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P R E F A C E

This monograph Is basically the outline of lectures give n at the
WECOM Res earch Seminar on Applied Mathematics and Continuum
Mechanics held at Watervliet Arsenal , N ew York , in June 1973.

The purpose of the lectures was to familiarize theoretically
oriented engineers with some mathematical techn iques wh ich are
useful in continuum mechanics. Abstract differentiation and
integration is shown to lead directl y to the f o r m u l a t i on  of
known or new variationa l princip les. Some app lications are
also given to spe Ci fic types of ordinary differential equations
which occur in theoretical mechanics. However , the formulation
of variationa l principles for boundary value problems of
ordinary differential equations can obviousl y be extended to
a much broader class of problems.
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Chapter 1

Abstract Differentiation and Integration.

1.0 Introductory comments.

In this chapter we shall consider primarily problems posed in flu-
bert space setting. Most statements offered here are easily trans-

lated into l3anach space terminology , where we have to keep- careful

count of which elements belong to the space B and which belong to

-: its dual 3*, or even to B**. In the Hilbert space setting we can

af ford to be sloppy, and the arguments are frequently simplified.

1.1 The concept of a derivative.

To offer generalizations of the concept of a derivative and of the

usual necessary condition for the extrezmim of a function we need

to have a look at the concept o~ a derivative of a function of a

single (real ) variable , and of two variables. Differentiability of

a function f whose domain is D(f), f(x): D(f) ~ R -~ R , can be stated

as follows: given x0 E D(f) and given h, we can express the dif-

ference f ( x 0 + h) - f ( x 0) = ~~~f in the form

( 1) 
~ h~x 

= K (x 0 ;h) .h + ‘C.(x0;h),0

where K is some constant (depending on x0 and on h) and ~ (x 01 h)

has the property

u r n  
~~ ‘~(x 0 ;h ) I  = 0.

h-0

Moreover (regarding K as a function of h) liir K(x0;
h) exi sts.

- 

h.~O

~~ 

We could of course generalize this by considering u r n  , or u r n
h-+0~ h~0_

1 
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or u r n  sup K(x0;h), etc. obtaining the Dini ’s right, left, upper
h-’~O

and lower derivatives.

We shall deliberately stay with only the simplest c~ncepts.

The relation (1) can be rewritten as

= <K(x0;h),h> +‘t(x0,h).

where in one dimension the inner product < , > is a simple multipli-

cation.

At this point we have deliberately avoided the form

since generalizations of this form are possible only in spaces where

products of this type are defined . In general h will be a vector

in an infinite dimensional vector space, f may be some mapping and

the product -
~~~~~ makes no sense at all. However, the analog of

formula (1) has an easy interpretation. It is clear that. ~or the

infinite dimensional •case one dimensional concepts are inadequate ,

and we shall consider the concept of a c 2rivaf~xve in R
2, and attempt

to generalize the basic notions from to an arbitrary Hu bert space.

We shall consider two basic pointwise maps

f: R2 -‘ R2

•: R2 -’~ R
1.

f will be called an operator, a map, or a transformation , ~ will

be called a functional. Clearly a functional is a map + R2(~~~C~~).
However, the one dimensional range of this map simplifies many

arguments, and such maps should be considered separately.

~~~~~~~~~~ ~~ 1. JITT~
_
~IT~~
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The map f may have the following types of derivatives in

i) partial derivatives

ii) total derivative - or the Jacobian derivative ,

iii) directional derivative (in the direction of some two dimension- $

al vector in R2).

• For the functional ~ we introduce the concept of a gradient of ~~~.

All these concepts have appropriate generalizations in Hu bert

space. We can also introduce the appropriate concepts of integration

in R2. Given any simple arc F, whose endpoints are p1, p2, we can

introduce the Riemann integral

• f <f (x,y ),ds> If f(x,y): R2 ~ ~
2 has the property that for

F(p1,p ) -

any p1, p2 € ~~ R~ such integral is independent of the path,we in-

troduce the idea of a potential functional.

(x,y)
I’(x ~y ) 0, ~(x,y) = f <f(x,y) . ds>0 0 - (x0,y0)r

We note that thc~ independence of path condition requires no proper-

ties apart trom Riemann integrability . 
-

The more comn~nly used conditions curl f(x,y) = 0 in or

ôf1(x ,y) 5f 2(x ,y) 2
—

~~~~~~ 

in R = (fi, ~~

assume differentiability of f, and assume simple connectivity of

Q . Each of these criteria will be shown to have important gener-

alizations in filbert space.

1.2 initio~~_~f derivatives of rn~ps in Hilbert spaces.

By a map in filbert space we mean a map (transformation , operator...

- T~~~~~TT—~~~ ~~~~~~~~~~~
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f: ~ ~ H1 
+

where ~ is some subset of a filbert space ~l’ 
and the range of f

is a subset of a filbert space H2.

The simplest case when = D. is easily disposed, since division

by a scalar is defined in H2. We say that f: B -
~~ H2 is differen-

tiable at the point t0 E B if

I f ( t )  - f(t ) 1

lirn I - Q~ I exists.

~~~~ L t - t 0 J
• Unless otherwise qualified lirn. will stand for limit in the norm

(strong limit). That is we postulate the existence of a vector

f’(t0) E H2, such that

f(t) — f(t
u r n  0 

— f ’ ( t 0 ) = 0 .  (1.3
t — t o

We can rewrite this in the form (1.1) as an equation in H2:

f(t) — f(t0) = C t  — t0 ) f ’ ( t 0 ) + ‘~(t ;t 0 ) (1.2)

~ (t ; t 0 )
where lixn = O~~ ( 1 . 3 )  =

t-)-tO 
t _ t

O

where we deliberately avoid complications at this point by insisting

on this limit being defined instead of possible alternate conditions

(one sided limit, lirn sup,...)

If we replace convergence in the norm by weak convengence , we

have the equivalent definition of a weak derivative:

- ~ m- T Tj
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+ 

~2 
has a weak derivative at the point t0 

E B, if there exist

a vector f’(t0
) € H2 such that

f(t) — f ( t0)f’(t0) = weak limit ( 
-
~~ 

— ‘ 
(1.4)t + t o 0

with the formula (1.2) still valid, and condition (1.3) replaced by

i~,(t ; t
0

) w
~ ~~~—t 

‘- 
~~ , (1 .5)

- o

where 0 is the zero vector in H2. These definitions don ’t make much

sense if f is an operator f: H1 
-
~ H2 (generally H1 is infinite

• dimensional).

The definition of directional derivative due to Gateaux general-

izes the concept of ~ directional derivative in R~ . We consider

the map f : ~ ~ H1 -
~ H2. Take - an interior point of ~2. Pick a

fixed vector h ~ For fixed x0, h € consider the vector

(f(x0 + th) - f ( x 0)) € H~ where the constant t is picked suffic-

iently small in absolute value to make sure that x0 + th € ~~, which

is possible since x0 was an interior point of 2. For fixed x0 and

h the difference Jf(t) = (f(x 0 + th) - f(x0)) is a function of

the real variable t only . Hence we are back in the previously

discussed case ~f(t): R -
~~ H 2 ,  and we can define the directional

- derivative of f in the direction of h , computed at x0, if there

exists a vector f(x0;h) 
K H2 such that for all suff iciently small

values of t, the formula holds:

~f(t;x01 h) = f(x0+th) 
- f(x0) = t•f’(x0;h) +~~(t;x0,h) (1.6)

~~~ -~~~~~~~~~~~ -- - -~ -‘---- ~--- ----- ~,-- - . •. - - - - - - • •  ~~~ •- - - •~~~~~~~~~~~ . - -—
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~(t;x0h)I - • where u r n  0. ee L~oJ) . (1.7)

t +0

(or .! ~ (t;x h) ~ 0 as t ~ 0 in case of a weak derivative.)

We should point out that the directional derivative f’(x0;h) does

not have to be linear in h. In general f’(x0;h1+h2) ~ f’(x0;h1) +

f’(x0;h2). It is however homogeneous of degree one in h, as can

be easily checked from the definition,and f’ (x0;ch) = cf’(x0;h).

1.3 The Gateaux derivative.

We now assume that f’(x0;h) exists and is linear in h. Then f’(x0;h)

is called the Gateaux derivative of f in the direction of h ,

computed at the point x0. The Gateaux derivative is not necessarily

continuous with respect to h either in the strong, or even in the

weak topology of H2. It only implies the existence of a linear

operator Lt~ ~ such that for a fixed h 
E 

~2 
and for sufficiently

0’
small (in absolute value) t E ~~

f(x0 + th) — f(x0) =tL(x) h + Z(x0th) ~~~~

~(x0;th)where u r n  = 0.
t+o

-
~~~ (or weak u rn. ~~‘Z.(x0;th) = 0.) We would like to point out that

t-,•o
17~( x

0 ;th )
u r n  = 0 does not imply
t-,o

L I I t ( x  ;h)ll
u izn ( 

~~~~~~~~ 
) = 0 ,

I~I•~ 11-9- 0 II 
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for arbitrary h E (of su f f i c i e~ L1y small norm) . In other words

the Gateaux derivative may exist in the direction of a vector h1,

but may fa i l  to exist in the direction of a vector h2. This is

easily checked to be true even in some two dimensional cases)

f:

• 1.4 Fréchet d i f ferent ia t ion.

Assume that the operator L
~ 

in ( 1.8) is linear and bounded , i.e.
0

for f ixed x0 € H 2 we have

1) L (cth1 + Bh 2 ) = aL x h 1 + 
~~~ 

h2, and there exists M > 0xO 0 0
such that

ii) IILX hi l  < M ( x 0 ) IIh~1 for all h of su f f ic ien t ly  small morm.
0 —

• We also assume that for all such h E H2 it is true that

iii) f(x0+h) 
- f(x0) = L h + ‘Z.(x0;h) wherexO

H ~~ ( x  ; h ) ) 1
~im 0 , ( 1.8)

llh ”+ o l~h~ (ie~ C73 J

Then L is ca11e~ the Fr~chet derivative of the operator f eval-x0
uated at x0.  The following condition can replace condition (i i i )

‘t( x0 , th)
iv) u r n  — = 0 uniformly wi th respect to h on allt+o t

bounded subsets of H

-
• 

- 

The fact that (iii) and (iv) turn out to be equivalent is not trivial .

The proof of it can be found in [ 2 1) .
I ,

• Theorem. Fréchet derivative exists if and only if the Gateaux

derivative exists and satisfies condition (iii). The proof is easy

- —~~~~~~~ --—--~------- ---- - -  - ----- -----—-- -~~~ .- • ___
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and will not be given here. (See [52).)

1.5 Fr~chet differentiation of functionals.

In this case we consider the Fr~chet derivative of the map

f: ç~ ~ H1 
-

~~
- B. Let the Fr~chet derivative L exist at x0 E ~~~.• xo

Then L
~ 

is a continuous linear map from Q H~ into ~~~. Therefore
0

for some h € H1 we have L~ 
ch = C L~ h , V c K ~~, and by the Hahn
0 0

Banach theorem L
~ 

can be extended to all of H1 without changing
0

its norm.

• By the Riesz representation theorem there exists a unique

z E H
1 

such that L h = <Z ,h> for all h € H1. Hence for all h K Hxo
the Fre’chet derivative of a functional f evaluated at x0 is a

continuous linear functional L , , and L h = <Z ,h> (1.9)xo •  xo
for all h E H1.

The unique vector Z~ is called the gradient of f evaluated
- 0

at x0. Clearly Z depends on the definition of the inner product

in H1. However the existence of the gradient depends only on the

existence of the Fréchet derivative which in turn depends on con-

vergence of our limiting process. Convergence is a topological

property , and remains invariant in equivalent topologies. Hence

the introduction of an equivalent norm in H1 will not affect the

existence, or non-existence of a gradient (or of the Fr~chet deriva-

tive). In fact let us introduce a new inner product (the so called

energy product , and corresponding energy norm) [ , ]

[x ,y) = <Tx,y> , where T is positive definite,synmietric operator.

~~ Denoting by ~~~~ 
= (x , x] = < T x , x > , and by lI~l1 2 

= <y ,y> , we

have <grad f , h> = (grad #f,h] = <Tgrad*f,h> (1.10)

~~~~~ --~~~~~~~~~~~~: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ _:~~~~~~~~~~~~~
j
~
j - ---  • 

~

-

~~

- -— —  _ _
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where grad # is the gradient of f in the topology induced by the

norm 
~ ~~~

. Since relation (1.10) is true for all h E H~ , we have

the equality T.grad# = grad . If T 1 exists , then gradt = T 1.grad .

If the operator T is bounded away from zero (i.e. the spectrum of

T does not have zero as a limit point) then there exists a constant

y > 0, such that for any x 
~ ~l ~ 

.5(T) l xii < - ~ lIt x Q . (.fr(T) denotes

the domain of T). Hence convergence: (-or continuity , or existence

of limit points) in the new norm j jj  
~ 

implies convergence (or con-

tinuity...) in the old norm II ii
In the final dimensional case all these statements are trivial ,

and all norms < ,> [ ) where <Tx,y> = [x ,y ) ,  and T is positive

definite, and symmetric , are equivalent and generate the same
• 

- 

topology .

At this point it-is appropriate to make a comment about the

non-existence of the Fr~chet derivative in soire filbert space H1.

H Suppose the Gateaux derivative of ~ (in arbitrary direction h) exists ,

but fai ls to be a continuous functional of h- in the usual (norm)

topology of H~ , i.e. we can find a sequence of vectors {h~~} ~ H1
such that u r n  llh - hil = 0, but lim ~(h.) ~ 4~(h).. It may be

j +co j9- oo

possible to introduce a d i f ferent, and non-equivalent inner product

{, },  with a corresponding norm I! i
~(2) 

such that. ~(h ) is a continubus

functional of h in the new (norm) topology .

If the inner product is fixed , and no attempt will be made to

chan ge the topology ,  then we can use the sloppy notation

~~~

~~ or 
~~~ 

to denote the gradient of ~
- evaluated at x0, where

~ is a Fr~chet differentiable functional who~c values depend on

~~~~~~ ~~~~i~i~~~: -~~~~~~~~~~ ; -
~~~~

-.
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- x K H~ , i.e. ~: Hi + B. L (x) = 4 , x> = c J~. f , x>

• - X0 X0 6 X X 0

is the corresponding Fr~chet functional. This notation is both

confusing, and sloppy , but it has been cortsistently in use, and the
- 

author of this paper is also guilty of having abused it.

It is partially vindicated by a physical explanation . The

filbert space setting has obscured our vision to a certain extent,

since we identify H with its dual , and we are allowed to neglect

the bookkeeping which vector is in H , and which vector is in f*

(the dual of H, which is identified with H). This distinction

becomes important later on when we try to interpret certain equations

of mathematical physics . In the remainder of this paper we shall

- - 
use the notation grad 1 if ~~is a functional ~: H~ + R. We shall

also find examples where ~ is a functional ~: H1 • H2 •. ~~~ H~ ~ R
(or ~),that is ~ maps the direct product of Hilbert spaces H1, H2...

Hk into the real (or complex)numbers. In this case the notation

grad 
~~~ 

is too cumbersome and we shall wri te to denoteI- ’ I i

I::. f(x +th) - f(x ~)r L (h) = <Z ,h> = < u r n  ( ),
i i t.+0

with h E H,, x0 K • H2 •...~~ That is we generalize simultan-
1.

eously the idea of a gradient and of a partial derivative , by allow-

ing the variation of f to take place exclusively in 
~~~ 

and regard—

ing the - components of x in H
i’ 

j  ~ i, as fixed. We shall refer to

this derivative as gradient of ~ restricted to the space H~
. This

idea plays a c~~~ia1 part in formulation of multiple variational

- 

__i principles. For example the following equations of mildly nonlinear

elasticity corresponds to critical points of a simple functional

-l 

- - _ _
1_ 

_ _
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- restricted to respective subspaces of the space H = H . .  The
• .

1

• Maxwell and Morrera ’s stress function relations, the equations of

equilibrium, the equations of compatibility , Ricci ’s equations.

(See (S3]).All become easily interpreted in this context.

1.6 Some rules of manipulation for gradients of functionals

-
~ We shall restrict ourselves f i rs t  to the simplest case: •: H + B,

~ H, 4 is Fr~chet differentiable in .D~ H.

We shall denote by 
~x(~~) 

the gradient of -~
- = Z E .6, where

<Z ,r1>, Z E .&, (~ € .8’ji s the Fr~ chet derivative of ~ coinciding with

the Gateaux derivative in the direction n. We compute the value

of the aradjent at a point x
0 

K.ft. 4)
~
(x o

) = Z ( x
0). If Z(x0) = 0

( the zero vector ) we say that x0 is a cri tical point of the func-

tional ~~. A basic theorem of optimization theory (Vainber~ (49])
states a necessary condition for stationary behavior of a functional

~ (par ticularly for a maximum or minimum) at the point x0 E H. The

point x0 must be a critical point of ~ , if ~ is Fr~chet differenti-

able at x0. In particular this is a nec~~ sary condi tion for a

local maximum or minimum of a Frechet differentiable functional .

Example 1. 4) = <Y1, Y
2
>

Y1, ‘
~2 ~ H , = C

1 
X

:~ 
= C2 X. Then Z = = (C1 + C2) X. -

Proof of this statement follows from the definition . We compute

the Gateaux derivative of ~ in the direction of a vector r~ ~ H. 

~~~~~
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C1X+tri, C2X+c ri>
= lint —

s 
— C1C2 <X ,X>

= (C1 + C2) <T~,X> 
= < ,-,, (C1 + C2)X>.

Hence = (C
1 

+ C2 )X .

Example 2. •(X)  = •1(x ) . ~~ (X )  Then the gradient of 4) :

= • ~ • 4 )  ~~~~~~~~x 2 x
Similarly

• ( 
~~~~ 

(x) 
— 

1~ 2 
— 

2x ~
I 4)~(x) 

— — ______ _______

X 2

Example 3.

• - , A: H + H, A* = A, -x 
~‘ %.

Then

= <x~x> 
( 4 ) ( x )X - AX) .

1.7 Integration.

Vainberg ((ZI)) offers the following grnoraliz.ii-ion of the idea of

a Riema rtn integral. Consider f t  H H. We define the integral

along a line segment. connecting x0 and x K H by

f <f(x0+t(x— x0)), (x— x0)> dt = f •(t)dt. (1.11) J

j  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~
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This formula can be obviously generalized to polygonal paths. The

common way to introduce integrals of vector fields along an arc

rc is to consider a subdivision of the arc Fla b] by points

PO’ r’1’ p2.. .,p~ and introducing the Riernann sums

i~0 ~
;i+l 

— p~ ) .

where is a point contained on the interval [p1, 
~~

• ÷1~~• 
If

f: R3 + is a continuous map and if r is “reasonably smooth”.

(For example we can allow a finite number of corner points without

causing any problems). Such Riernann sums generalize to filbert

(Banach) spaces by simply replacing the three-dimensional inner

product, by the appropriate inner product. If f is a continuous

map f :  ~H ~ H, and F is a smooth arc we can easily show the conver-

gence of the Riemann sums : -

lint 
~~~~~~~ 

~~~~~~~~ 
— p1, f(~~~)>}. (1.12)

In the case when r is a parametrized arc we can choose the points
~~~. to coincide with p . ,  and the integral (1.12) can be reduced to1 1.

the form
• 1f •(t)dt.

• 0

1.8 A basic condition for the existence of a potential.

We generalize (following Sfainberg (52]) two well known criteria of

B3. f: H -
~ H is assumed to be a continuous map. Suppose that ~ is

I-

~~~~~~~~ ~~i~~ : ::~~~ T ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—.__________



a region of H , such that for any p1, p2 E ~ the integral

(p 1,p 2 ) t ( p 2 ) t 2
J 

<f (x),dx> = f •(t)dt
r -

-~ is independent of F, for any parametrized arc r , and only depends

on the end points p1, p2. Then there exists a functional 4)(x) such

that f (x )  is the gradient of 4).

Proof. Choose a ( f ixed) point x0 K ~ H. Define for p E ~ the

functional
1

.4 •( p) = f~ < f ( x 0 + t (p  — x0)), (p—x 0)
).dt +

• 0

and (without any loss of generality) put s(x0) = 0.

- 

•

- 
If ~ Contains the origin, we may choose x0 = 0~ and define

1
• •(x) = f. <f ( t x ) , x>dt .

0 — — —
It is easy to check that f(x) is the gradient of 4).

Note : Observe th~tt we did not make the assumption that f: H -
~
- H

is linear .

There is the obvious problem of knowing how to apply this con-

tiition. How do you check that this integral is independent of the

path for every path in F? In most cases this turns out to be an

impossible task. At this point we recall another condition for the

existence of a potential function in iu~. Assume that ç~ is simply

connected , that f : t~ -- id is smooth and curl ( f) exists at all

points of ~~, and cur1(fJ~ 0 in cz . Then f is a gradient . Of

course we do not know what curl(f)means in an infinite dimensional

space . However in i~ c u rl ( f)~ 0 if

V

- -. - - -  • - ~~-.—- --- —• -~~ ________________________ 
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~f. af.
1 3

• 
-
~~~~~~

— = -
~
-
~

— , i = 1 ,2 ,3.
3 1

This condition generalizes quite easily to infinite dimensional

space . However we shall have to delay its discussion , since we have

not defined yet the meaning of second (or higher) order derivatives

of a functional. Observe that:

af. ~f. 2 2
= ______ - ______

ax ~ ax ~ 3x~~ x ax.~~x.

This condition i~ trivially satisfied in R
3 if 4) E C2 ($~), (this is

known as Tonelli’ s theorem) . In a filbert space there is no obvious

reason why second derivatives should commute , and this condition

assumes a much deeper meaning. -

• The generalizations of Cauchy ’s integral condition in higher

dimensional complex spaces are too involved to be of practical use

in Hu bert spaces. At least this is the opinion of the author ,

which may of cc..urse turn out to be wrong.

~~~~ i~::~I~~: ‘~~~~~~~~~~ i I~~~~i~~T-•



Chapter 2

2.1 The Eu1er-Lagran~~ equations, and critical points of a functional.

The Euler.Lagrange equations for the problem of extremizing the

value of tif ~(x ,x ’ ,t )dt  are
to

aa~ d - o  
-

• -~~~~~ — -
~~~~~~ 

( —~~
,)  — (2.1)

The Legendre transformation introduces tha generalized moaientum

• • p - -a ,

Hence (2 . 1)  can be written as

— — — -
~~

-
~~ 

(2 3a
.

and -
~~~ = where H = p - ,!. ( 2 3 b )

4.
We are now ready to formulate the filbert space analogs of equations

(2 .?) , ( 2 • 3 b ) ,  and (2 . 1 ) .  The basic ideas of generalization of

equations (2 . ?) ,  (2,3b) go back to Korn who observed dual varia-

tiortal principles in theory of elasticity of materials not necessar-

ily obeying Hooke ’s law . Friedricks has interpreted Korn ’s results

in terms of modern operator theory E~~ ].

a,

TI:

~ 

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

-
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An intuitive approach to the postulation of duality and forinu-

lation of dual variational principles originated with Noble (35],

and has been successfully applied by a number of authors to problems

of mathematical physics ( see for example the monograph of A. M.

Arthurs [ 3 3 ) .

2 .2  Generalized_Solution s, energy norms and extremal points of

• f unctionals. -

• The~~zell known case of a close relation between a generalized solu-

tion o equation :

Au - f = Ø  
- 

( 2 . 4 )

in a filbert space and extreme value of a functional,when

A is a positive definite operator , bounded away from zero , and the

domain of A is dense in H. In this case we can introduce a new

inner product [u ,v]  = <Au ,v> , and a new norm u 11I~ A) = <Au ,u> .

• Lot denote the closure of the flew inner product space. We

examine the corresponding functional :

F (u )  = <Au ,u> — 2<u ,f> = ~~u ~~~~ — 2-<u,f> (2.5j

Since A is bounded away from zero (meaning <Au ,u> > C2 u112 for

some C > 0, or t h u  ~ > C hUll ) it follows that I<u ,f> I ~~~~~

Hence by Riesz representation theorem there exists u0 K ~A 
such - -

that <u , f >  = (u ,u0 ] ,  and F ( u )  = ~~u 
- u 0 ~ 2 

- 

~~~~~~~~~~ ~
Hence F (u )  attains a minimum at u 0, and

mm F (u ) = 
~hhI U 0 th I~ 

( 2 . 6 )
U~~~~HA

I

— - ~~~w•-~ -~~~-~~~~
-—•--
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As before denotes the Hu bert space obtained by closure of the

inner product space with the product [.,.]. The point u0 E

called the generalized solution of the equation (2.4). If u0 was

in the domain of A, then it is a “genuine ”(or classical) solution.

• Otherwise it is called a generalized solution of (2.4). In fact

since A is positive definite, there exists an operator B , such

that A = B*B , and for all u K .bA& U K 
~B 

and <Au,u> = ~Bu ,Bu>.

We have the containment .~~ C .D~. However u0 
K does not ~~an

that u0 is necessarily in the domain of A. As an example consider

d2 2A = — —~~ , 
~~~~ 

= C2 (0 , l] C L (0 ,1], u ( 0)  = u ( l )  = 0.
dx

d2
The generalized solution of - —

~ U = f corresponds to the mini-
dx

mization problem for the CL2
) functional

d2
<— —

~~ u, u> — 2 .i,u>
dx

‘
I
’

= -
~~~ 

(u ” u ) dx  - 2 1 ( f u ) dx

= (u ’) 2dx - 2 ( fu ) d x .

The problem is that the existence of the functional

F(u) = (u’)2dx - 2 (fu)dx

requires only u ’ E L2 (0 ,1] and does not require twice differentiability

—S - 
-• —5---- -S _,~~~~~ —,-•--S-5--—-__- • •-—-_ -_- 5 - -- •—----------- --—- ---5--—- ____ 

_____
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B = i is one of the possible corresponding square roots of thex 
d2operation of the operator - —i. Hence the minimization problem
dx

can be accomplished in the ~obolev space H~~(0,l] instead of

u K c2 [0 ,l] C L2[0 ,l]. The energy space 
~A 

turns out in this case

to be H1[0,l]. Of course in the above case we had a lot of pro-

perties of the operator A , (po sitive definite, bounded -away from

zero) which made life very easy, and .gave us so easily an equiva-

lent extremal problem ~or the functional F(u). A feature of• this

functional which we have not mentioned yet was convexity .

Defin i t ion .  Let 4): ~ ~ H 
-
~ R be defined on a conve x set cz ~ H.

Then 4) is called convex if for any x~ , x2 K ~ the following in-

equality is true :

+ (l—A )x2) < A~~ x~) + (1—A )4) (x2) 0 < A < 1.

If strict inequality holds , then •~~ is called strictly convex.

4) is called concave if -
~~ is convex. We observe that any norm is

a convex functional, since it obeys the triangular inequality .

IlAx + (l-A)ylI < A llx lI + (1-A ) hIylI .

A study of convex functionals can be reduced to a study of convex

sets in H , by in troduction of the “epigraph ” of the fuftjtional ~~~ 
5

that is of a subset of R x H

( s , C] = {(r , x) K R x H: ~:(~~) 
— r , x E C ~ H)

-p

- -  ::I~~~. ~~~~~~~ :~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T1  
_ _
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where C is a convex subset of H. (see Luenberger [55 ] for an

exposition).

2.3 Conjugate convex furtctionals.

Let 4) be a convex functional ~: ~ ~ B -
~ R, defined on a convex

set cz c B-, where B is a Banach space and B* is its dual. The set

* conj ugate to c~ relative to ~, ç~*~ B* , is defined as

= {p E B* : sup <p, x~ - 4 ) ( X )  < M for some M E R}

- 

- 
~~ xEc~

The conjugate fur.ctional ~*(p) is defined by the relation

sup {<x,p> — 4)(x) }
xEc~

Proposition. If 4) is convex, then so is 4)*~ Proof . For any

number A, 0 < A < 1, check that

SUP {~~x, Ap , + (l-A)p 2> -

xEQ

A sup (-c x, p1> 
— 4)(x)) + (1—~~) sup <x , p2 > —

xKci xEc~

A geometric interpretation of the convex functional 4)* can

be intuitively argued as follows. (-onsider a convex set c~ x B ,

where B is a Banach space. A family of hyperplanes in B x B is

given by an element of B x B* , i.e. an ordered pair Cs , p) S € B,

p € B*. A particular hyperplane is obtained by setting

- -  - -~*
1--- ._ • ~~ •~~~~ -• • - . — - .- --.~~~~~~~~~ —~~~~~ - — - 5- —-S—-- -- --------—------— - ___

-- 5-_a_.__ 
— —- - 

5--—- - ~~~~~~~ - __n_ -
- -  • -—---~~~~~~~~~-~~~~~~~ --- --~~~~
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<(r,x ) ,  (s ,p)> = c , r E B, x K B , or rs + <x,p> = c, where c is

some real number. By rescaling we can always choose s = -1 , pro-

-• 
vided s ~ 0. Then C = <x,p> - r defines a family of hyperplanes

of B x B. •*(p) = sup (C) is the sup. of values for which 4)*(p) is

-

- a suppori hyperplane of 14 ) ,  C] .

Convexity , and concavi ty of certain functionals are closely

tied with existence theory of maxima- and minima. For the time

being we shall only concentrate on suf ficiency conditions which

generalize the Euler-Lagrange equations of classical calculus of

variations .

2.4 Critical points of fucntionals and the equation Ax = f.

We shall consider a f a i r ly arbitrary linear operator A mapping

4A ~ H1 into H1, where H1 is a Hu bert space. ~ e wish to solve

( for x K H~) the equation Ax = f ~f E H1), where we shall assume

that •A = T*T (A is positive definite) and the domain of T is dense

in H1. Therefere T* ( the adjoint of T) is uniquely defined. T,

T* are the lin~~r maps :

T: 
~ T ~ H1 H 2 . T* : H2 -

~~ H1

Hence the equation Ax = f (K H1) can be rewritten as a pair of equa-

tions 
-

T x p (K H2) , (2.7)

T* p = f (~ H1). (2.8)

N

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ _
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We consider the fi lbert  space H = H~ • H 2 whose elements h are

ordered pairs h (x ,p) ( x E H~ , p € H2j, with the product

{h 1, h 2 ) = (x 1, x2) + <p1, p2 >

where ( , )  is the inner product in H1, and <,> is the inner product

in H2.. Consider arbitrary vectors p K H2, x E H1 i.e. an arbitrary

w = C x ,p } K H and the -corresponding- value of the functional

L: H - F R

L(x ,p) = <Tx,p> — -
~~~ 

<p,p> — (f,x). (2.9)

- 

- 

It is a fairly trivial result that provided th~ gradient I.~ is

unique1y~defined at the point W~ = 
~~~~ 

p0} K H, then the equations

(2.7) and (2.8) are necessary and sufficient conditions for vanish-

ing of 
~~~ 

Hence the functional L has a critical point at W 0 if

and only if the equations (2.7) and (2.8) are satisfied .

Again the condition x € 
~A 

has been replaced by condition

x E bT, which is in general easier to satisfy since A T*T. (See

the next section for a more rigorous statement.) A more detailed

look at equations (2.7) and (2.8) show that if we fix p K H2 and

vary only x K H1, L~ 
= 0 ( i n  H1) if and only if (2.8) is satisfied ,

and vice versa if we fix ~ K H1 and vary p K H2, L~ = 0 (in  H2 )

if and only if (2.7) is satisfied .

These observations have been originally implied by Kato (22].

(We are using the same notation L
~ 

denotin g the gradien t of the

I III itL ~~~T1TITITI ~~~~~~~~~~~~~~~~~~
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functional L(x) (with p a fixed vector of H
2), always assuming that

this gradient exists, (in a fixed topology of the spacel) and if

L~ = 0 at x = x0 € H1 then L
~ 

is defined in some neighborhood of the

point x0 in the appropriate topology . Unless otherwise specified we

shall use the topology induced by the norm . Again we observe that

= ~~~~~~~ which is a critical point of the functional L does not
-
- 

- 
have to be a “genuine solution of the original equation Ax = f ,

since 
~~ 

may be in the complement o~ the domain of A. ~~~ ~~~
The system (2.7), (2.8) has been designated by Noble ((~SJ~ and

• Rail ([3~~] )  as a Uai~ailtonian system. The name is easily explained

if we call the functional ~~~
- <p,p~ + <f ,x> = W(p,x) the Haniiltonian

and observe that (2.7), (2.8) can be rewritten as

T x = W~ (2.10)

T*p = W~ (2.11)

which is the Hamilton ’s system of canonical equations in the special

case T = , T* = - , with x being the vector of generalized

displacements, and p of generalized momenta.

In anology with the terminology of classical m :chanics the

fucn tional L will be called the action func tional c~ the Lagrangian

(integral) functional. We observe the following peculiarity of

our discussion : The ecuation Ax = f is an equation in H . The

introduction of the “splitting space” 112 was a result of the decoin—

position of the opera tor A : H1 
-, H 1 into T*T: T: 

~ l H 2 ,  T* : H2 - -
~ H

~

1’ -

5- -~~~~=--S- ---S-
~~~~ —---

_~~~~~ 
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In particular the work of Browder and Gupta indicates that under

certain conditions while 1
~
i1 is a Banach space , H2 may be chosen

to be a filbert space, with resulting theoretical advantages. In

this paper H1 will be assumed to he a Hu]±ert space. To make

rigorous the ideas loosely expressed here we need some additional

definitions from functional analysis.

Definition Let T be a (linear) operator mapping some subset of

a Banach space B1 into a Banach space B2. The graph of T, denoted

by G(T) is a subset of B1 x B2 consisting of all ordered pairs of

the form {u ,- Tu }, U K 
~~~ 

The following statement is known as the

closed graph th~orem . Let = B1. Then T is bounded if and only

if the graph of T is closed .

Definition (Kato (a] ) Any linear mainf old C contained in ~ B1

is called the core of T if the set {u , Tu }, u E C, is a dense sub-

H - set of G(T). 1~ important theorem due to Von Neumann asserts the

following. Let T be a closed operator T: H1 ~~~ ~~ dense in

H1. Then A = T*T: H
1 

-
~ H1 is a selfadjoint operator and is a

core of T. Hence DT ~ ~A 
If the containment is proper i.e.

DT ~ 
DA then the corresponding variational solutions describing the

original problem in terms of critical points of some functionals

in H2 will exhibit solutions which are not “genuine” solutions ,

that is they are not in the domain of A.

2.5 The Legendre transformation

In classical mechanics we encounter the following transformation :

-5-—--- - - — -— —-S  -~~ —.--—-,~~—--—.--- •--~-~~~~ —5 --5 , -  - • 5--— --  —- — -- 5 - - — - - —  -- -.—- --—-—5- - -
— - 5 - -  5 - S~~ 5-5-•5-~~~~~ -~~ - • -- 5-

~~~~~~~~~~~~~~~
-S_

~~~~~~~~~
• • -- --—~~~~ -
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= 
aL (x,~~,t) , H(x,p,t) = 

~ ~~~~~ 
- L(x ,~~,t),

-
~ 

- 

~~x 
-. i=1

-I
changing the “Lagrangian formalism ” into the “Hamiltonian formalism” .

- To this transformation corresponds the abstract problem of defining

what is meant by

a (Tx) T: H - ~~H1, -

and generalizing this concept to an abstract Hu bert space setting.

Again perhaps the best starting point is the equation

Ax = f (K H1), A: -
~ H1,

for which we intend to establish (weak) solutions which correspond

to a critical point of some functional L, or to two (or more)
- - 

- critical points of functionals in some spaces possibly other than

H1. The case we have discussed already presumes that A is positive

definite and that we can find a space H2 st ch that x K 4T’ Tx = p

K H2, T*p = f K 
~~l ’-~ T 

dense in H1, T*T = A.

____________________ - -._ 
— — 

_. —J
_ _ — _ _ __ !fl~_ 
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Of course the choice of H1 is non-unique, as can be seen by studying

even the simpl est examples

2 2
C— ~~~ : 112 (R ) -

~~ L2 (R ) , — = T~~T,
dx dx

T = i , T~ = i , T: H2(R) -
~

T* : H~iC) -
~ L2(R), or T = T* = -

T: H2 (R) -
~~ H

1(R) , T~ : H1 (R) -
~~

showing that A can be factored thru different filbert spaces

H1 and Hj . More involved examples will be offered later of multiple

factoring process with corresponding multiple variational principles ,

in which the choices of intermediate filbert spaces are not uniquely

determined.

We shall now consider the effect of the vector Tx € H1 on the

value of the Lagrangian functional L. Regarding p as a fixed

vector in H1, we consider L (x ,y) as- functional, mapping the pair

x E H1, y K 
~2 

into the real line , where y = Tx.

denotes the gradient of L (whenever it exists) restricted

to H2. Cx € H1 is iqnored). Similarly L
~ 
denotes the gradient of

L in H1. It is a straightforward computation that with p regarded

as fixed , and with y = Tx, that

- 
— p, (2.12 )

~1 J
-- -~~~~~~~~~ ITI II~I1I ~I1 5-1Tr~~~~ -:15-55~I

-:TiT~ :i:T IiJI ~~~1
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and that

<Tx, p> - L = .
~~ <p, p > + (f ,x) W (2.13)

defines a new functional W (x,p) satisfying

- (z~ i4)
wp = P

The notation is the same as before. ~~ is the gradient of W restric-

ted to the space 
~1’ and W~ is the gradient of W restricted to the

space H2. We s~hall describe the relatioz~ (2.12), (2.13) as the

Legendre transformation . (c ~ 
�2 -~~~~~~~ ~~ C~~a 5S’C4-L ~~~~~~~~~~~~~~~~~?~~~

�‘fl..
)

I.

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Chapter 3

3.1 An example o~ multiple critical 
points, and applications to

the general theory of solids.

We shall consider the equations of classical elasticity , assuming

small strain theory, but not necessarily small rotations. The

equations of equilibrium assume the form:

- 

~~ ((1+e ) 
~~~ 

+ (~~ y - 
‘~~~~~~ 

+ (e~~ + ~ ) 
~xz ’

-: 

+ -
~~~~~ 

[(1 + e
~~
) t
,~~~~ + (e,~ 

- ~ ) t~~, + (e~~ + ~ ) ~~]

+ -
~~~~~ ((1 + e~~

) 
~~ 

+ (e
~~ 

- ~ ) •ryz + (e
~~ 

+ ~ ) ~~ ] = 0

(3.1)

* 1 Equations (3.2’ , (3.3) are obtained by cyclic permutation of letters

• x, y, z. Here is the linear strain matrix 
~~ 

: ~~~ = ~
-

~~
- ,

~~~ = ( . + .~~~~~ 
) . . .  w are the rotation components

— 
1 ~W 

— ~v— 

~ ~y az

I

1 ~u ~w
W
y

= C — ) (3.2)

-- + 1 -
~~i.e. i~ 

= curl (u).

1-

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - T~~~:TiTI I~~
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If we denote by a the following stress tensor:

axx axy a~~ 
- -

a ctyx ctyy czyz = (I + e) 
~~~~~~~~ 

(3.3) 
- 

-

azx azy azz 
- . 

Tzx ~~~ 
•r zz

where e is the Jacobian
d

au au ~~~
~x ay az

— ~~ 
(u ,v ,w) 

— ~v ~v ave — 

~~ (x ,y, z) — -
~~~~~ 

-

~~~~~ 

-
~~~~~

- (3.4)

aw aw ~w -

.i~~~w i ~~_ , 
-

we can formulate the following Sets of equations of equilibrium .

0 0 -
~~~~~ 0 fr ~ 

dXX

Ba = -
~~
_ 0 h 0 = ‘,

- 
ii a~~

a

(a~~~~~~~a~~)

-

~

- —

~

-

~

-- -

~

5- - S- ---- - — 5 - -
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• Because of smallness of strains, we identify the Eulerian strain

with the linear strain e
1)
. We can define the stress components

aj~ in terms of appropriate Maxwell and Morrera stress functions

- 

Xxx Xxy Xxz 
-

X~~ X~~, Xyz = X . X~~ = ~~~ (3 .6 )

~~~~~~~~ 

~~~~~~~~ 

-

A X , (3 . 7 )

where

-
• 2 2 2 

-

0 i.~ ...L~. ~ _ L  0
az~ ay’ aya z

2 2 2

ayaz

a 2 ~2 a 2
—i ~~~ 

0 —— 0 0
A = axay (3 . 8 )

a 2 a 2 a 2 a 2
0 0 —— — ----i. — —

axay ax a xa z ay~ z

2 2 2 a 2a a a 
—2aya z axaz  ay axay

2 2 2 2a a a0 —— ‘I — —
- 

axaz ayaz axay az

The equations of equilibrium become

B A x = y , (3 .9)

IT

~

-T ~-~-T’1T -~ ~~
__ 1I 5 - 

~~~~~~~~~~~~ ~~~~~~~~~~~~ - - -~~~~ - -~~~~~~~~ -~~~~~~~~~ ~i::~
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where y = (y 1, y 2, y
3
) is the Vector of body ft~~~es. The equation ‘1’

(3.9) can be regarded as a vector equation in the filbert space L2

(~2), where cz is the region occupied by the elastic body.

We observe that A is symmetric and its conjugate transpose A*

is equal to A. If we choose an arbitrary strain distribution

x € ~, we observe that

= K , (3.10)
4 

1)

-

• 

where Xis the incompatibility tensor. The compatibility equations

are X 0 ~ 
K = (K 1, K2,...,K6). Introducing filbert space 

~~
with the product -

- 

-

6
<z , = f C ~ z.y1) dx,- 1 ~ j=1 ~

and a space H 2 with an identical definition of an inner product

we set A: H1 H2 A* : H2 Ill •

We have assumed the existence of a functional W, which we shall

call the potential energy, such that W = £ (Principle of comple-

mentary virtual work). Equivalent statement is that we have assumed

the existence of Gibbs’ thermodynamic potential.

2W = <K ,X> ,f = <X, A*c>
f 

=

‘1’ 3. ‘ 2

= <alC > (jj ) 
= <B*U~ a> ( f )  = <U

~
Ba> ( H )  <U IBQ> (fl) 

-

‘

(3 .13)  

. 
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However the pairs {U,~~}, {a,c), {K,X) are not vectors (in the app-

ropriate spaces) which can be picked independently of each other.

If U denotes the displacement vector B*U = ~ is the definition of

the linear strain.

B A*B*U = 0 (3.12)

is exactly the set of Ricci’s equations. (see Washizu (20 ]

for explanation of their importance in linear elasticity.) The

following diagram illustrates the relations (3.5) - (3.12)

a E H 2~~~ ç~~~~

__
~~~~~~~~~~~

H3

figure 3.1

They are related to each other through the constitutive equations

of the solid. For example if Hooke ’s law is assumed , then we have
-S

= Cj jk L ckt ~ 
(C j J kL non-singular 9 

x 9 matrix of

anisotropic coefficients),

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~J::TI1zTT 
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where 1ijkt is a constant 9 x 9 matrix such that 
~j j k &  °ijkt =

(the 9 x 9 identity matrix)

A well known set of variational principles in classical

elasticity can be derived by 
-

a) Assumming a constitutive equation of a solid

b) Restating all basic equations of elasticity as the existence

of a critical point of the corresponding functionals:

= W — -
~~ < ~~.,X ->

= W — -
~~~ < x,A~c >

1$3 -
= W — ~~~~< A X ~~E > ( f )  -

$4 = W — < c~,c > ( H )  - -i (3.13-)

$5 = W — < U ,Bct > - 
-

- 

‘ 3’ -

= W — < B~U,a 
-

> (ii 2~ 
I 

-

$7 = W — < U ,cp > (H3)

Of course we have deliberately ignored the basic problem of solving

the basic boundary value problems of Elasticity (using

Muskhelishvili’s terminology) and concentrated on the formulation

of fundamental principles with natural boundary conditions.

(See definition and discussion in section ~~‘ ~ 
)

In fact should another loop be added to our mapping diagram

-



(3.1) we can immediately formulate the corresponding critical point

statement, hence a variational principle for the corresponding

functional. F

3.2 Possible (future) applications to the basic theories of

solid materials.

The basic thermodyi~amics laws applicable to solid materials can

be summarized in the equations (3.13), (3.14) and inequalities -

(3.15), (3.16) below. The solid occupies a region £2C E3, in

which the following relations are valid.

(3.14) E = ~ ( Po/p ) 1 ..  ~33 
— h~ 1~ + ~~~

(first law of thermodynamics)

(3•14a) = 4(C’3,O, qa)

(3•14b) = t~~~~~ 
(C~~~~6l q

a)•

(the principle of material indifference)

e > 0 , (Absolute temperature is non-negative).
(3.15)

~OS > 0 (Positive rate of dissipation)

< 0 (3.16)

(Heat conduction in the direction of negative temperature gradient).

The symbols used here have the follcwing meaning. E is the internal

T

~

- -- 

~~~~~~~~~~~~~~~~~~~~~~~~ 
. 
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-

: energy , C1~ i~ the Cauchy-Green strain tensor, p is the In~ss density

= p
0 , 0 the temperature, S entropy , iji the free energy, h1 the

heat flow, Q the heat supply per unit of mass.

Dots denote differentiation with respect to time , commas -

covariant derivatives. Summation notation is used unless otherwise

stated. qa are additional independent variables, called internal

• variables, which are not I)ecessarily observable, i.e. the implicit
-;

variable theorem may be “applicable to relations (3.14).

- It has been shown by Ve1a-~i5 (4Z) and others that the stress

distribution consistent with the first and second law of

themodynamics satisfies - the equation

I 
~~~
. . — 

~~~~~~~~~ ~~~~~~
- = 0,  (3 .15)

~o ac’~
where t~~ = CiJ

,e,q
a) ,  (is specified in equation (3 14

a)~~) That

is, assuming no constitutiye equations , and choosing ~~~~ C
1

- -
~ - 

independently (
~ each other , the correct choice will produce a

critical point of the functional

- (-~- W — 2~_ 
~p) =

p
0 -

where W ( C iJ ) satisfies the relation -

- 

W~~~ = 2 
~~~~ 

- (3.16)

‘1
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i.e. Tij  is the gradient of ~~
- W in the appropriate product of

- 
Sobolëv spaces, which are subsets of L2U2) DL2(~i). Recalling

that the entropy S satisfies the relation

-

~~ - 

— S = , (3.17)

- and that the ternparture 8 is alwa~js positive, the first law of

thermodynamics can be written as:

-

- 

d 
~~~~~~~~~~~~~~~ 

=~~~~ Ô - h ~~~-~~~~~cj
° (3.18)

(which makes no reference to constitutive equations for the material.)

We shall attempt to follow at this point a fascinating idea of

Ilyu,shin (li], who suggested that the material has no concept of

our idea of time, and that processes within a solid should be

- - parametrized with respeèt to a “material time” , which was later

defined by Riviin by the relation dt = (dC 13 dC13)l~
’2 (140)).

- Also see [471~ (4~~
]- . In particular the internal variables q

should only depend on v, and preferably in a simple manner .

We assume

= T(ci (t) , q~ (t) , ~ (t ) , t) , (3.19)

• 
~

- - and

-

~~~~~~ 

= 
~~~ 

C .  ~~~~~~~~~~~~~~ (3.~o)

I;- 

- 5- ______
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We hypothesize that

dr
> 0 , 

- 

(3.21)

which is a sensible physical assumption , since otherwise the
- • material would react to future physical condition, or could, in

a manner of speaking predict the future. The other assumption

frequently made here is the existence of a steady state condition.

The assumption that C = 0 is possible independently of qa,S,8,

or t, or = 0, etc. implies that each term could be zero. Hence

that = 0 is possible, and also that each term of the sum (3.20)

is non-negative. This is a very basic and a non-trivial assumption .

For the time being we shall try to avoid it, assuming > 0 for

all t C (..co , +co ) .

Since > 0, we can use implicit function theorem and express

t as a function of ~:

t = 4 (t) , C~~~~(t )  = C1~~(t), q
a (t )  = q~~( - r ) ,  S( t ) = S(r), etc.

I;-.-

It also follows from ~~~~~~ > 0 thatdt

— .~.1L • ~~~~~~— > 0 a = 1,2,...,m. (3.22)

~1

It is a standard argument (see Velanjs [ 4 7] )  that there is a set

of constitutive equations of the form

_ _ _ _ _ _ _ _  ~~~~~~~~~~~
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= f~j (c’’~q8 iq~) , -

otherwise the inequality (3.22) can be violated.

Following this discussion the following relations could be

hypothesized:

~~~
kL ack2. = ai jkL ( t ) *  L1C~~~(t )  (3.23)

-S = ~~~~~~ = 8~~~ (T)* L C
1
~ + .y ( t ) *  L30 (3.24)

akL is one of the internal.variables (k, L = 1,2,3 ) ,  * is the con-

volution operation:

- f * g. = / f ( r — -r ’) ~~~ ( T ’ )  th ’ ,

- ‘ L1, L2, L3 are linear di f ferential operators , which are convolutions

(see Mikusir~ski (33 ]) .  These relations reduce to usual assump-

tions of materials with memory (in the material time parametriza-

tion) ,if the form of the operators L19L2,L3 are specifically

given as in [ 45] , or [4~~~
] .

For purposes of variational formulation we shall leave the

constjtutive relations in the form (3.23) and (3.24).

It is apparent that in the “material time” parametrization

(3.23) is Hooke’s law if ct
~~kL

(T) is independent of r , while’L1

I -
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is the identity cperator . (~‘.t , (sr L, (x)) ~ ~ ) .
Of course the equations (3.23), (3.24) have to be consistent

with the first and second laws of thermodynamics.

— S > 0 L30 
-
~

-
~~ + L2 C > 0 (3.25)

~~~~ Ct) OL2C
I)* 

~~~~~~ + L30* ~~ 

-

— L chi* dct 
+ 

dQ , (3.26)
1 ~•E

- ~~~ L1 C~~~ ~~ > 0; (3.27)

(i,j not summed in 3.27)

If we put 9 = const = Q const., h1,1 0, i.e. ignore the

thermal effects, we obtain mechanical laws

H ~o L 2 ( C *  ~) — _ _ _ _  • L1 (C
’J* a) = 0 (3.28)

00 L2 (C
’~* B) < 0. (3.29)

We can only hypothesize at this point that the constitutive

equations must be of such form that the equations (3.23), (3.24)

- ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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or (3.26) , (3.27)  represent a critical point of some functionals

•~‘ 2’ and that

A*qa = f~~(C1J ,q B ,IJI) = $3

A = ç~~(C 1J ,q B ,1~I) = 
3
q12

= ~~~~~~~ A* : H 2 ÷ H1

A = ~~~~ , A: H1~~~ H 2

where we expect 
~a ’ ~a to be convolutions . (3.15) is of course

of the required form

p0
~~~~~~~ ‘i~ 

= 
~~~~~~ 

, where we identify 
~~~~

corresponding to the variational principle

• B ( a ’3 ) = • 
, where B is a linear operators which is

C’) -

mapping ~1J space into space , with properties of these spaces

still undetermined .
~ -

A simp lified versions of such equations of statel have been

also suggested in Russian literature

~ij 
= 

~ij ct~ 
~~8, where CaB is the linear strain component

and where ~~~- 

- 

= ~~
- 

(_a 
+ 

a 
~ 

a 
• + ~~~~~~~~~~~~~ 

•(C) +

ac’~ ac~

-S -S • -5-— ---5— -‘--S •-- ~~~•~~~— - - .~~~~~~
—_--5—--- - ----5 - — --

~ 
-
~ ~

- — — --- _— -5 - -- -- ----S -5—---- ——---5— ---- - — -

~~~~
- ~~~— -- ~~~~~~~_ —- ————--  5- —-— -~~~~~~~ - ! -——-~~~~~~~ ~~~~~_~~~~5-__ ,- — - —- — —  ——



5- —~~~~~~~~~ ~~~~~~~~~~~~~ - — 
5-

• 4t

-‘ and ~
iB 

~~ 

a 
+ 

a 
• ~2 ac ’8

leading to var iational principle of Hu, corresponding to a critical

point of the functional :

I1(t ,~~,U) = f ~~~~~~~~ ~~~~~~ 
- T

’
~~~~(C~~~~~ -V~ U~

) ] dY

— f (p~u .  ds — v •

2~ 
-

(see 0. Guz ( 17 ] ) .

For computational purposes it is not good enough to know

that certain equations of solid mechanics represent a critical
- - 

point of a functional. Iterative techniques which have been

• eminently successful in such computations always had the additional

information that this functional attains a maximum or a minimum.

To make certain that this occurs we need the generalization of the

concept of second and higher order derivatives, This will be

done in the next chapter. It is not clear at this point

how to formulate “a universal variational principle” which would
p

incorporate the equations of state, (if it exists?),  and we shall

stop conjecturing at this point and return to an area where varia-

tional principles are easily established.

5-— :~~i~~~:- 
~~~~~~~~~~~~ ~~~~~~~~~~~ i~~~~~
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Chapter 4.

The second derivative.

4.1. Heuristic comments.

Suppose X = ~~~~~~~~~~~~~~~ ~ = (y 1,y 2~~
...sy~~) are vectors in R~ ,

Rm respectively,  and that we have the functional relation x1 =

x1 (y) , x2 = x2 (~~) • •
~~ 

= x~~(y ) . i.e. a map ~ Ri’. What

meaning do we assign to }~ ? In this case we have suggested

in Chapter 1 that the n x m (Jacobian) matrix of partial deriva-

tives

ax i =
( 1

)

j  =

plays the part of the Fre’chet derivative. IfX E H1, Y E H2,

where H1, H2 are infinite dimensional Hu bert (or Banach) spaces,

then the meaning of the Jacobian matrix has to be redefined.

However we have to recognize that even in the finite dimensional

• case x € j~~, y € ~m the Jacobian matrix is not an element of either

or ~~~ but a linear mapping from &~ irAto R
m . Its conjugate

transpose is a linear map from Rm to R~. To even attempt

2
to define what is meant by we need a few basic concepts of

al -

functional analysis .

4.2. Tensor products.

For purposes of clarity we shall carefully distinguish between

~~~~ - elements of a Banach or Hilbert space H, and its algebraic dual .

In the definition of the algebraic dual we u se the assumption of

- T~~~~~
- -  

~~~~~~~~~~~
5-

~~~~~~~~~_
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linearity only . No boundedness (or continuity) properties

- :  
are assumed for the functionals in H~ .

Let E be a Banach space , and E* -its algebraic dual. We con-

sider a Cartesian product of E* x E* ,’ i.e. all posible sets

of ordered pairs {q’ ,~~ cp E E* , p E E* (denoted by (ç~ p) ), and

define the map E -
~ R by the operation p (X ) = <

~ p, X> which is

defined for any X E E. We shall use the following notation.

Vectors subscripted by indices i,j,k,t ... will denote elements
of E’, while superscripts will denote elements of E. Our algebraic

operation then assumes the formal representation:

(~~~ . 0 ~b . ) X ~~~= (4.1)

where ~~~~~~~~~~~~~~~~~~~~~~ is a real number obtained by applying the linear

map € E* to the vector X~ € E. Hence (~ i_ 0 ~~ ) is a linear

map whose domain is E and whose range is contained in E , and is

of dimension one , or zero. In the same manner we define the

tensor products (ç’ 0 ~p~~): E* -
~

‘~

E~~~~~~~ E*

(q j 0 *~~): E* -
~~ E* by the algebraic rules:

(cp1 0 ~~~~~~~ = <c~., X~ >q~’ (4 .2 )  

~~~~~~~~~ :~~~•~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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0 g~~~~)X
) 

= <X ,ip3 >cp1 , (4.3 )

- Again we see that the range of this map is of dimension ~ 1.

- Higher order tensor products are defined in the same manner . For

example 
~~~~~ ~ j  ~ ~~ 

E E* x E* ~ E* is defined as a map from

E x E into E, or as a map from E into E x E.

~~~~~ 
~~ ~ ‘~k~ 

~x
k 
~ y

J ) = <
~1k1

X >  • (4.4)

We assume associative property of this algebraic operation in

the following sense:

((ci 
~ 

~ nk)x
k) ~

)

= <
~kV X >  (~ ~~

= <flk~
C >

= (qj ~ ~ ~~ 
~x
k 
~ ~

:l) (4.5)

We shall not assume that such composi tions of mappings are corn—

mutative, and indeed such assumption can not be consistently

-~~~ supported in the general case. Moreover we try to pattern our

discussion to agree with the usual engineering ideas of what a

-:. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - -

~~~~

5- .

~~~~~~ 
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“tensor” is.

We find no reason why the notation 3 1~ could not be used to

denote a specific tensor product (cp’ 0 ~P
3). At this point we are

going to make further assumption (which generally may exclude some

important considerations in mechanics , but seems justified in

solid mechanics). We are going to restrict the spaces E, E* , (E**)

to be topological duals of each other. Hence all linear maps

defined above are now assumed to be continuous. This could be

labelled “finite energy hypothesis” . Hence if our discussion

concerns Hilbert spaces, we can use Riesz representation theorem.

This will considerably simplify the definitions of higher order

derivatives which are given below.

Let f : E -
~ E be a continuous function. We shall use the

notation Y = f ( X ) , or Y = Y ( X ) , x € 
~~~~~

. We define the Gateaux

derivative of f , (which also may be called the directional deriva-

tive of Y with respect to X in the direction of h) as

= u r n  Y(X+th) — Y ( X )  = D ( X ,h) € E. (4.6)Xh t~O

provided this limit exists. We claim that for any Z € Et , <Z ,j,>

is a linear functional of h , i.e. cZ ,~p(X ,ch)> = c<Z ,ip (X,h)> and

= <Z,~~(X,h1)> + <z ,~~(x,h2)> . Each follow easily

from assumption of the existence of the limit (4.6) in some open

region of E. If we assume continuous dependence of ~p on h then

by Milgram - Lax theorem (the bilinear version of Riesz represen- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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tation theorem) c<Z,P> can be written as <AZ ,h> , but in this case

the operator A is the operator of multiplication by a constant

and - 

-

<z , _4!> = ccZ ,h>.

Again if we assume that c depends continuously on Y , (linearity I -

is obvious) then using Riesz representation theorem we conclude

that there exists a vector Cp E E* such that c = <ç,Y> . Hence

<.
~~~~

— , Z >  = < 4,, Z> = <ç ,Y> <h ,Z> (4.7)
h

Again using the Lax-Milgram theorem we can rewrite this product

- 

- 

<~p,Z> = <A~ ,Z > <Y,Bh> (4.8)

where A,B are linear operators

B: E~~~~E*

A: E* E.

Since this is true for abritrary Z € E*, we have equality

= <Y,Bh> A~ <Y,~ > A~ = ~~~~~~~~~ where ~ = A~~. -

Hence the operator -~~~~
— can be represented as a tensor product

~ 

-~~~~~~ T T ~~~~~T~ _ _
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= Cu 0 ~),  
~ ~ E , ~ ~

If Y = -cY ,- ~ >u . (4.9)

h

Similar argument gives us a representation

= <h,~ >~i (4.10)axh

where ~ is of the form ~ = CY, and C is a linear operator,

C: E -* E*. In this entire argument the domain of the operators

A,B,C, is assumed dense in a sufficiently small neighborhood of

a region considered for the respective vectors ~ , h, Y (in E, E*

respectively) , and the existence of adjoint operators allows the

necessary manupulations of the products < ,> . We can generalize

the concept of a gradient by observing that our assumption of

I: continuity with respect to h, allows to define grad Y = Y~ =

(u 0 ~) ,  since

- —  = <~~~ ,h>~ .

(Recall the definition of a gradient of a functional.) In parti-

cular if there exists a functional V(X ,x ) ,  x ~ E~ X E E, such that

Y = grad V(X,x) € E* (or Y = V
u

) ,  then we can denote by

v x (u O~~
) Y x .

•~~~- -. ~ --S -S—--- -S - —~~~~ - - 5 - -  — - 5 -  --5 -, -__---S•,— 
_____  
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If we assume that V = V (X ,x) , X ,x E B , then a theorem of Vain-

berg states that

V~~ = ~~~~~ 
- 

- (4.11)

(This does not imply (u $ ~) (~ 0 u)!) (see (4~~, chapter 2 ).

In fact comm~ tativity of the “second derivatives” is a necessary
- 

condition for the existence of the “potential functional” V.

The idea of second derivative is easily generalized to the

case when V: E x -
~ R is a functional depending continuously

on xl,x2,...,xk E E Xk+l,Xk+2,...,Xn E E*,

E E 1 ® E 2 0 ... 0E~ , E* E*k+l eE* k+2 0 ...
and X1 E E1... Xn E E*nt E l, E 2 , . . . I E k being subspaces of E

of E*, where V~ ... V~ can be regarded as genera-
- 1

lications of th~ i dea of partial differentials. Consider a

functional V ( X ’~ Y~ ) (n ot necessarily linear) whose values in R

depend on X1 E E, Y~ E E* . Then provided all the derivatives shown

exist , we can construct the following diagram

I

- -

I
.
~~

-

~~~~~~~

=— —5--  
~ 

__ _ X ’  -~~~~~~
- - - - - 5— - --’•p—- ---•--—-~

_— - - -

-- —‘-a - - --— - -
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ax’ E E* ax’ E E*OE *
V E R  )..V~~ - - — ~

_.
~~v 1~~ ~ .E* O E* 0 E*

x x x

a I a
a? . I

I a a
+

_ _ _  _ _ _ _

1 

- ).E 0 E* 0 E* _ -- --
~~~~~~

._
~~~~~

,

X Y ~

V
~~~

iE E O E *

a
aY~

I

~~~~~~~~~~~~~~~~ E0E® E~ —

V~~~~~~EE0E

‘

3 ]

EOEOE

Figure 4.1

It shows the increasingly higher order tensor products obtained

by performing repeatedly the gradient operation .

Positive (positive definite) second order tensor product. -:

Since (~ 0 ri) ,  ~~E E, 
~ € E , (or (~ 0 ~) p E  E~~, y E  E*)

can be regarded as maps from E* into E* (or from E to E) we can

define the concept of positive property of such map by the usual

definition : (ç 0 n) ~ ,n  E E is po~ itive if

<(~ 0 n )  y , y> > 0 for all Y E  E* . (4.12 )

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Similarly (u 0 v), -
~i ~~ E~ , ‘

~ E E* is positive if

< (ii 0 ~) X , X> > 0 for all X € E. (( 0 ri) is called positive

definite if < (
~~ 

0 n )  Y , Y> > 0 for all YE E*, and < ( E  0 n ) ? ,?>

= 0 implies Y = 0 ~ E*. Similar definition is given for Cu 0 v),

-‘E E*, V E E * .

Vainberg ’s lemma and some of its consequences.

Let E1 be a subspace of a Banach space E, and V a functional

V: E -
~ R, the value of V depending on a vector X E E1, and on

YE E2, where E1 0 E 2 ~ E , E1 fl E2 
= 0. Suppose that V is defined

in some neighborhood of X0 E E1. Then a necessary condition for

X0 to be an extremal point of V , when V is restricted to E1, is

V
~ 

= 0, V I E1 • (~ means restricted to). A sufficient condition

for a m m .  (max ) of V
~E
1 is that V~ = 0, ~~~ is positive definite

(negative definite).

Examples of ~pp 1icatio:.~
Consider the behavior of the (non-linear ) functional

V ( X ,P) = <AX ,X> .<X ,X> 1 +~~~ ( P )  X E  H1, P E  H
2 

where

are Hilbert spaces , -

Let P be fixed (in H 2 ) .  Find su f f i c i en t  conditions for a

local minimum of V (in We compute the gradient of V in H1:

V~ = 2 < X ,X>~~~ 
. (AX - V(X)x)

Hence a necessary condition for an extremum of V to occur at

—-5- 
5-- — -~~~~- —— — — - --5 - - -  —- 

-
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X
0 ~ H

1 
is: AX - V ( X )X  = 0 when X = X0, that is AX

0 = AX
0
,

where A = V(X
0

) ,  which means that X0 is an eigenvector , and V (X 0)

the corresponding eigenvalue of A.

- In what follows let us assume that the multiplicity of A0
is one , and A 0 is the lowest eigenvalue of A. The second deriva-

tive is computed as follows :

Vx(X+th) - Vx (X)
(tp 0 ~)h = Vxxh = u r n  -.

- t-~-0 t

- 

- 

= 2C
1 [ <X+ th , X+th > 1 (AX + tAh - V(X÷th) (X-i- thj)

-
- - <X ,X> 1 

(Ax - V(X)X) }

= u r n  2t 1 
~ 
AX + tAh - V(X+th) (X+th) 

- 
AX-V (X ) X 1

- t--0 <X ,X> + t <h ,X> + t < h ,h >

-~ Having assumed the continuity of V, we c-btain as t -
~~ 0

V h = 2 CAh - V(x)h)
XX <X ,X>

Hence

(A — V(X)I
~~~~ = 2~ <x ,x>

Hence at the point X0 where Vx (Xo) = 0, we have

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~-:&:~~ —
~~~~~~~~~~~~~~~ 
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A - V (x 0)I
~~~~~ 

( X=x~ ) = 2

where I is the identity map ,

or

Vxx (X X 0 ) = 2 C A  — tt01) 
.

Hence the extrernum of V at occurs on a small neighborhood of

X0
: Nx E H , -

~ rz.~.y if for every vector ~ E it -is true that
0 0

(
~ ,‘ ~ x0

— A 0
< E , ~~ > — <V x ( F ) , F > > 0

Or <Au> ~~~~~~~~~~~~~~ 
<~~ 

~ 0

In part icular if A is positive definite , completely continuous,

and A 0 is the lowest eigenvalue, then the Rayleigh quotient V

attains its minimum value at X0, such that

V (X
0

) = A 0 (since <Vx (X o ) ,  Xe > = 0).

It is clear that in a sufficiently small neighborhood of X0, ~~~

is positive def inite and a local minimum takes place for V ( X ) at

X 0. A global theory is much harder , and it is unreasonable to

expect that the signs of f i r s t  and second abstract derivative in

some neighborhood should imply any thing about the global behavior

of a given functional.

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -----— - - -------- 

_ _ _
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An Example: Thin plate theory.

The plate satisfies the linear equation

(D(x,y) v 2 w (x , y) )  — (1—v) ~~
4(D ,w) = g (x ,y)  (4.13)

in a region ci ~ R
2.

(He re ~
4
(A ,B) = I.4 -~~---~~~ - 2 + !~~~- 

~~~

with boundary conditions w 0 on ac2 . Where the boundary

acz of cz is assume smooth, except for a f in ite number of external

corners. (i.e. corners like the one shown below are not permitted.)

cI iIII37

~~~~~~~

f igure 4.2.

This ‘~an be recognized as the Euler—Lagrange equation 
for the

functional

2 4
= f {D(v w)2 — D ( l — v )  (0 (w ,w))} dxdy (4.14)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
— _____  _ ____ 
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It is not very convenient (or very practical in most engineering

applications) 
-

to assume the existence of all derivatives appearing in the formal

Euler-Lagrange equations (4.14) for the functional ~(w). Physically

-
— 

we only require twice differentiability of w, and L2 property of the

derivatives (w € H2(cl)). We introduce the following maps

N .: H2 (ci) -
~ H2(c2)

where N is the following positive definite matrix

D ( X ,y) y D (x ,y) 0 0

vD( x ,y) D ( x ,y) 0 0

0 0 ( l — v ) D ( x ,y)  0

0 0 0 (l— v)D(x,y)

C~
1 D (x ,y) > 0 in ~, and 0 < v < ~~

- for physical reasons.

T is a 2 x 4 matrix for f i r st order d i f ferential operators,T* is

the transpose of T

0ax

0 ~~~
-

a 

ay

0

~~~0

___  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-. - - - - - - -— - -- - -‘—~~~~

- - - — - —- —-5- - -----5 — -- --- - - -- — ---,----—-- - -—-- --- —--— ----—-- -— -- —
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— 

Then

= -NT grad w = (—N T grad)w = Aw 
- 

(4.15)

is the well known relation between the moments

= ~~~~~~~ Mxy~ ~~~~~ Myy)

and the displacement w(x,y).

L . - A: H2 (cz)--” L
2

(ci ) 
—

At this point of our discussion it is more convenient to

introduce the “modified ” moments defined by the formula:

1k = (-(N1”2).T.grad)w (4. 16)

where we take the positive square root N’12 of the operator

N, as follows 
-

:~~~i1Iii ~~ T~~11~~
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~
/ B2 ~~ 0 - 0

~ç8 2 
~~ 0 0

- 0 0 ~(1—’v)D 0

0 0 0

1. where ~ = + 
/l-v~ 

) 
~

It can be checked that N 1”2 N ’12 = N,  and N’~
’2 is again a

positive definite (and invertible) matrix , and fortunately

- is symmetric. The mappir~g

A: H2(cl) -
~~ L2(fl)

4. -
has a formal adjoint A* L2 ( c i )  ~,. & * ( c z ) , and Aw ~~~~ A~~ (= q

(4.17) where the derivatives now become distributional deriva-

tives, L2(5~) being regarded now as a subset of &*(cz), where -

= C (cz).

= div (T*N V2 ) ,  (4.18)

i.e.

~~~~~~~~~~~- -~~~~~~~ —~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~
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A*~~~= dlv (T*(N~’2flt)) = div (T*M) = q(x ,y) (4.19)

The distributional character of q(x ,y) being supported by the usual 
- 

-

interpretation of admitting point loads, or point moments in en-

gineering practice. Hence we have the following mapping diagram

w

where~~ *~~ w = q is the original differential equation of static

• deflection of the plate

V2(DV2W )  — (l— -v) ~~~(D,w) = q. (4.13)

We can observe that following our theory in chapter 2, the set

~; .‘qi:.
’ i - . .?

aw (4 20a)

c~*m..= q J (4~ 20b)

represents two variational principles. We introduce the Hamil-

tonian

W = <q,w> +

where

~A,B) = f (A
1B~ + A282 + A 3

B
3 
+ A4B4) cI~.d y

~
1

4

-L
- -  5 - —
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while

= f (a . b)dxdy .
• ci

The dual variational principles ~iven for the static plate

problem have been given in [25 ] by the author, and may be summarized

-

. in the observation

=m =~ZW (4•21a)

W
~, 

= g =a* m (4~21b)

where W~ denotes the gradient of W restricted to the Hilbert space

H~,(with the product { . ,.},  while W~, is the gradient of W restrict-

ed to (with the product < ,>. The examination of second Fr~chet

- 

-

, 
derivatives i.e. of the tensor products (W~L~ , (Ww)w reveals

that the corresponding Lagrangian functional

L = {~w,m} 
— w (4.22)

attains a minimum over the admissible w ~ H 2 (cz) withgregarded as

f ixed , and a minimum over the admissible ’~~,€ L2 (ci )  with w regar -

ed as fixed at the critical points corresponding to the solution

of a system of equations (4•20a), (4•20b)~ Combining this system

into the form AA*w = q gives a single equation (4.13) which is

the basic static deflection equation of thin plate theory.

I 

~~~~~~~~~~~~~~~~~~~~~ 
~~~I~~~~~~~~~~- I 7~~~~~

i l 
~~~~

5- -S 
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- 
The dual variational principles given here were originally

discovered by the author in [Z5]. At this point we wish to make

a more detailed examination of the equation (4.13) and find alter-

nate variational formulation for this equation.

- 
We have the following mapping diagram :

N112T T*N’1’2

- 

gr~~~~~~~~ 

(w) 

G 
~~

-

- figure 4 . 2  -

- 
Let us concentrate on the following portion of the diagram ( 4 . 2 )

- 
-

-
~~~~~ S grad (w) ~~~~~~~~~~~~~~~~ _ _ _ _ _  

Q

figure 4.3

G is the Green ’s function, or influence function in engineering

terminology : w = G * q, where * is the convolution integral.

is the corresponding map ¶ & *  Q = vw = S, which is to be determined ,

but whose existence is not hard to prove , if we assume the existence
-I?

of the Green ’s function G(x,y). (We do not write G(x,~~,y,n) since

L the convolution product takes care of introducing the “translated” -p
-
- variables ~ , n . )  -

-

I-

—-S -5- -S—_---~~~~~~~
- ----_ - - ________________ 

— —- ----5- 
- -5— .-- --- ---—-

~~~~~
- _-_~~- ::~:— —- —----5 — -— —•1



The dual equations corresponding to the diagram (4.3) are

(4.23 :)

T*N 2

~~~
= 

~ 
= w~ , (4 .23  )

except that W is a functional defined in different  pair of Hu bert

spaces: H~~which is the same as before, and H5 = L~~
2
~ (ci) if

point moments are excluded , and only point loads allowed as loads

which are not represented by functions. Note: For a classification

of admissible (distributional) loads of thin plate theory see

author’s paper (3!].

If point moments are allowed H3 can not be embedded in

and is not a Hilbert space , but only an inner product space which

can be at best regarded as a Rigged Hu bert space in the terinino-

logy of Geifand and Shilov (see ((4- ] volume 4, chapter 1, section -

4). For the purpose of this discussion we identify H3 with L~
2
~ (ci)

with the product

• (AIB)(2) = f [A 1(x,y)~ 1(x ,y) + A2 (x ,y)8 2 (x , y ) ] d xdy.

The components of the vector Q are recognized as the shears

- . aM ~M
Q = 

xx + xy
x ax ay

aM
— 

yx~~ yy

-___ _ _ _ _ _ _ _
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The generalized Hamilton ’s canonical equations are

N112T5 
~717~

= W~~ (4.2?)

L T*N1’2 = Q = W~ , (4•23b)

L = ~ ~fl,J~~} + (s,Q) = {N112TS ,lfl. } - W (4.24)

:::::: 
} F

are exactly the equations (4.23~ ), (4.23~) expressed as restrictions
-

of appropriate Frechet derivatives of L to the spaces H,~
and H~

respectively.

The tensor products ~~~~ W~~ , ~~~~ ~~~ can be arranged in

a 2 x 2 matrix form of operators:

[ 

I N1”2T 
- = 

t ~~~~~~~ Wm~s

T*NT 
L 

W5~~~ ~~~~

(I is the identity operator.) 1t.,~ = (W~~~2 * is a necessary condi-

tion for integrability of the di f ferential system ( 4 •2 3 a ) ,  ( 4 •2 3 b ) ,

while positive definite nature of I: H~~ - H~~and T*NT: H5 ~ 
H8

assure the existence of a double minimum , i.e. L attains a minimum 

-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 
-
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in H~1 
(for a fixed S) if the equation (4 23a) is satisfied ,

and a minimum in H3 ~for a fixed ?~ ) if the equation (4•23b)

is satisfied. These variational principles suggest numerical

techniques of the type introduced by Greenspan i?~ (~~~] for

computation of approximate solutions , and these principles

may be simpler than the known principles suggested by

equations (4•21a), (4~ 21b) The advantage of obtaining a

symmetric form of correspond ing operator s, and of not having

the mat rix N appearing in only one set of equations are

considerable in actual computation. The positive definite

nature of the matrix N allowed us to restate our problem in

terms of rather than ~~~. Physical l imitations on such repre-

sentation are clear: D(x,y) > 0 for all x ,y E~~ , (we do

not have holes in c~. If we do, let us relabel what the region

ç~ really is!) , and 1/2 > ‘~ > 0 which is readily recognized by

any engineer :s the expected behavior of a physical solid ,

namely that the solid does not expand volumetrically under

pressure. -

_ _ _ _
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Chapter 5.
C

Boundary Value Problems -

5.1 Integration by parts formulas.

The geometric theory associated with differential forms is due to

Grassman. The expository texts include F!. Flanders [~~1, P.K.

Rashevskii “Geometric theory of par tial di f f e rential equations

(in Russian). The basic axiom for exterior product of two differ-

entials is

dx. ~dx. = —dx - Adx - ,
1 J J 1

ax
where the symbol ‘ is frequently omitted . Denoting by —

~~~ = D (~~)

the Jacobian tensor product corresponding to a coordinate transfor-

mation,we can derive the genera l form ula

a. • - dx dx . . .dx
.~~~~~~~• - 1 1 . . . .. 1 2 k1 2 k

= a’
3 ~ 

dy1 dy2 .. .dyk
J 1<~~2~ <

~~k 1 k

(x .  ... x .
I 1 1 -where a - .... = D i ]. k .

y- ! ~g
3k /

The generalized Stokes theorem can now be stated for an arbitrary

orientable manifold ci~ 
whose boundary ~~ is smooth.

- 

~~~~~~~~ 
- 
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f d a  = f a - 
(5.1)

ci aci

(See for example a monograph by de Rham). The (exterior)

differential forms provide a natural sett ing for certain class of

boundary value problems. The formula (5.1) embraces all classical

results of changing integration over ~ to a corresponding boundary

integral. We shall not pursue the subject, and try to offer

another exposition of algebras of differential forms on manifolds.

We shall only assume that appropriate formulas for integration by

parts exist , and can be deduced in the special cases by the use

of formula (5.1).

We first offer an analogous definition of a Fréchet derivative

of a func tiona1~~~(X) such that the domain of the functional is
- -  the union of two HUbert spaces of functions. i.e. X € H~ U H2,

where H1 is a Hu bert space of functions whose domain is a set

ci ~ Rn , with a product and H2 is a space of func tions

whose domain ~s aci, (the boundary of c2) the inner product in H2

deing designat~d by ( aci Again the Fr~chet derivative in each

space H1 and H2 is defined by the formu lation identical to section

1 of chapter 1. The formu lation of a grad ient of ~ in H1 and H2
presents no problems , provided the class of functions which we

have in mind restricted to ci and to a cz respectively do form ap-

propriate Hu bert (or at least Banach) spaces. A very serious

problems of formulation arises when boundary values are not
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functions (and possibly not even distributions over some “reasonable”

test space). For the time being we shall assume that this is not

the case and all possible boundary values are functions which

belong to a Hu bert space H2(3ci) . Whenever we use a symbol fE

H1 U H2, we mean that the same function f: ci U aci -~~ I~ is considered

simultaneously as an element of 
~l 

if x E is a point of ci, and

• of H2 if x E ‘o f is a point on ~~

If f is not su f f i c iently srnouth in the neighborhood of ac~,
then the integration by parts formulas which form the special case

of (5.1) are not applicable , and the behavior of products

and (f ,p) aci is completely unrelated . Hence certain continuity

(and smoothness) properties must be specified for functions in H1
near aci if the formulation of boundary value problems is to have

a unique solution. To offer a trivial example we consider

solutions for the Dirichiet ’s problem in the unit disc of the

complex plane, looking for L~ ) U L2 (aci) solutions with no continuity

requirements. Suppose we wish to solve the problem v
2u 0 in ç

~
(the open uni t disc) u 0 on ~ç-~ (the unit circle). In the class

of differentiable solutions continuously approaching the boundary

value there is only one solution u 0 in ci. If no continuity is

required on approaching aci , then u 5~ in ~ , u 0 on aci is another

possible solution among inf initely many candidates for the solution

of this problem . In fact it is analytic in ci. However the possi—

bility of discontinuity on approaching the boundary made a speci-

- 
- 

- , fication of the boundary condi tion completely worthless. This

til

~ 

- —--
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fairly trivial example interprets the meaning of our previous

remark that in general the behavior on~l, and the behavior on~~9

of functions in the class L2(ci) U L2(aci) is completely unrelated .

We have to digress into discussion of the following basic question.

Let B1, B2 be some Banach spaces of functions whose domain is

ci ~ I~~. Let A be a given operator A: B
~ 

-
~~ B2. Let £ E B2 be

given. Let B3 be some other Banach space of functions whose domain

is aci. Let ~ E B3 be given. Does there exist a vector x E B1,
such that x satisfies the equation Ax = f E B

2 
and that the values

of function x: c2-sk converge (in some sense) ~o ~p : ~ci-~R, in some

neighborhood of ac~ in ci. That is can f be continuously extended

to ci U aci so that. (in some sense) it coincides with ~ on aci? In

the problems of mathematical physics “in some sense” usually is

understood to be pointwise convergence almost everywhere. Usually

the physical interpretation requires that a solution of such problem

-

- 

- should exist (since some physical process is going on , representing

a solution), and frequently we would like to assert that such a

solution should bc unique. If a unique solution does exist to this

problem it is called well posed, or properly posed boundary value

problem. An entirely different question is the continuous depen-

dence (stability) of such solution on the boundary data (function)

-* R. The common question is will ”sm all variations in cp

result in “small” variations in the solution? Of course mathe-

matically the above sentence makes little sense, but it can be

easily translated into a rigorous statement (given c > 0, there

N 

_ _  
_  - --
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exists ~ > 0 such that ~ - neighborhood of P in B3 is mapped

into ~ - neighborhood of x in B1 under the inverse map (f ,p) x,

with the existence of such inverse map assured by well posedeness

— of the problem.) The well posedeness of the boundary value problem

implied the existence of an inverse operator of the operator

‘6: x -
~ 

(f ,~~) € B
2 
U B3, i.e. of~~~

1: (f,P) .-,. x. The stability

in the sense given above implies that~~~~ is a bounded operator.

Bour~Aary value problem which is well posed and stable is called

in the literature properly posed in the sense of Hadamard. For

a-classical example of a problem which is unstable and therefore

improperly posed in the sense of Hadainard consider the Laplace

equation

2 2
(L + .

~—~. ) u E 0  -

a x ay

half plane y > 0 (~ R
2) ,  with boundary conditions u~~~ 0 = cp (x)

~~~~~~ 
= -~ (x ) ,  —

~~ < x < +~~, where cp ,
~ ç ~~~~~~~~~ (See

-: y=0

Mikhlin [32], chapter 9, ~ 5 for a discussion of this problem ,

and chapter 25 for a general discussion of the wel l posedness
4.

of boundary value problems for partial differential operators

of mathematical physics.) The main thrust of this discussion

is the following conclusion : the boundary value problem is

not well posed or ill posed “by itsel f” . The well posedeness

depends on the topologies of the spaces B1, B2 ,  B3, and the

problem may be well posed for some choices of B1, B2, B3, and

N
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ill posed for other choices. In particular we must answer the

problem of existence and boundedness of the operator~~~
1:

B2 U B3-~ B1. From this point of view it is easy to interpret

the following statement which physically sounds ridiculous, but

is mathematically correct. For certain class of boundary func-

tions (analytic of certain slow growth rate) the backward heat

conduction problem is well posed. Here the boundary is the phy-

sical space boundary of the solid body and the time hypers~’rface

t = t
1 

in &~~~~~~. Hence for certain choices of spaces B1, B2, B3
- ‘ and for certain classes of operators A: B1-~ 82 • 83 the for-

mulas of the type (5.1) make sense. Assuming that B1, 
~2’ 

83
are Hilbert spaces and the domain of A is d3nse i 

~~
, and there-

fore A*: B2 
-

~~ B1 is uniquely defined , we may have a unique

representation of the form (d ?A*v)( )-<Au.v-- ( ~
= (Bu ,v) 

~
, for

-~~~ ci (3c i

u € S ~ B1, where S is some class of functions. We have defined

the inner products ~ in B1 < • -.

~~~~~ 

in B2, and ( , )

- 

- 

in 83. In such cases A restricted to ~ is called the formal

adjoint of A* . In the context of this def inition for example

the operators and -

- 

are formal adjoints of each other

on c1(o ,l] ~~ R, where C~~[0,lJ is imbedded in thc Sobolëv space

H1 (0 ,1]. We observe that in that case (BU
~
v)

3~ ~~~~~~ ~~~ Ix=O ’

-
~~~~~ There is no way of defining uniquely (Bu,v) if we attempt to

embed the problem in L2 [0, 1]. This remark illustrates the fact

that a setting for many problems of mathematical physics is pro—

vided by Sobol~v spaces. See[,gJ for a comprehensive study of their

~~~~~~~~~~~~ i~~T~~~: 
- _ _ _
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properties, or see Mikhlin [32] for an expository accourt.

5.2 Critical points of functionals associated with boundary value

problems.

Suppose A is a linear map -A: H(ci) -
~ H(ci), where H(ci) is ~ Hilbert

space of functions whose domain is ci, H2(aci) a HUbert space of

functions whose domain is aci ,  the domain of A is .o
A(~ 

H(ci)),

which is dense in H(ci), and f is some function f: H(ci) -
~

We formulate the following class of functionals on H(ci) G

•(u,cp) : H(ci) $ H
2
(aQ) -

~ R,

= <Au ,v> (ci) 
— <~~(u) ~~V > (p) + r(u,v)

(We have assumed for convenience that II(:) }i
2
(~~ci) are Hilbert

spaces but this can be generalized.) r(u,v) is a continuous

functional H2 H2 -* R, i.e. (u ,v): r(uj aci, vJ 3~
) -

~~ R, is a

continuous functional whose domain are ordered pairs of functions

u,v restricted tc aci , and regarded as elements of H2(~~ci). As

before the inner products <Au ,v> and <f,v> are inner productsci (ci)

in H(ci). f is regarded as a fixed element of H(ci), u, v are

regarded as independent of each other. In a more general case

f is a map H (~ ) -
~~ H(ci) dependent of u. Computing the gradient

of s in H(ci) • 112 ( a c i )  we have

= (Au — f (u))H (ci) 0 rv (u,v)H (ar) v € (H2 S H)*.

~~~I— _~_ _ _ 
—-5 - - —-— —-~~

---S-5- --—-—”-- ___ 
~~~~~~~~~~~~~~~~~~~~~~~~
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Here Au - f(u) is a vector in H(ci) and r
~~
(u,v) is a vector in

(Since we have assumed a Hu bert space structure for

H(ci) and H2(Dci) there is no mathematical necessity for keeping

track of duality . Physically it is of course important to keep

the gradient in the dual space to H(cz) S H2(a~ ) ,  distinguishing

which are the generalized displacements , and which are the gen-

eralized forces, and keeping the physical dimensions correct.

But vanishing of the gradient implies that each vector in the

direct sum of spaces H(ci) S H2(aci) must vanish separately . Hence

= 0 is a simplified notation for saying that

Au — f(u) = 0 in-H(c2) . (5.2)

g(u) = in 112(aci) . (5.3)

Therefore a function u E H(cz) 0 H2(~~ci) which satisfies both con-

ditions (5.2) and (5.3) corresponds to a critical point of the

functional ~~(u,v). We observe that no assumption was made con-

cerning self adjoint (or positive definite) or other specific

properties of the linear map A , and up to this point even linearity

was not used. We need to identify a given boundary value problem

Au = f(u) in ci (5.4)

g(u) = 0 on aci (5.5)

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 

- 
_
iIi ~~
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with a critical point of the functional

cAu.v> Q 
— <f (u) ,v>~ + (g(u) ,v) = •(u,v).

Until now v is independent of u, but quite arbitrary. We can

now postulate that v is a solution of the adjoint system

A*v — 
af(u) v = 0 in ci, (5.6)

• pg (u) 
• v = 0 on aci .  (5.7)

That is v is chosen such that 
~u 

= 0,and that the given boundary
I’-

value problem corresponds to a dual critical points of ~, provided

&* is a (true) adjoint of A. This means that g(u) is so chosen

that for all u , v E s, <g (u) ~~ V>
(

~~~~ (aci)) 
= 0, and <Au ,v> (H(ci)) 

—

= 0.

The problem which frequently arises at this point is that

A* (the adjoint of A) may not be uniquely defined in H(cz) 0

and additional information may be needed concerning properties

of the (physically) admissible elements of H(ci) in the neighbor-

hood of aci . Our previous remarks concerning formally adjoint

operators A ,A*. (H(ci) -
~ H(ci)) are applicable heie. Presume that

A , and A* are formal adjoints mapping a subset S of H(cZ) into

H(ci), such that for any U ~ S c H(ci).we have an appropriate

formula (in H 0 H2)

- -
~~~

-
~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I11T1TT~~
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<Au,v> (ci) 
— <U ,A*V >

( c i)  
= B (u ,v)

~~~
. (5.8)

r
-

• 

We see that the existence of the appropiate functional

•(u,v): (H(ci) 0 H2(aci)) 
x (H(ci) • H2(acl) ) R

whose critical points are represented by (5.4), (5.5) and by

some equivalent conditions of the form (5.6), (5.7) is now harder

to determine. (When A* was a true adjoint of A we wrote down the

appropriate functional ~ (u ,v) without any trouble !)

We have the relationships:

Au = f(u) in ci,

H g(u) = 0 on Dci,

or more genera lly g (u ,v) = 0 on aci . And for all yE S~~ H

4.
<Au ,v> (ci) 

— <u,A*v> (ci) + B(u,v) ( a c i )  = 0 (5.9)

where subscripts (ci) , ( a c i )  denote the inner products in H (ci) and

H2(Dci) respectively . Denoting as the Hamiltonian the functional

W(u,v):

= W(u ,v)

- — - -— - -~~~~~~ - -~~~~~~~~~~~~~~~~~~~~~~~~~~~
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we have the relation

If,, = f(u) in R

while

= , where the meaning of has to be defined

analogously to section 4.
pSf _

The corresponding Lagrangian functional is denoted L and is “

defined by the relation

L(u,v) <Au~V> (Q) 
- W

— W + B (u l v) ( a c i )  .

- - 
- Here the same symbol v is used to denote v as an element of

H
(ci) 

and of H2(Dci).

We seek, however, a “true” Lagrangian L(u,v) : H S Hf- R, F.

given by a relation:
I

- L = L(u,v) + C(u ,v) (Dci)

H
2 

x H2 
co!~t. B,

-~~ ~~-~~~- 
•

- —-____________
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i.e. C(u,v)
~~ 

is a continuous map:H2( aci) X H2( ac~ -
~ B.

The “true” Lagragian L(u,’v) should correspond to a multiple

variational principle. In this case since only two independent

(vector) variables are present we should have the dual critical

points: 
--

L
~ ~

, L
~~~

= 0.

Au = f(u) , g(u,v) = 0 can be replaced by the following equa—

tion in H and H2 respectively.

Au ~~~ = L~ 
=~~ EH (u,vf 

~ 
(5.lOa)

g(u,v) = L
~ =0 EM2 (u 1v4~~ )~ (5.lOb )

This suggests that L(u,v) should have the following form.

L = cAu
~
v>

~ 
— W(u

~
v)(ci) + C(u

~
v)

(aci)~
with C

~~1~~1 = g(u~v)(~ 0) (5.11)

- 

L
u 

= A*v (ci) + B(Ufv)u(aci) 
— Wucci) + Cu(aci) 

(5.12)

Hence L
~ 

=~~ (in H S H2) expresses the initially given equa-

tion Au = f(u) and the boundary condition

_____

~

•--- —-5-- _& - 
-U-- - -  -~ — -.-~~--_-- -- --5-—- - --- —-5— 
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I
The “symmetry” formula (5.14) is written below in full:

<u ,A*v> _ < u ,Wuvv> ci + < u ICuVv> Dci

= <Au ,v> ci 
- <Wv~

u,v> ci + <B~~
u,v> aci + <C~~1U~ V>~~ç~

(5.14a)

The formula (5.14) was suggested by A. M. Arthurs in [2. ],

who also has given the following set of sufficiency conditions

for the existence of the Lagrangian functional:

•CU
~
WuvV> (ci) 

= <W
VU

U , V >
( c i)  

(5.15a)

<u,A*v> (ci) = ~AU~ V>
(~~) 

+ <Bvuu~
v> (aci) (1.15b)

<u lcuvv> (aci) = <cvuu lv> (aci) (l.15c)

The condition (5.15a) is a necessary condition for the exist-

ence of a Haxniltonian function W (u,v) whose domain is H (ci).

(Not H S H2~). 1:

The condition (l.15b) implies the following equality:

= B(u,v .

I
- ~~~~~~~~~~~~~~ ~~ 

-- 
____

- ~~~ —-~~~~~~~-- -- “ -- 
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- C,~, = g(u,v) = 0 on Dci . (5.loc)

J
On the other hand the requirement

L
~~~=# (inHSH 2)

requires the vanishing of vectors

A*v — W~ =
~~~~~, in H(ci), (5.].3a)

and of

• 
B(u,v)

~ 
+ C~ = ~ in H2 (Dci). (5.l31 )

The “independence of path” condition of Valnberg for the exist-

ence of L requires thal the tensor products Luv and Lvu are
adjoints of each other, that is

= <V
~~~

LvuU>
H,H 

(5.14)

f for any admissible pair (~i,~~~) ~~~~~~ 
E S H 0 H2, implying that

~~~ satisfy the required continuity conditions on Dci , such

that the formula (5.9) is valid.

— - 5  -~~~~~ _  
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(see [4 3 equation 20).

However the “symmetry” condition Luv = Lvu* is satisfied

if for admissible u,v € S ~ H (with suitable continuity

conditions in some neighborhood of aci)

<u~A*v>~~ ) + <u ICuvv> ( )

- 

= <Au~v> ( )  + <Bvuu~v> ( ) + <CVUU IV> ( )

This implies that C(u,v) (aci) must satisfy the relations:

B(u,~ ) - <B 
(Dci)

= <Cvu~~
;> (Dci) 

— <U IC V> ( ac i )

However

c,
~, 

= ~~~~~~~~~ 

1 

for all admissible ÜI’Qj(aci) .

C = b (U , V)

by our previous arguments. (see 5.lOc , 5.lOb).

The existence of the “boundary potential” C(u,v) such that
I,

C,~~ = C~~ implies (g(u 1v))~ = - B .1-- 
~~~~~~~~~~~~~~~ ITi E~ TT ET
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Since H 2 ( D c i )  is a Hu bert space C~~ , C~~~, g(u~v)~~, Buv~ Bvu
are all linear maps H2 

—
~ H2, and the above equalities make

sense.

Hence under these assumptions the secessary conditions for

the existence of the Lagrangian L: H 0 H2 
-
~ B are:

(1.16) W (ci) = W (~~ •

(1.17) B(u,v) l a c i  =<Bvuu~
v>
~ ci 

=

(1.18) g(u,v) = Cv (Dci)

(1.19) —B
~ 

=

If C(u,v), ( D ~~) can be chosen to satisfy all conditions (1.16)

-(1.19) then of course we have nothing to worry about.

In general however this is not a convenient set of conditions,

• and it can be readily checked that choosing for example

C = -B, we end with the original condition suggested by the

author in l91-~ (24]: g 
~~~ 

whiv-h i~ ic ~ pr~~~ .j b ]p  1-o

satisfy only in special c~tse~i. To rejL~ Lo L~~iJibLicd11 y , tI,-

problem of finding a functional L : (H 0 
~~~~ 

-
~ B for quite

arbitrary boundary condition g(u,v) = 0, we have to sacrifice

some conditions on the list (1.16) — (1.19).

I

-
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The problem can be restated as follows:

Does there exist v € H 0 H2, and C: H2 -
~~ B such that

A*v - Wu = in H(ci)

C
~ 

= _ B (u ,v) ul
f in H2(aci )

• C,,, = g(u,v) j

where W: H -
~ B is given by W = < f ( u ) ,v> ( ci ) ?

The answer to this question depends on the nature of the

boundary conditions and on the operator A.

If such v , C(u,v) can be found,then the problem of finding

a solution to the given boundary value problem is replaced by

a pair of var iational principles for the corresponding

Lagrangian functional L(u ,v): H 0 H2 -
~~ B.

We observe at this point that if L(u,v) can be found , then

the tensor products 
~~~ ~~~ ~~~ 

Lvu satisfy the equalities

- -S

Luv = (-W
~~~ 

+ A*) + (Buy + Cuv) aci

~~~~ (-W ,,,~ + A) + (C
~~~

) 
~
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~~~~ 
= (_W

~~~
)
~ 

+ (( C + B)
~~~

) 
~~

Lvv = (-w~,) ~ 
+ (Cvv) ~cz

The remarks in the previous chapter explain the following

necessary conditions for an extremal behavior of L(u,v) at

the point u u0, v V
0
.

a) Luv is the adjoint of Lvu
b) The signs of the operators ~~~~ Lvv are defined

• and remain constant in some neighborhood of the point

v , v E (i-i 0 H2) x (H S H2)

Examples of applications of multiple variational principles,

and of boundary value problems posed in this manner will be

given in the next chapter. Many examples of dual variational

principles can be found in the monograph of Arthurs [2 ] and in

the papers of the British applied mathematicians who have pur-

sued this topic using a largely heuristic approach. See for

example Arthurs (! ] ,  or R . c ~~~(~~ I] ~~Or ~~~~~ ~~~~~~~~~~ 4 ’~~~’~~~~~~~ ’~~~ ~~~~ Y

~ r- m c ’ n f F h* . flI (i~ ; 
) ~l j f f ~ r i i  ~ I ~ .r ‘ ,$ .1  - t ’ ~ : C r  ‘s i’  c ’ r i  p~~ .~ 1 1 r I i ~‘fl

of the operators or of the boundary conditions are still largely

unsolved.

N
• -~~~~~~

--
~~~~~~- - 
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Chapter 6.

Some app].ications of necessary conditions for the existence of

• a critical point of a functional to the theory of ordinary differ-

ential equation~ . Many problems of physics are mathematically

modelled by differential  equations, which under sos~e assumptions

may reduce to a system of ordinary differential equations of the

form L (W (x)) + f (x t) =- ip (t )  (6.1)

where L is an ordinary dif fe rential operator which need not be

linear, w and f are vectors in a Hu bert space (of functions)H.

The domain of functions in H is n-dimensional Euclidean space

As an example we shall consider a one-dimensional case studied

by Poincaré .

(a(t)- ‘~ (t))’ = c(t).f(x)- ~9(t) 1
- ~ (6.2)

‘ (x).x ’ = -~~~(t) J
(I =

~~~~~j- 1 ~ dtJ

Physically the system of two equations (6.2) interprets the

motion of a mass, which may decay with time in a force field which

is also time dependent.

Interpreting p as the angular momentum p = p
0
= a(t) , and

introducing a constraint r = ~‘( 0), we obtain

p = a (t) [ Vv (e )3 2

0 

~ 
(6 . 3)

(p0 )‘ = —c(t) f(r1 e ) = — c(t )  f( e) , J

which is identical with the system (6.2).

Combining equ tions (6.3) into a single equation , we obtain

~~ 

‘~~(t )  C ~ ( 0)1
2 5 c(t) ft o )  = i9(t), t~to,(6.4) which is

an equation of the form (6.1).

_ _ _  _ _ _
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For physical reason it is usually assumed that a(t) >0 p

t E [t , °’) . c(t) may assume negative values. We also assume that

‘j’ (0) > 0.

We recall that in the nonlinear motion studied by Poincaré

the physical meaning of 4 i ( 0 )  was the distance from the origin

Moreover in this case, we also observe that p (O) is undefined at

• j ( o )  = 0, and the motion must not pass through the origin. Hence

we assume that i~(0) >0 and along the entire trajectory [~~(0)J~~

is a continuous function of 0. We can now redefine p= /~ i, i.e.

p ( t )  = - /aft) p (x(t)) x ’ (t) , and rewrite the system (6.3) as

x1 (t) = [a(t)] 2[~~(x(t))]~~ p(t)

- (6.4)

• 
(ia~~(t) ~(t)) = c(t )  f ( x ( t ) ) — ~p(t) 

)

Here 1 denotes the positive square root!

We introduce a potential function

K(x) = ~j(~) d: (6.5)

where X~, can be taken as the orig in if f 4(~) d~ exists, or wex 0
can put x0 = + if f ~ , ~p (~ ) d~ exists. Clearly dK/dx ~ 0 and

K
1 is defined.

In most cases the choice of “the zero potential level” x0 is

immaterial, as long as the equations of motion (6.2) can be

rewritten as a generalized Hamiltonian system

1. 

~~~~~~ ~~~~~~~—~~~~~~~ - - ---~~~ -— -- - - -~~~ - - ~~~~~ -~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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a’K(x) = p, (6.6~~)

a’* p = c(t) f(x) — ~p (t) , (6.6k)

where a’ = (v ’~ ~~ • ) ,  ( 6 .7~~)

= -~~~~~~ (V i~ . ) .  (6.7k)

The operators a’and~7* are formal adjoints of each other .

Hence,we have a system of generalized Hamilton’s canonical equations

already discussed in chapter 2.

Suppose that we seek weak solutions of equations (6.o~~),

(6.6k) in the Sobolëv space ‘W~ ~~~~ where [ci~~~~~) is some interval

of time (See (443 , Chapter 2). We allow ~ = +~ in some considerations.

For obvious physical reasons we cannot stipulate twice continuous

differentiability of solutions, restricting ourselves to,~contin-

uous applied force ~ (t), since in many instances we may consider

applied (outside) forces which are only piecewise continuous.

In this physical setting , we stipulate 
-

p ( t )  c L2 (~
(,B ), ~~i(t) and c(t) f(x(t))

F
piecewise continuous in k,B), and we seek solutions

~~(t) c W~ [d ,~~).

The finite work condition is

c(t) f(x(t)) •x(t) dt - -

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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- - Because of piecewise continuity of f(x) (and of x ( t)) it suffices

- 

if c(t) ( L2 [~~,8 ] - for a finite interval [~~,8],for the finite

work condition to be fulf i l led .

We also assume for a finite interval [“,8]

a (t) > 0 for all t € [~- ,8], (6.9)

*(x) € C1 (—
~~,+~ ) ,

I
•(x )  > 0 for all x E B, (6.10)

- 

- f (x) E piecewise C ( ...oo , +cx~ ) .

Then we seek W~ [.~,8) solution for the problem posed by the

equations (6.2) with boundary conditions of the form:

- - a1 X (c~
) + b1 p(°~) = 0

(6.11)

a2 x(8) + b2 p(8) = 0 J

For the sake of simplicity we shall consider first the boundary

value problem posed by the simpler conditions

I-
L

-
~~~~~~ W (~) = WCL a

- (6.12—)
w (

~~
) = w 8 J

or by

b

~~ 

(6.12—)
p (6) = p 6 f

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  I
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Since it is easy to see how to generalize such results to

the more general case of (6.11), Here w~ , w8
, p~ , p

8 are real

numbers. We remark that the results obtained below may be also

derived under somewhat weaker hypothesis.

Since ~(x) = 
dK(x) 

~ 0, we can introduce an invertibledx

transformation K :

- - x(t) -+ K (x(t)) = R (t).

• (6.13)
• x(t) = K

1 (R ( t ) )

The problem can now be posed in the L2(’~,8] setting with the usual

product <u,v > 
~ 

f ~ u(t) v(t)dt. We &lso introduce the inner

product called energy product:

(u ,v] 
~ 

a(t) u(t) v(t) dt (6.l4~)

The Hilbert space obtained by closing this inner product

space with respect to the energy norm will be called the energy

space. f l ’  ~ will denote the L2 (~ , 8] norm: 
~~J 
u~~ ~ <u ,u> , and

IIHIlthe energy norm : iIIuIIF ~ [u ,u].

Ignoring the boundary conditions, the Hamiltonian for our

problem can be given by

W(x,p) = <p,p> + c(t) • (K )  - ç(t)K (6.15)

— — -  - ~~~~~~~~~~~~~~~
-
~~~~~

-- -— 
~~~~~

— - —
~~~~— ~~~~~~~~~
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where •(K) = f (
~) d~~, (6.16)

while K(x) = f ~ 4,(~) d~ , fK~~ (K) f(x).

(Note that defining K~x) = f ~ i 4 ( ~~~~) d~ , or IX ‘P(~ )d~ would introduce

no real difficulties into all subsequent argrments).

The corresponding Lagraugian functional or the action functional

is given by

L = W — (~~K,p> . (6.17)

-
• - With the introduction of this functional we have the canonical

system:

aK = W~ (6.l8~~)

= W
K 

(6 .l8~~~)

aand a* are only formal adjoints of each other. To make certain

H that variational principles of chapter 4 and 5 can be directly

applied to the system (6.18!), (6.l8~ ) ,  we need to either include

the appropriate boundary terms (see conditions (6.12~) - (6.l2~~) ) ,

or to check that the boundary conditions are natural. In this case
4’

the check is performed by integration by parts. By definition:

= f~(/a- (t) . (~~ K(x)) . /~ ~(x) x ’(t))dt

= f~~[a Ct) ~i(x) x ’ 
~~ (K(x))Jdt

~~~~~~~~~~~~~~~~~~~~~~~ :i: ~~I~~~
:-5 T_i-.

~
- 

_ _ _
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= a (t) 4 (x) x t K ( x ) l ~ 
— f ~ {K( x) ( a ( t )  L (x ) x ’)} dt

= a(t) iJ ’ (x )  K(x) x I ~ + <K ,a’*p>

Imposing the boundary conditions (6.12~ ) we see that a and a*

are true adjoints if 
-

a(t) ‘L’ (x) x
1 (t) K(x(t)) = 0

Since *(x(t)), and a(t) > 0 and t ~ t0, vanishing on the

boundary of x ’ (t), therefore of p(t), or of K(x(t)) implies that

a’ * is a true adjoint of a’ and the corresponding boundary conditions

at t = d and t = ~ will be referred to as the natural boundary

conditions.

We check the sign of the appropriate tensor products:

LKK = WKK = C(t) (K) (6.19~ -)

where - 1<) = 
~~

-
~~
- f ( x ( K ) ) .

W = I (6.19 k)

(I is the identity operator.)

L
KP 

= -Q (6.l9 E)

~~~ 
= (_a’ *) *  = _2 (6.l9~ )

Hence , if c(t) does not change its sign on (
~~‘8] 

and provided

~~ that ft (K) ~‘ 0 in some neighborhood , a critical point K0, we are

assured of the existence of a variational principle. The extremal

behavior of L. corresponds to a solution of the differential equation

g

~

- _____—

~

•

~~
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(6.2). Depending on the sign of f
1 
(K) an algorithm can

be constructed in the spirit of Greenspan ’s techniques in Li6].

Morever, the existence of such a critical point of L implies the

correctness of equations (6.l8~ ), (6.l8~ ) which are equivalent

to the original system of equations (6.2). However , the

sufficiency condition for existence of a corresponding variational

solution of the problem posed by (5.2) is: c(t), a(t) are of

constant sign on (~~,8) ,  while f ( K )  is Fr~chet differentiable in

some region containing ~he possible critical point K0.

- 

K(x(t)) E W~ [~~,g], hence p ~ W~ k,8]. A corresponding

-~ function x (t) which results in a stationary behavior of 1 is

defined A the weak solution of the differential equation (6.2).

COMMENT.

We note that the L2 setting of the variational problem was not.

- only mathematically conveni~’nt, but also reflected some very strong

H physical assumptions. (It was a sufficiency condition for finite

work!)

I;. —

- -S
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6.2 The essential boundary conditions

We shall consider the system (6.2) with boundary conditions

= W~~~, (6.20~~~)

w (8)  = w~, (6.20~)

or

p (cL) = p~~, (6.2l~~)

p (8) = p
8. 

(6.2l~)

where we assume that the boundary conditions are not natural, and

that a’ and a’* are only formal adjoints of each other.

As before we formulate the problems in (real) spaces W~ [‘~,8]

and L2 [~~,B3 . We modify the definition of the inner product by

adjoining a discrete product: (u,v] = / a ()~~ u(s) v(s).

We extend the domain of the operator Q in the following manner.

For every f E W ~ [~ ,8] , we define

9 : f(t)— . 1~ f ( t )  ~~t € (-i , 8) 
-

A f(s) + (x-l) ~ 1
I I — 

- 

~ f (6.22)

[f
(8~

J 
~~ (A l) f(B) + A f,~ j

at {t = ~} U {t 
=

~~~ *: g( t) .4
~ 

( 1~~~ 
. g ( t ) ) t € (~~,~3)

h .k

~

_

~
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~~~~~~~~



— - --- - -- --•- -•---— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ---5 -— ---- —-—--
- - - -— -  

~
•
~1~~~

—10—

[g ~~~ C ~- 1) g(~ ) + x g8
I 

—i (6 . 2 3 )

A g(~ ) + ( A — 1)

at {t = d} Li Ct = 8 }.

f , g .  f , g are some a priori given real numbers.

We check the properties of the product

{~f, g} using integration, by parts:

{~ f1 g} = <a’f, g> + A [f(~ ), g(~~)] +

( A  — 1) [f
8
, g(~~ ] + (A — 1) (f(8), g(t3)] + ~~~~ g(~ )] (6.24)

Cf , a’~g} = <f , a’*g> + (A — 1) (f(~.) , g(n ) ] +

A [f(~ ), g8] + ~ (f(8), g(8)] + (~ 
- 1) (f(8), g~ ] (6.25)

This is manipulated in to the form

{7f, g} = {f,Q*g) + 4 f( o t )~ g
8
] — [f0~, ~ (8)]) +

(A — 1) (Ef(8)~ g,~] — [f
8
, g ( oL ) ]) (6.26)

We can eliminate the term with (A - 1) coefficient by putting
A = 1, or the term with A by putting A = 0.

Suppose the boundary conditions are of the form:

-

~~~~~~~ f ( i ~) = f~(•
(* )  •

g(8) = g 8

JJ~~I 1~~~~~~~1T~~~J
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Then substitution of A = 1 gives us

-

• 

{~?f, g} = (f ,~~*g } + ( [ f (i ) 1  g8
) — [f ,,,,

and we have the equality

{~~f , g} = {f ,a’~~g}

if the boundary conditions (*) are fulfilled . Similar

arg ment works for boundary conditions

g(”~-) = g~ I
I~ (**)

f(8) = f
8 J

where we need to put A = 0 to arrive at the same conclusion .

In the case of boundary conditions

f (d )  = f0~ 1

), ( ** *)
= f

8 J

we need to use some value of A , such that A ~ 0, A ~ 1.

Since g(~ ) and g(8) are not given,the constants g~~, g 8 are

also not given a priori and we have to regard them as unknown

functions. Hence , identif ying g with the variable gV) and

g8 with g(t~) , 
we have

{f ,;*g} = ~~ f , g} ÷ CAI (f(d~) — f,~), g(8)] +

(1 — A )  t (f(~ ) 
— f

8
), g(~•)J3 , A ~ 0, A ~ 1.

~~~~~~~~~~ ~~~~~~~~~~~~~~~~ II~II~~~~~~~~ 
—
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Hence {a’f , g} = {f,Q*g} if the values assumed by f ( t) at t =

and t = ~ are exactly the values specified f and f respectively .
U.

An identical argument works for the case of boundary conditions

g(~ ) = 
~~~~

~ (* * * *)

g(~ ) = g
8 

)

We are ready to introduce the Hamiltonian and Lagra~agian functionals

for the equations (6.2) with boundary conditions of either one of

the types (*) , (**) , , or (****)

The Hamiltoniari is given by

W (x , p) = <p,p> + c(t) •(K) — p ( t )  K

which is identical with (6.15). while the Lagra ~tgian is:

W(x, p) — {K,c7*p} = L(x, p) (6.27)

If boundary conditions are of the form x(.~) = x~ , x (8) = x
8 
we

can replace them by K(~~~(c~~) )  = K~ , K(x(B)) = K since K is a known
8

function of x.

The vanishing of Frechet derivatives of the Lagrangian

functional corresponds to the i~o1lowing sets of equations.

— = 0 in (d ,$) (6.28)

I‘I

_____ 
_ _ _ _ _ _  

_ _ _ _  _ _ _  _ _ _ _ _ _

i

- 
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~
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(K(~ ) - K )  p(s) =

~~ ~~~~ 
:,_j 

~~~~

(K(8) — K
8
) pM = 0 J (6.28~.)

— ~?*p = 0 in ~~~~~ (6.29)

As before we check the signs of the tensor products

= WKK = c(t) - f 1 (g) in (~~,8) (6.30)

= ~~~ = I in ~~~~~~~

K(8) — K , 0
= on (6.31)

0 K(t ) — K  8

and we check the relation:

w = ( w  ~ *pK Kp’

We can now state the following variational principles:

Choosing (arbitrarily) x(t) such that K(x(t)) satisfies the given

boundary conditions K(x(~ ,) -
~ 

r , V( x ( p .) ) -
~ V . f hr’n r n mp~I~~ ir ~v l

p(t) to satisfy the relation W~, =2K , the actual solution of (6.2)

and consequently of (6.29) will minimize the Lagrangian L given

by relation (6.27) if (c(t) - f 
1 
(K(t)) )is positive on (.,~~

) and

maximize it i f (C (t )  - f1 (JC(t)))is negative on ~~~~~~~~~~ 
No variational

principle exists if(c(t) - f’(X(t)) ) changes signs. In that case

the best possible statement is that the solution of (6.2) will

- ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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correspond to a local stationary behavior of the Lagrangian.

Vice-versa if we choose arbitrarily p (t) and compute K(x(t))

• using the relation ~2*p, then the choice of p which will minimize

the Lagrangian corresponds to the solution of the system (6.2).

Since oñiy once differentiable functions were considered in our

variational arguments, the solutions we talk ~tbout are weak solutions

in Sobol~v space (or H’ (‘~,8) in a commonly used symbolism.)
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