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SUMMARY

Reaction rate coefficients for negative ions in CO2 according to

the reaction
- ch =
0 + 2C02 —_— CO3 + CO2
kep

have been evaluated experimentally over a range of 45 < E/N < 400 Td

at 320 + 2 °K. Most of the measurements were made with a drift-tube mass-
spectrometer operated in a mode to gate electrons as well as negative
ions. The attachment of electrons in the drift tube introduces details
into the arrival time spectra of the ions that enhance the resolving
power for evaluation of rate coefficients. At low E/N, kBC approaches

5 £ 4.5) x to 25 cm6s'1, and declines slowly with increasing E/N.

The value of k., is negligible below E/N = 300 Td, then rises steeply

to =1 «x 10-11(:<l§m3s_1 at 400 Td. Changes of gas temperature have been
shown to act to shift the reaction equilibrium in the same sense that
changes in E/N do. At E/N = 200 Td, collisional detachment of electrons
from 0° occurs according to the reaction

K
0" + Co, L Co, + 0

12

and the rate rises steeply with E/N. At 400 Td, k,, reaches 9 x 10
3 -1
cm”s” .
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I. INTRODUCTION

In this paper, we report our study of negative ions in CO2 at various
temperatures, pressures, and values of E/N (the ratio of electric field
strength to molecular density) ranging from 45 to 400 Td (1 Td = 10-17V cmz).
The study includes findings concerning identity of the system of negative
ions and the various reaction rates for their formation and breakup. The
results were made possible by the application of an experimental technique
that adds great resolving power to the determination of the coefficients.

Basically, the experimental procedure consists of the use of a drift-tube

mass-spectrometer, equipped for measurement of the arrival time spectra

1) (2)

of the negative ions. Its novel feature is that the electrons that
unavoidably accompany negative ions from the source are also gated by the
Tyndall shutter that gates the negative ions. This procedure has been used

earlier by Pack and Phelps(s)

on negative ions in 0, in a variant form

of the present usage. Experimentally, a much higher gate bias voltage is
needed in order to pulse the electron stream than is necessary for nega-
tive ions alone as the electrons have a much higher kinetic energy than

the ions. Bias voltages as high as 22.5 V have been used, and correspond-
ingly, a high pulse voltage to open the gate. The electrons admitted during
the gate pulses continue to attach to form negative ions in the drift space.
The resulting arrival time spectra are intricate but are far richer in infor-
mation than those obtained with the more usual gate bias that only pulses
the negative ions. As has been noted, both by us and by others,(4) with

the low-voltage gate bias, there is a continuous background of electron
current through the drift tube that causes variations with pressure in rate

coefficients which should in principle be constant. We note that, in

1G. E. Keller, R. A. Beyer, and L. M. Colonna-Romano, Phys. Rev. A
8, 1446 (1973).

2I. R. Gatland, L. M. Colonna-Romano, and G. E. Keller, Phys. Rev. A
12, 1885 (1975).

3J. L. Pack and A. V. Phelps, J. Chem. Phys. 44, 1870 (1966).

4H. W. Ellis, R. Y. Pai, I. R. Gatland, E. W. McDaniel, R. Wernlund,
and M. J. Cohen, J. Chem. Phys. 64, 3935 (1976).




addition, the arrival time spectra with the low gate bias are only slightly
perturbed from the simple skewed-Gaussian shape characterizing pure diffusion
(in marked contrast to our present spectra), giving poorer resolution for

even the principal rate coefficients.

IT. APPARATUS

(1)(2)

The apparatus has been described in other publications and is
accordingly only briefly reviewed here; the electron-impact ion source is
the only significant change. A hot cathode coated with BaZrO3 ) emits
electrons which are then accelerated by suitable electrodes in a direc-
tion transverse to the main axis of the drift-tube mass-spectrometer.
There is also a magnetic field of strength about 100 G in the same direc-
tion, provided by a permanent magnet. The acceleration potential is
typically about 9 ¥é)at which the attachment of electrons in CO2 is near

its maximum value. The electrons cross the axis of the drift tube, and
the surplus are collected in a Faraday cage. Between the electron gun and
the Faraday cage, the electrons pass between a repeller plate and a par-
allel grid. Some of the negative ions formed by attachment of electrons
to gas molecules in this space are repelled by the plate and pass through
the grid where they enter the first stages of the drift tube. Some elec-
trons also escape into the drift space despite the magnetic field. Two
additional grids beyond the extracting grid form a 2.7-cm long thermal-
izing region, usually (but not always) having the same electric field as
the main drift region. Gas, CO2 in the present work, fills both the source
and the drift tube to the desired pressure, ranging in this work from

13.3 to 66.7 Pa (0.10 to 0.50 torr).

>D. MacNair, Rev. Sci. Instrum, 38, 124 (1967).

6G. L. Schulz, Phys. Rev. 128, 178 (1962). See also, E. W. McDaniel,
Collision Phenomena in Ionized Gases (John Wiley & Sons, Inc. New
York, 1964) p. 419.

10
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The main drift space has two Tyndall shutters, one of which is

electrically biased to inhibit the drift of ions and/or electrons. To
gate the electrons, we have usually used 22.5 V bias across the 3.2-mm
shutter grids. With the source operating continuously, the biased gate

is pulsed to allow a small group of ions and electrons to drift down the
tube. A sampling aperture (0.4 mm diameter) terminates the drift region,
which was of length 6.45 cm for most of the work reported here. From the
exit aperture, the ions (and electrons) pass through a differentially
pumped chamber into a monopole mass spectrometer where the individual ions
are detected. The only ionic species present in appreciable quantity are
atomic masses 16 (0 ) and 60 (COS-). Electrons cannot be detected with
the present equipment. Base pressure after baking of the ion source and
drift region is 7 x 107 pa (5 x 107° torr). The arrival time spectra

were all obtained at a temperature of 320 + 2 °K.

III. ION-ELECTRON-MOLECULE REACTIONS

The analysis of reactions is made by use of preliminary qualitative
knowledge of what reactions occur, followed by the experimental verification
of the reactions and the determination of their rate coefficients. The
negatively charged particles involved are electrons, O ions, and COS- ions,
whose currents are designated A, B, and C respectively when such brevity
is necessary. In the source as well as in the drift tube, the electrons
attach by dissociative attachment shown by the reaction

k
e + CO, By 0" w 0D, 1)

The quantity kAB is the reaction rate coefficient, the subscripts designating
that A (e’) changes to B (0°). O ions may be lost by the clustering
reaction:
k
BC

0 + L cos' + Co, (2)

with the three-body reaction rate coefficient kBC’ and, at higher values

of E/N, by collisional detachment:

1




k

0 + co, . T e + Co,. (3)
At still higher E/N, the reverse of reaction (2) can occur endothermically:
- kCB =
€o,” + CO, — 0" + 2C0,. (4)

Finally, at sufficiently high E/N, the Townsend process of electron multi-
plication can occur:
- kAA +

6 i ek 2e” + co, . (5)

The C02+ drifts away from the mass spectrometer and is not detected.

Reactions (1) - (5) form a complex system, particularly at high

E/N where all five processes may contribute significantly. Reaction (1)
has been studied previously.(7) The attachment coefficient n, obtained
from Ref. (7), is used to calculate the reaction rate coefficient kAB

by the equation kAB = %-VD, where Vp is the electron drift velocity and
N is the neutral number density. Some information bearing on reaction
(3) is available from the analogous process of detachment of electrons
from 0" in collision with 02 which has been measured by Goodson, Corbin,
and Frommhold;(s) their values of kBA at various E/N are shown in Fig. 1.

The photodissociation of COS- into 0" and CO, has been measured to
set in at photon energies of 1.8 * 0.1 eV,(Q)(IO) a value applicable
to reaction (4) subject to the usual corrections for the requirements
of conservation of momentum. This correction makes the minimum kinetic

energy for collisional dissociation of COS- according to reaction (4)

7J. Dutton, "A Survey of Electron Swarm Data,' J. Phys. Chem. Ref. Data,
4, 681 (1975).

8. w. Goodson, R. J. Corbin, and L. Frommhold, Phys. Rev. A 9, 2049
(1974).

9R. A. Beyer and J. A. Vanderhoff, J. Chem. Phys. 65, 2313 (1976).
10

J. T. Moseley, P, C. Cosby, R. A. Bennett, and J. R. Peterson,
J. Chem. Phys. 65, 2512 (1976). -

12
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become 4.35 eV. So large a value suggests that kCB can only take on an
experimentally significant value at high E/N. These various pieces of
information provide useful guidelines for the procedures to be described.

IV. EXPERIMENTAL OBSERVATIONS

Arrival time spectra have been obtained over the range of 75 < E/N
< 400 Td at pressures ranging from 13.3 to 66.7 Pa (0.1 to 0.5 torr), with
at least two pressures for each value of E/N. At E/N = 75 and 100 Td,
the electron accelerating potential in the source was increased to 165 V
to insure a sufficiently high ratio of electrons to ions to produce the
characteristic electron-generated features. For pressures of 53.3 and
66.7 Pa (0.4 and 0.5 torr), the value of E/N in the source and thermalizing
region was constrained to a maximum of 200 Td by power supply limitations.
For all other cases, the source and thermalizing regions were maintained

at the same value of E/N as the main drift space.

In Figs. 2 and 3, we show some typical experimental arrival time
spectra. The time scale shown in the figures gives the time of arrival
of the ions at the detector and hence includes both the time for travel
through the drift region and the (unknown) time for travel through the
detector system. The ion drift velocities are measured using two spectra,
one of which is obtained for a very short drift distance.(l)(z)

Fig. 2 shows the arrival time spectra of O ions at E/N = 200 Td
and at three different pressures, 40, 53.3, and 66.7 Pa (0.3, 0.4, and
0.5 torr). The leading foot that is prominent in some of the O  spectra
arises from electrons that are admitted by the gate pulses and travel
various distances in the drift space before producing O  ions by reaction
(1). The later-time peaks on all curves result from O ions that are
produced in the source and are admitted in pulses by the gate. The
absence of any trailing foot on the O spectral curves of Fig. 2 indicates
that the dissociation of CO, into O by reaction (4) is negligible in

3
this range of E/N. Note that although the fractional loss of electrons

14
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due to attachment during flight through the drift region is only a few
per cent, the resulting number of 0~ iomns is comparable to (arnd often
considerably exceeds) the number of O  ions that are produced in the

source and survive transit through the drift tube.

Fig. 3 shows two arrival time spectra for C03‘ ions at E/N = 350 Td
and p = 40 and 66.7 Pa (0.3 and 0.5 torr). Although these and other
spectra have a decidedly intricate form, they offer by the same token a
high degree of discrimination in the determination of the various rate

coefficients.

V. ANALYSIS OF ARRIVAL TIME SPECTRA

Rate coefficients for reactions (2), (3), and (4) have been extracted

l.(ll) Numerical

from the experimental data by the method of Kregel et a
integration of the differential equations describing the simultaneous
chemical reaction, drift, and diffusion (both longitudinal and transverse)
of the electrons and ions in the drift tube yields a predicted arrival
time spectrum which is compared with the experimental data. As input for
this calculation, we take the reaction rate coefficients for electron

attachment, kAB’ and Townsend electron multiplication, k from

(7)(12) e

the literature, as well as the electron drift velocities and diffu-

sion coefficients.[lz) Drift velocities of 0  and COS' are measured in
the experiment and the ion diffusion coefficients are computed from the

experimental drift velocities via the Wannier formula.[l4)

11M. D. Kregel, M. R, Sullivan, L. M. Colonna-Romano, and G. E. Keller,

NAPS Document #02183; order from ASIS/NAPS c/o Microfiche Publications,
305 E. 46 St., New York, N.Y. 10017. See also Ballistic Research Labs.
Report No. 1617 (AD 907581).

J. Dutton, op. cit., p. 720.
131bid., p. 605, 662-663,

149G, H. Wannier, Phys. Rev. 83, 281 (1951); 87, 795 (1952). See also
E. W. McDaniel and J. T. Moseley, Phys. Rev. A 3, 1040 (1971) or
E. W. McDaniel and E. A. Mason, The Mobility and Diffusion of Ions
in Gases, (John Wiley § Sons, Inc., New York, 1973) p. 314,

12
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The theoretical spectra are then fit to the data by treating as
variable parameters the initial electron and ion currents and the reaction

€O, dissociation (k and electron

BC)’ 3 CB)’
At a given value of E/N, we fit the data for

rates for COS- formation (k
detachment from O (kBA).
two or more pressures simultaneously with one set of rate coefficients,
allowing only the initial electron and ion currents to vary between these
pressures. A comparison of the experimental data with the best-fit cal-
culation is shown in Fig. 4 for the case of E/N = 200 Td and p = 53.3 Pa

(0.4 Torr).

Experience has enabled us to recognize how changes in the rate coeffi-
cients alter the predicted arrival time spectra. Thus, the negative slope
of the leading foot in the O spectra reflects the loss processes for
07, reactions (2) and (3); whereas the positive slope of the leading
portion in most of the COS— spectra is due solely to conversion of O to
CO3 via reaction (2). Reactions (2) and (3) are further distinguished
by their different pressure dependence. The onset of collisional dissoci-
ation of COS—, reaction (4), is indicated by the presence of a late-time
tail on the source-generated O peak. Finally, we have found that Townsend
electron multiplication, reaction (5), must be included to obtain a satis-
factory fit of the early peak in the C03" spectrum at, e.g., E/N = 350 Td
and p = 66.7 Pa (0.5 torr) in Fig. 3.

VI. VALUES OF RATE COEFFICIENTS

In Fig. 5, we present the values of the attachment coefficient kBC

and the dissociation coefficient kCB as functions of E/N. Since these

two coefficients are the rates for the same reaction in the forward and
backward directions, they are plotted in the same figure despite the need
for separate ordinate scales. The ratio of the rate coefficients gives

the equilibrium constant for the reaction. At E/N = 400 Td and p = 66.7 Pa

(0.5 torr), the arrival time spectra reveal that the O and CO, ions are

3
nearly in equilibrium after drifting the length of the tube.

18
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Figure 4.

O IONS

i E/N = 200 Td 7]
P=0.4 TORR

o EXPT,

i — COMPUTED -

| |
20 40 60
CHANNEL
17 T I
" CO5 IONS = 4
E/N = 200 Td
P=0.4 TORR
— « « EXPT. —
— COMPUTED
4 1 )
40 60 80

CHANNEL

Display of the match achieved by computed arrival time spectra
with experimental spectra. Upper illustration shows the com-
parison for 0, lower illustration for CO, , at the same E/N
and p. Channel width is 2 ys. No correc%ion for analysis time
has been included. Solid curves are computed; points are
experimental results.
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Returning to Fig. 2 where kBA is plotted from the results of Goodson,
et azfs) for collisional detachment of O in 02, we have added our data
for the same detachment in collisions with COZ' It has been suggested(ls)
that the observed shift to higher E/N of the O electron detachment reac-
tion rate in co, is due to the lower O center-of-mass kinetic energy.
Indeed, we have found that if the abscissa of Fig. 2 is changed to the

center-of-mass kinetic energy, the two curves very nearly coincide.

Finally, we note that values of kAB are not determined by this work
as the quantity only appears multiplied by the electron current, which

is not measured.

VII. SOME ADDITIONAL DATA

An alternative method for reaction rate studies of the present ion-
molecule reactions consists of setting both Tyndall shutters open and

observing comparative arrival currents of O and CO3 ions at the multi-
plier with several different lengths of the drift space. If two different
drift distances are used, the change in the ratio B/(B + C), (0 current
to total ion current) discloses the extent of reaction that has occurred
with the increase in drift length. Analytically, it is clear that for
each additional drift distance used, an additional unknown reaction rate
coefficient can be evaluated. Operationally, the presence of an unknown
and non-constant background current of electrons makes the method some-
what impractical. 1In the present work, we used four drift distances
(3.76, 5.64, 7.52, and 9.40 cm); we confine our reported results by this
method to values of E/N in the range between 45 and 120 Td and pressures
of 13.3 and 26.6 Pa (0.10 and 0.20 torr). In this range, the only sig-
nificant rate coefficient is ch, but the existence of the electron flux
alters the O current at various drift distances through the rate coeffi-

cient kAB and reaction (1). The values of kAA’ kBA’ and kcB are quite

15We are indebted to Dr. R. J. Corbin for this suggestion.




negligible in this range. The values of kBC obtained by this method
shifted from 6 x 10°2° cu®s™) at p = 0.1 torr to 3 x 10728 at 0.2 torr,

a shift that could be attributed to the background current of electrons.
At a fixed pressure, the value of kBC remained constant over the whole
range of E/N used, 45 to 120 Td. The points shown in Fig. 6 are adjusted
to match the arrival time results at 75 and 100 Td. The findings of

(16)

Moseley, Cosby, and Peterson are also shown in Fig. 5.

VIII. TEMPERATURE STUDIES

Following the dc procedure of Section VII, the ratio
Q=C/(B +C)

was measured at fixed p, z, and T (z is the drift distance) at a range
of values of E/N from 50 to 300 Td. As might be expected, the value of
Q started at nearly unity at E/N = 50 Td and decreased with increasing E/N.
The gas temperature was then increased by 33°K by warming the entire tube,
and the readings were repeated. Finally, one more temperature increase
of 33° was made and Q vs. E/N again noted. A typical set of results is
shown in Fig. 6. With each increase in temperature, the curve of Q vs.
E/N is displaced horizontally toward lower E/N. A given value of Q is
thus obtained at lower E/N the higher the gas temperature is made. A
functional relation between E/N and Tg (the gas temperature) can be found
from these results by choosing a value of Q and plotting Tg as ordinate
against E/N as abscissa. To the very limited precision of the results,
the points for any Q fall on a line, and by very long extrapolation to
E/N = 0, a scale for converting E/N to an equivalent or effective tempera-

ture Teff’ can be found. After numerous repetitions, a relationship

Teff = Tg + 2.36 (E/N) (6)
with E/N in Td and the temperatures in °K has been found. Such a procedure
was first used by Varney(17) on N4+ and NZ+ ions in N2. We refrain from

16J. T. Moseley, P. C. Cosby, and J. R. Peterson, J. Chem. Phys. 64,

4228 (1976).

R. N. Varney, Phys. Rev. 174, 165 (1958); J. Chem. Phys. 31, 1314
(1959).
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calling Te an ion temperature because of the many complexities associated

ff
with the use of that term. Because of the experimental way that it arises,
Teff might be called a reaction temperature or a chemical temperature, but

the name "effective temperature'" and the symbol Teff seem suitable.

There are apparent flaws in this usage of effective temperature,
perhaps the worst being an inadequate theoretical basis for the first power
dependence of Teff on E/N, a quadratic form being more believable. From
the experimental side, the temperature range used is small. The values of
E/N, however, are all high and may put the experiment into a range where
the first power dependence on E/N is valid. On the other hand, the high
range of E/N forces a long extrapolation to reach E/N = 0. Finally, the
interplay of other reactions may falsify the interpretation that a constant
ratio Q signifies a constant degree of reaction. It may be said on behalf
of the concept that an attempt to fit the observations by a quadratic
law of the form Te

ff
value of b whereas the linear form does fit more satisfactorily.

(17)

= Tg +b (E/N)2 fails to yield a reasonably constant

Again following Varney, reaction (2) and its reverse, reaction (4),

have an equilibrium constant K that may be calculated as

Kcp

kpc*Ns

where No is 3.54 x 1016 molecules cm-s at 1 torr. Inclusion of this factor

K= (7)

No gives K in terms of torr.

The change of K with temperature is given by an equation known in

thermodynamics as the van't Hoff isobar(ls)
d ¢n K
AH = -R o T (8)
aC )

wherein AH is the reaction enthalpy. Its value is the negative slope of

a plot of &¢n K vs. 1/T, multiplied by the gas constant R.

18M. Zemansky, Heat and Thermodynamics (McGraw Hill Book Co., Inc.

New York, 4th ed. 1957) p. 433.




In the case of ion-molecule reactions in the presence of an electric
field, it is clear that Tg alone cannot be the correct temperature to use
in the van't Hoff isobar, and the use of Teff instead is indicated by the
basic chemical nature in which Teff arises. We have calculated 2&n K as
n (kCB/kBC'No) at E/N of 350 and 400 Td and 1/Teff using eq. (6). The
resulting value of AH changes considerably with small changes in kCB so
that about all that can be said is that AH = 1.8 + 0.5 eV. The value
straddles that of refs. (9) and (i0). Perhaps the most important aspect
is the experimental observation that an equivalence exists between changes

of E/N and changes of gas temperature.

IX. PRECISION OF RATE COEFFICIENTS

The precision of the evaluation of any given rate coefficient varies
with the value of E/N. At E/N < 200 Td, the matching of computed with
experimental curves is strongly influenced by small changes in ch because
reaction (2) is the only one that plays any significant role and depends
quadratically (hence strongly) on the gas pressure. A change in kBC of
£ 0.5 x 10-28 cmés-1 from the best-fit value clearly causes a mismatch of
the curves. At higher E/N, where all the rate coefficients actively
influence the various ion currents, several factors arise to diminish the
precision, although the interactions still combine to give almost unique
CB’ both of
which change very steeply with E/N (see Figs. 1 and 5). At E/N = 350 Td,

a change of * 1 x 1071 on's™! 4 barely detectable in mismatches between

results. The greatest statistical spread arises for kBA and k

computed and experimental curves. Also, the combination of kAA’ kBA’ and
kCB’ all of which enter combined with first-order pressure factors, can
mutually compensate one another over a small range so that a variation of

£ 1.5 x 10_12 cmss_l is possible. The role of kBC is less dominant in this

range of E/N so that the precision of its determination would appear to

e cm(’s_1 still seems detectable.

be less, but a change of + 0.5 x 10




X. CONCLUSIONS

The values of both kBC and kCB have been determined for a considerable
range of values of E/N. The value of kCB is negligible below E/N = 300 Td
but rises steeply with E/N above this value. By contrast, kBC varies only
by about a factor of 5 from E/N of 50 to 400 Td. At low E/N, the value of

k,~ is near to 5 x 10~%8 cmes'l, a high value for a three-body rate coeffi-

BC

cient. The reproducibility appears to lie well within * 0.5 x 10_28 cm6s'1.
The findings have been made possible by a new experimental procedure

in which the drift tube gates are operated to gate electrons as well as

negative ions. The technique greatly expands the information derivable

from the arrival time spectra.

Rate coefficients kBA for detachments of electrons from O in
collisions with CO2 have also been found as a function of E/N. The
values of kBA become negligible below E/N of 150 Td. The curve lies at
higher E/N than that obtained for O detachment in O2 obtained by Goodson
et aZ.(S) This shift may be explained by the lower kinetic energy of
0™ ions in Co,.
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