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F .. [Equation 551

hAp

F = Royleigh dissipation function for structural damping

EG modulus of rigidity, 2(1+v)

h thickness of shell wall

o Jl Bessel functions of 'real argument

k

0

ka -1 T )r [See Equation 551m 
c0

0

kma N --I! ) - 1 [see Equation 561

Koo X,= Bessel Functions of imaginary argument

K = N 2 - A02  [Equation 46]

K = a(2+2-1--2 - 4)-A'w2 [Equations 46 and 581
12a

-- *(..)c FS - 1 [See Equation 561
0

K = structural damping coefficient [Equation 251

* = length of chell

number of a;:ial half waves in vibration pattern of 2hell

Best Available Copy



CONFIDEN'TIAL

HYDRONAUTICS, Incorporated

-iii-

P natural frequency

P amplitude of propeller nforce.
0

U -- generalized force due to fluid reaction on end caps
[Equation 13]

S = generalized force due to fluid reaction on cylindrical
surface [Equation 81

= generalized propeller force [Equation 151

s = area of cylindrical surface

S cross sectional area

t = thickness of end cap

T kinetic energy of shell cap system

u - longitudinal displacement

U longitudinal generalized displacement

V potential energy of deformation of shell-cap system

w - radial displacement of shell

W = radial generalized displacement

x = longitudinal coordinate

X - reactive component of cap acoustic impedance [Equation 341]

X reactive component of shell acoustic impedance [Equations
55 - 571

Yo, Y, Beosel Functions of real argument

c ocoustic impedance of end caps

C OITF IDEITIAL
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a ,Eh [(See Equation 43]
4a(I-.v2 )

2/mr for m odd [See Equation 61a1

(0 for m even

8= logarithmic decrement for structural damping

7 = Euler's constant

tmo acoustic impedance of cylindrical shell surface inwater ( Equation 71

e c resistive component of acoustic cap impedance [Equation 34'C

G* resistive component of acoustic shell impedance
Me [Equations 55-57]

S = angular coordinate of shell

m im

'A = wave length of sound wave in water

V Poisson's ratio

p = mass density of shell material

Po mass density of water

= phase angle of m the mode

= mr [See Equation 551

"2J frequency at resonance forcing frequency due to propeller
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NOMENCLATURE2

a - mean radius of shell

2xI
A - ¾rpha + 2p 0 c 0ra( a (Equation 42]

A' rphia + 2irpoe Xmo [Equation 42]
M 2

A - area of end cap

- longitudinal displacement amplitude

Ar, A - real and imaginary parts of

B = 2p o0ara 2 ec + ( (Equation 43]

B 2 o2roap e - + [ (Equation 43]
0o mo 2

c - sound velocity in water

o

ce

E

Cr 2p F1+)

C = radial displacemeni amplitude

0r' = real and imaginary parts of C

E - Young's modulus of shell material
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A SIMPLE MATHEMATICAL MODEL FOR AXIALLY SYMMETRIC MOTIONS

OF SUBMARINE HULLS DUE TO PROPELLER EXCITATION

I. INTRODUCTION

A program is currently being pursued~by HYDRONAUTICS, In-
corporated o estimate the relative degree of sound radiation

from various pulsating sources on.a submarine hull. This particu-

lar study was initiated to compute the approximate effect that

the pulsating propeller force could have on hulls of various

dimensions.

..-- ,-,Although there may exist more accurate mathematical models

for describing this phenomenon than the one employed here, there

do not exist, to the writer's knowledge, any closed form formulas.
,It is the purpose of this study to obtain approximate formulas

which can be used to assess the relative importance of the physical

parameters without the use of complicated digital programs.

Best Available CopY CONFIDENTIAL
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II. THEORY

A. Displacement Components

The hull will be approximated by an elastic cylindrical

shell with rigid circular and caps (see Figure 1). The rigid end

caps may move longitudinally as a result of the hull shell vibrat-

ing in a longitudinal mode of vibration but the caps prevent any

radial motion of the shell at the ends. Only the axially symmetric

motions of the system will be considered here and it will be as-

sumed that when the shell vibrates in a single mode, the displace-

ments can be approximated as follows:

u= uMt co mwx1]-7--

w(t) sin -T

In equation [1] m Is the number of axial half waves in the vibra-
tion pattern. For the firut mode m = 1 and it will be seen later

that the hull could vibrate with displacements that are primarily

longitudinal with a small radial component or primarily radial

with a small longitudinal component. The former will be the fun-

damental longitudinal mode of the shell and will be of relatively

low frequency compared to the latter which is the fundamental

radial mode.

B. Kinetic Energy and Potential Energy of Shell Deformation

Under the assumptions of axially symmetric motions the po-

tential energy of deformation for the m th Mnode of the shell can

be .,jritten as followss

V rEhl [t U 2+W2+2v•vJW + - (?,W2 ))] [2)
4a (l-V 2 ) 12a-

"R•R 1. Arnold and G. B. Warburton, Proc. Roy. Soco London, A 197,

2e38-25p, 0 14st Available Copy
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and the kinetic energy is

= [4

m~ra

In the above equations N =

In deriving the expression for the potential energy the assump-

tions of thin shell theory have been employed. For a more detailed

account of these assumptions the reader is referred to the above

reference.

C. Generalized Coordinates and Generali:led Forces

The generalized coordinates of the system will be chosen as

the independent displacements U and W. The generalized forces

corresponding to changes in these displacements will be associated

with the following:

1. The water pressure on the cylindrical surface arising

from radial displacement of the cylindrical surface

2. The water pressure on the end caps arising from longi-

tudinal displacement at the ends

3. The force on the hull due to the pulsating propeller

action.

In the analysis presented here the following assumptions

will be made with respect to the water pressures:

l. The pressure on the ends due to radial motion of the

cylindrical uMrface will be neglected (this assumption should be

valid for primarily longitudinal motions)

2. The pressure on ono end due to motion of the other end

will be neglected (thi8; assumption should be valid for long shells

The end cap kinetic energy is neglected in this study. This is
discussed at the end of the report.

CONI DE•TIAL
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where the ends are far apart)

3. The pressure on the cylindrical surface due to motion

of the ends will be neglected.

Let the generalized force associated with the radial pressure (due

to radial displacement w) be then the virtual work due to a

change in the generalized coordinate W is 8 SW. If Pr is the

pressure on the cylindrical surface due to radial motion then the

work done in a displacement Ow is

f Pr 6wds (s = area of cylindrical surface)
s

but
m7rx6w = 5W sinT "

Therefore

j= p sin adOdx [4]
o 

[

The radial pressure pr will be taken equal to the value for an in-

finitely long cylinder the surface of which has the radial dis-
mrx

placement proportional to sin, . The value for this pressure

is given in a previous reference 2 and can be written as follows:

PP 3CO o (kma) sin r [5]

In formula [5) P0 is the density of the medium, co is the sound

velocity in the medium and o is the acoustic impedance.
mo

21. C. Junfer, J. Acoust. Soc. Am., 25, 40-47 (1953)

C ONFIDENTIAL
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waa m~a
kma W 2 a2 ( lM72 [ 61

0

where w is the frequency of the vibration. The acoustic impedance

can be written in terms of its real and imaginary parts as follows:

Cmo 0 me (kma) + i X mo (kma) 171

where 0 is the resistive component (associated with radiationmo

damping) and X is the reactive component (associated with vir-mo

tual mass).

The generalized force given by [4] can then be written as

follows:

J I i 2r Pc C ý Cm sina 2 -r ad~dx
0 0 0 0 o

or
% = 27rao Co C mo[

Let be the generalized force due to longitudinal motion of one

circular end cap, then

Qf 6 U " PU [SUGx=oA dAc (Ac= area at end cap) [91

In equation [9] PU is the water pressure due to longitudinal motion

of the end cap.

Novi

[SU) x=cL =- 5U

Therefore

Oj- - f PudAc - Fc (force on end cap).
A

C

.Best Available Copy CONFIDENTIAL
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But

Fc -ZI [
C c

where Z is the acoustic impedance of the circular piston end cap

moving against the water.

Thus
%= - zo Uc [it.

The acoustic impedance of the end cap can be written as follows:

z= ra2 P c° (0 + iX) 112

where 0 is the resistive component and X is the reactive compo-
c cnent. The values for C and X will be taken as the values for a (

circular piston radiating from one face into an acoustic medium.

The values for these impedances are given in a recent reference. 3

The generalized force due to both end caps will be

UT = 2 U z 2 0 0  c ),ra2 (e + ±iX 13

Lastly, let the generalized force due to the propeller force be

then

q•U= P = bPu j1
p

Thus

=0=PP e i~t [15

D. Equations of Motion

Let F be the dissipation function associated with structural

damoing, then the Lagrange 's equations of, motion for the shell-end

c'p system will be -est Available Copy

s•,. Nani.h, iI-L Report 5538, U. S. Naval Research Laboratory,
Wazhin.iv;ton, D.C., Oct. 24, 1960.
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d ()VT) + ad + _ d =11
dt +Q t()+ r ) 150 ý6 ýU )."* 3W 16

where

F K(1 2 +Wq2) [171

in which K is proportional to the structural damping force).

Substituting the values for the potential energy, the kinetic

energy, the dissipation function, and the generalized forces, the

following equations are obtained
-'phia** + i =ZhJ [G +rm+Yw +EUcI i~x )U+ Poe

U 2a(l-V2 ) [ M2 + v1W+ = -2p c ( +c)u + et

'irohiaW*+ wrEhi h 21½haW + Eh W + WNu + -X4W]+ K2ra c =

2a(l-V2 ) 12ao 00

Assuming that the motions will be harmonic in time the equations

can be rewritten as follows

'frph~aU+2p 0 0ra2 U(W p0 ra2OU+K U + 2a (l-V2) o8U+vW2 P e

S7rEhL eih t(-rphlaw+2rapc '-) . + 21rap c Wo + -I+VMT+ -0 o 2 2a (l-V 2 ) 12a 2

or 2et
+ 2PoCora 2 e +a + 7rEhL 2U + v.W] =o

-Yrph~a+2po 0 c - 2a(l-v2 ) -rph~a+2p c Ira C -•irph~a+2p oco 2-C

+ Tapoc 0 [W+V*AU+ h -A 4 W]

W+I [ L27rapmc°ei° + K3 rEh_ '12a_ 2_x• + a [20]
ph#,a+2•rap oo---- 2u (1-v 2 ) 'ph~a+2aP rno°

o-para oc w 2 o o u) 2

Best A\'•-lab~e Copy C.
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Before going further, it is of interest to note some well known

special cases which may be used as a basis with which to compare

the more general results to be obtained later. The first case is

the vacuum uncoupled longitudinal vibrations of the shell. For

this case the equations of motion reduce to

+ rEhi A 2U Poeit

+ 1_21]
a(l-v2 ) 2 rphea -•rphia

The natural frequency is given approximately by

mP _ (neglecting 1 [22]
P T-P 1-V

This is the natural frequency of a free-free bar of length i.

The second special case is the in vacuum uncoupled radial

vibrations. For this case the equations of motion reduce to

2 1+ h A4W I

W + •F2• [ 12a"+ -~ 0 [23]
a (l-V 2 ) wphia

The natural frequency is given by

E 1 + +--- X 4 [24]
p(lva) a 12a 2

As N -+ 0 this reduces to the well known formula for the radial vi-

brations of a shell. Formula [24] includes a thiclmess effect term

2
hm X in view of the fact that bending was considered in the ex-

12a 2

pression for the potential energy.

•et-v .... Copy C01FIDENTIAL
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The structural damping constant K is as follows:

S= 
p 2ph a [125)2

where p is the natural frequency

8 is the logarithmic decrement for structural damping

phia are as given before.

E. Solution of Equations

Now going back to the general equations and letting

U=Aei , W=Ceia

the following equations are then obtained for determining the am-

plitudes A and T

E2p 0 c r'Ga 0ý_ +KL ,!+
_02 + iCDA x 2 + ir 2? 2A° +

cYrphga+2p c ra 2a(lV 2 ) ½irph~a+2poCoira -

-' x [26a]

ý-rphia+2p. e ra2
0 0 W9

h 2

[2raPoo [ + •+v-A + h- N4 j]

_<Dapc -+K]Z 01 o2x4 rh 2a' ~2rb]0 mo 2_+ =2 I

:.rpha+27rap c o co 2a(lv 2 .) .ph a+2raPoCo o00 (L 2 a1parp0  2

Collecting terms, we obtain

" h iw(2p c Tra"2 +-K)Ai h -A +. 0 0 e
2a -v2x x

S2a (l-V 2 )rph2a+2p a , ra -pL~ 00 0. 00L
rE h l AN

+ 2a(l.V2) 01 ).pia2 cc [ 27a
-i,.rphf~a+2po c r.:2 I- l+P~ore-

0 0 (. 0 [

.> st Available Copy COPDENTIAL
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r irEh, 37
L2a (1-v 2 ) irphAa+2Trapoc 0

" ,rEh _ h2  --

I- +2 1 a2 iw(2wap C 0 +
SOo 2 0 [27b]

E'h moA a X Ma21p mo
o 7 pa+27apopo -j-2 o a 0 oC 2

Equation [27) constitute a set 6f two complex simultaneous alge-

braic equations which are to be solved for the complex amplitudes

A and C. The solutions will be of the following form

-~A + IAr
[281

T=C +i C
r±

where the r subscript refers to the real part and the i subscript

refers to the imaginary part. The displacements themselves will

.then be equal to

-I 2 _2 mnrx +r i x m

Wi• 2 - n2m~x [29)
w+ 7! +1 sin cos (Wt + ')0

where

, = tan A
mA Ar

*m is the phase angle between the driving force P and the displace-

raents and arises because of the radiation damping and structural damp-

infl In the system.

Best AvaflmbleQ. AL
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.. Longitudinal Motions
The motions that are of prime importance as a result of pro-

peller excitation are the primarily longitudinal ones. These un-
coupled motions in the water will now be studied in more detail.
The equation of motion for uncoupled longitudinal motions in the

water is

"° (2pU 0c0 ra26c + ] rEhi 2W_2 __U + ... . . . +

1rphla+2p aora2 U- 4a(l-vJ.) -irphea+2p C ca' c

0 X [30]
iFrphea+2p 0oCa 2 •c

Assuming U eA e , we obtain

4i + , 0 e 0 rEhL 2X(2--

L -,rph~a+2p0 c.ra j .a(1-v.) 4arrphka+2p 0oc 0 ra(

P
0 o [311

'rphla+2p 0c0' ra
2 C C

Q0

P
0

X

X rphia + 2p 0  ma -ac
(32]

irEhi 27%2 iw~(2p 0 c r2 +
4a (-v_2) .,--rphLa+2pocowra 2 ý yJrphla+2poCora,.

The natural frequency of these longitudinal motions in the water
i,, therefore given by the following frequency equation

Best Available Copy Co D TAL
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TrEhA 2A 133]X=
4a(l-v2 ) ½irph.a+2p 0oco0 ra C0

0)

The values of w which satisfy [33] are the natural frequencies of
the system. In general a) cannot be obtained directly since X is

c

a function of wn. For relatively low frequencies, however, the re-
sistive and reactive impedance of an unbaffled circular piston
radiating from one side into an infinite medium can be approximated

as follows 3 :

0 = (ka)2, x k 1 (343c io

where k = 2- _ -No co

Under these circumstances the frequency equation becomes

irEh2 2-A2 0W2 0

4a(l-v2) ½-phia+ra•po

The natural frequency can then be obtained in closed form and is
as follows:

_rEh , 2

-4.rha+ _2)a o35]

or, neglecting net AvaiUble Copy

m r 1+ [36]

l+ 2 7-DEI

CO, DPTA
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So the natural frequency of the low frequency longitudinal motions

in water is equal tothe,in.vacuum frequency reduced by a factor
which depends on the radius of the shell, the thickness of the

shell wall and the shell length. It is interesting to note that

the factor in the denominator of equation [36] can be written as

2a p 0  = 4ra p. 3Msphere [37?

h-•p 2wTah2p M shell.

where Msphere is the mass of a sphere of water which has the same

radius as the shell and Mshell'iS the mass of the shell without the

end caps. When the shell is oscillating at its natural frequency

the amplitude of oscillation is found from equation [323 and is as

follows:

P
n (2= 0 2381mn(2P0oCo0 a 6c+K )

Using the low frequency approximation for 0 the following expres-c
sion is obtained,

P]0 (393
co(2poC ra 2 +a c~p~hia

0o 4c 2

0

or

I wl = 39a]
'waph~a (Po 0r3 Dn +5 

3aI

2n Pc 0 +11 )

The propeller force is about 10 percent of the meai• thvuzt-t the
mean thrust is equal to the drag and the drag is giv•-n approximately

by the following formula-.

, A iai1able CoPY CONFIDENTIAL



CONFIDETIAL

HYDRONAUTICS, Incorporated

D = U CDPov 2 S

where
D = mean drag

CD- drag coefficient (about .05 for modern submarines)

v = velocity (15-30 knots)

S = cross sectional area

G. Coupled Longitudinal-Radial Motions

Going back to the more general equations [27] the second of

the equations gives the following relation between the radial dis-

placement amplitude C and the longitudinal amplitude A for a given

longitudinal driving force P0

[ rEhA 2vX

-4a(I-v) 2 rph.a + 27lapoc° a MA

r•hJ (2 + 2 - A ') + iCO (2lrapo e - +I
I4a(l..V2 ) 12a 2  0 0 o2102

1'rphea + 2wrapoc ino2
0 2

Therefore substitution into the first of equations [27] gives
P

0

[a2VW Fcz2v'A
ax2 -A + (0B- L2] A] L At 1

AA- 2' 21L ic, L"- Fa(2+2-h• 4) A j4S 12a' + BT-

where 2 X

A =:wphta+2p ccra - At = 7rphla+2irap c 242]
0 A C Co [w ]

• Available Copy CONFDE~NTAL
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& irEhA pcri + BI-a 7-. 13K
4a (2-V2 ) 02p 0 0 0 27aoomo 2

R is the structural damping parameter as given before.

* Simplifying

0 43

[c27,2 +iczB-AaM2 ) (a2vN] [a2vN]
h2 -A U

ta(2+2 + icnz' A'c2
l2a 2

Now divide the denominator of the above equation into its real

and imaginary parts as follows:

Ea2N2 +ia3-A(Z2 [a(2+'2 ha- K'A )+icnB -A 21 -[a2Y N1 2

1 2a 2

Denominator [451
[a(2+2 _h: A4) + iawD' A AC02]

1 2a'

Let
K=a2),2 ,,W2  K' (2+2 u-K)-A'2 t6

1 2a 2

Then

_[K-ia-IDD [K'+ia)B'] - a2V ~2 [4
Denominator -K' + iwB'

a~vN K I a2v)A]2B'

LK' 2 +c 2 B'2 1 ' 2 4O2 B 2(

For uncoupled longitudinal motions set v 0 and the equation

redluces to the uncoupled longitudinal caSe obtained previously,

~ A~d~~eCopy cnNFIDENTIAL
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The natural frequency for coupled motions is given by the solution

to the following frequency equation:

K , .... .B z9

and the resonant amplitude of the longitudinal component of motion

is given by
P

0 o [501

where u is the natural frequency. For small values of w the term

M2B 2 will be considerably smaller than K'". Under the assumption

that aBt2 << K'2 the frequency equation becomes

KK, = [a2v",] 2  [51]

At low frequencies it can be shown (and will be shown later) that

A and A, are independent of cz. Therefore the frequency equation

reduces to
ae27,21[a(2+0 e-A4 •)]-• [.O A]a (2+2-•--O )+ [ A'][2X] +AA Icu4

12a2 12a2

ta2vN ]2  (52]

If we focus our attention on modes of relatively long wave length

where X is small and if we neglect V2 compared to unity in the

above equation then the shell end cap system has the.foJýlowing two

sets of natural frequencies:

2 2a 2 Q20N
CU A' 2 A [53)

These frequencies are exactly the uncoupled radial and longitudinal

, -v a Copy CONFIDENTIAL
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frequencies ILn water respectively. The lower one,cu , is the longi-2
tudinal and is the one of greatest practical importance in this

study.

In order to simplify the theory further some rather far

reaching assumptions have to be made concerning the values of B,

B', and K'. Therefore the following section will be devoted to

the simplification of these expressions and the Justification for

this.

If it is assumed that the impedance offered by radial motions

can be approximated by the impe4ancecdf.an infinitely long cylinder

in an infinite acoustic medium whose vibration pattern is identical

to the finite shell (see recent reference 4 ) then
e

B' = 2rap c Eo 154-B'= •ao o 2me-
00X2

K' = a(2+2 h -4)-A'cu A'= Xxph~a+27ap c 2

1.2a 2  'cl o oo w 2
IfY' eOk a)If T cr/c°o < 1 0 8 =0 ;X =o

me' melO (km a)K (k- a)

where

ceI
T c C/ro eF Fc

00 aC 2 Po
FI 2.ihi p

4 J. Greenspon, Jour. Acoust. Soc. Am., Vol. 32, No. 8,1017-1025,
August 1960. \ OO
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for resonant longitudinal vibrations p W m a Fe

kCa = 0[55

If O/ %- > l X o ( a -) fCL (ka)] +[Y (k a )] '}

2 N T c /c°
flo (ky a)2 {J: (k Ma)] 2+[yI (1cMa)]'}

where ka= a )k (,Y c/C)- = 2 (/C 2 )F2  1 =

K* (C2 O)F2 I
m yro e o

K*= CeC) - 1

For small kna (small A) and T C/C 0 > 1

"W•(cr/o)Yo 0(km a)
Xn (1ka)Y .(k Ma) 156]

2?-i{( c/C)
0 =

mo r(k a)2 y (k a)

where 2 k a
Y • ( + 7) 7 = Euler's Constant

Y (ka) 2 
c

CONFIDENTIAL
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So
Xmo = + (Ce/Co • (2 •K :') [571

x *

(therefore mo a (.Rn X- ?Y) so that At is independent of the
wi 2

mode and frequency for small o).

Thus (neglecting structural damping)

B =27Ta pc Z?(c /c)So 2 e/Co) F 2
*

27ra 2p C c /C)P(in -- +-Y
h2 0 0 e o 2

K' = a(2+2 h- 7 A4).')2 LTpha + a]
12a2 - ce F a

Ehl 2V • F2 _-A--2 F 2 a 2w (I +X8

a 4(F_v2) 2h 2

For ilnall N the last two terms will be neelected* leaving

, j_ [ 2 i, [158a]
a 4(-v_2 )

Thu inserting the above relations in Equation [501

P
Tr £o 59].A (a_*v) 2 2,orapc c (o5o: x

cz 2P c ra' 0 0 (2

Duo to the behavior of the logarithm this assumption may be in
coosiderable erro, for ,ome geometries_,.
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Simplifying and substituting the value for 0

P

0= 60)"" 0

W ce p2a' +V2 ? 3 21ap,
ýr 0 0 2 oo 2 c 0 2

0

Thus

P
0 o[61]

Ir c2 e Ie p 2PoX O° Co a7 c- -P a

0 0

Instead of employing the resistive impedance of an infinite cylin-

der let us use Robey's 5 results for the rc:istive impedance of a

uniformly pulsating ring and average the displacement value for the

given mode. 'The B! can then be written (for small k )

T P0 0 27m.2 (k )(ki) I61al

where L is the length of the cylinder and k =
0

2o

f 2 w f sin--Q-dx a d 0 fihX)o2a • (-Cos2o
f f adOdx 2wa 2

So
2 if m is odd
mr

2 0 if m is even.
;ub_,tituting thic into the eqcuation for A, we obtain

P
-- '• '= " C.....2[6 2

I oCo as A e 'Aci 22V

•,"-, U.n ., ,-J. [,couu ,"Oc o0' Am., V. • •o 4, July 1955,pP 706.
. O -N CCITIDENTIAL
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P

or P-O. . [631

or 1: a27 2 e F 2 1l+2v2 ~m2ir2 [3
SPoo 0 2-2

0

We will use this expression instead of [611. The amplitude of

radial motion at longitudinal resonance can be written

a2vB
-A' [64]

or 0=-A [~(2+2 h~2 +-A' (2
orL

P [a2v?•]=- _0o 
[65]

[K+ic)BH[K'+ia)B'r - [2av A]2

neglecting O2 BBI compared to the other terms we obtain
P [a2vX]

0=- 0 [ 66]

[KK'-(2vcaW) 2 ] + im(K'B+B'K)

At resonance KK' = (2vcQ )2 (see equation [511) therefore the

radial amplitude at longitudinal resonance is

P 0 a2v-Aj

w- u(K'IB + B'K) [671

Substituting the value of the longitudinal resonance frequency, the

following relation is obtained for C

P 0 2v?•a]T = o[68]
22C

2 O 22 e2co(K'2ira'p 0 % - a +K " p c l•• S F2 e)

0 0

IlaA
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Simplifying, we obtain

P [2vAl]
0 2(69]

c a

0

The volume change of the coupled motions at longitudinal resonance

can be written

AV(t) fj2r f wdxadO + (Ux=- Ux=o) Acap [70]
0 0

: 2wa•(-cos mr+cos 0)+ (U 2 -Uxo)Aca ei(zt44) (71]!M~r x= = a

where

4 phase angle.

Therefore only for odd m do we obtain a net volume change due to

radial motion. For modes with m even there is no volume change at

all because the ends are moving in phase with the same displace-

mcnt. The volume change can be written as follows:

For m odd

P [2v*] 1AV L i ',a .,

W PiZ a 2.2 e F2) K'+ 2 KJ
L 00o2. c2  2

0

P 2wa'+ [72)

2l2V C 22 2j
oo 2 2 CC 3

CO C0UiFIDT31TIAL
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or since from cquations [531 and [46] K 0 at longitudinal resonance

P 4a 2vsaN (•t

AV o 2va2  m J(ti [731

cD{occ~a22 [1+2v~2 Tm2ir2 i K

o oo204

C2

Simplifying,

0 0

For m even

A 0V•VD A751
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DISCUSSION

Approximate closed formula relations have been derived in

this report for the coupled longitudinal - radial motions of a

cylindiri~cal shell - end cap configuration which is intended to

model in a rough manner a submarine hull undergoing axially oym,-

metric motions. A number of rather drastic simplifying assumptions

have been made In order to obtain the closed form relations. The

rcvwards of such a simplified analysis are that the relative effects

of different parameters can be assessed and problem areas can be

defined without resorting to detailed computer analyses.

This simplified approach can be ur~ed to point out salient

features but it is believed that the assumptions bear some further

Inve,.ti2-_:ation. For the future It Is belleved that the follow~ing

item-- should be examined:

1. Investigate the accuracy of the simplifications by carry-

in[-, out computer calculations 'wth the unsimplified equations (261

and [27].

2. Compare the results with available spheroidal shell

analys.eo,

3. Compare the relative magnitude and frequency of sound

radiated by the hull with sound radiated by other sources now under

i nyc ýtiga ti on.

4. Oonsio'cr non-resonant respons-ýe in combinations of modes.

5. Compare the analysis., with available experimento.

6. Determ~ine the sound field in more detail.

7. Con:.--icer the effect of transveroe rin~gs and bulkheads

(.Consider the effects of structural damping in more detail.

(". Nakea parametric studies usýn.in;, e,,:is7ting- hulls as examnples.

10. Ef-stiimate thc (, of the variou:i modesý.

2J.~3;tix~tcthe elffect of mutual impodance between the ends

'vj.t cylindrical ,,.urfaac.
ý,/\Ž,rilabte CopyCID IA
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In tilis ,:tudy we have found that volume changes are associated

with the odd m modes only, the volume change being given by £74].

The oven m modes, on the other hand, arc not aýsociated with volume

chnngCs and essentially act as a dipole radiator with a source at

one end of the shell and a sink at the other.

If stiffeners and rigid bulkheads were added this should

tend to decrease the radial motion and allow for more of a net vol-

umc change due to combined longitudinal motion and radial motion.

Supposing bulkheads were inserted which were allowed to ro-

tate but would prevent radial motion at their attachment points.

his would probably give a radial displacement distrilbution resembl-

ing a continuous sine curve with negative and positive crests. If

the number of hills and valleys of radial displacement were equal

then the volume change to due radial motion would cancel leaving

4?PAVI =, 0 m odd only

a jPoCoNa _ Fe

where cu is the natural frequency of longitudinal hull vibrations

and can be written as follows:

.r
-Ce?

whore

F -71 ,

V1+2 -
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In this analysis we neglected the kinetic energy of the end

caps. This torm would be j M U2 where m ra'apt (mass of end cap,

t - thickness of cap). The ratio of longitudinal kinetic energy ofI the shell to the kinetic energy of the two end caps would be
h A

We limited the analysis to cases where I »> a (h will be of the-same
order as 0).

In order to consider end- cap kinetic energy the total kinetic
energy would be

T nhla 4t 2_ *2 +2

* Therefore we merely carry the analysis through with the longitudinal
inertia term increased by

(1 + yj
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