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PREFACE

This monograph is basically the outline of lectures given at the
WECOM Research Seminar on Applied Mathematics and Continuum
Mechanics held at Watervliet Arsenal, New York, in June 1973.

The purpose of the lectures was to familiarize theoretically
oriented engineers with some mathematical techniques which are
useful in continuum mechanics., Abstract differentiation and
integration is shown to lead directly to the formulation of
known or new variational principles. Some applications are
also given to specific types of ordinary differential equations
which occur in theoretical mechanics. However, the formulation
of variational principles for boundary value problems of
ordinary differential equations can obviously be extended to

a much broader class of problems.
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Chapter 1

Abstract Differentiation and Integration.

1.0 Introductory comments.

In this chapter we shall consider primarily problems posed in Hil-
bert space setting. Most statements offered here are easily trans-
lated into Banach space terminology, where we have to keep careful
count of which elements belong to the space B and which belong to
its dual B*, or even to B**., 1In the Hilbert space sétting we can
afford to be sloppy, and the arguments are frequently simplified.

1.1 The concept of a derivative.

To offer generalizations of the concept of a derivative and of the
usual necessary condition for the extremum of a function we need
to have a look at the concept of a derivative of a function of a

single (real) variable, and of two variables. Differentiability of

a function f whose domain is D(f), f(x): D(f) € R - R, can be stated

as follows: given x, € D(f) and given h, we can.express the dif-

ference f(x0 + h) - f(xo) = Ahfxo in the form

<

where K is some constant (depending on X and on h) and !(xo,h)
has the property

: 1
lim = 2(x,:h) = 0.
h-+0 lh’ l 0 I

Morcover (regarding K as a function of h) 1lim K(xo;h) exists.
h-0

We could of éourse generalize this by considering lim , or 1lim
h-0, h,0_
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or 1lim sup K(xo;h), etc. obtaining the Dini's right, left, upper
h-+0

and lower derivatives. s ‘

We shall deliberately stay with only the simplest cbncepts.

The relation (1) can be rewritten as
Ahfxo = <K(x0;h),h> +'Z(x0,h)-

where in one dimension the inner product <, > is a simple multipli-

cation.

At this point we have deliberately avoided the form A% ’

since generalizations of this form are possible only in spaces where
products of this type are defined. 1In general h will be a vector

in an infinite dimensional vector space, f may be some mapping and
the product A% makes no sense at all. However, the analog of
formula (1) has an easy interpretation. It is clear that ror the
infinite dimensional case one dimensional concepts are inadequate,
and we shall consider the concept of a dzrivataive in Rz, and attempt

to generalize the basic notions from R2 to an arbitrary Hilbert space.

We shall consider two basic pointwise maps

£ K > R

f will be called an-operator, a map, or a transformation, ¢ will

: 2
be called a functional. Clearly a functional is a map R2 + RZ(R’C‘ )
However, the one dimensional range of this map simplifies many

arguments, and such maps should be considered separately.

e

T o
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The map f may have the following types of derivatives in R !
i) partial derivatives ?1

; |
ii) total derivative - or the Jacobian derivative, {1

4 iii) directional derivative (in the direction of some two dimension-

al vector in Rz).

’

| .
E For the functional ¢ we introduce the concept of a gradient of ¢.
E

% All these concepts have appropriate generalizations in Hilbert

space. We can also introduce the appropriate concepts of integration ;
in Rz. Given any simple arc T', whose endpoints are Pys P, We can
introduce the Riemann integral

2

J <f(x,y),ds> If f£(x,y): R" - R2 has the property that for

r(pllpz)
{ any Py, Py € o5 R such integral is independent of the path,we in-

troduce the idea of a potential functional.

(x,y)
Q(Xo»yo) =0, Q(XIY) = f <f(x:Y) . d§> °
(xo.yo)
r

We note that the independence of path condition requires no proper-

ties apart trom Riemann integrability.
3

‘3‘ The more commonly used conditions curl f(x,y) = 0 in R™ or
g, §£,(x,y) §£,(x,y) . 5

i E e b Ty £=,8)

7

%H assume differentiability of f, and assume simple connectivity of
%f . Each of these criteria will be shown to have important gener-
iﬁ alizations in Hilbert space.

Ny,

1.2 Definitions of derivatives of maps in Hilbert spaces. ,

By a map in Hilbert space we mean a map (transformation, operator...)




st

i

VL W Al e
A = el

f: Q& H, - H

where Q is some subset of a Hilbert space Hl' and the range of f

is a subset of a Hilbert space H,.

?he simplest case when Hy =R is easily disposed,since division

by a scalar is defined in H,. We say that f£: R > H, is differen-
tiable at the point to € R 1IE

f(t) - f(tql

lim exists.

L+to t o= t0

Unless otherwise qualified lim. will stand for limit in the norm

(strong limit). That is we postulate the existence of a vector

f'(to) € Hz, such that
£(t) - £(t,)
lim L £k ) JE= 10 (1-3)
t*to €t = to

We can rewrite this in the form (1.1) as an equation in HZ:

o f(to) =t = to) f'(to) + I(t;to) (1.2)
Z(t:to)

where lim —_— =0, (1.3)
t*to t = tO

where we deliberately avoid complications at this point by insisting

on this limit being defined instead of possible alternate conditions

(one sided limit, lim sup,...)
If we replace convergence in the norm by weak convengence, we

have the equivalent definition of a weak derivative:
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f: R » H2 has a wecak derivative at the point to € R, if there exist

a vector f'(to) € H2 such that
f(t) - f(to)
f'(to) = weak limit ( - | (1.4)

with the formula (1.2) still valid, and condition (1.3) replaced by

Tltity) w
( —q;q;;—— ) BN (1.5)

where f is the zero vector in H2. These definitions don't make much
sense if f is an operator f: Hl =+ H2 (generally H1 is infinite
dimensional).

The definition of directional derivative due to Gateaux general-
izes the concept of a directional derivative in RZ. We consider
the map f: Q@ & H, ~» H,. Take x5 - an interior point of Q. Pick a

1
fixed vector h € Hl. For fixed Xg 1 h € Hl consider the vector
(f£(xq + th) - £(x;)) € H, where the constant t is picked suffic-
iently small in absolute value to make sure that Xg + th € @, which

is possible since Xy was an interior point of Q. For fixed X9 and

3

‘; h the difference Of(t) = (f(x0 + th) - f(xo)) is a function of
54 the real variable t only. Hence we are back in the previously
éf discussed case §f(t): R - H2' and we can define the directional
g; - derivative of f in the direction of h, computed at Xg if there
§¥ exists a vector f(xo;h) € H2 such that for all sufficiently small

+

values of t, the formula holds:

Sf(t;xo,h) = f(x0+th) . f(xo) = t-f'(xy:h) +%(tixy,h) (1.6)

5 Sl T
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ln(t;xoh)
t

E where 1lim

B 0,- "Jee [IOJ) . (1-7)
t-0

(or %.z(t;xoh) Y9 as t » 0 in case of a weak derivative.)

We should point out that the directional derivative f'(xo;h) does
E not have to be linear in h. In general f'(xo;h1+h2) # f'(xo;hl) +
f'(xo;hz). It is however homogeneous of degree one in h, as can

be easily checked from the definition,and £'(xyich) = cf'(x4ih).

1.3 The Gateaux derivative.

We now assume that f'(xo;h) exists and is linear in h. Then f'(xo;h)

is called the Gateaux derivative of f in the direction of h,

computed at the point Xy The Gateaux derivative is not necessarily
continuous with respect to h either in the strong, or even in the
weak topology of H,. It only implies the existence of a linear
operato:x L(xo) such that for a fixed h € H, and for sufficiently
small (in absolute value) t ¢ R,

f(x0 + th) - £(x,) =t,L(x h + 'z(xo)_th) (1.8

0)

where lim

|1(x0;th)”
£+0 =

(or weak lim. % %(xo;th) g.) We would like to point out that

t-+0
'(,(xogth)
lim — =0 does not imply
t-+0
(RIS Y

1im 5. =0,
Inll>o Thl

[Py P




¥
for arbitrary h € H, (of sufficieutly small norm). In other words
the Gateaux derivative may exist in the direction of a vector hl’
but may fail to exist in the direction of a vector h2. This is
easily checked to be true even in some two dimensional cases)

£ R2 H-Rz.

1.4 Fréchet differentiation.

Assume that the operator L, in (1.8) is linear and bounded, i.e.
0 .

|
for fixed x, € H2 we have j
3

0

i) on (onhl +* th) = quohl + Bonhz' and there exists M > 0

such that

31} ”Lx nll < M(xo) Inll for all h of sufficiently small morm.
0 =

We also assume that for all such h € H2 it is true that

iii) f(xo+h) - f(xo) = LX h + Z(xo;h) where

0
3 Y ( xpi0) 1 ,
' im ———— = 0, (1.8)
Inso Inil : (e 73]

Then Lx is calleZ the Fréchet derivative of the operator f eval-
0

%l uated at Xq . The following condition can repiace condition (iii)

B % (%4, th) .

b g iv) lim ||————— =0 uniformly with respect to h on all

- t-0 t

& ‘

L% bounded subsets of H,.

4] .

5. The fact that (iii) and (iv) turn out to be equivalent is not trivial.

Sartad

The proof of it can be found in [2!].

2]
-

Theorem. Fréchet derivative exists if and only if the Gateaux

derivative exists and satisfies condition (iii). The proof is easy

o ad




E
:

.

L s

Eovialag . e

= e

and will not be given here. (See [52].)

1.5 Fréchet differentiation of functionals.

In this case we consider the Fréchet derivative of the map

f: QS H, - R. Let the Freéchet derivative Lx exist at X, € 0.

2 0
Then on is a continuous linear map from Q & Hl into R. Therefore
for some h € Hl we have onch ='c onh, ¥ c € R, and by the Hahn
Banach theorem on can be extended to all of Hl without changing
its norm.

By the Riesz representation theorem there exists a unique

z € H) such that L_h = <Z,h> for all h € Hy. Hence for all h € H
0
the Frechet derivative of a functional f evaluated at Xg is a

continuous linear functional L_ , and L_ h = <Z2_ ,h> (1.9)
X Xg - X

for all h € Hl'

The unique vector Zy is called the gradient of £ evaluated
¥ 0

at X Clearly Z depends on the definition of the inner product

in Hl. However the existence of the gradient depends only on the

existence of the Fréchet derivative which in turn depends on con-

vergence of our limiting process. Convergence is a topological
property, and remains invariant in equivalent topologies. Hence

the introduction of an equivalent norm in Hy will not affect the

existence, or non-existence of a gradient (or of the Fréchet deriva-

tive). 1In fact let us introduce a new inner product (the so called
energy product, and corresponding energy norm) [ , ]

[x,y] = <Tx,y>, where T is positive definite,symmetric operator.
Denoting by \me2 = [x,x] = <Tx,x>, and by "y"z = <Y,y>, we

have <grad £, h> = [grad#f,h] = <Tgrad#f,h> (1.10)
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where grad# is the gradient of f in the topology induced by the

norm || ||. Since relation (1.10) is true for all h € H,, we have

the equality T-grad# = grad. If 77! exists, then grad# = T-lograd.

If the operator T is bounded away from zero (i.e. the spectrum of

T does not have zero as a limit point) then there exists a constant
vy > 0, such that for any x € H; N 4(T) | x| gg%HIXI"- (8(T) denotes
the domain of T). Hence convergence (or continuity, or existence
of limit points) in the new norm || || implies convergence (or con-
tinuity...) in the o0ld norm | || .

In the final dimensional case all these statements are trivial,
and all norms <,>, [ ) where <Tx,y> = [x,y], and T is positive
definite, and symmetric, are equivalent and generate the same
topology.

At this point it 'is apprépriate to make a comment about the
non-existence of the Freéchet derivative in some Hilbert space Hl.
Suppose the Gateaux derivative of ¢ (in arbitrary direction h) exists,
but fails to be a continuous functional of h in the usual (norm)

topology of Hl’ i.e. we can find a sequence of vectors {hi} € Hl

such that 1lim !h - hi“ = 0, but 1lim @(hi) # &(h). It may be q

isw i {
possible to introduce a different, and non-equivalent inner product ’
{,}, with a corresponding norm I H(2) such that %(h) is a continuous

functional of h in the new (norm) topology.
If the inner product is fixed, and no attempt will be made to

change the topology, then we can use the sloppy notation ¢x(x0).
s (x)

Sy i to denote the gradient of { evaluated at Xq where
~ 0

¥ is a Frechet differentiable functional whosc¢ values depend on
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x € Hy, ie. & H, - R. on(x) = <Z, 4X>= <-%£ JX>

0
is the corresponding Frechet functional. This notation is both
confusing, and sloppy, but it has been corsistently in use, and the
author of this paper is also guilty of having abused it.

It is partially vindicated by a physical explanation. The
Hilbert space setting has obscured our vision to a certain extent,
since we identify H with its dual, and we are allowed to neglect
the bookkeeping which vector is in H, and which vector is in H*

(the dual of H, which is identified with H). This distinction
becomes important later on when we try to interpret ceriain equations
of mathematical physics. In the remainder of this paper we shall

use the notation grad ¢ if ¢-is a functional §: H, - R. We shall

1

also find examples where ¢ is a functional $§: Hy -] H, ®...8 H s R

k
(or ¢); that is $ maps the direct product of Hilbert spaces Hy, Hy...

H into the real (or complex)numbers. In this case the notation
grad é(H ) is too cumbersome and we shall write &x to denote
i i

f(x,.+th) - £{x.)

t

0 0

L. (h) = <Z_ ,h> = <lim (
= b >0

)I h>

with h € Hi' X € Hl ® H, ®...0 Hk. That is we generalize simultan-
eously the idea of a gradient and of a partial derivative, by allow-
ing the variation of f to take place exclusively in Hi' and regatrd-
ing the components of X in Hj' j # i, as fixed. We shall refer to

this derivative as gradient of § restricted to the space Hi' This

idea plays a cﬂdbial part in formulation of multiple variational {
principles. For example the following equations of mildly nonlinear

elasticity corresponds to critical points of a simple functional

*
S it e

e —— -
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restricted to respective subspaces of the space H = } Hi. The

Maxwell and Morrera's stress function relations, the equations of
equilibrium, the equations of compatibility, Ricci's equations.

(See [93]).All become easily interpreted in this context.

1.6 Some rules of manipulation for gradients of functionals

We shall restrict ourselves first to the simplest case: ¢: H » R,
L& 5(9) S H, ¢ is Fréchet differentiable in £ S H.

We shall denote by ¢, ., the gradient of ¢ = 2 € 5, where

x(q
<B.,n> % € b,(n € B)is the Fréchet derivative of § coinciding with
B the Gateaux derivative in the direction n. We compute the value

of the gradient at a point g €25, 2 (%4) = Z(xo). If 2(xy) = @

(the zero vector) we say that X is a critical point of the func- 5
tional $. A basic theorem of optimization theory (Va{nberg (491) i
»{‘ states a necessary condition for stationary behavior of a functional |
¢ (particularly for a maximum or minimum) at the point x, € H. The
point X must be a critical point of 3, if @ is Fréchet differenti-

able at Xg- In particular this is a necessary condition for a

local maximum or minimum of a Fréchet differentiable functional.

1 B0 R
e TR RO

.:f Example 1. b= <Yy, Yy

:, Yl, Y2 € H, Yl = Cl X,

{

L = = =

& Y2 = C2 X-. Then 2 @x (Cl + Cz) X
3\

i

Proof of this statement follows from the definition. We compute

the Gateaux derivative of & in the direction of a vector n € H.




<C1X+en: C2X+cn>
<n,2> = 1lim - C,C, <X,X>
: € 172
Y ¢-0
& (Cl + Cz) <n,X> = «<n, (Cl + C2)X>.
Hence oy = (Cl + cz)x.
Example 2. #(X) = ¢1(x) . 02(x) Then the gradient of ¢:
2 =9, = 29 e o, + ¢ 9 .
lx 2 1l 2x
Similarly
(] ¢, = ¢ « ¢
¢1(x) Gi1 1X 2 2x 1l
Qzlxs X 7 2
' X 2
Example 3.
<AX,X> 2 ] ;
¢ = -?)T)'{_;_ ’ A: H ')H' A* = A' X #ﬂo
::f Then
‘i Oy = XX « (o(x)X - AX).
’§’ 1.7 Integration.
f?g Vainberg ([2/)) offers the following generalization of the idea of
o

- " -

L. &

1
0

i
¥

Y
L

a Riemann integral.

/ <E(xp+t(x-%5)), (x-%5)> dt =

Consider £f: H -» H.

along a line segment. connecting X and X ¢ H by

1
[ s(trat.
0

¢

We define the integral

(1.11)
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This formula can be obviously generalized to polygonal paths. The
common way to introduce integrals of vector fields along an arc
rc R3 is to consider a subdivision of the arc r[a b) by points

’

Pgr Pyr Ppy-c-rPy and introducing the Riemann sums :

-

Il o3

0

| | ;

where & is a point contained on the interval [pi, pi+1]. If

£ R3 > &3 is a continuous map and if T is« "reasonably smooth"”.

(For example we can allow a finite number of corner points without
; causing any problems). Such Riemann sums generalize to Hilbert j
(Banach) spaces by simply replacing the three-dimensional inner
”éfodgét, bv the appropriate.inner product. If f is a continuous

map f: H - H, and T is a smooth arc we can easily show the conver-

b > gence of the Riemann sums:

lim {

i€l *1"

i~

0

NPTy

In the case when ' is a parametrized arc we can choose the points

P e

¥ g; to coincide with Py and the integral (1.12) can be reduced to
L5

4 the form

¥

(43 1

¥ [ s(t)at.

i :

6

3@ 1.8 A basic condition for the existence of a potential.

>
-~

We generalize (following Vainberg (52 1) two well known criteria of

Re. £: H - H is assumed to be a continuous map. Suppose that 0 is
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a region of H, such that for any P;s P, € q the integral

] <f(x),ax> = { s(t)at
T tlp,)=t,

is independent of I, for any parametrized arc r, and only depends
on the end points Pyr Py- Then there exists a functional $§(x) such
that f(x) is the gradient of 3.
Proof. Choose a (fixed) point %o € 0 S H. Define for p € @ the
functional
¢(p) = (,l)[-<f(x0 + t(p - x5)),  (p=%y)>dt + o(x,),
and (without any loss of generality) put ¢(xo) = 0.
If @ contains the origin, we may choose Xq = g, and define
3
o(x) = I <f(t>_s), §>dt.
0 ~
It is easy to check that f(x) is the gradient of &.
Note: Observe that we did not make the assumption that f: H - H
is linear.

There is the obvious problem of knowing how to apply this con-
Udition. How do you check that this integral is independent of the
path for every path in r? In most cases this turns out to be an
impossible task. At this point we recall another condition for the
existence of a potential function in R3. Assume that @ is simply
connected, that f: g3 ~R3 is smooth and curl ( £) exists at all
points of @, and curl(f)=z 0 in 2. Then f is a gradient. Of

course we do not know what curl(f)means in an infinite dimensional

space. However in R> curl(f)= 0 if
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of . of .

—3?—-. = '3';(— ) i = 1,2,3.

wJ
™

This condition generalizes quite easily to infinite dimensional
space. However we shall have to delay its discussion, since we have
not defined yet the meaning of second (or higher) order derivatives

14
of a functional. Observe that:

afi i of . S 820 s 32¢
. axj axi ?xiaxj ijaxi
g' This condition is trivially satisfied in R3 if ¢ € cz(n), (this is

known as Tonelli's theorem). In a Hilbert space there is no obvious
reason why second derivatives should commute, and this condition
assumes a much deeper meaning.

The generalizations of Cauchy's intearal condition in higher
dimensional complex spaces are too involved to be of practical use
in Hilbert spacgs. At least this is the opinion of the author,

which may of ccurse turn out to be wrong.
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Chapter 2

2.1 The Euler-Lagrange equations, and critical points of a functional.

The Euler-Lagrange equations for the problem of extremizing the

value of
5
] #Ax,x',t)dt are
o
il @ o o '
= ot ( -5?(-) =0 (2.1)

The Legendre transformation introduces tha generalized momentum

Y
p = 2% (2.2)

Hence (2.1) can be written as

g e o a
and B o % where H=xp - &£ (2.3P)

9p

We are now ready to formulate the Hilbert space analogs of equatiens
(2.3a),.(2.3b), and (2.1). The basic ideas of generalization of
equations (2.3%), (2,3b) go back to Korn who observed dual varia-

tional principles in theory of elasticity of materials not necessar-

ily obeying Hooke's law. Friedricks has interpreted Korn's results

in terms of modern operator theory [(9].




] : 17

An intuitive approach to the postulation of duality and formu-

lation of dual variational principles originated with Noble [35],
and has been successfully applied by a number of authors to problems
of mathematical physics (see for example the monograph of A. M.

Arthurs [3]).

2.2 Generalized Solutions, energy norms and extremal points of

functionals.
-

e ; .
The! well known case of a close relation between a generalized solu-

tion o equation:
Au - £f = ¢ . (2.4)

in a Hilbert space and extreme value of a functional,when

A is a positive definite operator, bounded away from zero, and the
domain of A is dense in H. 1In this case we can introduce a new
inner préduct (u,v] = <Au,v>, and a new norm ﬂlu‘”%A) = <Au,us .,
Let HA denote the closure of the new inner product space. We
examine the corresponding functional:

F(u) = <Au,u> - 2<u,f> = l”u, tay " 2<u,f> (2.5)

Since A is bounded away from zero (meaning <Au,u> > Cznu”2 for

g e

L ,,

& some C > 0, or |[Jull > C |u|) it follows that |<u,f>| i"g Il
?i Hence by Riesz representation theorem there exists U, € HA such

£ : 2 2

iﬁ that <u,fs = [u,uol, and F(u) = “|u - v, m - IUuO‘“

i :

Ri Hence F(u) attains a minimum at u,, and

w

by

min F(u) = -[fu, [I? (2.6)
u € HA
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As before HA denotes the Hilbert space obtained by closure of the
inner product space with the product [-,-]. The point u, € Hy is
called the generalized solution of the equation (2.4). If u, was
in the domain of A, then it is a "genuine"(or classical) solution.

Otherwise it is called a generalized solution of (2.4). 1In fact

since A is positive definite, there exists an operator B, such
that A = B*8, and for all u ¢ ﬁA& u € ﬁb and <Au,u> = <Bu,Bus.
We have the containment ﬁx_C3ﬁé. However u, € 5% does not mean

that u, is neécessarily in the domain of A. As an example consider

a? 2 2 q
A=-— , & =clo,11c1[0,1], u(0) = u(l) = 0.
dx :
a® f
The generalized solution of - —5 u = f corresponds to the mini- 3
: dx

mization problem for the (LZ) functional

2
<= d2 u, us> =~ Z <EF.a>
dx
1l 1l
- -g (u" - u)dx - 2 6( (fu)dx
1l 2 1l
= J (a'ydx = -3 é (fu)dx.

The problem is that the existence of the functional

- 1l 2 1l
F(u) = J (u")%dx - 2 é(fu)dx

requires only u' € L2[0,1] and does not require twice differentiability

e ————— —g——
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B = i-%; is one of the possible corresponding square roots of the

operation of the operator - —27. Hence the minimization problem
dx

can be accomplished in the Sobolev space H1[0,1] instead of

u € C2[0,1] c L2[0,1]. The energy space HA turns out in this case
to be H1[0,1]. Of course in the above case we had a lot of pro-
perties of the operator A, (positive definite, bounded -away from
zero) which made life very easy, and.gave us so easily an equiva-
lent extremal problem for the functional F(u). A feature of this

functional which we have not mentioned yet was convexity.

Definition. Let ¢: Q@ & H > R be defined on a convex set Q & H.

Then ¢ is called convex if for any X0 X, € o the following in-

equality is true:
o(Axy) + (1-M)xy) < As(xy) + (1-n)e(x,) Dex il < 1.

If strict inequality holds, then ¢ is called strictly convex.

¢ is called concave if -9 is convex. We observe that any norm is

a convex functional, since it obeys the triangular inequality.
lax + (1-m)yll < allxll + (1-1)llyll.
A study of convex functionals can be reduced to a study of convex

sets in H, by introduction of the "epigraph" of the fuﬁtﬁional o,

that is of a subset of R x H

[¢,C] = ((r,x) €R x H: o(x) < xr, x ee = gy

T N e O Y g TP TN TRV P e T £V % AR T ST

:
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where C is a convex subset of H. (see Luenberger [§5] for an

exposition).

2.3 Conjugate convex functionals.

Let ¢ be a convex functional ¢: Q9 =B -+ R, defined on a convex
set Q@ ¢ B, where B is a Banach space and B* is its dual. The set

Q * conjugate to @ relative to ¢, 0*< B*, is defined as

Q* = {p €B*: sup <p,x> - #(x) <M for some M € R}
= XEN

The conjugate functional ¢*(p) is defined by the relation

¢*(p) = sup {<x,p> - o®(x)} .
X€Q

Proposition. 1If ¢ is convex, ther so is ¢*. Proof. For any

number A, 0 < A < 1, check that

sup {<x, Ap, + (1-M)p,> - ¢(x)}
X€Q

< A sup {(<x, py> - o(x)} + (1=-7A) sup {<x, Py> = o(x)} .
X€Q X€Q
A geometric interpretation of the convex functional ¢* can
be intuitively argued as follows.(lonsider a convex set Q9 SR x B,
where B is a Banach space. A family of hyperplanes in R x B is
given by an element of R x B*, i.e. an ordered pair (s, p) S € R,

p €B*, A particular hyperplane is obtained by setting
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<(r,x), (8,p)>=>¢c, £ &R, x €B, or ¥rs + <x,p> = €, where c is
some real number. By rescaling we can always choose s = -1, pro-
vided s # 0. Then C = <x,p> - r defines a family of hyperplanes
of R xB. ¢*(p) = sup (C) is the sup. of values for which ¢*(p) is
a support hyperplane of [¢, C].

Convexity, and concavity of certain functionals are closely
tied with existence theory of maxima:. and minima. For the time
being we shall only concentrate on sufficiency conditions which
generalize the Euler-Lagrange equations of classical calculus of

variations.

2.4 Critical points of fucntionals and the equation Ax = f.

We shall consider a fairly arbitrary linear operator A mapping

JA < Hy into Hy, where Hy is a Hilbert space. We wish to solve
(for x € Hl) the equation Ax = £ (f € Hl), where we shall assume
that A = T*T (A is pasitive definite) and the domain of T is dense
in Hl. Therefcre T* (the adjoint of T) is uniquely defined. T,

T* are the linear maps:

. (= * o
T: BT Hy ~H,. T* . H, - H

Hence the equation Ax = f (€ Hl) can be rewritten as a pair of equa-

tions

’

TX « p (€ Hz) (2.7)

o T L (2.8)

i p—— ——
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We consider the Hilbert space H = Hl o H2 whose elements h are

ordered pairs h = (x,p) (x € Hi, p € Hz), with the product

where (,) is the inner product in Hy, and <,> is the inner product
in H,. Consider arbitrary vectors § € Hy, x € Hl i.e. an arbitrary
w = {§,§ }€ H and the corresponding value of the functional

L: H -»> R
L(;c.;;) = <T>~<,p> -% <ppp> = (£,x) . (2.9) i
i

It is a fairly trivial result that provided the gradient Ly is
uniquely:defined at the point Vo = {Xqr Py} € H, then the equations 3
(2.7) and (2.8) are necessary and sufficient conditions for vanish-
if

ing of Li- Hence the functional L has a critical point at WO

and only if the equations (2.7) and (2.8) are satisfied.

Again the condition x € ﬁA has been replaced by condition
% € DT, which is in general casier to satisfy since A = T*T. (See
the next section for a more rigorous statement.) A more detailed
look at equations (2.7) and (2.8) show that if we fix ﬁ € H2 and
vary only x € Hy, L ,=0 (in H;) if and only if (2.8) is satisfied,

and vice versa if we fix x € Hl and vary p € Hz, Lp =g (in Hz)

if and only if (2.7) is satisfied.
These observations have been originally implied by Kato [22].

(We are using the same notation Lx denoting the gradient of the

s g y—
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functional L(x) (with p a fixed vector of HZ), always assuming that
this gradient exists, (in a fixed topology of the spacel) and if
L, = g at x = X € H) then L is defined in some neighborhood of the
point xo‘in the appropriate topology. Unless otherwise specified we
shall use the topology induced by the norm. Again we observe that
WO = {io,ﬁo} which is a critical point of the functional L does not
have to be a "genuine solution of the original equation Ax = f,
since x;, may be in the complement of the domain of A. é,¢lf36]7
The system (2.7), (2.8) has been designated by Noble (13517 and
Rall ([39]) as a Hamiltonian system. The name is easily explained
if we call the functional % <p,p> + <f,x> = W(p,x) the Hamiltonian

and observe that (2.7), (2.8) can be rewritten as

iz =oniy (2.10)

which is the Hamilton's system of canonical equations in the special
d d . : ]
case T = 3ac ’ S e 3t with x being the vector of generalized
displacements, and p of generalized momenta.
In anology with the terminology of classical machanics the
fucntional L will be called the action functional c. the Lagrangian

(integral) functional. We observe the following peculiarity of !

our discussion: The equation Ax = f is an equation in Hy. The
introduction of the "splitting space" H2 was a result of the decom-

position of the operator A: Hy ~ Hl 1 gty o J i SR o Hl > Hz, b H, » Hy
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In particular the work of Browder and Gupta indicates that under
certain conditions while Hy is a Banach space, H2 may be chosen
to be a Hilbert space, with resulting theoretical advantages. 1In
this paper Hl will be assumed to be a Hiltert space. To make
rigorous the ideas loosely expressed here we need some additional

definitions from functional analysis.

Qéfiﬂlﬁigﬂ Let T be a (linear) operator mapping some subset of

a Banach space Bl into a Banach space BZ‘ The graph of T, denoted
by G(T) is a subset of B, x B, consisting of all ordered pairs of
the form {u ,Tu}, u € ﬂT. The following statement is known as the
closed graph theorem. Let JT = B,. Then T is bounded if and only

if the graph of 7 is closed.

Definition (Kato [§6]) Any linear mainfold C contained in bp < By
is called the core of T if the set {u, Tu}, u € C, is a dense sub-
set of G(T). &An important theorem due to Von Neumann asserts the
following. Let T be a closed operator T: Hl > HZ; ﬁT dense in

H Then A = T*T: K, > H; is a selfadjoint operator and ﬁA is a

1
core of T. Hence Do, = ﬁA. If the containment is proper i.e.

DT = DA then the corresponding variational solutions describing the

original problem in terms of critical points of some functionals
in H2 will exhibit solutions which are not "genuine" solutions,

that is they are not in the domain of A.

2.5 The Legendre transformation

In classical mechanics we encounter the following transformation:
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. n
p aL(x')flt) v H(’Slplt) = Z pixi - L(x'x't)l
» § % . i=1 '

changing the "Lagrangian formalism" into the "Hamiltonian formalism".

To this transformation corresponds the abstract problem of defining

what is meant by

T:'H *Hl,
and generalizing this concept to an abstract Hilbert space setting.
Again perhaps the best starting point is the equation

Ax = £ (EHl), Ay 4 - H

1 1’

for which we intend to establish (weak) solutions which correspond
to a critical point of some functional L, or to two (or more)
critical points of functionals in some spaces possibly other than
H,. The case we have discussed already presumes that A is positive

definite and that we can find a space H, such that x €5 Tx =p

€ H2' T*p = £ € Hl"bT dense in Hl, T*T = A.

e r a— —




26

Of course the choice of Hl is non-unique, as can be seen by studying

even the simpl est examples

2
(-d—2 . H2(R) +Ly(R), -9 = me,
dax

T=i%i, T*=i%§, r: H2(R) - HI(E),

o _d S hidge 5
T*:; H (C) -~ L2(R), or ¢ T = ax ! T* = ax - i

T: HX(R) - H'(R) , T*: H'(R) » L,(R),

showing that A can be factored thru different Hilbert spaces

H, and H]

1 1
factoring process with corresponding multiple variational principles,

More involved examples will be offered later of multiple

in which the choices of intermediate Hilbert spaces are not uniquely
determined.

We shall now consider the effect of the vector Tx € Hl on the
value of the Lagrangian functional L. Regarding p as a fixed
vector in Hl' we consider L(x,y) as. functional, mapping the pair

x € Hy, ¥y € H, into the real line, where y = Tx.

2
L_ denotes the gradient of L (whenever it exists) restricted

s ’-fn e

=

to H,. .(x € H, is ignored). Similarly L,  denotes the gradient of

L in Hl. It is a straightforward computation that with p regarded

as fixed, and with y = Tx, that

-: f:{‘ "\‘q- Qv

R “?_,5:'“."
2 sy el

g

L =P (2.12)

T TN e e
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g

and that
<Tx, p> - L = 3 <p,p> + (£,%) = W (2.13)

defines a new functional W(x,p) satisfying

(2.14)

The notation is the same as before. Wx is the gradient of W restric-
ted to the space H,, and Wp is the gracdient of W restricted to the
space H,. We shall describe the relations (2.12), (2.13) as the

Legendre transformation. [Jee [5] ¢/ 4 classical f"ﬁr"""".‘z‘ta'"‘)
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Chapter 3

3.1 An example of multiple critical points, and applications to

the general theory of solids.

We shall consider the equations of classical elasticity, assuming
small strain theory, but not necessarily small rotations. The

equations of equilibrium assume the form:

)
x [(1+exx) x T (exy r “Sc) xy + ey, * uy) sz]

) =

3
R4 e) oyt (e~ w) y t (e b o) gl

X

)
+ 3z (3 « exx) Txz + (exy = “z) yz + (exz + qy) Tzz] =0
(3.1)

Equations (3.2), (3.3) are obtained by cyclic permutation of letters
Ju

-~ e = e— ’

2 srrey inear i ri =
X, Y, 2 Here e1j is the line strain matrix e, I €., %

p 1 3, v,

Exy s exy b w % " w, are the rotation components
o = BlE.-E,
x 2 ")y oz
Ly T T T
-l av_au
o TR ( X 3y ) (3.2)

i.e. ® = % curl (@).
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If we denote by o the following stress tensor:

E® %y %xz | [ Txx  Txy Txz ]
i
- = I + . .
a dyx %y %z ( e) vx  Tyy Tyz (3.3)
] | Y2x Y2y °zzJ Tzx  Tzy Tzz e
3
= where e is the Jacobian

u 3 au
X Jy o=

B w R uarw) s v ¥ By (3.4)
d (X,y,2) oxX 3y 3z :

™ W oW
X Y BZ-J

we can formulate the following sets of equations of equilibrium.

- ? gl .

j X 0 0 3y 0 5 sy

. - o N -
‘. Ba 0 ay 0 3% 3z 0 a,yy ﬁ, (3-5)
4 : ;

£ 9_ - ASEEE

i %0 e Iy ox S22

- a

b i

i

e
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Because cof smallness of strains, we identify the Eulerian strain
€ij with the linear strain eij' We can define the stress components
%53 in terms of appropriate Maxwell and Morrera stress functions
Xyx xxy Xxz
ny xyy xyz = X, xij = xji 5 (3.6)
Xzx xzy X2z
a = AX, (3.7)
where
, B 8 Ay hla
E 3z Ay 3y dz
2 & 0 22
— = L
9z X dyadz
, __")_;_ _'5_; 0 _..Lz. 0 0
“' A = Y X axay (3.8)
3 2 2 2 2
3 0 0 ) 32 ) 3
t; Xy  ax 3X3z 3ydz
f‘ 32 5 8" 32
& = 0 0 g
%x dydz axaz 3y X3y
¢
d. 32 32 32 32
i 0 kg e 0 2
- 9x232 dyoz IX Yy 3z
. g

The equations of equilibrium become
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where ! = (yl, Yoo y3) is the vector of body fEbCes. The equation /U
(3.9) can be regarded as a vector equation in the Hilbert space L2
(@), where Q is the region occupied by the elastic body.

We observe that A is symmetric and its conjugate transpose A*

is equal to A. If we choose an arbitrary strain distribution eij(x),

x € @, we observe that

* =
A* ey X . (3.10)
where X is the incompatibility tensor. The compatibility equations

are X =g , K= (Ky, Kys-..,Kg). Introducing Hilbert space H;

with the product

6
<z, y> w0 N e dx,
S G dmi

: | and a space H2 with an identical definition of an inner product

3 . * =
<.>Hz, we set A: Hl -> H2 AT Hz > Hl
We have assumed the existence of a functional W, which we shall

st

call the potential energy, such that wu = ¢ (Principle of comple-

.

L

- mentary virtual work). Equivalent statement is that we have assumed

?f the existence of Gibbs' thermodynamic potential.

i

i & 3 .

&¢ 2W = <K'X>(H) = <X, A*€>H = <Ax,e>(H)

s 1 1 2

¥

& = <a, €> <B*U'u> = <U’Ba> = <U,Ba>
3 (Hz) (Hz) (33) (H3)

(3.13)
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However the pairs {U,4¢}, {a,c}, {K,X} are not vectors (in the app-
ropriate spaces) which can be picked independently of each other.
If U denotes the displacement vector B*U = ¢ is the definition of

the linear strain.
B A*B*U = § (3.12)
is exactly the set of Ricci's equations. (see Washizu [20]

for explanation of their importance in linear elasticity.) The

following diagram illustrates the relations (3.5) - (3.12)

e p
K € Hl

figure 3.1

They are related to each other through the constitutive equations

of the solid. For example if Hooke's law is assumed, then we have

“ij = Cijklekl' (Cijkz non-singular 9 x 9 matrix of
anisotropic coefficients),

or

R
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where Yijkz.ls-a constant 9 x 9 matrix such that Yijkt cijkz = I

(the 9 x 9 identity matrix)

A ﬁell known set of variational principles in classical
elasticity can be derived by
a) Assumming a constitutive equation of a solid
b) Restating all basic equations of elasticity as the existence

of a critical point of the corresponding functionals:

B 1 g |

0l 5 w i % K'x > (Hl) .
¢, = W - 1 < X,A*e >
2 2 ¢ (Hl) ) |
¢ = W - i < AX,e > (g
3 - 2 ¥ (Hz) )
0, = W-2%<aeo> y (3.13)
4 2 £ (Hz) L o
05 = W- <U,Ba > (113) :

i

- | * & =
06 W < B*U,a ? (Hz) 3

‘_ ¢7 = W-<U,p > (H3) i

k- Of course we have deliberately ignored the basic problem of solving

» : -

ij the basic boundary value problems of Elasticity (using

k.

&_ Muskhelishvili's terminology) and concentrated on the formulation

%; of fundamental principles with natural boundary conditions.

%: (See definition and discussion in section & i / )

¥

In fact should another loop be added to our mapping diagram
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(3.1) we can immediately formulate the corresponding critical point
statement, hence a variational principle for the corresponding

functional.

3.2 Possible (future) applications to the basic theories of

solid materials.

The basic thermodynamics laws applicable to solid materials can

be summarized in the equations (3.13), (3.14) and inequalities

(3.15), (3.16) below. The solid occupies a region Q€ E3, in

which the following relations are valid.

-k g0 s - i .
(3.14) E=3 ( O/p)Tij € By, + 0

’

(first law of thermodynamics)

1 (3.14%) v = victd, e, g% ,
(3.14) R TR MR R
‘ : ij ij "‘mn’7’ A
?- (the principle of material indifference)
.
1
i, e >0 , (Absolute temperature is non-negative).
¥. ; . (3.15)
o s > 0 (Positive rate of dissipation).
! h'e,, <0 (3.16)

(Heat conduction in the direction of negative temperature gradient).

The symbols used here have the follcwing meaning. E is the internal
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enerqgy, Cij is.the Cauchy-Green stfdin tensor, p is the mass density
p(0) = P 8 the temperature, S entropy, ¢ the free energy, hi the
heat flow, Q the heat supply per unit of mass.

Dots denote differentiation with respect to time, commas -
covariant derivatives. Summation notation is used unless otherwise
stated. qa are additional independent variables, called internal
variaSles, which are noiozgsessarily observable, i.e. the implicit
variable theorem may be fapﬁlicable to relations (3.14).

It has been shown by Velanis [48] and others that the stréss

distribution consistent with the first and second law of

themodynamics satisfies the equation

1 BT E .

where ¢'= w(clj,e,qa), (is specified in equation (3.14%).) That
is, assuming no constitutive equations, and choosing Tiy" C1j
independéntly ﬁ@ each other, the correct choice will produce a

critical point of the functional

L B 2 ij
= W - = C g s ey
(3 » ¥) qs(_ )

wheré w(c!J) satisfies the relation
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i.e. T4 is the gradient of % W in the appropriate product of
Sobolév spaces, which are subsets of L, (%) :)Lz(ﬁs. Recalling

that the entropy S satisfies the relation

s P

and that the temparture 6 is aiWa&s positive, the first law of

thermodynamics can be written as:

() =1 ¢-ni, - %26 ~a (3.18)
q

Qalﬂu
ﬂ

e

(which makes no reference to constitutive eguations for the material.)

We shall attempt to follow at this point a fascinating idea of ;

Ilyushin [I9], who suggested that the material has no concep£ of
our idea of time, and that processes within a solid should be
: | parametrized with respect to a "material time"”, which was later

defined by Rivliin by the relation dt = (actd ciCi:’)l/2 (1401).

Also see [47], [4$]~ In particular the internal variables g

should only depend on 7, and preferably in a simple manner.

.

fij We assume

b 1= 1t vy, q*t), ylv),t) (3.19)
& _

he and

¥

g’ ‘i

9 dz  _  Br a3 L TN | S | 3.20)
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We hypoéhesize that

- > o, (3.21)

which is a sensible physical assumption, since otherwise the
material would react to future physical condition, or could, in

a manner of speaking predict the future. The other assumption
frequently made here is the existence of a steady state condition.
The assumption that e = 0 is possible independently of q“,s,e,
or t, or éa = 0, etc. implies that each term could be zero. Hence

that g% = 0 is possible, and also that each term of the sum (3.20)

is non-negative. This is a very basic and a non-trivial assumption.

For the time being we shall try to avoid it, assuming %% > 0 for

all t € (==, +x).

Since g% > 0, we can use implicit function theorem and express

t as a function of T:
t=0(1), cIt) =c*I(n), q%t) = q%(1), S(t) = S(1), etc.
It also follows from g% > 0 that

o
-EJLC ‘—di%—. >o a=l,2,...,m- (3-22)

It is a standard argument (see Velanis [47]) that there is a set

of constitutive equations of the form

fae o i ch i eTR ol 2 Sl hmbiad el e e b o il e ol




o iy
g%_ o fa(clj'quW),

otherwise the inequality (3.22) can be violated.

Following this discussion the following relations could be

hypothesized:
1 o dad i ij
e AN ij :
S 55 Bij(r)* L,C™" + y(1)* L6 (3.24)
Ok s is one of the internal.variables (k,% = 1,2,3), % is the con-

volution operation:
T -
2 : £4g= [ Elr-1") gix') ar',
Ll' L2, Ly are linear differential operators, which are convolutions

(see Mikusinski [33]). These relations reduce to usual assump-

tions of materials with memory (in the material time parametriza-

.2 ?-f«,.—-. o o

’ tion), if the form ; of the operators L,,L,,Ly are specifically
: given as in [45], or [4¢].
;gi For purposes of variational formulation we shall leave the
11# constitutive relations in the form (3.23) and (3.24).
§§ It is apparent that in the "material time" parametrization

(1) is independent of T, whileiLl

3 ' . r
(3.23) is Hooke's law if aijkz
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is the identity operator. (;’. Z, (y /_, [x)) = X ) :
Of course the equations (3.23), (3.24) have to be consistent

with the first and second laws of thermodynamics.

e
- 3y 11 _ 1)
5 > 0= L3e o + L2 C T >0 (3.25)

i,1i dt
o ik BBl 0 (3.26)
30 5 1 dt dt
)
- 2L 1y e g2 0 (3.27)
ij

(i,j not summed in 3.27)

If we put 8 = const = eo, Q = const., hi i = 0, i.e. ignore the
’

thermal effects, we obtain mechanical laws

0. + T, (clIw gy - 2 L f (clIe o) =0 (3.28)
0" Ly 3055 -1
6L, (c}3* &) <o. (3.29)

We can only hypothesize at this point that the constitutive

equations must be of such form that the equations (3.23), (3.24)
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or (3.26), (3.27) represent a critical point of some functionals

&y oy and that

*

A*q® = fa(c13.q3.w) 2
pa
&4 i3 .8 "
qa
-8 3
e ol A
A = d A: H, - H
dt 8 2 1 - S

where we expect £ , @, to be convolutions. (3.15) is of course

of the required form

0 :
(32) Tis = » where we identify %, =y,

i3 7 %4ciy

corresponding to the variational principle

B(clj) = ¢4 , where B is a linear operator, which is

cij
mapping o3 space into Tij space, with properties of these spaces

still undetermined.

.

5 L ¥ 9

A simplified versions of such eguations of state/ have been

also suggested in Russian literature

T35 = Yijas ¢®®,  where ¢®B is the linear strain component

1 9 ) 9 ) ol_aB

and where o, .. = ( + ) (——= ¢+ —) ¢(C) + y "t .
1) LT L e |




———— ey — ""'"m“w
. 4 i

and 138 = % ( 9 + 3

ocif acBi

) 8(C)),

leading to variational principle of Hu, corresponding to a critical

point of the functional:

I,(t,eom) = | [% gt #bg - v ey, -Viuj)]dg

ag®ij ji

- f (pju. ds - v Tiju.)ds.
e 2

(see 0. Guz [171).

For computational purposes itlis not good enough to know
| that certain equations of solid mechanics represent a critical
point of a functional. Iterative techniques which have been
eminently successful in such computations always had the additional

information that this functional attains a maximum or a minimum.

%, To make certain that this occurs we need the generalization of the
,;; concept of second and higher order derivatives, This will be

'gr done in the next chapter. It is not clear at this point
;: how to formulate "a universal variational principle" which would

§§ incorporate the equations of state, (if it exists?), and we shall

stop conjecturing at this point and return to an area where varia-

tional principles are easily established.




Chapter 4.

The second derivative.

4.1. Heuristic comments.

Suppose X = (xl,xz,...,xn), 2 - (yl,yz,...,ym) are vectors in R",

™ respectively, and that we have the functional relation x, =

1
4 m n
xl(z), X, = xz(x) cee X = xn(y). i.e. amap R - R . What
meaning do we assign to %%'? In this case we have suggested
in Chapter 1 that the n x m (Jacobian) matrix of partial deriva-
tives
ax, S B I S
(aY-) 3
) e U DR

plays the paré of the Fréﬁhet derivative. If X € Hy, Y € Hy,
where H,., H2 are infinite dimensional Hilbert (or Banach) spaces,
then the meaning of the Jacobian matrix has to be redefined.
However we have to recognize that even in tine finite dimensional

case X € Rn, Y € Rm the Jacobian matrix is not an element of either

R" or Rm, but a linear mapping from R" into R™. 1Its conjugate

2

%*
5. transpose (;é?) is a linear map from 8" to R". To even attempt 1
&4 |
Ei; to define what is meant by if% we need a few basic concepts of '
14 ‘ Y .
e functional analysis.
£
g} 4.2. Tensor products.

For purposes of clarity we shall carefully distinguish between

elements of a Banach or Hilbert space H, and its algebraic dual.

In the definition of the algebraic dual we use the assumption of

ST ——

PRV -
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linearity only. No boundedness (or continuity) properties

are assumed for the functionals in H*.

Let E be a Banach space, and E* .its algebraic dual. We con-
sider a Cartesian product of E* x E*, i.e. all posible sets
of ordered pairs {(®,y} & € E*, @ € E* (Cenoted by (¥8y)), and
define the map E + R by the operation v(X)= <y,X> which is
defined for any X € E. We shall use the following notation.
Vectors subscripted by indices i,j,k,% ... will denote elements
of E*, while superscripts will denote elements of E. Our algebraic

operation then assumes the formal representation:
die 3
(¢i ® wj)x = <wj,x >®. / (4.1)

where <wj,xj> is a real number obtained by applying the linear
map wj € E* to the vector Xj € E. Hence (¢i © wj) is a linear
map whose domain is E and whose range 1is contained in E, and is
of dimension one, or zero. In the same manner we define the
tensor products (wi (] wj): E* > E*

i

): E—bE*‘
(@i @ yJl)y: E* > E* by the algebraic rules:

ot ® wj)xJ = <by, xI>pt (4.2)

il b - et ca
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(p; © ¥IX; = <X,y0>9; (4.3)

Again we see that the range of this map is of dimension < 1.

Higher order tensor products are defined in the same manner. For

example (p; @ wj @ n) €E* x E* x E* is defined as a map from

E x E into E, or as a map from E into E x E.
k s | Jera j
(¢i ) wj Q nk) (X" 0 Y’) = <nk,X > <wj,Y >@; (4.4)

We assume associative property of this algebraic operation in

the following sense:

Xy )
((qaie wj ] nk)X } ¥

<ny XS5 (@, © by) ¥

. ,YJ >Qi

<nklxk> <¢J

k 3
(¢i () ‘J’J ) ﬂk) (X Y ) (4.5)
We shall not assume that such compositions of mappings are com-
mutative, and indeed such assumption‘can not be consistently

supported in the general case. Moreover we try to pattern our

discussion to agree with the usual engineering ideas of what a
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"tensor" is.

We find no reason why the notation3’ij could not be used to
denote a specific tensor product (@i ® wj). At this point we are
going to make further assumption (which generally may exclude some
importént considerations in mechanics, but seems justified in
solid mechanics). We are going to restrict the spaces E, E*, (E**)

to be topological duals of each other. Hence all linear maps

defined above are now assumed to be continuous. This could be

labelled "finite energy hypothesis". Hence if our discussion
concerns Hilbert spaces, we can use Riesz representation theorem.
This will considerably simplify the definitions of higher order

derivatives which are given below.

Let f: E - E be a continuous function. We shall use the

notation Y = £(X), or Y = Y(X), X € Le. We define the Gateaux

et g
e

derivative of f, (which also may be called the directional dgriva—

tive of Y with respect to X in the direction of h) as

h t-»0

provided this limit exists. We claim that for any Z € E*, <Z,y>
is a linear functional of h, i.e. <Z,y(X,ch)> = c<Z,¢y(X,h)> and
<Z,¢(X,h1
from assumption of the existence of the limit (4.6) in some open

+hy)> = <Z,¥(X,h))> + <Z,y(X,h,)>. Each follow easily

region of E. If we assume continuous dependence of y on h then

by Milgram - Lax theorem (the bilinear version of Riesz represen-
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tation theorem) <Z,y> can be written as <AZ,h>, but in this case

the operator A is the operator of multiplication by a constant

and

oY
axh

<z, > = c¢<Z,h>.

Again if we assume that c depends continuously on Y, (linearity
is obvious) then using Riesz representation theorem we conclude

that there exists a vector ¢ € E* such that c¢ = <®,Y>. Hence

<Ax— y Z> = <y,2> = <9,¥> <h,Z> (4.7)
3xh

Again using the Lax-Milgram theorem we can rewrite this product
<y,2> = <A®,Z> <Y,Bh> (4.8)

where A,B are linear operators

B: E - E*

A: E* > E.

Since this is true for abritrary Z € E*, we have equality

%%— = <Y,Bh> A9 = <Y,z> AQ = <Y,E>y, where y = A9,
h
Hence the operator 3%— can be represented as a tensor product
h
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2. = (@, u €E, £ € E*
axh U ’ Y] ’

e i Y = <Y,&> (4.9)

ax ’ He .

h
Similar argument gives us a representation
g—;g; = <h,E>u (4.10)

where ¢ is of the form ¢ = CY, and C is a linear operator,

C: E » E*, In this entire argument the domain of the operators
A,B,C, is assumed dense in a sufficiently small neighborhood of
a region considered for the respective vectors ¢, h, Y (in E, E*
respectively), and the existence of adjoint operators allows tne
necessary manupulations of the products <,>. We can generalize
the concept of a gradient by observing that our assumption of
continuity with respect to h, allows to define grad Y = Y, =

(p® £), since

Y
gT- = <¢ ,h>u.
(Recall the definition of a gradient of a functional.) In parti-

cular if there exists a functional V(X,x), X € Ey X € E, such that

Y = grad V(X,x) € E* (or Y = Vx), then we can denote by

Vex = (@ €)=Y

X X*

—r—— - ang———,
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If we assume that V = V(X,x), X,x € E, then a theorem of Vain-

berg states that

\' = V__. (4.11)

(This does not imply (u ® &) = (£ @ u)!) (see [49], chapter 2 ).
In fact commutativity of the "second derivatives" is a necessary
condition for the existence of the "potential functional" V.

The idea of second derivative is easily generalized to the
case when V: E x E* > R is a functional depending continuously

on xl,xz,...,xk € E xk+1,xk+2,...,xn € E*,

- * * * *
E E10E20...GEk, E=Ek+lGEk+2e...8En
and x1 € Ej... xn € E*n. El,Ez,...,Ek being subspaces of E
%* -
E*k+l...E*n of E*, where VX e VX can be regarded as genera :

1l n

lications of the idea of partial differentials. Consider a

functional V(xl,Yj) (not necessarily linear) whose values in R
depend on x* € E, Yj € E*. Then provided all the derivatives shown

exist, we can construct the following diagram
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S A
ax* B L A € E*QE*
V € R ———>V ", >V — > E* ® E* ® E*
1 Aol -
X K
9 9
3Y.- 5
J 3 J 3
e ——
’* 9x™ ax*
: * e o v il R
Ve >V < SE 8 E* 8 E >
Jj X Yj
=Vy yi€ E @ E*
j
ik
3Y.-
“ v
2= EQEGE*——)

\' €EQGE
Y X,
359
EGEGE

Figure 4.1

It shows the increasingly higher order tensor products obtained

by performing rereatedly the gradient operation.

Positive (positive definite) second order tensor product.

Since (¢ @ n), ¢€ E, n € E, (or (0 ® v) u € E*, v € E¥)

can be regarded as maps from E* into E* (or from E to E) we can
define the concept of positive property of such map by the usual
definition: (75 ® n) ¢,n€ E is positive if

<(¢ ®@n)yY, Y5 >0 for all Y € E*. (4.12)
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Similarly (u ® v), u & E*, v ¢ E* is positive if

<(p ® v) X, X> >0 for all X € E. (¢ ® n) is called positive

definite if <(¢£ ® n) Y, Y> > 0 for all Y€ E*, and <(£ & n)Y,Y>
= 0 implies Y = @ ¢ E*. Similar definition is given for (u & v),

» € E*, v g E*.

Vainberg's lemma and some of its consequences.

Let El be a subspace of a Banach space E, and V a functional
V: E - R, the value of V depending on a vector X € El’ and on

Y € Ez, where E, © E252 E, El N E, = #. Suppose that V is defined

1 2

in some neighborhood of X0 € E;. Then a necessary condition for
Xo to be an extremal point of V, when V is restricted to El, is
Vx = g, V|E1 . (| means restricted to). A sufficient condition
for a min. (max) of V| 1 is that V. = g, Vg, . is positive definite

(negative definite).

Examples of applicatio:.

Consider the bchavior of the (non-linear) functional

V(X,P) = <AX,X>~<X,X>-1 + y(P) X€ H, P€ H, where H,H,
are Hilbert spaces, A: o M F& . '
Let P be fixed (in Hz). Find sufficient conditions for a

local minimum of V (in Hl). We compute the gradient of V in Hy:

Vy = 2<x,x>':L ¢ (AX - V(X)X)

Hence a necessary condition for an extremum of V to occur at
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X

0 € Hl is: AX - V(X)X =g when X = xo, that is AX, = AX

0 0o’

where \ = V(XO), which means that x0 is an eigenvector, and V(xo)
the corresponding eigenvalue of A.

In what follows let us assume that the multiplicity of ho

is one, and Ao is the lowest eigenvalue of A. The second deriva-
tive is computed as follows:
V., (X+th) - Vx(X)

. X
(@ ® Y)h =V, h = lim
XX £+0 t

ke { X+th, X+th> T (AX + tAh - V(X+th) [X+th])

- <x,x>’l (AX - V(X)X)}

- - 3 - '
= 1im 2¢"l [ AX + tAh - V(X+th) (X+th) _ AX-V(X}X

t->0 <X,X> + t <h,X> + t2<h,h> <X,X>

}

Having assumed the continuity of V, we ci:tain as t - 0

B 2(Ah - V(X)h)

g et

b L <X, X>
f;a Hence
12
;‘.
‘e
. A - V(X)I
& = A — A
a3 Vyx 2 <X, X> *

Hence at the point X° where VX(XO) = g, we have

o e
AN e

£

j!
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A-V(X)I
2 0

0) > <X0,Xo>

vxx (X=X

where I is the identity map ,

or

X >-1

Vxx(X=Xo) = 2(A - AOI) « <X 0

0

Hence the extremum of V at xo occurs on a small neighborhood of

X €H, eniy if for every vector ¢ € N it 'is true that

i N
0 Xg

0 X

£ # X
<Ag,£> - A0<g,g> - <Vx(g),g> > 0
: )
or <A53>- N<§3>-V 55y <O
In particular if A is positive definite, completely continuous,
and Ag is the lowest eigenvalue, then the Rayleigh quotient V

attains its minimum value at XO’ such that

> = 0).

0

VI(Xy) = A 9

(since <VX(X0), X

It is clear that in a sufficiently small neighborhood of Xge Vxx

is positive definite and a local minimum takes place for V(X) at

X A global theory is much harder, and it is unreasonable to

0°
expect that the signs of first and second abstract derivative in
some neighborhood should imply anything about the global behavior

of a given functional.

e ——
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An Example: Thin plate theory.

The plate satisfies the linear equation

2 0eoy) w2 wy)) - @-w @t = gy (4.13)
in a region 9 & R2.
2 2 2 2 2 2
e ey e L8, B8 L o BR. SR 0B IR,
ax”  dy : ¥ ax* oy

with boundary conditions w = %%-E 0 on 3Q. Where the boundary

30 of @ is assume smooth, except for a finite number of external

corners. (i.e. corners like the one shown below are not permitted.)

) |

VA

Y4
.é figure 4.2. :
f“ This ~an be recognized as the Euler-Lagrange equation for the f
tw
3 functional
3
. 2.2 4
¢ = [ {D(vwW)® - D(1-v) (0" (w,w))} dxdy (4.14)
Q

e 11—
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It is not very convenient (or very practical in most engineering
applicationsf

g to assume the existence of all derivatives appearing in the formal
Euler-Lagrange equations (4.14) for the functional ¢(w). Physically
we only require twice differentiability of w, and L2 property of the

derivatives (w € HZ(Q)). We introduce the following maps
: N: mZ(2) - H%()

where N is the following positive definite matrix

—

‘ D(x,y)  uD(x,y) 0 o]
: vD(x,y) D(x,y) 0 0
G 0 0 (1-v)D(x,y) 0 i
3 e 0 0 (1~ )D (x,)
|

D(x,y) > 0 in 2, and 0 < v < % for physical reasons.
T is a 2 x 4 matrix for first order differential operators,T* is

the transpose of T

T
(-5}

_ = .
1y :
FE 0 S
* %y
y T =
4% 2.
s 3y y
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Then
M = -NT grad w = (-NT grad)w = Aw : (4.15)
is the well known relation between the moments

e (Mxx' M, Mo B0

¥y’ Tyx' gy
and the displacement w(x,y).

A: Hz(n)--"Lz(n)

At this point of our discussion it is more convenient to

introduce the "modified" moments defined by the formula:

M = (-8Y2). 1. grad)w (4.16)

1/2

where we take the positive square root N of the operator

N, as follows

o m—— e p—
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N1/2 o
0 i Y (1-v)D 0
0 0 0 V(1-v)D
’
b x
A lyeg® p 4
where g = 5 + 3 .
It can be checked that Nl/2 Nl/2 = N, and Nl/2 is again a

positive definite (and invert:ble) matrix, and fortunately Nl/z

is symmetric. The mapping
: 2
A: H(R) ~» Lz(ﬂ)
has a formal adjoint A* L,(Q) -B5*(a), and Aw =77, AV (= q
(4.17) where the derivatives now become distributional deriva-

tives, Lz(n) being regarded now as a subset of 5*(g), where

pa) = cg(a).

A* = div (T*n1/2?), (4.18)
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A*a= div (T* (n/2

M)) = div (T*M) = q(x,y) (4.19)
The distributional character of g(x,y) being supported by the usual
interpretation of admitting point loads, or point moments in en-

gineering practice. Hence we have the following mapping diagram

L@

where XA w = g is the original differential equation of static

deflection of the plate :
v viw) - (1-v) ¢ oW = q. (4.13)

We can observe that following our theory in chapter 2, the set

6. 2! il ad
Aw =M (4.20%)

or#t = q (4.20°)

represents two variational principles. We introduce the Hamil-

tonian

W= <q,w> + %—{ﬂ(,“}

where

(A,B} = [ (A)B; + A,B, + AsB; + A,B,) clx dy
Q

171 272
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B o

while

<a,b> = [ (a . b)dxdy.
Q

The dual variational principles given for the static plate

problem have been given in [25] by the author, and may be summarized

in the obsevrvation

.

—

E Woy =M =0w ' (4.21%)
| »
k W= q=Ara (4.21°)

where W_ denotes the gradient of W restricted to the Hilbert space

% n
i Hﬂb(with the product {.,-}, while Ww is the gradient of W restrict-

ed to Hw (with the product <,>. The examination of second Freéchet

derivatives i.e. of the tensor products (wa)m v (Ww)w reveals

! that the corresponding Lagrangian functional

< L = @wM - W (4.22)

1

9

:~ attains a minimum over the admissible w € Hz(g) withmregarded as
E fixed, and a minimum over the admissible me Lz(g) with w regar -
g; ed as fixed at the critical points corresponding to the solution
gé of a system of equations (4.20%), (4.20b). Combining this system
%ﬁ into the form AA*w = q gives a single equation (4.13) which is

the basic static deflection equation of thin plate theory.
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The dual variational principles given here were originally
discovered by the author in [25]. At this point we wish to make
a more detailed examination of the equation (4.13) and find alter-
nate variational formulation for this equation.

We have the following mapping diagram:

N1/ 2p Tan1/2
grad (w) - m——*"‘Q
div
rad G
g ./{-1
W q
figure 4.2

Let us concentrate on the following portion of the diagram (4.2)

W 2 y/(A -\w
Bugad el /9 & :

<

figure 4.3

G is the Green's function, or influence function in engineering
terminology: w = G * g, where * is the convolution integral.

‘.’:l is the corresponding map ‘5* o R et which is to be determined,
but whose existence is nbt hard to prove, if we assume the existence
of the Green's function G(x,y). (We do not write G(x,&,Y,n) since

the convolution product takes care of introducing the "translated"

variables ¢,n.)
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The dual equations corresponding to the diagram (4.3) are

N 215 = = B (4.23%)

2= 0 = wg (4.23°)

except that W is a functional defined in different pair of Hilbert
spaces: Hﬂ which is the same as before, and Hs = L§2) (p)y - if

point moments are excluded, and only point loads allowed as loads
which are not represented by functions. Note: For a classification
cf admissible (distributional) loads of thin plate theory see
author's paper [3/].

If point moments are allowed HS can not be embedded in L2(Q)
and is not a Hilbert space, but only an inner product space which
can be at best regarded as a Rigged Hilbert space in the termino-
logy of Gelfand and Shilov (see (/4] volume 4, chapter 1, section
4). For the purpose of this discussion we identify Hg with Léz)(n)

wnners
with thecproduct

(A,B) 5y = ‘j; (A, (x,¥)B; (x,y) + A,(x,y)B,(x,y)]dxdy.

The components of the vector Q are recognized as the shears

oM M

X XX Xy
Qx X ] Y
Q = .3_MLX. + >
y ax oy

e aag——

b b M s i S el




3 60
The generalized Hamilton's canonical equations are
f N 205 == w (4.23%)
n ’ .
ront/2 =g =wg , (4.23%)
L=1 mm + s, = oV rs,my -, (4.24)
L =g
mlH
/(A
L =g
s | ’
Hg

are exactly the eguations (4. 232y, (4.239) expressed as restrictions

of appropriate Frechet derivatives of L to the spaces H”zand Hs

respectively.

The tensor products wm WMS, Wsm WSS can be arranged in

a 2 x 2 matrix form of operators:

2 1/2. i r g
: I N T PW, \,
‘ | “ma ‘ms
4 pan1/2 T*NT | | W W |
¥ o L "smt "ss
(I is the identity operator.) WHS = (Wsne* is a necessary condi-

tion for integrability of the differential system (.33%), (4.23b),

i iti ini . > *NT :
while positive definite nature of I: Hm Hn and T*NT HS > Hs

assure the existence of a double minimum, i.e. L attains a minimum
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in sz(for a fixed S) if the equation (4.23%) is satisfied,

and a minimum in H, (for a fixed?{) if the equation (4.23b)

S
is satisfied. These variational principles suggest numerical
techniques of the type introduced by Greenspan in [¢ ] for
computation of approximate solutions, and these principles

may be simpler than the known principles suggested by
equations (2.21%) (4.21b). The advantage of obtaining a
symmetric form of corresponding operators, and of not having
the matrix N appearing in only one set of equations are
considerable in actual computation. The positive definite
nature of the matrix N allowed us to restate our problem in
terms of1ﬁarather than M. Physical limitations on such rcpre-
sentation are clear: D(x,y) > 0 for all x,y €gq, (we do

not have holes in q. If we do,let us relabel what the region
q really is!), and 1/2 > v > 0 which is readily recognized by
any engineer =s the expected behavior of a physical solid,

namely that the solid does not expand volumetrically under

pressure.
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Chapter S.

Boundary Value Problems

5.1 Integration by parts formulas.

The geometric theory associated with differential forms is due to
Grassman. The expository texts include H. Flanders (@], P.K.
Rashevskii "Geometric theory of partial differential equations

(in Russian). The basic axiom for exterior product of two differ-

entials is
dx. Mdx., = ~dx. AdXx.,
i j ) i

where the symbol A is frequently omitted. Denoting by 3

the Jacobian tensor product corresponding to a coordinate transfor-

mation,we can derive the general formula

a 7 dx, dx, aaadx
OO e s .
= a' dy, dy, ...dy
j1<j2"<jk b BRI I 1 2 k
% ok
where a' venk = D 1 kedogs :
i Ix y cov Ya | Gy TR
Jl Jk/

The generalized Stokes theorem can now be stated for an arbitrary

orientable manifold g, whose boundary j3q is smooth.

e —— e —g——
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[ da = f a ; (5.1)
Q anR
(See for example a monograph by de Rham). The (exterior)

differential forms provide a natural setting for certain class of
boundary value problems. The formula (5.1) embraces all classical
results of changing integration over 3 to a corresponding boundary
integral. We shall not pursue the subject, and try to offer
another exposition of algebras of differential forms on manifolds.
We shall only assume that appropriate formulas for integration by
parts exist, and can be deduced in the special cases by the use

of formula (5.1).

We first offer an analogous definition of a Frechet derivative
of a functionalg(x) such that the domain of the functional - is
the union of two Hilbert spaces of functions. i.e. X € Hl U Hz,
where H, is a Hilbert space of functions whose domain is a set
Q@ < R", with a product ( , )(Q), and H, is a space of functions
whose domain is 3@, (the boundary of @) the inner product in H,

deing designatcd by ( , ) Again the Freéchet derivative in each

3’
space H, and H, is defined'by the formulation identical to section
1 of chapter 1. The formulaticn of a gradient of 3 in Hy and H,
presents no problems, provided the class of functions which we

have in mind restricted to @ and to 3q respectively do form ap-

propriate Hilbert (or at least Banach) spaces. A very serious

problems of formulation arises when boundary values are not
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functions (and possibly not even distributions over some "reasonable"
test space). For the time being we shall assume that this is not
the case and all possible boundary values are functions which
belong to a Hilbert space Hz(ag). Whenever we use a symbol f €
HltJ HZ' we mean that the same function f: g U 3q - R is considered
simultaneously as an element of Hl if'x G.Df is a point of g, and
of H2 if x €.0f is a point on 3gq.

If f is not sufficiently smouth in the neighborhood of j3gq,
then the integration by parts formulas which form the special case
of (5.1) are not applicable, and the behavior of products (f,q,)Q
and (f,cp)aQ is completely unrelated. Hence certain continuity
(and smoothness) properties must be specified for functions in Hy

near 3Q if the formulation of boundary value problems is to have

a2 unique solution. To offer a trivial example we consider
solutions for the Dirichlet's problem in the unit disc of the
complex plane, looking for Qﬁ)u LZ(BQ) solutions with no continuity
requirements. Suppose we wish to solve the problem v2u = 0 in g
(the open unit disc) u = 0 on j3g (the unit circle). 1In the class

of differentiable solutions continuously approaching the boundary l

value there is only one solution u z 0 in q. If no continuity is

IWES § L D7

required on approaching 32, then u = 57 inQ, u 0 on 30 is another

possible solution among infinitely many candidates for the solution

of this problem. 1In fact it is analytic in p. However the possi- 1

bility of discontinuity on approaching the boundary made a speci-

fication of the boundary condition completely worthless. This
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fairly trivial example interprets the meaning of our previous
remark that in general the behavior on J, and the behavior on R

of functions in the class L,(q) U L,(3Q) is completely unrelated.
We have to digress into discussion of the following basic question.
Let Bl, 82 be some Banach spaces of functions whose domain is

@ € R". Let A be a given operator A: By »B,. Let f € B, be
given. Let B3 be some other Banach space of functions whose domain
is 3Q. Let @ € B3 be given. Does there exist a vector x € Bl'
such that x satisfies the equation Ax = f € B2 and that the yalues
of function x: 2+R converge (in some sense) *o p: 20+R, in some
neighborhood of 5@ in Q. That is can f be continuously exte;ded

to QU 32 so that (in some sense) it coincides with ¢ on 3g! 1In
the problems of mathematical physics "in some sense" usually is
understood to be pointwise convergence almost everywhere. Usually
the physical interpretation requires that a solution of such problem
should exist (since some physical process is going on, representing
a solution), and frequently we would like to assert that such a
solution should kc unique. If a unique solution does exist to this
problem it is called well posed, or properly posed boundary value
problem. An entirely different question is the continuous depen-
dence (stability) of such solution on the boundary data (function)
®: 30 > R. The common question is will”small”variations in ¢
result in "small" variations in the solution? Of course mathe-

matically the above sentence makes little sense, but it can be

easily translated into a rigorous statement (given ¢ > 0, there

i
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exists § > 0 such that § - neighborhood of ® in B3 is mapped
into ¢ - neighborhood of x in B, under the inverse map (f,9) » x,
with the existence of such inverse map assured by well posedeness
of the problem.) The well posedeness of the boundary value problem
implied the existence of an inverse operatorib"1 of the operator
B: x »(£0) €B,UB,, i.e. of ': (£,8). x The stability
in the sense given above implies thatf_b-1 is a bounded opérator.
Boundary value problem which is well posed and stable is called

in the literature properly posed in the sense of Hadamard. For

a.classical example of a problem which is unstable and therefore
improperly posed in the sense of Hadamard consider the Laplace

equation

2 2
(3—54'3—2-)050
Ix Y

in half plane y > 0 (o R2), with boundary conditions uiy=0 ='¢(x)

3_11
9y y=0

Mikhlin [32], chapter 9, § 5 for a discussion of this problem,

=l (x)l =0 < X < *o, where @ ry (g C(“x,,+oo). (See

and chapter 25 for a general discussion of the well posedness

-

® an

of boundary value problems for partial differential operators

EEERR S il

of mathematical physics.) The main thrust of this discussion
is the following conclusion: the boundary value problem is
not well posed or ill posed "by itself". The well posedeness
depends on the topologies of the spaces By, BZ’ B3, and the

problem may be well posed for some choices of Bys By, Bgy and

W!‘;‘g AT s [T IR S
Al - T e WL
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ill posed for other choices. In particular we must answer the
3 problem of existence and boundedness of the operatorls-l:
B, v B3+ B,. From this point of view it is easy to interpret
the following statement which physically sounds ridiculous, but
is mathematically correct. For certain class of boundary func-
tions (analytic of certain slow growth rate) the backward heat
conduction problem is well posed. Here the boundary is the phy-
sical space boundary of ‘the solid body and the time hypersurface

n+1l

t = tl in R . Hence for certain choices of spaces 81, Bz, B3

1~ 82 @ 83
mulas of the type (5.1) make sense. Assuming that By, 82, B,

and for certain classes of operators A: B the for-

are Hilbert spaces and the domain of A is danse i~ 3y and there- - 3
fore A*: B, » By is uniquely defined, we may have a unique

representation of the form (u,A*v)(q)-<Au,V>(q)= (Bu,v) for
ks ¢

(aq)’

u € ss Bl, where S is some class of functions. We have defined
1 . . . j
i the inner products ( , )(Q) in B, <, >(q) in B,, and ( , )39

;,' in B3. In such cases A restricted to 8 is called the formal

adjoint of A*. In the context of this definition for example

the operators %E and - %E are formal adjoints of each other

@3, on C1[0,1]<= R, where 01[0,1] is imbedded in thc Sobolév space

éi; Hl[o,ll. We observe that in that case (Bu,v)aQ = uv|x=l -uv|x=0.

Eé” There is no way of defining uniquely (Bu,v)aQ if we attempt to

I &%

#; embed the problem in L,[0,1]. This remark illustrates the fact

b3

‘;? that a setting for many problems of mathematical physics is pro- .i

% vided by Sobolev spaces. Seel|8] for a comprehensive study of their
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properties, or see Mikhlin [32] for an expository accourt.

5.2 Critical points of functionals associated with boundary value

problems.
Suppose A is a linear map A: H(Q) > H(g), where H(Q) is § Hilbert

space of functions whose domain is g, Hz(an) a Hilbert space of
functions whose domain is 39, the domain of A is -DA(; H(Q)),
which is dense in H(Q), and £ is some function f£: H(Q) - H(Q).

We formulate the following class of functionals on H(Q) ® Hz(an)
¢(u,p): H(a) & Hy(30) + R,

+ r(u,v).

Q)

d(u,w) = <Au,V>(Q

) o= <f(u) 1V>(

(We have assumed for convenience that H(:) Hz(aﬂ) are Hilbert

spaces but this can be generalized.) r(u,v) is a continuous

functional H, x H, > R, i.e. (u,v): r(u]an, v]an) - R, is a

continuous functional whose domain are ordered pairs of functions
u,v restricted tc 39, and regarded as elements of Hz(an). As

before the inner products <Au,v>_and <f,v>(n) are inner products

Q
in H(Q). f is regarded as a fixed element of H(Q), u, v are

regarded as independent of each other. 1In a more general case
f is a map H(Q) » H(Q) dependent of u. Computing the gradient

of ¢ in H(Q) ® Hz(an) we have

¢.. = (Au - f(u))

v H(q) @ Fv(u,v)

*
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Here Au - f(u) is a vector in H(Q) and rv(u,v) is a vector in
Hz(an). (Since we have assumed a Hilbert space structure for
H(Q) and Hz(an) there is no mathematical necessity for keeping
track of duality. Physically it is of course important to keep
the gradient in the dual space to H(Q) @ Hz(aﬂ), distinguishing
which are the generalized displacements, and which are the gen-

eralized forces, and keeping the physical dimensions correct.

But vanishing of the gradient implies that each vector in the

direct sum of spaces H(Q) & HZ(BQ) must vanish separately. Hence

$ = P is a simplified notation for saying that
Au - f(u) = @ in H(Q). (5.2)
g(u) =9 in HZ(aQ). (5.3)

Therefore a function u € H(Q) @ HZ(BQ) which satisfies both con-
ditions (5.2) and (5.3) corresponds to a critical point of the
functional ® (u,v). We observe that no assumption was made con-
cerning self adjoint (or positive definite) or other specific
properties of the linear map A, and up to this point even linearity

was not used. We need to identify a given boundary value problem
Au = f(u) in @ (5.4)

glu) =0 on 58 (5.5)
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with a critical voint of the functional

<Au,v>g - <f(u).v>‘2 + (g(u),v) g5 ™ ¢(u,v).

Until now v is independent of u, but quite arbitrary. We can

now postulate that v is a solution of the adjoint system

Aty - Qgégl v = 0 in gq, (5.6)
i%éﬂl v = 0 on 3. (5.7)

That is v is chosen such that g - 0, and that the given boundary
value problem corresponds to a dual critical points of &, provided
A* is a (true) adjoint of A. This means that g(u) is so chosen
that for all u, v € s, <g(u)'v>(H2(ag)) = 0, and <Au,V>(H(9))
W mig

The problem which frequently arises at this point is that
A* (the adjoint of A) may not be uniquely defined in H(Q) @ Hz(aﬂ),
and additional information may be needed concerning properties
of the (physically) admissible elements of H(Q) in the neighbor-
hood of 3Q. Our previous remarks concerning formally adjoint
operators A,A*. (H(Q) - H(Q)) are applicable here. Presume that

A, and A* are formal adjoints mapping a subset S of H(Q) into

H(Q), such that for any u € S € H(Q).we have an appropriate

formula (in H & Hz)
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<1i.u,v>($2

g <u,A*v>( = B(u,v)aﬂ. (5.8)

Q)

"
We see that the existence of the appropiate functional

o\

¢(u,v): (H(Q) ® Hz(an)) x (H(Q) @& HZ(BQ)) + R

whose critical points are represented by (5.4), (5.5) and by

some equivalent conditions of the form (5.6), (5.7) is now harder
to determine. (When A* was a true adjoint of A we wrote down the
appropriate functional ¢(u,v) without any trouble!)

We have the relationshjips:

Au = f(u) in @,

g(u) =0 on 3Q,

or more generally g(u,v) = 0 on 3Q. And for all v€ SS H

<Au,v>( - <u’A*V>( + B(u'V) (SQ) = 0 (5.9)

Q) Q)

where subscripts (), (32) denote the inner products in H(Q) and
Hz(an) respectively. Denoting as the Hamiltonian the functional
W(u,v):

<f(u),v>_ = W(u,v)

Q
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we have the relation

Wv = £ (u) inR ,

while

W = QELELV . where the meaning of 3% has to be defined

u u
analogously to section 4.
LY
The corresponding Lagrangian functional is denoted L and is

defined by the relation
L(U,V) = <AD,V> (Q) o W
= <u’A*V> (n) bond W + B(U,V) (33) .

Here the same symbol v is used to denote v as an element of

H(Q) and of HZ(an)'

We seek, however, a "true" Lagrangian L(u,v) : H @® H2+ R,

given by a relation:

L = i(u,v) + C(u,v)(ag)

Clu,v), ot H, x H, copt. g,
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i.e. C(u,v),cm is a continuous map:HZ( ) X Hz( 3 -+ R.
The "true" Lagragian L(u,v) should correspond to a multiple
variational principle. 1In this case since only two independent

(vector) variables are present we should have the dual critical

points:

Au = f(u), g(u,v) = 0 can be replaced by the following equa-

tion in H and H, respectively.

Au -W, =1L, =g €d (u,v}) (5.10a)

g(u'V) LV =¢ EH2 (ulv4’ 39) ' (5-102)

This suggests that L(u,v) should have the following form.

L = <Au,v>_ - W(u,v) (Q) + C(u'V)(aﬂ)'

Q
with Cy a0 = 9(u,v) (40 (5.11)
Lu = A*V(Q) + B(u'v)u(an) - wu(Q) + Cu(an) (5.12)

Hence Lv==¢ (in H & Hz) expresses the initially given equa-

tion Au = f(u) and the boundary condition
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The "symmetry" formula (5.14) is written below in full:

u,A*v - v>_ +< >
< U,A > < u,Wuv u,Cuvv

Y] 9

5 = -
<Au,Vv> <Wvuu,v>n + <Bvuu'V>39 + <Cvuu,v>an 5

Q
" (5.14a)

The formula (5.14) was suggested by A. M. Arthurs in [2 ],
. who also has given the following set of sufficiency conditions

for the existence of the Lagrangian functional:

<u,wuvv>(n) = <Wvuu,v>(9) (5.15a)

* =
<u,A V> Q) 5Au,v>(9) + <Bvuu’V>(aQ) (1.15b)
(1.15¢)

<W,CuvV (20) = Cvu®'V (aq)

The condition (5.15a) is a necessary condition for the exist-

:2 i"’a e

ence of a Hamiltonian function W(u,v) whose domain is H(Q). &

(Not H ® Hz!).

e e

A

The condition (1.15b) implies the following equality:

R -
Bt L
T

(!

.

’ ,.5
-

<Bvuu,v> = B(u,v).

N :
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C, = glu,v) = ¢ on an. (5.10¢c)
On the other hand the requirement

L = é (in H & H

u ‘ 2)

requires the vanishing of vectors

‘ Avv - W = ¢, in H(2), (5.13a) |
and of

B(u,v), +C, = @ in H,(29), (5.13b) "3

The "independence of path" condition of Vainberg for the exist-

ence of L reqguires that the tensor products L,s 2nd L,, are ;

adjoints of each other, that is :

<w-'~‘

~‘E2 v"'ﬂ e

<Luvv’lpHeHz 7 <V'Lqu>HOH? (5.14)

for any admissible pair (u,v) u,v € S = H @ H,, implying that

T R

u,v satisfy the required continuity conditions on 32, such

that the formula (5.9) is valid.

" s

e
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(see [4 ] equation 20).

However the "symmetry" condition Luv = Lvu* is satisfied

if for admissible u,v €S SH (with suitable continuity

conditions in some neighborhood of j3g)

*
<u'A v> \Q) + <u,Cqu>(aQ)

= <Au,vs (9) + <Bv

uu'v>(39) + <Cvuu'v>(ag)

This implies that C(u,v)(an) must satisfy the relations:

-~

u,V>

B(ﬁ,{f) - <B

vu (oQ)

- -

= <Cou¥rV? (ap) T SWCLV

(aQ)

However &

s
Q
n

b ks e

‘1?*?*' ;

o N

The existence of the "boundary potential" C(u,v) such that

- g(a,v), for all admissible ﬁ’0|(39)’
{;; C, = “Blu,v), ;
% by our previous arguments. (see 5.10c, 5.10b). i
X ‘
'* |

Cvu = Cuv implies (g(u,v))u = —Buv' §
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Since Hz(aﬂ) is a Hilbert space Cou’ Cuv’ g(u,v)u, B v’ Bvu
are all linear maps Hz - Hz, and the above equalities make
sense.

Hence under these assumptions the secessary conditions for

the existence of the Lagrangian L: H @ H2 + R are:

(1.16) W (2) =W, (2

(1.17) B(u,v) |3q =<B, UiV> o = <u,B v,

(1.18) g(u,v) = Cy (3Q)

(1.19) ~-B_ =€

If C(u,v), (22) can be chosen to satisfy all conditions (1.16)
-(1.19) then of course we have nothing to worry about.

In general however this is not a convenient set of conditions,
and it can be readily checked that choosing for example

C = -B, we end with the original condition suggested by the
author in 1966 (24]: q = nv( ”2)' whirch it i« possible to
satisfy only in special cases. 7o restale rcalistically, the
problem of finding a functional L: (H ® Hy) - R for quite

arbitrary boundary condition g(u,v) = 0, we have to sacrifice

some conditions on the list (1.16) - (1.19).
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The problem can be restated as follows:
Does there exist v€ H @ H2, and C: H2 » R such that

A*v - W, = p in H(gq)

ql= _thv)u
in HZ(GQ)
Cv = g(u,v)
where W: H - R is given by W = <f(u),v> ?

()

The answer to this question depends on the nature of the

boundary conditions and on the operator A.

If such v, C(u,v) can be found,then the problem of finding

a solution to the given boundary value problem is replaced by
a pair of variational principles for the corresponding
Lagrangian functional L(u,v): H & H, > R.

We observe at this point that if L(u,v) can be found, then

the tensor products Luu’ Lv satisfy the equalities

v’ Luv' Lvu

L = (-W

*
v v + A )Q + (B + C....)

uv uv’ a3 Q

Lyu = =Wy *+ A)n s (Cvu)ag
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e ™ (-wﬁu)n o EAE B) il g

By = R g F (Cov)ag

vv Y]

The remarks in the previous chapter explain the following
f necessary conditions for an extremal behavior of L(u,v) at

the point u = B =2,

a) Lov is the adjoint of L,y
b) The signs of the operators Luu’ va are defined
and remain constant in some neighborhood of the point
Vor Vg € (E & Hz) x (H® H2).
Examples of applications of multiple variational principles,
and of boundary value problems posed in this manner will be
given in the next chapter. Many examples of dual variational 5

principles canr be found in the monograph of Arthurs (3 ] and in

the papers of the British applied mathematicians who have pur-

k. sued this topic using a largely heuristic approach. See for

, '
' F ."f Al 3 ¢ Y. 3
example Arthurs [2 ], or Rub ser. {«4l] +Or adddl il L"‘”{f’a Pl

s

Some of the maogt difficalt problonn concerning clapgificat inn

TR ¥ea
(™ ege,

N

of the operators or of the boundary conditions are still largely

unsolved.

-
4
b3
i
R




Chapter 6.

Sgﬂgmigp;icatiqns of necessary ng§itions for the existence of
i a critical point of a functional to the theory of ordinary differ-
M
i ‘ential equations. Many problems of physics are mathematically
modelled by differential equations, which under some assumptions
may reduce to a system of ordinary differential equations of the
form L (W (x)) + £ (x t) = ¢(t) (6.1)
where L is an ordinary differential operator which need not be
linear, w and f are vectors in a Hilbert space (of functions)H.
The domain of functions in H is n-dimensional Euclidean space R".
As an example we shall consider a one-dimensional case studied

by Poincaré.

(a(t): P())' = c(t)-£(x)- @(t)
: (6.2)
p(x) -x' = - P(t)

QalQ.-
o

Physically the system of two equations (6.2) interprets the
motion of a mass, which may decay with time in a force field which
is also time dependent.

Interpreting p as the angular momentum p = p = a(t)'xz-e , and

{;’ &
LE

» introducing a constraint r = Y¢¥( €¢), we obtain

.

£ p =a (t) [ v(e § LY

L (py )' = =clt) E(ryo ) = - clt) £L o) ,

Bl

%,

which is identical with the system (6.2).

2 &
-

'@ c(t) £(o) = @(t), tsto,(6.4) which is

Combining equations (6.3) into a single equation, we obtain
)
(¢) (¥ (o0)1? e}

an equation of the form (6.1).

oI S o < 525,30 v S ) g s - i y b B 00 e 73 - Y —_——y
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For physical reason it is usually assumed that a(t) >0 L4
t e[to,w). c(t) may assume negative values. We also assume that
v (8) > 0.

We recall that in the nonlinear motion studied by Poincaré
the physical meaning of y(6) was the distance from the origin
Moreover in this case, we also observe that p(9) is undefined at
¢$(0) = 0, and the motion must not pass through the origin. Hence
]

we assume that ¢ (68) >0 and along the entire trajectory ([#(6)]

is a continuous function of 6. We can now redefine p= Ya P, i.e.

p(t) = - /a(t) v(x(t)) x‘(t), and rewrite the system (6.3) as

%' (t) = [a®)] Yyt

p(t)
A (6.4)
]
(=T p(t)) = i) Elle] = wit)
Here v~ denotes the positive sQuare root!
We introduce a potential function

b4
K(x) = ; p(g) dg (6.5)

0

X
where xo can be taken as the origin if j v(&) dt exists, or we
0

x
can put x4, = + « ik f_m p(£) dt exists. Clearly dK/dx # 0 ana

K_l is defined.

In most cases the choice of "the zero potential level"” Xq is

immaterial, as long as the equations of motion (6.2) can be

rewritten as a generalized Hamiltonian system
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K (x) = p, (6.62)

H
i
5
i

a* p = clt) £(x) - o(t), (6.62)
3

where 7 « = (Ya §E -, (6.7%) |

g

g* = ‘gT G Ly (6.72) |

The operators dand 4* are formal adjoints of each other.
Hence,we have a system of generalized Hamilton's canonical equations
already discussed in chapter 2.

Suppose that we seek weak solutions of equations (6.65),

(6.62) in the Sobolé&v space'w% (%,8) where [%,B) is some interval

of time (See [44], Chapter 2). We allow B = += in some considerations.

For obvious physical reasons we cannot stipulate twice continuous

differentiability of solutions, restricting ourselves to contin- 5&&05& :

uous applied force y(t), since in many instances we may consider
applied (outside) forces which are only piecewise continuous.

In this physical setting, we stipulate
p(t) e L, [%,8), p(t) and c(t) £ix(t))
piecewise continuous in [«,8), and we seek solutions

(t) ¢ Wy [«,8).

The finite work condition is

[Bleter gxtery x(o) | at - -
ol

St sah i LG
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Because of piecewise continuity of f(x) (and of x(t)) it suffices
if cit) € L2 [#,B] - for a finite interval [x,8],for the finite
work condition to be fulfilled.
We also assume for a finite interval [X,R]
a (t) > 0 for all t ¢ [«,8], (6.9)
¥(x) € Cl (-, =),
p(x) > 0 for all x € R, (6.10)

f(x) € piecewise C (-»,+» ). J

Then we seek W% [¢,B8) solution for the problem posed by the

equations (6.2) with boundary conditions of the form:

n
o

a, x(a) + by p(x)
(6.11)

a, x(g) + b, p(p) 0
For the sake of simplicity we shall consider first the boundary

value problem posed by the simpler conditions

W (o)

]
=

(6.123)

(B)

il
=

(6.122)




Since it is easy to see how to generalize such results to

the more general case of (6.11),

- dK(x) £ 0,
dx

Since Y (x)

transformation K:

~

product called energy product:

(4

Sk

W(x,p) =

3 z

x(t) B K (x(t))

x(t) = K~

[u,v] = IB a(t) u(t) v(t) dt

1 <p,p> + c(t) ¢(K) - ¢(t)K

Here w_, wB, Py pp are real

% , numbers. We remark that the results obtained below may be also
A derived under somewhat weaker hypothesis.

we can introduce an invertible

=R (t).
(6.13)
(R(t))

The problem can now be posed in the L2[N.B] setting with the usual

product <u,v > A IE u(t) v(t)dt. We &lso introduce the inner

(6.74%

The Hilbert space obtained by closing this inner product

space with respect to the energy norm will be called the energy

|
i i

¥ space. ||+ || will denote the L, [«,8] norm: .Iu” € <u,u>, and
‘%j Il|-I{lthe energy norm: |Hu"F 4 [u,u)].

?& Ignoring the boundary conditions,the Hamiltonian for our
%%é problem can be given by

&

(6.15)




3
a

where ¢(K) = fg gt (E) de&, (6.16)

while K(x) = /X ¥(e) de, £KH(K) = £(x).

(Note that defining K(x) = fg v(g) dg, or fi ¥ (£)de weould introduce
no real difficulties into all subsequent argrments).
The corresponding Lagrangian functional or the action functional

is given by
L=W- <@K,p>. (6.17)

With the introduction of this functional we have the cgznonical

system:
aK = W (6.182)
b
Q*p = Wy : (6.18=)

(Xand A* are only formal adjoints of each other. To make certain
that variational principles of chapter 4 and 5 can be directly
applied to the system (6.185), (6.182), we need to either include
the appropriate boundary terms (see conditions (6.122) - (6.122)),
or to check that the boundary conditions are natural. 1In this case

the check is performed by integration by parts. By definition:

<uK,p> = [HATEY © Gz KG0) - /Ay - x'(0)at

o

d

= JBla (t) v(x) x'

£ (K(x))ldt

ol




=a (®) v x' k0| - [f ke F @) veo x)) ae

= a(t) v(x) K(x) x"f.*- <K,*p> j

Imposing the boundary conditions (6.122) we see that € and a* j

are true adjoints if
a(t) v(x) x'(t) K(x(£)|® =0

Since ¥(x(t)), and a(t) > 0 and t 5 tyr vanishing an the
boundary of x'(t), therefore of p(t), or of K(x(t)) implies that
@ * js a true adjoint of 7 and the corresponding boundary conditions
at t = 4 and t = B will be referred to as the natural boundary
conditions.

We check the sign of the appropriate tensor products:

o ¢ 2 == a
Leg = gk = C(t) £ (K) (6.19-)
where ' %1‘ﬁ) = 37 f(x(ﬁ)).
aK

R b
5% T5 =W = 6.199‘
:i pp pp % : )
.§; (I is the identity operator.)
';_" LKP = -d (6-19-')
w
; L = (=g *)* = -7 (6 199-)
Qi pK : 3
e

5% 2

Hence, if c(t) does not change its sign on [«,g]l and provided
that fi (ﬁ) # 0 in some neighborhood, a critical point Ko, we are
assured of the existence of a variational principle. The extremal

behavior of L corresponds to a solution of the differential equation




. | .
(6.2). Depending on the sign of f (K) an algorithm can
be constructed in the spirit of Greenspan's techniques in [6].

Morever, the existence of such a critical point of L implies the

correctness of equations (6.185), (6.189) which are equivalent

ET to the original system of equations (6.2). However, the
sufficiency condition for existence of a corresponding variational
solution of the problem posed by (5.2) is: c(t), a(t) are of
constant sign on («,8), while £(K) is Fréchet differentiable in

some region containing the possible critical point KO'

K(x(t)) € W; [«,8], hence p ¢ W% [«<,8] . A corresponding

function x(t) which results in a stationary behavior of L is

A

S defined ,the weak solution of the differential equation (6.2).

-

COMMENT .

We note that the L, setting of the variational problem was not

2
only mathematically convenient, but also reflected some very strong
i physical assumptions. (It was a sufficiency condition for finite

work!)
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6.2 The essential boundary conditions

We shall consider the system (6.2) with boundary conditions

\ W) = W, (6.202)
Wo(8) = Wy, (6.202)
or *
p(«) = p,, (6.212) q

p(8) = p,. (6.212)

where we assume that the boundary conditions are not natural, and
that 4 and 2* are only formal adjoints of each other.
As before we formulate the problems in (real) spaces w% [«,8B]

and L, [#,8] . We modify the definition of the inner product by

adjoining a discrete product: [u,v] = Ya(®) u(«) v(e).

‘ We extend the domain of the operator & in the following manner.

3 1

- For every £ €W, [%,B], we define

8 &: £(t)— /A I £(8) Vt € (<8

LB

3 £ () A E(a) + (A-1) £

: 8 (6.22)
5 T Sl T 4

.

K at {t = «} U {t = g)
o

¥ P d

d % g(t) — g (V@ - g(t)) ¢t € («p)

3’
7




e

4 u-'« PR Bl -

e

e

S L

ol

a5

g (%) (a-1) g(a) + 3 9,
— (6.23)
g(B) % gfsg) + (, - 1) g

at £ = 3 Uk=gl

fd, g, fB' gB are some a priori given real numbers.

We check the properties of the product

{2f, gl using integratior. by parts:

{Z£, g} = <gf, g> + x[f(«), g(x)] +

A =1) £, gl@]l + (A - 1) [£(8), g(B)] + aLlf,, g(p)] (6.24)

(£, 7%q)} = <€, q*g> + (A - 1) [£(<)s g(a) ] +

ME(#), ggl + ALE(B), g(B)] + (A - 1) [£(B), 9.} (6.25)

This is manipulated in to the form
(7£, g} = (£,a*q} + Aéf(d), 9 1 #olE s 9(3)0 +
O -1 (1£e), g - 1£,, g(a) (6.26)
We can eliminate the term with (A - 1) coefficient by putting

A =1, or the term with A by putting A = 0.

Suppose the boundary conditions are of the form:

f ()

fu

L%

g (B)

9g




-11-

Then substitution of *» = 1 gives us
@e, a) = (farg) + (£, 9, - If,, g(s)l)
and we have the equality

{Gf, g} = {£,g9%q)

if the boundary conditions (*) are fulfilled. Similar

arg ment works for boundary conditions

-

gl=) =9,

£(8) fB

G

where we need to put » = 0 to arrive at the same conclusion.

In the case of boundary conditions

]
Hh

A £ (%)
4 (***)

Il
Hh

£(B)

we need to use some value of A, such that ) # 0, A # 1.

L et

.%l Since g(«) and g(B) are not given,the constants g, gy are
?ﬂ also not given a priori and we have to regard them as unknown

", ¥

g{u functions. Hence, identifying g with the variable g(<%) and

EE o

3

F;‘ 9 with g(8) , we have

3

¢ >

&

I
-

(£,7%} = {z£, g} + (A[(E(L) - £,), g(B)] +

(L - ) [(£(B) -fB)l g(")]}r X¢OIA#10

T —— . —————— .--—ﬂ
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Hence {&f, g} = {f,4*g} if the values assumed by f(t) at t = «,
and t = B are exactly the values specified f and fB respectively.

An identical argument works for the case of boundary conditions

g(¢) =g,

(****)

g () g

B

We are ready to introduce the Hamiltonian and Lagramgian functionals
for the equations (6.2) with boundary conditions of either one of

the types (%), (%%),(***), or (*k&n},
The Hamiltonian is given by

W(x, p) = % <p/p> + c(t) o(K) - p(t) K

which is identical with (6.15), while the Lagrangian is:

W(x, p) - {Kla*p} = L(x, P) (6.27)
If boundary conditions are of the form x(«) = X, x(g) = xB we
can replace them by K(x(«)) = U K(x(g)) = KB since K is a known

function of x.

The vanishing of Frechet derivatives of the Lagrangian

functional corresponds to the following sets of equations.

W_-3dK =0 in («,B) (6.28)




i i ta: Fet Soae

o
&

e

Sa. 5

(K(«) - Kd) p(g) =0
on {«} U {g}
(K(g) - K,) pl«) =0 (6.28%)
Wy = 2*%p =0 in (a«,p) (6.29)
As before we check the signs of the tensor products
= 5 R : 7
Lyg = Wgg = c(t) - £ (K) in («,B) (6.30) 1
L = = i 2
op pr I in (e,B) 1
g |
K(8) - K, . 0 |« !
= on (6.31) $
0 x(d)-x} BJ !
ol
and we check the relation: 5 g

= *
WPK (pr)

We can now state the following variational principles:

Choosing (arbitgarily) x(t) such that K(x(t)) satisfies the given

boundary conditions K(x(a;) = Kd, K(x (p)) = ¥ , then compmting

p(t) to satisfy the relation wp =7 K, the actual solution of (6.2)
and consequently of (6.29) will minimize the Lagrangian L given
by relation (6.27) if (c(t) - f : (ﬁ(t)o is positive on (e ,g) and

maximize it ifkc(t) - ¢!

(k(t)))is negative on («,8). No variational
principle exists if(c(t) - f'(i(t))) changes signs. In that case

the best possible statement is that the solution of (6.2) will

AR R o Ao b oant SUAELS R R e B € NS A
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correspond to a local stationary behavior of the Lagrangian.
Vice-versa if we choose arbitrarily p(t) and compute K(x(t))
using the relation WK = Z*p, then the choice of p which will minimize
the Lagrangian corresponds to the solution of the system (6.2).
Since ohly once differentiable functions were considered in our
variational arguments, the solutions we talk about are weak solutions

i 1
in Sobolev space W, (or Hl (¢,8) in a commonly used symbolism.)
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