
~
L
~~I! -I__

__Ffl

~~

là
I

AN A1ER~Th~G SYSTFN FOR A Dt~TABASE

~~NAGE~~~7T SY~~~4

Ricar c~~ Cor tes

77—0l -06

A thesis suhnitted to the faculty of the
Moore School of Electrical Engineering in
partial fulfillment of the requir~~Ents
for the degree of Master of Science in
Engineeri ng (for graduate ~~rk in Cct~puter
arxl Information Sciences)

University of Pennsylvania
Phil~~elphia, Pennsylvania

J~ cGnber 1976

COPY ~~ ~ ~~~ !~~~~ !!r.~~ rrV V

~~~~ ~~~ ;.~•: ~~

~~~~~ 
V — ~~S S V V S ~~~~ ~~~~~~~~~~~~~~ •~~~~ •~

_ V •~~VSSVV ~ ~~ V

.~~~__~~ • ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 5~~ V - -.-S_s .- V — 5- 5- ~
S_ — —5-— — —5

______ — __________________


~~~~~~~ ‘ --—-——

SE C U R I T Y  C L A S S I r IC A T I O N  OF THIS PAGE (I+~~.n Dee. Fnt.rod) 
________________________-

_ • READ IN STRUC T ~( 1NSREPORT DOCUMENTATIurI BEFORE COMPLE TIP~G F C ) R M
1. REP U__________ 2. GOVT ACC ESSION NO. 3. RECI P IENT’ S  C A T A L O G  NUMBER

_____
H 

_ _I. TITLE (and SubISti.) S TYPE OF REP RI t PERIOD.9V EHEO

~~~~~ 
Alerting System for a Database f i~~1 ‘~V~ p ’~ •

~Management System .
S. PERFORMING ORG. REPORT NUMBER

77—0 1—06
A U T H R(~,) S. CO NT RACT O R G R A N Y NUMBER(a)

—

~~ doJ~~~~~s

_ _ _
~:2~~~~~~

~~~~~
• 9. PERFORMING O R G A N I Z A T I O N  NAM E AND ADDRESS 10. PROGRAM ELEMENT , PROJ E C T , TASK
• . A R E A  & WORK UNIT NUMD ERS

Decision Sciences Department”
University of PA/Whar ton School Technical report
Philadelphia, PA 19104

II. CO NTROLLING OFFICE N A M E  A N D  ADDRESS 12. REPORT DATE 
—

Off ice of Naval Research 12/76 
____________

Information System 13. N U M B ENO F PAGES

Arlington, Virginia 22217 47
14. ITORING AGENCY NAME S ADOR if Ill .nt from ntrolllng Offic.) IS. SECURITY CLASS. (of this report)

~c_~‘ / ,/~~ 
Unclassified

P 15.. OECCASSI FICATION~~~~W N G R A O I N~ 
-

SCHEDULE

16. D ISTHI O UT ION S T A T E M E N T  (of this Report)

Unlimited ~~~~~~~~~~~~~ ,~~~~
‘ • :::

Apr .~~. . “

- .. 17. DISTRIBUTION S T A T E M E N T  (of Ui. abetted .nt,red in alock 20 . If different  from R.pert)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continu. on r.v.r.. .Id. Ii n.c. ...fy wd Id.ntlfy by block numb.,)

‘S Alerting
Database management

~~~~~DBTG

iT” ~~ 1~~S T RA C T (Contlnus on r.v.ra. aid. If n.c...ary and Id.ntlfy by block numb .r)

This thesis describes an alerting system for a Database Management System
which provides the end users with the facilities to monitor in a dynamic

¶1 fashion the changes being made on the informat ion, in order to perform
some predetermined actions whenever certain conditions become true. The
work includes the descript ion of a simplif ied implementation of an
alerting system made on the Wharton Alerting Network Database (WAND)
which gives the foundation for a full implementation on a properly shared
database system of the kind described by CODASYL DATABASE TASK GROUP in its~~

DD ~~~~~~~~~ 1473 EDITION OF 1 Nov 65 I S OBSOLETE
‘$ April 71 report.pi.~ç,srn 0 l02•014 6601 5

_____ •~~~~~~

$ICU~~ITY CLAS SIFICATION OF THIS -PAGE (U9 .n D.c. Int.r.d)

- i..
~~~~~~~~~~~~~~~~~~~~~~~~~~~~



V 
~~
. — — - -  —

~ ~~~~~~

- --- -.- --.- -

U n i v e r s i t y  of  P ennsy lvan i a
THE MOORE SCHOOL OF ELECTRICAL E N G I N E E R I N G

AN ALERTING SYSTEM FOR A DATABASE
MANAGEMENT SYSTEM

Abst rac t :

Due to the high volatility of l a rge  shared

databases , the database users  are  in teres ted  in

monitoring c e r t a i n  cond it ions  that. may be credt ed dS the

informdtion is modified by ur datj n g  pro gr ams .

This  thesis  descr ibes  an a l er t i n q  system for a

-
‘ D~~t~~b~~se M dna qernE - ’t  System , which  orovides the end users

w i t h  the fac i l i t i e s  to mon i to r  in a dynamic fdsh ion the

changes being made on the information , in order to

perform some oredetermined actions whenever certain

conditions become true. The work includes the

descriotion of d simplified im plementation of an alerting

system made on the ?tharton Alertinq Network Database

(WAND) which g ives the founda tion for a full

implementation on a ~rooerly shared datdhdse system of

• the kin d described by CODASYL. DATABASE TASF ( GROUP in its

aoril 71 Report (DBTG systems). WAND is an

imolementalion of a OBTG system.

f la s t e r  of Science in E n g i n e e r i ng

(for gr a d u at e  wor k in Computer and In f o r m a t i o n  Sciences)

December 1976

- Dr l oward Lee Morq~ n
Au t h o r  F a c u l t y  Sun e rv i so r

A’

~~~ ± :~~ -i ~~~~~~~~~ .. 
_ _

-~ —~ ~~~ —~~- — ~— — —-- — ~~~-—----~ — — - —----k- ~~ I

_ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _

Acknowl edgments:

The au thor wishes to t h a n k Or . Peter Run em dn who

suqqested the subject of t h i s work dnd whose advise ~nd

suoervision has been most h e l p f u l .

4 ,
S~ecia1 thanks are due to Dr. Noah S. Prvwes ~nd

Dr. Howard Morgan for their encouragement and

invaluable help.

Fin ally, the help of Or. Robert Gerritsen , J i m

R ibei ro , R u t h Z~ w~ d~ t , and David Root In the

u n d e r s t a n d i ng and use of the WAND system and the

D E C — S y s t e m — l O is f u l l y d~ pteCidted .
1-• ~

Ricardo Cortes.

-J
~~~~~

-
~
--

~~~ 
ttrwS~~~~

~~~~~~~ %~;-~~~$ 

1’
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


r ~

—

~~

‘—

~~~~~~~~~~~

—----

~

— .——--——. ------—-- 
,. — .- .  .

-

CHAPTER 1.

The concept of alerters should become increasingly

important as Database technology continues to grow.

The changes being made by programs in the values

of items in the database may cause the creation of

certain conditions in which one or more users are

interes ted , so that particular actions associated to

such conditions are performed .

Conceptually, an alerter can be described as a

program that continuously monitors the contents of the

database, in order to take action whenever a previously

specified condition becomes true.

i’~~i

For example , in a database containing information

about the checking accounts of the clients of a bank ,

an alerter could be used to monitor the account

F balances in order to print a message for the manager of

a branch when one of the client’s balance falls below

200 d o l l a r s .  In t h i s  example , the a l e r t i ng  condit ion

is for the checking account balance to be less than 200

and the associated program prints a message with the

data of the corresnondinq account.

I.

\ . 

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ _ _ _ _ _ _  

- -
~~~~~~



--.~ -~ -~ _ _

Page 2

An alerting system for a databas’~ should provide

•1 the end user with the facilities to specify alerters

and place them in the database. By specifying an

11 alerter we mean the definition , in a language for that

special purpose , of the conditions to be monitored and

the corresponding actions to be taken whenever such

conditions become true . It should also provide with

the mechanism to monitor changes in the database and to

trigger the procedures associated to those condition s

as defined by the database alerters.

Since the definition of a].erters, including the

description of alerting condition s and associated

programs has to be stored in the database, we have to

extend the de f in i t i on  of such database to acceüt this

additional information .

The wide acceptance and use of database management

systems have permitted a fast development and constant

improvement of such systems in recent years; however ,

no database management system provides an alerting

system to meet the needs of a growinq number of users.

Although some programming languages provide the

user with the facility to monitor changes in the

information contained in the database (for example, the

‘ON’ statement in PL1 and the ‘USE ’ condition in ASAP

.4 -i

.— — -. - - — --- ~~~~



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Pdqe 3

dfld some COI3 OLS), they do not meet user ’s needs , since

the definition of alerters is made in the user ’s

programs dnd it is not stored in the d~~t ab~~s~~.

Howard Morgan (11 introduced the concept of

alerlers in the context of Management Information

Systems. Morgan describes alerters as interrupts used

to signal to the supervisor the occurrence of

conditions which require a program to be executed ; the

interrupt qenerdtinq conditions are Boolean conditions

on var i ab le s  or items in the  database .

Some s~ ecidl purpose languages like PLANNER (21

and CONNIVER diso hdve incoroorated similar concepts;

L. this type of language permit the manipulation of rich

datdhases , hut they are limited to deal with small

databases and are not designed to handle hierarchical
S

or network data structures.

Ano ther use of d concept similar to dlerter has

been imolemenied as DEMONS in the system LDEr.ION 13), ~
system for creating and liodatinri simnie databases and

moni toring changes in the data. LDEMON , however, is

not a oroduction system , since it is written in LISP,

an interpretive language, and it was mainly orogrammed

for experim ental ournoses.

I,’



V —•- ---- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ ___

Page 4

In the present work, we intend to provide a basis

for the development of an alerting system for a

database management system oriented to the manipulation

of large , network structured files; our main concern

is the kind of DBMS as described by CODASYL ’s DATABA SE

TASK GROUP in its april 1971 report [4).

These systems are called DBTG systems and are

intended to be programmed on a host language such as

COBOL or FORTRAN . DBTG systems consist of a Data

Description Language (DDL), used for descri b ing the

database, and a Data Manipulation Language (DML), which

dct s as an i n t e r f a c e  between the user ’s programs and

the database.

A DBTG system represents database information as a

network in which the nodes are individual recor d

occurrences and the record occurrence is the unit of

access. The relationship between record types is

called a set type , which has one record type designated

as its owner and one or more record types defined as

the set members. A network database permits the

representation of many—to—many correspondences among

records in a direct manner by the use of a confluent

hierarchy in which the two related records are the

owners of two different set types, of which a third



11P - . ---- -----

~~~

- - . .

~~

-

~~~~~~~~~~~~

- — ----.-- ---,-- _ _ _ _ _ _

Page 5

I
record type (called the ‘base ’ record ) is a member.

The smallest unit of named data in DBTG is called

a data—item , and an occurrence of a data—item is a

representation of its value .

A partial imp lementat ion of a DBTG sys tem was made

at the Wharton School [5], to ex perimen t with database

alerting , as well as interactive schema management,

multiuser sharing, and easy restructuring [6].

The Whar ton Alertin g Network Database (WAN D~f is

implemented in FORTRAN IV along wi th a small number of

HACRO assembly language subroutines on the

DECSYSTEM—10.

In the next chapter we describe a simplified

alerting sys tem that was implemente d on WAND in or der

to investigate about some problems - involved in full

implementations of alerting systems on DBTG .

LI

H
~~~~~~~~~~~~~~~~~~~~~~~~ ~~::~~ i~~~~


Page 6

CHAPTER II.

In order to experiment with the implementation of

alerters into a DBTG system, WAND has been provided

with a simplified version of an alertinq system.

The aler ting system described in this chapter

permits the operation of simple aletters in which the

dler ting condition as welJ. as the associated action ,

are limited ; alerters are defined to monitor one or

more items within the record types described in the

schema , so that a chanqe made to the value of any of

such items , will trigger a program which must create

record occurr ences of a special record type , in order

to keep in the database the information contained in

the modified record both , befor e and after the

modification has been made .

In this s implified aler ting system , the evaluation

of conditions is not supported , bu t it is the

responsibility of the user to write programs which have

to read the information kept by the system and perform

the desired evaludtions.

This system has been designed in such a way that

it provides the foundation for the implementation of a

more complete system as described in the next chapter ,

‘II


~~~- . .~~ , - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
-
~
----

~~~~~~~~ ~~~~~~~~~~~~~~~~ 
-

Page 7

in which the alerting condition can -take the form of a

logical expression involving the values of current item

names as well as constant values.

As it will be seen in the nex t chapter , the

condit ions in which we are inter este d should be

evaluated by only analyzing the information in the

recor d which is object of a modification before and

-
- after such modification is performed .

The alerting system should permit the dynamic

change of the conditions being monitored; therefore ,

those conditions which are true before they are

declared in the database , should not be considered in

the evaluation . Similarly, if a record is modified and

a given alerting condition was true before the

modification is made , the alerter should not be

triggered even thciuqh the condition is also true after

the modification .

For these reasons it is necess ary to analyze the

‘1 old and the new informat ion in the record heinq

mod i f i e d , so that an alerter is not activated when the

condition holds for the old version of the record.

~j I1

_ _ _ _ _ _ _ _ __ _ _ __________

U—

-- ‘ . ‘ r ’ ~’ ~~~~~~~~~ — . - .‘r*~ . ~~~ __.,... ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Page 8

For ex ample, if an alerting coni ition is described

as BALANCE LESS THAN 200, and a program makes a

modification to this item in a record that has the

value of 180 to the value of 160, then the associa ted

action of printinq d message thdt the balance for this

paLticular record has fallen below 200, was made when

this balance became 180 and therefore it should not be

performed again.

This implementation provides both versions of the

record being monitored by alerters , so that in a

further development of the system, they can he the

input of a processor which should do the evaluation of

the alerting condition .

Simil arly, the result of this evaluation might be

the input for a second processor which should retrieve

and interpret the description of the program associated

to the alerting condition , and whose execution should

be triggered dS the condition becomes true.

L
Because of the great connect ion that exists

between the way the alerting system is implemented and

the way the database is shared, some d i ffer ences may

arise when doing a mote complete irnolementation of the

aler ting system. However , it is important to note

that , althoucih WAND does not support prope r database

A

r ~~~~~~~~~~~~~~~~~

- - --

~~~~

--.

~~~~~~~~

-..-—

Page 9

sharing, the alerting system has been designed to

include some of the most impor tant fea tures that should

integra te any other imolemen tat ion of aler ting sys tems

for shared databases , wi th just minor dif ferences as

needed .

Three programs integrate the alerting system:

—FDPA (File Definition Processor for an Alerting

Database). This program, as WAND ’s FDP (see [5)),

process es the schema definit ion wr i tten in DDL , but it

dccepts an additional clause in the Schema—Entry, to

indicate that the database being defined is going to be

used for alerting . The complete WAND schema DDL

inclu ding the alerting clause is shown in Appendix B.

When the ‘ALERTING DATABASE ’ cl ause is inc lu ded ,

the FDPA adds to the schema the definition of six

special rec ords and six special sets , which ar e used by

Y the alerting system to store the information provided

by users in the definit ion of aler ters , as well as that

generated by the system itself.

The special data structure is written in Data

Description Language in Appendix A , and i~ s use by the

system is described below .

I,

.

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _



r
Paqe 10

—INIALR ( I n i t i a l ize  an Alerting Database). It is

necessary to run the INIALR program before alerters can

be defined into the database ; this progrdm reads the

schema to retrieve all the record names and item ndmes

defined by the user and creates an occurrence of

special recor ds REC and ITEM respec t ively for each of

the names found .

We will see later that the declar at ion of an

aler ter makes use of the recor d occurrences cr eated by

INIA LR , as well as some oc c u r r e n ces of record types

USER and ALERTER which are created by the user .

—ALERT. This program is called by the MODIFY

routine everytime a change is made in the database by

• this DML command . A LERT checks which it ems being

modified are monitor ed by aler ters and for each of them

it cre ates two copies of the recor d , associa ted to the
k

ALERTER record. The first copy has the same

informa t ion the record had before the MODIFY routine

was called and the secon d copy is the same version of

the record as left in the database by this routine .

The spec ial structure used by the alerting system

is represented in a graphical form by the Data

Structure diagram in figure 2.1. The boxes in that

diagram represent record tynes which are related with

A-

— . - .- — —-- — -—--- .•-- -- - - -~~~~~ ~~---—.



Page 11

each other by the named sets which are represented by

arrows ; a record type pointed by an arrow is the

member of the corresponding set type , whereas the box

from whic h the arrow depar ts shows that the recor d type

is the owner of that set.

USER

Li~ I I ~
M~-R- Ufl~ 

~~~~~
c-(OI ’y I

cM?Y j tV EM [
ITEP4 -LIHJ

I__________

F

FIc4URE ~.&. THE)AT(~ f~TRUCTUR~ USE~D ~~~~‘

- THE p~LtRTII4c2

The record type USER is used to store the password

provided by the user to identify his own alerters.

Prior to the declaration of alerters by the user , he

has to create an occurrence of the USER record type.

~1

.— - -

r Page 12

The f i r s t step in the de f i n i t i o n of an ale r te r

consists in creating an occurrence of the special

record type ALERTER c o n t a i n i n g the ndme of the alerter

as the CALC key. The previously created occurrence of

the record USER must be current when the ALERTER record

is created , so that they become related to each other

1 by the set type (JSER—ALR .

It should be not iced that any number of aler ters

can be associated to one USER record; the latter is

used as the access to the ALERTER record and to the

information generated by the alerting systemn

At this point the user should link the alerter

record to the item types the alerter has to monitor ;

this is done by creating an occurrence of the record

type LINK at a t ime the corr esponding ALERTER and ITEM

records are current.

One occurrence of LINK has to be cre ated for each

item type the alerter is to monitor and it is linked to

the alerter record by the set ALR—LINK and to the item

record by the set ITEM—LINK. This constitutes an

occurrence of a confluent hierarchy in which the record

types ALERTER and ITEM keep a many—to-many

relationship; LINK is the base record of the confluent

hierarchy. In this way we can declare alerters to

-- ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ .~.T

— V ~~
—•--——- —. --- —. -— -.- -. .-——- ——•.—- -- .—---—~~-• - -

-r Page 13

moni tor one or more item types and each item type can

be monitored by different alerters.

An example should be helpful to understand how an

aler ter is declared in this system ; in our example we

assume that the record type CLIENT was defined in the

schema containing two item types: CHKBAL and SAVBAL .

Af ter running the INIALR program , the database

• must contain an occurrence of the set type REC—ITEM

wi th two member occurrences named CHKBAL and SAVBAL

respectively. The owner of the set is an occurrence of

the record REC conta ining the name of record type

CLIENT as shown in figure 2.2. The box marked CLIENT

in the diagram is an occurrence of the record type REC

and CHCKBAL and SAVBAL are occurr ences of the record

type ITEM which are stored in the data base by the

program INIALR ; the arrows represent next—pointers of

the set type REC—ITEM.

The following rout ine, writ ten in a hypothetical

language introduces the definition of an alerter into

the database; the user identification is ‘JOHNSON’ ,

the name of the ale r te r is ‘LOWBAL ’ and it is to

monitor changes in the item type CHKBAL :

1~

.

w — -—-
~~~~~~~

,- -,—,-•—- — 
~~

-
~~~~~~~~~

- ---•

Page 14

ELt
~~

T
~1

-

ITEM

r ~~
rrEb4

.

I
SA’~~~Lj

-
~~~ çr~~j~ ~~~ ~~ ~~ s~r T~ I’C ~~~~~~
• ~- BEGIN

- , 

USER IS ‘JOHNSON ’
STORE USER

- 

- ALERTER IS LOWBAL
STORE ALERTER
ITEM IS CHKBAL

- • FIND ITEM
-
~ STORE LINK

- - - END.

~ ~•

-

Notice that the last instruction in the example

stores an occurrence of the record type LINK under the

appropriate ALERTER and ITEM records, Sb that two new

occurrences of set types ITEM—LINK and ALR—LINK are

created as shown in figure 2.3.

Starting from an occurrence of the record type

ALERTER and via the associated LINK record occurrences ,

all the items monitored by an alerter can be retrieved ;

0 conversely, all the alerters monitoring a given item

can also be obtained by going through the list of LINK

records related to the item by the set ITEM—LINK. 



Paqe l S

LOWBM. 
[C~

C~~~ L

~%.ERrt .~ f

• TI(~U~ E L.3. r~ b1RucTuP~ c P1TED ~~ i-M E

- - - 
D fl-4ITic~ o~ i\H ~LE1~rE R. .

The alerting system , by using the information

provided in the declara tion of aler ters , can detect the

part icular item types that are being monitored by

-~~~~ a l e r t e r s .

The DML MODIFY routine , just before storing back

the modified record in the database , calls the program

ALERT , which in turn detects which items in the record

have been changed in value . For those items, ALERT

finds the associated alerters , in order to create a

P .  pair of copies of that record linked to the ALERTER

record occurrence by the set type ALR—COPY .

-r -

-
~~~~~~ The record type COPY is used to store the pa i r s  of

copies produced by the triggered alerters; the first

copy of the record passed to the MODIFY routine ,

I con tains the information in the record before the

m o d i f i c a t i o n , whi l e the second copy contains the

modi f i ed i n f o r m a t i o n .

L

_ _ _ _ _ _ _ _ _ _ _ _

Page 16

Both copies are related to the a-lerter record by

the set ALR—COPY ; an occurrence of the set type

REC—COPY links these copies to the REC record , so that

the user can identify the record type by going back to

the owner of this set and retrieving the record name.

An example of the use of alerters in this system

is provided in Appendix C, including the description of

the programs that evaluate the alerting conditions.

As it can be seen from the description above, this

s impl i f i ed a l e r t i n g system leaves a great deal of work

to the user program ; the n a t u r e of the aler ters

handled by the system is also oversimplified . However ,

it was intended to provide some insight on some

problems tha t can be encountered in imp lement ing a more

complete alerting system for DBTG.

In the next chanter we turn our attention to the

discussion of more complicated a l e r t e r s that can be

handled by a full implemen tation of an alerting system ;

we wi l l also analyze the problem of a shared on l ine

database system , in whose context an a l e r t i ng system is

most useful.

.

- - -

—

~~~~~~~~~

-- -- -—-______



F ‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - _ _ _ _

Page 17

CHAPTER III. 
-

When we re fer  to an a l e r t i n g  system , we mean a

r more complete system than tha t  described in the

previous chapter, which is a simplification of this

concept.

An alerting system for a DBTG has been thought to

provide with the facilities for the end user to declare

more complicated alerters which should permit him to

monitor the creation of predetermined conditions in the

database as it is being modified by several programs

which share access to the information contained in it.

The concept of alerter surged from the need to

dynamically monitor the modifications being made to the

• i n f o r m a t i o n  contained in a database f r o m  several

terminals and at the same time.

For d database in which modifications are made in

a centralized manner it might be easy to find cheaner

ways to monitor the conditions created in the database

as a result of such modifications.

S i m i l a r l y ,  when the condi t ions  tha t  have to be

moni to red ,  as well as the associated act ions are of a

fixed nature , it might be more convenient to include

them as part of the programs tha t  in t roduce  changes

~~~~~~~~~ 

--

~~

- —- - -

~~~~~~~~~~~~~~~~~~

- - - ----- - - -
-—

~ 

- - ----- - -- -.--- - - -- -- - ------ — - -- ------ ~~~~~~- -- ---- —--- - - • - — ---~---- - - - -~--- - - - - ~ -- -•--- - - _ _ _ _



--—‘-- —-- -- --- -~-—--~--- --- ____

Page 18

into the database. -

In a properly shared database, an alerting system

provides wi th  the  f ac i l i t i e s  to declare  into the

database the conditions that should be monitored , and

F such conditions can be cons tantly modified in

accordance to the changing needs of the alerting system

users.

Because of the h igh  v o l a t i l i t y  of many databases

as that of an a i r l i n e  reserva t ion  system or a Stock

Exchange information system , in which hund reds of

transactions are made in just few minutes f rom many

d i fferent sources , it is possible for the cond itions in

which one is interested, to change along with the

environment to which the system is referred (e.g. to

make decisions about resche duling cert a in flights or to

change the composition of a given portfolio).

Due to the grea t connection that exists between

the aler ting system - and th e database sh ar i n q mode, the

way a particular implement ation of the former is made ,

very much depends on the way the latter is implemented .

Despite of some minor differ ences that mus t be
F observed from one par ticular implementation to another ,

the most important features of an alerting system are



_ _ __ _  

~ —~~~~~~~ - - —------ -~~~~~- 

• 
• Paqe l9

discussed in general terms in the present chapter.

Some of these features were successfully imp lemented

for  the WAND sys tem and their design can be transferred

to other implementations.

The alerting system for a DBTG works as an

interface between the users ’ programs and the database

itself , as it accepts the definition of alerters as

well as the delet ion of previously declare d alerters;

in perf orming the aler ting mechanism , the alerting

system has also interaction with the DML routines which

modify the informa t ion contained in the database ;

f inally, it makes use of the description of the

dat abase conta ined in the schema , as well as it

accesses the information of the database itself.

Figure 3.1 shows the components of the DBTG system

and their interaction with the alerting system.

The line marked as PHASE I in the diagram

represen ts the communica t ion between the aler ting

system and the user ’s program , which permits the

declar at ion of alerters , as well as deletion and

interrogation of previously defined alerlers.

I?

I



r -

- 

Paqe 2O

— 
—f ~~C H ~~~M A  ]

-

~~ 
A L~~~~T 5t ~Cj [

DM~ e~AsE ~~ I PH~~~E~~~~ 

1 
~D M L

_

A

~~~~~~ 3.1. r,4T EgA cT Io b~ ~~~~~ D1~IT(~ ~~~~~

THE A Rri~~ ~T hT EM.

F

I
PHASE II represents the alerting mechanism itself ,

which cons tantly monitors the mod ificat ions made to the

F
database by DHL r ou t ine s which are in turn called by

the user ’s programs. this second phase includes the

evaluation of conditions contained in the alerters

description , as well as the triggering of the programs

associated to such conditions.

The d e f i n i t i o n of an a l e r t e r is composed of two

parts: the alerting condition and the program

associated with that condition .

“ I -

Page 21

The informat ion provided by the user in the

declaration of alerters , as well as that generated by

the alertinq system as a result of the evaluation of

alerting conditions and the triggering of associated

prog rams , has to be stored in the database and be made

avail ab le to the users ’ Programs.

One of the most important results obtained from

the implementation of the alerting system described in

the previous chapter is the use of DBTG structures for

storing the aler ting system informat ion and its

manipulation by the DML routines of the DBMS .

As it is suggested by our implementation , the

description of the aler t ing struc ture into the schema

can be automatically made by the program thdt compiles

the definition of the schema , and its creation does not

have to be the responsibility of the user.

The spec ial struc ture designed for our aler t inq

system is gener al enough to include most of the

informa t ion that is needed for a full implement at ion

a nd t h e r e f o r e , the s t r u c t u r e needed for other

implementations on shared databases should be very

similar to the one described in the previous chapter.

I

_ _ _ _ _ _ _ _ _ _ _ _ _

------~~~~~~~~~~~~~~ —- --- - —- - -~~~~- -—-~~~~~~~~~~—

- ,•--—-- - —-- — — - - • - -- -- _ -•-••. — - —-- --•--

~

——--••—-•—- - — -
•
- - - --- —

Page 22

The aler ting condit ion , regardless of the way it

is represented in the database , should be equivalent to

a logical expression with the item types defined in the

schema , and constant values as operands. This logical

-
- expression can be the input of a processor which ,

driven by that information , should evaluate the

condition represented at the moment the database is

-

-

modified.

In the alerting system described in the preceding
-

~~ - chapter , the DML MODIFY routine calls the program

ALERT , which in turn checks in the alerting structure

if there are any conditions which become true when the

modification is performed ; in this case, however , the

only condition that the system accepts , is a change in

the value of an item being monitored by alerters .

In a more complete alerting system , it should be

possible to describe more comolicated conditions

involving relations among several item types. Althouqh

it might seem desirable to be allowed to declare any

possible logical condition as an alerting condition , in

d real implementation it is necessary to impose some

restrictions to the kind of conditions that should be

allowed to declare , since not every log ical ex pression

involving item types and const ant va lues , can be easily

(t

~~~~J : T i I i~~~~~iIi



Page 23

or even possibly evaluated. -

The alertin g system is concerned only with those

conditions that become true at the moment a record in

the database is modified , and not with those which are

true before the modification , because of the dynamic

nature of alerters , and the fact that the triggering of

programs should be done only once ; for this reasons,

it is necessary to evaluate the alerting condition for

the information contained in the record before and

after the modification is performed .

We visualize the evaluation of alerting conditions

as being made by a processor which Cdfl he a program 
4

driven by tables , whose inpu t is the description of the

condition which has to be evaluated and which is stored

in the database. As a result of this , the processor

evaluates the condition by operatinq item values and
V 

constant values , to produce a yes—or—no decision about

the truth value of the evaluated condition . This

process is diagrammed in figure 3.2.

From figure 3.2 we can get an idea of the kind of

restrictions that seem necessary for the condition s

acceptable by the alerting system.

~~~~~~~~~ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_

~~~~~



—~~--,-•-—- - _,_ ---— --- _-‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— -

~~~~~~~~~

- -- - -

~~~~~~~

Page 24

D:s~~P~~~~~~L~~~~~~
IICL~I~~IL~ TIOM

xM~j i~ uCTrOM

1~
P1o~~ V Y

- •
~ cufl HC-

1~
_ _ _ _ _ _

-
- •

J TX~4 C~ _________ ~ o~~~ TTt O~4
~~~~T~ ucTLO~

fI~,tj RG ~~Z. T~,t 
~VALU A riCN oT AL~~TII’~

1 

The evaluat ion of the aler t ing condition is

- directed by the description of such condition which

includes item types and con stant values , as well as

operators; some examples of alertinq conditions

follow:

£1.

- 1. — (AGE .GT . 21)

2.— (CHECKBAL .LT. 200 .AND. SAVBAL .LT. 200) .OR.

r (CHECKBAL + SAVBAL .LT. 400)

3.— (AVGE(INCOME) .GT. 5000)

- ~~~~~~~~~~~~~~~~~~~~~



_____ - 
--—- -— - —  - ———~- ——~~

Page 25

In these examples we assume tha t  AGE is an item

type within a person ’s record type; CHKBAL and SAVBAL

are also item types; and , while INCOME is an item

type , AVG E is the name of a f u n c t i o n  which  operates on

all the occurrences of a given item type (INCOME in

th i s  ca se ) ,  to produce the  averaqe  of the item values

belonging to a g iven set type .

The three condit ions shown above are exanmies of

three different levels of complexity that alertinq

cond it ions can be al lowed to achieve .

In the f i rst example , AGE is an item type w i t h i n

the record type which is the object of a modification .

The evaluation of this condition is performed by only

accessin g the item occurrenc e wh ich is ava i l ab le  in the

system buff ers at that moment, and comparing it aga ins t

the constant value 21. -

• The condition of the second example inc ludes  two

item types within the same record type; when a

mod ificat ion is made to this record , the new and old

values of items CFI E CKBA L and SAVBAL are ava i lab le  to

the sys tem in core , so that a logical processor can

p e r f o r m  the e v a l u a t i o n  of this condition .

I



r - -

~~~

- - - V

Paqe 26

In the third example , the alerting condit ion shown

involves the value of just one item type , but as

compared wi th the previous examples , its evaluation

involves the values of other occurrences of said item
V

type , other than that curren tly in the system buffers.

In a DBTG system , one occurr ence of each record

• type is current at a given time , hence a condit ion like
~

that of our third example , requires some additional

process to be done , other than that of operating on

curr ent item occurrences.

For implementa t ion as wel l as processing time and

space considerations , we find desir able to res tric t the

class of alerting conditions that can be processed by

the alerting system , to those condit ions which involve

only occurrences of items belong ing to a record type ,

and which are current in the m omen t the alerting

condition has to be evaluated , i.e., when the recor d is

modified.

It is impor tant to note that this restric t ion will

not p rec lude the capabili ty to perf orm a p rocess like

the one described in the third example , since this can

be included in the program associa ted with that

cond ition .

_______________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _____

I

V •
-

__

Page 27

There exists a trade—off between the cost of the

processes needed to eva lua te the a l e r t i n g condi t ion ,

and tha t per formed by the associated user ’s program.

To illustrate this trade—off , we might consider an

alternative to the third condition above , in which any

change in the value of the item type INCOME is

monitored by an alerter ; the associated program

should , in our case, go through all occurrences of the

record type over which the AVGE func t ion should

operate , in order to calculate the average of these

values .

This program should in turn t r i g g e r the program

that in the orig inal case should be called when the

alerting condition became true , or it could contain its

H process.

A s suggested by our second example , it should be

possible for aler t ing condit ions to include arithmetic

as well as Boolean expressions made of items and

constant values.

The problems of evaluating the correctness of the

logical expression at the moment it is declared into

the database, can be solved by some minor modifications

~~ to similar processors used by p r o g r a m m i n g languages , in

orde r to provide for some validation of the item types

-
~

V

•
_
—--—---. -- •--- -__—

~~~~~
——



p 
~~~V--~~--~~~ - ~~•

Paqe 28

used in such expressions.

In the alerting system described in the previous

chapter , a modification made to an item type which is

being monitored by an aler ter , results in the c rea t ion

of two copies of the record type beinq modified , and

con t a in ing the i n f o r m a t i o n before and a f t e r the

modification is made. These two copies of the record ,

in a further development of the alertinq system , should

be the input for a processor which should evaluate the

alerting condition .

The second part of the declarat ion of an alerter ,

constitutes the program associated with the alerting

condition, which should be triggered when some

mod ificat ion made to the databas e information causes

the alerting condition to become true.

There should be no res trictions for the proq ram

that can be associated w i t h an alerting condition ;

i.e., the associated programs should be allowed to be

as complex as requ i red ,- in order to meet the processing

needs of the database users. However , this requires

further investigation on the way that programs can be

stored in the database and how it can be dec ided wether

a given program should reside in the user ’s working

area or in the database in terms of the size of the

4!

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ - - -

Page 29

program description .
-

In mos t cases , a reduced number of commands

including DML statements should be enough to integrate

the desired programs . For such cases, it should be

possible to store in the database the descript ion of

the programs , which should be retr ieved and execute d by

a Program processor , as shown in figure 3.2.

Once again, for efficiency considerat ions , it

would be desirable to have small programs stored in the

database, and their codification should be made from a

small number of selected commands , so that a simple

processor can accept this description in order to

• execute it.

The set of commands referred above could be like

that provided by DBLOOK in the WAND system (see [5J).

DBLOOK is an interactive processor which provides

access to the database by acce pt ing and executing any

DML command .

DBLOOE (has several additional commands that assist

in the data access, like DISPLAY , REPEAT , and

assignment commands as well as interrogation about

se ts , records and items defined in the schema.

—
- V~~~~~~~

-
~~~~ -~~~~~~ _ -~~~~~~~~~~~ - 

_i~~~~~~
_ 

_ _ _ _ _ _ _ _ _



I

Page 30

The set of commands provided by DBLOOK has proven

to be sufficien t to perform extensive data manipulation

4 to fulfill the most common process requirments in a

database.

-
~ In addi t ion  to s tor ing  Programs  in the database ,

V 

the alerting system should also provide with the

facilities to read the proqram associated to an

dier ting condition from a file outside the database.

This external file may either contain a set of

commands in the special language accepted by the

aler ting system , or it can be a program in the host

language as a FORTRAN or COBOL Program and which is

triggered by the system as the alerting condition
F- ,

becomes true .

The use of the ind i rec t  f i l e  capab i l i t y  should

permit the decl aration of as l a rge  p rograms  as might be

L needed , wi thou t  hav ing  to use the s torage space which
~

- S

Li has been reserved for other kind of data. 

_ _ _ _ _ _ _ _  

H
J T I _ i~~~~T i ~~~ ITT~~ IJI~~~ T 1 ~~



I — —

Page 31

APPENDIX A.

The special structure used by the alertinq system,

described in Data Description Language:

RECORD NAME IS WWWAU SER
LOCATION MODE IS CALC USING WWW IDOSR
DUPLICATES ARE NOT ALLOWED
WWWIDUSR TYPE IS CHARACTER 10
WWWUSFLG TYPE IS CHARACTER 5.

RE CORD NA ME IS WWWAREC
LOCATION MODE IS CALC USING WWWID REC
DUPLICATES ARE NOT ALLOWED

L~-. 
WWWIDREC TYPE IS CHARACTER 10
WWWRCFLG TYPE IS CHARACTER 5.

RECORD N A ME IS WWWAAL RT
LOCATION MODE IS CALC USING WWWIDALR
DUPLICATES ARE NOT ALLOWED
WWWIDALR TYPE IS CHARACTE R 10
WWWALRFG TYPE IS CHARACTER 5.

RECORD NAME IS WWW A ITEM
LOCATION MODE IS CALC USING WWWIDITM
DUPLIC ATES ARE NOT ALLOWED
WWWI DITM TYPE IS CHARA CTER 10
WWWITMFG TYPE IS CHARACTER 5.

RECORD NAME IS WWWACOPY
LOCATION MODE IS VIA WWWRECPY
WWWCPY TYPE IS CHARACTER 25.

RECORD NAME IS WWWAL INK
LOCATION MODE IS VI A WWWI TLNK
WWWLN K TYPE I S  FIXED.

1. SET NAME IS W WWUSALR
MODE IS CHAIN LINKED TO PRI OR

F ORDER IS LAST
OWNER IS WWWA USER
MEMBER IS WWWAALRT
LINKED TO OWNER.

SET NAME IS WWWRCITM
MODE IS CHAIN LINKED TO PRIOR

- -  - -  V - - ~~~~~~--- ~~~~~~~~- - - V --

- ~~~~~~~~~~~~~~~~~~~~~~~~ 
— — — — -



Page 32

ORDE R IS LAST
OWNER IS WWWAREC
MEMBER IS WWWAITEM
linked TO OWNER. 

V

SET NAME IS WWW ALLNK
MODE IS CHAIN LINKED TO PRIOR
ORDER IS LAST
OWNER IS WWWAA LRT
MEMBER IS WWWALINK
LINKED TO OWNER. 

V

SE T NAME I S WWWALCPY
MODE IS CHAIN LINKED TO PRIOR
ORDER IS LAST
OWNER IS WWWAALRT V

MEMBER IS WWWACOPY.

SET NAME IS WWWRECPY
MODE IS CHAIN LINKED TO PRIOR
ORDER IS LAST
OWNER IS WWWAREC
MEMBER IS WWWACOPY.

SET NAM E IS WWWITLNK
MODE IS CHAIN LINK ED TO PRIOR
ORDER I S  LAST
OWNER IS WWW AI TEM
MEMBER IS WWWALINK
LINKED TO OWNER.

~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 

-

~~~~~~~~~~ ~~~ 1~~~~~~~ V~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V : V~~~~~~~~~



r 
!

4 
V 

Page 33

APP ENDIX B.

The schema DDL as accepted by the File Description

Processor for an Alerted Database (FDPA).

In this description the following notation is

used :

1. words that must he replaced with a user—defined

name or value are in lower case.

2. (underline) word or character that must appear.

3. () encloses a phrase that may be ommitted.

4. 1] encloses lines from which only one may be used.

5. 1! encloses phrases that may be repeated .

SCHEMA NAME IS schema—name

(PRIVACY LOCK IS password)

(DATABASE SIZE IS integer PAGES)

(PAGE SIZE IS integer WORDS)

(ALERTED DATABASE).

RECORD NAME IS record—name

LOCATION MODE IS

(VIA set—name

CALC USING i t em—n ame—l

~

— ~~~~~~~~~
— -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -—--_ - -



r v -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

V

•
Paqe 3 4

DI RECT I
V

!item—name—2 TYPE IS

(~~~ RACTER integer

FIXED

REAL

- SET NAM E IS set—name

MODE IS CHAIN

(LINKED TO PRIOR)
U

ORDER IS

[~~~RST

.
5 LAST

NEXT

PRIORI

OWNER IS record—name-l

MEMBER IS record—name—2

L (LINKED TO OWNE R)~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ _ _



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~— --~~~~ ~~~- --

Page 35

APPENDIX C.

As an illustration of the use of the alertinq

system implemented for the WAND system , this appendix

shows the way in which programs can be wr i t ten to
-

-
evaluate alerting conditions by using the information

generated by the alerting system.

For this example we assume that the schema

con ta ins a recor d type ‘CLI ENT’ with the item type

‘NAME ’ as the CALC key and item types ‘CH XBAL ’ and

‘SAVBAL ’ representinq the balances of checking and

savings accounts of a bank clients respectively.

We also assume that three alerters have been

declared into the database: alerter ‘LOWCHK’ monitors

changes made to the item type ‘CHKBAL’ ; alerter

‘LOWSAV ’ monitoring changes in item type ‘SAVB AL’ ; and

alerter ‘LOWStJM ’ which moni tors changes made to either

item type ‘CHKBAL ’ OR ‘SAVBAL’ .

Associated to these alerters , three programs with

the same names respect ively have been wr i t ten , and they

are descri bed in a hypothetical language below:

1 1 -

--

Page 36

PROGRAM LOWCHK (OLD—CHKBAL ,NEW—CHKBAL)

BEGIN

if OLD—CHKBAL Greater than 200 and

NEW—CHK BAL Less than 200 then

print NAME ‘CHECKING ACCOUNT BALANCE TOO LOW’

END PROGRAM LOWCHK.

PROGRAM LOWSAV (OLD-SAVBAL I NEW-SAVBAL)

- - BEG IN

if OLD—SAVBAL Greater than 200 and

NEW—SAVBAL Less than 200 then

print NAME , ‘SAVINGS ACCOUNT BALANCE TOO LOW ’

END PROGRAM LOWSAV.

PROGRAM LOWSUM (OLD—CHKRAL ,OLD—SAVBAL ,

NEW-CHKBAL ,NEW—SAVBAL)

BEGIN -

if OLD—CHKBAL + OLD—SAVEAL Greater than 500 and

NEW—CHKBAL + NEW—SAVBAL Less than 500 then

$4 print NAME , ‘ACC OUNTS BALANCE TOO LOW’

END PRO G RAM LOWSUM.

-E

Page 37

The three r)roordms described above have as

arguments the old dfld new values of the items t h d t have

been modified by other r)roqrdms.

The alerting system , dS a r e s u l t of the

r ! l o dj fj C d t i of l S made to item tynes CH~(r3At1 and SAVBAtJ

credtes occurrences of the record tyPe COPY , containinq

the record CLIENT before the modification was made dnd
4

arter it.

• There is d fourth program called cFI KALERr , w h i c h

is in charge to trigger the oroper routine, in order

that the desired condition be evaluated. CUKALERT

constantly analyzes the occurrences of record tyPe COPY

under the mentioned ALERT records , calling the

-
• corresnonding program when a nair of COPY records Is

V

found .

PROGRAM CEI~ALERT (ALERTER)

DO FOR EVER

BEGIN•
wait for ALERT—WA~(E

find ALERTER record

For all COPY records DO

—I

~~~~~~~~~~~~



V —
~~~~~~~~~

- ----- “--

Page 38

BEGIN -

If (ALERTER is LO W CH K) then

call LOWCHK (OLD—CHKBAL ,NEcI-CHKBAL)

If (ALERTER is LOWSAV) then

call LOWSAV (OLD-SAVBAL ,NEW-SAV BAL)

If (ALERTER is LOWS UM) then

call LOWSUM (OLD—CHKBAL ,OLD-SAVBAL ,

NEW-CHKBAL ,NEW — SAV BAL)

-
• END

END PROGRAM CHKALERT.

The program CHKALERT has as argument the name of

the condition that has to be evaluated. Althouqh the

programs described above should be somewhat different

in the WAND system which uses FORTRAN as host language ,

they are written in an English—like language in order

to make them easy to underst and for those who are not

familiar with that language .

It is now possible to monitor the occurrence of

the three conditions described above , namely: (1)

CHKBAK LESS THAN 200 , (2) SAVBA L LESS THAN 200 , and (3)

CHKBAL + SAVBAL LESS THAN 500.

9.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --

Pdqe 39

Let ’s suppose thdt the Program •.~~ AL R is executed

in a terminal A dnd thdt modificdti ons dre being made

to the dc*t dhdS C f r o m  another terminal B dt the some

time. The user in terminal A Cd fl choose the conditions

he WdntS to monitor by assinninq the corresoonding flame
— 

- 
to the a l er t i n q  i n q u i r y  m ade by the C L-fl<.’\LR p r oord m .

Th i s  or o qr am  is going to a na l y z e  the conten t s  of the

ddtdbdse in a continuous way,  triqgerinq each t i m e  the

evaluation of the c;orrespondinrt condition (either

‘LOWC ~1 ~~‘ , ‘LOtqSAV’ , or Lows U M ’ )

Whenever a modification is made f r o m  t e r m i na l  13

that causes the condition being monitored to become

true, the corresponding Program will send d message to

terminal A with the name in the record ‘CLrCNT ’ and the

new value of the items. Thi s  e v a l u a t i o n  Cd fl be stooped

by interrupting the execution of the p ro gram CH KA T .R.

I

I 

_ _ _  

_ __ _  

j

__________________________



- 

Pane 40

REFERENCES .

• [1) Howard Lee Morgan . “An In ter r u o t Bd Sed

Orqdnizdtion for Mdnaaement Informdtion Systems ”.

Communications of the ACM. December 1970.

121 Cdrl Hewitt. “PLANNER: A Lan~ uage for

Proving Theorems and -~anipulatinq Models in a

Robot” . Massachusetts Institute of Technology.

Ph. D. Thesis. 1971.

(3J Stanley F. Cohen. “LDEMON LISP Alerter

System (As a DAISY Interface)” . Workini PaPer

76—05—07. Dept. of Decision Sciences.

University of Pennsylvanid.

‘-I

( 4 )  CODASYL Data Bose Task Group , Ap r i l  ‘71

Renort . Association for Computing Machinery .

F

~

_ _  

-



-
~~~~~~~~~~

P~qe 41

151 Robert Gerritsen , Ricardo Cortes , Jim Riheiro ,

Ruth Zowader. “Wharton Alerting ~Jetwork Database

User ’ !ide ” . Dept. of Decision Sciences. The

Whart chool. University of Pennsylvania.

(61 Howard Morgan and Robert Gerritsen .— ”Dynamic

- R e s t r u c t u r i n g of Data Bases w i t h G e n e r a t i o n Data

S t r uc t u r e s ” . Dept. of Decision Sciences , workinq

paPer 75—12—02 , University of Pennsylvania.

- 4

V..

4’

-

p. . -

~~

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_

DI STRI B u T  I ON LI ST

D L - p a r t m e n t  of the  N avy — O f f i c e  of N, vnl F 1 , - a r c h

Data  Base Management  Sys tems  Pro j t - c t

Dof ~ ase Docu :~en t a t J o n  Center (12) OffIce of N a v a l  P.esearch (2)
C; er on  S t a t i o n  In f o rm a t i o n  Systems Program
A 1 I V ’~- . a ir ia , VA 22314 Code 437

Arl ington , VA 22217

Of f I c e  of Naval Resea rch  (6) O f f i c e  of ~Z~ v a l  R. ~~t - a i

A r l i n a t o n , VA 22217 Code 102~P R r . - r t h  Of f i c e , F- - t o f l
495 Su;:inrr St r e t

~os t on , MA 02210

-

V O f f i c e  of ~~ a l Ro ’— c - a rch O f f i c e  of N~ va1 R, ccarch
Th- . -~~ -h ) f f i  ce , CII I  -ago Branch  O f f i  ce , Pasaden a
536 ~ ~dh  C l a r k  ~ t i --et 1030 East Green Street

-
~~~~ C !iI r V ~~~o , ] l l i n is  60605 Pasadena , CA 91106

N~w Y rk Area O f f i c e N: v a l F(~~~~~I V .~~~r (.h I ~.b o r a t ür y (6)
fl5 ;-d ~~:y -- 5th Floor Tcr l- i -j l c a l T n f c r; — t i on !)l~ ’i:- i on
N w Y r k , ~Y I Cu0 3 C d e 2 6 2 7

- -~~ I n~~t rn , OC 20 375

-¼ .
Dr. A. L. S l f ~i c - k y (l i f I c e of ‘~-~~- . j I ~~~~~~~~~
S f - l i i f i c -‘ -J ’ s or (‘ ‘ c 455
C ~~~~~~~~ of t ’ e ~- I T i ~~e Cu-~~~s - r i -~~ t n , ‘A 1221 7
(Code -~D--1)
h’~- is h in g t o n , OC . I)~~30

O f f i c e of N a va l F~ - s e ;~rch N val F 1 L (I i l l S T : ~. L~~i a t t i y (~• n t & ~r
(‘i d e 458 -~ h .~~ c . d ~o f i ‘~- , r ~ T - c ’. nol i~ y Dlv i S ion
‘ r l i ~~~1on , VA 2 2 2 1 7 C -do 5200

~: n Dicgo , CA 92 152

‘lr. F . I I . (‘, l e1~~ - i e r Capta in Grace M. Hopper
N. va 1 ~~ I p Fc-~~-; r ch and NAI COM/MI S P l a n n i n g Branch
D.~vel j i - e n t Ci nt e r (OP—9 16D)

i t - . ti on & N~. th . a t l c s Dept. O f f i c e of Chief of N aval Op e r a tio n s

~a , N D 20 084 W a i h i n g t o n , DC 20350

Mr. Y~~~~ ~ • Vfl j :
V
.j) on . B ur e a u of L i b r a r y nnd

Te chn ica l D i r c c t o r In f o r m a t i o n Science Research
In f on ~a tion Sys tems Division R u t g e r s — The S t a t e U n i v e r s i t y
(OP— 9 11G) 189 College Av enue
O f f i c e of Chie f of Naval Op e r a t i o n s New Brun~~~ick , N J ((1½03
~~~~~ ~~~~~~~~~ DC 20350 A t t n :  Dr .  P - n r y  \‘cos

~~ P r o f e s s o r  Onar Wing -

Colu ~lbia  U n i v e r s i t y
Dept of E l e c t r i c a l  Eng in e e r in g

~i:~d Cc~: p u t e r  Science
N~ w York , NY 10027

A 

— V

-—-~~ - —~~T 
—


