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[ 1 — [Equation 551
V1+2 52

2P

Royleigh dissipation function for struectural damping

modulus of rigidity, 513%77

thickness of shell wall

Bessel functions of real argunent

o
C. =
My 1~ (Y = ) [ See Equation 55]
o
. =
Aqf (¥ Pan Y -~ 1 [see Equation 56]
o
Bessel Functions of imaginary argument
a 2 A% - p? [Equation 46]
a(2+2 -2—5 A )-n'0® L [Equations 46 and 58]
12a
. o
(;—0 -1 [See Eauation 56]
Q

structural damping coefficient [Equation 25]
lenpth of chell

number of a:xial half waver in vibration pattern of shell
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natural frequency

amplitude of propeller force.

generalized force due to fluld reaction on end caps
[Equation 13]

generalized force due to fluld reaction on eylindrical
surface [Equation 8]

generalized propellef force [Equation 15]

area of cylindrical surface

cross sectlonal area

thickness of end cap

kinetic energy of shell cap system

longitudinal displacement

longltudinal generalized displacement

potential energy of deformation of shell-cap system
radial displacement of shell

radial generalized displacement

longitudinal coordinate

reactive componenﬁ of cap acoustic impedance [Equation 34]

reactive component of shell acoustic impedance [Equations
55 = 571

Eescel Functions of real arpgument

acoustlie impedance of end cana
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a ~TEhS [See Equation 43]
ha(1-v2)

B = {E/mw for m odd [See Equation 6la]
0 for m even

8 = logarithmic decrement for structural damping

Y = Euler's constant

Cmo = acoustie impedance of ecylindrical shell surface in
water [Equation 7]

9c = resistive component of acoustic cap impedance [Equation 34

ﬁo =. resistive component of acoustic shell impedance

‘ [Equations 55-57]

2] = angular coordinate of shell
nra

A = I

xo = wave length of sound wave in water

v = Polsson's ratio

p - mass density of shell material

Py = mass density of water

¢m = phase angle of m the mode

v = L [See Equation 55]
mr _ (G
% P

i

frequency at resonance forcing frequency due to propeller
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NOMENCLATURE

mean radius of shell

X

2 ‘ 2 _¢
smphia + epocowa m [Equation 42]

X

smphla + emp e, “mo £ [Equation 42]
w 2

area of end cap
longitudinal dilsplacement amplitude

real and imaginary parts of A
. -
epocova Gc + K [Equation 43]

4 =
2map c 6 .z + K [Equation 43]

sound velocity in water

w

© em—
-,
v o-

°

, E
2pil+vf

radlal displacement amplitude

real and imaginary parts of C

Young's modulus of shell material
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A SIMPLE MATHEMATICAL MODEL FOR AXIALLY SYMMETRIC MOTIONS

OF SUBMARINE HULLS DUE TO PROPELLER EXCITATION

I. INTRODUCTION

N

A program is currently being pursued,by HYDRONAUTICS, In-
corporatedggg”;stimate the relative degree of sound radiation
from various pulsating sources on.a submarine hull. This particu-

lar study was initiated to compute the approximate effect that
the pulsating propeller force could have on hulls of various
dimensions.

_~~""""Although there may exist more accurate mathematical models

-

//for descrlblng this phenomenon than the one employed here; there

G

do not exist, to the writer's knowledge, any closed form formulas.
It is the purpose of this study to obtain approximate formulas
which can be used to assess the relative importance of the physical

parameters wlthout the use of complicated digital programs.

\
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II, THEORY

A. Digplacement Components

The hull willl be approximated by an elastle c¢ylindrical
shell with rigid eircular and caps (see Figure 1). The rigid end
caps may move longitudinally as a result of the hull shell vibrat-
ing in a longitudinal mode of vibration but the caps prevent any
radial motion of the shell at the ends. Only the axially symmetric
notions of the system will be considered here and it will be as-
sumed that when the shell viprates in a single mode, the displace-

ments can bhe approximated as follows:

u = U(t) eos E%E " [1]
w = W(t) sin E%E

In cquation [1] m 1s the number of axial half waves in the vibra-
tion pattern. PFor the first mode m = 1 and 1t will be seen later
that the hull could vibrate with displacements that are primarily
longitudinal with a small radial component or primarily radial

with a small longitudinal component. The former will be the fun-
damental longitudinal mode of the shell and will be of relatively
low frecquency compared to the latter which is the fundamental

radlal node.

B. Kinetlc Energy and Potentlal Energy of Shell Deformation

Under the acsumptions of axially symmetric motions the po-
tentlal enecrgy of deformation for the m th mode of the shell can

he written ac followss?

vV = _TEhS [UA24WRe2vAUW + —E:: (A*w?)] [2]
ba(1-v2) 12a°

1R, . Arnold and G. B, Warburton, Proc, Roy. Soec., London, A 197,

238-25u (Lo4%).
b (19 @est Avaijlable Copy
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f
and the kinetlc energy 1s
7= TR g2, g2y 3]
mma

In the above equations N\ = iy

In deriving the expression for the potentlal energy the assump-
‘tions of thin shell theory have been employed. For a more detailed
account of these assumptions the reader is referred to the above

referencel.

C. (Q@enerallzed Coordinates and Generallzed Forces

The generallzed coordinates of the system will be chosen as
the independent displacements U and W. The generalized forces
corresponding ¢to changes 1n these dicplacements will be assoelated
wilth the following:

1. The water pressure on the cylindrical surface arising
from radlal displacement of the cylindrical surface

2. The water pressure on the end caps arising from longil-
tudinal displacement at the énds

3. The forece on the hull due to the pulsating propeller
action.

In the anaolysis presented here the followlng assumptlons
wlll be made wilth respect to the water pressures:

1. The preccure on the ends due to radial motion of the
cylindrical surface will be neglected (thicz assumption should be
valid for primarily longitudinal motions)

2, The pressure on onc end duec to motion of the other end

will be neglected (thils assumption should be valld for long shells

&The end cép kinetic energy is neglected in thisc study. This 1s
diccusoed at the end of the report.

CONFIDENTIAL
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where the ends are far apart)
3. The pressure on the cylindrical surface due to motlon

of the ends will be neglected.

Let the generalized force assoeciated with the radlal pressure (Gue
to radial displacement w) be Qw, then the virtual work due to a

change in the generalized coordinafte W is Qw 8w, If pr 1s the

pressure on the ecylindrical surface due to radial motion then the

work done in a displacement 6w is

[ p, Gwds (s = area of eylindrical surface)
s

"but
6w = g¥ sin Q%§ .
Therefore
q = it e p, sin TX adeax . (4]
0 O - : .

The radial pressure P, willl be taken equal to the value for an in-

finitely long ecylinder the surface of which has the radial dis-

placement prcportional to sin Q%i . The value for thils pressure

is given in a previous reference? and can be written as follows:

P, = =P WL  (ka)sin T . (51

r
In formula [5] p, is the density of the medium, ¢ is the sound

velocity in the medium and Cmo is the acoustlc impedance.

M. C, Junger, J., Aecoust. 3oc, Am., 25, 40-47 (1953)
) CONFIDENTIAL
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~ -
2.2
ka =q) L - (ER) 6}
m ca
®)

where o is the fregquenecy of the vibration. The acoustic impedance

can be written in terms of its real and imaglnary parts as follows:

oo = emo(kma) + 1 Xmo(kma) [7]

where emo 1s the resistive component (associated with radiation

damping) and Xmo is the reactive component (associated with vir-

tual mass).

The generalized force given by [4] can then be written as

follows:
b 2r . mmTx
Qw = - {7 | Po %o W Cmo sin® —7—-ad0dx
c O
or
v z X
Qp = — @mp, e W 2 Lo (8]

Let QU be the generalized force due to longitudinal motion of one

circular end cap, then

QU 58U = - | Py [Bu] dA_ (A = area at end cap) [ 9]
A x=o,2 ¢ ¢ '
¢

In equation [9] Py is the water pressure due to longitudinal motion

of the end cap.
Wow

[bu]xz:c,z =2 G’J .

Therefore

O - - £ pydh, = F, (force on end cap).
e

Best Available Copy CON‘FII;ENTIAL
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But -
Fc = 'Zc‘Uc
where Zc 1s the acoustic impedance of the circular piston end cap

moving agalnst the water.

Thus

QU = -2 U
c ¢
The acoustlc impedance of the end cap can be written as follows:

z, = ma® p_.c_ (9c + ch) 12

k]

where ec is the resistive component and Xc 1s the reactive compo-
nent. The values for Oc and Xc will be taken as the valuec for a

circular piston radiating from one face into an acoustic medium.
The values for these impedances are gilven in a recent reference.>
The generalized force due to both end ecaps will be

~ o 2 . r : 3
Oy =20; =-2p c ma (ec FiX ) U [1§: 

Lastly, let the generalized force due to the propeller force ve

Qp, then
Q.80 = P [Bul, _, , = POU
Thus
iwt
o =P="P
D

D. Equatlions of Motion

Let F be the dissipation function acsociated with structural

damping, then the Lagrange's eqﬁations of motion for the shell-end

can system will be ”}est Available COpy

®5. Honich, HRL Report 5538, U, S. Naval Rescarch Laboratoery,

Wachinrton, D.C., Oct, 24, 1960.
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_7-.
d T,  dF 3V = a ,o7, . oF v
() + S+ =q,+ w Ty [16]
a3 3 dv % at 5w o ow N
where
F= % K (0®+w?) ‘ [17)

in which X is proportional to the structural damping force).
" Substitutling the values for the poteﬁtial energy, the kinetic
energy, the dissipation function, and the generaliczed forces, the

following equations are obtalned

irphLal + —TERE @ ) + R U = -2p_c ma2(6_ + 1X_)U + P e®"
2&(1-\/2) O O C X . o]
[ Y] 2 - ¢ .
swphbaW + ~ZEnE W+ VAU + 22— 2* Wi+ B W = -2map ¢ W % 4 (18]
2a (1-v2) 1222 °0° 1o

Assuming that the motions will be harmonie in time the equations
can be rewrlitten as follows

oe x . . - 1.‘ 2
iwphiali+2p ¢ ma? T(=S)+2p 70 U+K U + —2 [2Bysvw)= p e @t
(ONNe} W 0 c 2 (o}
2a(1-v<)
) ¥ e Ko 4 . 2 TENh4 n?
smphlaW+2map ¢ W (T) 3+ 2map e WO = F + —————W+VAT+ ——— A*W)
2a(1-v3) 12a®
+XW = 0 [19]
or .
2 - 1wt
Bl 2 S 0, *+ K o —TEnd [32U + vl _ Poe
X X X
-,1' 2 —-9— - 2 »} a __c_ L . 2 c
4Vph£a+2pocova = 2a(1-v®) grphﬁa+2pocova = avphﬂa+2pocova 5
[2rap ¢ 6 %+ R (WU b A Wl
vl Po®o"moz . _TEh4 12a° -0 [20] i
X X - %
1 mo £ o (1ov2Y D _ mo £ &
gwphZa+2wapocdjs— 5 2a(1-v7) zmphla+emp ¢ —= 3 ‘

s
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Before going further, it is of interest to note some well known
speclal cases which may be used as a basis with which to compare
the more general results to be obtailned later. The first case is
the vacuum uncoupled longitudinal vibrations of the shell. For

this case the equations of motion reduce to

P eiwt ]
U + wEhS KzU - _9______ [ 21]
a(1-v?) wphta 3mrphla

The natural frequency is given approximately by

D = %I.W/ %- (neglecting-———;L——- ) {22]

1-v2

This is the natural frequency of a free-free bar of length 4.
The second speclal case 1s the in vacuum uncoupled radilal

vibrations. For this case the equations of motion reduce to

q
2
2
W+ wELL 12a - -0 [23]
a(1-v2) rphla

The natural frequency is glven by

E 1 h* a
p = —_— = 1+ A [24]
Wv p(1-v2) & '\ 12a®

AS A = O thils reduces to the well known formula for the radial vi-

brations of a shell. Formula [24] includes a thickness effect term
ha
12a2

pression for the potentlal energy.

2% 1in view of the fact that bending was considered in the ex-

CONFIDENTIAL
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The structural damping constant X is as follows:

§=E§2_f21_@._ - [25])

where p 1s the natural frequency

§ 1s the logarithmic decrement for sftructural damping

phfa are as glven before.

E, Solutlon of Equations

Now going back to the general equations and letting

U = K'eiwt » W = E'eiwt

the following equatlions are then obtained for determining the am-
plitudes A and C

[2p ¢ ma%8 +K ) | 2 T =
? T + 10k oo ¢ — mEhZ [ A% A+vA C ] .
1 2 _C _y2 1 . 2 _C
zmphlatep c ma® 2a(1-v=) zmphla+2p e ma®
P
o .
= % [26a]
%thﬂa+2pocowa2 ™~
o— o n 4 sl
- [2vapocOGno é'+ X TEh{ LoraR 1227 ¥ o
~0? C+iaC —— + 2 = 0 [2a%b)
2 _mo £ w2y L 1), Tmo £
amphla+2map ¢ =3 2a(1-v<) zmphla+lmap e ~— 5
Colleeting terms, we obtain
- T
; . 2, %
- ERZ A2 1@(2pocowa 9c+K) .
Ag 2 X + X - @
22 (1= ) Imphfa+2p ¢ ma? ~%  Imphfat2p o ma® S
; < Poo w =TP Poo w
TELS T ' :
.7 [ 2a(1~vZ?) PO
U X = X [2?&]
J,. 1 2 2 __9_. 11: bl 2 -—c—
1gwpnﬂar2pocova = i anLﬂa+2pocowa m
CONFIDENTIAL
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I\-[ mEhd VA ]
X

2) iy mo £

2a(1-v®) gwphlatemap ¢ —= 3

- 2

=|2a (1-v2) 12a

+ C

)
O O nmo o =0 (_7 [27b]

iw(2map ¢ 6 %+
+ X

s | =N

2
X

1 Mo & 1 mo
zvhlpa+2wapoco - 3 gvphla+2wapocdjg—

Equation [27] constitute a set of two complex simultaneous alge-
bralc equations which are to be solved for the complex amplitudes

A and C, The solutions will be of the following form

B=L% +1iB&

r i
- - - [28]
C = Cr + 1 Ci
where the r subscript refers to the real part and the 1 subseript
refers to the 1maginary part. The displacements themselves will
_then be equal to
. -lFT2 .72 mrx .
u A% + A" cos =5= cos (ot + ¢m)
[29]
= =2, T2 mrx
w = ‘\/Cr + % sin == cos (wt + ém)
where R Ki
Om = tan —
A
r

°m is the phase angle between the driving force PO and the dicsplace-

ments and arises because of the radlatiosn damplng and structural damp-
ing in the system,

Best AvailablexeeR¥a
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F. Longitudinal Motions
The motions that are of prime importance as a result of pro-~

peller excltation are the primarily longitudinal ones. These un-
coupled motions in the water will now be studied in more detail.
The equation of motion for uncoupled longitudinal motions in the

water is
3 2 * ——
- ) [2pocova 6, + XI TERL nE |
* x * X
1 a S v2y) 1 2 _¢
zmphla+p ¢ ma® ba(1-v¥) smphfa+2p ¢ ma” ~
o peter |
= % [30]
kY 2 ¢
avphza+2pocowa =
Assuming U = & %%, we obtain
in(2p ¢ ma®e_ + K) 2
-2 + o o c — + TEhL 2A - T

%vph£a+2pocowa2 53 4a (1-v2) %vph£a+2pocowa2 52

o
= T [31]
%ﬂph£a+2pocova2,£—
So
P
0
. X,
_ wphla + 2poco7ra2 —
A = (32]
2 2 ey
mEh4 2\ \ ° iw(epocona 6, + K)
X, “e |t X
-v2) 1 2 & i . 2 .t
4a (1-v?) ‘rph£a+2pocova ™ evph£a+2pocowa‘ -
The natural frequency of these longitudinal motlons in the water
iz therefore glven by the following frequency equation
CONFIDENTIAL
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2
‘ vay 1 2 _C
ba(1-v=) =mphla+2p e ma® —

The values of o whieh satisfy [33] are the natural frequencies of
the system. 1In general o cannot be obtained directly since Xc is

a function of w., For relatively low frequencies, however, the re-
sistive and reactive impedance of an ﬁnbaffled circular piston
radiating from one side into an iInfinite medium can be approximated

as follows®:

6.~ % (ka)?, X, = % ka | [34]
where k = er = & .
A c
o) o

Under these circumstances the frequency egquation becomes

2
TEhL 2A “(132:0

ha(1-v2) Imphla+madp ;

The natural frequency can then be obtained in closed form and 1is

as follows:

TEhS o\ 2

_ ba (1-v3)
@ = TV %wphlﬁ#waapo [35]

or neglecting

L qest Avaitable CopY

1~V

[36]

e
[}
=5
5
P
Y]
-

oyt {0
n
heoX i o)
Q
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13~
So the natural frequency of the low frequency longitudinal motions
in water is equal tothe,in.vacuum frequency reduced by a factor
which depends on the radiué of the shell, the thickness of the
shell wall and the shell length. It is interesting to note that
the factor in the denominator of equation [36] can be written as

b
pECd

2a2p° bra®p  3M

= = Sphere . [ 37] “
hip 2mahlp Mshell :
where Msphere is the mass of a sphere of water which has the same
radius as the shell and Mﬂhell‘is the mass of the shell without the

end caps. When the shell is oscillating at its natural frequency
the amplitude of osecillation is found from equation [32] and is5 as

follows:
|z| - — [38]
o (2p e ma ec+K)

i

Using the low frequency approximztion for ec the following expres-
sion is obtained:

%] e (391
2 Aa @§phﬂa ) ‘

]

w(2p ¢ ma
© 0 b2
)
or
%] - (3921
22 Tate
P cohli

%wiphﬂa( + 5)

The propeller force is about 10 percent of the mear:- thrucsty the

mean thrust is equal to the drag and the drag is gi&%é approximately

by the following formulas 3

i
]
¢

5aqt Available COPY
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~ A 2
| D—gCDpovS
where

D = mean drag
drag coefficient (about .05 for modern submarines)

v = veloeity (15-30 knots)
S = cross sectional area

G. Coupled Longitudinal-Radial Motions

Going baek to the more general equations [27] the second of
the equations gives the following relation between the radial dié-
placement amplitude C and the longitudinal amplitude A for a given

L]

longitudinal driving force Po

[ TEhS 2V ] Ny
2 X0 2 '
- ba(1-v%) imphla + 2map ¢ -I-(:—?-—a-
G = - f40]
TRl (242 A*) + 1o (2mep c 6 %4+ E) \
ha(1-v2) 12a® °com 2 e
o 2

1 : LIS
smphla + 2mp e =3

Therefore substitution into the first of equations [27] give:

P
. 2
T = A f41)
. [aavx] [azwj
ax® , B o Ua ) Un
A A h2
a(2+2 7\‘*)
12a°
Y

where J ., X, x o 2 :
A = -—‘;’:vphﬁa+2pocoTra o Al = aTTtha'!’eTrap —C.D-— ) [42]
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_ TEhS N 2 = oo i = 4—'% 1
a = :;?;j;;; B =2 c ma 0, +K B' = 2map_c O 7 *+K [ 5]} ;

K 1s the structural damping parameter as given before.

Simplifying
P
R = 2
[ a2A2+10B-An?) [a2va] [a2VA)
2
fal2+2 —E——-k4) + 1wB' - A'w?]
12a%

Now divide the denominator of the above equation into i1ts real
and imaginary parts as follows.

A% )+10B' -A'w?] -[a2¥A]?

[a2A2+i0B-AwB] [a(2+2
1222

Denominator =

[G(2+2 7\4) + 1iwB' - A,ﬁ)e]
12a% .
Let ) |
K =a22® - ao? K' = a2+ <2~ 3%) - a1®
12a®
Then
Denominator = [K+ioB) [K'+iwB'] ~ [a2vAl?

K" + 1oB'

2 ’ 2
x - [92]°K! i ( pe [22VAITBY

it

For uncoupled longitudinal motions set Vv = 0 and the equation
reduces to the uncoupled longltudinal cace obtained previously.

D act A\,!a%?.g.b\e Copy CONFIDENTIAL
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" The natural frequency for coupled motions is given by the solution

to the following frequency equation:

_ Jean)? x -0 [49]
[Kl2+m8 312}

K

and the resonant amplitude of the longitudinal component of motion

is given by
P

.
[ emrm]

K'a_’{bEB'E

(50]

where @ 1s the natural frequency. For small values of w the term
©2B'2 will be considerably smaller than K'Z2. Under the assumption

that ©®B'? << K'? the frequency equation becomes

KK' = [a2va)® [51)

At low frequenciles it can be shown (and will be shown later) that
A and A' are independent of w. Therefore the frequency equation
reduces to

[aamal[a(2+2—f-‘f-— 7\4)}402{[A][a(2+2-f——)\‘)]+[!\'][02)\3] } +AA 0
12a2 1222

= [a2vA)® [52]

If we focus our attentlon on modes of relatively long wave length
where A is small and if we neglect ve compared to unlty in the
above equation then the shell end cap system has the.following two
sets of natural frequencles:

2a 2an?
w? = o7 > = S [53]

Thece frequenclecs are exactly the uncoupled radial and longitudinal-
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frequencies in water respectively. The lower one,wa, 1s the longi-
tudinal and 1s the one of greatest practical importance in this
study. |

In order to simplify the theory further some rather far
reaching assumptions have to be made concérning the values of B,
B!, and K', Therefore the followling section willl be devoted to
the simplification of these expressions and the justification for
this, ‘

If it 1s assumed that the impedance offered by radial motions
can be approximated by the impedancecdfran infinitely long cylinder.
in an infinite acoustic medium whose vibration pattern is identical

to the.finite shell (see recent reference*) then

emoz
B' = 2map ¢ 3 (54]
2 X
K' = a(2+2 -2——-x‘)-A'm2 A'= %w hfa+2map ¢ —Eg-é
1282 P po o w 2
chr/co Ko(ki a)
If ¢ cr/b <1 6 =0 ; X =
o) mo mo
. (kﬁ a)Ki(kﬁ a)
"where
Y = —2
mr G
Lo Ye
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4J. Greenspon, Jour. Acoust. Soc. Am., Vol. 32, No. 8,1017-1025,

August 1960. \e Gop\]
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for resonant longitudinal vibrations p = o = %1 Cqo F
. c = E
e Y
2
t — - \/
ka = x\/l (¥ e /e.) [55]

Y cr/bo[Jo(kma)Jl(kma)+Yo(kma)Y;(kma)}

(,2) [13, Oega 1541, (2017

If ¥ cr/'co > 1 Xﬁo =

2N Y cr/cO

mo vr(kma)2 {[Jl(kma)]a+[Y;(kma)]a}

i

. a_—' - 2,.2 \p2 _ -
. where k a x\/(y cr/co) 1 Aqflec/e] )F 1 = AK*

_ 2,.2\n2 _
K* --che/co)F 1

For small k a (smoll A) and ¥ cr/bo >1

. - xy(cr/bo)yo(kmg) (561
mo (kma)Yl(kma)

. EXY(cr/co)

mo 2

v(kma) Yi (kma)
where 5 kma
Yo(kma) = ;'(ﬂn -+ v) v = Euler's Constant
2
Y;(kma) N vkma
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. So
AK
Xmo = 'A(ce/co)]? (En = -+ 'y) [57]
?
i
emo = E'A(ce/co)F
X *
(therefore-{%g = a (4n l%— + v) so that A' 1s independent of the

mode and frequency for small ).

Thus (neglecting structural damping)

T J
B' = 2map ¢ 3 A (ce/co)l" 5
+*
2 . AL 4
| .2 2ra®p c A (ce/co)E‘(Zn 5 +v) 5
K' = a(2+2 A*)-w?{3mphia + —
12a2 j*-c F a
e
. P *
_ EhZ am - A\2F2 %77___7\25,2 a oo L (4n AK + 'Y) [58]
a 4(1_V2) h P 2.

For ¢mall A the lact twe terms will be neglccted* leaving

Reow 24 Bl [58a]
4{1-v2)
Thuo insertlng the above relations in Equation [50]
A = _ 2 T 7 [59]
v ‘ = ~
I SR, (a2vr) 2map c 3 x(ce/c(}«* 5
Po%o c [ Eht 27 ]2
% . .
Due to the behuvior of the logarithm this assumption may be in
conciderable error for some geometrilcen.
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Simplifying and substituting the value for Gc

P

- S — - [60]
21 € p2.2 2,3 T en L
. w{bocowa 2= FEAT +VEN 2wapoco2 o r 2}
c e}
o]
Thus
_ P
A = = [61]
2 T 2 °e ce va 2
WON 3 PoCo? E;-F 3; F 4+ V:m 7

Instead of employing the resistive impedance of an iﬁfinite cylin-
der let us use Robey‘ssresults for the rccistive impedance of a
uniformly pulsating ring and average the displacement value for the
given mode. 'The B! can then be written (for small ka)

- 2mal
t -—
B' =B p.C, 5 (ka)(kZ) [61a]
where £ is the length of the eylinder and k = E—‘*’—
o
fgw fz sin E%4 ix a d 0 oma 2o (~cos HIE )2
B = 0 0 _ T o o8 7 0
[ [ adldx 2ral
So
- _ 2 s <
Bo= if m is odd

3 =0 if m is even.

Tubztituting this into the equation for &, we obtain

T -

[62]

~
&

2 o
T 2.2 € _a - L, 45 J2,2
) c _— — T4 13D e v
{pooga?\ = 1+3 2 A
O

Plotey, int., J. heous.Soc, of Am., V. 27, No. 4, July 1955,pp 706.
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P
or R = < [63]
o2
v 2.2 © 2 25 .2
o(p.c = a®% —=F?)(1+2v® B n®r®
002 cz

We will use this expression instead of [61]. The amplitude of
radisl motion at longitudinal resonance can be written

a2V
_ _ [ =]
C=-A [64]
h2 4
(2+2 — A )
]
a 1§? . + 1w %T - o
or
_ P [a2va]
7 . - [65)
[K+ioB][K'+1wB'] ~ [2avAl®
neglecting w?BB’ compared to the other terms we obtain
_ P, [a2vA]
C = - [66]
[KK'-(2var)?] + iw(K'B+B'K)
At resonance KK' = (2vaA)? (see equation [51]) therefore the
radial ampllitude at longitudlinal resonance is
P la2va) ‘
" o{(K'B + B'K) (671

Substituting the value of the longlitudinal resonance frequency, the
following relation is obtained for C

_ P _[2vAal
C = - o

[68]

2
2 c
2 @ 2 ry 2 _€ .2
o(K'2ma poco ie a“+K B pocomﬂ)\ = F* 2)
v

o
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Simplifying, we obtain
_ P [2vanr]
g = - {69]
T lcz — D4%
B(P,%, E-aake = F2Y (K'+g =—K
ci a®

The volume chanse of the coupled motions at longitudinal reconance

can be written

AV(t) = jev fz wdxad0 + (Ux~£" Ux—o) Acap [70]
' 0o 0 cx=b x=
L. -
= (7 2maC(-cos mm+cos 0)+ (Ux=£-ux=O)Acap olf{at+e) [71)

where

¢ = phase angle.
Therefore only for odd m do we obtain a net volume change due to
radlial motion. For modes with m even there is no volume change at
all because the ends are moving in phase with the same displace-

ment. Tnhne volume change carn be written as follows:

For nm oadd

P [2vaa]

&V = { Le ol - o v
T 02 o

w{poco Za% = F‘?} {K'+’5 2t K}

c? a®

e}

Pozvaz
+ [72]
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or since from cquations [53)and [4G)] K = 0 at longitudinal resonance

[/
P 2 ha = 2van 4 .
A\l, - o) ) 211'8._ - m' el (U)t f'¢) [73]
2 [1+2vZ gm7r®) K
olp e I a2)\2 £ p2
00 2 -
O
Simplifying,
- ‘ b PO 2 5 . 2.2
AV | = - : —(|2v (1+2v® B m®r®)- {741
c
wlp A ——;— r2) { 1+2v® B nPr®
o
For m even
av f =0 [75]
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DISCUSSION

Approximate closed formula relations have been derived in
thls report for the coupled longitudinal ~ radlal motions of a
eylindriecal shell - cnd cap configuration which is Intended to
model in a rough manner a submarine hull undergoing axially sym=-
metric motions., A number of rather drastic simplifylng assumptions
have been made in order to obtain the closed form relatlons. The
rewards of cuch a simplified analysis are that the relétive effects
of different parameters can be assessed and problem areas ean be
defined without resorting to detalled computer analyses.

This simplified approach can be uned to point out salient
featurcs but 1t 1s belleved that the ascumptlons bear some further
Invectlication. For the future 1t 1s belleved that the following
itemc should be examined:

1. Investigate the accuracy of the simpllfications by carry-
ing out coriputer calculations with the unsimplified equations [26]
and [27].

2. Compare the results wlth available spheroidal shell
analyces,

3. Compare the reclative magnitude and frequency of sound
radiated by the hull with socund radiated by other sources now under
investigation,

L, Consider non~resonant response in combinations of modes.

5. Comparc the analysis wlth available experiments.

6. Determine the sound field in more detail.

T. Consider thc cffect ol trancverse rings and bulkheads
in the Lhell analyslco, \

U, Concider the effects of structural damﬁing in more detail,

¢, Male paramefriec ctudles usingy existing hulls as examples.

Lo, lctimate the ¢ of the various nodes.
Li, Botimute the cflfcet of mutual lnmpedance between the ends
@l eylindrical surlace.
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In thls ctudy we have found that volume changes are assoclated
wlth the odd m modes only, the volume change being given by [74].
The cven m nodes, on the other hand, arc not assoeclated with volume
changes and essentlally act as a dipole radiator with a souree at
one end of the shell and a cink ét the other,

I stiffeners and rigid bulkheads were added this should
tend to decrease the radial motion and allow for more of a net vol=-
unie change due to conmbined longitudinal mction and radial motion,

Supposing bulkheads were lncerted which were alloved to ro=-
tate but would prevent radial motion at their attachment points,
This would probably give a radial displacement distribution resembl-
ing a continuous sine curve with negative and positlve erests. If
the number of hills and valleys of radial displacement were cqual
then the volume change to due radial motion would cancel leaving

4 p
)

! AV' = = m odd only
-

a _e 2
W pocoh - F
o
where o is the natural frequency of longitudinal hull vibrations
and can be written as follows:

s o IT
& =7 CeF

where poy
C = =
c P

P 1
2 P
a
142 —
n p
nma
(A = EZ— )
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In this analysis we neglected the kinetic energy of the end
éapé. This tgrm would be # M U® where M = ma®pt (mass of end cap,
t = thickness of cap). The ratio of longitudinal kinetic energy of
the shell to the kinetlc energy of the two end caps would be

ho 4
YOS Y ' r{; a

We limited the analysis to cases where £ >> a (h will be of the.same
order as t).

In order to consider end. cap kinetic energy the total kinetic
energy would be '

T = !E%£§ [ (1+ %E- %J U2 + W2 )

Therefore we merely carry the analysis through with the longitudinal

inertia term increased by

4t a
1+ 7))
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