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SUMMARY

Reaction rate coefficients for negative ions in CO2 according to
the reaction

k
O~~ + 2CO~ 

BC , co3~ + co2kCB

have been evaluated experimentally over a range of 45 ~ E/N ~ 400 Td

at 320 ± 2 °K. Most of the measurements were made with a drift-tube mass-

spectrometer operated in a mode to gate electrons as well as negative
ions. The attachment of electrons in the drift tube introduces details

into the arrival time spectra of the ions that enhance the resolving

power for evaluation of rate coefficients. At low E/N , kBC approaches
-28 6-1 . .

(5 ± 0.5) x 10 cm s , and declines slowly with increasing E/N.
• The value of kCB is negligible below E/N = 300 Td, then rises steeply

to 1 x lO~~~ cm3s~~ at 400 Td. Changes of gas temperature have been
shown to act to shift the reaction equilibrium in the same sense that
changes in E/N do. At E/N ~ 200 Id, collisional detachment of electrons
from O~ occurs according to the reaction

kBAO + C 0
2 e + C 02 + O

• 
and the rate rises steeply with E/N. At 400 Td, kBA reaches 9 x l0

_12
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I. INTRODUCTION

In this paper, we report our study of negative ions in CO2 at various

tempera~tures , pressures , and values of E/N (the ratio of electric field
strength to molecular density) ranging from 45 to 400 Id (1 Td = lO~~

7V cm2).
The study includes findings concerning identity of the system of negative
ions and the various reaction rates for their formation and breakup. The

results were made possible by the application of an experimental technique

that adds great resolving power to the determination of the coefficients.

Basically, the experimental procedure consists of the use of a drift-tube
mass-spectrometer, equipped for measurement of the arrival time spectra
of the negative Its novel feature is that the electrons that

unavoidably accompany negative ions from the source are also gated by the

Tyndall shutter that gates the negative ions. This procedure has been used

earlier by Pack and Phelps~
3
~ on negative ions in 02 in a variant form

of the present usage. Experimentally, a much higher gate bias voltage is
needed in order to pulse the electron stream than is necessary for nega-

tive ions alone as the electrons have a much higher kinetic energy than

the ions. Bias voltages as high as 22.5 V have been used, and correspond-

ingly, a high pulse voltage to open the gate. The electrons admitted during

the gate pulses continue to attach to form negative ions in the drift space.

The resulting arrival time spectra are intricate but are far richer in infor-

mation than those obtained with the more usual gate bias that only pulses

the negative ions. As has been noted , both by us and by others ,~
4
~ with

the low-voltage gate bias, there is a continuous back groun d of electron
current through the drif t tube that causes variations with pressure in rate
coefficients which should in principle be constant. We note that, in

1G. E. Keller , R. A. Beyer, and L. M. Colonna-Romano , Phys. Rev . A
• 8, 1446 (1973).

2i IL Gatland , L. M. Colonna-Romano , and G. E. Keller , Phys. Rev . A
• 12, 1885 (1975).

3J. L. Pack and A. V. Phelps , J. Chem. Phys . 44, 1870 (1966).

• ‘1H. W. Ellis , R. Y. Pai, I. R. Gatland , E. W . McDaniel , R. Werniund ,
and M. J. Cohen, J. Chem . Phys. 64. 3935 (1976).
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addition , the arrival time spectra with the low gate bias are only slightly

perturbed from the simple skewed-Gaussian shape characterizing pure diffusion

(in marked contrast to our present spectra), giving poorer resolution for

even the principal rate coefficients.

II. APPARATUS

The apparatus has been described in other publications ~~2) and is
accordingly only briefly reviewed here; the electron-impact ion source is
the only significant change. A hot cathode coated with BaZrO3 

(5) emits
electrons which are then accelerated by suitable electrodes in a direc-

tion transverse to the main axis of the drift-tube mass-spectrometer.

There is also a magnetic field of strength about 100 G in the same direc-

tion, provided by a permanent magnet. The acceleration potential is

typically about 9 V, at which the attachment of electrons in CO2 is near
its maximum va1ue.~

6
~ The electrons cross the axis of the drift tube, and

the surplus are collected in a Faraday cage. Between the electron gun and

the Faraday cage, the electrons pass between a repeller plate and a par-
allel grid. Some of the negative ions formed by attachment of electrons

to gas molecules in this space are repelled by the plate and pass through
the grid where they enter the first stages of the drift tube. Some elec-

trons also escape into the drift space despite the magnetic field. Two

additional grids beyond the extracting grid form a 2.7-cm long thermal-
• izing region, usually (but not always) having the same electric field as

the main drif t region. Gas, CO
2 in the present work , fil ls both the source

and the drif t tube to the desired pressure , ranging in this work from
13.3 to 66.7 Pa (0.10 to 0.50 torr).

5D. MacNa ir , Rev. Sci. Instrum. 38, 124 (1967) .

L. Schulz , Phys. Rev. 128, 178 (1962). See also, E. W. McDaniel ,
Collis ion Phenomena in Ionized Gases (John W i ley F~ Sons , Inc . New
York , 1964) p. 419.

10



The main drift space has two Tyndall shutters, one of which is
electrically biased to inhibit the drift of ions and/or electrons. To

gate the electrons, we have usually used 22.5 V bias across the 3.2-mm

shutter grids. With the source operating continuously, the biased gate
is pulsed to allow a small group of ions and electrons to drift down the

tube. A sampling aperture (0.4 nun diameter) terminates the drift region ,

which was of length 6.45 cm for most of the work reported here. From the

exit aperture , the ions (and electrons) pass through a differentially
pumped chamber into a monopole mass spectrometer where the individual ions

are detected. The only ionic species present in appreciable quantity are

atomic masses 16 (0) and 60 (C0
3 ). Electrons cannot be detected with

the present equipment. Base pressure after baking of the ion source and

drift region is 7 x l0~~ Pa (5 x lO~~ torr). The arrival time spectra

were all obtained at a temperature of 320 ± 2 °K.

II!. ION-ELECTRON-MOLECULE REACTIONS

The analysis of reactions is made by use of prel iminary qualitative
knowledge of what reactions occur , followed by the experimental verification
of the reactions and the determination of their rate coefficients. The

negatively charged particles involved are electrons, 0 ions, and CO
3 

ions ,
whose currents are designated A, B, and C respectively when such brevity
is necessary. In the source as well as in the drift tube, the electrons
at tach by dissociative attachment shown by the reaction

kAe + CO
2 

B~ o + CO. (1)

• The quantity kAB is the reaction rate coefficient, the subscripts designating
that A (e) changes to B (0). 0 ions may be lost by the clustering

reaction :
k

0 + 2C02 
BC , + (2)

with the three-body reaction rate coefficient kBC, and , at higher values
of E/N , by collis ional detachment:

•11



k
o~ + co2 

BA~ 0 + e + CO2. (3)

At still higher E/N, the reverse of reaction (2) can occur endothermically :

kcco3~ + co2 
B ,, O~ + 2c02. (4)

Finally, at sufficiently high E/N, the Townsend process of electron multi-
plication can occur:

k~ ,,
+ CO2 

~~~~~ 2e + CO2
’. (5)

The CO2
’ drifts away from the mass spectrometer and is not detected.

Reactions (1) - (5) form a complex system , particularly at high
E/N where all five processes may contribute sign ificantly. Reaction (1)

has been studied previousiyJ7~ The attachment coefficient n, obtained
from Ref. (7), is used to calculate the reaction rate coefficient kAB
by the equation kAg = V~~, where VD is the electron drift velocity and

N is the neutral number density. Some information bearing on reaction

(3) is available from the analogous process of detachment of electrons

from 0 in collision with °2 which has been measured by Goodson , Corbin ,
and From hold;~

8
~ their values of kBA at various E/N are shown in Fig. 1.

The photodissociation of CO3~ into 0~ and CO2 has been measured to

set in at photon energies of 1.8 ± 0.1 ~~~~~~~~~ a value applicable

to reaction (4) subject to the usual corrections for the requirements

of conservat ion of momentum . This correction makes the minimum kinetic

energy for collisional dissociation of CO3 according to reaction (4)

7J. Dutton , “A Survey of Electron Swarm Data ,” J. Phys. Chem. Ref. Data,
• 4, 681 (1975).

W. Goodson, R. J. Corbin, and L. Frommhold , Phys. Rev. A 9, 2049
(1974). 

—

9R. A. Beyer and J. A. Vanderhoff, J. Chem. Phys. 65, 2313 (1976).
‘0J. I. Moseley, P. C. Cosby, R. A. Bennett, and J. R. Peterson ,
J. Chem. Phys. 65, 2512 (1976).

12
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become 4.35 eV. So large a value suggests that kCB can only take on an

experimentally significant value at high E/N. These various pieces of

information provide useful guidelines for the procedures to be described.

IV. EXPERIMENTAL OBSERVATIONS

Arrival time spectra have been obtained over the range of 75 < E/N

~ 400 Td at pressures ranging from 13.3 to 66.7 Pa (0.1 to 0.5 torr), with

at least two pressures for each value of E/N. At E/N = 75 and 100 Td,
the electron accelerating potential in the source was increased to 165 V

to insure a sufficiently high ratio of electrons to ions to produce the

• characteristic electron-generated features. For pressures of 53.3 and
66.7 Pa (0.4 and 0.5 torr), the value of E/N in the source and thermalizing

region was constrained to a maximum of 200 Td by power supply limitations.

For all other cases, the source and thermalizing regions were maintained

at the same value of E/N as the main drift space.

In Figs. 2 and 3, we show some typical experimental arrival time
spectra. The time scale shown in the figures gives the time of arrival
of the ions at the detector and hence includes both the time for travel

• through the drift region and the (unknown) time for travel through the

detector system. The ion drif t velocities are measured using two spectra ,
one of which is obtained for a very short drift distance. (l~~ 2)

-~ Fig. 2 shows the arrival time spectra of 0 ions at E/N = 200 Td

• and at three different pressures, 40, 53.3, and 66.7 Pa (0.3, 0.4, and

0.5 torr). The leading foot that is prominent in some of the 0 spectra

arises from electrons that are admitted by the gate pulses and travel

various distances in the drift space before producing 0~ ions by reaction

(ii. The later-time peaks on all curves result from O~ ions that are

produced in the source and are admitted in pulses by the gate. The

absence of any trailing foot on the O spectral curves of Fig. 2 indicates

that the dissociation of CO3~ into 0 by reaction (4) is negli gible in

this range of E/N. Note that although the fractional loss of electrons

14
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due to attachment during flight through the drift region is only a few

per cent , the resulting number of 0 ions is comparable to (ar.J often

considerably exceeds) the number of 0 ions that are produced in the

source and survive transit through the drift tube.

• Fig. 3 shows two arrival time spectra for C03 ions at E/N = 350 Id

and p = 40 and 66.7 Pa (0.3 and 0.5 torr). Although these and other

spectra have a decidedly intricate form, they offer by the same token a

high degree of discrimination in the determination of the various rate

coefficients.

V. ANALYSIS OF ARRIVAL TIME SPECTRA

Rate coefficients for reactions (2), (3), and (4) have been extracted

from the experimental data by the method of Kregel et ai. (11) Numerical

integration of the differential equations describing the simultaneous

chemical reaction , drif t, and diffusion (both longitudinal and transverse)
of the electrons and ions in the drift tube yields a predicted arrival
time spectrum which is compared with the experimental data. As input for

this calculation, we take the reaction rate coefficients for electron

attachment, kAB, and Townsend electron multiplication, k~~, from

the 1iterature,~
7
~~

12
~ as well as the electron drift velocities and diffu-

(13) . . . - -sian coefficients. Drift velocities of 0 and CO3 are measured in

the experiment and the ion diffusion coefficients are computed from the

• experimental drift velocities via the Wannier formulaJ14~

D. Kregel , M. R. Sullivan, L. M. Colonna-Romano, and G. E. Keller,
NAPS Document #02183; order from ASIS/NAPS d o  Microfiche Publications,

• 305 E. 46 St., New York, N.Y. 10017. See also Ballistic Research Labs.
Report No. 1617 (AD 907581).

l2~ Dutton, op. cit., p. 720.

p. 605, 662—663.
14G. H. Wannier, Phys. Rev. 83, 281 (1951); 87, 795 (1952). See also
E. W. McDaniel and J. I. Moseley, Phys. Rev. A 3, 1040 (1971) or
E. W. McDaniel and E. A. Mason, The Mobility and Diffusion of Ions
in Gases, (John Wiley ~ Sons, Inc., New York , 1973) p. 314.

17



_ _ _  -

The theoretical spectra are then fit to the data by treating as

variable parameters the initial electron and ion currents and the reaction
rates for CO3~ formation (kBC), C03 dissociation (k CB), and electron

detachment from O (kBA). At a given value of E/N, we fit the data for

two or more pressures simultaneously with one set of rate coeff icients,
allowing only the initial electron and ion currents to vary between these
pressures. A comparison of the experimental data with the best-fit cal-

culation is shown in Fig. 4 for the case of E/N = 200 Td and p = 53.3 Pa

(0.4 Torr).

Experience has enabled us to recognize how changes in the rate coeffi-

cients alter the predicted arrival time spectra. Thus, the negative slope

of the leading foot in the 0 spectra reflects the loss processes for
0 , reactions (2) and (3); whereas the positive slope of the leading

portion in most of the C03 spectra is due solely to conversion of O~ to

CO
3~ via reaction (2). Reactions (2) and (3) are further distinguished

by their different pressure dependence. The onset of collisional dissoci-

ation of C03 ,  reaction (4), is indicated by the presence of a late-time
• tail on the source-generated 0 peak. Finally, we have found that Townsend

electron multiplication, reaction (5), must be included to obtain a satis-
factory fit of the early peak in the C0

3 
spectrum at, e.g., E/N = 350 Td

and p = 66.7 Pa (0.5 torr) in Fig. 3.

VI. VALUES OF RATE COEFFICIENTS

In Fig. 5, we present the values of the attachment coefficient k~~
and the dissociation coefficient kCB as functions of E/N. Since these

two coefficients are the rates for the same reaction in the forward and
backward directions, they are plotted in the same figure despite the need
for separate ordinate scales. The ratio of the rate coefficients gives
the equilibrium constant for the reaction. At E/N = 400 Td and p = 66.7 Pa

(0.5 torr), the arrival time spectra reveal that the O and CO3 ions are

nearly in equilibrium after drifting the length of the tube .

• 18
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Returning to Fig. 2 where kBA is plotted from the results of Goodson,

• et ai.~
8
~ for collisional detachment of O~ in 02, we have added our data

for the same detachment in collisions with CO2. It has been suggested~~
5
~

that the observed shift to higher E/N of the 0 electron detachment reac-

tion rate in CO2 is due to the lower 0 center-of-mass kinetic energy.

Indeed, we have found that if the abscissa of Fig. 2 is changed to the

center-of-mass kinetic energy, the two curves very nearly coincide.

• Finally, we note that values of kAB are not determined by this work

as the quantity only appears multiplied by the electron current, which

is not measured.

VII. SOME ADDITIONAL DATA

An alternative method for reaction rate studies of the present ion-

• molecule reactions consists of setting both Tyndall shutters open and

observing comparative arrival currents of O~ and CO3 ions at the multi-

plier with several different lengths of the drift space. If two different

drift distances are used, the change in the ratio B/(B + C), (0 current

to total ion current) discloses the extent of reaction that has occurred

with the increase in drift length . Analytically, it is clear that for
each additional drift distance used, an additional unknown reaction rate

coefficient can be evaluated. Operationally, the presence of an unknown
• and non-constant background current of electrons makes the method some-

what impractical. In the present work, we used four drift distances

(3.76, 5.64, 7.52, and 9.40 cm); we confine our reported results by this

• method to values of E/N in the range between 45 and 120 Id and pressures
of 13.3 and 26.6 Pa (0.10 and 0.20 torr). In this range, the only sig-

nificant rate coefficient is kBC, but the existence of the electron flux

alters the 0 current at various drift distances through the rate coeffi-

cient kAB and reaction (1). The values of kM, kgA, and kCB are quite

~~We are indebted to Dr. R. J. Corbin for this suggestion .
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negligible in this range. The values of kBC obtained by this method
shifted from 6 x l0

28 cm6s~~ at p = 0.1 torr to 3 x io 28 at 0.2 torr,

a shift that could be attributed to the back ground current of electrons.
At a fixed pressure , the value of k BC remained constant over the whole

• range of E/M used , 45 to 120 Td. The points shown in Fig. 6 are adjusted
• to match the arrival time results at 75 and 100 Td. The findings of

Moseley, Cosby, and Peterson U6) are also shown in Fi g. s.

V I I I .  TEMPERATURE STUDIES

Following the dc procedure of Section VII, the ratio

Q = C/ (B + C)

was measured at fix ed p, z, and T (z is the drift distance) at a range
of values of E/N from 50 to 300 Td. As might be expected , the value of

Q started at nearly unity at E/N = SO Id and decreased with increasing E/N.

The gas tempera ture was then increased by 33°K by warming the entire tube ,
and the readings were repeated. Finally, one more temperature increase
of 330 was made and Q vs. E/N again noted. A typical set of results is

shown in Fig. 6. With each increase in temperature, the curve of Q vs.
E/N is displaced horizontally toward lower E/N. A given value of Q is

thus obtained at lower E/N the higher the gas temperature is made. A

func tional rela tion between E/N and T
g 

(the gas temperature) can be found
from these results by choosing a value of Q and plotting Tg as ordinate
against E/N as abscissa. To the very limited precision of the results,
the points for any Q fall on a line, and by very long extrapolation to
E/N = 0, a scale for converting E/N to an equivalent or effective tempera-

ture Teff~ can be found. After numerous repetitions, a relationship

Teff = T
g 

+ 2.36 (E/N) (6)

wi th E/N in Td and the temperatures in °K has been found. Such a procedure

was first used by varneyU7) on N4
4 and N 2~ ions in N2. We refrain from

• l6~ T. Moseley , P. C. Cosby, and J. R. Peterson , J . Chem . Phys. 64,
4228 (1976). 

—

17R. N. Varney, Phys. Rev. 174, 165 (1958); J. Chem. Phys . 31 , 1314
• (1959).
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calling Teff an ion temperature because of the many complexities associated
with the use of that term. Because of the experimental way that it arises,

Teff might be called a reaction temperature or a chemical temperature, but

the name “effective temperature” and the symbol Teff seem suitable.

There are apparent flaws in this usage of effective temperature,

perhaps the worst being an inadequate theoretical basis for the first power
dependence of Teff on E/N , a quadratic form being more believable. From

the experimental side , the temperature range used is small. The values of

E/N , however , are all hi gh and may put the experiment into a range where
the first power dependence on E/N is valid . On the other hand , the high
range of E/N forces a long extrapolation to reach E/N = 0. Finally, the

interplay of other reactions may fals ify the interpretation that a constant
ratio Q signifies a constant degree of reaction . It may be said on behalf

of the concept that an attempt to fit the observations by a quadratic
law of the form Teff = T

g 
+ b (E/N) 2 fails to yield a reasonably constant

value of b whereas the linear form does fit more satisfactorily.

Again follow ing Varney ,~
17
~ reaction (2) and its reverse , reaction (4) ,

have an equilibrium constant K that may be calculated as

• kc (7)
BC 0

where N0 is 3.54 x 10
16 molecules cm 3 at 1 torr. Inclusion of this factor

N0 gives K in terms of torr.

The change of K with temperature is given by an equation known in

thermodynamics as the van ’t Hoff isobarUS)

d 2 .n K
AH = -R (8)

wherein ~H is the reaction enthalpy . Its value is the negative slope of

a plot of tn K vs. 1/1, mul tipl ied by the gas constant R .

18 .M. Zemansky, Heat and Thermodynamics (McGraw Hill Book Co., Inc .
New York , 4th ed. 1957) p. 433.
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In the case of ion-molecule reactions in the presence of an electric

field , it is clear that Tg alone cannot be the correct temperature to use
in the van ’t Hoff isobar, and the use of Teff instead is indicated by the
basic chemical nature in which Teff arises. We have calculated Ln K as

Ln (kCB/k BC~N )  at E/N of 350 and 400 Td and 1/Teff using eq. (6). The

resulting value of L~H changes considerably with small changes in kCB ~~
that about all that can be said is that tsH = 1.8 ± 0.5 eV. The value

straddles that of refs. (9) and (10). Perhaps the most important aspect

is the experimental observation that an equivalence exists between changes

of E/N and changes of gas temperature .

IX. PRECISION OF RATE COEFFICIENTS

The precision of the evaluation of any given rate coefficient varies

with the value of E/N .  At E/N < 200 Td , the matching of computed with
experimental curves is strongly infl uenced by small changes in k BC because
reaction (2) is the on ly one that pl ays any significant role and depend s
quadratically (hence strongly) on the gas pressure. A change in kBC of
± 0.5 x l0~~~ cm

6s~~ from the best-fit value clearly causes a mismatch of

the curves. At higher E/N , where all the rate coefficients actively

infl uence the various ion currents, several factors arise to diminish the
precision , although the interactions still combine to give al most unique
results. The greatest statistical spread arises for kBA and kCB, both of
wh ich change very steeply with E/N (see Figs. 1 and 5). At E/N = 350 Id,

a change of ± i x io~~
2 cm3s~~ is barely detectab le in misma tches between

• computed and experimental curves. Also , the combination of k~~, kBA, and
• kCB, all of which enter combined with first-order pressure factors, can
• mutually compensate one another over a small range so that a variation of

— 12 3 - 1 . . . . .± 1.5 x 10 cm s is possible. The role of kBC is less dominant in this
range of E/N so tha t the precision of its determination wou ld appear to

-28 6- 1
• be less, but a change of ± 0.5 x 10 cm S still seems detectable.
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X. CONCLUSIONS

The values of both kBC and kCB have been determined for a considerable
range of values of E/N. The value of kCB is neglig ible below E/N = 300 Td
but rises steeply with E/N above this value. By contrast, ksc varies only
by about a factor of 5 from E/N of 50 to 400 Td. At low E/N, the value of

kBC is near to S x lO _28 
cm6s~~, a high value for a three-body rate coeffi-

cient. The reproducibility appears to lie well within ± 0.5 x 10 28 cm6s~~ .

The findings have been made possible by a new experimental procedure

in which the drif t tube gates are operated to gate electrons as well as
negative ions. The technique greatly expands the information derivable

from the arrival time spectra.

Rate coefficients k BA for detachments of electrons from O~ in
collisions with CO2 have also been found as a function of E/N. The

values of kBA become negl igible below E/N of 150 Td. The curve lies at

higher E/N than that obtained for O detachment in 02 obtained by Good son

et al. (8) Th is shif t may be explained by the lower kinetic energy of
0 ions in CO2.

F
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