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PREFACE

s

This investigation was conducted by the U. S. Army Engineer Water-

ways Experiment Station (WES) under the sponsorship of the Office, Chief
55 of Engineers, Department of the Army, as a part of Project CWIS 311L5,
}ﬂ "Liquefaction Potential of Dams and Foundations Under Earthquake

Excitation."

The investigation was conducted by Drs. G. Y. Baladi and B. Rohani
2 during the period September 1975 through May 1976, under the general di-
E rection of Mr. J. P. Sale, Chief, Soils and Pavements Laboratory (S&PL),
and Drs. J. G. Jackson, Jr., Chief, Soil Dynamics Division (SSD), F. G.
McLean, Chief, Earthquake Engineering and Vibrations Division (EE&VD),
and W. F. Marcuson, III, Project Leader (EE&VD). The report was
written by Drs. Baladi and Rohani.

COL G. H. Hilt, CE, and COL J. L. Cannon, CE, were Directors of
WES during the preparation of this report. Technical Director was
Mr. F. R. Brown.

v
3
i
o
Ik
s
'3'".
&
5
..
o
e
a8
o

<y
e et cac

»
e

L (R
-

e oy ] 4 '} .
L POu
-

(=




i A b ts ol e
B d

Pl

o T,

ol

e

eyt

v

e g claiagin s o S

CONTENTS

BRI B e e s RS T

CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) UNITS OF
MERCHBIEERD . & cols e o i e e e Bt e P

PARIES T TREROPHEPION o s o e faiis o,

BaeREVOVRMG & Tyl Sy v s S e e R an e tl e ey g
OB leeElve o M catial o A R R S e o T T e
75007 R AR

PART II: DEVELOPMENT OF CONSTITUTIVE MODEL . .

Mechanical Behavior of Cohesionless Soil
ConSEIEUEIVE MOBEk . it e i st Lo e i mah s st baihs e

PART III: BEHAVIOR OF THE CONSTITUTIVE MODEL IN AN
AXISYMMETRIC TRIAXTAL TEST CONDITION . . . . .

Isotropic Consolidation Phase .
Shear Phase .

PART IV: COMPARISON OF LABORATORY TEST DATA WITH
MODEL PREDICTION

Experimental Program . . . .
Material Constants . SRl
Comparison of Test Results W1th Model Behav1or S ke

PART V: CONCLUSIONS AND RECOMMENDATIONS

REVERENORS o 0 s ety g R e R o 50" 5
TABLE 1

FIGURES 1-1L4

PLATES 1-6

APPENDIX A: FUNDAMENTAL BASIS OF ELASTIC-PLASTIC MATERIAL
MODELS .

Basic Concepts from Continuum Mechanics . .
General Description of Elastic-Plastic Constltutlve
Models . . .

FIGURE Al

O~N 94 OO\ E Fow

13

1k
15

18

18
18
il

21
23

Al
Al

A3




CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI)
UNITS OF MEASUREMENT

U. S. customary units of measurement used in this report can be con-

verted.to metric (SI) units as follows:

Multiply By To Obtain

pounds (force) per
square inch 689L. 757 pascals

tons (force) per
square foot 95.76052 kilopascals

pounds (mass) per
cubic foot 16.01846 kilograms per cubic metre
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LIQUEFACTION POTENTIAL OF DAMS AND FOUNDATIONS

DEVELOPMENT OF AN ELASTIC-PLASTIC CONSTITUTIVE
RELATIONSHIP FOR SATURATED SAND

PART I: INTRODUCTION

Background

1. Liquefaction may be defined as the "transformation of a granular
material from a solid state to a liquefied state."l The process which
leads to liquefaction in saturated soil is believed to be associated with
an increase of pore pressure and, therefore, a concurrent decrease of
intergranular stresses. Liquefaction, and subsequent flow, occur
whenever the intergranular stresses and, consequently, the shearing
strength of the material are substantially reduced. Experimentally it
has been shown that liquefaction can occur under both monotonically

3,4

increasing2 and cyclic loading conditions. The mechanism of liquefac-

tion during cyclic loading, however, is believed to be somewhat different

5

than that under monotonic-type loading. For example, in conventional
triaxial tests (saturated undrained condition), liquefaction under mono-
tonic loading can occur only for very loose sand. Under cyclic loading,
on the other hand, it is possible to achieve liquefaction for dense as
well as loose materials.

2. Regardless of the loading condition, before a rational analysis
of a liquefaction problem in saturated sand can be performed, a constitu-
tive relationship describing the stress-strain-pore pressure response of
the material must be available. The constitutive relationship must be
expressed in three-dimensional geometry and be applicable to any state
of stress and deformation. Furthermore, the numerical values of the
parameters (material constants) in the constitutive relationship should
be readily derivable from meaningful laboratory test data. The constitu-
tive relationship will serve two purposes: (a) it provides a means for

the interpretation and organization of laboratory test data for various
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states of stress and deformation, and (b) it can be utilized, in con-
Junction with the field equations, to perform effective stress analysis
for dams, or other earth structures, when subjected to different transient
or static-type boundary loading conditions. Once a calculation scheme

for effective stress analysis has been established, the potential for
liquefaction can be assessed by examining the stress-strain-pore pressure
distribution within the earth structure of interest. It should be pointed
out that within the framework of this type of analysis, it is the process
that leads to liquefaction which is predicted rather than the actual flow
of the liquefied material.

3. As part of requirements previously mentioned, a constitutive
relationship for saturated sand must be able to treat a two-phase material
consisting of solid particles and pore fluid. Within the framework of the
theory of continuous mass media, which is the basis for all stress and de-
formation analyses, there are, in principle, two approaches which can be
taken to formulate a constitutive equation for a two-phase system. The
first approach is based on the continuum theory of mixtures.6 The second

1

approach, which may be referred to as a "pseudo mixture theory," is based

on the elastic-plastic theory of solids.7

In this approach, a two-phase
system is simulated by simply limiting the overall compressibility of the
material to that of the pore fluid and solid particles when drainage is

not allowed. The continuum theory of mixtures in the first approach is
quite complicated in its full generality. A simplified version of the mix-
ture theory has been applied to solution of liquefaction problems in satu-
rated sand.8 However, because of the assumption that the solid skeleton of
the material is elastic, the theory could not predict progressive increase

7 The elastic~plastic

of pore pressure under cyclic loading conditions.
constitutive relations are generally based on physical observation of
material behavior under laboratory conditions, and have been used success-
iho) Ak

They

are not mathematically too constrained and one could easily incorporate

fully for the solution of a number of geotechnical problems.

any physically reasonable material behavior, at least in an ad hoc manner,

in their formulation.
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Objective

nstms e

L. The overall objective of the analytical studies of the lique-

A

faction and deformation problem of saturated sands is to develop a

|
i
|
|
{
|
i

rational calculation framework for performing effective stress analyses

|
|5

in realistically posed boundary-value problems. As was pointed out

previously, once such a calculational framework has been established, the
potential for liquefaction under a specified boundary loading condition §
can be assessed. The investigation is to be carried out in three phases: ' 1

a. Phase I. The first phase of the investigation will be

n: devoted to formulation of a three-dimensional elastic-

i plastic isotropic constitutive model for saturated sand.

A During this phase attempts will be made to incorporate

3R in the model some of the basic laboratory observed stress-
: strain-pore pressure behavior of saturated sand. The
constitutive model will then be examined in light of labo-
ratory test data pertinent to the liquefaction phenome-
non, at least qualitatively, such as undrained triaxial
test results, and any shortcomings of the model will be
delineated.

LS

b. Phase II. During the second phase of the investigation the
constitutive model will be extended, if necessary, so that
it can "successfully" simulate laboratory behavior of satu-
rated sand pertinent to the liquefaction problem.

Boamsrs. b

c. Phase IITI. During this phase, efforts will be made to incor- 4

porate the constitutive model into a suitable numerical com- :
puter code for subsequent use in conducting effective stress
analysis (and assessing liquefaction potential) under various
boundary loading conditions.

The objective of this report is to document the results of Phase I of the

investigation.

Scope

5. The development of the constitutive model is presented in Part II.

The behavior of the model under axisymmetric triaxial test condition is

demonstrated in Part III. Part IV contains the results of comparison of

model prediction with laboratory behavior. Conclusions and recommendations

P
o
1
b
¥ s
.
¢

are given in Part V. Appendix A contains the fundamental basis of elastic-

plastic constitutive models and is included for reference purposes and

future use.

6
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PART II: DEVELOPMENT OF CONSTITUTIVE MODEL

Mechanical Behavior of Cohesionless Soil

TR

6. The mechanical response of a cohesionless soil when subjected to

externally applied loads is a function of the volumetric and deviatoric

[ 2
SRR

stress-strain properties of the material. The stress-strain properties
s are, in turn, affected by such factors as void ratio, degree of saturation,
interstitial pore fluid, and the loading history of the material. Void
ratio, in particular, reflects the state of compaction of the material,

e.g., loose and dense. Loose sand compacts and exhibits a ductile-type

E; stress-strain behavior when subjected to a deviatoric state of stress.

Dense sand, on the other hand, dilates and exhibits a brittle-type stress-

;‘i strain behavior when subjected to a similar stress condition. The boundary
X between the loose and dense states is characterized by the void ratio at

: which shearing deformation occurs without volume change. This void ratio
e is referred to as "critical void ratio" and its magnitude varies inversely
with mean normal stress.7 This basic difference in the physical behavior
of loose and dense sand seems to exist only at relatively low confining

i,L pressures. At very high confining pressures (i.e., at confining pressures

above the preconsolidation pressure) the shearing stress-strain behavior

Fassii. dbe

ko of dense sand also resembles a ductile-type behavior and is accompanied
by compaction. Therefore, the stress-strain behavior of sand is highly
dependent on the confining pressure or the superimposed hydrostatic”state
of stress.

7. The stress-strain behavior of saturated sand also varies greatly
depending on whether sand is in the drained or undrained state during
loading. Since the pore fluid is relatively incompressible, in the un-

drained condition pressure builds up in the pore fluid. The effective

R B Ry e

stress carried by the soil particles is the total stress minus the pore
pressure. It is, therefore, the effective confining pressure that
influences the stress-strain behavior of saturated sand.

8. In summary, the stress-strain behavior of a saturated sand

depends on its initial void ratio, the current and past loading history,

,...
gy,
- ,."
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The fundamental basis of elastic-plastic constitutive models

i3

1

ij

iJ

and the effective confining pressure. Yield and deformation in the

Figure 1 is presented.

is presented in Appendix A. The elastic behavior of the models is de-
fined by Equations All through Al6 of Appendix A. The plastic behavior
of the models is described by Equations AlT through A28. The complete
elastic-plastic description is governed by Equations A29 and A30. To
apply these equations to a two-phase continuum, consisting of solid
skeleton and pore fluid, the normal stress components should be divided
into two parts; the stress carried by the solid st;ucture, referred to as
effective stress, and the stress carried by pore fluid, referred to as

pore water pressure. Mathematically, total stress can be expressed as

or, in tensorial form, as

For example, in the case of triaxial test in cylindrical coordinate system

z ,r,and 0 , Equation 1 takes the following form

!
= A |
(¢} O'Z

undrained condition typically resemble the characteristics shown in !
In the next section, the development of an elastic-plastic |

constitutive relationship that partially describes the behavior shown in

Constitutive Model

=0 +u (1a)

Gov = g F 5, (1v)

total stress tensor

effective stress tensor

Kronecker delta




ot E
b e

N 5

P st S

e T
ps Tt

s T S

T
AT I e NS0 i b RN e S

where cZ and or = oe are, respectively, the axial and radial stress
components. The mathematical forms of various response functions for the
proposed constitutive relationship for saturated sand are presented in
the following paragraphs.

10. For the elastic (recoverable) response of the material it is
assumed that the bulk modulus K is a linear function of pressure; thus,

ESuin it Ji/3 =k K P’ (3)

where Ki and Kl are material constants which can be determined from

the slope of the unloading curve from an isotropic consolidation test
1

l r t
' ' g + 20'
7 4 Z r CBREE]
and: B is the effective mean normal stress (P = ———— for triaxial

3

test). The elastic shear modulus G is assumed to be constant (in general

(Figure 2). The quantity J is the first invariant of stress tensor

the shear modulus is a function of the state of stress and strain. For
simplicity and as a first order of approximation, however, it is assumed
to be constant).

11. For the plastic behavior the loading function § (Equation A9)
is assumed to be isotropic and to consist of two parts (Figure 3): an

ultimate failure envelope which serves to limit the maximum shear strength

e

and a strain-hardening cap

of the material

= 4 ! 2 2 = 2
= = + T o =
F Q/Jz, Iy 5 x) (Jl L) RS J, = (% = L) (5)
The quantity Eé is the second invariant of stress deviation tensor

1
(J2 = (0z - or)2/3 for triaxial test). The hardening function «k which
controls material compaction and/or dilatation is assumed to be equal to the

plastic volumetric strain (e ) and takes the following form

kk




The intersection of the cap with the Jl axis is denoted by X . The
ratio of the major to the minor axis of the elliptic cap is denoted by

1
R . The value of Jl at the center of the cap is denoted by L which

is related to other parameters by the relation

3/3

Equation 7 indicates that the failure envelope (Equation 4) intersects
each ellipse at the crown.

12. The material constants KO and K2 in Equation 6 are deter-
mined from the slope of the loading curve from an isotropic consolidation
test (Figure 2). The conditions of unigueness and stability have to be

satisfied in determining the material constants Ki e K RS , and

1 0
K2 . These conditions are satisfied if the following inequalities are |
adhered to: j
|
2k (8a)
|
K, 2K, (8b) :

The parameter M (Equation 4) is indicative of the frictional strength of

the material and is related to the effective angle of internal friction
1
¢ through the following relation (for triaxial compression)

M = _.6__5_19_.2_'_ (9)
3= sin ¢

13. In summary, there are seven material constants that describe

the behavior of the proposed model, i.e., Ki . K K Gy My

s s s
and R . A more complicated (and possibly more rialisgic) sodel can be
developed by replacing these constants with appropriate mathematical
expressions that are functions of stress and/or strain invariants.

14. It should be noted that the proposed model allows for the el=-

liptic caps to expand as well as to translate relative to the origin of

10
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the Jl ,\’Jg axis. Thus, the model incorporates both isotropic and

some form of kinematic hardening. In the special case where X = 2L ,

tiei, R = e the strain-hardening cap is not allowed to translate
and only expands isotropically. In this case, the number of material

const ‘uts reduces to six and the plastic behavior of the model becomes
similar to the model proposed by Schofield and Wroth.7 In the present

model, however, only a portion of the elliptic cap is used as loading

= [ (]
£ (\fJ2 e if L>J;

function, i.e.,

1 P . 1
F(\/J s I ,ekk)lfL<Jl

Schofield and Wroth, on the other hand, use the entire cap as loading
function. It is believed that the use of the entire cap violates the
Drucker12 stability postulate which is sufficient, although not necessary,
to satisfy all thermodynamic and continuity requirements of the incremental
theory of plasticity. Stability ensures that all physically reasonable
initial-boundary-value problems are properly posed in the mathematical
sense.

15. An undrained condition is simulated by the model by imposing
the condition

e . =0 (11)

where dekk is the increment of total volumetric strain. The model then
calculates the stress path (and the associated material response)
corresponding to Equation 11. This stress path is assumed to be the
effective stress path that the material will experience during an un-
drained test. Within the framework of elastic-plastic models (Appendix A)

Equation 11 can be satisfied by allowing the increment of plastic volumetric

strain (deik) to be the negative of the increment of elastic volumetric




) . For the drained condition the model simply calculates

< E
strain (dekk
the response of the material (including volumetric strain) for any
specified stress path. The response of the material under axisymmetric

triaxial test condition is demonstrated in Part III.

o
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PART III: BEHAVIOR OF THE CONSTITUTIVE MODEL IN
AN AXISYMMETRIC TRIAXTAL TEST CONDITION

16. Most of the mechanical testing of sand for engineering purposes
is performed in the triaxial test apparatus. It is of interest, “herefore,
to investigate the behavior of the proposed model in a triaxial test under
both drained and undrained conditions. Adopting the z-axis of a cylindri-
cal coordinate system (z , r , and 6) as the axis of symmetry of the soil
sample, the effective stress tensor and strain tensor associated with the

] L}
triaxial test become (0, = o and €, = € )
0 P 0 r

a! 0 0
VA
L~ '
oij 0 a; 0 (12a)
0 0 [o
L T
BT ok =
€ 0 0
VA
€55 = 0 €. 0 (12b)
0 0 %_J
ESSR r

1 1 Posy
The variables P = Jl/3 (effective mean normal stress), J2

invariant of stress deviation tensor), and skk/B (mean volumetric strain)

(the second

associated with the above stress and strain tensors take the following

forms
¥ : o; % 20;
P = Jl/3 T (13a)
T, = %- (o} - oI")2 (13b)
€ e -4 2
%%\L = g‘k = z 3 = (130)
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Isotropic Consolidation Phase

17. During isotropic consolidation phase of the triaxial test

o; = o; = Jl/3 =P (1ka)
€
o e <
£ 7 B M (14p)

The relation between the elastic volumetric strain increment and the

increment of effective mean normal stress is given as (see Equation A12)

o E
dP =K de, (15)

where the elastic bulk modulus K 1is given in Equation 3. Substituting
Equation 3 in Equation 15 and integrating the resulting expression provides

the following relation between the elastic volumetric strain EE and

kk
pressure
K
E_ L1 L
Sk = (K. P + l) (16)
2 il
The relation between the plastic volumetric strain Eik and pressure is
given in Equation 6. During isotropic consolidation %- in Equation 6

1
should be replaced by P , thus

K K

I 2’ 1

Gk = - o [K P % 1) - g in {K. St 1) (17)
2 0 1 it

In view of Equations 16 and 17 the total volumetric strain takes the

following form

- i pn | P' + ) (18)
B St 3 -

Equations 16 through 18 provide a complete specification for the behavior

of the material during isotropic consolidation test.
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18. The qualitative behavior of the model during isotropic consoli- J
dation is shown in Figure 4. The slope of the pressure-volumetric strain

curve during virgin loading can be obtained from Equation 18

! ~
L _-kp +k =K (19)
Kk

Combining Equations 19 and 17 results in

]
KB + K.
-~ P
K= 1 - = —IS-—_. (20) /
5 deP deP ;
1+ (KlP + Ki) k% 1+K k?
dap dp ]

The second term in the denominator of Equation 20 produces an apparent
softening of the modulus % due to plastic compaction. For a very

dense sand, the softening term is very small, and the modulus k

approaches the elastic bulk modulus K . Also, if a sample is consolidated
from point 1 to point 2 (Figure 4), unloaded from point 2 to point 3, and
then reloaded from point 3 to point 2, the model dictates that the reload-
ing behavior is purely elastic and the second term in the denominator of
Equation 20 is zero. This type of behavior, however, may not be completely

true for an actual sand and is only a mathematical idealization.
Shear Phase s

19. During the shear phase of a conventional triaxial test cell

pressure is constant

0_ = constant = P (21a)
r ¢

do = 0 (21b)

where Pc is the confining pressure at the end of the isotropic con-

solidation phase. For an undrained test the volumetric strain is constant

Ty

15




during the shear phase and is equal to the volumetric strain achieved at
the end of the consolidation phase of the test. Accordingly, for an ,

undrained test

E P
= + =
dekk dekk dekk 0 (22a)
which leads to |
de_ = - & ae (22b)
9 r 2 2z {
The plastic volumetric strain, or the hardening function, during the shear |
¥ phase is given by Equation 6. In view of Equations 16 and 6, the total
;; volumetric strain becomes
4
: K K
=™ 1
# ekk-fl{—ln[fl-P +l}+-l—-2.n (K—233(-+1]
: 1 i 2 0
Ii K
1 1 X
il G 3y (23)
3 = [K. 3 1]
1
& |
W For the undrained condition, since €1k is constant and is equal to the
rF‘ volumetric strain achieved at the end of the isotropic consolidation phase j
;@: (Equation 18), Equation 23 becomes
N

1 K
| 1 2 )
b & o '—‘P -
‘ €xk K2 n (Ko . + lj constant
b | P=P
. :
! Ky K K
SRl SRR T = SRR T = SR
i i 2 0 3 i

% 1

The equation of the elliptic cap (Equation 5) for triaxial configuration

takes the following form

8 e e 2 R e
| (0 -2 +& (-0 -&-D =0 (25)

16

- ——— T TSR Ry T T N
# ,




Equations 24 and 25 can be combined to determine an expression for the
effective stress path (i.e., o; - o) versus P') for the undrained con-
dition. Having determined the effective stress path the pore water pres-
sure can be obtained from Equation 1. The total strain can be obtained
from Equation A29. A computer program, called TDRIVER, was developed to
numerically solve the above system of equations and generate various plots
of stress-strain-pore pressure response for undrained conditions. This
program and its flow charts are available upon request. Typical results
from computer code TDRIVER are presented in Part IV. Figure 5 depicts
qualitatively the effect of the parameter R on the stress-strain-pore
pressure response for conventional triaxial test. It is noted from
Figure 5 that R has a substantial influence on the behavior of the
model (the value of R reflects the relative density of the material,
i.e., the denser the material the smaller the value of R).

20. In the case of drained test the response of the material, for

a given stress path, is determined from Equations 23, 25, and A29. Typical

results for drained condition predicted by the model are shown qualitatively

in Figure 6.

17
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PART IV: COMPARISON OF LABORATORY TEST DATA WITH MODEL PREDICTION

Experimental Program

21. The experimental program consisted of two series of tests con-
ducted on saturated samples of Reid Bedford Model sand. The gradation
curve for the Reid Bedford Model sand is shown in Figure 7. The material
consists of subround to subangular particles. Each test series consisted
of a load/unload isotropic consolidation test and four conventional con-~
solidated undrained triaxial tests. Saturation of the specimens was
achieved by backpressure saturation. The first test series was conducted
on specimens having a relative density of approximately 76 percent. Rela-
tive density for the second series of tests was about 38 percent. Test
data from the first series of tests are documented in Plates 1 through 3.
Plate 1 depicts the results of the isotropic consolidation test presented
in terms of a plot of effective mean normal stress versus volumetric strain.
The results of the triaxial tests are shown in Plates 2 and 3 in terms of
principal stress difference and excess pore pressure versus axial strain,
respectively. The corresponding results from the second test series are

documented in Plates L through 6.

Material Constants

22. As was pointed out previously, there are seven material con-
stants associated with the proposed constitutive model which must be deter-

mined experimentally. Four of the material constants (Ki o KO , and

s
KQ) are associated with the isotropic consolidation test (seelFigure 2)s
The parameter M 1is the slope of the ultimate failure envelope of the
material plotted in the principal stress difference-effective mean normal
stress space (see Figure 3). The elastic shear modulus G (assumed to
be a constant in the proposed model) can be estimated from unloading
slopes of principal stress difference-principal strain difference plots.
The parameter R (the ratio of the major to the minor axis of the ellip-
tic cap) can be determined directly from Ko test results. For this

study, however, since Ko test results were not available, the value of

18
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the parameter R was selected in order to obtain a good fit to the experi-
mental effective stress paths. The value of shear modulus was selected to
obtain a reasonable fit to experimental stress-strain curves. The final
values of the material constants for the two test series are given in

Teble 1.

Comparison of Test Results with Model Behavior

23. Figures 8 through 10 depict comparison plots of test results with
model behavior for the first test series (relative density 76 percent) for
consolidation pressures of 0.72 and 7.2 tsf. TFigure 8 shows plots of effec-
tive stress paths in the principal stress difference-effective mean normal
stress space. Principal stress difference versus axial strain relations
are shown in Figure 9. Figure 10 depicts plots of excess pore pressure
versus axial strain relations. The corresponding set of plots for the sec-
ond test series (relative density 38 percent) is presented in Figures 11
through 13. For the purpose of model calculations the yield function F
(the elliptic cap) was used as loading function from the beginning of the
test until the effective stress path reached the ultimate failure envelope
f . From then on, the ultimate failure envelope was used as loading func-
tion. During the first part of the calculation (i.e., using F as loading
function) excess pore pressure increased and reached its maximum value when
the effective stress path reached the ultimate failure envelope. From then
on, excess pore pressure decreased and eventually became negative as the
test continued. As observed from Figures 8 through 13, the proposed consti-
tutive model qualitatively simulates the stress-strain-pore pressure response
of the material for both test series.

2k. 1In order to evaluate the effect of the parameter R on the
stress-strain-pore pressure response of the material and to show the capa-
bility of the model in simulating the behavior of loose sand, three calcu-
lations were performed for a hypothetical material having properties
K, = 70 tsf , K} =37 , K, = Lo tsf , K, = 3.7, M=1.02 , and G = 50 tsf.
The results of the calculations are presented in Figure 1L for three

different values of R . The curves marked B are associated with a

19
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base line value of R = RB = 5.09 . This value of R corresponds to

ééz which, as was pointed out previously, allows for the strain-hardening
cap to expand isotropically only. The curves marked A and C are associated
with R values of hRB and RB/M , respectively. It is noted from j
Figure 14 that the parameter R significantly controls the stress-strain-
pore pressure response of the material.® In general, for a given confin-
ing pressure, the greater the value of R the smaller the shear strength
of the material and the larger the induced pore pressure. For a given con-
fining pressure, smaller values of R are associated with higher shear

strengths and lower pore pressures. 3

¥ TFor the hypothetical material the calculations were terminated when

the effective stress path reached the ultimate failure envelope f .

20




PART V: CONCLUSIONS AND RECOMMENDATIONS

25. A three-dimensional elastic-plastic isotropic constitutive

relationship has been developed that qya%itatively simulates certain

T ————

characteristics of the stress-strain-pore pressure response of saturated

Sl NS i S 4

i granular materials. In particular, the constitutive relationship accounts

for the hysteretic behavior of pressure-volumetric strain response of

3 sand, the effect of superimposed hydrostatic stress on shearing response,
and the shear-induced volume change.
26. The constitutive equation does not treat work-softening behavior E

(Figure 1, curve No. 2), and can not predict a progressive increase of

pore pressure under low-amplitude (subyield) cyclic loading conditions.

Both of these phenomena are important features which contribute to lique-

faction of saturated sand. 1
27. It is recommended that during the second phase of this investi- :

gation the present constitutive equation be extended to account for the

strain-softening behavior anc-the progressive increase of pore pressure
observed under cyclic loading conditions. This extension is a major task
from a theoretical point of view, but can be accomplished within the basic
structure of the present model. Preliminary investigations have indicated
! that such an extension may be accomplished in a number of ways. It may be
necessary to try several techniques and adopt the one which best simulates
the experimental data while at the same time satisfying all theoretical
requirements. However, as a basic requirement to any feasible technique
the compressibility of pore fluid and soil skeleton must be included in

the analysis of undrained behavior.

-

28. If the extension of the present model is successfully accom-

- Ty

;i plished, it is further recommended that during Phase II of this study the
,: shear modulus G and the parameter R (the ratio of the major to the
5; minor axis of the elliptic loading function) be replaced by appropriate

functional forms in order to quantitatively, as well as qualitatively,

simulate the stress~strain-pore pressure response of saturated granular

Rl od I

materials. This modification is a relatively simple task (in comparison

b

-
7




with extension of the model discussed in paragraph 27) from a theoretical
point of view. The particular functional forms of G and R , however, |

must be selected based on experimental observation of material behavior

under diverse loading conditions.

s T

-

B BN

P o

e ¥




REFERENCES

Youd, T. L., "Liquefaction, Flow, and Associated Ground Failure," 4
Geological Survey Circular 688, 1973, United States Department of
Interior, Washington, D. C.

Castro, G., "Liquefaction of Sands," Harvard Soil Mechanics Series

No. 81, 1969.

Seed, H. B., and Lee, K. L., "Liquefaction of Saturated Sands During
Cyclic Loading," Journal, Soil Mechanics and Foundation Division,
American Society of Civil Engineers, Vol 92, No. SM6, 1966, pp 105-13k.

4. Ishihara, K., Tatsuoka, F., and Yasuda, S., "Undrained Deformation and i
Liquefaction of Sand Under Cyclic Stresses," Journal, Soils and Founda-
tion, Japanese Society of Soil Mechanics and Foundation Engineering,
Vol 15, No. 1, Mar 1975, pp 29-4k.

5. Casagrande, A., "Liquefaction and Cyclic Deformation of Sands; A
Critical Review," Harvard Soil Mechanics Series No. 88, Cambridge,
Massachusetts, Jan 1976, Presented at Fifth Panamerican Conference ]
on Soil Mechanics and Foundation Engineering, Buenos Aires, Argentina,
Nov 1975.

6. Passman, S. L., "Mechanics and Thermodynamics of a Mixture of a Granular
Material with a Fluid," Mathematics Research Center, MRC Technical i
Summary Report #1391, University of Wisconsin-Madison, Madison, E
Wisconsin, Apr 197.L.

;j 7. Schofield, A. N. and Wroth, P., "Critical State Soil Mechanics,"
! McGraw-Hill, New York, 1968.

j 8. Ghaboussi, J. and Wilson, E. L., "Liquefaction Analysis of Saturated
Granular Soils," Proceedings, Fifth World Conference on Earthquake
Engineering, Rome, 1973.

9. Geoffrey, R. M., Liam Finn, W, D., and Seed, H. B., "Fundamentals of
Liquefaction Under Cyclic Loading," Soil Mechanics Series No. 23,
University of California, Berkeley, Feb 197k,

10. Baladi, G. Y. and Nelson, I., "Ground Shock Calculation Parameter

™ Study; Report 3, Influence of Type of Constitutive Model on Ground
; Motion Calculations," Technical Report S-71-L, U. S. Army Engineer

Waterways Experiment Station, Vicksburg, Mississippi, April 197L.

11. Nelson, I., Baron, M. L., and Sandler, I., "Mathematical Models for
Geological Materials for Wave Propagation Studies," Shock Waves and
Mechanical Properties of Solids, Syracuse University Press, 1971,
(presented at the 17th Army Material Research Conference, Sep 1970).




Mz el

o~
A

-

3 M 1

s
7€
¥

g, TN

&
%

2.

13.

Drucker, D. C., "On Uniqueness in the Theory of Plasticity," Q.
Applied Mathematics, Vol 14, 1956.

Handleman, G. H. et al., "On the Mechanical Behavior of Metals in
the Strain-Hardening Range," Q. Applied Mathematics, Vol L, 1947,
PP 397-LOT.




Table 1
Numerical Values of Material Constants
for Reid Bedford Model Sand

K. K

i K 0 K G#*
. Test Series tsf it tsf 2 M tsf R¥*
ie‘;: 1
(relative density 90.0 2LL.0 72.0 160.0 1.53 240.0 0.05
1 = T6%)
2
(relative density 57.5 208.0 36.0 142.0 1.33 100.0 1.5
= 38%)
4| 1
5 |
LI
i»
s
b
"
|
'g
.
i{ * GSelected to give good fit to experimental data, in lieu of being 5
"' determined from separate tests.
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S APPENDIX A

FUNDAMENTAL BASIS OF ELASTIC-PLASTIC MATERIAL MODELS

Basic Concepts From Continuum Mechanics

iy » 2 A

1. In engineering practice it is convenient, and often reasonable,

3 to disregard the structural details of materials and consider their gross
behavior only. Engineering materials are therefore described, or charac- ;

terized, mathematically within the frameworks of the theory of continuous i

mass media. Neglecting thermal effects, the basic field equations that

govern the motion of a continuum are the continuity equation*

3p =
2 (p Vi>,i 0 (A1)

and the equations of motion

x %533 +F, -pa, =0 (A2)
W where

gj p = mass density

£y t = time

Ti ¥ " components of velocity vector

t‘ Uij = symmetrical stress tensor

ﬁ' Fi = components of body force

;: a; = components of acceleration vector

2. Equations Al and A2 constitute four equations that involve ten
unknown functions of time and space: the mass density p , the three

velocity components Voo and the six independent stress components o,

o1

* Indices take on values 1, 2, or 3. A repeated index is to be summed
over its range. Comma in the subscripts represents a derivative.
Quantities are referred to rectangular Cartesian coordinates Xi .
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The body force components Fi are known quantities and the acceleration
components a, are expressible in terms of the velocity components v, -
Therefore, six additional equations relating the ten unknown variables
are required in order to determine the motion or deformation of a medi-
um when subjected to external disturbances such as surface forces and/or
displacements. In continuum mechanics, such relations are stated by con-
stitutive equations (or material models), which relate stresses to defor-
mation and history of deformation. The difference between constitutive
equations and field equations (Equations Al and A2) is that the latter
are applicable to all materials, whereas the former represent the intrinsic
response of a particular material or class of materials.

3. The general form of a constitutive equation may be expressed

by the functional form

- (Dmn SRS e DR 5 ¢ (A3)

where the deformation-rate and spin tensors, Dmn and qu , respectively,

are related to the components of the velocity vector vy

]
n
o+
<
+
<

(AL)

Q
n
o+
<
1
<

Pq

and the strain tensor S i is related to the components of displacement

vector u, - For small displacement gradients
=3 _+u ) (85)

Equations Al through A3 constitute ten equations which include ten unknown
variables. These equations will lead, in conjunction with the kinematic
relations given by Equations A4 and A5 and boundary conditions, to a com-

plete description for solution of a boundary-value problem.

A2




! 4. The mechanical behavior of a number of engineering materials i
is described within the framework of elastic-plastic constitutive relation-
ships. The development of the specific functional form of Equation A3

for the elastic-plastic models is given in the following section.

: General Description of Elastic-Plastic Constitutive Models

5. The basic premise of elastic-plastic constitutive models is
the assumption that certain materials are capable of undergoing small plas-
tic (permanent) as well as elastic (recoverable) strains at each loading
increment. Mathematically, the total strain increment is assumed to be

the sum of the elastic and plastic strain increments, i.e.,

delj = defJ # deij (A6)
| where
1 deij = components of the total strain increment tensor
ki de?J = components of the elastic strain increment tensor
delip'j = components of the plastic strain increment tensor
i
;j 6. Within the elastic range the behavior of the material can be

described by an elastic constitutive relation of the type

E
= A
i deij 13K1 (omn) do,, (AT)
&y where
‘
k. Aijkl = material response function
E‘ dckl = components of stress increment tensor
LS
?‘ The behavior of the material in the plastic range can be described within
! the framework of the generalized incremental theory of plasticity. The

ey

L

*
mathematical basis of the theory was established by Drucker12 by

* Raised numerals refer to similarly numbered items in the References
at the end of the main text.

A3
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introducing the concept of material stability with the following impli-
cations:

(a) yield surface (loading function) should be convex in stress
space

(b) yield surface and plastic potential should coincide (this is
referred to as associated flow rule)

(c) work "softening" should not occur
These three conditions can be summarized mathematically by the following

inequality

do (A8)

i %13 2
The above conditions allow considerable flexibility in choosing the form
of the loading function (§) for the model, which serves as both a yield

surface and plastic potential. For isotropic materials the yield surface

may be expressed, for example, as

§ (3, ,\/32 s k) =D (n9)

where
Jl = cn = first invariant of stress tensor
.= l—S. S.,, = second invariant of stress deviation tensor
2 2
SiJ = ciJ - (Jl/3) GiJ = stress deviation tensor
Tty

di. = = Kronecker delta
J o 14

a hardening parameter

i

K
The hardening parameter «k , in general, can be taken to be a function of

plastic strain tensor e? The yield surface of Equation AQ may expand

or contract as the harde;gng parameter «k increases or decreases, respec-
tively (Figure Al).

7. Conditions a, b, and ¢ above, taken in conjunction with
Equation A9, result in the following plastic flow rule for isotropic

materials
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(A10)
0 if §<0

where dX 1is a positive scalar factor of proportionality, which is non-
zero only when plastic deformations occur, and is dependent on the partic-
ular form of the loading function.

Elastic strain increment tensor

8. For isotropic elastic materials strain increment tensor

(Equation A7) takes the following form

defj = ;%i-dJl + %E' dsiJ (A11)
where
K = elastic bulk modulus
G = elastic shear modulus
The bulk and shear moduli can be functions of the invariants of stress
tensor. Accordingly, we will assume that K = K (J1 , Eé 3 35) and
G =G (Jl 5 J.O 3 J3) where 35 is the third invariant of stress deviation

tensor. Equation All can be written in terms of the hydrostatic and

deviatoric components of strain and stress increment tensors, i.e.,

deik = % S e 00, (A12)
3K (Jl s o J3)
defj - IR as, | (A13)
2G (Jl s Iy s J3)
where
deik = increment of elastic volumetric strain
de?J = elastic strain deviation increment tensor




In order not to generate energy or hysteresis within the elastic range,

the elastic behavior of the model must be path independent. The material
should then possess a positive definite elastic internal energy function
(W) which is independent of stress path. The strain energy function can

be written as

eij
W= é oij de

iJ
o aJ das,
il 1 S o
i 3
0 9K (J1 » I, s J3) 2G (J1 s I s J3)
N
Jl Jl S'j e |
=1 - e S =6, 48,
0 9K (3 ,73,,7,) 0 26 (3, ,3,,J;)
2 c= —
£ ?l d(Jl) & ?2 dJZ
LT G T2 T
0 18k (3, ,J,.Jd3) 0 2 (7, > J? > J5)
In order for W to be independent of stress path, the integrals in
Equation AlLk have to depend only on the current values of Jl and 35 .
Therefore, the bulk and shear moduli have to be expressed as
= (
K=K({J)
(A15)
¢ =6(J,)

Further, K and G must always be positive. Since during elastic defor-
mation the hardening parameter (k) is constant, the bulk and shear moduli

can also be expressed as

(A16)
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Plastic strain increment tensor

9. The plastic strain increment tensor is given by Eguation AlO
where the loading function § is given by Equation A9. The hardening
function in Equation A9 could be taken as being equal to plastic volu-

metric strain eP thus

kk 9
K= € (A17)

The use of Equation AlT will allow the yield surface to expand as well as
to contract, Figure Al. The plastic loading criteria for the function

§ are given as

> 0 loading

ag = c do, . = 0 neutral loading (A18)
Bcij 13

< 0 unloading

Because deij = 0 during unloading or neutral loading, as well as for
§ < 0 , Equations All through Al3 are used to determine the purely elas-
tic strain changes. The prescription that neutral loading produces no
plastic strain is called the continuity condition. Its satisfaction leads
to concidence of elastic and plastic constitutive lews during neutral
loading.le’13
10. Like the elastic behavior, the plastic stress-strain relation
can be expressed in terms of the hydrostatic and deviatoric components
of strain. Applying the chain rule of differentiation to the right-hand
side of Equation A10 yields

AT
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lj 3J 30 J av’:- 301J

or 7

del.:J = dx[ —ﬁ—slj (A19)
A A

Multiplying both sides of Equation Al9 by 5,3 gives
i

= 3ax 2 (A20)
3 Ak

The deviatoric component of the plastic strain increment tensor (deij)

can be written as

P 1
= . A21
de., . de s 3 de Gij ( )

Substitution of Equations Al9 and A20 into Equation A21 yields

dor, =k Bl g (A22)
S odna
2
11. In order to use Equations A20 and A22, or Equation Al9, the
proportionality factor d\ must be determined. This can be accomplished

in the tollowing manner. From Equations A9 and AlT the total derivative

of 6 becomes

PYRR SEPC SR TR S Rt N Y (A23)
3J 1 = Wf:_ Hej ikl aeP kk
2VJ2 0 J2 kk

In view of Equations Al2, Al13, and A20, Equation A23 becomes

E
G de
3Kdefk—-6— —Ls +3dA—L—-6—'0 (A2L)
i~ T \, l ae
J2 3J2 Kk
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Substituting Equation A6 into Equation A24 results in

3K (de

Coa B Pyt o 9f 3f
™ dekk) L + = (dteiJ - deiJ) = 13 = -3 dA aJl .7 (425)

or

3K Ae i"—ﬁ—+G—‘i—s Sy = 3k acf M4 G—ﬁ——s P

kkaJ V_av— kkaJ V——Bv_g

- 34X —5— —5—- (A26)
l 35 Kk
P
Substituting the values of de and del.D from Equations A20 and A22,

kk k]
respectively, into Equation A26, we obtain

2 2
3K de 4 , 6 —-ﬁ—s de =9Kd>\(i§—) + G dx . X

kkaJ .V—a_v— ij 81 B-VE_?

a2 B (A27)
37, 5P |
Kk
Solving for dX , we obtain
3K %g— de . F=u B TN 5,
- /7 a\/
ax T2 (A28)

Total strain increment tensor

12. The total strain increment tensor can be obtained by combining
Equations A6, All, Al9, and A28; thus,

]
]
1
!
|
|
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: gy Y Mg, s A
i =
sk ihy cal-2 .Y g2 3 1 2\]J2 7,
9J — 3J1 3 P
i S §VJ2 €

Similarly, the stress increment tensor can be written as

doij = K dekk Gij + 2G deij
(A30)
s Mo el B

aJl kk V—_ .V'— mn s.
i 5 2 > 3K%§_Gij+2(}_aﬁ__._l_tj_

3 of BLJ_ 1 ANT. A7
1\9K G o (2L} 5 . V7, 45,

ay J

2
Equation A29, or Equation A30, is the general constitutive equation for
an elastic-plastic isotropic material. To use these equations it is only

necessary to specify the functional forms of XK , G 5 | ande el

Al0

s,




.,
e

T PR |

ﬁ"’*’ i g SR IS N RS e Tt I e
o Eah A i SR ». o R .

A

FAILURE ENVELOPE \}/ _ il

= o)

R<RK

| 2

f’@',\ﬁ: ")

Figure Al.

Typical yield surface for an elastic-plastic model
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