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INTRODUCTION

Synchrotron radiation is the major deceleration mechanism for

• re lat ivist ic electrons trapped in Jupite r ’s magnetic field [ Birmingham

• et al., 1974 Coroniti. 1974]. Since the deceleration time greatly

exceeds the bounce time for such electrons , it is of great interest

to have available some simple (closed-form) expressions for the cor-

respond ing bounce-averaged t ranspor t  coefficients that appear in the

• Fokker-Planck equation. Previous investigator s have considered only

• those electrons tha t mi r ror  at or near the magnetic equator in order

to simplif y the averaging procedure.  The purpose of the present

work is to extend the averages to arbitrary equatorial pitch ang les ,

i. e. , to arbi trary mirror  latitudes.

The present method of averaging makes use of a recent and ex-

cellent approximation [ Davidson, 19761 for the function

T(y) ( 1/ 4 La )j [l  - y2(B/B0 )]~~~
’Z ds

~ T(0)  — [T(0 )  - T( 1) ]y 3”4

~ 1.380173 — 0.639693 y3”4 (1)

to which the particle’ s full bounce period Zii /cz2 ~ (4La/~ c) T(y ) is

directly proportional. The equation of a dipolar field line , identified

by the dimensionless label L, is r = La sin20, where r is the ra-

dial coordinate, a is the planetary radiu s, and e is the magnetic

• col atitude. The coordinate s measures arc length along the field
-
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line. The magnetic field B varies in magnitude from B at the0

equator of the field line to infinity at r = 0. However , a particle

of equatorial pitch ang le a0 sin~~ y must mir ror  at field intensity

B B0/y 2 and thus remain tr apped between the latitudes at which

B = B .  For a particle of local velocity ~ c (where c is the speed

of light ) the full bounce period (interval between consecutive visits

to the sam e m ir r o r  lat i tude)  is as given above.

The rate of change of kinetic energy during synchrotron radia-

tion can be writ ten as yrn 0c2 , where y is the ratio of relativistic

mass  (m)  to res t  mass  (m 0 ). The rate of chang e of the sine of

the equatorial pitch angle is ~r , and its bounce average is denoted

(y) . More generally, the bounce averag e of any quantity Q is

• given by

(Q> fQ [1 - y
2(B /B 0)F

”2 ds

• 
— 

2 (B/B )J _ l / 2  
ds. (2)

Althoug h (y> and (y> suffice to describe the synchrotron “trans-

p o r tT l  of radiation-belt electrons, it also proves useful (fo r rea-

sons having to do with the canonical Hamiltonian formalism) to have

available expressions for the bounce-averaged time derivative s of

the f irs t  two adiabatic invariants M and J.

It develops (see below) that all four of the desi red boun ce

averages (namely (y),  (y), (M>, and (J>)  can be expressed in

term s of the bounc e avera ges < (B/ B 0)2) and ((B/B 0)3). Moreover ,

- ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_

~~~~~~
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the bounce average of (B/B 0 )~ is analytically related to T(y),  i. e. ,

can be derived from T(y) by taking integral s or derivatives , if n

is a positive integer. Thu s, the excellent approximation for T(y)

g iven by Davidson [1976] can be manipulated to yield equally ex-

• cellent approximations for the Fokker-Planck transport  coefficients

associated with synchrotron loss in a dipole field. This is the ob-

jective that is achieved in the present work.

SYNCHROTRON LOSS

It is well known [e. g., Jackson, 1962] that the rate of energy

loss by a particle of charge q is given by

• 
~ m0c2 

- (2 q Z
~~

6 /3 c ) [ ( ~~)2 
- (~~x~~)2} (3)

in the presence of forces that tend to change its velocity ~ c. The

force relevant for synchrotron radiation is that which yields 1
where 

~ 
-qB /ym 0c is Z~ times the gyrofrequency.

Thus , it follows [Coroniti, 1974] from (3) that

= - (2 q4 B2 /3m~~c5)(y 2 
- l ) s i n2a

= - ( 2 q4 B~~/3m c5)(y 2 
- l ) (B/B 0)

3
y
2, (4)

where a is the local pitch angle , i. e., where sin 2a = y2 (B/B 0 ) in

the course of adiabatic charged-particle motion. It follows at once

from (4) that

-7-
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= - (Zq 4 B~~/3m c5 )(y 2 
- 1)((B/B0)3)y2, ( 5)

where <(B/B 0)3) is the bounc e average (to be evaluated below) of

the quantity (B/B0 )

The chang e in energy described by (4) 1. accompanied by a

deflection of the local pitch angle a 5 In order to evaluate this , it

proves convenient to decompose the particle momentum p E

into components p1 = p B  = p cos a and p1 = p X ñ I  p sin a.

It is well known that

= 1 + (p/m 0c)2 
= 1 + (p 1/m0c) 2 

+ (p1/m0c) 2 . ( 6)

However , the operative contributions of and to 4 remain to

• be determined. It seems evident that synchrotron radiation must

leave ~c cos a unaltered , since a Lorentz transf ’rmation at thi s

velocity along B will bring the obserrer into a frame in which the

electron gyrate. about the field in a collapsing circl e (rather than in

a collapsing helix). The synchrotron rad iation in this frame is sym-

metr ical with respect to the plane of gyration, and so there is no

radiation force that would impel the particle to acquire a velocity

component parallel to B in this frame. It follows from this argu-

ment that = 4m0~~c coe a in the original fram e of reference.

The foregoing conclusion about is contrary to that assumed

by Coroniti [1974], who took = 0 without detailed ~ustification.

Thus , the present decomposition of (6) to yield

2 2 .  2 2p1p1 = m0 c y y [  I - ~ cos a] (7) 

~~~~~~~ 
_ _ _ _ _
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d i f f e r s  f rom his by the fac tor  [ 1  - ~ cos 2a J. The in te rpre ta t ion

of t }~~~ p r e sen t  r e su l t  is that  the synch ro t ron  radiat ion f r o m  a rela-

tivistic e lec t ron  is somewhat biased toward the d i r ec t i on  of p .

and that  the r e su l t i ng  react ion f o r c e  ( in  the or ig inal f r an u  of ref-

e r e n c e)  is lus t  su f f i c ien t  to keep constant  the component  of par t ic le

veloci ty  (not m o m e n t um )  parallel to B.

By combining ( 7 )  with the fo rego ing  re la t ionships f 4m 0 13c

cos a and y (B 0 /B ) h / ’Z sin a (B 0 /B) ’”2 (p 1/p) . one ca n d e r i v e

the express ion

= (B0 / B) 1
~~~I (p

1
/ p)  - (p

1
/p

2
)~~~]

= ( 4 / y y ) ( y 2 
- 1) 1 [ 1 - y 2 ( BI B 0 ) 1 ( B 0 / B )

F: fo r  the ra te  of change of sin a0. Thu s, it follows f rom (4)  tha t

= - (2 q4 y B~~/3~~m~~c5 )

x [ < ( B/B 0
) 2 > - y2( ( B / B0 ) 3>] ( 9 )

in the course of synchrot ron  radiation .

Since M = p~~/ 2m 0B , it follows from (7 )  and (4)  that the

bounce-averaged time derivative of the f i r s t  adiabatic invar iant  is

given directly by

(M)  = ( ( p~~~ /n-i0B)) = <(4r n 0c 2 / y B ) ( 1  + ~~~~~~~~~ sin 2
a ) >

= - (4M q4 B~~/3ym~~c 5 )~~~(B / B 0
) 2) 4 (Z M B 0 /m 0c2 K ( B/ B 0

) ’> l ,

( 1 0 )

-9-
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where 1 - = ~~~ as usual. The same result can be obtained

from (5) and (9) by setting lvi = (y ~ - l)(m 0c2y 2 /2 B0 ) and applying

the chain rule of differential calculus. This latter (indirect) method

enables one to obtain <J) fr om the expression J = 2Lap Y(y) for

the second adiabatic invariant in a dipole field , where [Schul z, 1971;

• Davidson, 1976]

Y(y )  Zyf (y I ) _2 T(y ’) dy ’
y

~ 2T(0) + [6T(0) - 8T(l )J y - 8[T(0)  — T(1) }~~
3”

~

~ 2.760346 + Z.357l94y - 5.ll7544 y~~”~ . ( 11)

It follows from the first  line of ( 11)  that y Y ’(y) Y(y )  — Z T(y) .

Thus, the second adiabatic invariant has a bounce-averaged time

derivative given by
r- .

= 2La 1 (m 0c/~~)<’~)Y(y)  - (p/y)(~r)[ Y (y)  - 2 T ( y ) ] }

= - 4Lap(q4B~~/3y m c 5)~~[Y(y )  - 2T(y)] ((B/B 0 )2)

+ y2 [ ( y 2 
- 1) Y ( y )  + 2T(y) ]((B/B 0 )3)~ (12)

in closed form. It remains to be shown that the bounce ave r ages

((B/B0
)2) and ((B/B0 ) 3) can be derived analytically from ( 1).

-10-



~ 
_ ._ _ _ _ _ _ _ _ _

BOU NCE A V E R A G E S

It proves  convenient  to in t roduce the aux i l i ary  va r i ab le  u y 2 .

Bounce av e r a g e s  of the r equ i r ed  sor t  can then be obtained f rom th e

r e a l i z a t i o n  that

- y Z (B / B o ) I 1 /Z ds

- ~-f (B/ B 0 ) [ 1  - 
2 ( B/ B ) ]~~

l /2  ds

= - .L( ( B /B 0 )) [4La T ( y ) ] ,  C 13a )

~~~~~~~~~~~~~~~~~~~~~~~ 
- 

2 ( B / B ) 1 3/ Z  ds

= ~-( ( B / B 0 ) 2 > [ 4 L a T(y ) ] ,  ( 13b)

~~~~~~~~~~

j [i 
- 

2 (B / B ) ] 5/ 2  ds
du

= - .!~.<(B/B 0 ) 3> [4La  T ( y ) ] ,  ( 13 c )

and (more  genera l l y )

j ii  - y2 ( B / B  ) ] (2 f l~~1) / 2  ds

= (-  1,2, n (2~~- 1) ! !  <(B ,B 0 ) n
>[ 4 L a T(y ) ] .  (13d )

Thus , the problem at hand will be solved by the discovery of a
S

p r e s c r iption for  evaluating the integral  on the lef t -hand side of ( 13 d ) .

— 1 1 —

f~ — -- —
‘q.

- ~~~~~~~~~ -~~~~=-~~~~~ =~ I ~~~~~~~~~~~~~~ .II1J~~
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The prescr iption follows from the fact that

d~~~~~1_2nf ~~i - y 2(B/ B  ](2n 1)/Z  
ds }

~~_ f [( 1 /u )  - ( B/ B 0 ) ]~
2 ~~~~ ds

— 
Z n - i  f[ 1  - y2(B/B

0)]~
2
~~

3
~
’2 

da. (14)
2y

Since the integrals fo u nd on the left-hand side of ( 13d) vanish at

y = 1 for positive integers n, it follows from (14) that

f r i  - yZ ( B/ B 0 ) ] (Z
~~~

l
~~

’2

= y
Zn_ 

ij
1 

(y ,) Zfl f[  1- (y’)2 (B/B 0 ) ]~
2’

~~
3
~~

2 ds dy ’

- :  ( 1 5 )

f or n ~ 1. Thus , it follows from (1) that

1 - y2(B/B 0)]
1 /2 ds = f ~~~2 [4La T(y ’) l  dy ’

2La Y(y)  (16a)

for  n = 1, from ( 11)  that

f r i  - y2 ( B/B0 ) 1312 ds = 3 y3f (y l) _4
[2La Y(y l ) ]  dy ’

~ (ZLa/3 ) 16T(0)  + 9 [3 T ( 0 )  - 4 T( 1)]y  •

• - f T ( 0 )  - 4T(1)Jy
3 

- 3 2 [ T ( 0 )  - T ( 1) J y 3/4~

(1 6b)

-12-
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for n 2 , and from (16b) that

• 
f 

[ I  - y2 ( B/B0 ) ] 512 ds

- ~ 4La -~ T(0) + ( 1 5 / 8 )[3 T( 0 )  - 4 T ( 1) ]y

- (f ~/ l 2 ) [ T( 0 )  - 4 T ( i ) ]y 3

• - ( 32 0/ 5 1) [T ( O )  - T ( 1)]y~~”~
+ (3/ 136 )~~3 T ( 0 )  - 2 0 T ( 1) J y 5 } (16c)

for n = 3. It follow s from (13) and (16), upon insertion of the

- auxiliary variable u = y 2 , that

- 
. <(B/B 0))T(y) ~ 3 [T(0 )  - T ( I ) ]y ~~~”~ - [3T(0)  - 4T ( 1)}y~~ ,

( 17a)

6((B/B 0 )2)T(y) ~

I0 {T(0) — T ( I ) J y ~~ 3”~ — 3[3T(0) — 4T(I)]y 3

+ [4T( 1)  - T ( 0) ]y ~~~, (17b )

and
ru .

408((B/B0)3>T(y) ~

520[T(0) - T ( I ) 1y 21”4 
- 153[3T(0) - 4T(1 ) ]y 5

.
‘

~~~ + 34 [4T( 1) - T(0) ]y 3 + 9 [ ZO T ( l )  - 3T(0) )y ~ ’. ( 17c)

Evaluation of the relevant transport coefficient . is achieved by

~~ substituting (17) in (5), (9), (10), and (12). One obtains, for

- i3-
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example

<4> ~ 
- (q4B~~/612m c5) ( y 2 - l)1520 [T(0) - T(1)1y~~

3”4

— 153f3T ( 0 )  - 4 T ( l ) )y 3 
+ 34 [4T( l)  — T ( 0 )]y ’

+ 9[ZOT(i) - 3T(0)]y~ T(y) (18)

upon substitution of (17c) in (5). Since T(0) 2T(l) ,  all of the

square-bracketed coefficients in (18) are positive. The correspond-

ing expression for ( y)  is given by

j .  (y> - (q4 B / 6 12 ym~~c
5 )~~l60 [ T(0) - T ( 1) ] y ~~~”~

• — 5 1 [3 T ( 0 )  — 4 T ( 1) ]y 2 + 3 4 [ 4 T( l )  — T (0) ]  - -

- 9[ZOT(1) - 3T(0)J y2} ÷ T(y) (1 9)

upon substitution of (17b ) and ( l 7 c )  in (9) . It is easy to verify by

direct evaluation of (19) and (18) that (y> —. 0 and that <y )  ap-

- 
proaches the equatorial value of (4) as y —‘ 1. These desired

results  are assured by the fact that ( (B/B0 )3> ((B/B 0 )2 >

• 
((B/B0 )> I when this limit is taken in (17). The bounce average

of B/B 0, as given by ( 17a) ,  is not actually utilized in the theory

• of synchrotron loss but is included here in the interest of algebraic

completeness.

It is convenient that the y dependence and the y dependence

appear in separate fa ctors in both (18) and (19). This factoriza-

tion make s the quantities ( -  3 m c 5 /2 q4B ) (  m
0
c /p)2(4> and

( -  3 m c 5/Z q4B )y<~) universal functions of y. Both are plotted

in Figu re  1 , the f ormer as a sol id curve and the la tter as a dashed

~~ curve. Thus, the solid curve repre sent s y 2((B/B 0) 3) and the

- 14-
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Figure 1. Maximal values (“data ” points ) and bounce ave ra ges (dashed
and solid curves, respectively) of the quantities y(B/B 0)2

- 
- y3(B/ B~ )3 and y2(B/B~ )3, which are proportional (respec-
tively) to the loss rates ~r and 4 due to synchrotron radiation
by particles trapped in a dipola r magnetic field
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dashed curve represents y ( (B/B 0 )2) y 3((B/B 0 )3). The Isolated

“data” points represent instantaneous values of y2 (B/B 0 )3 and

y ( B / B 0)2 
- y3(B/B 0)3, i. e. , correspond to instantaneous values

of 4 and ~ r plotted on the same scale. The filled circle s repre-

sent y~
4 and correspond to mirror -po int value s of y. The open

circles represent y - y3 and corre spond to equatorial value s of ~
r.

The instantaneous value of ~ vanishes by vir tue of (8) at the par-

tid e’ s mirror  points. Since ~j ,  being proportional to y2 (B/ B0 )3,

is a monotonic function of B/B0, it is not surprising that the

mirror-point values (filled circles) of J 4 J  exceed the bounce aver-

age (solid curve) . However , it seems that 
~~~~~~ 

is a monotonic func-

t ion of B/B 0, and therefore maxuru al at the equator , only for  y2

~ 2/3. Otherwise, the maximal instantaneous value of 
~~ 

is at-

tained where B = 2B0 /3y2 
= ZBm /3• The crosses ( X )  in Figure 1

thus correspond to the maximal instantaneous values of ~~ 
and

impose (fo r y 2 
~ 2/ 3) an upper bound of (4/27 y3) on the quantity

-: y ( ( B / B 0)2) - y3((B/B 0 )3) to which ~ r is directly proportional, ac-

• 

• 
• co rding to (8) and (4). Similarly, the open circles (correspond ing

to y - y3) impose an upper bound on y((B/B0)
2
>— y

3( (B/B 0
)3> for

y 2 
~ 2/ 3.

The sim ilarities between the coefficients in (18) and those in

(19) are not accidental. There is a very definite analytical rela-

ti onship [ derivable from (1),  (2),  (5),  and (9 ) ]  between ( )  and

(y). Thi s relationship follows from the property that

5 ,

( 1/y ) (4 )T(y)  = - (V 2 
- 1)(q ~ B /12m c5La) 

- 

—

X y f (B/ Bo )3 [ 1 - y2(B,B 0 )] _ l /Z ds , (20a)

-16-
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whereas

( 1/ y ) < ~~)T(y)  = - ( 1/ y ) ( q 4B / l2 m c5La)

x f ( B/ B0 )2 [ 1  - yZ(B/B 0)]~~~2 ds. (2Gb )

Inspection now reveal s that the ri ght-hand side of (20a) is precisely

equal to - ‘y ( ’y - 1) times the derivative (with respect to y) of the

r i ght-hand side of (20b). Thu s, it follows from (20 ) that

(4)T(y ) d T(y)

2 = - — (y) I (2 1a )
y ( y  - i )v  dy y J

and from (2 1a)  that 

1L y I T(y ’)(4( y ’)> dy ’ 
2 1b

2 
‘

T(y)J y’ (V -

- ~

• since (y)  = 0 by virtue of (8) and (9) for y = 1. Inspection of

(18)  and (19)  reveals that <. > and <y>, as calculated via (17),

• satisf y precisely the relationship imposed by (21a).  This fact tend s

to confirm the correctness  of the algebraic manipulations carried

out above.

4.
•‘l

FOKKER-PLANCK EQUATION

If processes other than synchrotron loss are neglected as a

f i r s t  approximation , the evolution of the bounce-averaged canonical

-

~~~~~~ 

phase-space density T is given [Haerendel, 1968; Schul z and Lan-

-1 7-
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zerotti, 1974] by

+ -
~~~~~~

. [<i~i>r] + [ ]

Implementation of (22) ,  however , would require one to express

and (J) as functions of M and J, whereas the present work yields

(M> and (J> mainly as functions of V and y. It is certainly

possible to express V and y as functions of M and J [Chen and

Stern, 19751 by means of accurate analytical approximations unre-

lated to ( 1) . However , this would dis turb th e in ter nal consistency

he retofo re maintained in the present work , in which all analytical

• approximations have been derived from (1).

The transformation of (22) to the variables V and y, more-

over, would make unnecessary any such appeal to analytical ap-

proxirnations not derivable from (1) . All that one requires in thi s

case is the Jacobian of the transformation from (M, J) to ( y , y ) ,

Since it has been shown above that M = (y2 - l ) ( m
0c
2
y
2/2B0) and

J = 2Lap Y ( y) ,  where yY ’( y )  = Y(y) - 2T(y),  it follows that the

relevant Jacobian is give n by

a(M , J) / ô ( ’y , y )  - 4La~ p(m 0c
2/B0)y T(y). (23)

Thus, it follows [Haerendel, 1968; Schulz and Lanzerotti, 1974]

from (22) and (23) that

+ 

*~~~
- [VP <4>1] + y~~(y)  ~~ .[y T(y)<~ >1] =

( 24)
-18-
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k
2 1/2where p = (y  - I )  m0c. The conventence of (24 ) is enhanced

by the fact that the V dependence and the y dependence of ( >
and (y) appear in separate factors in ( 18)  and (19) .  The unit Ja-

cobian in (2 2 )  arises from the fact that M and J are canonical

• action variables of the und e rl y ing phase space [H aerendel , 1968;

Schulz and Lanzerotti , 1974) . Howeve r , the form s of <M> and

(J ) given by ( 10) and ( 1 2 )  are less convenient for use in (22) than

are the forms of < >  and (y> given by (18) and (19)  for use in (24 ) .

In the likely event that additional dynamical processes (besides

synchrotron loss) are operative, the corresponding Fokker-Planck

t e rms  should be added to (24) . These might include collisional

te rm s leading to energy loss (additional (
S

)), pitch-angle diffusion

(Dr,). and energy diffusion (D
VV

). They might also include wave-

particle interaction term s requiring the specification not only of Dyy

and D
~ y~ 

but also of the off-diagonal term 
~~~~ 

( ~~~~~ Finally,

they might include distributed sources (S) and (charge-exchange)

sinks ( - < T ~~’> 1) of trapped radiation, as well as radial diffusion

(DLL ) at constant M and J. There is no contradiction in describ-

ing radial diffusion as occuring at constant M and J . even when

the terms describi ng other dynamical processes in the same Fokker-

Planck equation are being evaluated at constant y or y. The sam e

phase-space density I is simultaneously a function of (M , J, L; t)  and

of (y .y , L; t) . The representation chosen for the purpose of evalu-
5~ • atin g a given term in the Fokker-Planck equation should be deter-

mi ned by the set of variables with respect to which that individual

term has been explicitly specified.

-19-

1~La

~ 

~~~~~~~~~~~~ JTJ~~TIT~~~ ~I 
_ _ _ _ _ _ _ _ _ _ _ _



r

DISCUSSION

The present work has yielded expressions (in closed form) for

the bounce-averaged time derivatives of a particle’ s kinetic energy

and equato rial pitch angle (more precisely, the sine thereof) .  The

expressions thu s derived are contingent on an accurate representa-

tion for T(y), as given in (1). Experience has shown [Schulz,

• 1971] that functions [such as Y(y) in (11)] which are derived from

T(y) by integ ration are about as accurate (by percentage) as T(y)

itself. The present representation [Davidson , 1976] for T(y) is

accurate within 0.6% for 0 ~ y ~ 1. Since the bounce average of

( B/ B0)~ is found to involve n integrations over T(y) and n differ-

entiations of the result, the accumulation of additional er ro r  is po s-

sible but not likely. Since the bounce averages ((B/B 0 )2 > and

• < (B/B0
)
3
> are the essential ingredients iii <y)  and < y>, it is

likely that (s,.~)  and <y) are thereby represented about as accurate-

ly as T(y) itself, i.e., within 0.6% for 0 
~ 
y ~ 1.

Moreover, the present expressions for <.> and <y> are com-

paratively simple and ea sy to program. Each is a ratio of func-

tions of y’ 
“~~

, having a numerator of four terms and a denominator

of two terms. The superficially cumbersom e numerical coefficients

• involve only T(0) and T ( l )  in linear combination, where T(0) ~

1.3801730 and T(1) ~ 0.7404805. Thus, the expressions for < >
and (y) given respectively by (18) and (19) should be fully satis-

5;

factory for most analytical purposes.

The component of acceleration ( p c )  associated with curvature

-20-
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of the field line ( a B /  as)  has been neglected here , as in Coroniti

[1 9 7 4],  in its cont r ibu tion to y and y. This approximation should

be valid for particles having I (pc/qB0) (  a,~ / 8s 0 << y. i.e., for

particles to which the laws of ad iabatic motion (also tacitly assumed

here )  apply.

The present method for cal culating bounce averages of the

form ((B/B 0)
15 should be useful in many applications besides the

theory of synchrotron loss in a dipole field. The method lends it-

self readily, for exam ple, to the calculation of collisional t ransport

coefficients in the presence of a scattering medium distributed with

a density proportional to (B/B 0 )’1 along a field line. Although the

method presently requires n to be a positive integer , it should be

easy to find an analogous m ethod for handling negative integers n.

Finally, field geometries other than the dipole could be treated by

introducing the forms of T(y) appropriate to the other field geome-

tries of interest.

4,
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LABORATORY OPERATIONS

The Laboratory Ope rations of The Aerospace Corporation is conducting

experimenta l and theoreti cal investigation s necessary for the evaluation and

application of scientifi c advance s to new military concepts and systems. Ver-

• •a ti lity and flexibility have been developed to a hig h degree by the laboratory

personnel in dealing with the many problems encountered in the nation ’ s rapidl y

developing space and missile systems. Expertise in the la test scientific devel-

opment s is vital to the accompl ishment of tasks related to these problems. The

laboratories that contribu te to this research are:

Aero physics Laborat ory : Launch and reentry ae rodynamics , heat trans-
fer , reentry ph ysics , chemical kinetics , structural mechanics , flight dynamics ,

• atmosp heric pollution , and high-power gas lasers.

Chemi stry and Ph ysics Laboratory : Atmosp heric reactions and atmos-
pheri c optics, chemi cal reaction , in polluted atmo spheres . chemical reactions
of excited species In rocket plumes , chemical thermodynam ics , plasma and
laser-induced rea ctions , laser chemistry, propulsion chemistry, space vacuum
and rad iati on effects on miterials , lubrication and surf ace phenomena , photo-

• .ensit ive materials and sensors , hig h precision laser ranging, and the app li-
• cation of physics and chemist ry to problems of law enforcement and biomedicine.

Electronics Research Labo r tory: Electrom agnetic theory, devices, and
propagation pheno mena, including plasma elect r omagnet ics ; quant um electronic s.

- • 
lasers , and electro -opt ics; communication sciences,  app lied electronics , semi-

• conduct ing, superconducting, and crystal device physics , optical and acou stical
lmagin~ ; atmosp heric pollution ; millimeter wav e and far- infrared technology.

Materials Sciences Laboratory : Development of new materials; metal
matrix composites and new forms of carbon ; teit and evaluation of grap h ite
and ceramics in reentry; spacec r aft materials and electronic components in
nuclear weapons enviro nment ; application of fracture mechanics to stress cor-
rosion and fatigue-ind uced fractures in structural metals.

Space Sciences Laborato ry: Atmospheric and ionospheric physics , rad ia-
tion from the atmos phere . density and composition of the atmo sphere , auror a e
and air glow; magnetosp her ic physics , cosmic rays , generation and propagation
of plasma waves in the magnetosphere; solar phys i cs , stu d ies of solar magnetic
fields; space astronomy , x-ray astronomy ; the effects of nuclear exp los ions ,
magnetic storms , and solar activity on the earth ’ s atmosphe re , ionosp here , and
magnetosp here; the effects of optical , electromagnetic , and particulate radia-
tions in space on spa ce systems,

THE AEROSPACE COR PORATION
El Segundo , Ca lifornia
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