_ " AD=A037 201

UNCLASSIFIED

WHARTON SCHOOL OF FINANCE AND COMMERCE PHILADELPHIA P=-=ETC F/6 9/2
AN ALERTING SYSTEM FOR A DATABASE MANAGEMENT SYSTEM. (V)
DEC 76 R CORTES NO0014=75=C=0462

77=01=06 NL

e Ry ey

o
A

i

4

'.‘4

ADAO37201

AN ALERTING SYSTEM FOR A DATABASE ‘
MANAGEMENT SYSTEM

Ricardo Cortes

77-01-06

A thesis submitted to the faculty of the
Moore School of Electrical Engineering in
partial fulfillment of the requirements
for the degree of Master of Science in
Engineering (for graduate work in Computer
and Information Sciences)

University of Pennsylvania

Philadelphia, Pennsylvania

December 1976

COPY AVALLAIE TO BD2 D0FS RgT

18 » o
PERMIT | L:Lh' LEGIBLE PRGI L)f'”ﬁ

e };w; >

-
.

0 g
N L

%%

ik
N : oa

o

éE;ﬂ An Alerting System for a Database

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

. REP U

/) 11-91-g6

2. GOVT ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBER

. TITLE (and Subtitle)

¥ i €

Management System ,

S, TYPE OF REP D CQVEKED
2)‘ éinal "}’Cptui

6. PERFORMING ORG. REPORT NUMBER

77-01-06

AUTHOR(s)

Ricardo/(‘ortes ,-f /J'

8. CONTRACT OR GRANT NUMBER(s)

NGOP1 4-75-C-462 | '

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Decision Sciences Department®
University of PA/Wharton School
Philadelphia, PA 19104

ELEMENT, PROJECT, TASK
UNIT NUMDERS

Technical report

11. CONTROLLING OFFICE NAME AND ADDRESS
Office of Naval Research

12. REPORT DATE

12/76

Information System
Arlington, Virginia 22217

13. NUMBER OF PAGES

4. ITORING AGENCY NAME & ADDR 151:1 1{lggent from ntrolling Office)
e P

1S. SECURITY CL ASS. (of this roport)

Unclassified

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thls Report)

Unlimited (DSt TTIoT S T R
Appicyed 2
Di;::.' -;;:'

7. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, ll dlllaronl from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae side If necessary and identify by block number)

Alerting

Database management
DBTG

%

NSTRACT (Contlnue on reverse slde If necessary and identify by block number)

which provides the end users with the facilities

This thesis describes an alerting system for a Database Management System

fashion the changes being made on the information, in order to perform
some predetermined actions whenever certain conditions become true. The
work includes the description of a simplified implementation of an
alerting system made on the Wharton Alerting Network Database (WAND)
which gives the foundation for a full implementation on a properly shared

database system of the kind described by CODASYL DATABASE TASK_GROUP in 1tsi

to monitor in a dynamic

DD 538", 1473

EDITION OF | NOV 65 |S OBSOLETE
S/N 0102-014- 6601 |

¥ April 71 report.

E O 8 ,757 SECURITY CLASSIFICATION OF THIS-PAGE (When Data Bntered)

r

University of Pennsylvania
THE MOORE SCHOOL OF ELECTRICAL ENGINEERING

AN ALERTING SYSTEM FOR A DATABASB'
MANAGEMENT SYSTEM

L SR

 F g

Abstract:
Due to the high volatility of larqe shared
databases, the database users are interested in
monitoring certain conditions that may be created as the

i3 information is moudified by undating proqrams.

This thesis describes an alerting system for a
Database Managemet System, which provides the end users
with the facilities to monitor in a dynamic fashion the
2 changes being made on the information, in order to
perform some oredetermined actions whenever certain
conditions becoume true. The work includes the
descriotion of a simplified implementation of an alerting

system made on the Wharton Alerting Network Database

- e

(WAND) which gives the foundation for a full

implementation on a »oroperly shared database svstem of

} o Ak

the kind described by CODASYL DATABASE TASK GROUP in its

-
.

anril 71 Report (DBTG systems). WAND is an

S 3

imolementation of a DBTG system.

Bk 4

e

Master of Science in Engineerinag

(for graduate work in Computer and Information Sciences)

e pron
S g et

December 1976

Ricardo Curtes ~~— Or. Hloward "Lee Murqan
Author Faculty Sunervisor

Fraaass s

v Ry : .
T S NG WA | e

*
>

>

-

Ml istiin. Ll et

T
g
B -

Acknowledgments:

The author wishes to thank Dr. Peter Buneman
suggested the subject of this work and whose advise

suvervision has been mostL helpful,

Special thanks are due to Dr. Noah S. Prvwes
Dr. Howard Moraan for their encouraqgement

invaluable help.

Finally, the help of Dr. Rubert Gerritsen,
Ribeiro, Ruth Zowader, and David Root in
understanding and use of the WAND system and

DEC-System=10 is fully avpreciated.

Ricardo Cortes,

who

and

and

and

Jim
the

the

e
Al s crs

P

2 P rIm e,
r i

PRAREY. AP

s ¥

w
A
-

i i

CHAPTER 1.
The concept of alerters should become increasingly

important as Database technology continues to grow.

The changes being made by programs in the values
of items in the database may cause the creation of
certain conditions in which one or more users are
interested, so that particular actions associated to

such conditions are performed.

Conceptually, an alerter can be described as a
program that continuously monitors the contents of the
database, in order to take action whenever a previously

specified condition becomes true.

For example, in a database containing information
about the checking accounts of the clients of a bank,
an alerter could be wused to monitor the account
balances in order to print a message for the manager of
a branch when one of the client's balance falls below
200 dollars. In this example, the alerting condition
is for the checking account balance to be less than 200
and the associated program prints a messaqe with the

data of the corresnonding account.

o 45

R b s o i
Franacl dwn

w e, '

'”n.'. L‘Lce.'..’..v,

5 : Page 2

An alerting system for a database should provide
the end wuser with the facilities to specify alerters
and place them in the database. By specifying an
alerter we mean the definition, in a language for that
special purpose, of the conditions to be monitored and
the corresponding actions to be taken whenever such
conditions become true. It should also provide with
the mechanism to monitor changes in the database and to
trigger the procedures associated to those conditions

as defined by the database alerters.

Since the definition of alerters, including the
description of alerting conditions and associated
programs has to be stored in the database, we have to
extend the definition of such database to accept this

additional information.

The wide acceptance and use of database management
systems have permitted a fast development and constant
improvement of such systems in recent years:; however,
no database management system provides an alerting

system to meet the needs of a growing number of users.

Although some programming languages provide the
user with the facility to monitor changes in the
information contained in the database (for example, the

'‘ON' statement in PL1 and the 'USE' condition in ASAP

i bkl st ik

b
B e Y T

- "

WP o 5

-
PORSE,

Tw—

R RS TN

Paqge 3

and some COBOLS), they do not meet user's needs, since
the definition of alerters is made in the user's

programs and it is not stored in the database.

Howard Morgan [l] introduced the conceot of
alerters in the context of Management Information
Systems. Morgan describes alerters as interrupts used
to signal to the supervisor the occurrence of
conditions which require a proqgram to be executed; the
interrupt aqenerating conditions are Boolean conditions

on .variables or items in the database.

Suome svecial purpose lanquages 1like PLANNER (2]
and CONNIVER also have incorporated similar concents;
this type of lanquage permit the manipulation of rich
databases, but they adare 1limited to deal with small
databhases and are not designed to handle hierarchical

or network data structures,

Another use of a concept similar Lo alerter has
been imnlemented as DEMONS in the system LDEMON [3], a
system for creating and uodating simpmle databases and
monitoring changes in ﬁhe data. LDEMON, however, is
not a oroduction system, since it is written in LISP,

an interpretive lanquaqe, and it was mainly proqrammed

for experimental nurpnoses,

— ' = y o - g " o ™ P G lin g T R R SRR & w

Page 4

f In the present work, we intend to provide a basis
for the development of an alerting system for a
database management system oriented to the manipulation
of large, network structured files; our main concern
3 is the kind of DBMS as described by CODASYL's DATABASE

TASK GROUP in its april 1971 report [4].

¥ These systems are called DBTG systems and are

intended to be programmed on a host language such as
) COBOL or FORTRAN, DBTG systems consist of a Data i
X Description Language (DDL), used for describing the

§J database, and a Data Manipulation Language (DML), which

SRR

acts as an interface between the user's programs and

R R 3
b

oy, S8 i
e

the database.

A DBTG system represents database information as a

4
ol

network in which the nodes are individual record

5
x|
5; occurrences dand the record occurrence is the unit of
%
gi access. The relationship between record types is
45 called a set type, which has one record type designated

$ 4
4

as its owner and one or more record types defined as

-

the set members. A network database permits the |

representation of many-to-many correspondences among

records in a direct manner by the use of a confluent

hierarchy in which the two related records are the

owners of two different set types, of which a third

e e

- |
<

Page 5
record type'(called the 'base' record) is a member.

The smallest unit of named data in DBTG is called
a data-item, and an occurrence of a data-item is a

representation of its value.

A partial implementation of a DBTG system was made
at the Wharton School [5], to experiment with database
alerting, as well as interactive schema management,

.

multiuser sharing, and easy restructuring [6].
[}
The Wharton Alerting Network Database (WAND? is

implemented in FORTRAN IV along with a small number of
MACRO assembly language subroutines on the

DECSYSTEM-10.

In the next chapter we describe a simplified
alerting system that was implemented on WAND in order
to investigate about some problems. involved in full

implementations of alerting systems on DBTG.

ST — i

i

1,

B By

¢

&
¢

Page 6

CHAPTER II.,

In order to experiment with the implementation of
alerters into a DBTG system, WAND has been provided

with a simplified version of an alerting system.

The alerting system described in this chapter
permits the operation of simple alerters in which the
alerting condition as well as the associated action,
are limited; alerters are defined to monitor one or
more items within the record types described in the
schema, so that a change made to the value of any of
such items, will trigger a program which must create
record occurrences of a special record tyve, in order
to keep in the database the information contained in
the modified record both, before and after the

modification has been made.

In this.simplified alerting system, the evaluation
of conditions is not supported, but it is the
responsibility of the user to write programs which have
to read the information kept by the system and perform

the desired evaluations,

This system has been designed in such a way that
it provides the foundation for the implementation of a

more complete system as described in the next chapter,

¢ s bl ol

T o M

dotllinin i

et o ey

LA Y

Page 7

in which the alerting condition can take the form of a
logical expression involving the values of current item

names as well as constant values.

As it will be seen in the next chapter, the
conditions in which we are interested should be
evaluated by only analyzing the information in the
record which 1is object of a modification before and

after such modification is performed.

The alerting system should permit the dynamic
change of the conditions being monitored; therefore,
those conditions which are true before they are
declared in the database, shéuld not be considered in
the evaluation. Similarly, if a record is modified and
a given alerting condition was true before the
modification 1is made, the alerter should not be
triggered even though the condition is also true after

the modification.

For these reasons it is necessary to analyze the
old and the new information in the record being
modified, so that an alerter is not activated when the

condition holds for the o0ld version of the record.

i

T e e,

-
2% .a

-

% 2ol
T e

v

2 e D

Page 8

For example, if an alerting coniition is described
as BALANCE LESS THAN 200, and a program makes a
modification to this item in a record that has the
value of 180 to the value of 160, then the associated
action of printing a message that the balance for this
particular record has fallen below 200, was made when
this balance became 180 and therefore it should not be

performed again.

This implemenﬁation provides both versions of the
record being monitored by alerters, so that in a
further development of the system, they can be the
input of a processor which should do the evaluation of

the alerting condition.

Similarly, the result of this evaluation might be
the 1input for a second processor which should retrieve
and interpret the description of the program associated
to the alerting condition, and whose execution should

be triggered as the condition becomes true.

Because of the great connection that exists
between the way the alerting system is implemented and
the way the database is shared, some differences may
arise when doing a more complete implementation of the
alerting system. However, it is imoortant to note

that, althouah WAND does not support proper database

Page 9

sharing, the alerting system has been designed to
include some of the most important features that should
integrate any other implementation of alerting systems
for shared databases, with just minor differences as

needed.
Three programs integrate the alerting system:'

-FDPA (File Definition Processor for an Alerting
Database). This program, as WAND's FDP (see [5]),
processes the schema definition written in DDL, but it
accepts an additional <clause in the Schema-Entry, to
indicate that the database being defined is qoing to be
used for alerting. The complete WAND schema DDL

including the alerting clause is shown in Appendix B.

When the 'ALERTING DATABASE' clause 1is included,
the FDPA adds to the schema the definition of six
special records and six special sets, which are used by
the alerting system to store the information provided
by users in the definition of alerters, as well as that

generated by the system itself.

The special data structure is written in Data
Description Langquage in Appendix A, and ics use by the

system is described below.

b i

AR 2
-err
Thoa

Ve B

o
5 A e RN

Page 10

-INIALR (Initialize an Alerting Database). It is
necessary to run the INIALR program before alerters can
be defined into the database; this program reads the
schema to retrieve all the record names and item names
defined by the wuser and creates an occurrence of
special records REC and ITEM respectively for each of

the names found.

We will see later that the declaration of an
alerter makes use of the record occurrences created by
INIALR, as well as some occurrences of record types

USER and ALERTER which are created by the user.

-ALERT. This program is called by the MODIFY
routine everytime a change is made in the database by
this DML command. ALERT checks which items being
modified are monitored by alerters and for each of them
it creates two copies of the record, associated to the
ALERTER record. The first copy has the same
information the record had before the MODIFY routine
was called and the second copy is the same version of

the record as left in the database by this routine.

The special structure used by the alerting system
is represented in a graphical form by the Data
Structure diagram in figure 2.1. The boxes 1in that

diaqram represent record typves which are related with

Y"‘. ‘ : " @ —a—m

Page 11

each other by the named sets which are represented by

Arrows; a record type pointed by an arrow is the

member of the corresponding set type, whereas the box

from which the arrow departs shows that the record type

is the owner of that set.

USER
ijER~ALR
ALERTER REC
; ALR-LINK AnR-CCPY ﬂ:C‘COP)L[
cory TTEM

» ; y
b | TEM-LIN 44
3 fod
H LINK

s
)¢

n

FIGURE 2.4, THE DATA STRUCTURE USED By

THE ALERTING SYSTEM

Py
e LA 2

>

The record type USER is used to store the password

provided by the wuser to identify his own alerters.

Rt

Prior to the declaration of alerters by the user, he

has to create an occurrence of the USER record type.

Ty 5 AT I PR AR e

Page 12

The first step in the definition of an alerter
consists in creating an occurrence of the special
record type ALERTER containing the name of the alerter
as the CALC key. The previously created occurrence of
the record USER must be current when the ALERTER record
is created, so that they become related to each other

by the set type USER-ALR,

It should be noticed that any number of alerters
can be associated to one USER record; the latter is
used as the access to the ALERTER record and to the

information generated by the alerting systemn

At this point the user should 1link the alerter
record to the item types the alerter has to monitor;
this is done by creating an occurrence of the record
type LINK at a time the corresponding ALERTER and ITEM

records are current.

One occurrence of LINK has to be created for each
item type the alerter is to monitor and it is linked to
the alerter record by the set ALR-LINK and to the item
record by the set ITEM-LINK. This constitutes an
occurrence of a confluent hierarchy in which the record
types ALERTER and ITEM keep a many-to-many
relationship; LINK is the base record of the confluent

hierarchy. In this way we can declare alerters to

IR T USRI = V- NSRS TP

T

o -
1m0,

.
o
o

- P i

o

o

Page 13

monitor one or more item types and each item type can

be monitored by different alerters.

An example should be helpful to understand how an
alerter 1is declared in this system; in our example we
assume that the record type CLIENT was defined in the

schema containing two item types: CHKBAL and SAVBAL.

After running the INIALR program, the database
must contain an occurrence of the set type REC-ITEM
with two member occurrences hamed CHKBAL and SAVBAL
respectively. The owner of the set is an occurrence of
the record REC containing the name of record type
CLIENT as shown in fiqure 2.2. The box marked CLIENT
in the diagram is an occurrence of the record type REC
and CHCKBAL and SAVBAL are occurrences of the record
type ITEM which are stored 1in the database by the
program INIALR; the arrows represent next-pointers of

the set type REC-ITEM.

The following routine,-written in a hypothetical
language introduces the definition of an alerter into
the database; the user identification 1is 'JOHNSON',
the name of the alerter is 'LOWBAL' and it is to

monitor changes in the item type CHKBAL:

Page 14

$ REC
CLIENT

+ ITEM

CRCKBAL

l ITEM

SAVBAL

e

FIGURE R¢2: AN OCCURRENCE OF SET TYPE REC-ITEM

BEGIN

USER IS 'JOHNSON'
STORE USER
ALERTER IS LOWBAL
STORE ALERTER
ITEM IS CHKBAL
FIND ITEM

STORE LINK

END.

Notice that the last instruction in the example
stores an occurrence of the record type LINK under the
appropriate ALERTER and ITEM records, so that two new
occurrences of set types ITEM-LINK and ALR-LINK are

created as shown in figure 2.3.

Starting from an occurrence of the record type
ALERTER and via the associated LINK record occurrences,
all the items monitored by an alerter can be retrieved;
conversely, all the alerters monitoring a given item
can also be obtained by going through the list of LINK

records related to the item by the set ITEM~LINK.

ko

e,

. o

¥ g

» ﬂrr'v\v”,: F
. it o EL Y e Al e

, , Page 15

LOWBAL CHCKBAL

ALERTER ITEM

LINK

FIGURE 2.3. THE STRUCTURE CREATED BY THE
DEVINITICN oF AN ALERTER.
The alerting system, by using the information
provided in the declaration of alerters, can detect the
particular item types that are being monitored by

alerters.

The DML MODIFY routine, just before storing back
the modified record in the database, calls the proqgram
ALERT, which in turn detects which items in the record
have been changed in value. For those items, ALERT
finds the associated alerters, in order to create a
pair of copies of that record linked to the ALERTER

record occurrence by the set type ALR-COPY.

The record type COPY is used to store the pairs of
copies produced by the triqggered alerters; the first
copy of the record passed to the MODIFY routine,
contains the information in the record before the
modification, whilg the second copy contains the

modified information.

i

e : e Tr——— !"‘-W'-mm—w—-———-—-.m—“

Page 16

Both copies are related to the alerter record by

the set ALR-COPY; an occurrence of the set type

REC-COPY links these copies to the REC record, so that

idd

3 the wuser can identify the record type by going back to

the owner of this set and retrieving the record name.

e ! An example of the use of alerters in this system
43 is provided in Appendix C, including the description of

R the programs that evaluate the alerting conditions,

} As it can be seen from the description above, this
5 simplified alerting system leaves a great deal of work
¥ to the user program; the nature of the alerters

handled by the system is also oversimplified. However,

Ty

W g st
Faait s

it was intended to provide some insight on some

problems that can be encountered in implementing a more

complete alerting system for DBTG.

T

In the next chapoter we turn our attention to the

discussion of more complicated alerters that can be
handled by a full implementation of an alerting system;

we will also analyze the problem of a shared on line

. database system, in whose context an alerting system is

most useful.

i

W

et

Aoyl e A

<

£
A,
E
b
&
P
g

Page 17
CHAPTER III.

When we refer to an alerting system, we mean a
more complete system than that described 1in the
previous chapter, which is a simplification of this

concept.

An alerting system for a DBTG has been thought to
provide with the facilities for the end user to declare
more complicated alerters which should permit him to
monitor the creation of predetermined conditions in the
database as it is being modified by several programs

which share access to the information contained in it.

The concept of alerter surged from the need to
dynamically monitor the modifications being made to the
information contained in a database from several

terminals and at the same time.

For a database in which modifications are made in
a centralized manner it might be easy to find cheaner
ways to monitor the conditions created in the database

as a result of such modifications.

Similarly, when the conditions that have to be
monitored, as well as the associated actions are of a
fixed nature, it might be more convenient to include

them as part of the programs that introduce changes

> e

o

D

-

Page 18

into the database.

In a properly shared database, an alerting system
provides with the facilities to declare into the
database the conditions that should be monitored, and
such conditions can be constantly modified in
accordance to the changing needs of the alerting system

users.

Because of the high volatility of many databases
as that of an airline reservation system or a Stock
Exchange information system, in which hundreds of
transactions are made in Jjust few minutes from many
different sources, it is possible for the conditions in
which one 1is interested, to change along with the
environment to which the system is referred (e.q. to
make decisions about rescheduling certain flights or to

change the composition of a given portfolio).

Due to the great connection that exists between
the alerting system and the database sharing mode, the
way a particular implementation of the former is made,

very much depends on the way the latter is implemented.

Despite of some minor differences that must be
observed from one particular implementation to another,

the most important features of an alerting system are

r yTe—— e g P d mw

Page 19

discussed in general terms in the present chapter.

, Some of these features were successfully implemented

i

for the WAND system and their design can be transferred

to other implementations.

The alerting system for a DBTG works as an
interface between the users' programs and the database
itself, as it accepts the definition of alerters as
well as the deletion of previously declared alerters;

0 in performing the alerting mechanism, the alerting
system has also interaction with the DML routines which
modify the information contained 1in the database;
finally, it makes use of the description of the
; database contained in the schema, as well as it

accesses the information of the database itself.

Figure 3.1 shows the components of the DBTG system

f: and their interaction with the alerting system.

[

e The 1line marked as PHASE I in the diagram
E represents the communication between the alerting
ﬁ system and the wuser's program, which permits the
; declaration of alerters, as well as deletion and

interrogation of previously defined alerters.

TR T

e

=

Hraits s

A

— Y e,

- F
ha ol

R T @

i

Page 20

—————{ ScHEMA |
&
J

F e

1 E SYSTEM L
R
S

PHASE I

USER'S v

4w

PROGRAM A

TIGURE 3.1. TINTERACTION DETWEEN DATG AWND

THE ALERTING SYSTEM.

PHASE II represents the alerting mechanism itself,
which constantly monitors the modifications made to the
database by DML routines which are in turn called by
the wuser's programs. this second phase includes the
evaluation of conditions contained in the alerters
description, as well as the triggering of the programs

associated to such conditions.

The definition of an alerter is composed of two
parts: the alerting condition and the program

associated with that condition,

WERPEE R

g

P it RN PO ont S

Page 21

The information provided by the user in the
declaration of alerters, as well as that generated by
the alerting system as a result of the evaluation of
alerting conditions and the triggering of associated
programs, has to be stored in the database and be made

available to the users' programs.

One of the most important results obtained from
the implementation of the alerting system described in
the previous chapter is the use of DBTG structures for
storing the alerting system information and its

manipulation by the DML routines of the DBMS.

As it is suggested by our implementation, the
description of the alerting structure into the schema
can be automatically made by the program that compiles
the definition of the schema, and its creation does not

have to be the responsibility of the user.

The special structure designed for our alerting
system is general enough to include most of the
information that is needed for a full implementation
and therefore, the structure needed for other
implementations on shared databases should be very

similar to the one described in the previous chapter.

-
.

1

¥ o

s

Page 22

The alerting condition, reqgardless of the way it
is represented in the database, should be equivalent to
a logical expression with the item types defined in the
schema, and constant values as operands. This logical
expression can be the input of a processor which,
driven by that information, should evaluate the
condition represented at the moment the database is

modified.

In the alerting system described in the preceding
chapter, the DML MODIFY routine calls the program
ALERT, which in turn checks in the alerting structure
if there are any conditions.which become true when the
modification is performed; in this case, however, the
only condition that the system accepts, is a change in

the value of an item being monitored by alerters,

In a more complete alerting system} it should be
possible to describe more complicated conditions
involving relations among several item types. Although
it might seem desirable to be allowed to declare any
possible logical condition as an alerting condition, in
a real implementation it is necessary to impose some
restrictions to the kind of conditions that should be
allowed to declare, since not every logical expression

involving item types and constant values, can be easily

e

A ta

- .

h .

o o

s
.

r:..
,

Page 23

or even possibly evaluated.

The alerting system is concerned only with those

conditions that become true at the moment a record in
the database is modified, and not with those which are
true before the modification, because of the dynamic
nature of alerters, and the fact that the triggering of
programs should be done only once; for this reasons,
it is necessary to evaluate the alerting condition for
the information contained in the record before and

after the modification is verformed.

We visualize the evaluation of alerting conditions
as being made by a processor which can be a program
driven by tables, whose input is the description of the
condition which has to be evaluated and which is stored
in the database. As a result of this, the processor
evaluates the condition by operating item values and
constant values, to produce a yes-or-no decision about
the truth value of the evaluated condition. This

process is diagrammed in figure 3.2.

From fiqure 3.2 we can get an idea of the kind of
restrictions that seem necessary for the conditions

acceptable by the alerting system.

Page 24

uscR's (o}
y PRCGRAM DESCRIPTION "| Prowssew
MCDIFICATION yes -OR-NO
INOTRUCTION
MCDHTIFY DPATABASE CONDITION
RCUTINE LT PROESSOR ‘
VAKVES |
A I
ALegfrﬂq 2 ALERTING CONDTTION
T — —®). i
INSTRUCTIO SYSTEM DLSCRIPTION

FIGURE 3.2. Thié GVALUATICN OF AN ALERTING CCNDITION.

The “evaluation of the alerting condition is
directed by the description of such condition which

! includes item types and constant values, as well as

;, operators; some examples of alerting conditions
A

2 follow:

-

b

n

i;"'

l1.- (AGE .GT. 21)

2,- (CHECKBAL .LT. 200 .AND. SAVBAL .LT. 200) .OR.

o ¥ -l S

(CHECKBAL + SAVBAL .LT. 400)

3.- (AVGE (INCOME) .GT. 5000)

Page 25

In these examples we assume that AGE is an item
type within a person's record type; CHKBAL and SAVBAL
are also item types; and, while INCOME 1is an item
type, AVGE is the name of a function which operates on
all the occurrences of a given item type (INCOME in
this case), to produce the average of the item values 1

belonging to a given set type.

The three conditions shown above are examples of
three different 1levels of complexity that alerting

conditions can be allowed to achieve.

In the first example, AGE is an item type within
R the record type which is the object of a modification.
The evaluation of this condition is performed by only

accessing the item occurrence which is available in the

system buffers at that moment, and comparing it against

the constant value 21.

b I

The condition of the second example includes two

-
Lo Y

item types within the same record type; when a
modification is made to this record, the new and old
values of items CHECKBAL and SAVBAL are available to
the system in core, so that a logical processor can

perform the evaluation of this condition.

Page 26

In the third example, the alerting condition shown
involves the value of just one item type, but as
compared with the previous examples, its evaluation

involves the values of other occurrences of said item

type, other than that currently in the system buffers.

In a DBTG system, one occurrence of each record
type is current at a given time, hence a condition like
that of our third example, requires some additional
process to be done, other than that of operating on

current item occurrences.

For implementation as well as processing time and
space considerations, we find desirable to restrict the

class of alerting conditions that can be processed by

. the alerting system, to those conditions which involve

only occurrences of items belonging to a record type,

o and which are current in the moment the alerting
A

i" condition has to be evaluated, i.e., when the record is
ﬁ modified.

ke

=

It is important to note that this restriction will

g
L. i

¥ A

not preclude the capability to perform a process like
the one described in the third example, since this can

be included in the program associated with that

condition,

| ——

it i’

S

o

B i

]
<

E %
k)

{4

.

Page 27

There exists a trade-off between the cost of the
processes needed to evaluate the alerting condition,
and that performed by the associated user's program.
To illustrate this trade-off, we might consider an
alternative to the third condition above, in which any
change in the value of the item type INCOME is
monitored by an alerter; the associated program
should, 1in our case, go through all occurrences of the
record type over which the AVGE function should
operate, in order to calculate the average of these

values.,

This program should in turn trigger the program
that in the original case should be called when the
alerting condition became true, or it could contain its

process.

As suggested by our second example, it should be
possible for alerting conditions to include arithmetic
as well as Boolean expressions made of items and

constant values.

The problems of evalﬁating the correctness of the
logical expression at the moment it is declared into
the database, can be solved by some minor modifications
to similar processors used by programming lanquages, in

order to provide for some validation of the item types

W o

ey o,

T o RN o

Page 28

used in such expressions.

In the alerting system described in the previous
chapter, a modification made to an item type which is
being monitored by an alerter, results in the creation
of two copies of the record type being modified, and
containing the information before and after the
modification 1is made. These two copies of the record,
in a further development of the alerting system, should
be the input for a processor which should evaluate the

alerting condition.

The second part of the declaration of an alerter,
constitutes the program associated with the alerting
condition, which should be triggered when some
modification made to the database information causes

the alerting condition to become true.

There should be no restrictions for the program
that can be associated with an alerting condition;
i.e., the associated programs should be allowed to be
as complex as required, in order to meet the processing
needs of the database users., However, this requires
further investigation on the way that programs can be
stored in the database and how it can be decided wether
a given program should reside in the user's working

area or in the database in terms of the size of the

WS e Py T,
o DN 5l

-

. o

e
v ol

!

»
4

¥

Page 29

program description.

In most cases, a reduced number of commands
including DML statements should be enough to inteqrate
the desired programs. For such cases, it should be
possible to store in the database the description of
the programs, which should be retrieved and executed by

a program processor, as shown in fiqure 3.2.

Once again, for efficiency considerations, it
would be desirable to have small programs stored in the
database, and their codification should be made from a
small number of selected commands, so that a simple
processor can accept this description in order to

execute it,

The set of commands referred above could be 1like
that provided by DBLOOK in the WAND system (see [5]).
DBLOOK is an interactive processor which provides
access to the database by accepting and executing any

DML command.

DBLOOK has several additional commands that assist
in the data access, like DISPLAY, REPEAT, and
assignment commands as well as interrogation about

sets, records and items defined in the schema.

’ ; ——y e
.

Page 30

The set of commands provided by DBLOOK has proven
to be sufficient to perform extensive data manipulation
to fulfill the most common process requirments in a

database.

In addition to storing nrograms in the database,

the alerting system should also provide with the

facilities to read the program associated to an

alerting condition from a file outside the database.

L This external file may either contain a set of
commands in the special 1lanquaqe accepted by the
alerting system, or it can be a program in the host

fﬂ lanquage as a FORTRAN or COBOL program and which is

triggered by the system as the alerting condition

becomes true.

The use of the indirect file capability should

T IS,
Sl e

permit the declaration of as large programs as might be
needed, without having to use the storage space which

has been reserved for other kind of data.

r'-g:‘ , ha

e

R
A..A .- .""‘

Page 31

APPENDIX A,

The special structure used by the alerting system,

e described in Data Description Language:

RECORD NAME IS WWWAUSER
] LOCATION MODE IS CALC USING WWWIDUSR
8 DUPLICATES ARE NOT ALLOWED
3 WWWIDUSR TYPE IS CHARACTER 10
3 WWWUSFLG TYPE IS CHARACTER 5.

RECORD NAME IS WWWAREC ‘
LOCATION MODE IS CALC USING WWWIDREC |
DUPLICATES ARE NOT ALLOWED |
WWWIDREC TYPE IS CHARACTER 10
= WWWRCFLG TYPE IS CHARACTER 5.

RECORD NAME IS WWWAALRT

LOCATION MODE IS CALC USING WWWIDALR
DUPLICATES ARE NOT ALLOWED

WWWIDALR TYPE IS CHARACTER 10
WWWALRFG TYPE IS CHARACTER 5.

,.g RECORD NAME IS WWWAITEM

! LOCATION MODE IS CALC USING WWWIDITM
DUPLICATES ARE NOT ALLOWED

WWWIDITM TYPE IS CHARACTER 10
WWWITMFG TYPE IS CHARACTER 5.

S

& aadl

-

RECORD NAME IS WWWACOPY
LOCATION MODE IS VIA WWWRECPY
WWWCPY TYPE IS CHARACTER 25.

e

e
¢
k
&

RECORD NAME IS WWWALINK
LOCATION MODE IS VIA WWWITLNK
WWWLNK TYPE IS FIXED,

SET NAME IS WWWUSALR

MODE IS CHAIN LINKED TO PRIOR
ORDER IS LAST

OWNER IS WWWAUSER

MEMBER IS WWWAALRT

LINKED TO OWNER,

SET NAME IS WWWRCITM
MODE IS CHAIN LINKED TO PRIOR

o8

i
i-
b
K

ORDER IS LAST
OWNER IS WWWAREC
MEMBER IS WWWAITEM
linked TO OWNER.

SET NAME IS WWWALLNK
MODE IS CHAIN LINKED
ORDER IS LAST

OWNER IS WWWAALRT
MEMBER IS WWWALINK
LINKED TO OWNER.,

SET NAME IS WWWALCPY
MODE IS CHAIN LINKED
ORDER IS LAST

OWNER IS WWWAALRT
MEMBER IS WWWACOPY.

SET NAME IS WWWRECPY
MODE IS CHAIN LINKED
ORDER IS LAST

OWNER IS WWWAREC
MEMBER IS WWWACOPY.

SET NAME IS WWWITLNK
MODE IS CHAIN LINKED
ORDER IS LAST

OWNER IS WWWAITEM
MEMBER IS WWWALINK
LINKED TO OWNER,

TO PRIOR

TO PRIOR

TO PRIOR

TO PRIOR

Page 32

g N il el

Tk, &

TR

’-.

Page 33

APPENDIX B.

The schema DDL as accepted by the File Description

Processor for an Alerted Database (FDPA),

In this description the following notation is

used:
x. words that must be replaced with a user-defined
name or value are in lower case.
2. - (underline) word or character that must appear.

3. () encloses a phrase that may be ommitted.
4. [] encloses lines from which only one may be used.

5. !! encloses phrases that may be repeated.

SCHEMA NAME IS schema-name
(PRIVACY LOCK IS password)
(DATABASE SIZE IS integer PAGES)
(PAGE SIZE IS integer WORDS)

(ALERTED DATABASE) .

RECORD NAME IS record-name
LOCATION MODE IS
{VIA set-name

CALC USING item=-name-1

o

ST

> 08

b

i
X

DIRECT]
!item~name-2 TYPE IS

[CHARACTER integer

REAL 1.

SET NAME IS set-name
MODE IS CHAIN
(LINKED TO PRIOR)

ORDER IS

[EIRST

=t

AS

-3

|

z

EXT

o

RI

]

R]

OWNER IS record-name-1

MEMBER IS record-name-2

(LINKED TO OWNER)._.

Page 34

:
L
ie

-
L4 Y

b
F!

>
?;

Page 35
APPENDIX C.

As an illustration of the use of the alerting
system implemented for the WAND system, this appendix
shows the way in which programs can be written to
evaluate alerting conditions by using the information

generated by the alerting system.

For this example we assume that the schema
contains a record type 'CLIENT' with the item type
'NAME' as the CALC key and item types ‘'CHKBAL' and
'SAVBAL' representing the balances of checking and

savings accounts of a bank clients respectively.

We also assume that three alerters have been
declared into the database: alerter 'LOWCHK' monitors
changes made to the item type 'CHKBAL'; alerter
'LOWSAV' monitoring changes in item type 'SAVBAL'; and
alerter 'LOWSUM' which monitors changes made to either

item type 'CHKBAL' OR 'SAVBAL'.

Associated to these alerters, three programs with
the same names respectively have been written, and they

are described in a hypothetical lanquage below:

LR TS S

o

e },ﬂ-. e

PN

.

R

£

T
~ et

2

Page 36

PROGRAM LOWCHK (OLD-CHKBAL ,NEW-CHKBAL)
BEGIN
if OLD-CHKBAL Greater than 200 and
NEW-CHKBAL Less than 200 then
print NAME '‘CHECKING ACCOUNT BALANCE TOO LOW'

END PROGRAM LOWCHK.

PROGRAM LOWSAV (OLD-SAVBAL,NEW-SAVBAL)
BEGIN
if OLD-SAVBAL Greater than 200 and
NEW-SAVBAL Less than 200 then

print NAME, 'SAVINGS ACCOUNT BALANCE TOO LOW'

END PROGRAM LOWSAV.

PROGRAM LOWSUM (OLD-CHKBAL ,OLD-SAVBAL,
NEW-CHKBAL ,NEW-SAVBAL)
BEGIN
if OLD-CHKBAL + OLD-SAVBAL Greater than 500 and
NEW-CHKBAL + NEW-SAVBAL Less than 500 then

print NAME, ‘'ACCOUNTS BALANCE TOO LOW'

END PROGRAM LOWSUM.

Paqe 37

The three proarams described above have as
arquments the old and new values of the items that have

been modified by other proqrams.

The alerting system, as a result of the
modifications made to item tymes CHXRAL and SAVBAL
creates occurrences of the record type COPY, containing
the record CLIENT before the modification was made and

arter it.

There is a fourth proqram called CHKALERT, which
is in charge to triager the oroper routine, in order
that the desired condition be evaluated. CHKALERT
constantly dnalyzes the occurrences of record tyne COPY
under the mentioned ALERT records, calling the
corresnonding program when a pair of COPY records is

found.

PROGRAM CHKALERT (ALERTER)
DO FOR EVER
SEGIN
wait for ALERT-WAKE
find ALERTER record

Ffor all COPY records DO

e

|
e BTy

S S

Page 38

BEGIN
If (ALERTER is LOWCHK) then
call LOWCHK (OLD-CHKBAL,NEW-CHKBAL)
If (ALERTER is LOWSAV) then
call LOWSAV (OLD-SAVBAL,NEW~SAVBAL)
If (ALERTER is LOWSU) then
call LOWSUM (OLD-CHKBAL,OLD-SAVBAL,
NEW-CHKBAL ,NEW-SAVBAL)
END

END PROGRAM CHKALERT.

The program CHKALERT has as argument the name of
the condition that has to be evaluated. Although the
programs described above should be somewhat different
in the WAND system which uses FORTRAN as host lanquage,
they are written in an English-like language in order
to make them easy to understand for those who are not

familiar with that lanqguage.

It is now possible to monitor the occurrence of
the three conditions described above, namely: (1)
CHKBAK LESS THAN 200, (2) SAVBAL LESS THAN 200, and (3)

CHKBAL + SAVBAL LESS THAN 500.

l
;
]
!
!
!
!
!

Paqge 39

A~ A

Let's suppose that the program _HKALR is executed
in a terminal A and that modifications are being made
to the database from another terminal B at the same
time. The user in terminal A can chouse the conditions
he wants to monitor by assianing the corresnonding name
to the alerting inquiry made by the CHKALR proaram.
This nrogram is qoing to analyze the contents of the
database 1in a continuous way, triggering each time the
evaluation of the correspondina condition (either

E ‘LOWCHK', 'LOWSAV', or ‘LOWSUM').

Whenever a modification is made from terminal B !

that causes the condition being monitored to become

“ true, the corresponding proqram will send a4 messaqe to
| terminal A with the name in the record 'CLIENT' and the
w new value of the items. This evaluation can be stooped

by interrupting the execution of the proqram CHKALR.

T g
R

- ."._
. .

e
i 2

v
A

0 S

i

x

b St R .

-
5

2T

Paae 40

REFERENCES.

[1] Howard Lee MHMorgan. "An Interrupt Based
Organization for Mdanaaement Information Systems®,

Communications of the ACM. Decemher 1970,

[2) Carl Hewitt. "PLANNER: A Lanauaqe for
Proving Theorems and ilanipulating Models in a
Robot". Massachusetts Institute of Technology.

Ph. D. Thesis. 1971.

[3] Stanley F. Cohen. "LDEMON LISP Alerter
System (As a DAISY Interface)". Working Paper
76-05-07. Dept. of Decision Sciences.

University of Pennsylvania.

(4] CODASYL Data Base Task Group, April '71

Renort. Association for Computing Machinery.

o ‘i: R . '

-

s
.

T i

Paae 41

[5] Robert Gerritsen, Ricardo Curtes, Jim Ribeiro,
Ruth Zowader. "Wharton Alerting Network Database
User ' 1ide". Dept. of Decision Sciences. The

Whart. sichool. University of Pennsylvania.

[6] Howard Morgan and Robert Gerritsen.-"Dynamic
Restructuring of Data Bases with Generation Data
Structures". Dept. of Decision Sciences, workinag

paver 75-12-02, University of Pennsylvania.

Wi i

-

il a

P

S 5 A AR P

DISTRIBUTION LIST

Department of the Navy - Office of Niaval Research

Data Base Management Systems Project

Defense Documentation Center (12)
Coieron Station
Alexondria, VA 22314

Office of Naval Research (6)
Arlington, VA 22217

Of fice of Naval Reecarch
Br.nch Office, Chicago
536 South Clark Street
Chicapgo, 11linois 60605

New Yocrk Area Office
715 ?n-:-.dw.‘;y - 5th Floor
New York, NY 16003

Dr. A. L. Slafkosky
Sejentific flvisor

Coumnandant of the !Marine Corps
(Code RD-1)

Washington, DC 70330

Office of Naval Research
Code 458
Arliagton, VA 22217

Mr. E. H. Gleissner

Niaval Chip Research and
NDevelopuent Center

Coiojutation & Matheaatics Dept.
Petlie: l'.’), 2 20084

Mr. Kim B. Thompson
Technical Director
Information Systems Division
(0P-911G)

Of fice of Chief of Naval Operations

Warhington, DC 20350

Professor Omar Wing

Columbia University

Dept of Electrical Engineering
and Corputer Science

New York, NY 10027

Office of Naval Research (2)
Information Systems Program
Code 437

Arlington, VA 22217

Of fice of Noval Research

Code 1021P Brunch Office, Poston
495 Sunmer Street

Roston, MA 02210

Office of Nuval Resecarch
Branch Office, Pasadena
1030 East Green Street
Pasadena, CA 91106

Naval Rescarch Toboratory (6)
Technical Inforiation Division
Code 2627

Washington, DC 20375

Of fice of W:iival Reazecarch
Code 455
Arlington, VA 22217

Nival Fleetrenies Taboratory Center
Advinced Coftware Techmology Division
Code 5200

Sén Diego, CA 92152

Captain Grace M. Hopper

NATCOM/MIS Planning Branch
(0P-916D)

Office of Chief of Naval Operations
Washington, DC 20350

Burcau of Library and
Information Science Research
Rutgers - The State University
189 College Avenue

New Brunswick, NJ 0&%03

Attn: Dr. Penry Voos

