

 The Naval Ship Research and Development Center is a U.S. Navy center for laboratory effort directed at achieving improved sea and air vehiclos. It was formed in March 1967 by merging the David Taylor Model Basin at Carderock, Maryland and the Marine Engineering Laboratory at Annapolis, Maryland.

HBIOLASS

Naval Ship Research and Development Center Washington, D. C. 20007

UNCLASSIFIED

ATIS DOG UFASHOD JUSTIE JOST	While Section Saft Section
Tit	to on fo
A	AVAIL. and or SPECIAL

**

Sala Santa Sala

というない

A REAL PROPERTY A

S. E. ware		1. 12		
Jved I	or F	non	c re	lease
	oved is istribut	oved for p istribution	oved for public istribution Unli	oved for public re istribution Unlimite

• •

時間の時間にはないたち、彼自己などので、「ない」は、日

States and

in the second

		UNCLASSIFIED
	SYMBOLS	
с _р	drag coefficient $\begin{pmatrix} \frac{drag}{q} \\ s_{w} \end{pmatrix}$	
с _г	lift coefficient $\left(\frac{1ift}{q S_w}\right)$	
c	pitching moment coefficient	$\left(\frac{\text{pitching moment}}{q S_{W}^{c}} \right)$
č	aircraft mean aerodynamic cho	ord, in inches
ΔD	full-scale incremental drag, drag of clean aircraft and b extrapolated to full scale)	in pounds (difference between bomb mounted configurations,
м	free-stream Mach number	
P	free-stream dynamic pressure,	lb/ft ²
s _w	aircraft wing planform area	
	25° sweep - 2.05 ft	.2
	50° sweep - 2.11 ft	2

angle of attack, in deg

α

:.

:

and the second state of th

UNCLASSIFIED

i

NDW-NSRDC-5511/2

and the first finite of the second states of the second states and the

TABLE OF CONTENTS

· · · · · · · · · · · · · · · · · · ·	Page
SYMBOLS	i
SUMMARY	1
INTRODUCTION	2
MODELS	2
TESTS AND MEASUREMENTS	3
CORRECTIONS AND ACCURACY	3
RESULTS AND DISCUSSIONS	4
CONCLUSIONS	5
REFERENCES	6
LIST OF TABLES	
Table 1 - Configuration Description	7-9
LIST OF ILLUSIRATIONS	10
Figure 1 - Geometric Details of the High Wing 50° Model	10
Figure 2 - Geometric Details of the Low Wing 25 Model	11
Figure 3 - Area Distribution of Models and Stores	12
Figure 4 - Geometric Characteristics of Mk 82 and Mk 81 Bombs With Snakeye Tails	13
Figure 5 - Typical Store Configurations	14
Figure 6 - Geometric Details of Wing Mounted Store Configuration and Ramp Type Shield	15
Figure 7 - Longitudinal Characteristics of Wing Body Models	16-23
Figure 8 - Effect of Wing Position and Sweep on Drag of Basic Airplane	24
Figure 9 - Effect of Wing Position and Sweep on Incremental Drag Due to 9 Mk 82 or 12 Mk 81 Bombs	24
Figure 10 - Effect of Spacing on Incremental Drag	25
Figure 11 - Effect of Staggering on Incremental Drag	25
Figure 12 - Effect of Shield on Incremental Drag	26
Figure 13 - Incremental Drag of Wing Mounted Multiple Ejection Racks With Bombs	26

ii

CONFIDENTIAL

1月11日1日1日1月1月1

:

• •

Aero Report 1141

:.

-

Low Port Barrier Contraction

の見しばいの子

September 1967

GEOMETRIC EFFECTS ON FUSELAGE MOUNTED STORE DRAG

の一部には東京にはないに見たいに見たる

by

John F. Talbot and Jonah Ottensoser

SUMMARY

The second in a series of scale-model wind tunnel tests to determine the effect of fuselage mounted stores on the drag of an attack aircraft is reported. Variations of wing position, wing sweep, and store loadings were investigated over an angle of attack range of -2° to 6° and a Mach number range of 0.60 to 0.90.

In general, the high wing configuration had lower incremental drag than the low wing and variation of wing sweep had negligible effect. Increasing the longitudinal spacing between stores tended to increase the incremental drag due to the stores. Staggering the store load, increasing the lateral spacing, or shielding the forward row of bombs had little effect on the incremental drag. The magnitude of the incremental drag from fuselage mounted stores does not appear to be hidden when it is measured on a high drag airplane model, nor does it appear to be magnified when measured on a low drag airplane model.

> CONFIDENTIAL NDW-NSRDC-5511/2

A STATE OF THE STA

INTRODUCTION

An investigation into the effect of fuselage mounted stores on the drag of aircraft cruising at high subsonic speeds was initiated at the Naval Ship Research and Development Center early in 1966. An earlier report (Keference 1) describes the results of a preliminary investigation of this problem and suggested areas of more detailed testing. Some of these areas have been explored and the results are presented in this report.

A basic body was tested with a high and low wing. Both the high and low wings were run with 25° and 50° sweeps. Various store loadings and positions were investigated, using Mk 81 and Mk 82 bombs with Snakeye tails. In addition, a ramp type shield forward of the stores was investigated. Tests were conducted at Mach numbers of 0.60, 0.70, 0.80, 0.85, and 0.90.

This study was initiated in response to widespread interest in possible practical application of fuselage mounted store suspension and launch systems, such as outlined in Reference 2.

MODELS

The wing-body model consists of a rectangular cross-section fuselage rounded at the corners and faired to a point at the nose. The wing has an NACA 64A008 airfoil section with a 25° or 50° leading edge sweep. Details of the wing-body configurations are shown in Figures 1 and 2. A plot of the area distributions is shown in Figure 3.

The external stores tested were 0.10-scale models of the Mx 81 and Mk 82 bombs with Snakeye tails. Figure 4 gives pertinent information about timese bombs; and Figure 5 shows some of the configurations tested. Configuration designations are noted in Table 1. The wing mounted configurations were installed on pylons similar to those described in Reference 3 and suspended from the mid-semispan wing station. Details of

-2-

CONFIDENTIAL

these configurations, along with a description of the ramp type shield, are shown in Figure 6. In all cases, stores were mounted parallel to the wing-body center line.

TESTS AND MEASUREMENTS

The tests were conducted in the NSRDC 7- by 10-Foot Transonic Wird Tunnel, described in detail in Reference 4, at a tunnel stagnation pressure of one atmosphere corresponding to a Reynolds number of approximately 3×10^{6} per foot.

All aircraft models were mounted on a cantilevered sting support system through a six component internal strain gage balance. Data were recorded and reduced to coefficient form, but only the three longitudinal components are presented.

Four basic aircraft models were tested; high wing with 50° wing sweep (HW 50°), low wing with 50° wing sweep (LW 50°), high wing with 25° wing sweep (HW 25°), and low wing with 25° wing sweep (LW 25°). Configurations on these four basic models included full and partial loads of MK 81 and MK 82 bombs tangentially mounted under the fuselage and MK 81 bombs on multiple ejection racks (MER) pylon mounted under the wings.

The LW 25° model was used to determine the effect of fuselage mounted stores in various position and spacing arrangements. Also, a wedge shaped shield located forward of the first row of stores was tested on this model.

Test conditions included Mach numbers of 0.60, 0.70, 0.80, 0.85, and 0.90 and an angle of attack range of -2° to 6° . Transition was fixed on the aircraft wing at 10 percent of the chord and on the stores and fuselage at 10 percent of their lengths with 1/8-inch-wide strips of number 90 carborundum grit.

CORRECTIONS AND ACCURACY

Angles of attack have been corrected for deflection of the model support system and balance and are within $\pm 0.1^{\circ}$. Lift, drag, and pitching moment coefficients have an accuracy of ± 0.004 , ± 0.0005 , and ± 0.001 , respectively, at Mach number 0.80. The Mach numbers reported are within

-3-

CONFIDENTIAL NDW-NSRDC-5

±0.003; and since the blockage of the model is less than 0.5 percent of the test section area, no corrections have been made for well effects. Drag data have been corrected for base pressure effects on the aircraft model.

RESULTS AND DISCUSSIONS

The study of incremental drag from fuselage mounted stores discussed initially in Reference 1 has continued and some of the more important results of the second phase are presented herein.

The configurations investigated include variation of aircraft wing position; aircraft wing sweep; and number, type, and position of bomb load.

The longitudinal characteristics of the major configurations investigated are shown in Figure 7. The majority of the results of the tests of partial store loads are not presented or discussed here but will be covered in subsequent papers. For information purposes, however, the list in Table 1 contains all of the configurations tested during this phase.

The aircraft alone configuration, with the wing leading edge swept at 25° has a drag rise starting at a Mach number of about 0.8, but when the wing is swept to 50° this drag rise is delayed to a Mach number in excess of 0.9 (Figure 8). In view of this, the 50° wing configurations can be considered to represent an aerodynamically clean vehicle when compared with the 25° configurations (an observation subported by a comparison of the area distribution of models with both wing sweeps as shown in Figure 3). With this in mind and an examination of Figure 9, it would appear reasonable to state that the wagnitude of the incremental drag from the various store configurations is not appreciably masked by the high drag configuration.

A comparison of incremental drag due to nine Mk 82 bombs on the simulated high and low wing aircraft (Figure 9) indicates that the high wing aircraft would pay less of a drag penalty. When configured with twelve Mk 81 bombs, the drag penalty for both wing positions is about the same though the incremental drag for the twelve Mk 81 bombs is less

-4-

CONFIDENTIAL

UNCLASSIFIED

the first factor was the second state of the s

than that for nine Mc 82 bombs. From this same figure, it appears that effect of wing sweep on incremental drag follows no consistent pattern.

The effect of bomb longitudinal spacing was investigated to a limited extent and found to be detrimental. The three rows of Mk 81 bombs were separated such that the space between nose and tail of the bombs was 24 percent of the length of the bomb compared to the standard spacing of 0.3 percent. Results of this spacing are compared with the standard array in Figure 10 and show an increase in incremental drag. Conversely, lateral spacing of bombs had little effect. The columns of Mk 82 bombs were separated laterally such that the space between bombs was 30 percent of the bomb diameter as opposed to a standard spacing of 2.3 percent. This array is compared with the standard array in Figure 10 and shows little change in incremental drag.

Staggering the center of gravity position of bombs from the standard pattern was also investigated. The two columns of Mk 81 bombs nearest the aircraft center line were moved forward to form a V pattern. The incremental drag from this array differed little from that of standard array as shown in Figure 11. The aircraft model fuselage was not long enough to stagger a full load of nine Mk 82 bombs, so a comparison of six bombs in standard and staggered array is given in Figure 11. Again the incremental drag from the two configurations is approximately equivalent.

Intuitively, it would appear that a shield forward of the front row of bombs would improve the flow characteristics around the bomb array and thereby decrease the drag penalty. The results of this investigation show, in Figure 12, that there is no significant reduction in incremental drag with the shield installed.

For comparative purposes the various wing body configurations were tested with an MER loaded with six Mk 81 bombs, pylon mounted under each wing. The incremental drag from these wing mounted stores is three to four times that from a comparable load of twelve Mk 81 bombs carried tangent to the fuselage undersurface as shown in Figure 13.

CONCLUSIONS

Based on the data obtained during the series of tests the following conclusions are drawn:

-5-

UNCLASSIFIED C-2622

UNCLASSIFIED

and the Product of the head of the second seco

1. The magnitude of the incremental drag from fuselage mounted stores is not greatly affected by drag of the basic aircraft configuration.

2. A high wing airplane would pay a lesser drag penalty than a low wing airplane when carrying external stores under the fuselage.

3. The minimum drag increment is obtained when the stores are as close together as possible.

Aerodynamics Laboratory Naval Ship Research and Development Center Washington, D. C. 20007 September 1967

UNCLASSIFIED

C-2622

Table 1

;

٩,

ないというというない

and a state of the state of the state of the

			Con	figuration	Descript	tion		
	Wing, Sweep, and	Type of		Number of	Stores		Graphs in	
Configuration	Position	Store	Total	Forward	Center	Aft	Figure 7	Remarks
HWSO	50° Hi	1	0	0	0	0	(a)	
HW50 3-82		Mk 82	Э	3	0	0	NP	
HW50 6-82			9	3	e	c	2N N	
HW50 9-82		-	6	°.	3	e	(p)	
HW:50 4-81		Mk 81	4	4	0	0	NP	
HW50 8-81			8	4	4	0	NP	
HW50 12-81			12	4	4	4	(c)	
HW50 MER	•	-	12	0	0	•	(m)	See Note *3
HW25	250	• 1	0	0	0	•	(P)	
HW25 3-82		Mk 82	З	£.	0	0	NP	
HW25 6-82			9	3	e	•	NP	
HW25 9-82		-	6	3	3	e	(e)	
HW25 4-81		Mk 81	4	4	0	0	NP	
HW25 8-81		_	8	4	4	0	NP	
HW25 12-81			12	4	4	4	(f)	
HW25 MER			12	0	•	0	(u)	See Note 3
LW25	Γo	• •	0	0	0	0	(g)	
LW25 MER		Mk 81	12	0	•	•	(0)	See Note 3
LW25 3-82		Mk 82	3	3	0	0	NP	
LW25 6-82			9	3	3	0	(8)	
LW25 9-82		-	6	3	3	e	(H)	

-7-

CONFIDENTIAL NDW-NSRDC-5511/2

		Remarks				See Note 3								Standard + see Note 3	Longitudinal spacing	-					Longitudinal spacing	-	-
	Graphs	Figure 7	NP	NP	(1)	(b)	6	NP	NP	(k)	NP	NP	(1)	NP	(b)	NP							•
		Aft	0	0	4	0	0	0	0	e	0	0	4	4	4	0	0	0	0	1	0	0	1
ontinued)	Stores	Center	0	4	4	0	0	0	Э	3	0	4	4	4	4	4	0	0	1	1	0	1	1
Cable 1 (C	Number of	l'orward	4	4	4	0	0	°.	З	. 3	4	4	4	4	4	4	4	1	1	1	1	1	1
		Total	4	8	12	12	0	3	9	6	4	8	12	24	12	80	4	1	2	3	1	3	m
	Type of	Store	Mk 81			*	:	Mk 82		+	Mk 81												•
	Wing, Sweep. and	Position	25 ⁰ Lo			50 °				-			-	25°									+
		Configuration	Lii25 4-81	LW25 8-81	LW25 12-81	LW50 MER	LW50	LW50 3-82	LW50 6-82	LW50 9-82	LW50 4-81	LW50 8-81	LW50 12-81	LW25 12-81 MBR	LW25 12-81SP	LW25 8-81 SP	LW25 4-81	LW25 1-81	LW25 2-81	LW25 3-81	LW25 1-81 SP	LW25 2-81 SP	LW25 3-81 SP
		0											-8-	_			1	CO		10	EN	The second	AL

-

a barre to a ball and the barre and and a strategy with a shirt and in

.:

۰.

and the states of the

figuration 25 4-81 25 4-81 25 12-81 25 1-82 25 1-82 25 3-82 25 3-82 25 3-82 SP 25 9-82 SP 25 9-82 MER 25 9-82 SF 25 9-82 ST 25 9-82 SH	Wing, aveep, ar Sweep, ar 25° Lo	MK 81,1	e B2 B2 B2 B2	Total 4 4 1 1 2 1 2 2 2 2 2 2 2 3 3 6 6 6 6 6 6 6 6 6 6 6	Number of Forward 4 4 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3	C C C C C C C C C C C C C C C C C C C	9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Graphs In NP NP NP (r) (r) (r) (r) (r) (u) (v) NP	Remarks Staggered " " " " " " " " " " " " " " " " " "
25 3-82 SH				m 0	m 0	0 0	• •	NP	" " Shield alone

-9-

CONFIDENTIAL

Note 2: Note 3:

Data for runs marked "NP" are not presented in this report but will be presented in a later report.

Six MX81 on each of two wing mounted MER's.

Note 1: Unless indicated otherwise, all stores are tangent mounted on the fuselage in a standard strange-ment as described in Figure 5.

-16-

CONFIDENTIAL

and the second se

The Bar

たいのない

「「「「「「「

5

いたい、大学になって

(Drag data presented at C = 0) Figure 9 - Effect of Wing Position and Sweep on Incremental Drag Due to 9 Mk82 or 12 Mk81 Bombs

-24-

A STATE A STATE AND A STATE AN

CONFIDENTIAL

OTVI I

harbella

Ejection Racks with 6 Mk81 Bombs on England

UNCLASSIFIED

A CALL AND A

(Drag data presented at $C_{I} = 0$)

UNCLASSIFIED PRECEDING PAGE BLANK -- NOT FILMED CONFIDENTIAL Security Classification DOCUMENT CONTROL DATA - R & D (Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified) 20. REPORT SECURITY CLASSIFICATION ORIGINAT . : ACTIVITY (Corporate author) Aerodynamics Laboratory Naval Ship Research and Development Center 2b. GROUI 20007 Washington, D. C. REFORT TITLE CEOMETRIC EFFECTS ON FUSELAGE MOUNTED STORE DRAG, (U) DE*CRIPTIVE NOTES (Type of report and inclusive dates) AUTHOR(5) (First name, middle initial, last name) development pt. earch and 0 John F. Talbot and Jonah Ottensoser A. TOTAL NO. OF PAGES Th. NO. OF REPORT DA REFS September 1967 29 4 DTNS F012-01-06 AIRTASK A 32 530001/440-1 . PROJECT NO C-2622 Report TASK 10103 HER REPORT NO(S) (Any other n mbers that may be assigned NSEDC 646 1141 DISTRIB In add nte wh is document and mus t be me of eac he agenci val ommander, Naval Air Systems Command (53 ADI SPONSORING Commander Naval Air Systems Command Department of the Navy 0 Washington, D. C. 20360 The second in a series of scale-model wind tunnel tests to determine the effect of fuselage mounted stores on the drag of an attack aircraft is reported. Variations of wing position, wing sweep, and store loadings were investigated over an angle of attack range of -2° to 6° and a Mach number range of 0.60 to 0.90. In general, the high wing configuration had lower incremental drag than the low wing and variation of wing sweep had negligible effect. Increasing the longitudinal spacing between stores tended to increase the incremental drag due to the stores. Staggering the store load, increasing the lateral spacing, or shielding the forward row of bombs had little effect on the incremental drag. The magnitude of the incremental drag from fuselage mounted stores does not appear to be hidden when it is measured on a high drag airplane model, nor does it appear to be magnified when measured on a low drag airplane model. (U) UNCLASSIFIED DD . FORM .. 1473 (PAGE 1) Security Classification S/N 0101-807-6801 如此在于"自己的"中的影响了用的影 387695 K

AP .IN

三部の

ROLE	WT	ROLE	WT	ROLE	
		1.1.1.	23.4	1.55	2.74
		1.14			
1000					
					-
				1	
			-		
	17.00	12.12.44	1999	Server.	(med)
		1.5	1000	1.1.1	142.5
1					
					1000
			1	1	
			ne	1.1	
	IMC	LA	JIC	1-1	
	1				
		L			
	Security	Classif	ication		
			UNDLAS	INCLASSIC	

and other trade and the second

and the four sale of the second se

14

FIED	UNCLASSI	0	UNCLASSIFIE
HASC Proj FOIZ-OLOG	lateral spacing, or shielding the forward row of bombe had little effect on the incremental drag. (U)	WASC Proj PO.2-0106 UNCLASS D' IID CARD	lateral spacing, or shieldir the foreard row of bombs had little effect on t. incremental drag. (U)
Talbot, John 7. Ottersoser, Jonah NGRDC Aero Rpt 1141 NGRDC Aero Test C-220	creasing the longitudinal spacing between stores tended to increase the incremental drag due to the stores. Staggering the store load, increasing the	Talbot, Johr F. Ottensoser, Jonah NGROC Arro Fut 1141 NSROC Arro Test C-220	creasing the longitudinal spacing between stores tended to increase the incremental drag due to the stores. Staggering the store load, increasing the
WIND TUNNEL TESTS, TRAN	had lover incremental and than the low wing and variation of wing sweep had neglicible effect. In-	WENT TUNNEL TESTS, TRANSON	bad lower incremental drog than the low wing and variation of wing aveep had negligible effect. In-
MACH NO. EFFECT	range of -2° to 6° and a Mach nurber range of 0.50 to 0.90. In general, the high wing configuration	MACH NO. ETFICT EXTERNAL STOLE SHIELDS	range of -2° to 6° and a Mach number range of 0.00 to 0.90. In general, the high wing configuration
ANGLE OF ATTACK	Variations of wing yestion, wing sweep, and store loadings were investigated over an angle of attack	BOMB RACKS, MECTOR (MER) ANGLE OF ATTACK	lariations of wing position, wing sweep, and source loadings were investigated over an angle of attack
BOMBS (MK. 52) DRAG BOMBS (SNAKEYE) DRAG	stores on the drag of an attack aircraft is reported.	BONBS (MK. 52 DKAG BONBS (SNAKE) DRAG	stores on the drag of an attack aircraft is reported.
HINGS, SWEPT BACK-DRAG BONES (NK. 81)DRAG	The second in a series of scale-model wind tunnel tests to determine the effect of fuselage mounted	BORBS (NK. 21 DRAG	The second in a series of gcale-model wind tunnel tests to determine the effect of fuselage mounted
MONOPLANES, HIGH-WING-DH	TOTOM GP. 3	MONOPLANES, E. GH-VING-DHAG	LULOSI REPORT GP. 3
EXTENDE STORES-	646-220) (AIRTAGK A 32 530001/440-1/F012-01-06 Task	EXTERNAL STOLES- EFFECT OF I LACRAFT	646-220) (AIRTACK A 32 530001/440-1/F012-01-06 Task
DRAG, DICHER BUTAL	Sep 1967. 11,27p. incl. illus. 4 refs. (Aero-	EXTERNAL STOLES-LOCATION	Sep 1967. 11,27p. incl. illum. 4 refs. (Aero-
EXTERIAL STORES (FUSELAD	(U). by John F. Talbot and Jonah Ottensoger. Wash.	EXTERNAL STOFES(FUSELAGE)	GEUMERAIC REFECTS ON FUSELAGE MOUNTED STORE DEAG (U). by John F. Talbot and Jonah Ottensoser. Mash.
MERGE-DICREMENTAL MERG-BODY CONBINATIS-D A LEPLANES MELL DALESN-D	Nevel Ship Research & Development Center. Rpt. C-2622	MING-BODY XIBINATHS-INAC	Maval Ship Pessarch & Development Center. Rpt. C-2622
UNCLASSIFILD CARD	bombs had little effect on the incremental drag. (u)	UNCLASSIFILD CARD	pends had little effect on the incremental drag. (u)
NASC Proj FOL2-0105	stores, suggering, or shielding the forward row of	NASC Proj 1'012-3106	lateral spacing, or shielding the forward row of
NSRDC Aero Rpt 1141	tended to increase the incremental drag due to the	KSRDC Aero Rit 1141	tended to increase the incremental drag due to the
Talbot, John 7.	Variation of wing sweep had negligible elicet. in- creasing the longitudinal spacing between stores	Talbot, John F.	variation of wing aweep had negligible elicet. In- creasing the longitudinal spacing between stores
WIND TUNNEL TESTS, TRANS	had lover incremental drag than the low ving and	WIND TUNNEL LESTS, TRANSON	had lower incremental drag than the low wing and
MACH NO. ZFECT	range of -2° to 5° and a Mach number range of 0.50	MACH NO. MERACT	range of -2° to 0° and a Mach number range of 0.00 he 0.90 he 0.90. In ceneral, the high wing configuration
BOHB RACKS, ENECTOR LAD	lociings were investigated over an angle of attack	NIGLE OF ALTA 3K	loadings were investigated over an angle of attack
BOHBS (SNKEYE) DRAG	stores on the drag of an attack aircraft is reported.	BOMBS (SNANEUS) DRAG	stores on the drag of an attack aircraft is reported. Variations of wing position, wing succe, and store
BORBS (NY. 81)-DRAG	The second in a series of scale-mode. And there tests to determine the effect of fuselage mounted	DAAC (18. XM) SEVER	the second in a series of grate-model wind tunned tests to determine the effect of fuselage mounted
MONOPLANES, LOW-WING-DR	Contraction of the second seco	MONOPLANES, LOV-WINGDHAG	E . 40
EXTERNAL STORES- EFFECT OF AIRCRAFT	646-220) (AIRTASK A 32 53001/140-1/F012-01-06 Task	EXTERNAL STORES-	646-220) (AIRTASK A 32 530001/440-1/F012-01-06 Task
ECTERNAL STORES- LOCATI	Sep 1967. 11.277. incl. illus. 4 refs. (Aero-	EXTERNAL STOR 25-LOCATION	Sep 1967. 11,27p. incl. illus. 4 refs. (Aero-
EXTERNAL STORES (FUSELAG	(U), by John F. Talbot and Jonah Ottensoser. Wash.,	EXTERNAL STORES(FUSELAGE)	GEOMERATIC EFFECTS ON FUSELAGE MOUNTED STOKE DIAG (U), by John F. Talbot and Jonah Ottensoser. Mash.,
A THG-BODT CURATANA THE TANKING	Naval Ship Research & Development Center. Rpt. C-2622	DRAGINCREMENTAL WING-BODY COMBINATINS-DRAG A IRPLANES , HULL: IMISSIN-DRAG	Naval Ship Research & Development Center. Rpt. C-2622

ete 2 1

:

The familie state

176-92.41

and the first of the second state of the secon