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ABSTRACT

The transient excitation of a cavity through an aperture is used to

— illustrate the state—space solution of transient electromagnetic problems.

Depending on whether the E— or the H—formulation is used, the effect of

the aperture can be accounted for by a magnetic current in invoking the

induction theorem or by an electric current in invoking the equivalence

theorem. The governing second—order differential equation is converted

into a set of first—order state equations by defining three new state

variables in addition to an appropriate vector potential. These state

equations are solved by the method of moments. Two cases are considered:

parallel polarization and perpendicular polarization. Some significant

singularities for the parallel—polarization case are found and the elec-

tric intensities as functions of time at two locations in the cavity are

computed for a step excitation.
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I. INTRODUCTION

Transient electromagnetic problems arise in the consideration of

shielding effectiveness, electromagnetic compatibility, radar target

identification, remote environmental sensing, and electromagnetic effects

due to X rays and gamma rays generated by a nuclear blast. The time—

harmonic behavior of an antenna or a scatterer can he obtained first as a

function of frequency by solving the governing integral equations with the

given boundary conditions. The transient response can then be determined

by performing an inverse Fourier transformation. Numerical methods are

used in the frequency—domain solution for many different frequencies. The

brute—force numerical Fourier inversion is generally inefficient and con-

vergence problems arise in superposing the steady—state solutions. A few

simple situations, such as transient scattering from wire antennas and con—

ducting cylinders (l1—(33, have been analyzed directly in the t ime domain.
H

~~ :. j~ 
Basis—function expansions and inner products over both space and t ime are

required. Space—time integro—differential equations are encountered and

the numerical representations of the derivatives lead to very complicated

procedures .

A variation of the time—domain approach makes use of a a Hal1~n—type

• integral—equation formulation (4]. As a consequence of the absence of space—

time derivatives under the in tegrals, the numerical process is less compli—

cated. However , because of retarded time , a tedious step—by—step iterative

procedure has to be used in conjunction with the proper families of trajec—

tories known as characteristic curves in order to determine the homogeneous

solutions. All of the methods mentioned above are tedious and do not afford

3
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a physical insight in the solution of a transient problem. Moreover, a

complete recalculation would be necessary under any change in the wave

shape, polarization, or angle of incidence of the source of excitation.

More recently a singularity—expansion method has been used to deter—

mine the transient response of scatterers of simple geometries [5]— [llJ.

Responses to transient excitations are expressed in terms of exterior

natural frequencies, modes, and coupling coefficients, and induced curren ts

are represented by a series of damped sinusoidal functions. This method has

the advantages of providing a physical sight to the radiation or scattering

• problem and of allowing the response to be determined for a change in source

parameters without a complete recalculation. In the evaluation of tie natural—

mode and coupling vectors, it is necessary to know the nature of the singu-

larities involved in the inverse Laplace transform. Knowledge in this respect

is not yet secure. The transcendental nature of Its system impedance matrix

results in an infinite number of complex poles whose locations must be numeri—

cally searched. It is generally agreed that the singularity—expansion method

is not very satisfactory for evaluating early—time responses.

The method of characteristic modes has been used for determining the

steady—state response.of conducting bodies (12]. A striking similarity appears

to exist between this method and the singularity—expansion formulation if the

method of moments [13] using a common spatial basis is applied to both cases;

but no fo rmal relations have yet been established. The natural modes from

the singularity expansion are not orthogonal . The characteristic modes are

- 
• 

- 
orthogonal, but they vary with the source frequency and it would be necessary

to compute • the characteristic modes for all frequencies before a Fourier inver—

sion could be effected to determine the transient behavior.

1~
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L The problem of transient field behavior inside a conducting cavity

~ due to excitation through an aperture by an incident electromagnetic pulse

(EMP) is particularly difficult because of the reflections from the cavity

walls and the coupling between the interior and exterior fields at the aper-

ture. Past investigations on EMP excitation of cavity—backed apertures have

largely dealt with small openings and have neglected the effect of cavity

reflections on the aperture field distribution. For small openings the

• quasi—static method is used to determine the fictitious magnetic current

and charge distributions in the aperture. Equivalent electric and magnetic

- dipoles are def ined, and their radiated fields determined with the aid of

• scalar and vector potentials [14]—[l9]. The fields in the cavity are custom-

arily expanded in terms of unperturbed normal modes. The quasi—static approxi—

ination cannot be applied when the aperture is not small and when early—time

responses are important. In neglecting the effect of the reflections from

cavity walls on the aperture field distribution, one essentially treats the

external and internal portions of the problem separately. Since cavity dimen-

sions obviously play an important part in the total problem, this approach may

result in significant errors.

In this report we will avoid the quasi—static approximation and solve

H the internal and external portions of the problem simultaneously. New

variables (state variables) will be introduced to convert the governing

j ~ second—order differential equation into a set of first—order equations which

correspond to normalized state equations. The field within the cavity will

. 
be expanded in terms -of suitably chosen subsectional expansion functions with

- • 

- - 
variable coefficients and the field outside the cavity expressed as a super—

position of plane—wave fields. The cavity and the external fields are matched

5
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-• at the aperture where a fictitious equivalent current exists. A combined

field expression containing the unknown expansion coefficients is obtained.

* To determine these coefficients the method of moments [13] is used to con —

vert the first—order equations into matrix equations. It will be shown that

the typical coefficient matrix can be expressed in a form for which the

singularity—expansion method [5] can be used to advantage.

The general procedure of solution for cavity—backed aperture problems

is outlined first. The theoretical formulation for the transient excitation

of a rectangular cavity with a slot aperture is then given for both parallel

and perpendicular polarizations. Some numerical results are included.
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II. SOLUTION PROCEDURE

We consider the problem of a slot aperture in an infinite conducting

plane backed by a rectangular conducting box, as shown in Fig. 1. An inci-

dent transient electromagnetic wave (E
1
, H

t) impinges normally on the plane

and the aperture. The problem is to determine the scattered field in the

y - 0 region and the field penetrated through the aperture into the conduct-

ing cavity .

The induction theorem (20],  [21] can be invoked f or the solution of

this problem. Figure 2(a) represents a simplified 2—dimensional view of

the original problem. (~~, i i )  and 
~~~~ ~i )  are, respectively, the cavity

field and the external scattered field. In order to determine these unknown

f ields, we consider the case when the aperture is covered by a conductor. The

entire region to the left  of the infinite plane will have a null field and ,

according to the induction theorem, a magnetic current on the right surface

of the conducting plane will support a different scattered field (ic, 11), as

shown in Fig. 2 (b) ,  where
— — o -‘M = E  x~~• 0 S

= t ~~x~~~
i

=~~~~x j i . (1)

For a normally incident plane wave (E~ , H1) ,  the scattered field (~~, i~ )

- • • from an infinite conducting plane without an aperture is easily determined.

• The null field to the left of the plane will be maintained if the plane is

• - 
- removed and a magnetic current 2M0 exists in its place which will result in

a field (E + E5, ~ + H8) in the y > 0 region , as shown In Fig. 2(c) .

~~~~~~~T A , 

— ~~~~~~~~~~~~~~~~ —--—-—-— ~~~~~~~~~ ____________ • - T - • -~~~~~~~
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Subtracting the fields in Fig. 2(c) from those in Fig. 2(a), we

— 
obtain the problem in Fig. 2(d). The magnetic current M in the aperture

is
• 

~~= — 2 M = — 2 ~~x E
1 , (2)

which supports the field 
~~c’ 

i~) inside the cavity and a field (~~ —

H8 -— ii°) to the right of the infinite plane. We note that the region in

which the difference f ield (~ — ~~ ~ — exists Is source—free and

that the tangential component of the electric field is required to vanish

on conducting walls.

For the problem in Fig. 2(d), we start from the two Maxwell’s curl

equations

— — ~H —

(3)

(4)

Taking the Laplace transform of Eqs . (3) and (4) , we obtain

(6)

where a tilde (-) over a quantity denotes the Laplace transform of that

quantity .

Let ~ be the Laplace transform of an electric vector potential F

such that

• 
• • ~~ i~~= — V x~~~. (7)

Combining Eqs. (5) to (7) and using the Lorenta gauge, we have an in—

homogeneous Helmholtz equation :

• 8 

- - -~~~~~~~~~~~~ ~~~~~~~~ - •---
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(8)
F 0 0

Solution of Eq. (8) for F will give ~ from Eq. (7) and H from

(9)

in regions where ~i is zero.

Specialization of these general formulas will depend on the polari-

zation of the incident wave; but as soon as is known, Eqs. (7) and (9)

can be expanded into component equations and the source term ~i in Eq. (8)

can be found from Eq. (2). A set of new variables can then be defined

which will convert the second—order differential equation (8) into a set of

first—order equations, and these e4uations are Laplace—transformed normalized

state equations in the new state variables. Solution of the transformed

• state equations involves four steps. First, the space inside the cavity is

divided into subsections and suitable expansion functions are chosen over

the subsections. The elements of the unknown state—variable vector are then

• expressed in terms of the expansion functions within the cavity. Second, the

field in the y > 0 region is expressed as a superposition of plane waves .

Third, the cavity and the half—space fields are matched at the aperture.

Fourth, inner products are taken so that the matrix equations for the un—

known expansion coefficients are obtained. These steps are outlined sepa—

rately for the cases of parallel and perpendicular excitations in following

- 

• sections.

9
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III. RECTANGIJLAR CAVITY WITH SLOT APERTURE

- 
• 

— PARALLEL POLARI ZATION

In this section we consider the case of an incident plane wave with

the electric field polarized in a direction parallel to the slot. Referring

to Fig . 1, we have

E1 = 2 E 1 (10)

and the Laplace transform of Eq. (2) becomes

= — 2~ = (11)

which has only an x—component. The x—component of Eq. (8) is then

— u c s
2 Fx = — M

X~~
Y) , (12)

where 5(y) is a Dirac delta function . From Eqs . (7) and (9) , we have

~ = 0  (13)
x

• E = — -~— i ~ (14)
y ~z x

E = - ~- F  (15)
z a y x

-
• 2 2

= — [~L_ + ~~~~ 
(16)x 

~~O ~ V 
2 x

2

~ =_ i~_ a (17)
~ ~ 0

s a~ ay ~

2
ii = _ ~L_ a (18)

z i0s ax az x

• The second—order differential equation (12) can be represented as a

set of first—order equations by defining new quantities u , v, and w such

that

10
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~~~~~ ~~~~~~~ 
= s ü(r ,s) (19)

— 4 ~~~~~~~~~ = s ~ (r ,s) (20) - •

and
— 

~ ~~ (r ’~~ = s ~ (r ,s) , (21)

where r is the space variable. We have, from Eq. (12) ,

-~~— ü(r ,s) + 4 ~ (r ,s) + ~~~
— ~ (r ,s) = — p c s  ~~ (r ,s) + -

~~ ~ 
. (22)

Comparing Eqs. (21) and (20) with Eqs . (14) and (13) respectively , we see

that

~ = s ~~ (23)y
and L

(24)

The introduction of ü , v- , and ~ and the use of the f irst—order equations

will result in significant ly faster convergence in the numerical solution .

The first—order equations- (19) to (22) can be written in a succinct

form by defining the following operators and column matrices:

a a
ax ay az

-
~~~~~~~~ 0 0

-
• 

L =  (25)

0 0 0ay

-: - 0az

H

H I
11
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0 0 0

( 0 1 0

~= (26)
0 0 1 0

-~~~ 
~~~ 0 0 (1 1~~

x

U

~(r ,s) = (27)
V

and

S X

0
è (s) (28)

0

0

Equations (19) to (22) become

L ~(r ,s) = s P f ( r ,s) + e
g

(r~s) . (29)

Note that the inverse Laplace transform of Eq. (29) is a set of normalized

state equations in the four state variables F , u, v, and w.

In order to solve Eq. (29) by the method of moments we subdivide

• the space within the cavity in the x,y, and z directions and choose expan—

sion functions Fx(i l,k) (r). u(I ,l,k) (r)
~ 

v(i j k)
(1
~
)
~ 

and w(i~~~k) (r) over

the subsections. The expansion functions must satisfy the required boundary

conditions. For convenience, we define the following column vectors:

-_ •
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F
X(l l k)

(r) 
- 

0 
-

= 

- 

. i,j,k) (T) 
u(ilk )

(r) 
(30)

— 

— 

0 
- - 

0 
-

0 0
= 

( ) ~~l,l,k) (r) =
v(i j k) 

r

- 

0 
- 

w(i j k) (r)

In view of Eq. (27), we can then write the expanded form of f(r,s) inside

the cavity as

~(r,s) = 
iJ,k 

(i,j,k)~~~ i,j,k) (r) + 
~~~~~~~~~~ 

f
~l~~~k) (r)

- 

+ 
~~~~~~~~~~ i,1,k) (r) + ~~~~~~~~~~ ~~~~~~~~~~~~ 

(31)

Note that the expansion functions Fx~ 
1i~ v, and w are functions of position

only and that the inverse transformation of ~, ~~~, ~, and ~ will yield the

- 

- 

time—varying expansion coefficients.

The field in the half—space y > 0 is expressed as a superposition of

plane waves and the internal and external fields are matched at the aperture

y 0. A combined field expression for ~(r,s) can be obtained which holds

inside the cavity, in the y > 0 half—space , as well as in the slot. This

is then substituted in Eq. (31) which, after inner products with the expan—

J r 
sion functions in Eq. (30) have been t aken , leads to the following matrix

equation:

- 
- 

13 
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PF Fv 
-

0 I &  i £ I ~ p 0 D 0me me me I I me u- I - . --
u P ’ uv uu uv£ 0 , £ 0 8 0 I p p I 0 8a n ’  • me me an

~~~~~1~~~~~~I - - - - — S  _ _ _ _ 4 _ _ j..... _ 4
vF vu I vw - vF I vu I I w£ I L  £ £ .y p p • p pan , an I me I me me ‘ urn me - --- — — — • t -  - 1 — — —

£w f l  
~~~~~‘ £wv

~~ 0 0 i
- 

nrn urn 
- - - 

I me

Fq 0

+ -

~~~~~~~ ~;~~x(i’ n k t ) (8) } + -~~~~~~~ 
(32)

qV y b(s)

-~~~ q

where ~i 
~~~ k~~ 

are expansion coefficients for the magnetic current ~ ,x~ ,n , / x
a(s) is a column mat rix and 2 rnn ’5

~ ~‘me ’
~ 

and q ’s are themselves matrices

arising from the inner products . m and n are indices locating the position

of a particular subsection o-vet--which an inner product is taken. The expres—

H - sions for a(s) , £mn ’5
~ ~tnn ’

~ 
and q ’s are very complicated. They have been

given in a previous report (22] ,  and will not be repeated here .

The unknown coefficient matrices 1~~(s)}, {~~(s)}, {?(s)} and {~ (s) } can

be solved from Eq. (32) . An outline of the method of solution will be given

• in Section V. Determination of these coefficient matrices enables the calcu—

lation of ~(r ,s) in Eq. (27) from Eq. (31), which, in turn, leads to the f ield

inside the cavity .

-I !
—I
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IV • RECTAIqGULAR CAVITY WITH SLOT APERTURE
- a

- 
I - PERPENDICULAR POLARIZATION

- When the electric field of the incident plane wave is polarized in

a direction normal to the slot shown in Fig. 1; that is, if

, (33)

it is more convenient to use an H—formulation . Instead of invoking the

induction theorem, we apply the equivalence theorem (20], (21]. The H—

field discontinuity at the aperture in Fig. 2(d) is supported by an elec-

tric current

= — 2fi x

= — 21t H~ = 
~~ 

—

~~~ 

. (34)

To solve this problem, we start with the following Maxwell ’s equations

~~~~~~~~~~~~~~~~ (35)

x = , (36)

which transform to

~~
x E = — 1 j s i

~ 

(37)

~~
x
~~~

= C s
~~~

+
~~~

. (38)

Let be the Laplace transform of a magnetic vector potential A such that

} j — ~~~x A .  (39)

We have , from Eqs . (37) to (39) , 

. •
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and 
~

2AX — 

~0c0s2A~ — — 

~x CS~Y) (40)

H - H — 0  (41)

(42)

H fl — — -a— A (43)a y x
2 2

- - ~~ + -~--~-]A (44)
o ay az

2
g . 2 .  a 

A (45)y c~,s axay x

2
~ = a A • (46)z c s axaz x0

The second—order differential equation (40) can be converted into

a set of first—order equations by defining new quantities i~, 9, and Q

similar to those in Eqs . (19) to (21) with 
~~ 

replaced by A .  Instead of

Eqs . (22) to (24) , we now have

-~~~— ü(r ,s) + -i--- 7(r ,s) + -
~~~~

- 

~ (r ,s) = — i i c s A (r ,s) +

(48)

• 1~ s~~~~. (49)z

• An operator equation (29) which represents Laplace transformed normalized

state equations in the four state variables A
~ , u , v, and w is obtained

when operators L and P and column matrices r(r ,s) and ~g(8) are defined as

in ~qs. (25) to (28) respectively with 
~~ 

replaced by 
~x and ~~ replaced

by 
~~ 

This operator equation can be solved by the method of moments as

bef ore by choosing suitable expansion functions A (i J k) (r)
~ u(i J k) (r)

~
v(i j ,k) (r) . and w(i ,j,k) (r) over cavity subsections . We can write the

16
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expanded form of ~(r ,s) inside the cavity as (22 ]

- A - u

~
(r ,s) — 

i,Lk ~ ‘(i , j ,k)~~~ 
f (i , j ,k) ( t)  + 8(i , j ,k) (8) f (i ,~~,k) (r)

+ 
~~~~~~~~~~ ~~i,j,k) (r) + 

~~~~~~~~~~ ~~i,j ,k)
(r) }

~ (50)

where the column matrices f~j~~~k) (r)
~ f~l J , k) (r)

~ and f’
~i~~~k) (r) are

the same as those defined in Eq. (30) ,

AX(i J k) (r)

A 0
~~ (r) (51)

‘ ,J ,  / 0

0

and ~, ~, j~, and ~ are the Laplace transforms of the expansion coefficients .

Analogously to the parallel—polarization case treated in Section III ,

we can expand 
~~ 

in the half—space y > 0 as a superposition of plane waves :

* 1 H -j (k x+k y+k z)
H — —i- 

~

‘ 

f 
~ (k ,k ) e  ‘~ ~ dk dk , (52)

ii 
where

= /(s/cY~ + k~ + k~ (53)

and the new quantity gH (,~~,k~) can be determined from the boundary con—

dition at the slot (22] .  There is a discontinuity in H
~ at the slot on

account of the equivalent electric current 
~x which can be expanded as

- 
i~k ~~~~~~~~~~~~ 

V( i f l  k)~~ ’ 0, z) (54)

- i
17
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A system of three equations are obtained by mat ching Ax~ 
ii~ and ~ at

the slot. A combined field expression which holds inside the cavity,

in the y > 0 half—space , as well as in the slot can be written . This

expression is extremely complicated. Suffice it to say that when it

- is substituted in Eq. (50) and inner products with the expansion func-

I I  tions are taken, we obtain a matrix equation similar to Eq. (32), from

which the unknown coefficient matrices (~~(s) }, {~~(s) ) , {j ~(s) }, and {~~(s) )

can be solved.

ii . 

I

-i

-~

~

18 
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V . SOME NUMERICAL RESULTS - 

-

~

In this section we outline the procedure for determining the unknown

coefficient matrices {a(s)}, (~ (s)}, C~
(s)}, and f~ (s)}- froni Eq. (32). Al—

uv vu vv vw Pv uv vF vu vwthough the component matrices (L , , 9. , 9. , p , p , p , p , p ,
urn nut nut nut nut nut nut nut mu

wvand 
~~~ 

representing the coupling between cavity and external fields appear

highly complex, they are relatively sparse. Typically an equation of the

following form is obtained from Eq. (32) :

(i(s) ] f~~(s)} = (H(s) ] ~2:~iii 
(1 k) (8

~~ + fk(s) } , (55)
S x ,n ,

where [i(s) ) and [ii(8)J are square matrices containing 9. ’S , p ’s, and

q,~~’s in Eq. (32), and 1~~(s) } is in general not the same as C~~(s)}. From

Eq. (55) we have

{&(s) } = [Z(s) ]~~ ( [a(s) ] ~ ‘ (i k)~~~~
1 + (k(s) )) . (56)

S X

Similar expressions are obtained for C~
(s) }, 1~~

(s) ) , and ~~(s) } .

Let s be the zeros of !~~(s) ! or the roots of the equation

det(~ (s) ] = 0 - (57)

In circuit—theory terminology, [i(s)) corresponds to the system impedance

matrix and s~ are the natural frequencies . [Z(s)] 1 can be expanded in a

partial—fraction form as follows:

E R]
(i(s) ]~

‘ = 
~~ 

(58)
a a

— 
-
~ where the constant square matrix t R ]  is the system residue matrix at the

-j pole s .  E R a
] can be written as the product of a natural mode vector CRrn}

and the transpose of a coupling vector CR C } [5], [9] :
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I
= CRtm) CR C }T (59)

where {R }  is a solution of the equation

[Z ( s ) ]  CR tm ) = 0 (60)

and CRC) is a solution of

[Z(s )] T CR: ) = 0 - (61)

A close examination of the composition of the matrices (i(s) I and

(a(s) ] reveals that their poles coincide and therefore cancel. We have ,

from Eqs. (56), (58) and (59),

{RmICRc}T - -

H Ca(s) ) = a 
— 

a ([a(s) ] {1th ( i n  ~~~~~~ 
+ (k (s)))  . (62)

Now define

~~~~~~~~ 
{-

~~~ 

~x(i ,n ~~~~~~ 
+ (k(s) ) = i(s) ~~,(s))  (63)

where {~~,(s) } is the excitation vector when the incident wave is a pulse.

We can then write Eq. (62) as

{RmHR c )T

la sH 
—

-
~~ CRtm )

= 
~ 

_

~~~~~ 

~~~~~ 
fl(s) , (64)

a a

where

— CR C }Tfv (s) ) (65) —

- 
4 is called the coupling coefficient (5] .  We note that i(s) itself may con—

f t am poles in the finite plane, but this fact does not result in any serious

difficulty.
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We are now in a position to write the expressions for the field

distributions within the cavity . 1~rom Eq. (31) ,

P
~~~~~

,z ,5) — 
iJ,k ~~~~~~~~~ 

F
x(i j k)

(x ,Y~~
z)

— = la(s))
T 

CP (i j k)(X~Y~
Z)) (66)

which, in view of Eq. (64), becomes

= ‘~a~~~ 
{R m}T CFx(i~~~ k) (X PY~

Z) } - 

~~~~~

= ~ n (s) v1(x ,y,z) ~ — 

~ci~~
’ si(s) . (67)

a

In Eq. (67),

v~(x,y,z) = {R~ }T CF X ( I j k ) (X
~Y~

Z) )  (68)

is a natural mode for Fx~ In a similar manner , we will get

E -

and 

E(x,y,z,s) = ~ is (s) v
37(x,y,z) (s — s ) 1 ?~(s) (69)

E(x ,y,z,s) = 
~ ~~~~~ 

~)
EZ(x y z) Cs — 

~~~ 
~ (s) (70)

E E -

where -v and v z are the natural modes for ~ and ~ respectively.a a

For numerical computation, a rectangular cavity of dimensions

4x6x2 was chosen and the slot width was a/lO or 0.4. Considerable dif—

ficulties were experienced in the determination of the singularities

(natural frequencies) 5a~ 
Aft er h aving compared several root—finding

procedures and checked meticulously our computer programs, we obtained

the locations of the singularities in the upper part of the left half—
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plane for the parallel—polarization case with E—fortnulation as shown in

Fig. 3. Two layers of singularities were found: the first layer was very

close to the ju—axis and the second layer had a positive slope. The singu—

larities in the first layer fall on a smooth locus, and they appear to be

irregularly spaced. No method exists which could ascertain the effect of

numerical noise, subdivision scheme, etc. It is known that numerical results

are sensitive to round—off--errors and may diverge with an increasing sampling

density (23]. Problems of numerical anomaly appear in even the simplest

cases (23], and precluded the determination of the natural frequencies of

some well—defined geometric structures such as oblate spheroids [24].

The natural modes of the first four singularities of the first layer

were determined and combined to give the total IE~I at two locations ~ithin

the cavity. Assuming a step excitation, the normalized cavity f ield

is plotted in Fig. 4 as a function of time at the point (2, —5, 1), which is

(5/6)th of the way in from the slot aperture. Figure 5 shows a similar plot

- I at the point (2,—3,l). The figures indicate that the maximum value of IEZI

inside the cavity is in the order of one—thousandth of the incident field

intensity, E
1
, for parallel polarization (good shielding effectiveness).

Maxima and nulls exist as t varies . Howeve r , a physical interpre t ation of

their spacings is difficult  because of the complicated nature that the

penetrated field is reflected from the cavity walls.

• Previous studies [25], [26] on the penetration of transient electro-

magnetic excitation through apertures in an infinite ground screen (without

a cavity) have not yielded numerical results. Various difficulties were

22



encountered in attempts to obtain self—consistent pole locations because

of numerical instability (26]. The problem is vastly more complicated

- when there is a cavity behind the aperture . It has been shown [27] that

-- 

I the structure of a conducting cylinder within a parallel—plate region

gives rise to two types of singularities; name ly , poles and branch points ,

in the complex—frequency plane . Whether a cavity—backed slot has branch

points or multiple poles is an unanswered question .

p 1

I ~
j 

- .  
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VI. CONCLUS ION

In this report the transient excitation of a cavity through an

- : aperture is used to illustrate the state—space solution of transient

electromagnetic problems . Depending on whether the E— or the H—formulation

is used , the effect  of the aperture is accounted for by a magnetic current

in invoking the induction theorem or by an electric current in invoking the

equivalence theorem . The governing second—order differential equation is

converted into a set of first—order normalized state equations by def ining

three new state variables in addition to the appropriate vector potential.

These state equations subject to the associated boundary conditions are

solved by the method of moments. The cavity region is first divided into

subsections and the fields within the cavity expressed in terms of appro—

priate expansion functions with time—dependent coefficients. The fields

in the half—space outside the cavity are represented as superpositions of

plane waves. At the aperture, the cavity and external fields are properly

matched. Inner products are taken with testing functions and the first—

-
- - 

order equations are converted into matrix equations containing the expansion

coefficients as unknown column vectors. Evaluation of these expansion—

: coefficient vectors leads to the determination of field distributions. The

procedure for e aluating a typical coefficient vector by the singularity—

expansion method has been outlined.

This solution procedure was applied to the problem of electromagnetic

excitation of a rectangular cavity through a slot aperture. Two cases were

considered : an E—formulat ion for parallel polarization and an H—formulation

for perpendicular polarization. For the case of parallel polarization, some

24
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- significant pole singularities (natural frequencies) in the upper left

complex plane were formed for a sample cavity. The corresponding natural

modes were determined and combined to give the electric intensities as

- functions of time at two locations in the cavity for a step—excitation.

Both the shape and the magnitude of the penetrated electric field appear

reasonable. However, it would not be wise to claim absolute accuracy

because of the inherent noise and instability in the numerical procedure

and because of a lack of a theoretical proof that there would be no multi-

ple poles or branch points.

I

~1
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