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1. SUMMARY

l.1 Scope

The goal of this program was to provide guidance for de-
velopment of optimum metallurgical structures to retard fatigue
crack growth in high-strength aluminum alloys, yet maintaining
essential mechanical and physical properties.

Alloys selected for this program were variants of commercial
high~-strength aluminum alloys. By employing various processing
techniques, a large and systematic variety of structures was
produced. Twenty-five different structures which fulfilled
initial requirements for a set of designed experiments were pro-
duced; 13 based on the 7XXX series (Al-Zn-Mg-Cu) aluminum alloys
and 12 based on the 2XXX series (Al-Cu-Mg) alloys. Three addi-
tional structures were produced and tested after preliminary
analysis of test results of the original 25. All structures were
tested in sheet gauges (0.085 inch for 7XXX and 0.065 inch for 2XXX).

The following table summarizes the microstructural and

composition variants examined:

TXXX 2XXX
Type of Strengthening Precipitate Type of Strengthening Precipitate
Copper Content Dislocation Density
Amount of Constituent Amount of Constituent
Size of Dispersoid Amount of Dispersoid
Type and Amount of Dispersoid Copper Content

Grain Size

Constant amplitude fatigue crack propagation tests were con-

ducted over the AK range of about 4 to 20 ksivin. in room




kol

temperature air at 94 to 99% and 5 to 10% relative humidity and at

test frequencies of 2 and 20 Hz. Stress ratio was 1/3.

Selected structures were also tested in the higher humidity
environment at AK 2 to 8 ksi/in. and at nominal frequencies
of 20 or 50 Hz.

1.2 Results and Discussion

Results are summarized in Tables 1, 2, and 3 and are discussed
in the following sections, 1.2.1 through 1.2.7.

1.2.1 1Insoluble Constituents

Insoluble constituent particles are those particles formed
during solidification by separation of impurity elements Fe and
Si. Effects on crack growth rate of decreasing the volume fraction
of insoluble constituent particles depended on the levels of both
toughness and AK. Alloy-temper combinations which developed
relatively low toughness with normal levels of constituent particles
(7075-T6 and 2024-T86) benefited from decreasing the volume fraction
at levels of 0K of about 15 ksi/in. or higher. Alloy-temper com-
binations which developed relatively high toughness (2024-T31)

showed no effect.

" e sl B

1.2.2 Dispersoids

Dispersoids are small (.01 to .5 um) solid state precipitates
containing Mn, Cr, or Zr formed at temperatures above 750°F.
Changing the amount and type of dispersoid did not influence crack
growth rate. Increasing the size and interparticle spacing of the
Al ;Mg,Cr dispersoid in 7075-T6 increased toughness and decreased
crack growth rates at higher 4K levels of about 15 ksivin. anrd

ireater.
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1l.2.3 Grain Size

Although the larger grain sizes studied in this work extended
well beyond the size range encountered in commercial sheet fabri-
cated from ingots, crack propagation rates were not affected in
high-strength 7XXX alloys.

1l.2.4 Copper Content

In 7XXX alloys increasing Cu content in X7080-type alloys
decreased fatigue crack growth rates in both high and low humidity
air at AK above 5 ksiv/in. Limited data at AK levels below
4 ksivin. in high humidity air indicated that the lower Cu alloy
had slightly better fatigue resistance, but additional tests are
needed to confirm this indication. 1In 2XXX alloys, reducing Cu
content (2048 vs 2X24) was generally beneficial in improving crack
growth resistance with the greatest improvement noted at low AK.
The role of copper on fatigue crack growth mechanisms of both is
not completely understood. It is hypothesized that copper content
has a strong relationship on crack growth kinetics in presence of
moisture. At intermediate AK, improved performance of 2048 alloys
over 2X24 alloys is attributed to increased fracture toughness
because of lower volume fraction of CuAl, and Al,CuMg.

1.2.5 Dislocation Density

Increasing the amount of stretch in alloy 2024 after quenching
increased crack propagation rates. Based on life prediction an-
alysis, an increase in percent stretch from 1 to 5% increased the
crack propagation rate and reduced fatigue life. This decrease in

life is attributed to a decrease in ductility or toughness and,

6
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consequently, a smaller capability to accommodate strain during the
fatigue process.

1l.2.6 Strengthening Precipitate Type (Temper)

The type of precipitate significantly affected the fatigue
crack propagation rate in 2XXX alloys at intermediate AK. GP
zones (T3 tempers) provided a more fatigue-resistant microstructure
than did S” transition precipitate (T8 tempers).

The effect of precipitate type was related to material duc-
tility, response to cyclic loading in strain-controlled fatigue
tests, and sensitivity to moisture. Structures containing GP
zones were more ductile (higher tensile elongation, energy to
propagate a crack in tear test, and notch toughness) than structures
containing S” precipitate aged to equivalent or higher monotonic
strength levels. Moreover, structures with GP zones can develop
higher stabilized cyclic strength after repeated reversed cyclic
plastic strains. These results are in agreement with models which
predict that increasing the product of cyclic strength and ductility
decreases fatigue crack growth rate.

Precipitate type in 2X24 alloys had no significant effect on
crack propagation rate at lowest AK levels tested in high humidity
air. Convergence of growth rate for T3 and T8 tempers at very low
AK levels (<3 ksiv/in.) was attributed to similarities in sensi-
tivity to environment. Above the very low 4K levels, T3 tempers
produced lower crack growth rates than T8 tempers in both high

and low humidity.




Precipitate morphology also affected fatigue crack propaga-
tion characteristics in 7050-type alloys. Crack growth rates
progressively decreased with increasing degree of precipitation.
Magnitude of the improvement depended on moisture content of the
surrounding atmosphere. Therefore, the phenomenon is believed to
result from modifications in sensitivity to the environment.

1.2.7 Environment and Test Frequency

Increasing relative humidity increased crack growth rates in
all structures, but the magnitude of the effect depended upon
microstructure, the inherent mechanical properties (viz, strength
and ductility), and kinetics of the crack growth rate process in
hostile environments. Environmentally-enhanced fatigue crack
growth was noted in low humidity environments where moisture con-
tent was sufficient to cause environment-frequency interaction.

Frequency-environment interaction was observed in both 2XXX
and 7XXX alloys. Decreasing frequency from 20 to 2 Hz in general
resulted in either comparable or higher growth rates. This effect
is attributed to the greater amount of time per cycle available
for environment to interact with freshly created metal surfaces.
In some 7XXX alloys, however, lowering frequency decreased crack
growth rate in high humidity air. Decreasing cyclic growth rate
with reduction in frequency is attributed to increased corrosion
activity per cycle which blunts the crack and/or builds up cor-
rosion residue on mating fracture surfaces, increasing crack
closure forces which retard crack growth. Differences in frequency
response to different microstructures is therefore related to crack

growth kinetics of the material-environment interaction.




1.3 Conclusions

Conclusions are presented in detail in Section 6. The most
significant conclusions regarding effects of microstructure and
composition are summarized as follows.

1. Strengthening precipitate had the largest effect on
fatigue crack propagation rate at AK levels above
about 4 ksivin.

2. Amounts of the major alloying elements had the largest
effect on fatigue crack propagation rate at 4K levels
below about 3 ksivin.

3. Increasing dislocation density as modified by stretching
; 2XXX alloys after quenching had a lesser but statisti-

k cally significant effect on increasing fatigue crack
propagation rate.

P 4. Insoluble constituent particles had little effect and
: dispersoid particles had no effect on fatigue crack

3 propagation rate at AK levels much below about

i 15 ksi/in. for both 2XXX and 7XXX alloys.

5. Grain size from 5 to 65,000 grains per mm® had no
effect on crack growth rate in peak and overaged
7XXX aloys.




2. INTRODUCTION

Prior to the 1960's, aircraft structure designers tended to
emphasize tensile yield and ultimate strengths to provide the most
favorable strength to weight ratio. Introduction of linear elastic
fracture mechanics concepts, however, indicated that structural
members containing cracks could fail at gross section stresses
considerably lower than the yield strength if resistance of the
material to unstable propagation of a crack (i.e., fracture tough-
ness) was low. Consequently, designers began requesting improve-
ments in fracture toughness which resulted in development of such
high toughness aluminum alloys as 2124, 7475, etc., to increase
aircraft reliability. However, analysis of the failure mechanisms
in aircraft structural members indicates that any further improve-
ments in aircraft reliability or structural efficiency will depend
on development cf improved fatigue-resistant alloys. Consequently,
need has arisen for more definitive information concerning effects
of metallurgical structure as well as alloy composition and temper
effects on resistance to fatigue crack propagation.

Improvements in fatigue resistance to high-strength aluminum
alloys lie in ability to produce metallurgical structures which
resist formation of microstructural instabilities which can lead
to fatigue crack initiation and which also resist subsequent crack
growth. Toward this goal numerous investigations have been con-
ducted to identify microstructural features which influence and

control the fatigue process|[l to 21].* However, conclusions

*Brackets indicate references.
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reached in these studies are far from complete and have left many
microstructural effects in doubt. For example, little information
is known about the role of both strengthening precipitates and
dispersoids (0.01 to 0.5 um high temperature, solid state precipi-
tates) in the fatigue process. In addition, the effect of larger
(v2 to 50 um) solidification or constituent particles on fatigue
properties of aluminum alloys, although the subject of many in-
vestigations, is not well understood. Effects of grain size and
shape are also not entirely understood.

Also contributing to lack of understanding of the fatigue
behavior of aluminum alloys is the interaction between micro-
structure and testing variables such as frequency and environment.
For example, investigators([22] have shown that fatigue crack
propagation of aluminum alloys can be quite sensitive to atmos-
pheric moisture content and test frequency. Consequently, if these
variables are not controlled, e.g., moisture content of ampient
lab air, conflicting results may be obtained by different investi-
gators. Thus, not only must effects of microstructure be considered,
but effects of testing variables such as environment and frequency
must also be considered since these variables certainly influence
the fatigue process through their interaction with microstructure.

The alloy design selected for this program was purposely
intended to avoid the necessity of making comparison with fatigue
data presently available in the literature since, as stated above,

it is a difficult, if not impossible, task to compare data generated
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in different laboratories. Therefore, all comparisons were internal

and subject to highly controlled test procedures to assure as nearly
as possible identical circumstances. This procedure provided a
means to evaluate statistically the interaction of mechanical,
microstructural, and environmental variables on fatigue crack propa-
gation.

Alloys and microstructures were selected on the premise that
other mechanical and physical requirements must be maintained if a
viable commercial aluminum alloy is to become a reality. It is
important to emphasize these latter material requirements because
any loss in yield strength or fracture toughness, for example, must
not be such that the material will fail by monotonic loading, yet
be "fatigue resistant." In addition, any major alteration of
alloying elements to improve fatigue properties must not be at the
expense of other properties such as stress-corrosion cracking (SCC)
resistance or resistance to fatigue crack initiation. Consequently,
the approach used in this program in developing aluminum alloys
having improved resistance to fatigue crack propagation was to
restrict the major alloying elements to the range which has been
shown to be near optimal for strength, toughness, and resistance to
SCC. Resistance to fatigue crack initiation was checked to ensure
that improvements in propagation behavior would not lower resistance
to initiation.

In summary, this program was designed to provide guidance on

development of optimum microstructures required to resist fatigue




crack growth in high-strength aluminum alloys while maintaining
essential mechanical and physical properties.

3. MATERIAL AND PROCEDURES

3.1 Alloy Selection

Alloys selected for this program were variants of high-strength
aluminum alloys which develop acceptable strength, toughness, and
corrosion characteristics by controlling the type and amount of
second-phase particles. 1In the high-strength, precipitation-
hardening aluminum alloys, three types of second-phase particles
are present which control static strength and toughness: (a)
strengthening precipitates (~0.001 to 0.5 ym) formed during natural
or room temperature aging and artificial or elevated temperature
aging below 400°F, (b) small (0.0l to 0.5 ym) solid state precipi-
tates containing Mn, Cr, or Zr called dispersoids formed at
temperatures above 750°F, and (c¢) the larger (»2 to 50 ym) particles
called constituents formed during solidification by separation of
impurity elements Fe and Si (insoluble constituents) and alloying
elements such as Cu and Mg (partially soluble constituents). These
microstructural features encompass a range in particle sizes and
interparticle spacings from a few Angstroms to thousands of Ang-
stroms. This range in particle sizes also includes the range of
incremental crack growth normally encountered during fatigue crack
propagation tests. Thus, by employing the proper alloy design
program, effectiveness of each of the particular second-phase

particles can be assessed with regard to fatigue crack propagation
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rate. Figure 1 compares the range of incremental crack growth with
the size* of the microstructural features in these structures.
Effects of Cu content, dislocations introduced by stretching
after the guench from the solution heat treatment, and grain size
were also examined.
The following table summarizes the microstructural and

composition variants evaluated:

7XXX 2XXX

Type of Strengthening Precipitate Type of Strengthening Precipitate
Copper Content Dislocation Density

Amount of Constituent Amount of Constituent

Size of Dispersoid Amount of Dispersoid

Type and Amount of Dispersoid Copper Content

Grain Size

3.2 Experimentation

Listed in Table 4 are the alloys selected for this program
along with their chemical analyses. By employing various processing
techniques, a systematic variety of structures was produced. Ini-
tially, 25 different structures were produced; 13 structures based
on 7XXX series (Al-Zn-Mg-Cu) aluminum alloys and 12 structures based
on 2XXX series (Al-Cu-Mg) alloys. The 7XXX series were produced as
0.085-in. thick sheet uuad the 2XXX series as 0.065-in. thick sheet.
After initial data were analyzed, additional structures were pro-

duced by heat treatment to test new hypotheses.

*It would be more correct and meaningful to have used interparticle
spacing rather than particle size for this comparison. However,
due to segregation of the elements such as Fe, Si, Mn, Cr, and

Zr, during solidification and their slow diffusion rate during sub-
sequent thermal treatments, the interparticle spacing is nonuniform
and is impossible to estimate meaningfully. Thus, the size of the
particles was used as indicator of the scale of these features.

14

SESIEFSRNEN VISPITR




IN. M
103 :
10 CONSTITUENT
0% l
10°®
AVERAGE
crRACK 10° } K
ADVANCE ¥ '
Tol e 3
PER
CYCLE o¢ k DISPERSOID
0 PRECIPITATE
07 |
| Jio® ~L
o8 | PRRENE: TR OO0 b S0 - ] 1
3 5 8 10 15 20
AK, KSI YIN.

Figure 1 Relates Incremental Crack Advance to Size of
Microstructural Feature

-15-

-




z20-° r6* 90" 8¢ - -- GZ°'e  vv°T T0°0
Al 70" 90° I8° == - BTy BF'T 107D
0 SR S R - ~- - vE*y Iv°1 --
T0° v0°* 90° Tp® == - oLy E¥v°1l.  TOH*0
20°  GE* de* . 9p’ -- - 9€°v EV°T --
zo- 40 R | 3¢ g -- (€° LT T IS*S
o R & i 8z vo:  -- 0Z° OL°'T LS°*T 68°S
T0° v0o° SO° ge*  -- - 66°0 92°Z 96°S
20" po* 90" 6€°  -- -- i¢°2 BL*Z 06"S
o Sl S < RS ¢ | L - -- 0E*Z 22°2 ¥58°S
o Il | SR - e | el ¢ GE°C HEcZ - 50"
TL TS CE U 17 1D no ST ug

8v0¢C
(UWTH) ¥ZTC
(uWtTy) ¥ToT
(UWoT) pZTZ
(UWoT) ¥Z0ozT

SLvL
SLOL

080LX
(nDTY) 080 LX
UW+0S0L
0S0L

% °*3IM ‘UuoT3Tsoduwo)d

SAOTIVY 40 NOILISOdWOD TVDIWIHO

¥ dT9YL

AOTTVY

16




3.2.1 Microstructural Examination

3.2.1.1 Pre-Test Characterization

Initial microstructural characterization was carried out using
both optical and electron microscopy. These techniques provided
qualitative and quantitative information concerning these structures
from grain size measurements to the strengthening precipitate size
and shape. X-ray diffraction techniques were employed to determine
tne degree of recrystallization as well as to identify the second-
phase particles. In addition, electron microprobe analysis was
used to identify the larger constituent particles.

Quantitative information concerning the volume fraction of
second-phase particles greater than 1 ym was obtained using
Quantitative Metallurgical System (QMS) equipment. Measurements
were carried out at the highest magnification available with this
instrument, v700X. At this magnification, the resolution of the
instrument is 1 um. Seventy applications of the field, ~10,000
um‘ per application, were applied to each structure in each spatial
direction; surface, cross-sectional and longitudinal. All measure-
ments were carried out on lightly etched metallographic specimens.
Measurements were conducted on the automatic mode to minimize
operator errors.

3.2.1.2 Post-Test Characterization

Analysis of fatigue crack propagation fracture surfaces was
carried out using optical microscopy, sScanning electron micro-
scopy, and electron microscopy using two-stage, plastic-carbon

replica techniques. Selected specimens were examined with these
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techniques at various AK levels to help establish the influence of
metallurgical structure on crack propagation. In addition, electron
microprobe analysis of the fatigue fracture surface was employed to
study the role of the large constituent and dispersoid particles.

3.2.2 Static Properties

Longitudinal and transverse tensile tests were made on all
structures. Tear tests and notch-tensile tests were employed as
indicators of fracture toughness for these materials[23]. The
tear test measures energy required to propagate a crack (unit crack
propagation energy - UPE) while the notch yield ratio (NYR)
measures ability of material to deform plastically in the presence
of a stress raiser (NYR = notch tensile strength/yield strength =
NTS/YS). Increasing UPE and/or NYR can be correlated to increasing
fracture toughness.

3.2.3 Fatigue Initiation

Limited fatigue crack initiation tests were also conducted on
the 25 structures. This evaluation was performed to ensure that
any of the 25 microstructural variants considered would not
seriously detract from fatigue initiation resistance. Procedure,
results, and conclusions are presented in Appendix A.

3.2.4 Fatigue Crack Propagation

All fatigue testing was conducted under a set of highly con-
trolled test conditions in constant amplitude tension-tension
loading on a closed loop electrohydraulic MTS materials test system.
The test configuration was a 3-in. wide center crack tension

specimen (Figure 2) of the T-L orientation (direction of principal
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Figure 2  Center Crack Tension Fatigue Crack Propagation Specimen
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loading normal to the sheet rolling direction and direction of

crack travel parallel to the rolling direction). Intermediate

level AK tests (AK>4 ksiv/in.) were conducted in both high humidity
air (94 to 99 percent relative humidity (R.H.)) and low humidity
air (5 to 10 percent R.H.) at room temperature (70°F). Low level
AK tests (2 to 8 ksiv/in.) were conducted in the high humidity
environment only.

Specimen crack starter notches were extended to a minimum of
0.10 in. by precracking. The original 0.20 in. machined starter
notch was fatigue precracked to a total crack length, 2a = 0.4 in.,
prior to making fatigue crack growth measurements. All data were
generated at a stress ratio, R, minimum to maximum applied cyclic
stress, of one-third, but precracking was initiated at R = 0.05
with the requirement for tests over the intermediate levels of
AK that maximum precrack load never exceed the maximum test load.
For the low AK tests, precracking was expedited by shedding loads
in gradual stepwise increments with increasing crack length to
avoid any significant transient effect of prior load history
affecting subsequent test data. The last 5% of precracking in all
cases was accomplished at test loads and in the test environment.
The loading wave form for all tests was triangular.

Crack growth measurements were made using an optical gridline
technique where the crack was followed visually (5X magnification)
as it traversed a series of reference gridlines photographically
printed on the specimen surface. Crack travel was measured as a

function of elapsed cycles and cyclic crack growth rate averaged

20




over the total crack length according to the following relation-

ship:

N| =

sal . Ifszal U2 %P TPl 41, 2, 3,
ANi ZLNi

Ny = B; 9

where:
2ai = the total crack length (averaged through the

thickness) at the Lth measurement point,

N. = the elapsed cycles at the ith

s measurement point.

For a valid crack growth rate measurement, the increment of total
crack travel had to equal or exceed 0.02 in. The stress intensity
expression employed in determining the Aa/AN vs AK relationship

is given by the following relationship([24]:

AR = Ao/nzi .Y 22i/w R Gl SO DL
where:
211 284 < 285 3 i
Y(zzi/w =1+ 0.128)—]~ 0.288 sl b 1525 =1 -

and where Ao is the applied gross stress range . W

“max min
the total specimen width, and Zli the intermediate total crack

length within the ith increment of growth; that is,
24, = l/2(2ai + 2ai_qn

3.2.4.1 Intermediate AK Tests (AK 4 to 20 ksivin.)

The nominal applied maximum gross stress, max’ Was 8 ksi for
all tests. Within a single test, the effect of frequency of load
application was assessed by "frequency switching" between 2 and 20

Hz. Table 5 gives a schedule of center notch specimen loading

21
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conditions for all tests. Over the crack growth range of interest,
this procedure was followed for all specimens to achieve maximum
and uniform data for meaningful statistical analysis. Some pilot
tests were run on selected 7XXX structures to observe reproduci-
bility of data. Good reproducibility was confirmed using two or
three replicate tests (for example, Figure 3). Good agreement was
also observed in overlapping data for low and intermediate AK
tests (Figure 4 and Appendix E).

3.2.4.2 Low AK (AK 2 to 8 ksivin.)

After preliminary analysis of results of the intermediate AK
tests, some structures (1, 3, 4, 9, 10, 11, 13, 16, 17, 21, 24)
were tested in high humidity environment only at nominal test
frequencies of 20 or 50 Hz. Limited data were obtained at 2 Hz.
The growth rate range was chosen to ensure overlapping between
high and low ranges. Precracking loads and load ranges were
successively reduced in small increments when approaching the
test loads to avoid any transient effect. Once desired low crack
growth rates were achieved during precrack, cyclic test loads were
established and held constant for accumulation of crack growth
rate data.

4. RESULTS

4.1 Microstructural Characterization

A summary of the microstructural features resulting from the
selected alloy and fabrication procedures is given in Tables 6 and
7. In Addition, Figures 5 to 33 serve to illustrate the micro-

structural features described in Tables 6 and 7.
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Figure 5  Microstructure of 7050-T76, Structure No. 1
240,000 grains/mm3. (100X)
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Figure 6  Microstructure of 7050+Mn-T76, Structure No. 2
110,000 grains/mm3. (100X)




Figure 7 Microstructure of X7080 (hi Cu)-T76, Structure No 3
20,000 grains/mm3. (100X)
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Figure 8 Microstructure of X7080 (hi Cu)-T76, Structure No. 4
Mixed Grain Structure. (100X)
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Figure 9  Microstructure of X7080 (hi Cu)-T76 (lg.g.s.).
Structure No.8. 5 grains/mm3. (100X)
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tructure of 7075-T61, Structure No. 9.
(100X)

65,000 grains/mm3.

Figure 10 Micros
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T6, Structure No. 10.
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Figure 12
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Figure 13

Microstructure of 7475-T6, Structure
130,000 grains/mm3. (100X)
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No. 12




Microstructure of 7075-T61, Structure No. 13.
(100X)

5000 grains/mm3,

Figure 14
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: Figure 15 Microstructure of 2024 (hi Mn)-T31, Structure No. 14
| 13,000 grains/mm3. (100X)
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Figure 16 Microstructure of 2124 (hi Mn)-T31, Structure No. 15
11,000 grains/mm3. (100X)
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Figure 17 Microstructure of 2024 (lo Mn)-T31, Structure No. 16
L 20,000 grains/mm3. (100X)
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Figure 18 Microstructure of 2124 (lo Mn)-T31, Structure No.

13,000 grains/mm3. (100X)
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Structure No. 24

T31,
(100X)

Figure 19 Microstructure of 2048
5000 grains/mm3.
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Figure 20 Transmission Electron Micrograph of 7050-T76, Structure No. !
Showing the Continuous Precipitate on the Grain Boundary.
Note the “Pinning” Action of ZrAl; Particle on Grain
Boundary Mobility.
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.t Figure 21 Transmission Electron Micrograph of 7050 (+Mn)-T786,
i Structure No. 2 Showing Al,CuMn; Dispersoid.
f
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Figure 22 Transmission Electron Micrograph of X7080 (hi Cu)-T76,
Structure No. 3 Showing Grain Boundary Precipitate
of Strengthening Phase.
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Figure 23 Transmission Electron Micrograph of Structure No. 5 7050-TX1
Showing Small Needle-Like S’ Strengthening Precipitate and

Coarser n Precipitate.
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Figure 24 Transmission Electron Micrograph of Structure No. 6,

7050-TX2, Showing the Large, Lath-Type S’ Precipitate
and the Coarser,More Widely Spaced n Precipitate.
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Figure 25 Transmission FElectron Micrograph of Structure No. 7
(7050-TX3). Both Elor ~ted S’ and Globular » Precipitates
are Shown.

48




o
T E————

&

0.5um

Figure 26 Transmission Flectron Micrograph of Structure No. 7
(7050-TX3). This Region is Completely Free of S and »

and Contains Only »!
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qure 27 Transmission Electron Micrograph of 7475-T61. Structure No 11
lllustrating the Larger, More Widely Spaced Al;;Mg,Cr
Dispersoid. Compare with Structure No. 12, 7475-T6, Figure 28




Figure 28 Transmission Electron Micrograph of 7475-T6, Structure No. 12,
Showing Smaller, More Closely Spaced Al;,Mg,Cr Dispersoid.
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Figure 29 Transmission Electron Micregraph of 2124 (lo Mn)-T31,

Structure No. 17. Strengthening GP Zones are not Visible.

Top Grain Oriented to Show Dislocation Structure.
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Figure 30 Transmission Electron Micrograph of 2124 (hi Mn)-T86, Structure
No. 19. Needle-Like S Strengthening Precipitate Visible
in Right Grain. Left Grain Oriented to Show Dislocation

Structure.




Figure 31

Transmission Electron Micrograph of 2024 (lo Mn)-T36,
Structure No. 22. The Strengthening Phase is the GP Zone
Formed by Room Temperature Aging (not visible in the
micrograph, top grain). Lower Grain Oriented to Show
Dislocation Structure.
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Figure 32 Transmission Electron Micrograph of 2024 (lo Mn)-T81,
Structure No. 23, Showing the Transition Strengthening
Needle-Like Precipitate, S, and the Grain Boundary
Precipitate, S (Al.CuMg). Bottom Right Grain Oriented to
lllustrate Dislocation Density.
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Figure 33 Transmission Electron Micrograph of 2024-T8X, Structure No. 26
Showing Large Needle-Like S" Strengthening Precipitate.
Bottom Grain Oriented to Show Dislocation Density.
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More detailed volume fraction measurements than those given
in Tables 6 and 7 of both insoluble and soluble constituent par-
; ticles greater than 1 uy are given in Table 8. For the 2XXX alloys,
;, | Al;Cu,Fe, Al,, (Fe,Mn)3Si, Al,CuMg, CuAl,, and possibly minor
amounts of Mg,Si were included in the volume fraction measurements.
The volume fraction measurements from the cross-section and the
longitudinal sections agree reasonably well while the volume

fraction measured from the surface gave a higher result. This be-

b havior is consistent with results reported by El-Soudani and

t Pelloux[25] who found that when total number of grid applications

i
;
&
i
i

was less than the number required for the volume fraction to con-

4 verge in all three spatial directions, the volume fraction measured

S e A

from the surface gave a higher value. Although convergence of the

=ncey

volume percent on the cross-section and longitudinal planes does

i A

not necessarily indicate the true volume fraction, it is believed

that this does represent a value which is sufficient to characterize
the volume fraction of large constituent particles in this alloy.
Thus, a 2.2 volume percent of constituent greater than 1 um in

2024 should represent a reasonable estimate. By decreasing the

TR Y

amount of Fe and Si (and Cu by 0.2 wt.%), the volume percent con-

stituent was reduced to approximately 1.40 (2124). By reducing the
Cu another one percent (2048), the volume percent of constituent
particles was decreased fourfold to 0.50.

In addition to reducing the volume percent of particles by
decreasing the amount of Fe, Si, and Cu, the range in total con-

stituent particle area (a measure of the size of particles) was

56a
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also reduced significantly, particularly in the large particle
range. For example, particles in 2024 having a total area of
200-300 um? were not uncommon, while in 2048 the number of these
large size particles was reduced.

Although the only nominal difference in composition between
alloy X7080(hiCu) and 7050 is the Mn substitution for the Zr, the
volume percent of constituent particles greater than 1 um was
significantly different (Figure 34). Alloy 7050 had a volume per-

cent near 1.0 while in X7080(hiCu) the volume percent constituent

particles was between 0.2-0.4. The lower volume fraction of con-
stituent particles 1in X7080 (hiCu) can be attributed to the presence
of Al;oMn3Cu, dispersoid and the lower Mg content which precluded
the formation of Al,CuMg particles (S-phase). In 7050 (no Cu-
containing dispersoid), the amount of free Cu was greater than in
X7080(hiCu) and this resulted in the formation of the S-phase
(Al,CuMg), and thus contributed to a higher volume fraction of

constituent. The remaining constituents present in these materials

RSP

are Al;Cuy,Fe and Mg,Si particles.

A comparison of the volume fraction of constituents (Al;Cu,Fe,
Al;, (Fe,Mn)3Si, FeAlg, and Mg,Si) in the 7075 and the high purity
version, 7475 (no Al;;(Fe,Mn)3Si and FeAlg), reflects the lower Fe
and Si content present in 7475 (Table 8). Not only is volume
fraction reduced, but the range of total particle area (a measure
of size of the particles) is also smaller in the 7475. The volume

percent of constituents in 7075 of 1.20-1.30 is in agreement with

the work of El-Soudani and Pelloux[25] who reported a volume




a

Microstructure of X7080 (hi Cu)-T76, Structure No. 8, Revealing
the Large Constituent Particles and Smaller AlyCu,Mn;
Dispersoid Particles (500X)

b

Microstructure of 7050-T76, Structure No. 1, Revealing
the Large Constituent Farticles. (500X)

Figure 34  Microstructure of X7080 (hi Cu)-T76 and 7050-T76
-59-




percent of constituents for 7075 of similar Fe and Si content of

1.30~1.40.
L One point worth noting concerning these measurements is that
the automated system measures all areas that appear dark in the
structure. Thus, voids and cracks, if present, will register and
be included in the measurement of the volume percent. Alloys
7475-T6 and 7075-T6 had a slightly higher number of voids present
than usually found in commercially produced material; however,
comparison of test results with those for commercial 7475 and 7075
indicates that these voids did not affect the static or cyclic
mechanical properties. Alloys 2024-T3, 2124-T3, and 2048-T3 had
voids or cracks associated with large constituent particles,
Figure 35. Alloys X7080-T76 (hiCu) and 7050-T76 contained very
few voids, which, when present, were extremely small.

4.2 Static Properties

A summary of tensile, notch-tensile, and tear properties of
all structures is given in Tables 9 to 13. Figures 36 to 39 show
the toughness measured by UPE and NTS/YS as a function of yield
strength. Discussion of the relationship between microstructure
and toughness is presented in Appendix B.

4.3 Fatigue Crack Propagation Tests

4.3.1 Methods of Analysis

In many instances inherent scatter of crack growth rate in-
formation, generally plotted as log Aa/AN vs log AK, is sufficient
to confound ranking of fatigue crack growth rate performance of

different alloy microstructures possessing subtle differences in

60
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Figure 35  Miciograph Showing Constituent Particles in (a) 2024,
(b) 2124, and (c) 2048. (1000X)
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