonal basis for the null space of A .

• Given a set of eigenvalues of a square matrix, we need to
solve a set of homogeneous equations in order to find the eigenvectors .
Golub and Wilkinson []A] used the idea to comput e the Jordan canonical
form of a matrix.

Often , we wish to know which columns of a given matrix A are
linearly independent . If A is a set of measurements and if some
columns are dependent , we may want to determine which are the dependent
columns, eliminate them and obtain a linearly independent set of measure-
ments. The singular value decomposition can be very effect ive for this
purpose .

Let A E and let the last column of A consist of

all zer os. We find

V
2
=(.)

from which we see we should eliminate the last column of A.

In general, we want to take V2 and perform Gaussian elimina-
tion with complete pivoting on V~ such that

where 

586

~~~~~~~ 
.
~~~~~~~~~~~~~

_ 5 

~—-~~~~~~~~~~~~T ~~~~~~~~~~~~~~~~~~~~ 

- -5 - - — - - - - — 5 -- ---- - — - ------—-____ _ _ _ _ _ _ _ _ _ _ _

—5 —— —



F — “-—ri~~~~~ . -~~~~~~~~~~~~~r~~~~~’ - — -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - 

is an (n-r) x (n-r) upper triangular matrix
0 is an (n-r) x r matrix, and
ii is an n X n permutation matrix.

Then if
Afl = (A1,A2 )

we can decide that the columns of A2 form a linearly independent
basis for the columns of A. This and other problems of dependence
are discussed extensively in a paper by Golub, Iüema and Stewart [10].

F. Another problem is the following. Consider

t

~ 2jo l1~ lI2 Ii~ll2

It is not difficult to see that the maximal value of the normalized
bilinear form Is 

~l’ 
which is attained when £ = u1 and =

where 
~l 

is the largest singular value of A, and u1, 
~~ 

are the

corresponding left and right singular vectors, respect ively.
Let X be an m >< s matrix a.nd Y be an m x t matrix . Consider

~~=Xu and ~~= Y v .

The angle e between ~ , and ~ is given by

.5
, cos e = II~ll2 II~!l2

We can choose ~ and ~ to maximize the normalized inner product.

We call the maximal value the canonical correlation and the correspond-
jug angle (say ~) the angle between the two subspaces U and V.

We can determine e very easily using the singular value
S
i deomposition. We comput e the QE decomposition of X and Y, viz.
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X = Q B  and y = P $ .

Then
= cos~~~~ma~~QtP ))

The computation can be carried out even when X and Y have less than

full rank (Bj~rck and Golub [2]).

G. One further application of the singular value decomposition
is in computing the parameter l~, in ridge regression using the cross
validation technique (Golub, Wa.hba and Heath [13]) .

Given an m x n matrix K of rank r and an rn-vector ~~~. We
wish to minimize

2 2cp(f) = II~ - ~ II~ +

1~~ Using the variational technique, we see p(~ ) attains its minimum at
f = f where f satisfies

• (K
t
K + ~I)~ = Kt~

Hence we have a ridge regression problem. The question is how to

choose ). One possibility is to try to estimate ?~ from the data;

we shall describe one method based on cross validation. We shall

see how bhe singular value decomposition of K aids -.is in both

choosing A ard solving for f for the chosen value of ?~.

Let ~~~ denote the (m-l) )( n matrix obtained by leaving
out the j-th row of K, and let denote an (m-l)-vector obtained

by leaving out the J-th component of ~~, viz.

~~~ =1 ~~
_i \
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and

where k. is the j-th row of K.

Let ~J ) (7~) denote the solution to

(K~~~tK~~ + ?~I) ~ (i) (~~) = K(3)tg(3)

The cross-validation weighted square error CV (?~) is defined by

CV(2~) = ~ w . {g. - kt ~ (~ ) (~~)~ 2
j =l

where

w . > O.
3 —

We wish to choose 7’~ such that CV(7~) is a minimum. We see

CV(?~) ~ w.[ g . - k
t(K(3)tK(3) + ?~I) l 

K
(j)t ~(j)1

2

j l  
w~[g~ - kt(KtK + ~I - ~~kt ) l (Kt - k e t)~ ]2

where =

We apply the Sherman-Morrison formula to obtain

(ictx + ~~ - k k t)
_l 

= (ictK + ~ j )
1 

+ a~~ (KtK + ?~I)~~k k t(KtK + ?~I )
_ l

,
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where t
= 1 - k~(K

tK +

and
a. y~ 0 by assumption

After some additional computations, we get

cv(?~) = II B( 7~) [ I  - K(K
tK + ~~ ) lKt ] 11 2

where B(?~) is an m X m matrix given by

(B(?~
)) 11 = w ~

/2 l ~~k~(K
tK +  ~~~~~ k]

1

and (B( 7~) L .  = 0 for i / j

We factorize K as

K = UEVt ,

i.e., the singular value decomposition of K. Then

cv(?~) = IIB(?~)[~ - ~~~~~ + 1~t~~]j 1
2

where Z = U~~. Now,

= w~~
2[l - ~~V(EtE +

But since
K V = U Z ,

we obtain
= w~~

2(l - 
j~1 

~~~~~~~~~~~~~

where

V

r~ - - 5 -  - - — --5— i



--~~~~~~ —, -S ~~~~ —

I 

~~~~~~~~~~~~~

and o- . ’ s are the singular values of K. Finally,

2

m - 

~—l3
r

i=l 1 - 
j~ l 

~~~~~~~~

which is very easy to evaluate.

For a chosen value of ?\, we m ay solve the ridge regression

‘problem easily using the singular value decomposition of K. We have

(KtK + 7s~I)f = Kt~

which reduces to

1
, ’ 5-’ ‘5.

v (Ez+~ I)v f =vz~~.

Hence
5-’ t l t ”

j 1 ü.  ÷ A ~
3

where
V = 

~~l’ ~ 2’ ‘

Many numerical experiments have been carried out in [13].
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3. COMPUT ING THE SINGULAR VALUE DECOMPOSITION OF A DENSE MATRDC

Our basic tool is the Householder transformation . Consider a matr ix
(1)P of tne form

~(i) = - 2~
(1)

~
(l)t

where

11 11 2= 1.

Note that the matrix ~~~~ is symmetric and orthogonal. Let

denote the original matrix. We construct ~~~~ to annihilate all
(1)

elements below the diagonal in the first column of A

a~~ ...
/ 

0 a22 ...
p (l) A (l ) ... a

3~ ... a~ A (3/2)

0 a~~ a ’

• We next apply a Householder transformation Q (~~ on the right of

-: A , and our idea is to eliminate all elements to the right of the

(1,2) position in the first row of A (3/’2) without disturbing the zero

elements in the first columns

/
~~1 ~l 

o ... 0
\

/ 
0 a~2 a~3 ... a~

0 a32 a
33 

S . .  a
3

\o a~~ a
3 

a~

Our process continues with
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= p (k) A (k)

where the effect of ~(k) is to eliminate all elements below the

diagonal in the k-th column of A~~~ , and with

= A~~~~~
’2) Q~~~

where the effect of Q(1~ is to eliminate all elements to the right

of the (k,kl-l) position in the k-th row of A /2).

The end result is that we have n transformations on the left
((n- l )  transformations if m = n) ,  and (n-2 ) transformations on the
right of ~~:

= ~
(n) p(l)AQ(l) ... Q (fl~2)

( :
2~~~~ 2 0 

0
We now apply the QB method due to Francis { 7] and Kublanovskaya [16]
(Golub and Kahan [ 9 ] )  so that

t

i.e., the singular value decomposition of J. If we write

= ~ (i) ... ~ (n) and = Q (i) ... Q (n~2)

k then
593
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A = pjQt

(‘x ) z(Qy ) t

= UEVt

wher e

U = P X , V = Q Y .

The first program to do the above computations was given by

Golub and Reinsch [12]. A version for complex matrices was given by

Busi nger and ~olub [3] A program for real matrices is available in

Release 2 of EISPACK [)4].

• ~~. COMPUTING THE SINGULA R VALUE DECOMPOSITION OF LARGE
SPARSE MATRICES. We have several possibilities for computing the

singular value decomposition of a large and sparse matrix. In most
problems, we want only the few greatest singular values of a large
matrixj for instance, in image reconstruction, the order of the matrix

- 
‘ frequently exceeds 10,000 but only verj few, generally less than 100,

• of the greatest singular values are of physical significance.

• A . Standard Lanczos algorithm. The best available algorithm

for computing a few of the greatest singular values of a large sparse
matrix , say A, is the Lanczos algorithm. The algorithm uses the matrix
A only in the computation of the matrix-vector product Ax or Atx

• given a vector x. Hence we can use the sparsity of A to compute

the products very efficiently. Unlike other methods that transform

the matrix , the Lanczos algorithm preserves the matrix ’ s sparse

structure and works well even if the matrix is so large that it has to

be stored on some auxiliary device (e .g.  magnetic disk or tape) .
We use the Lanczos algorithm to b~ diagonalize a given m ~ n

matrix A:

A = P J Q t ,
where

ptp = QtQ = 1

an i
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a2 ~2

- :  3 =

~~~~~~
n-l

a

m X n

We can expand the two resultant equations:

AQ = PJ and PtA = JQt

in terms of the columns of P and of Q. to yield

A21 = a1~1
= + ,

t t 
i = 1,2,...,n-l ,

= a.2~ +

So our algorithm is

(1) Choose such that 1121112 = 1.

Set
w = A q

~~~~~ ~-i ~ l
= Il ~~l~1 2~

=

595

- 5 .  —

— 

_ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~
-T•T~~~~~~~~~~~~~~ ~~~~ 5-1~~TI~TI~~~~~~~~~~

’ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(2) For i 1,2,. .., s-l (2 < s < n) ,  compute

z. A~~~ - a121

21+1

~ j +l = A2.÷1 -

= ft~j+1~2 ‘

~ = a  w
‘~i+1 i+l—i+l

For some s < n, we denote

A ~~

/ 
a2~~~~2 0

s(s)  
I

Q a
~~~

(s)
~~
‘ = 

~~~~~~~~~ ~~~~~~‘ ‘
and

Q
(5) 

= 
~2l’ 22’ 

•
~~~
. 

‘

We now apply the QR method on J so that

s(s)  
= x (5) E~

5) y (5)t

i.e., the singular value decomposition of 3(s) Let
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s(s) 
= 

(a

(s) 

.

where ? 
~~s) ~ > a

(s)  
> o,

(s) 
— ~ 

(s) (s)  ( s ) \
‘~ l ‘~~~2 ‘ “~~~‘~~~s 

‘ ‘

and
v( s)  — ,

, (s) (s) C s)
— 

‘~ l ‘ ~ 2 ‘ • ‘

The ~~~~~~~~ ~~~~~~~~ and Q )~~ 5) are usually accurate approximations

to the largest singular value, and the corresponding left and right

singular vectors, respectively, of A . We may apply the Kaniel-Paige

theory [19] to show that if e > 0 is the angle between 
21 

and

then
4 2 (s)O•1~~~

€1~~~
a
~1 ~ -~~~1’

where
~ç..

2
2 2ff 1 tan 9

~1 T2 ( l + Y  ‘

s - l 1-y ~

T 1 
is the (s-1)-st Chebyshev polynomial of the first kind,

j~
. and

0
~l

0 2
2cr

1

We construct an example to show how generally approxi-

mates cr well even for a small s. Let cr = 1.0, a- = 0.9, s = 20

and 9 = cos~~ 0.1. Then 
2

—-—-- -5—.-- -— ---- - —---- - ——-- --‘-—---- -~~~~~~~~--  ~.• - -—



— — _ _ _5•_•~~~~~~

- ‘ tan2 6=
50

~~
2
=99 ,

-~~ _ l.O-O,9
2(1.0) = 0.05

~~~~~~~~ l.lO5

and

T19(l.l05 )~ 2. 8 x 10~

Hence
2 .  2 1 . 9 9  •€ — — 2 .~~x101 

(2.8 x 103)
2

- -
• and

a-1 
- 0.000025 < a-~~°~ <

Since n is usually very large, we often choose some s << n
subject to storage availability. If our convergence criterion for the

singular value is not satisfied, we may use Q(5)~~~5) as the new

initial vector arid restart the Lanczos algorithm. Since the accuracy

of our approximation is bounded by tan e, where 9 is the angle

between our initial vector and 
~l’ 

we expect to obtain better approxi-

mations if we iterate the Lanczos algorithm. If z
1 

(or 
~~•~

) = 2
for some i < s, we could continue the algorithm by choosing some
(or w1) prthogonal to all the previous z .’s (or 

;
‘s)~ ~ < i. We

could also choose to terminate the algorithm because z1 (or w1
) = 0

usually means some singular values have converged.

‘u The sequences of vectors (
~~~

) and (2j 3 form orthogonal sets

in exact arithmetic. Hence theoretically, we need only to keep the
most recent pairs of ~~ ‘s and 2j ’~ 

in men~ ry, providing great
savings in storage. Unfortunately, the sequences (~~~

) and
generally lose orthogonality very quickly due to cancellation errors

in the computations of the Z
j

’ s and Wj ’ s. A remedy is to reorthogo-

nalize the most recently computed 
~~ 

(or 2i ) with respect to all

5.
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~~ the previous ~ .‘s (or 2.’s), j < i. But this task is expensive in

3 3
both execution time and storage, because we must now store all the

computed (~~~ ) and in memory. Paige [19] argues against the

necessity of reorthogonalization, but the matter is still a subject of

controversy.

I
B. Block Lanczos algorithm. In many cases we may save work

if we iterate with a block of vectors instead of a single vector. The

saving could be cori~siderable if we were computing a multiple singular

value. In general, if we had some a priori knowledge of the singular

value ~pectrum, we could choose an appropriate block size with good

gains. Computer experiments (Golub , Luk and Overton [111) show that

if we want several of the largest singular values, we often gain by

-~~~ choosing a block size p > 1. Also, if the matrix is stored on an
auxiliary device, we may make some gains in efficiency if we multiply

the matrix into several vectors simultaneously.

In a similar way to the standard Lanczos algorithm, our block

-‘-‘ version reduces the matrix A to a block bidiagonal form. We start

with an arbitrary n ) p matrix Q1, and perform a QR factorization of

the product AQ1:

• where P1 is an m x p matrix such that P1P1 I ,

and A1 is a p x p upper triangular matrix.

Our algorithm continues with

t tQ. B. = A P .  - Q .  A.
1 i—l i—i  :i~-i i-l

and I = 2,3 , . . . , s
P .A . = AQ - P . B~1 1 i—i i—l

where Q
~

B
~~i 

and P1A1 are the QR factorizations of the respective

right-hand sides, and

“ 4
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is an n x p matrix such that Q~Q1 = I ,

- - P~ is an m x p matrix such that P~P~ = I

and both B1_1 and A1 are p x p upper triangular matrices.
We have tacitly assumed p x s < n. We consider the ps X ps

block tridiagonal matrix

(A
i 

B~ 0 ~~~: .

Q As l B
sl)

- which is also banded upper triangular with bandwidth = p+l.

• We can reduce to bidiagonal form using the Householder

transformations. We can also use plane rotations to reduce i(s) to
4 bidiagonal form to take advantage of the sparse banded structure of

i(s) A plane rotation in the (i,j)-plane is an orthogonal matrix
P. of the fortn
ii

I j

/ 
1

•‘5

r ... a-
J4p . 1

.

1-a- ... j
1

_ _



‘

~~~~~~~~ 
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‘s where + Cr
2 

= 1. It is easy to verify that given a vector ~ we
can choose i and a- such that P annihilates the j-th component

of x. We give a simple example to dei~~nstrate how we can reduce 3
using plane rotations.

Suppose we have the following 6 x 6 matrix

( x x
~~~~~~~

O
~~~

x x)

We construct a ‘plane rotation 
~23’ postmultiplying A to annihilate

-
. - the (1,3) element. The rotation creates a non-zero element in the (3,2)

position, i.e.,

( x x Q
~~~~

‘5. 
~~~ x x x

AQ 
~ :

Now we apply a plane rotation P23, preinultiplying AQ~3 
to eliminate

the (3, 2) element . A new non-zero element appears in the (2,5) position:

(xx
Q

\
\

~

L P A Q  =
23 23 ~~~~~~~~~~~x x x) .

We construct to annihilate the new nonzero (2 , 5) element f rom the

right:



P
23

AQ
23
Q)~5 

= 

~\s\\\
0 

‘~ 

~~

An appropriate plane rotation P~5 
from the left will annihilate the

newly created (~,I~) element without creating new nonzero elements:

(x xo

P~ 5
P23AQ

23
Q~5 

= ~~ 

~~

We say we have “chased” away the (1,3) element of A (cf. Rutishauser

[20]) .

We may determine the singular value decomposition of the

resultant bidiagonaJ.. matrix using the QB method. Using a theorem due

to Underwood [22], we can show that the p largest singular values

• of are usually accurate approximations to the p largest

singular values of A. In fact, if a-mn 
> 0 is the smallest singular

value of . Q~V1, where V1 consists of the first p columns of V,
then for k = l,2, .. . ,p,

~i.

p :  2 (a)
a- — E  < 0  < a ,k k — k — k

where
‘1

2 tan2 e
~~

T~
Z 

~~
_ 

k
5 l l Tk

4’
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-l9 = c o s

-j ______

• and is the (s-1)-st Chebyshev polynomial of the first kind.

U We consider an example similar to the one we have given in

the previous section. Let a1 
= 1.0, a-2 0.9, a-3 

= 0.5, p = 2, s = 10

and 0 cos~~ 0.1. Then

- 2
-; tan 0 = 9 9 ,

1~~ 1 12

1 +12 1.21 .
1 — r 2 0.79~~~~~

53 ’

-: 
T
9
(1. 67) 10~ ,

T
9
(l.53) 3.7 x

Hence

€ 2x
5
99 1 2.o x10 6 ,

10
r and

2 1.9 x 99 l.Ii~ x 1O~~2 
(~~
.i’ )( 103) 2

Comparing the two examples, we can see how a proper choice

of the block size would save us work with the same limitation on

I;
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storage space. In general, a good choice of p depends on the singular
value spectrum, the number of singular values desired, and the avail-
ability of memory. If there is a cluster of p largest singular

values, it usually pays to choose p = p. Often, the knowledge is not
available and a satisfactory rule appears to be choosing p equal to

the number of singular values we want to compute. Our tests [11]

show that the reorthogonalization of each recently computed 
~~

with respect to all the previous P
a
’s (Q.’s), j < i, is necessary for

accurate results. We therefore must keep all the P.’s and Q.’s

in memory, effectively bounding the value p x s.

-
~~ An algorithm will soon be published [11].
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