
F Wó—A037 1~6
-

NAVAL EI.ECTROIICS LAB CENTER SAN DIEGO CALIF FIG 5/2
CONMAPE CENTER IPW ORMATION SYSTEM (CC !S) FUNCTIONS AND CAPABILI—ETC(tJ)
NOV 76 D L S M A L L , 0 0 C H R I S T Y

IMCLASSIFIED Ifl.CITD—49e PA.

r

,“

Technical Document 498

COMMA ND CENTER INFORMATION SYSTEM (CCIS)

Functio ns and Capabilities

DL Small
\\~~

5\

DO Christy

10 November 1976

Research and Development ,March 1914 to Nov ember 1916

Prepared for:
Naval Electronic Systems Command

Command Control Division, Code 330
Washington, DC 20360

APPROVED FOR PUBLIC RELEASE ~ DISTRIBUTION IS UNLIMITED

NAVAL ELECTRONICS LABORATORY CENTER
San Diego, California 92152

r
UNCLASSIF IED

S E C U R I T Y C L A S S I F I C A T I O N OF T H I S PAGE (When Data Enlered)

D OAOT F~f l t I R A L ITA r I A ~J D A (~ R EAD INSTR UCTI ON S
r~ r sjr~ I i,s, ~ ..um i’~ I ~~ I •~~ I’~ F BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVY ACCESS ION NO. 3. RECIPIENT S CATALOG NUMBER

NELC Technical Document 498 (TD 498)
‘

~~~~~ —‘

_._‘
— /

.4. T ITLE (end S u b t i t f r )  — 
—. L..I ~(PE..O~ 

REPORT & PERIOD COVEREDr—~ 
~~~~ Research and ~ evelopment ~L&OMMAND.~ ENTERINFORMAT ION SYSTEM (CCIS) March ~~74 Nove~~ir ~~76

~~~~~~~~~~~~~~~~~~~~ ~~~~~ •_ . .  - . 6. PERFORM ING ORG. REPORT NOMBER

7. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .._ .
~ I ~~~~~~~~~~~~~~~~~~~ GRANT NUMBER(3)

0 ) f  I , —

DL Sñ%aLl— J . ) o  - i

DO Christy .) / Y F ‘ ..L * J
9. PERFORMING O R G A N I Z A T I O N  N A M E  AND A D D R E S S  10. PR~O~~RAM ~~~EMENT. PROJ~~~T . TASK

A R E A  & WORK UNIT NUMB E RS
Naval Electronics Laboratory Center 62721N; F2121 1; XF2121 1002/
San Diego , CA 92152 XF21211001 (NELC N7I3)

II . CONTROLLING OFFICE NAME AND ADDRESS 
~
, pt2~ ~ €PO~~~~DAT~~

.j lON ove~ ber~~ 76Naval Electronic Systems Command (Code 330) .
~~~

Washington , DC 20360 13. NUMBER OF ~~~~~~~~
14

~~~~~~~~~~14. MONITORING AGENCY NAME S AODRESS( I1 differen t from ControIlIn~ Office) IS. SECURITY CLA
’
~ S ?oI Tlii. r.pDp4)

Unclassified
IS. DEC... A SSI F ICAT ION DOWNGRADING

SC HE DULE

IA.  D I S T R I B U T I O N  S T A T E M E N T  (of t h is  Report)

Approved for public release ; distribution is unlimited

17. D ISTR I BUT ION S T A T E M E N T  (of the abst ract entered in Block 20, if different from Report)

18. S U P P L E M E N T A R Y  NOTES

19. KEY WORDS (Continue on reverse side if nec..a.ry and Identify by block numb.,)

Ship board computers Magnetic disks
Computer systems hardwar e Data l inks
Computer memor ies Relational data management

Serial access computer storage Extensib le query language s
Random access computer storage

20 A B S T R A C T  (ConS m u .  on rever.e .Id . If n.c.aaary and idanti~y by block numb,,)

The Command Center Information System (CCIS) prov ides a question-answering facility for relational ly
organ ized Navy data bases. The system consists of a query (user ) processor. connected to a data processor by a
I 200-baud communication line, a buffer memory, an interface processor. and bulk storage. Data-flow control
between the interface processor and buffer memory is exercised b y the data processor , the principal function of
which is data manipulation . The buffe r memory provides buffering between bulk storage (currentl y a disk
memory ) and the data processor.

DD I j A N 13 1473 EDITION O~ 
t No v 8 5  IS OBSOLETE UNCLASSIFIED

~~~~ S/N 0102.LF O14 6601
SECURITY CLAU1FICATION OF THI S PAGE ~~~~ Dat a Int ~~~d)

UNCLASSIFIED
SECURITY CLASSIFICA TION OF THIS PAGE(ITh.n Data Entered)

The processing organization is developed as follows : prInci pal processing of the input user statements , which
are in a form of extensible English, is performed by the query processor which provides the dialog with the user and
parses the English statements. The query processor translates the parsed statements into an action sequence which , in
turn , drives the data processor in its manipulation of relations and records or which updates the dictionary of functions
vocabulary words , and relations stored on the query processor ’s floppy disk.

The data processor has control over the disk-data management , stores and retrieves data as needed by the query
processor , controls the interface processor , and loads the programs and data structures for both the user and interface
processors. Special functions are available for relational data management such as mapping, mapping-composition ,
creating and deleting relation s, creating, deleting, and replacing rows of a relation , projecting, prime-symbol mapping,
and search relation , for memory management such as page and logical record management for buffer , disk , and local
memory , and for scheduling and control. Special instructions are available to isolate the access to data (potentiall y
useful for maintaining data security), for conditional jumps to a cell (to aid in implementing the scheduling monitor
concept as availabl e in Concurrent PASCAL), and for expanding and compressing data retrieved from and stored on
the disk , respectively.

In operation , the query (user) processor looks up words in the user ’s dictionary by accessing a highly portable
auxiliary memory, such as a floppy disk , through double hashing techniques. A word identifier is returned when the
words are found. A speller looks up words in the dictionary which may have been misspelled by the user.

When a statement has been found in the input to the que ry processor , it loads , from the floppy disk , action
descriptions for each of the key words found in the pruned parsed statement. A sequence of action statements is
transmitted to the data processor where their execution provides a final result , such as one or more relations. The

• resulting record is transmitted to the query processor for format control, display control , and display . The query
processor can also act as a text editor for the query statements.

The interface processor operates like a data-transformation unit . Only a simple syntax is processed by this
processor and its princi pal functions are to recognize data structures of the retrieval system and to relate the incoming
data with the appropriate records in the retrieval system. Fina lly, it writes the data onto the buffe r memory for
final disposition by the data processor.

By architectural ly partitioning the CCIS into three processors , each can be organized for its specialized inter-
face (the user , bulk data storage access , and other computing systems). The interface and data processors and bulk
storage must be physically colocated because of their hi gh-speed communication requirement. Since the query proces-
sors communicate with the data processor at a lower data rate , they can be located at remote network sites without
degrading system performance.

UNCLASSIFIED
flCU~~iTY CLASSIFICAT ION OF Til ls PAGE($~ .n Data fnf.r.d~


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
,.Iluu

~~~

ACKNOWLED GMENT

The authors thank Mr Henry Gok and Mr Jack Pigniolo of the Communications
Processing Division , NELC Code 3200, and Drs Frederick Thompson and Bozena Thompson

of the California Institute of Technology for their continuing contribution to the develop-
ment of the Command Center Information System.

ADMINISTRATIVE INFORMATJON

• This work was performed by members of the Communications Processing Division for
the Naval Electronic Systems Command , Code 330, under Program Element 6272 1 N , ProjectO F2 1211 , Task Area XF2 1211 002/XF2 121100 1 (NELC N7 13). This document was approved

for publica tion 10 November 1976.

4;’

L— ~~~~~~~~~~~ --~~~~~— ~~~~~~~~~~~ -~~~ ,-- --

-

- ___
~~~~~~~~ ~~~~~~~~~~~~~~~~

CONTENTS

INTRODUCTION.. - page 3
INFORMATION STORAGE AND RETRIEV AL SYSTEM PROCESSOR FUNCTIONS . . .4

The query (user) processor . . . 4
The data processor . . - 6
Interface processor . . - 11
Auxili ary memory system ... 11

REFERENCES . . . 14

ILLUSTRATIONS

I Command Center information System block diagram . - . 32 Query (user) processor block diagram . . . 5
3 Data processor hierarchy of functions . . . 7
4 Media Inde pendent Memory Controller (MJMC) . . . 10
C’ Diablo disk-drive auxiliary memory system . . - 12
t Combination controller and buffer memory . . . 12

TABLE

I Information Storage and Retrieval (I SAR) func t i ons . . . 5

•1

II

- •~~~~~~~----- 0~~~



~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~ --—

INTRODUCTION

~~~his document details the Command Center Information System ((‘C(S). a new

architectural concept I’or Navy Information Storage and Retrieval ( I S A R ) .  The system con-
sists of a query (user) processor. connected to a data processor by a I 200-baud comniunica-

• tion line , a buffe r memory , an interface processor, and httlk storage
The architecture design feature s a funct ional  separation of t ranslat ion of na tura l  or

formal language queries in to  data retrieval . update . and processing commands from the
execution of these commands in a hack-end data processor. In this  manne r , q uery t ran slat ion
and command execut ion are carried out by separate processors in a manner  conceptual ly

0 0 similar to the Bell Telephone Laboratories front -end,  hack-end processor system. 1

Updat ing of rap idly chang ing data is performed in a third processor. Communicat ion
O bet ween processors or between processors and disk storage (except between the use r proces-

sor and the other processors) is accomp li shed, firs t , by requesting data transfe r via the
controller of a four-port buffer  memory and , then, by actu ally transferrin g data from d isk to
buffer and from buffer tnemory to processor (see fig 1).

[PR?
~
saR

1
1200
BA UD

NTDS

DA TA NTDS BUFFER FA ST I NT E R F A CE

PROCESSOR FAST MEMORY PROCESSOR

/
/

/
/

/
NTDS OTHER DATA
SYSTEM (SHIPBOARD ) SYSTEM(S)

WWMCCS
H6000
SYSTEM (SHORE)

• Figure I .  Command Center Informati on System block diagram.

a

I .  Canady. Rh . et at . A Back End Computer for Data Base Management .” Communica t ions of the Association
f o C o~~p~I Ii ~~~~achmery (CACM) . October l~)74 

0

~~~~~~


.•-,—- ~-0-—- ’ — - ~~

Implementation of the archi tecture depends upon the use of the latest microproces-
sor technology , query translation , and data retrieval. Update and processing command
execution will use special microcompu ters whose instruction re pertoir t ’s are speci fi call y
designed to optimize execution of such commands. All buf fer memory-to-processor com-
munication is via high data-rate input and output channels.

INFORMATION STORAGE AND RETRIEVAL SYSTEM PROCESSOR FUNCTIONS

Early architecture implementations for this ISAR system will use a query and update
language with limited syntax: howeve r , language -defining facilities , a natura l language parser.
and a semantic interpre te r will be imp lemented so that a language wi th a richer syntax and
extension facilities similar to those imp lemented in Thompson ’s Rapidly Extens ible Language
System — can be added easily later , The latter will permit addition of new vocabulary ele-
ments and new data relationshi ps by the syste m use r (see the samp le query session in NELC
Technical Note 2782 . Init ial Command Center Information System Capabilit y, 5 September
1974 , by DL Small and DR Duke , for a potential Navy app l icat ion) .

Thompson ’s syste m also feature s optimization of relational data-base retrieva l .3

Thus , queries are optimize d when they requ ire a search for one or more specifi c elements in
a class (se t of elements with a similar characteristic , such as all ships) . or when they require
a search for the image of a class of elements in a large binary relation (~ relationship which
holds between two elements) . The architecture will preserve this feature .

In addition . the architecture wil l support multi ple user interactions with one or more
data bases. A language specifically designed for writ ing syntax and semantic routines to sup-
port interpretive execution of user queries wilt be provided as well. This me ta- language .
based primari ly upon relational primitives , some of the Rap idly Extensible Language System
(REL) macros (such as the REL paging macros4), and the usual ar i thme tic and Boolean opera-
tors will be supported by software and a special microcomputer instruction repertoire designed
for optimal execution of the meta-language .

The functional or logical structure of the system is shown in table I .

THE QUERY (USER) PROCESSOR

The function of the query (user) processor (fi g 2) is to provide the use r with real -
• time translation of ’ his English-like statements and queries into the control language of the

data processor. The query processor provides the translation funct ion in a manner such
that the data processor does not have to execute th is function in addit ion to the data -
handling functions for which it is optimized. The translation process is a hi gh-pro cessing
function . so that , by dedicating this functio n to the query processor . more queries can he
handled. Seve ra l query processors can be attached to the data processor without noticeable
degradation in response . In addition , the query processor provides buffe ring and editin g
functions for the user that do not contend with other users and with the data-up dating
function.

2. California Inst i tu te of Technology REL Report 3 , REL — An Informa tion System for a Dynamic
Environ ment , by BH Dostert . December 197 1

3. Califo rnia Institute of Technology REL Report 4 , Computer Syste m Support for Data Analysis.
by N R Greenfield , March 1972

4. Califor nia Institute of Technology REL Report 17 . The REL Paging System. by FB Thompson. 1974


~~~~ 0 -

TABLE 1. INFORMATION STORAGE AND RETRIEVAL (ISAR) FUNCTIONS.

Query (user) processor
I . Editor module
2. Lexicon handler

• 3. Speller
4. Parsing
5. Semantic translator
Data processor
1. Scheduler
2. Executive
3. Relational data base management
4. Disk page management
5. Local and cache memory management
6. NIIMC instruct ions
interface processor
Auxiliary memory subsystem

4 QUERY IUSER) PROCESSOR

PR IF ER
OUTPUT DATA FORMATT ER BUFFER

B 

1 Y ’ l  L PARSER -p.! ______ COMM — DATAL — 

,

~~ ....4 ~~~~~~~ 
• — 

MOD
_ _F • PROCESSOR

~~~~ERD 
- - ~~~~~~~~~ RTJ

~
SPELLE~~~~~~

— - -
CONTROL 1

I

[
IN S T RU c T I ON ~~~... : ~~~~~~~~.

[

~~~~ EX Ec UTI VE F— — 

_ _ _ _ _  

~~~~~ 

~~~~ C O M P I L E R  

FLOPPY DISK

_ _ _ _ _ _ _ _ _  

_ _ _ _ _  1 41 FLOPPY DISK
- SYNTAX MEMORY 0

_______ - SPELLING LEXICON

______  ~~ __________ 

‘USER SPECIFIED
_______ _______ r u \oT IoNs  & SYNTAX

~~ H ~ I [
NTAX JH SYNTA ~~~~~~ 

PE~~
o PJ

~~~~ 

Figure 2. Query (user) processor block diagram.

~0 —---
~~~~

-.-• ~~~~~~~~~~~~ ~~~~~~~~~~~~~



The primary functions of the query processor are to provide ed i t i~ig to the  user , to
parse the English or formal language query, and to generate the appropr iatL instruct ions to
the uata processor for query response. A number of secondary fu i ic t i u ~is . such as an execu-
tive which controls the order of activity (parsing execut ive ) ,  are required to accomplish
these primary functions. This execu tive module calls an editor module which performs
appropriate edit control and parsing. Once a sentenc .’ is pa rsed , it calls the translation mod-
ide (semantic translator). In figure 2 . these calls are denoted by double-lined arrows to the
appropriate boxes.

The edi t or sim ply changes th e parsing chart to correspond to the changes requested
by the editing action. i he  chart stores the partially parsed statement , which the user has
already entered into the t ran slator , and provides all needed information for editing, co n-
tinued parsing. and translation. A chart  is built up for each new sentence entered into the
translator. The parser takes the input  from the parsing executive and builds Ofl the chart  by
communicating with the lexicon module and with the syntax memory of the data processor
in order to acquire new words entered by the user and new syntax rules for parsing. The
lexicon handler uses a fast hash-code strategy for word lookups from the portable auxil iary
memory (currently a floppy disk). The syntax handler gets new syntax rules from the syn-
tax memory via the floppy disk buffe r and the floppy disk handler.

T h e  semantic translator takes a completed chart. prunes unnecessary paths from the
chart , and formulates a course of action for t h e  handling of data. It also determines whether
the action is a meta action (a new definition), in wh ich case it ca ll s the sy nt ax handle r t o see
if a new syntax has been generated which must be added to the system. The semantic trans-
lator module calls system control if a system action is involved , such as formulating a new
language or changing the effective data base for which subsequent statements are to be 0

applied , and it also directs the user to his user preference history on the floppy disk. In the
case where new words are being added to the system , the semantic translator module calls
the lexicon handler to create a new word for the lexicon , calls the data action compiler for
the reduced chart , and creates a sequence of commands for the data processor to carry out
any desired t’ile processing. The data action compiler calls the data-handling instruction
module to communicate with the file handler of the data processor.

Each handler  has a special protocol t’or carrying out the particular module ’s neces-
sary action. Processing and protocol go hand-in-hand to reduce execution time of the state-
ment.  In order to limit the size of the query processor memory . excessive information from
the data processor is ni~nimize d.

THE DATA PROCESSOR

The data processor is responsible for scheduling, fetching, updating, and analysis of
data, the executive or semantic command interpretation (execution of com mands as
received from the translator ) , and storage-management processes. The latter consists of rela-
tiona l data-base maintenance , disk-page management ,  and local- and buffe r-memory manage-
ment.  The hierarchy of functions for the data processor is shown in figure 3 .

6



- . 

~~~~~~~~~~~~~~~~~~ 

0 0 ~~ - ~., .

I

RELATIONAL P R I M I T I V E S SCHEDULER

LOGICAL
RECORD PAGE DIRECTORY

CATALOG FUNCTIONS
HANDLING

LOCAL AND BUFFER MEMORY MANAGEMENT

EXECUT IVE

M IMC MICROCODED INSTRUCTIONS

Figure 3. Data processor hierarchy of functions.

TI-f E SCHEDULER

The scheduler is designed to be in an idling mode which continually examines a
queue of processes ready to he executed. If the ready queue is empty. idling continues:
otherwise the t’irst process in the queue is initiated. An executing process (which may con-
sist of several activities for the executive) may run to completion or be suspended prior
to completion either because the process requires a reso u rce whi ch i s not currently available
or because the process is interrupted. Interruptions can occur by a hut’t’er-memory control-
ler request. by completion of a data transfer. or by an alert . The scheduler processes the
interrupt and , il’ app ropri ate . determines if some other process is now ready (eg. a process
that was suspended wai t ing for data t’rom disk) for executi on . If so. then the priority of
the now ready process is compared with that of the interrupted process. the process wi th
the higher priority is ex ecu ted . and the one with the lower priority is inserted in the
appropriate ready-queue position. When a process is comp leted, the highest priority process
await ing completion is p laced in the ready queue . 0

DATA PROCESSOR EXECUT IVE CYCLE

The philosophy of executive cycle operation is based upon an activity discip line in
which activities are executed in sequence from an act ivity tree. An activity-tree organization
is used rather than an activity list , since it is desirable to move grouped activit ies on and off
the tree , an action which is quite difficult to perfo rm with a list structure . The sensing of
input from the user processor is always on the activity tree with appropriate inpu ts which

_ _

result in placing other activities on the tree. Uowever . an input does not place an activity
directly on the tree , since such an action could result in the loss of the executive system ’s
integrity. Rather , the executive looks for a flag set b y inputs on the input list on the ac t iv i ty
tree. If a flag is found , a difl ’erent activity is executed. The executive is said to scan the tree
if it executes each activity on the tree once. The tree actually consists of both a slow and a
fast tree. but for the present purposes , the trees together will he referred to as “the tree. ”
The executive first scans the entire fast tree , unless empty , then executes one slow tree
activity , returns to the scan of the fast tree , and so forth.

Each activity can call four executive functions: Exi t , which allows the executi ve to
continue scanning the tre e but leaves that activit y on the tree: Quit , which also continues
executive scanning of the tree but also removes the activity from the tree so that activity is

not encountered on the next scan: Activate , which initiates new activities by placing new
branches on the tree (requires the location of the new branch be specified as well as which
tree (fast or slow) will he used): and Retire, which is the complement of Activate. This
function removes an entire branch from the activity tree and , when it is carried out. the
executive does not continue with the ongoing scan but reinitiates the scan of the entire tree.

The order in which activities are executed cannot be assumed , but , if an order is re-
quired . a sequence of “activate ” and “quit ” functions within the activities is necessary .

This architecture was selected for the executive since it supports rule-based program-
ming as well as alerts , both of which are important in the intended application. The architec-
ture does not exclude sequential programming since an activity is a sequential program . In
addition , the architecture contains the spirit of timesharin g since a wait in one sequential
program can he utilized by another program. Slicing can also be introduced if required.

RELATIONAL DATA-MANAGEMENT OPERATORS

The logical _ record _ catalog-handlin g ut i l i t ies are used to support the implementa t ion
• of the relational data -management operators. These relational operators include mapping.

O prime-symbol mapping, mapping-composition. proje ction . create-re lation , de lete-re lation .
insert-new-row , delete-row , and replace -row (see the description of the SQUARE Data Sub-

-
language in reference 5).

The mapping operator returns a new r elation of values in the range column or
columns of the given relation whose associated domain column (s) values match the domain
argument of the operator. The domain argument can itse lf he a relation.

Prime-symbol mapping is the same as mapping except that all duplicate elements are
maintained in the new relation. This is usefu l when elemen t counts , sums. and averages are
desired.

Mapping-compositi on is an operation which takes tile result of the first mappin g it
O receives and uses that relation as the argument t’or the second mappin g. Of course, the

domain of the re lation of the second mapping must be the same type of relation as the valu e
of the fi rs t mapping. Mapping-compos ition . thus , calls on the fi rst mapping. The first map-
ping will form as a value the logical record address ot’ a new tempora ry relation. When the
first mapping is complete. mapping-compositi on then calls the second mapping with ti le
argument being the value of the first mapping. spedfically its logical record address.

5. Boyce . R , Chamberlin . D, King. W , and Hammer. M. “Specif yi ng Queries as Rational Expressions: The
SQUARE Data Sublanguage .” Communications of the Association for Computing Machiner y. November
1975

8

—--O.--.0~ - 0 - ~~~~ — - - -~~~~~~~ --0 .-- ~~~~~~ ~~~~-~~~~~~~~~~
-. —~~~~~~,-~~~~~~~~~~~~~ —-~~~~~~~~~~~

,—
~~~~~-- . - -~~~~~~~~~



A I t h is po in t , no real cons t r a in ts  have been p laced on the domain a r g u m n e i l t  of a
O mapp in g .  As previously m e n t i o n e d  it  could be a re la t ion .  hu t  it  can also he a r e l a t i o n  V~ I th

cons t ra in t s :  ie . each ship of a specific task group ~s h ich  has 30 percent  of I t s  fuel  r e m n a i n l i i g .
Here , p ercentage of fuel r e m a i n i n g  on a ship is a re la t ion ,  but  the n i app im ig  w i l l  on ly  p ick out
those ships having 30 percent of the i r  fuel r emain ing .  The m a p p i n g  operator  and I t s  \ a r i a -

tio n s are designed to he general enough to handle calculable arguments  as wel l  as l i s t s  of
- a rgumen t s  (or  an a rgument  which  is a re la t ion ) .

Proj ection returns as its va lue  a g iven col t imn or co lun in s  of a re la t ion , and is m ost

use fu l  in composit ion w i t h  mapp ings. Projection is imp lemen ted  as a t r iv i a l  case of m a p p i n g
where  the  domain a rgument  is al l  e lements .

• (‘re ate—re l a l ion de t e rmines  the  logica l  record address ui  the  re la t ion and then  adds
O an e lement  on the  first page of that record which ind ica tes  t Im e type of r e la t ion .  For

O example , the num her of co lumns  wil l  he given as wi l l  the m e a n i n g  of each of the  co lumns .
Dele te—re la t ion  r e tu rns  the  pages of i ts  logical record to the  avai lable  page l i s t .

ln ser t -n cw -ro ~ and delete—row perforn i the normal operations. Rep lace- row rep laces
or updates )  the row of ’ the  re la t ion.  The requested ii p date can he an a r i t h m e t i c  n i an ipu l a—

- t ion on each of ’ the e l emen t s  of the record or selected ele m ents of the  record. I t can also he
a strict  rep lacement  of selected e lements .

BULK M E M O R Y  PA( i~ N1. .\ NA GEME N T

rhe hu lk  memory ( cur r em i t l y  disk )  is organized into  pages of f ixed  l e n g t h  w i t h  pagL ’s
grouped in to  logical records . A p ointer  to the h ead of each logical record is m a i n t a i n e d  as
an i m i d e x  to hu lk  storage by use of the logi cal record catalog.

The nex t  layer  of indices in to  hulk  storage is m a i n t a i n e d  in the  page director y .
where the connec t i v i t y  of each page to o ther  than  i tself  is ma in  ta m ed.  I’ages in use are kep t
in t h i s  director y and pointers  to the  rest of the pages are located in the  a v a i l a b i l i t y  l i s t .

A un ique  f e a t u r e  of the sv sten l is the  change record in wh ich  changes  to ra~ cs are
recorded u n t i l  suc h t ime as t h e cha n ges a re ac tua l ly  pe r fo rmed  in h u l k  s tora ge .  Thi s fea-
tu re  e l i m i n a t e s  excess iv e v:i i  t i n g  f o r  access to bulk storage when  a u ser reques t s  an up da te .
( ha nge—r e cor d i’u nc t io ns  are m l  p lemen ted to e f f ec t  one change at  a t ime  on a mi n i  n t e r i e r—
c n c c — w i t h — t l m e — u s e r  basis .

I li e handlers  and u t i l i t i e s  are desi gned to pro v ide r edundanc y  in the  p o i n t e r  str l .Ic-

t or e  and  to pros ide add i t i ona l  means t’or f i nd ing  those pages belonging to ii re la t ion  or logi-
cal record ss i t h o u t  loading  al l  pages of the record . I t  should he noted , however , t h a t  the

• n e x t — p a g e — p o i n t e r  r edundanc y  f o r  each page of the  record is m a i n t a i n e d  in order to as ( l i d
loss of record s t r u c t u r e  if the  page d i rec tor y  and , or catalog heconies lost

B U F F E R  .\~~l) LO(’A L - M i M O R Y  \ I A N A G I - M l - N  F

I l m e s e  f u n c t i o n s  are designe d b r  m a i n t a i m i m m i g  memory s t at t i s  w i t h  re sp ec t  to  space
av a i l a h l e  to r  pages . l3its are kept  f ’or each pa~ c locat ion  iii b u f f e r an d in local n i e i i i orv I I )
sh ow ii ’ t he  page is locked in t o  memor y  and canno t  he w r i t t e n  to disk , if t h e  page is Pro-
t ected :Iga i s t  svr i t i ng  . has been w r i t  ten on.  and si f o r t h .  One of the  fu n c t i o n s  cop i es  p~I C i ’\

from disk to hu t i e r  a mid  or local mem or y as space is ava i lab le .

~~~ 9

~

-

~~~--~~~~~~~~~~~~~~ - -~~



\I El ) l - \  l N l  ) F P I  N 1) 1 NT N I F \ I O R ” i ( 0
( )\ I R O L L I R  I Ni lM(’

The da ta  pro cessor ha rdware  and I i rn i s .vare des ign is based omi t ha t  I l l  t he  M l  M( ’
processor . a processor being dc s ig i iL l to in ter face  th e  newer  sol id-s ta te  t echno lo g ies , such
as charge-coupled devices , svith advanced systems wh ich  wil l  require storage of dig ita l data
(fi g 4 .  The central  processor used is a general  purp ose. fo u r -bit-slice microprocessor which
is the  e q u i v a l e n t  of the  M o n o l i t h i c  \ l em o r i c s  ( “ O h  1 his is a b ipolar  chi p which  can he
c cled in a bout 300 nanoseconds . a l lowing  high t r ans f e r  rates and m i n i m  urn p i i  l~~~’,s i~ ] g  t im e
for the required sy stem t u m i d  ii  u s  such as sea rch ing  f o r  i n f o r m a t i o n . u p d a t  i m i g .  am i d  data
analy sis.

.

. • 
-
.
• 

~

‘

, ~~

- II

O

,
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.

LSF 0006-O1-77
Figure 4. Media Independent Memory Controller (MIMC).

t i l l ’ pr c se i i t word w i d t h i~ 3 h i t s f o r h ig h speed and e o m p a l i h i ! m t v w i t h the
-\N UI K— 7 and ot h er ex i s t ing \ a v r c o n i p u t e r s wh ich will still he in use f o r t he n ex t ~ to
10 years . \ I a x i i u u r n m e m o ry s i/c is ~ t h i o u l s a i l d ssor l .fs .

p

BASI C INS I R I. (
0 l ()N i :OR\1 •\ I I m e lower ha l f word is a I n —bi t ,idd r c s ’. I l i e uppe r

ha l f c o n t a in s an ~— hif ope ra t io n code a i d tw o 4 — h i t r e g i s t e r .~dd cssL s l i e I _ p c i t o e has m i~~i
b e emi comple te ly d e f ined at t h is t u n e h u t t he mn ic rop r og ra n im i a b i h i t ~ of l I m e d I l l i l l o h l c i , t l l l I \ s s
the i n s t r u c t i on s to he m o d i f i e d r a l l i e r s i i i i p l ~ \ b as ic sd i n c l u d i n g l l ’ ,Id amid sl i c ex-
change , s h i l l s , and b as ic logical r e l a l m o n a l . ~i r i t h i m n e I m c . u i i i i p s . i i n i ~l s t a c k i e :‘ s t i _ l i o n s ha s

-~~

been defined , Other instruct iom i s h a s c been added to local iic all da ta i i d Cl _’SS . to d e c r e m i m e n t a
• cell c o n d i t i o n a l l y , to i n i t ia l iz e a repeat flag, to save registers on a subrou t ine call and m L ’slo rc

• them on a re turn , to do a b inary search , amid to do a bubble sort, Hardware has been ik’
signed to compress and expand fields of’ data.

The internal architect ure of MI MC uses a bidirectional bus with bus control s igm i a l s

s imilar to the controls of’ the SEM/SSIXS 8080 (NEL(’ Technical Note 3005. .-\ Quick and

Las Design (QED) Terminal — INTEL 8080 Microprocessor and (‘onimii on-Bu s S\ s t e i n .

GR Huckell . 18 July 1 ()75) ,
• The interrupt structure allows 32 interrup t sources which can be enabled or disabled

under sof tware control , Priority is determined by a dais -chained t e c h n i q u e : t h e h ig h est

priorit y disables th e lower prio rit ies. When an interrupt is received and accepted by th e

— processor . t Im e star t im i g address for the part icular interru pt h a n d l i n g r ou t imi e is l ’orced im i to the
bus ati(l ti m e processor executes the r equired program .

• The input ou tpu t (1 0) philosophy uses the normal addressimig procedure t o designate
• ports: regards a n l () lio rt as a read or write iiicmory address. For sy st emiis having onI~ a very

f’ew po r ts . a separate dedicated contr ol h u e can be u sed to si m p l it ’y add ress decoding on t in e
I/ O port m odule. Input-output imit erfac es currently available inc lude the 32-bit Na vy

Tactical I)ata Sy stem parallel interface and the RS-232 Teletype in terf ’ace.

INTERFACE PROCESSOR

-
‘rhis processor is designed to accommodate l imite d-sym itax (such as f ixed-t i eld records)

• h ulk updates whic h cami arrive from a variet y of different computer 100 channels an ch or data

li nks , Thus . t he processor can readil y accotumodate differe nt word lengt h s and data rates.
All updates wil l he done eventual l in bu lk storage through the cache—mem ory s\ stem hut
uiider the control of the data processor

AUXIL I ARY ME MORY SYSTEM

Most requirements for Navy information storage amid retrieval demand r am’i dom—a cccs~
au xil iary storage. An ini t ia l choice for such a storage device is the Model 44 Diab lo disk
d rive wi th a nomim i a l disk capacity of 6250000 sixteen-bit words amid an access t ime of

abo ut 50 millisecond s (I’ig 5 . This dri ve is reasonably typical of the lower-cost disk drives
0 which arc avail ah le .

rime funct ions of t h e disk controll er am i d the I/ o channel interface s v mll be perfor med h\
a combination com itro l ler and hu l’I’er- mnem or y (1 2000 thirty-two-hit words) designed and

constructe d at N E L C (f i g 6) .
The re a re a number of adva n tages in ha v ing a b uf f ’e r—memory interface h et sveen a c u min—

put er and a disk dri ve. These include a reducti on in the total disk -drive access t ime and the
Provision of a teili por ary storage area and im i te rf ’acc for mul t ip le devices.

RFI)U(’FlON OF AC (’ESS TIME

When using a disk drive , head p o s i t i o n i n g and la tency of the disk drive (wa i t i ng l’or th e
disk dr ive to reach the proper track and th e sector wi th in the t r a c k) pr esent a delay p ro h—

1cm. Wi thout th e huf f ’cr— mc mory a direct i n t e r f a c e b e t w e e n the computer and the disk

‘
0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~--~~~ - •~~~~~— ‘— 

_



0 _ _

. 1  
_ _

g
~

- .
1SF 0856’05’76

Figure 5. Diablo disk-drive auxiliary memory system.

LSF 085905-76

- - 

Figure 6. Combination con troller and buffe r memory .

12



- 
drive ), t ime com mi p l iter  would have to wait  tIme length of’ th is disk-access time which is about
50 milliseconds t’or time 1)iahlo disk drive. Wit l m time buffer—im i emory im it er l ’ace. ti me com n puter
instructs the nma i m i contro l ler to inpt i t  a certain page in to  the buft ’er. Whmi le  the main con-
troller waits to access the disk and inputs  the page to the huf l ’er , time computer can be
pro cessing other data and cami receive au in terru p t  whemm ev er the d a t a  are in time buf f e r .  TIm e
50-millisecond access time of the Diab lo disk drive is very signif icant  and will  slow the
processi n g t im e of t h e  com p u te r ii ’ the disk is inter faced directly.

TEMPORARY STORAGE AREA

The but ’t’er carm be used to store intermediate data of an incomplete operation
• ( temporary scratchpad memory ) .  The buffe r will  allow sm im all changes to he made in a page

from the disk without having to bring a whole page of memory into ma in memory . Tlk’ page
is first brough t from disk to the buffe r and then the changes are sent from the computer to
the desired location in the buffer. As f ’ew computer words as one may be rewrit ten Ironi the
buffer back to the disk. This saves computer I/O time and main-memory space. Page t h rash-
ing can be reduced with the use of the buffe r as a temporary storage wh en generatimig am i d
recognizing item names (especially on a smal l-memory computer) .

INTERFACE FOR MULTIPLE DEV ICES

The buffe r will be used to int erf ’ace more than one device to eaclm other aiid to the
disk drive ( fi g I ) .  The buffer presently has four ports. Iii the proposed ISAR architecture.
two ports are devoted to tile data processor amid interface processor microcomputers and the
t h ird is devoted to ti le Di ahl o (f isk drive. The t’ourt l m port is not used at present.

I

I

13



_____ • ‘ -

~~ 

“

~~
“ ‘

~~ ~~~~~. 

- . - -

- REFERENCES

I .  Canady. RH . et al . “A Back End Computer for Data Base Managemet it ,” Communica-
tions of the Association for Computing Machinery (CACM), October 1974

2. California Institute of Technology REL Report 3, REL — An Information System for
a Dynamic Environment , by BH Dostert. December 197 1

3. California Institute of Technology REL Report 4, Computer System Support for Data
Analysis, by NR Greenfield , March 1972

4. California Institute of Technology REL Report 17 , The REL Paging System, by
FB Thompson. 1974

5. Boyce , R , Chamberlin , D , King, W , and Hammer , M , “Specifying Queries as Rational
Expressions: The SQUARE Data Sublanguage ,” Communications of the Association
for Computing Machinery, November 1975

- 
6. Naval Electronics Laboratory Center Technical Note 3005 , A Quick and Easy Design

(QED) Terminal — INTEL 8080 Microprocessor and Common-Bus System , by
GR Huckeh l , 18 July 1975*

I

IIITI 
mnfzr m~ documen t s mtende d pnma~~y f~~use wflh in thlentl



I N I T I A L DISTRIBUTION LIST

NAVAL ELEC T RONIC SYSTEMS COMMAND
NELEX-330 (R. KAHANE )
NELEX-330 (C. STOUT) (5)
NELEX.330 (J. MACADO)
NELEX-330 (R. FRAT ILLA )
NELEX~570 (A. DUBE LOIS)
PME-108 (D. SCHUTZER) 0

PME-108 (J. OLSON)
PME~108 (J. NEWELL)
PME.108 (T. CONNELLY)
PME-108 (G. NEELEY )
PME-108 (0. MULLIKIN )
PME’108 (G. HAMILTON )
PME-108 (S. DAVIDSON)

DEFENSE TELECOMMUNICATIONS AND
COMMAND AND CONTROL SYSTEMS

F. KUO
DEFENSE COMMUNICATIONS ENGINEERING CENTER
COMMAND AND CONTROL TECHNICAL CENTER

M. CHAMPAIGN (2)
LTC T. H. BAUMGARTNER (2)
BOB MARION (2)

OFFICE OF NAVAL RESEARCH

$ ONR-437 (J. TRIMBLE )
• ONR-437 (M. DENICOFF)

ONR ~437 (G. GOLDSTEIN )
ROME AIR DEVELOPMENT CENTER

- 
DUANE STONE (3)
PAT LANGE NDORF

NAVY PERSONNEL RESEARCH AND DEVELOPMENT CENTER
J. WOLF F (2)

- NAVAL U N D E R S E A  CENTER
CODE 14 (C. MERROW) (2)

DEFENSE A DVANCED RESEARCH PROJECTS AGENCY
IPTO (C DR F. HOLL ISTER)

SYSTEM DEVEL OPMENT CORPORATION
SANTA MON I CA , CA 90406

GEORGE CADY
JEFF BARNETT

CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA , CA 91103

DR. F. THOMPSON
• IBM RESEA RCH L I B R A R Y
0 SAN JOSE , CA

VI MA

DEFENSE DOCUMENTATION CENTER (12)


