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STATE-SPACE SOLUTION OF

TRANSIENT ELECTROMAGNETIC PROBLEMS

ABSTRACT

The transient excitation of a cavity through an aperture is used to
1llustrate the state-space solution of transient electromagnetic problems.
Depending on whether the E- or the H-formulation is used, the effect of
the aperture can be accounted for by a magnetic current in invoking the
induction theorem or by an electric current in invoking the equivalence
theorem. The governing second-order differential equation is converted
into a set of first-order state equations by defining three new state
variables in addition to an appropriate vector potential. These state
equations are solved by the method of moments. Two cases are considered:
parallel polarization and perpendicular polarization. Some significant
singularities for the parallel-polarization case are found and the elec-
tric intensities as functions of time at two locations in the cavity are

computed for a step excitation.

The Findings in this report are not to be construed as an official
Department of the Army position, unless so designated by other author-
ized documents.
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I. INTRODUCTION

Transient electromagnetic problems arise in the consideration'of

shielding effectiveness, electromagnetic compatibility, radar target

identification, remote environmental sensing, and electromagnetic effects

The time-

.

due to X rays and gamma rays generated by a nuclear blast.
harmonic behavior of an antenna or a scatterer can bhe obtained first as a

function of frequency by solving the governing integral equations with the

by
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given boundary conditions. The transient response can then be determined

by performing an inverse Fourier transformation. Numerical methods are

used in the frequency-domain solution for many different frequencies. The

-T; brute-force numerical Fourier inversion is generally inefficient and con-
vergence problems arise in superposing the steady-state solutions. A few

simple situations, such as transient scattering from wire antennas and con-

ducting cylinders [1]-[3], have been analyzed directly in the time domain.

Basis-function expansions and inner products over both space and time are

required. Space-time integro-differential equations are encountered and

the numerical representations of the derivatives lead to very complicated

procedures.
A variation of the time-domain approach makes use of a a Hallén-type

integral-equation formulation [4]. As a consequence of the absence of space-

time derivatives under the integrals, the numerical process is less compli~-

S e g i

cated. However, because of retarded time, a tedious step~by-step iterative
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procedure has to be used in conjunction with the proper families of trajec-
tories known as characteristic curves in order to determine the homogeneous

p solutions. All of the methods mentioned above are tedious and do not afford




a physical insight in the solution of a transient problem. Moreover, a
complete recalculation would be necessary under any change in the wave
shape, polarization, or angie of incidence of the source of excitation.

More recently a singularity-expansion method has been used to deter-
mine the transient reéponse of scatterers of simple geometries [5]-[11].
Responses to transient excitations are expressed in terms of exterior
natural frequencies, modes, and coupling coefficients, and induced currents
are represented by a series of damped sinusoidal functions. This method has
the advantages of providing a physical sight to the radiation or scattering
problem and of allowing the response to be determined for a change in source
parameters without a complete recalculation. In the evaluation of the natural-
mode and coupling vectors, it is necessary to know the nature of the singu-
larities involved in the inverse Laplace transform. Knowledge in this respect
is not yet secure. The transcendental nature of its system impedance matrix
results in an infinite number of complex poles whose locations must be numeri-
cally searched. It is generally agreed that the singularity-expansion method
is not very satisfactory for evaluating early-time responses.

The method of characteristic modes has been used for determining the
steady-state response.of conducting bodies [12]. A striking similarity appears
to exist between this method and the singularity-expansion formulation if the
method of moments [13] using a common spatial basis is applied to both cases;
but no formal relations have yet been established. The natural modes from
the singularity expansion are not orthogonal. The characteristic modes are
orthogonal, but they vary with the source frequency and it would be necessary
to compute the characteristic modes for all frequencies before a Fourier inver-

sion could be effected to determine the transient behavior.

I— | y



The problem of transient field behavior inside a conducting cavity

"due to excitation through an aperture by an incident electromagnetic pulse

|
i b (EMP) 1is particularly difficult because of the reflections from the cavity #

walls and the coupling between the interior and exterior fields at the aper-
ture. Past investigations on EMP excitation of cavity-backed apertures have
largely dealt with small openings and have neglected the effect of cavity
reflections on the aperture field distribution. For small openings the

quasi-static method is used to determine the fictitious magnetic current

N T I
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and charge distributions in the aperture. Fquivalent electric and magnetic

dipoles are defined, and their radiated fields determined with the aid of

scalar and vector potentials [14]-[19]. The fields in the cavity are custom- |
arily expanded in terms of unperturbed normal modes. The quasi-static approxi-

mation cannot be applied when the aperture is not small and when early-time

1
i
| . responses are important. In neglecting the effect of the reflections from S'
cavity walls on the aperture field distribution, one essentially treats the “
external and internal portions of the problem separately. Sin;e cavity dimen-
sions obviously play an important part in the total problem, this approach may
result in significant errors. |
In this report we will avoid the quasi-static approximation and solve
the internal and external portions of the problem simultaneously. New
variables (state variables) will be introduced to convert the governing
second-order differential equation into a set of first-order equations which
correspond to normalized state equations. The field within the cavity will
be expanded in terms of suitably chosen subsectional expansion functions with
variable coefficients and the field outside the cavity expressed as a super-

position of plane-wave fields. The cavity and the external fields are matched

4
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at the aperture where a fictitious equivalent current exists. A combined

field expression containing the unknown expansion coefficients is obtained.

To determine these coefficients the method of moments [13] is used to con-

vert the first-order equations into matrix equations. It will be shown that

the typical coefficient matrix can be expressed in a form for which the

singularity-expansion method [5] can be used to advantage.
The general procedure of solution for cavity-backed aperture problems

is outlined first. The theoretical formulation for the transient excitation

of a rectangular cavity with a slot aperture is then given for both parallel

and perpendicular polarizations. Some numerical results are included.
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II. SOLUTION PROCEDURE

We consider the problem of a slot aperture in an infinite conducting
plane backed by a rectangular conducting box, as shown in Fig. 1. An inci-
dent transient electromagnetic wave (Ei, ﬁl) impinges normally on the plane
and the aperture. The problem is to determine the scattered field in the
y > 0 region and the field penetrated through the aperture into the conduct-
ing cavity.

The induction theorem [20], [21] can be invoked for the solution of
this problem. Figure 2(a) represents a simplified 2-dimensional view of
the original problem. (ﬁc, ﬁc) and (ES, ﬁs) are, respectively, the cavity
field and the external scattered field. In order to determine these unknown
fields, we consider the case when the aperture is covered by a conductor. The
entire region to the left of the infinite plane will have a null field and,
according to the induction theorem, a magnetic current io on the right surface

of the conducting plane will support a different scattered field (E:, ﬁ:), as

shown in Fig. 2(b), where

M =E x1
(o) S
=fi x Ei
=9 x B, (1)

For a normally incident plane wave (ﬁi, ﬁi), the scattered field (E:, ﬁg)

from an infinite conducting plane without an aperture is easily determined.
The null field to the left of the plane will be maintained if the plamne is
removed and a magnetic current 2ﬁ° exists in its place which will result in

a field (ﬁi + ﬁ:, ﬁi + ﬁ:) in the y > 0 region, as shown in Fig. 2(c).
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Subtracting the fields in Fig. 2(c) from those in Fig. 2(a), we
obtain the problem in Fig. 2(d). The magnetic current M in the aperture
is

ﬁ=-zﬁ°=-29x‘s‘i, @)

which supports the field (ﬁc, ﬁc) inside the cavity and a field (Es - E:,

ﬁs-- ﬁ:) to the right of the infinite plane. We note that the region in

which the difference field (Es - E:, ﬁs - ﬁ:) exists is source-free and

that the tangential component of the electric field is required to vanish

on conducting walls.

For the problem in Fig. 2(d), we start from the two Maxwell's curl

equations
SxEeau B_F &)
o Jt
s .= oF
VxHEwe = (4)
Taking the Laplace transform of Eqs. (3) and (4), we obtain
VxE=- HS H-M (5)
VxH= €8s E , (6)

where a tilde (~) over a quantity denotes the Laplace transform of that
quantity.
Let F be the Laplace transform of an electric vector potential F

such that

R

€))

f;=-r€x
Combining Eqs. (5) to (7) and using the Lorentz gauge, we have an in-

homogeneous Helmholtz equation:




R

VF=pes"F=-M. (8)

= - —
Solution of Eq. (8) for F will give E from Eq. (7) and H from

Hwae T x T x ¥ (9)
UOS

in regions where M is zero.

Specialization of these general formulas will depend on the polari-
zation of the incident wave; but as soon as Ei is known, Eqs. (7) and (9)
can be expanded into component equations and the source term # in Eq. (8)
can be found from Eq. (2). A set of new variables can then be defined
which will convert the second-order differential equation (8) into a set of
first-order equations, and these equations are Laplace-transformed normalized
state equations in the new state variables. Solution of the transformed
state equations involves four steps. First, the space inside the cavity is
divided into subsections and suitable expansion functions are chosen over
the subsections. The elements of the unknown state-variable vector are then
expressed in terms of the expansion functions within the cavity. Second, the
field in the y > 0 region is expressed as a superposition of plane waves.
Third, the cavity and the half-space fields are matched at the aperture.
Fourth, inner products are taken so that the matrix equations for the um-
known expansion coefficients are obtained. These steps are outlined sepa-

rately for the cases of parallel and perpendicular excitations in following

sections.
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ITI. RECTANGULAR CAVITY WITH SLOT APERTURE

- PARALLEL POLARIZATION

In this section we consider the case of an incident plane wave with
the electric field polarized in a direction parallel to the slot. Referring
to Fig. 1, we have

s Fi (10)

and the Laplace transform of Eq. (2) becomes

N=-28d =2 (11)
z x
which has only an x-component. The x-component of Eq. (8) is then
7 - ST
v Fx - uoeos Fx = MXG(y)’ (12)
where §(y) is a Dirac delta function. From Eqs. (7) and (9), we have
E.=0 (13)
x
B i (14)
y 9z X
g alp (15)
z 3y X
2 2
~ 1 ) 3" 43
H = - — [— + —]F (16)
- uos ay2 322 i
2
YRR A
Hy g us 3xdy s an
2
& o Rt &
Hz e W8 x93z Fx 5 (18)

The second-order differential equation (12) can be represented as a
set of first-order equations by defining new quantities u, v, and w such

that
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- -
& i ) meiten (19)
;f | ‘ ax X > ’
3 ; “ - ji-ﬁ (r,s) = s V(r,s) (20)
% | ay x ] ’
and
s 0 1t
= EE-Fx(r,s) = s Ww(r,s) , (21)

H
]
{
4

where r is the space variable. We have, from Eq. (12),

ﬁx 5 (22)

0 |=

3 s Yo ey -~
5;-u(r,s) + 3y V(r,s) + = w(r,s) = HoEoS Fx(r,s) +

Comparing Eqs. (21) and (20) with Eqs. (14) and (13) respectively, we see

that

E =s W (23)

and
E. =='5 V., (24)

The introduction of 4, V¥, and % and the use of the first-order equations

will result in significantly faster convergence in the numerical solution.
The first-order equations. (19) to (22) can be written in a succinct

form by defining the following operators and column matrices:

B 9 ) 9 ]
g 93X oy 9z
. g 3
f 3% 0 0 0 |
: 1 = (25)
3
- 3y 0 0 0
3
= 5o 0 0 0

10
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Equations (19) to (22) become

L £(r,s) =s P £(r,s) + ég(r,s) v (29)

Note that the #nverse Laplace transform of Eq. (29) is a set of normalized

state equations in the four state variables Fx’ u, v, and w.

In order to solve Eq. (29) by the method of moments we subdivide

the space within the cavity in the x,y, and z directions and choose expan-

sion functions Fx(i,j,k)(r)’ u(i,j,k)(r)’ v(i,j,k)(r)’ and w(i,j,k)(r) over

the subsections. The expansion functions must satisfy the required boundary

conditions. For convenience, we define the following column vectors:

R 0 I MR 0 00 B e o <

NI PR P A 2T Y TR NP AT S X AR
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» Y - -
Fx(iyj ’k) (1‘) 9
0 u (r)
F u (1’j’k)
f (r) = . f (r) = (30)
(i’j’k) 0 (i’j’k) 0
> 0 a = 0 ]
fesisiye ol el i
£, 1,0® = : 1,10 @ = :
, g gt : 0
B i M0

In view of Eq. (27), we can then write the expanded form of f(r,s) inside

the cavity as

Brys) = ) (& (s) £ (r) + B (s) £ (x)
i DasR® tage (1,1,00 % £(1,3,0

- v . -
+ Y(i,J,k)(s) f(i,1,k)(r) + G(i’j’k)(S) f(i’j’k)(r)}. (31)

Note that the expansion functions Fx’ u, v, and w are functions of position

only and that the inverse transformation of &, B. ¥, and § will yield the
time-varying expansion coefficients.

The field in the half-space y > 0 is expressed as a superposition of
plane waves and the internal and external fields are matched at the aperture
y = 0. A combined field expression for f(r,s) can be obtained which holds
inside the cavity, in the y > 0 half-space, as well as in the slot. This
is then substituted in Eq. (31) which, after inner products with the expan-

sion functions in Eq. (30) have been taken, leads to the following matrix

equation:

ed caag
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el g A SRR it e T A P 0 T E Lare 4 5 M S S RO ol
RS O T S W | e PP i e ! 3]
| | | &
1] : gmn L_ zmn l i a i U g 0 a
_____________ - - — —--T — - AE wGED S GED =S GED D e - -
| i K [ ! #
2:: | 0 : 2:: i 0 B 0 o p:: ! 0 B
—_-‘»-._...|_-_-|—_—- ——=|=g __—_‘——--l—..._-_{,__._ e
¢ | gy v vw - vF | vu | vw | vw .
= m | s — Y P | pmn | P ' P Y
-}‘r"1““'1_-“‘“ b et et B, ool | ekt
w wv | wv ww
) " N il K 8 g 1.9 §
D I e e R { Pmo | Pl °]
r—~ T c— T
qF 0
u
q 1 0
e I N O B (32)
q C(s)
w
g L 0 4
where mx(i',ny,k') are expansion coefficients for the magnetic current Mx’

€(s) is a column matrix and zmn'

s, pmn's and q's are themselves matrices
arising from the inner products. m and n are indices locating the position
of a particular subsection ower-which an inner product is taken. The expres-

sions for C(s), % 's and q's are very complicated. They have been

's, p

m m

given in a previous report [22], and will not be repeated here.

The unknown coefficient matrices {&(s)}, {B(s)}, {¥(s)} and {8(s)} can
be solved from Eq. (32). An outline of the method of solution will be ;iven
in Section V. Determination of these coefficient matrices enables the calcu-
lation of f(r,s) in Eq. (27) from Eq. (31), which, in turn, leads to the field

inside the cavity.
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IV. RECTANGULAR CAVITY WITH SLOT APERTURE

~ PERPENDICULAR POLARIZATION

‘When the electric field of the incident plane wave is polarized in

a direction normal to the slot shown in Fig. 1; that is, if
it-2u, (33)

it is more convenient to use an H-formulation. Instead of invoking the
induction theorem, we apply the equivalence theorem [20], [21]. The H-
field discontinuity at the aperture in Fig. 2(d) is supported by an elec~
tric current

SURE T S

- 1.
=~2%H =2J_ . (34)

To solve this problem, we start with the following Maxwell's equations

B R oH

VTRBw<u o (35)

= = 3 =

VxHEme oo+J, (36)
which transform to

TxE=- u_s H (37)

TxfHecesBs+d. (38)

Let A be the Laplace transform of a magnetic vector potential A such that

i=9xA4. (39)

We have, from Eqs. (37) to (39),

R e e e e e
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=% 9. &
VAx-uoeos A w3 8(y) (40)
and
Hx =0 (41)
i =2 (42)
y 3z X
R | (43)
z Yy x
2 2
" AR T SO wll
Ex € S [ 2 > Z]Ax (44)
o oy 9z
2
~ 1 9
Ey € 8 93x3y Ax (45)
2
e bl
Mgt W (46)

The second-order differential equation (40) can be converted into
a set of first-order equations by defining new quantities &, ¥, and &
similar to those in Eqs. (19) to (21) with Fx replaced by Ax' Instead of

Eqs. (22) to (24), we now have

L ¥ 3 e 1
= i(r,s) + 3y v(r,s) + = w(r,s) uoeosAx(r,s) + ~ Jx (47)
ﬁy=-s€i (48)
H =8%. (49)

An operator equation (29) which represents Laplace transformed normalized
state equations in the four state variables Ax’ u, v, and w is obtained
when operators L and P and column matrices f(r,s) and ég(a) are defined as
in Eqs. (25) to (28) respectively with ix replaced by Rx and ﬂx replaced
by 31. This operator equation can be solved by the method of moments as
before by choosing suitable expansion functions Ax(i,j,k)(r)’ “(1,j,k)(')’

v(i,j,k)(r)’ ey w(1,j,k)(r) over cavity subsections. We can write the

16
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expanded form of f(r,s) inside the cavity as [22]

3 A ; u
ittt DL TR B W R R R T

o \'4 - w
V1,10 £1,1,0® * 8,500 fh 0@ 60

where the column matrices f(i,j k)(r), (1 3, k)(1'), and f(i,j k)(1:) are

the same as those defined in Eq. (30),

—

)

0

A
f(i,j,k) (I') - " (51)

fa i
and &, B, ¥, and 8 are the Laplace transforms of the expansion coefficients.
Analogously to the parallel-polarization case treated in Section III,

we can expand ﬁz in the half-space y > 0 as a superposition of plane waves:

-3 (k_x+k_y+k_z)
*Z-szf (k aye T T e & (52)
4m

where

jky = ¥(8/c)¢ + k; + ki (53)

and the new quantity gH(,x,kz) can be determined from the boundary con-
dition at the slot [22]. There is a discontinuity in Hz at the slot on

account of the equivalent electric current Jx which can be expanded as

Te® (b Tt 0% Yetn 00 9 8 o

17
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A system of three equations are obtained by matching Kx, i, and ¥ at

A combined field expression which holds inside the cavity,
This

the slot.
in the y > 0 half-space, as well as in the slot can be written.

expression is extremely complicated. Suffice it to say that when it

is substituted in Eq. (50) and inner products with the expansion func- |
tions are taken, we obtain a matrix equation similar to Eq. (32), from

which the unknown coefficient matrices {&(s)}, {B(s)}, {¥(s)}, and {3(s)}

can be solved.

18




V. SOME NUMERICAL RESULTS

In this section we outline the procedure for determining the unknown
coefficient matrices {a(s)}, {B(s)}, {¥(s)}, and {8(s)} from Eq. (32). Al-

uw vu ,vww vw Fv uv vF wvu w
though the component matrices (lm, 2 ) 2’ P’ Pmm® Pun’ Pom® Pmn’

m’ “mn’> “mn’> "mn> *mn® “mn
and p;Z) representing the coupling between cavity and external fields appear
highly complex, they are relatively sparse. Typically an equation of the

following form is obtained from Eq. (32):

[Z()] {a(s)} = [H(s)] {5 NOMERI{ONE (55)

x(i,ny,k

where [Z(s)] and [H(s)] are square matrices containing zmn's, pmn's, and

's in Eq. (32), and {K(s)} is in general not the same as {C(s)}. From
U

Eq. (55) we have

(@)} = (217 ()] S, | @Y+ ReD . (56)
’y’

Similar expressions are obtained for {B(s)}, {¥(s)}, and {8(s)} .

Let S, be the zeros of |Z(s)| or the roots of the equation

det[Z(s)] = 0 . (57)

In circuit-theory terminology, [Z(s)] corresponds to the system impedance
matrix and s, are the natural frequencies. [i(s)]_1 can be expanded in a

partial-fraction form as follows:
[R ]

8 -8
a

AOIRED) ’ (58)
a

where the constant square matrix [Ra] is the system residue matrix at the

pole s, [Ra] can be written as the product of a natural mode vector {R:}

and the transpose of a coupling vector {RZ} [51, [9]:

19




[R,] = (&0} (RS}", (59)

where {R:} is a solution of the equation

[2(s )] {R]} = 0 (60)
and {Rz} is a solution of

[Z(sa)]T {Rg} =0 . (61)

A close examination of the composition of the matrices [Z(s)] and
[H(s)] reveals that their poles coincide and therefore cancel. We have,

from Eqs. (56), (58) and (59),

(MRS : :
{a(s)} = E o el g mx(i’ny,k) ()} + {R(s)D) . (62)
Now define
li(s)] Lt @) ¢ RO - F@) 7,003 (63)

where {ﬁo(s)} is the excitation vector when the incident wave is a pulse.

We can then write Eq. (62) as

o R
{a(s)} = | ——2— N(s) {V_(s)}
a o

s

(™}
'gs-s

fiy(s) N(s) , (64)
a

where

iy (8) = {RE}T{"JQ(s)} (65)

is called the coupling coefficient [5]. We note that N(s) itself may con-

tain poles in the finite plane, but this fact does not result in any serious

difficulty.

20
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We are now in a position to write the expressions for the field

distributions within the cavity. From Eq. (31),

Reamae T %@ Ty e

= G@Y Fy o ®y.2)) (66)

which, in view of Eq. (64), becomes

i‘x(XQY!z’s) s Z ﬁa(s) {R:}T {FX(i,j,k) (x-YsZ)} (s - Ba)-l ﬁ(B)

DRXO) vz(x,y,z) (s - s )7 f(s) . (67)
o

In Eq. (67),

Valry,?) = (R (E ) o o (ny,)) (68)

is a natural mode for Fx' In a similar manner, we will get

E o
Egmmmw=§ﬁngJQWJ)w-sgdﬁ@) (69)
and
o Ez cw] =
E,(x,y,2,8) = g i (8) v ~(xy,2) (s -8 ) " N(s), (70)
E E

where vay and vaz are the natural modes for ﬁy and Ez respectively.

For numerical computation, a rectangular cavity of dimensions
4x6x2 was chosen and the slot width was a/10 or 0.4. Considerable dif-
ficulties were experienced in the determination of the singularities
(natural frequencies) 8, After having compared several root-finding
procedures and checked meticulously our computer programs, we obtained

the locations of the singularities in the upper part of the left half-

21
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plane for the parallel-polarization case with E-formulation as shown in

{ Fig. 3. Two layers of singularities were found: the first layer was very
2 close to the jw-axis and the second layer had a positive slope. The singu-
.i larities in the first layer fall on a smooth locus, and they appear to be |
‘ irregularly spaced. No method exists which could ascertain the effect of i
1 numerical noise, subdivision scheme, etc. It is known that numerical results
'J are sengitive to round-off-errors and may diverge with an increasing sampling
! density [23]. Problems of numerical anomaly appear in even the simplest
‘ cases [23], and precluded the determinakion of the natural frequencies of
some well-defined geometric structures such as oblate spheroids [24].
@ f The natural modes of the first four singularities of the first layer
were determined and combined to give the total IEzl at two locatione within

E | the cavity. Assuming a step excitation, the normalized cavity field ]Ez]/E:

is plotted in Fig. 4 as a function of time at the point (2, -5, 1), which is

1 : (5/6)th of the way in from the slot aperture. Figure 5 shows a similar plot
{ at the point (2,-3,1). The figures indicate that the maximum value of IEZI

inside the cavity is in the order of one-thousandth of the incident field

intensity, E;, for parallel polarization (good shielding effectiveness).
Maxima and nulls exist as t varies. However, a physical interpretation of
their spacings is difficult because of the complicated nature that the
penetrated field is reflected from the cavity walls.

Previous studies [25], [26] on the penetration of transient electro-
magnetic excitation through apertures in an infinite ground screen (without

a cavity) have not yielded numerical results. Various difficulties were

22
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encountered in attempts to obtain self-consistent pole locations because
of numerical instability [26]. The problem is vastly more complicated
when there is a cavity behind the aperture. It has been shown [27] that
the structure of a conducting cylinder within a parallel-plate region

gives rise to two types of singularities; namely, poles and branch points,

in the complex-frequency plane. Whether a cavity-backed slot has branch

points or multiple poles is an unanswered question.
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_ ¢ VI. CONCLUSION

1 > In this report the transient excitation of a cavity through an
aperture is used to illustrate the state-space solution of transient

electromagnetic problems. Depending on whether the E- or the H-formulation

is used, the effect of the aperture is accounted for by a magnetic current
in invoking the induction theorem or by an electric current in invoking the 1

equivalence theorem. The governing second-order differential equation is

converted into a set of first-order normalized state equations by defining
three new state variables in addition to the appropriate vector potential.
These state equations subject to the associated boundary conditions are

solved by the method of moments. The cavity region is first divided into
subsections and the fields within the cavity expressed in terms of appro-
priate expansion functions with time-dependent coefficients. The fields
in the half-space outside the cavity are represented as superpositions of

plane waves. At the aperture, the cavity and external fields are properly

By T NPT PR CIT RO T v B AT vy Ly ves

matched. Inner products are taken with testing functions and the first-
order equations are converted into matrix equations containing the expansion
coefficients as unknown column vectors. Evaluation of these expansion-
coefficient vectors leads to the determination of field distributions. The

procedure for evaluating a typical coefficient vector by the singularity-

1
!
-
|
i
!
i
=

expansion method has been outlined.
: { ! This solution procedure was applied to the problem of electromagnetic

excitation of a rectangular cavity through a slot aperture. Two cases were

considered: an E-formulation for parallel polarization and an H-formulation

for perpendicular polarization. For the case of parallel polarization, some

e

8%
#2904 2Y
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significant pole singularities (natural frequencies) in the upper.left
complex plane were formed for a sample cavity. The corresponding natural
modes were determined and combined to give the electric intensities as
functions of time at two locations in the cavity for a st.ep-excitation.
Both the shape and the magnitude of the penetrated electric field appear
reasonable. However, it would not be wise to claim absolute accuracy
because of the inherent noise and instability in the numerical procedure
and because of a lack of a theoretical proof that there would be no multi-

ple poles or branch points.
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