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Introduction

The complete calculation and representation of sound fields
involves considerable difficulties even in the cases of simple
radiator arrangements. -For"this reason, no systematic treatment
of the subject is available to the author's knowledge. ,In the
following treatment, an attempt is made to develop the basic
formulae and concepts and to apply them practically in a series of

simple examples. Due to the extraordinary simplification, it ap-
pears justifiable at first to confine the calculation to a region

Lat a great distance fo the radiator. Yith this limitation, the
transition from the non-directional to the directional radiator is
made very simply when the formulae for the non-directional sound
emitter are modified by an additional factor designated as the
directional characteristic or the radiation factor. Also, with
this simplification, the calculation of the sound field of membranes
(which, in contrast to the piston membrane, do not need to have con-
stant vibration amplitudes and may possess nodal lines) then en-
counters no particular difficulties.

The second part treats the repres\ntation of the sound field in
the immediate neighborhood of the radi or. The case first investi-
gated, that of two point radiators, sho s that even here substantially
more complicated circumstances exist. One is therefore forced to
describe the sound field at every point. This is done most simply
when the constant pressure amplitude curves are drawn. In the case
of the circular piston membrane, which is of considerable practical
significance, the values on the normal axis and also in the immediate
neighborhood of the membrane can be very plainly stated. From the
fact that, with diameters increasing in relation to the wavelength,
an ever increasing number of null values and maximum values result
on the axis, it follows that the piston membrane with increasing

4 radius produces no sound field even in the axis neighborhood compa-
rable with a plane sound wave. In the cases where the diameter is
not too great in relation to the wave length, the calculatio,,w of
the sound field can generAlly be carried out at nearby points. The
graphical representation of the curves of constant pressure amplitude
provides a simple conspectus of such sound fields.

The spherical radiators which are treated in Part Three have a
particular significance. For sound velocity amplitudes given on the
sphere, the sound field can be calculated ovon for nearby fielU1 paints.
It is shown in a series of examples that the formulae, which at first
appear involved, are quite useful for practical calculation.

vii
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In order to avoid a complicated appearance of the text, the
theoretical derivations are given only in so far as is necessary for
comprehension, and references are given to the existing literature
for the remainder. Alsc, for simplicity, the calculation and repre-
sentation of the sound velocity amplitudes are avoided and only the
pressure amplitude is used to describe the sound field. Thereby the
use of the velocity potential is completely avoided since the concept
possesses mainl.y a mathematical significance and according to experi-
ence provides no pleasure for the practical physicist.

All considerations are based on a given velocity amplitude of the
vibrating membrane; or, what amounts to the same thing, a definite
sound velocity amplitude innediately before the membrane (imaginedS~stationary) is prescribed.

'I
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Part One

THE SOUND FIELD AT A GREAT DISTANCZ FROM THM RADIATOR

1. Nondirectional radiation

We start with radiators of zero order, i.e., with radiators
whose radiating surface moves cophasally outwards and inwards.

The simplest case is a breathing or pulsating sphere (Fig. 1-a).
Here the velocity amplitude is the same for all points of the radi-
ating surface. In general, the motion of the radiating surface is
described by the behavior of the velocity amplitude -= w.I p

of the membrane. w will in general be different at different points
of the radiating surface.

It is advantageous to introduce the velocity amplitude w in-
stead of the displacement amplitude a (for which the relation
w =2 n n a exists) since the latter achieves a particular signifi-

cance only in very infrequent cases.

We first consider the series of radiator forms represented in
Fig. 1. The radiators 1-a to l-d are rotationally symmetric about
a vertical axis through the center. The radiators 1-e to l-g are
likewise rotationally symmetric or have a rectangular cross section
like 1-h. The rest position of the membrane is indicated by a
heavy broken line, the position of maximum displacement is dotted,
and the rigid supporting wall is indicated by a solid line. The
maximum amplitudes of the periodically (sinusoidally) moving
membrane are indicated by the greatly enlarged arrows. The
linearity of the general wave equation depends on the assumption
that the pressure and velocity amplitudes of the sound field be
small. This assumption is fulfilled in practice except for
unusually strong pressure variations (e.g., explosion waves).
Furthermore, the separation of those membranes vibrating sym-
metrically with respect to the middle plane (e.g., in Figs. 1-0
and 1-f) is assuned so small that the membrane zero position cpn
be regarded as practically coincident with this middle plane.

It -then turns out that the sound feld can be very simply
. determined if the two following assumptions are fulfilled:

A. The dimensions of the radiator in every direction are
small compared to the wave lenh.
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B. The " at .1 sufficiently g distance
from the radiator.

From the general formulae (to be explained later) it then follows
that the behavior of the sound pressure is represented in the simple
form:

PO Poe (w I- kr + ai2) (1)

where the sound pressure amplitude p, is given by

PO (2)

and the total radiated sound power Lo by

L o = P / 2 c ( 3)4 z 2 C a ~ _ f

We see that the pressure amplitude is described in a very
simple manner by the standard quantities and that each of these quan-
tities appears linearly. The significance of the various symbols is

as fol-Lows:

/* is the density of the medium
W42Th c is the velocity of sound in the

/y J-t--V4-~medium
". .•.."..-.. . .F is the total radiating surfac."

a w is the mean velocity amplitude
A of the radiating surface

~'is the distance of the field
t:-J. point from the center of the

radiator
i is the wwve length
k is the wave number ( 2u/X ) and
to is the ocrcular frequency 2M.

The product c "o is termed the specific

acoustic resistance. Fur plane waves its
/magnitude is determined by the ratio of the
sound penssure amplitude to the sound velocity

h ampplitude. For the two values with which we
d are principally concerned, thogo for air and

water, we have 43 and 1.5 x 10; absolute C.G.S.
units respectively as the value of c- a

rig. 1 Simple radiatoz-
In the general case the velocity amplitude

w(x,y,z) varies for the individual points of

SF or lm~branes which vibrate in a rigid wall we will denote the
surfaoe radiating into the half space by F so that the "2" in the de-
nominator of equation 2 drops out.

-2-



the membrane. In this case Wm is given by

WM= - w (x, y, z) d.F.

The influence of the membrane is given by tne product p.
If we define the volume swept by the oscillating surface during each
half period as the deformation volume of the radiator, then two radi-
ators of equal frequency have equal deformation volumes if the product

F w. has the same value for both. This is so since the displacement
amplitude a(x,y,z) differs from the velocity amplitude w(x,y,z) only
by a constant factor (w = 2rn.a).

From the fact that the quite varied vibration forms of Figs. 1-a
to 1-h produce the same sound field for equal values of F-w,,, , we
will quite generally conclude: For radiators which are small compared
to the wave length and whose membrane motion takes place in phase,
the sound field at a comparatively great distance is determined by
the formulas (1), (2), and (3). This means that under assumptions.A
and B two sound radiators for which the frequency and the product F

are identical, produce the same sound field, independently of the
separate values of displacement amplitude and radiating surface. In
Fig. 2 three different radiators corresponding to Fig. 1-e and 1-f
"are represented with equal deformation volumes, i.e., equal values
of )' wq

The shaded surfaces represent the maximum amplitudes in one

direction of the vibrating membranes in two mutually perpendicular
planes. The velocity amplitude corresponding to that of Fig. 2-b is
given byw (i - 2/9)1.. Then for the three (3) cases of Fig. 2 the
equal values

06 ,n, 2Q (1 3 6 3

result for f'u,,.

It is advantageous to set up a simple example as a standard form
since from it the sound pressure can be specified 'inder quite general
conditions because of the linear influence of all of the independent
variables. As such a standard form we consider a piston membrane in
a rigid wall which produces a sound pressure amplitude of 1 dyne/m 2

at a frequency of 800 cps on the normal axis at 100 cm distance (which
cot-responds to the sound pressure amplitude for normal speech immedi-
ately in front of the mouth of the speaker). 4e thus find that with
a velocity amplitude of 10 cm/sec the surface radiating into the half
space must be 10 cm2 . It is to be particularly noted that formula 2
Sis valid for all plane beamed radiator arrangements if the field point
lies on the normal axis at a sufficient distance from the radiator.

..- 3-



This will be explained in the next chapter. Therefore a radiating
surface of 100 cm2 also produces a sound pressure amplitude of I
dyne/cm2 at a field point 10 m distant on the normal axis, Finally,
the formula is likewise valid'(for a spherical radiator of zero order
for a sufficient distance of the field point.

The corresponding sound power per c2 for the standard form is
(according to 3)

.O_ - 1, 2-43-,16.10-2 erg/sec cm2 
= 1,16. 10-9 Watt/cm. (4b)

In water the sound pressure amplitude Pn-. 800 dynes/cm2

results for the same assumptions (with the same frequency - therefore
a different wave length) and the sound power becomes

4 _8210 _(4c)

4L, 8210"lO 2,13 erg/sec cm 2  2,13. 10-7 Watt/cm2.
42•-- T 2 .15 ý - --T •

One thus sees what a decisive influence the "sound resistance"
(specific acoustic resistance) exer`s. In order for the membrane to
impress the same velocity amplitude in water as in air at the same
frequency 184-fold power must be produced. On the other hand for a
membrane which is to radiate at an equal wave length the same power
in air as in water it follows that

S:W, C-<-° 60,
K.. (4d)

i.e., the velocity amplitude wj of the membrane in air is then 60
times as great as the velocity amplitude w., in water while the
displacemert amplitude of the membrane in air is about 13 times as
grea' as that in water.*

.. This is so with the provision of Note I.

That the numt:r 13(60/4.5) should be changed to 270(60.4.5)

is shown by the following:
Using the statement made at the end of the paragraph following

eq. 4, one has from eq. 4di
- u r 2 r •6 0 o v " 6 0• •

Sinoe A is to tie constant for the two oases, we have _ , _

or n" o 60- q ._ 7-.
9%e CHe >

-4-
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2. Beamed Radiation

A. The directional characteristic

(a) For a definite fr' .ency

iWe now drop assumption (A) but i -- se instead the condition that
the membrane vibrates as a double membrane cophasally toward the two
sides - the middle plane at every moment of the vibration being the
symmetry plane. z•amples of such membranes are represented in Figs.
1-e and 1-f. Since the whole proc..ss above the symmetry plane repre-
sents the process below the symmetry plane, a rigid wall can be in-

troduced at the position of the symmetry
plane "ithout changing the sound process
in aw,- way. In place of the double-sidedly
acting membrane, one can then just as well
imagine the one half of the sound field
prrpduced by a simple mcmbrane vibrating
in a rigid wall. This is significant

-Y ince a membrane vibrating in a large
rigid wall appears in practice rather fre-
quently. without particular eriphasis in

every case it is assumed in the following
examples that the radiating surface con-

Fig. 3. Nondirectional sists of such double membranes vibrating

radiation. synnetrically to the central plane or off . membranes vibrating In a rigid wall for
which only the one half space is conxidered which is cut off by the
rigid wall and into which the one half of the membrane with the sur-
face F radiates. If we :miaine that.the elementary waves produced
by t•o individual elements of the radiator act together (as point
sources) at the field point, it is then clear that the concurrent
action in unifoxm phase at far distant field points prevails for
all directions as long as the individual elements are at a distance

A Ii d from one another which is snwll compared to X .Z/Otherwise,
the elen'dntary waves arrive at the field point with a phase differ-
ence which is no longer negligiblc (Fig. 3) with a resulting lack
of spharical synmetry. ,.e can take account of the latter conditions

The qiallyinr, eondltion here would ralher seem to be that
the ov,-r.Ill -]Iimen•ion of' the roihtin, ei;somble be small compared
to I T -e statenLnt in the toxt 'ooOd he oronstrted to mean this
If (4 were taken to ronresont the, c(istanoe between _L two elements
(inoludinr the two most dis, nt ilements) inrtead of being mecely
the distanae between two adjacent elements as is shown in Fig. 3.



by applying the directional characteristic 9 • hence in place of

(2) we have the formula

P= (5)

wherein p, has the value given by (2) while 91 is defined as the

integral over the surface F:

S: f(6)
F

Here the rigid wall with the membrane (in the position of rest)

is thought to be in the plane of the coordinate system. Since the
XY-plane is the symmetry plane for the

sound field, we can confine our con-
siderations to the space lying above

P P the XY-plane and therefore disregard

the symmetrically downward oscillat-
ing part of the double membrane (Fig.

4).
-¢• Let • , pand Y be the direc-

/o ' - tion angles for the corresponding
df field point line, x and y the co-

ordinates of the point belonging
to the element of integration dF,
w(x, y) the corresponding velocity

Fig. 4. Beamed radiation. •ax•litude and let k = 2 ir/% . ae
note that if the wave length X
is great compared to x and y - i.e.,

.great compared to the dimensions of the membrane - the exponont

under tha Integral approaches zero so that

W|

and therefore by (4) bucomes equal to 1 as was to be expected. As

has already been indicated, it is essential to note that ýt like-

wise becomes 1 for a large F if the field point line coincides

with the 4-axis (since a - o" and -= go° ).

T'he validity )f (5) results from the general basic relation

(for a surface F on an infinite plane) given by llayleigh'*:

The Theory of Sound, Sec. 278.

-6-
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ienwe introduce the pressure (7

4in place of the velocity potential q) and replace the normial velocity
~'by

we immediately obtain

We will now consider the sound field at a great di~,tarce from
the radiating surface and accordingl.y assume that the field point P
is at a suff icient distance R from 0 so' that the connecting lines
from it to the individual radiator elements dF can be regarded as
par~allel. (A more accurate formulation will be given later (p. 59).)
If' we then drop a per nd~iculsar from dF which is determiined by
the coordinates (x, y to OP intersecting OPat Q then
OQ xcoso(+ yccrnfl andr Y= x (co"A +ycotfl).

Since iv-.,xcosx -yoo~s[ w can replace r' by R in the
denominator and obtain*

and from this, considering (2), (4), and (6,there results the
formula (5).

4Here the symbol r' designates the distance from the field
point to the surface element whereas the same symbol, as employed
in equations (1) and (73, signifies the distance from the field
point to the center of tne radlator (see the list of definitions
on p ).

?-7
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We shall assmue for what follows that the radiating surface or
the radiating system possesses P. point of symmetry, which coincides
with the coordinate origin, such that w(x, y) = w(-x, -y).
(That is, two membrane points situated in image fashion with respect
to the membrane point of symmetry have the same amplitude and phase.)
The integral (1l) may then be written in the real form: *

If(Ila)
~FfW(x, y)cos [k(xcosax + ycosp&lF.

We will furthermore confine the field point line to a definite
plane (the measuring plane (die Peilebene)) which is to coincide
with the ZY-plane. Then since • 90" and f + ±y 900 (Fig. 4)

i'"" (12)

91 w(x, y)cos[kysiny]dF.

In many cases, interest in the behavior of 93 does not extend
to the whole measuring plane but, particularly with sharply beamed
radiators, only to the immediate neighborhood of the principalSmaximum at Y ,= 0'

For this range cos[kysinyJ can be replaced by I - j kly 2 sin 2y and
it is found that

R=I ail) 1 w(x,y)y2dF. (12a)

If we imagine the radiating surface element dF at the point
(X, y) of the membrane replaced by an element of mass

W dmn = (12b)

then

T. ", . , w (x, y) y'dF

denotes the moment of inertia with respect to the X-axis of the
stationary membrane thus covered wiith mass (total mass 1), and
for small values of y we can write

Apparently this is the real form of eq. 6 instead of eq. 11.

ik-8-



=1 ~i 2 y. ~ (13)

This formula is ofteix suitable f or a quick determination of the
d~irectivity (die Peilschgirfe) of radiator arrangements.

A8- an example we will. investigate four simple radiator arran~ge-
ments (Fig. 5):

1. Two -ooint sources
2. The circular line densely filled

with radiators
3.The rectangular piston membrane
4.The circular piston membrane

z

de f ind the moment of inertia T and theJ-y corresponding approximat ion formulae without
- difficulty:

3. T,=r2, k.M8 - 2,1

2 3

z mr 2  I01 'a r2

3 . T3~ I' -~ aI n 2 Y I

by caryin ou 2h inegatinin Eq. 4 6\

There results (see Fig. 5A':

e"krsi Y+ e-ik '11 2rr

f2YCo i (14)

Fig. 5. Calculation of l, i zCs%4YoaPd
the directional
chi) ractferis tic 2a 9dpJ(~%n) (15)

N\/ Electro Nachr. Techn., Vol. 4 (1927), p.2~39-253.

\ý'irom equations. (l3a),the followine meanings of r are to be
inferred: r = one-half listance between elements, for two point

sources,
rradius, for ring and piston,

r uone half' the side of' the square piston membrane.



+

I Isin -sin V)S- = 2 J (16);. •s =~ eikysinydY - •sn

:1/

21r 2 nd

Wiith the abbreviation Th- an ind,. X• ti oudta

sin y ~i-- amY= ,iiSondta

BinX ~2J sin

'3i: r{Cosx, 8i,=Jo(x), % (1-7a)-x

vdwhere jx)or .Ji(x) signify Bessel' ts funct ions of the zero ori, first crat respectively. By the well-knodn series development the
Scorrectness of the approximation formulae may be immdiately con-

firmed. One thus obtains
__ I• Ti = ý ( 17ba)

""o 2 8iflX

2JOW) 1 9 A

In order to obtain a general measure for the q we

will inquire as to the angle q, in the measuring plane (ZY) which

the field point line forms vwith the Z-axis when the sound energy

is reduced to half the manImum value, (i.e., the amplitude is re-

duced from 1 to L/V'2) (Fig. 6).

We will denote this angle as the half-value beam width in this

measuring planeA. A simple calculation then yields with sufficient

accuracy for practical purposes the following simple relations:

SIt is hore assumed that there is some directivity so that the

i: half-value width amounts at most to 600.

'C!



p, = 150 i/d for two point sources

912 ý 200 ),Id for the circular line
T= 250 /ld for the rectangular pistcn membrane
9 0, = 30 /Ad for the circular piston membrane.

The error here is less than 10 for X d and decreases pro-
portionally for smaller values of X

The angles 150, 200, 250, and 300 are then characteristic of
the directivity. kle will emphasize this by a special term - the
directivity coefficient (das Peilmass). The directivity coefficient
is in general different for every measuring plane. In order to
obtain the directional characteristic for a measuring plane com-
pletely, the characteristic functions will be plotted as a function

of x and a variable scale will be placed
below the X-axis, which permits reading
off the directional characteristic for
each value of d/X and each angle v.

Thus the complete behavior of the direc-
tional characteristic as a function of y
in the above four examples and for all
values of d/X which lie between 0 and 8
can be immediately ascertained from Fig. 7.
If, for example, the directional character-

-- v istic for the densely covered circular line

M =Jrd iny)is des ired for d/X = 3,
and Y = 400 , one follows the Line d/X = 3
to its intersection with the 400 line and

F ig. 6. Definition of reads off the corresponding ordinate on

the beam sharpness. curve 2. It is thus found that fi= +0,15
(see the broken line in k'ig. 7).

As an additional example, we mention the straight line group
which consists of a number of uniform nondirectional individual
radiators arranged at equal intervals on a straight line. aue
to its special significance in practice, we will investigate this
arrangement very closely. Let the radiators lie on the Y-axis

'K. at a distance d from each other and let them have the coordinates:

YjV, ,p-1 ....Y ( -I)Y P

Here the coordinate origin is tQ coincide with the middle radi-
ator for an.odd number of radiators ( 2- 2q -1) and is to lie midway
between the middlemost radiators for an even nwabov of radiators
(n - 2 r). In the first case one would then set , q •) ,-.I ... 2

eGtc, while in the second case one would set 1,--- [p- 1 q ! ., , etc.,
(Fig. 8).
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In general., then, for an arbitrary index 1, the relation
y= Id is valid. If, for abbreviation, we set

,. kdsainy Z,
(18b)

vwe then find the directional characteristic from (6) when we replace
the integral by a summation sign

n- (18c)

The geometric series on the right may be easily summed and one
obtains:

= Z2+ z- _ I -z- (18d)
nz -

from which follows (when eikdsiny is again introduced for z)

si [fl(P +-') k din4 (lj

Sn sin Hin y

Since for odd numbers, 6% J- is replaced by 11-J and for
* even numbers + -L is replaced by q :-- , the general result

is that
Rin i sikI

- where kzl is substituted for k.

In order to obtain a clear understanding of the general be-
,havior of the directional characteristic for different values of
d/A we first consider the function given by

Hill ,, (20)

itd

in which '.N has been replaced by r and ( -- i n , ) by v . The
curve given by (20) in the polar coordinates (r, 9 ) is now easily
understood. The principal maximum is attained at q,= o and v -

(and multiples of r ). In between lie n - 2 secondary noaxima
which are separated by the zero positions -(k--1 2... -I).

!•';' "-13-



If a straight line is drawn parallel to the ordinate axis at
the distance i/n , it touches the curve at the points which cor-
respond to the angles

3 2- 1• =2,' i•" . . 2-V (20S)

It is seen that the positions of the secondary maxima are, to a good4 approximation, defined by the angles

3 5 2n - 3

7r, 2nZ -C (20b)•!9 9, = 2 -n , 2 1C . . -- 2 ,11

(due to the symmetry with respect to the ordinate axis we can limit
ourselves to the values of 's- ). Fig. 9 shows the behavior
for n = 6 • Here the broken line curve is an ellipse with the

semi-axes I and 1/6 on which
lie all the maximum values of

Bin 6 o (20c)
Isin ( p

The secondary maxima (in the
first quadrant) coincide, to a
good approximation, with the

S./ , • •contact points between the el-
lipse and the straight line
drawn parallel to the ordinate
axis at the distance 1/6.

Fig. 8. For the calculation of For a more .ccurate deter-
the straight line group. runation, the equation

n tg q= tg it9, (21)

dr
resulting from dg,=0 must be solved. This may be done simply
if equation (21) is written in the form

1 are tg(i tg ). (22)

The approximation values Just found are substituted in the
right hand sido of (22) and a better approximation is obtained. Then
this better approximation is again substituted in the right hand side

of (22) etc, If 9=o 2 m is substituted as a first approximation
in the right hand side of (22), -po co then results as a second

45. -14

' It : "I



Fig. 9. Marking the positions aind magnitud~es of
the secondary maxima of the directional character-
istic for the straight line group of six radiators.

approximation where 0 ise given by

tg n -g0 (22a.)

If eg.n6 and m=1 thenlp 450 andfrom,

tg 6~ (22b)

V~ 35' so that q), 430 25', The third approximation yields E, 00 5'
and q - 430 20' , Thus 6 tan 9)2 = 5.66 agroesG with~
tan 6 9)2 5.A7 to within an error of less than 1%.

If we denote the coordinates for the maximnum valu.e by rot tV'm
then (20) and (21) must be fulfilled simultaneously. Therefore

rA Ii Bil T i klt sill (23)

~tg9, Tilt t9 nq Til (24)

A,

and diiding(23) b2(24)

Y -15-
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Adding (23) to (24a),

1.2 [n2 sin2  . + Cos2 ,,] T . (24b)

That is, the maximum values all lie on an ellipse with the semi-

axes 1 and 1/n. In order to perceive the dependency of the directional
characteristic on d/% and y , we have only to consider how the
discussed r, (p curve is affected by the transformatlon i = r andS•nd
T ý T sin y, into the r, y plane." Due to symmetry, we can confine

ourselves to the first quadrant ( ,-_ - and from the corres-

ponding range 0o-<(P can state the positions and number of

the principal and secondary maxima. The size is manifestly not
changed by the transformation.

If we compare two arbitrary straight line groups I and II where
I is characterized by ? 1,dl,,, and II by vd,, d, then

i r n -= nsin l -)' 991- -2 silly,

,, f 292 8111 .(24c)
r2=72Sil T4 silly

Since one is concerned with only small values of Y in estimating

the directivity, sin T can be replaced by 9 . And since, for
small values of T , the inequality

>jll(' illq (24d)

is fulfilled when and only when )I (h < .- 12 T2 it then follows that
the directivity of II is greater than, equal to or less than that

. of I according as n.2 d12 /A is greater than, equal to or less than
11l,(1,1 i . Vth the same frequency and total length the more densely

covered group therefire has a smaller directivity (broader beam).
And two groups with a different length and a different number of
radiators can possess the same directivity.* For example, since

= 3 the groups 71 - I, d1 =- /A/ and )12 3, d,( - A have
equal directivity while their base lengths hare the ratio of 17

* to 12.

"For a number of directional radiators (in a rigid wall), the

calculation is substantially simplified when the radiators are
uniform (so that each radiator by itself would produce tiie same

idirectional characturistic). If vie imagine a nondirectional (point-
source) radiator in place of each individual directional radiator

* Apparently the % ' ylatne is meant here.

•, I 16•
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and call the directional characteristic of the system thus coniposed
of xondirectional individual radiators T, and the directional
characteristic of each individual radiator E2 , then the direct-

ional characteristic Ni of the u-hole arrangement is szimply given
by the product, i.e., at . 2 .

For example, the directional characteristic of an arrangement
in a rigid wall consisting of two identical circular piston membranes
of radius r and with a center-to-center distance a in a rigid wall
turns out to be

I_= Cols Cos (25)

,ie prove this theorem, first expressed by Bridge as follows:

Let there be given in the.XY-plane a system I of n nondirectional
(point-source) radiators with the coordinates

S(X I, y I), (0• X' .. . (x I,, Iy J: (2 5a )

the velocity amplitudes

U.'), w. , (25b)

and the radiating surfaces

and for this system, set

iv, R, +[ w2'KF + + u,'F,F, A' (25d)

Furthermore suppose a system II of m nondirectional radiators
correspondingly characterized by the quantities

!"i" ~ ~("I"' yD), (X2, !1•) (... ;,, (25e)

'"' """' " (25±)

,. j .... �Y. .+ A". (25h)

\/See 1I. PoIncard, Theorie de la lumlere, p. 158.

•I -17-



Now in place of each radiator of system II, the system I is to
be set so that the new system III is correspondingly characterized

. by the quantities

(K + X1, y,, ?/,), (.V , , + ,) ... V,•, + ,y,, + y",) (25i)
p'WW2

F .w, F" R. . ... , ,, =1, 3. .r.

The directional characteristic SR"' of the system III results
then from the general formula (6) whQre the integral must be replaced
by the summation sign. Thus

44 , p ,I•, m"'=..-•---• .'"- )1 w,;'.,,:- . . .. p,,,,,.[.'" "- ,$),.)~~ .... ,-(,;+ 1•) i,o (25j)

while the directional characteristic ,' of I is given by

' , ' '•. .q (25k)

and the directional characteristic V' of II is given by

':.W .- 4" '• I,,..[ , '',~~ ~ "" 1, y;.' " .. ."• (25m)
i,:: p :=1

From this it follows immediately that 'W" This
theorem can serve to derive another group arrangement whose
directional characteristic possesses a simple form from a simple
straight line group arrangemento If we let the directional
characteristic of a straight line group which consists of n
nondirectional radiators with equal surface placed at equal in-
tervals on the Y-axis with the velocity amplitudes 1, 1 ', ...

be

i2: -t,',,,,' ... ,,',1,(25n)

and denote in particular the directional characteristic of n unit
radiators by

L~, I, , .. II 444111J.'(26)

then4"' thu4 2

k '44' 19 . c0.,, ' (26a)2 Him

•,•,;:-:,18-
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If we now replace each radiator of this group consisting of two
elements by the same group, then from the original group

..2 x x (26b)

there manifestly comes the following group

Y x > (260)

That is: vie obtain a group of 3 elements (1 2 1). The corresponding
directional characteristic [1, 2, 1] is then, according to the

* theorem of Bridge equal to c,)3 (p.

Correspondingly, it follove that

S= [1, 11[, 1] [l, 11 -[1, 3, 3 1]= cos'T, (26d)

Li(D' .. ( ) l Cos (26e)

In order to find the synibolic product

•a ,,, 1 [. b, , b,] (26f)

i.e., in order to find the directional characterist4c of the straight
line group which results if each individual radiator of the one
group is replaced by an equal and similarly directed group (so that
the original radiator and all radiators appearing in its place lie
on tho same straight line), we form the follow'ing re'ctangular scheme:

., , 1 , 1,b,

ii!+. ,a a .I,. a 6,+ ,+ ,' 6.

U, a.i '13"" a, b6,

-19-
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It is then easily perceived that for the determination of 9,.
the sums must be formed of the products contained on the diagonals.
It thea turns out that

* -* [a b( 1 a2b1 -+ ab 2 a3bl 4- + - a, b, + (26g)
+I am ,,b 1 + a., l b.,, a,. bj.]

This result may also be explained in a simple manner by con-
"sidering the product

(ax +- a2 X2  . . a, x") (b, x -+- b2 x2 + ".+ ba x") (26h)
a, b, x2 + (a, b -+- a, b2) x, + + a,,, b, x" I n

Of interest is the converse of the question: With a hypothetical
straight line group with a fixed number and distance for the receivers,
how can the directional characteristic be changed by changing the in-
dividual velocity amplitudes, i.e., by changing the sensitivity.

Thus with six radiators which are arranged at a uniform distance d
on a straight line the follouing seven directional characteristics
are obtained:

NI U.1H 9)
siti.51, K~ill L

€,2 -: .t'•" [1, 2, 2, 2, 2,11] • , '2-1W 9'

Kill19 Kl~ill'
1 .a 2,' 2, 11 sin lq, Ki nll.
, ,a . . .. 4 sin q, 3 siuq,'

C% S- , :. 4, 4. ,, 11 - ,1 ) , (27)

'~~ ~~~~~~ 14}11 {2 ' 1 & ,.,l i 31, 'a Sillv,q.
• ' 3sill•' \'2 1it lq! '

J 1.: ) . -i , 4' , 7t , 7 , 4, 1 1 Ki l l 3 .. S l" q

Hero the abbreviation v' silly is used.

"-20-



V.

M

The corresponding directional characteristics are represented
in Fig, 10. According to the moment of inertia theorem it is immnec-
iately clear that the direct ivity of 9i, is greatest. Since the
sensitivity of the receivers becomes more and more concentrated near

0, if

0,2-0,708

47 --.---- -0,0 IV--

IS -

-0,1 0,

-0,06 --

'0, 4 ? 01 0, O -

--A
straight liegroup of si.
receivers with different 49.2 *6e#o z'

sensitivity.
xi, Fig. 11. Secondary m~axima

of the straipght. line group
of six receivers with
different sensitivity.

the center, the diroctivity liuat then of necessit-y decrease more an~
to re. Fig. 10 shows this. It appears of considerable importance

that an opposite trend exists for the sizes of the secondairy maxima.
Tile part of the curve corresponding to q> I. is greatly enlarged
in Fig. 11 in order to show the si~ze of tho secondary maxinia and



it is evident that, wth regard to the size of the secondary maxima., 9
is very unfavorable. Thus, e.g., for R, sizes of the secondary

maxima remain below 1% as compared with 24% for N . kith a

fixed arrangement of radiators we can thus influence the directivity
or the sizes of the secondary maxdma in the most favorable sense by
adjusting the sensitivity (i.e., the amplification) as is necessary.

In order to derive the directional characteristic for the rec-

tangular group., we proceed from the general directional characteristic
of the straight line group. Here we svbstitute cos P for sin Y

in Formula (19) in order to show that the relation holds independently

of the measuring plane. It was necessary for Formula (19) that the

measuring plane coincide with the ZY-plane. We then obtain

sil[n d Cos#] (S

If we now imagine each individual radiator replaced by a group

S~o ooo o 1O7oo

Fig. 12. Rectangular group. . I. Rectangular piston

membrane.

of m radiators parallel to the X-axis (Fig. 12), according to

the rule given above the directional characteristic of this rectan-

gular group then turns out to be:

-4l CORA~ Hill ('08

n 1. , I. d, (29)
m i[ COA I 81

If we allow d1, and dt to become smaller and smaller and m

and n to increase arbitrarily so that, in the limit, md, a and

Id,-ob 
(Fig. 13), we then obtain the general directional charac-

"teristic for the rectangular piston membrane:

-22-.



sin a- Cosa~ sin KLCOS1(30___ (30)
an b n

Cos 0 - COS

Here, it must be supposed that the membrane oscillates cophas-
ally on both sides of the XY-plane or that it oscillates in an in-
finite rigid wall as a simple piston membrane.

In place of the densely filled circular line, a circular group
is frequently used in practice which consists of a definite number
.n of radiators which are arranged equidistantly on a circle

of diameter d 4.; If we choose n as an even number (n 2 2m),
then by summing up the response of each pair of diametrically
situated radiators, the following relation for the dlrectionil
characteristic may be easily derived:

~ 2' {;~siny VCos (9, (31)
k=O

Here the field point line is determined by q and y (see
Fig. 14). For the larger values of m , in particular, calcu-
lation by (31) is very time consuming. By the use of Besselts
functions, the sum may be transformed into an infinite series
which is considerably more convenient for the calculation. It
then turns out that

So(Zsiny) -- 2z'( I)P",l1pm (sin) cos2prnp. (32)

4 The practical significance of this relation which, at first,
appears complicated, is immediately recognized if it is considered
that the first terms in the sum J2,,, '14m etc., very rapidly
assume a practically negligible value so that it is generally suf-

* ficient to consider only the first term Jain

loreover, with the aid of (32) the frequently important ques-
tion can be decided as to how densely a circular line must be cov-
ered by the radiators in order that the directional characteristic
may be indistinguishable from that of the continuously covered
circulzr line. If we choose, say, four receivers, then the decisive

V lectr. Nichr. V'och. Vol. 6 (1929), p. 170, (or the NRL

translation (jr114) of this papoer).

-23-
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correction term is smaller in absolute value than 2 4 a({sIn)

If we denote the part from v = o(JO = 1) to y~ where y, corre-
&ponds to the first zer:o position) as the principal. part of the charac-

teristic 0of 'R JO( -TSiny, then Y, is determined by 71 di ~=

and since J&() < 0,06 for x < 2,4,
the principal part o~f the characteristic

2 is then not changed. That is, the direc-
tivity of a circular group of four radi-
ators is completely equivalent to the
directivity of an arrangement which is
densely covered with radiators regardless
of how great a radius is chosen for the
arrangement. It can likewise be concluded
that the complete behavior of the direc-
tional characteristic of the circular
group can be represented with sufficient

F'ig. 14. Calculation of the acuayb 1adsn) ifteumrndirectional chaeracteristic acuayb J(sn) iftenbrn
of te ciculr grup.is so large that the condition

2 (33)

is fulfilled.

-Since the circumference of the circle is mld i) a where U i
the distance measured on the arc., we can then so formulate the con-
dition (33) that the distance measured on the circle between two
neighboring radiators must be somewhat smaller than ,~(more pro-
cisely (alA < I -* 2/n) ) in order that the circular group directional

characteristic may be given by J, (A sily

Closely connected with the beam sharpness of an arrangement is
the matter of the resolving power (Trenmachlirfe). Then it is a
question of' when a receiving arrangement is in the position to per-
ceive separately two sound sources placed at a great distance away
and at a small distance from each other. If we imagine a sound
source placed symmetrically a~n each side of the perpendicular bisec-
tor of a receiver arrangement (sources 1 and 2) and at a great dis-
tance r and if we inia ine furthermore a circular surface as the
receiver arrangement (Fig. 15), being rotated about the X-axis, then
the principal maxima produced by each radiator will be perceived

-24-



separately if the distance a between the radiators is sufficiently
great. If one assumes with Rayleigh that
the maxima can then be separated if the
maxiamum of one coincides with the minimumof the other, the necessary condition

aTd 81n q) 3,83 (33a)

then follows from the fact that the equa-

tion

Fig. 15. Resolving power iyll~

of the circular piston (33b)

membrane.

'ad
is fulfilled for sim--3,83 Since

8i 99• =•a/r (33c)

it follows that

'"dl;j > 1,22 rla (4

In order, therefore, to be able to separate with an acoustical
objective radiators placed at a great distance r from the objective
and at a small distance a from each other, the diameter of the ob-
jective measured in wave lengths must at least be equal to r/a.

The preceding considerations referred exclusively to the case
where all parts of the radiating membrane or radiating system moved
with the same amplitude and phase. In practice this is not by any
means the case. In general, the force exerted on a membrane is not
uniformly distributed over the whole surface but is exerted at the
midpoint or along a line. Since there is no absolutely rigid mem-
brane (above all not if, in addition to rigidity, as small a weight
as possible is necessary to produce a good efficiency and frequency
response), the force acting, say, at the midpoint will, due to the

4 •(damped) propagation with finite velocity of the tranverse elastic
waves, be able to act neither in phase nor wit~h uniform amplitude
on, say, the outlying elements as soon as the dimensions of the
membrane are no longer small compared to the wave length of this
transverse wave. Furthermore, the membrane is generally retarded

-5* I: -25-



in its motion by its support at the boundary. In principle making
•&. allowance for a different phase in our

formulae will cause no difficulty. vie
would then need to use the given velocity
amplitude w(x, y) as a complex quantity.
For simplicity we will confine ourselves
to a variable amplitude and accordingly

ly assume w(x, y) as a real function.

As the simplest example, we consider
the directional characteristic in the
ZY-plane of the rectangular membrane
represented in Fig. 16 where the membrane

Pig. 16. Vibration form is shown at the moment of greatest de-
of the rectangular flection.

* ~~~~~~membr~.ewxz)'s-,'~
Here w is to be given byw(y) I- y2,/b2

Wie then find that

* -4-b

so that
M 3

Wm (34b)

and
4 b

{", •, :--: - 2_•_ eik y sain y ( Y • ) d y ,W.- - bs (35)

"a 3 inu )

where

S~2nb it sin (35a)

In order to find the directivity coefficient, we have to calcu-
late the value of u for which T -= 0.707. It then results that

u = 1.8. The directivity coefficient is then equal to 1,81n = 330
and the half-value beam width T is given by p 33=" A/2b Using
the approximation formula, we would find that

S... 12• sillX

-26-
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1* and hence that

A/b33,5')jb (35c)

As a second eyample for the rectangular membrane we choose

w(x, y) 1l ~2y2/b2(3d

and find Wr=

otFor the directional characteristic in the ZY-plane., it turns
othtlat

12(iucosu) iflu. (35e)

X 'ite here determined the d~irec-
tivity coefficient from

U,12 / 8iflu fl

Co u~) - 3 -8i- =0,707, (36)
and it hence follows that U 4,4.
The directivity coefficient is

Fig, 17. Vibration form of the thus 4 4/;r = 800 while the half-
rectangular membranew (x, y)=-U/. L aleWa width is 9 800 .A/2 b

nere something new occurs since ffl does not possess a maximum
but a minimum on the ".-xis. * series development~ of 91 yields:

Fig. 18 shows a comparison of the directional characteristics
of the rectangular piston membrane of length 2b and the two latter
membranes.* One recognizes how substantial is the change if a mem-
brane with nodal lines is operative in place of the desired piston
membrane. On the other hand,, this knowledge can be turned to good
accounit if, with a large membrane (which is necessary in order to
provide the required energy), it is a question of avoiding a shiarp

m A convergence*

As the third example we choose a tightly stretched circular mem-
brane. Here we can generally carry out the calculation for the curves

$at ote 7.

-27'-
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A

given by w(e) (I - l'r 2)" . (Fig. 19 represents the curve
w(�Q)-= (-oZ/r2)" for n = 0, 2, 4, and 8.) Thus we find~.•

1$ L= , .%-1 und: Ti ... 21 (n -; 1)! L<- ('9, (37)

wherein JL+l(u) is the Bessel's function of the order (n+I) and
2.-r r

U Smy 0

a-
U2TSfnl7

Fig. 18. 1. Directional ch•rac.teriatic of the rec-
tanrulpr piston mewbrane in the symnetry plane.
2. Directional characteristic of the rectanguler

stretched membrane in the symmetry plane. R. Di-
rectionel characteristic of the rectangular mem-
brane with nodal lines in the symmetry plane.

From the approximation formula calculated with the moment of
inertia:

- + 2 (37a)

iwe find the half-value beam width to be

• • ,• •o I',.+ • /.(37b)

"The coriplete behavior of directional characteristics corresponding

'~ ........ .2;
0 41 4Z 43 4# a4s 46 47 41 4S 1O

f'ig. 19. Vibration forms ,, -,,),
* I ~for n*i,4,4M.

i) Ann& i. Phys., Vol. 7 (130), r. 972.
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to the vibration forms of Fig. 19 is represented in Fig. 20 for

n = 0, 2, 4, 8. It is to be mentioned, however, that by a linear

S...... ...

u- - If -in

Fig. 20. Directionel characteristic of the
circulsr membrane with the vibration

form ,(,.-(1-•.oT,)'for n=o,2,4,8.

combination of the vibration forms (w= (I -0 2
/r

2)& an arbitrary ro-
tationally symmetric vibration form of the membrane (even with nodal
lines) can be represented to an arbitrary degree of approximation.

l;e can state the directional characteristic corresponding to a
general vibration of the membrane

w(Q) - a. + a, (1 -- ellr2) + a,(1 --/rI)I +- + + a,,(1 -- 
2/r)". (38)

it is

L-.[a~U) 4, 22. J! aJI(u

ao -ai+ ýa + + a. 39
+l 21 1-nI+

An exceptional case arises if the expression in the denominator

i'! ~a, 4."- a, +.. + ; --i a'(3
2 (39a)

vanishes. Then formula (39) for NR becomes unusable. However, the
difficulty may be immediately removed if the pressure amplitude is
calculated directly by equation (11). It then follows tfit

- fW(X, y)SikyInitUdF (39b)
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and for y o
P. afw(x, y)dF= 0( )A. I? --- x (39c)

This means therefore that since wmfl 0 the pressare amplitt"-e
at a sufficient distance on the normal axis vanishes. In addition, it

0

Fig. 21. Circular membrane with Fig. 22. RelAtive sound pressure
the deformation volume zero. amplitude of a circular membrane

with the deformstion volume zero.

is clear that the directional characteristic (which represents the
ratio of the pressure amplitude in an arbitrary direction to the
pressure amplitude on the n axis) loses its meaning. In other
respects, the calculation offers no difficulty.

A suitable example is given by w 1 - 2 Q2/r 2  . Therefore we
have ao= -, , = + 2, a -- aa3... =0 (see Fig. 21).

.Here w, o and p is f ound from

P [R ( • -''•U) -91 (14)] (40)

U, where

- 2BJR (u) 22.2 .
A4  UR(~ (40a)

For small values of u , it is recognized from th, series devel-

"" R(1(4 ) NO (it' 2i' 04.114103 2 2,2!51 (41)

that even for directions in the neighborhood of the Z-axis the effect,.of the membrane is extraordinarily small. The complete behavior of

TM (- %(u) is represented in Fig. 22.
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(b) The directional characteristic for a noise.

In practice, of the sound sources which are to be measured
(e.g., underwater), two essentially different types are to be dis-
tinguished. Either it is a question of artificial- sound sources
which are to send out pure tones (lighfO ship transmitters, bells,
signal senders on ships) or of more or less natural sound sources
which possess a noise-like character and which are generally un-
intended and undesired (propeller noise, machine noise).

Therefore an investigation to determine how the preceding con-
siderations may be applied in such cases suggests itself. Here we
will assume the case occurring most frequently in practice where a
noise source is present from whose continuous spectrum a definite
frequency range (bounded above and below) is received. As is well
known, this may be accomplished without difficulty by an electrical
filter. It is additionally assumed that the receiver receives all
frequencies of the range in question with equal intensity in the
principal direction - i.e., that the transmitter favors no frequency
and also that no frequency dependency exists on the path from the
transmitter to the receiver in the medium (absorption, reflection).
iWe will, with advantage, define the quadratic mean value

/ -ýd (42)
tit

as the directional characteristic where n, and n, are the limits of
the range and ER is the previously defined directional characteristic
dependent on the frequency n.

If we choose as the simplest measuring apparatus two nondirec-
tional receivers separated by the distance d (which is small com-
pared to the wave lengths in question), then

- 1 f a(ndn.u (42a)

Carrying out the integration:

ol- XL 2 ( 2 ~ 00 ,3 (x1 + x2.) (

wherein for abbreviation
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* 

Ut~ snyr-s~ly--X (43a)

n si y~f k2 sin y = x

One sees that for X2  X, form~ula (43) goes over into the original
directional characteristic ýR in (14). It is

OX Z X + Ics~ = oos (43b)

U, We w~ill initially investigate the behavior of~ the directional
characteristic when the pass band is precisely oiEý octave. Here we
set n

X2 2XI, X1 =- sin

and obtain;

2 cos~x.(44)

From Fig. 23 we see that the directioml3 characteristic is nowg
substantially different from the previous one (for a single tone, Fig.
7, curve 1). Instead of the zero and unity values appearing period-
ically with increasing x ,there appears here only one principal

-.

Fig. 23. Directional characteristic of a
Ptreaight line group (Length a) for octave

recption:
1. Two receivers, 2. Three receivers,
7. Four receivers, 4. Six receivers,

5. Densely oovered.



•• : .r - -. ... .. .. . . . .. . .

maxmium with the value unity. And for the larger values of i , the

curve, oscillating, always approaches the value 1 In order

to investigate the influence of the number of receivers for octave
reception, the cases are represented in Fig. 23 when the receiver
array consists of 2, 3, 4; 6 and very many receivers - the total
length of the array being kept constant and equal to a . One
"sees how the directivity decreases here also with an increasing
number of receivers. Simultaneously a steady decrease occurs in
the value which the curve approaches with increasing a8n i .

The values corresponding to the receive,- ni-abers 2, 3, 4., and 6
are respectively f. ji., " and 1/-W

while the value zero corresponds to a large number of receivers.

In general, for a straight line group of n receivers at the
same distance d and for a fr~equency range from v to v + p v it
is found that

W I + = - (i-- m) nip- Ioo8[(p + 2)mx]. (45)

In order to learn the influence of the size of the pass band,
the caaes n 6, p = O; 0.2; 0.5; 1; 3 are representad in Fig. 24.

4"

• . • , .

Fir. 24. Influence of the band width oa the
dir•otional charnoteristio of' a straight line

group of six reoeiveor.

-33-
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It is seen that the size of the pass band determines the amount of
the variation above V and that the greater the pass band,

the smaller this variation. In Fig. 24,

Curve 1 corresponds to the case n = 6 p = 3
GCurve 2 corresponds to the case n = 6 p = 1
Curve 3 corresponds to the case n = 6 p = 0.5
Curve 4 corresponds to the case n = 6 p = 0.2

Curve 5 corresponds to the case n = 6 p = 0.

The values of "sin Y are read on the abscissa axis. a = 5d

is the length of the base.

As a further example, we consider the noise reception for a

dense receiver array on the circular line and on the circular sur-
face. The corresponding directional characteristics are

" 4' -' I '"JI(x)dx, (46)

I /,
0 - J- I fx ),, 1

•ri6a J•,/ , ,,,ii ,, (nd )Ji,, 1,)

where agaian

X I mi y a n d B .... ( 4 7 a )

For octave reception (.'- 2x ,. 2); x A Sifl)l

* *r (48)

This is represented in Fig. 25. For comparison, thG ordintary
directional characteristics corresponding to the upper and lower
limits of the octave are also inserted (curves I and 3),

4'4
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O'S ?s9 4
""N'

0 '•-o TIS '0$~

•; ig. 25. Directional characteristic of' the densely covered circular line.

n,, 1. For the fundamental (wave length X ). 2. For the octave (wave
length .to 4/2). 3. For the harmonic (wave length X/2).

g(o) ,4ith artificial compensation

When the position of a sound source is to be determined with a
given receiver array, this can be done by rotating the array until
the maximum intensity is attained on the indicating instrument (or
for the ear). When the elements of the array lie in onie plane, this
maximum response is obtained when the plane of the array is perpen-

WR: dicular to the sound direction.

However, the same result, which depends on a coincidence of
phase, can also be attained by artificial compensation withoutbi rotating the array. This is done by variable electrical delay
circuits which are inserted between the fixed receiver array and

"Z.•i the indicating instrument. •ach position of the compensator, which
controls the delay time, corresponds to a definite direction in
space (in the measuring plane) for which the receiver array is in
phase. In order to find the direction of the sound source, leaving
the array fixed, one now has only to turn the compensator and read
off the corresponding beam angle.

Artificial compensation by electrical delay circuits is quite
important for directive reception. Not in the least contributive
to its usefulness is the simplicity and accuracy of the operation
of the electrical circuits These generally consist of a number of
uniformly constructed sections which contain self-inductance and
capacitance and are so assembled that the self-inductance coils are

Using the indicated argu:ment in this figure, the curves for
the Cundaxrental and the harmonic will be identical. If, however,

sin y is used as the ar;,ument, curves similar to curves (1) and
(3) -sill ne ozntained but curve (1) will correspond to the harmonic
while curve (3) will corrospond to the fundamontal frequency.
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inserted in series while the condensers are in parallel. If t is-
the value of the self-inductance and & the capcacitance of the con-
denser, the delay furnished per section of the circuit is (Y.

uFurtermore, this delay can be made quite independent of the frequency
if one arranges it so that the limiting frequency defined by

is sufficiently far above the frequency range to be passed. In this
way one succeeds in imparting a pure time delay per section to a
noise signal without changing its character.

If -vie have an arbitrary receiver array arranged in space then
the compensation apparatus can be obtained in a very simple mamnner
for a given measuring plane by a single delay circuit. If we imagine
the receivers projected on the measuring plane (XY-plane) and that
their coordinates are given by (XI, yO) (x2, Y2)... (X.,.Y) it is then clear
that for a compensation in the measuring plane only these projections
are of concern. Qtherwise expressed, the individual receivers can
be arbitrarily displaced perpendicularly to the measuring plane with-
out any change in the compensation action. If, for simplicity, we
confine ourselves to three receivers, the natural directional char-
acteristic is then given by

4 s )~ \-iz~o +y~vosý (49)

where A and • are the direction angles of the field point line. If
we let the compensation direction in the measuring plane have the
direction angles q' and V, , then, upon applying the delays, the arti-
ficial directional characteristic is given by

If we allow the sound source, i.e., the field point line (A, fl),

"to shift so that it males a complete circuit, %Nk assumen its greatest
value when the direction of the sound source coincideta with the com-
pensation direction. JExactly tho san3 circumstances xocur, however,
U , with a fixed sound source, we allow the compensation line ((p, V)
to shift.

If we regard th-) configuration of Fig. 26 as a scale drawing of

the receiver array which can be rotated about the origin 0, then in
the rotation the correct retardations xcom-i -y,,,-Rt are attained
s-mply as the projections on a fixed line which we will assume to
be the X-axis. If we fiqthemore imagine perpendicular contact bars
which are connected with the individual sections of the delay circuit
(as is shown in Fig. 26) and place sliding contacts at (xjy,) (x, y,), (.zy3)
which are constantly connected 'aith the one terminal of the corres-

0ponding receiver while the other terminals are connected with a
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Fig. 26. Compensation apparatus for a group of
radiators (1, 2, 3) (small in comparison

to the 'wave length) with an arbitrary
arrangement in space.

common return conductor at the circuit input, then each impulse from

a receiver reaches the input of the amplifier with the desired delay.
At the same time, by an appropriate design of the delay sections the
"time delays of the circuit are to be made to correspond to the ve-
locity of sound.

For the uncompensated group the directional characteristic is
independent of the position of the object to be located. This is
not the case, however, with the compensated group. Here the di-
rectivity will be so much the more dependent upon the angle the
morn the pattern of the projections of the receivers on the measur-
ing plane departs from that of a circular array. If we consider
the straight line group of Fig. 8, the directional characteristic Ik

for the compensation direction characterized by y, is given by

-. -5- . (51)

In Fig. 27 the directional characteristics are represented in
polar coordinates for a straight line group (n 6= 6, d - A/2) for the com-

...P;. pensation directions 0), 450, 600, and 900; here the secondary max-
ima are left out. It is noteworthy here that the directivity is
changed only slightly at V, y 451 . However, for larger angles a
decided broadening of the principal maximum arises. Furthenrore,
the principal maximum no longer lies symmetric to the compensation
direction. This has the consequence that too great a value for Yo

* is found if the measurement is undertaken in the usual manner wherein
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the compensator positions for equml loudness on both sides of the
maximum are determined by ear and the mean of these positions is
taken.

Fig. 27. The directional characteristic of a straight
line group of six radiators with compensation.

0*. '- , 2. •'-40% 3. y.- 00', 4. Y'-,O.

These disadvantages of the straight line group will be avoided
if the densely covered circular group is used so that the measuring
plane coincides with the receiver plane. If we next calculate the
directional characteristic of the circular group compensated for an

* ! arbitrary angle •o , ' we find that

* (51a)
• i kz(t( v- . P ÷ (cool' - o.#s)ld i,•i•!• 2 n• r.!

If we let xr co81 and y r iu q and aet
h•.; otill., O•)mp

r. q *U - -.% O 4 (51b)

* ". it then follows that
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2n•

ejikr [cos 9, cosg - Cosa +) 3+ni ,(cosB-cosfe)],d ,

0
2.r (52)

- ikrI(cos acos °)+ cos If cos/oCO80, - o) a.

and 0
.=Jo (Cosa - cOS~o)2 + (co013P- cos )P)

For a, 90, flo 90', N, must become the uncompensated directional char-
acteristic as given by (15); if we let Cos a,=cos =O In (52) it
then follows that

ffl =Jolt- Silk r)j (52a)

"since

(s 1'&(Cos,- eerie)2 -. (costi- cosfo) = 1/7os2w.+.. •f1
= ca. (52b)ii!!'~~08 =}l- osV = r.in,,

If the sound source is on the X-axis and the
XZ-plane is the measuring plane, then, since

,,o=0 fi-90°,#f=900 (see Fig, 28):

ffl Jo i2(3

If the sou-d source is on the X-axis and the
X Y-plane (receiver plane) is the measuring
plane, then, since ao 0, A, 90', • + f 90':

fflk o M sin 2).(54)

!/In practice, this last case, in which the
meaauring plane and the receiver plane coincide,
is o f'Fo omlF 8D e)articular significance. rom formula

iton8of Dfethe measuring (54) we recognize that the directivity of the
plane for the compen- compensated group agrees with the directivity
phof the uncouipensated group (see formula (15))
sated circular group. so that we again have to choose the angle 200

as the directivity coefficient. If a definite directivity is required,
the ratio of the circle diameter to the wave length is thus detennined.
If we choose a half value bean width of 130 as an example then from (18)

d 2o
3= 1,5,

The remaining question is: how many radiators are necessary in order
that no practical difference may exist between the resulting direc-
tional characteristic and the directional charactoristic of the
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densely covered circular group. If, for simplification, we allow the
compensation line to go through a radiator, we then find an analogous
representation by Bessel's functions4:

. • 2.n d si a'• + ' 12ni anp *
,=1 ý7 A 2 ) o (55)

N.z From this it also follows that the directivity of the compensated

..ircular group agrees practically completely with the directivity of
the group consisting of four radiators. If the complete characteristic
is to agree, the inequality

2nd
n ±ý: +2 (55A)

must be fulfilled. Or, the distance a of two neighboring radiators

must be somewhat smaller than X/2 L kore precisely

4 2 - -n(55b)

K i• In other respects, the formula provides a substantially more simple
calculation of the directional characteristic.

As an example we calculate the directional characteristic for
n 6, d I and find the following tables by the approximation formula

TA Jo(4,71 sina/2) + 2J 6 (4,71 ,.n a/2) cos3a. (55c)

a 4,71 sin, .!2 J. (4.71.0 A ;nL2) 2Jj(4,71sina12) eos~a 94k

0 0,00 1 0 1

10 0,42 0,98 ) 0,96

20 0,82 0,84 0 0,8.1

30 1,22 0,166 , 0,86
40 1,66 0,45 0 0,45

. 50 1,99 0,23 0 0,23

80 1 2,36 0,02 0 0,02
70 2,70 -- 0,14 0 -0,14

* 80 3j03 -- 0,27 -0,0. -0,28

90 3,33 -- 0,35 0 -- 0,35
100 3,61 -'0,30 4.0,03 -0,36

110 3,8l - 0,,0 --0,07 -0,33

120 4,09 - i,39 +-,lt --0,29
V30 4,27 --0,37 -t-0,12 --0,25

.140 4,43 -0+,30 +,08 -0,26

1150 4,55 -0,331 +0,00 -0.31

160 4.-14 -0,29 -0,10 -o,39

170 .1,611 - 0,27 -1,18 -- 0,45
180 4,71 -0,27 0,21 ---0,4,

14 &Uektr, Nnchr.-iechri., vol. 6 (1929), p 176, (or the NRL

translation (r114) oV this paper).

""* he series oniled for by the sulaunatlon sign sho,.,id be

imultirlied by the faotor 2.
•.• i:•-4•0-



while the direct calculation by the formula

= ({cos[in(I - cosx)] + cos [ý7(cos(,x + 600) - cos6O0 )] (56)
+ cos[ n(cos(a + 120') - cos 120')]

yields the following table

S0OS -- C 3 COS 3

-cos60' -0 co 1204

0o 0,00 0,06 0,00 I 1 1 1
10 0,02 -0,16 0,14 1 0,93 0,95 0,96

S20 0,06 -0,33 0,26 0,99 0,73 0,81 0,84
30 ' 0,13 -0.50 1 0,37 0,95 0,38 0,64 0,66

401 0:23 -0,67 0,44 0,86 0.00 0,48 0,45

50 ' 0,37 -0,84 0,48 0,67 -0,41 0,41 0,22

60 0,50 -- 1,00 0,50 0,39 -0,69 0,37 0,02

701 0,66 1- 1,14 0,48 0,00 -- 0,90 C,43 -0,14

80 0,83 -1,27 0,44 -0,37 -0,99 0,48 -(0,29

901 1,00 -- 1,37 0,36 0,71 -1,00 0,66 -0,35

100 1,17 -1,44 0,26 -- 0,93 -0,97 0,81 -- 0,36

. 110 1,34 1 -1,48 0,14 -- 1,00 -0,95 0,95 -0,33

120 1,5 -- 1,50 0,00 092 --0,924 1 -0,28

130 1,64 -1,48 --0,16 -0,76 -0,95 0,93 -0,25

140 1,77 - 1,44 -0,33 -0,59 -- 0,97 0,73 -- 0,24

150 1,87 -1,37 -0,50 -0,31 -I 0,36 -0,32

160 1,94 -1,27 -0,67 -0,12 -0,99 0 -0,37

170 1,98 8- 1,1 4 -0,4 0,06 -- 0,90 -- 0,37 -- 0,44

Y 180 2,00 -1,00 -1,00 0 --0,69 -0,69 -0,46

In agreement uith the general procedure, it is seen that the

correction term 2J, has no influence to o= 600. If the reauire-
mont n 2.7+

ni -+2

is not fulfilled, tho secondary maximum can assume considerably greater

3 values than the extreme values given by J,(x)

Fig. 29. Directional characteristic Pig. 30. Directicnal Charscteristic

of the compenseted circulex group of the ,ompeneuted circular group

with a sufficient number of wIth an in~ufficient nu,,ter of

ra •i tors. radliatora.
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As an example, we calculate the case r. 6, d/1-- 1,5 by the
approximation formula (Fig. 30). For comparison the airectional char-
acteristic for n = 14, d/A = 1,5 which is given simply by J0 (3 o sin a/2)
is also plotted (Fig. 29). Both directional characteristics agree
completely as to their principal parts (i.e., to the first minimum)
but then depart considerably in the magnitudes of their secondary
maxima.

B. The radiation factor

(a) At a fixed frequency

The directional characteristic has its practical significance
when it is a question as to the accuracy with which a beamed re-
ceiver system (which, e.g., can be rotated) can locate a distant
sound source. Also the behavior of the directional characteristic
vrill determine the freedom from disturbance in certain directions.
From the transmission viewpoint, however. beyond the question as

to the total power radiated, it is generally a question of con-
centrating the sound transmission in a certain direction or plane
in order to increase the efficiency of the array. Here the ques-
tion is how great is the sound concentration in the given direc-
tion as compared with that for nondirectional sound radiation.

In order to calculate the total power of a beamed radiator,
we proceed in a manner similar to that used in introducing the
directional characteristic in which we start with formula (3)
for the nondirectional system and then calculate the influence
of the beaming by the use of a factor 6 which we designate as
the radiation factor. Thus fTr the total radiated power L
we obtain the relation

2 1  (57)

Here S is defined by the integral over a sufficiently large
sphere K with the radius R:

where g is the directional characteristic defined by (6) and dK is
the surface element of1 the sphere with the raditus R Now,
wvith directed sound radiation, the sound energy passing through
the unit surface of the sphure with the radius R in the direc-
tion defined by the directional characteristic fi is given by

2,, -2c R-TJ (59)
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as [

On the other hand if the total sound pow-er given by (57) is
radiated spherically, the sound energy passing through a unit sur-
face would then be given by

L 1 w2. F2
-a (60)

For each direction characterized by the directional character-
istic the ratio of pl/2ca from (59) to L/4nRz from (60):

2ca- 4,LR R2  (61)

* states how many times as great the sound energ is in the considered
direction as compared with that for spherical propagation. Gener-
ally, it is referred to the principal direction for which N = 1

""hen this is so we will dewte the thus
standard quantity ij£ as the condensation
factor f.

1-Ve will illustrate the significance of the
' radiation factor in a simple example. le

' \,R consider two equal radiators, small compared
/ \ to the wave length, and assume that the total

ra-'ated power of the system consisting of
the two radiators is to remain constant v&ile

: we change the distance between the two radi-
'Fig. 31.For illu - ators. On the basis of symmetry, the power
trating the radl- radiated by each of the two radiators then
ation factor, naturally remains constant. vie will then

find the sound pressure amplitude at a great
'dstance R on tho normal axis of the system

(Fig. 31). One could then be led to the folloring fallacy: Radi-

ator (1) produces the sound pressure amplitude;
P:!:_. 2). 1? ..F .(6 a

Likewise radiator (2) yields the pressure amplitude

* • F. (61b)

Since the signals from ths two radiators are in phase on the
normal axis, the resultant sound pressure aznplitude at P must be
equal to twice that due to an individual radiator (independently of
the mutual distance of the radiators). But we know that a direc-
tional effect dependent on the distance of the two radiators -
i.e., a sound condensation variAble x4th the distance of the radi-
.tors - exists on the normal axis. The error is due to the fact
that~with constant sound radiation of the individual radiator, its
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velocity ai.-plitude is by no -mea txs independent. of the sound press ure.1produped by the second radiator on its mraiabrane. In addition to the
-.,ork which the individual radiator must

do v.ith an undistorted sound field, it
X1 must, in the presence of a second radi-

ator, overcome the pressure exerted by
this on its membrane. This additional
viork will. be different with the phase
difference,, i.e., with the distance

1 between the two radiators. (4uite sujn-
i lar to this is the case where, in a
half space cut off by a rigid wail, we
bring a radiator of constant sound power
naarer and nearer to the wall.) In order
to investigate this quantitatively, we

Fig. ~32o For calculating the calculate the total radia.ted povier of
raditionfactr. te system consisting of two equal radi-
raditio facor. ators (1) and (2) at the cdstance-d

(Fig. 32).

BY (57)

2I

'2.
fqj~2 9dK I4'R4 IdT a coo~ cos)s~na,

I(, !i~nd/)(6/3)

Fig. 33, curve 1, shows the dependence of the radiation factor
on J.A . If %~e w~ere able to keep u,,for the two radiators con tant,
according to (ý62) the radiated power would vary in the same maniier
as Zin Fig. 33. Conversely) if we keep L constant and vary the

histance, w% must vary with i:2-s
-0 since, with constant L,

48. .- m.ust remain constant. And," with
constant total radiation., the aound

4f .. intensity retains its miaximum in
SO the symmetry plane if the condensa-

h ~tion factor I-i is a rraximum.
'We easily coinpute that this is tho

~ 4 --- case for d/% =0715 an ha h
inarinum value offherebeos

rig.~. Rdiaion actr ofa ~ ocqua~l to 2.554. This moans that
Fig 33 Raiaton attr o a ye-if vie radiate a definite soundt cnisting of two ra(Liatr

~ } (ie ta~e d)power by two individual radiators-
1. n pase 2.Isnnpae d) o'iin each nondirectional in itself

* 2 instead of using one noridirectiorka
The factor P should also arrear in the numerator of' the

f'r~ction rreoedini; the double integral in the right mnember
of' this equiation.

-44-



r.-- iator, then in the maximum case 2.55-fold sound energy per unit
surface can be attained in the symnetry plane as compared with the
nondirectional sound radiation. In the same manner, we can inquire
as to the maximum condensation factor with arrays of 3, 4, 5, etc.
vibrators arranged on a strai~ht line equidistantly and always find
one quite definite value of d/,% for which this is the case. This
yields the table given below.

S/ G... fIiwa tnT dI) If we denote the radiation factor for n
2 = 2,55 = 0,715 similarly arranged radiators by 3, there
3 = 4,25 = 0,77 thus results the general formula'k$f
4 = 5,9 = 0,825

=7,7 =0,t6 sim~d' (64)0:•6 = 9,5 =0,90 = 2 (n - m).2jd/ ]"
0'90 Gn = 1

For n = 2, 3, 4, 5, 6, radiators, 1/s= I. is represented in
Fig. 34.

S - - - If d is equal to X/2 or an inte-
gral multiple thereof, then from (64):

S-6- - ,= l/n, (64a)

- i.e., the condensation factor is then
equal to n . This has been pointed

-- -,, - out by Lord Aayleigh A&'. The calcula-
-I , / tion of the c ircular piston membrane is

f -/000 also due to hin4 . For this it turns

4 - -- - out tha

1 o(65)

wherein d is the diameter and J,
. d denotes the Bessel function of the first
' -- i- order. From this it results that for

Sd/,, the condensation factor f

Fig. 34. Condensetion factor of the circular piston membrane is
of the straight line group /2n_/,, (66)
(d = distance between two

radiators). where F denotes the surface of the
1. Two radiators. 2. Three membrano.
radiators. 1. Four radia-
tore. 4. five raalators.
5. Six radiators.

\Ann. d. Phys., Vol. 7 (1930), p. 964.

4 O.n the nroduotion and distribution of sound. Phil. Mag., 1903,
pp. 289-305.

'k7The theory of sound, see. 302.
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Also, the radiation factors of the circular membrane vwhose ve-
locity amplitude is

(1 - eZ'/r 2)" (66a)

may be calculated with the aid of the 13essel is functions. For
.W - /Ir2 there results the radiation factor

F ýi222x!5 
xy 2 J2 (2x) 2 J 3 (2 x)) 621 -2 1 3 (67)

and for w 2 G( e2Ir2)2 ithe radiation factor is

3X-1 4 3x2 3J(68)
i~i • • •, •, 3• 3a(2x) 4 '14(2 x) 4 Js(2•I(8

In general, by the series development for

U,= ( - 2 /r2) (68a'

t i; it turns out that

y:1 -. _/2)2 (x,2)" (xl2)1 +i~: n 1 -- n-+-2 21 (it +2) (n +3) 3! (nt+ 2) (n+ 3) (n +4) " '

2 (2)z + 5)x4  (69)
3(it- + 2) 2! 3. 5. (n ± (, +3)

ii (2n + 7)xO

31 3,35F .7(i-j. 21
2

.(n + 3 )(+ + 4)

The radiation factors S., 23 , are represented in Fig. (35).

'p --. --- - -

0 .1 0 0 58 7D

,Fig. 5. 1. Radiation factor of the Fig. 36. For the caleu-
F circular piston mernrane (w-1). lation of the radiation

2. Rpdiation factor of the stretched fector of the rectenpular
membrane (---',. piston membrane.

3. R&•iation factor of the stretched
menbrane lw -(1-

-46-
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Vra aec~taigular piston mem-brane whose one side (b) is small
c~x~.e6to tiie wave length while the other side (c) is arbitrary

4 (Fig. 30/)) tho radiation factor

6 /T~ sin yd y-2 ()Jn (70)
0

- (/n2+ c nit -/A/) I fi 2 oz
+dt 8'IA Ar/

results.

If one replaces the 6sine integral

Si !2d 7a

0
by the approdAmation

Six -COBZ(1 -2/x
2) __ nX

2 (70b)

one obtains

/x~12 co2j x c (71)

For larger value.- of x(x i- 2) ,one will. Le able to use the approx~i-
mat on

or

as is seen in the folloiwing table

0 12, 5 ),.5113 0,548
0,2 0)99 3 0,473 0.467

* ~0,4 0983 3, ,4t ,40ý
0,6 I (,949 4 0,358 o,381
0,8 0,('931 4,5 0.323 0,324
1 0,897 I5 0, 295 0,294
1,2 0858 5, 5 0,2711 0,269
1,4 0,813 11 0.249 0,249

*1,6 1),7611 61,P 0.230 0,230
1,8 0,79 0,214 0."14

2 0,6713 4,5 0,21X0 0),200

*The third term in the brackets should be _ 2 *The

last term in the brAokets sholild be
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: .J maxinaz•u condensation factor f then turns out to be 2C/I
-,or large values of c/I2 This therefore means that a narrow
rectangular piston membrane (in a rigid wall) with one side equal
to 10 wave lengths sends out in tie syMmetry 2Lane 20 times as
much sound energy per unit surface as compared with nondirectional
radiation.

If b is not small compared to the wave length G can generally
be represented by the following series'ik•,

(on) 1 23 (bn_) 2 • 1.3.2 1 b \ 7r 4
I~~~~ I2 'Li 25 b'\0 \A 2 4! ------ +22.4.6! - - .. (72)A5'

where
z

41'

4S-

f4

0 V i

Fig. 37. Functions for the calculation of the radiation
ffttor of the rectangle.

These functions aru represented in Fig. 37, Hem it is seen
tLat as soon as el) bocol-.es greater than 5, q',, q,=, can be re-
placed by • . It then follows from (72) that

4Arm. j. Phs.,Voj. 7 (1930), pp. 953-957#

,• -48-



= ~~i) 2;inz Coscos

0 0 9

The integral

b -n- % 2(74a)
0o

is found by the series developmnent:
~~)~2 (k)' -(~Y(75)

orfo the larger values of bIalk better by the Bessel function
series

[= + 2 J3() + +2J, (76)
F'or the larger values of ba~j). this series is considerably more

convenient to evaluate.* It turns out that for bal)/ > 3 the value
of the bracketed sum differs from unity only by(a few) percentV-
Ilia value of the function

tP(Xz -7 o2j) (77)
0

13 reprw3Gnted in eig. 38.

Fig. 78. Auxiliary function for the
calculstiofl of the radiation factor.

\/ i Tit io aaJudged to 1 the nvinig of th,ý follz~winW centence
i-q which one or more woras P~eijP r-ntly been left otit: *Njnu 2war
L'relbt rinh, dae~ fdir bir/,j > 3 oer Wert uvr in aer ecleiten Klerrirwr
Pt,,;we Sliwme nur wn, Promente von Zino Pbveirht.'
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If we therefore assume that cl/ > 5 and b/A > 1 , the con-
densation factor then becomes

F; =(78)

The condensation factor is represented for values of ba/A
and cn/A between 0 and 10 in Fig. 39. Here are drawn the curves

7-.9

5

•,.9

0 7 2 9 * 3 6 7 8 j V

Fig. 39. Oondensation factor of tue rectangular
piston membrane. (The vaibere on the curves are

the condensation factor.)

for which the condensation factor possesses a constant value. We
find, e.g., the same condensation factor f = 7 for a square forwhich b nlA c n/A=3,15 as for the rectangle b ./A 0,5. c a/A =1 0 even

though the surface of the rectangle is only half as large. For
a~lA< 1 and b /A < 1 (quarter) circles result. For 1>0,

(in the mare central part) the curves are hyperbolas. This last

means that with sufficient accuracy, one can write 1 2 x FIA' •

In the calculation of directional characteristics, we have
remarked that whenever individual parts of the membrane vibrate
in opposite phase, the direction effect is substantially affected.
This influence must also be effective for radiation factors. As
a very simple example, we calculate the radiation factor of two
radiators, small compared to the wave length, at the distance d
which vibrate in opposite phase. A computation analogous to that
on page 43 yields
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I ( in2xrd/A\
t1 r (79)

Vb'e obtain the corresponding curve by reflection of the curve

___ (63)

on the horizontal line y = ½ (see Fig. 33).
2nd

The inaximum of f occurs here for -A-7,725, i.e., for

d/= 1,23 and it amounts to 2.294. This is the condensation factor
at the position where T 1 and corresponds to y = 240 . While,
with two in-phase radiators, we could obtain a 2.55-f old conaerna-
tion (for y = 0' ), with two oppositely phased radiators there re-
sulted at most a 2.29-fold condensation (for y = 240 ). For the ex-
ample on page 30 where wi vanished, the radiation factor must
naturally lose its meaning and we must calculate the total power L,

by the formula (59). Then from
caFi~~~i~ (91:: W = -SR-- ( () -- (X)) (80)

it follows that

L, = i .FfI[_FII(x) -- -o(X)] 2dK * (81)

P2[ 1 J 1 (2x) 4J1(2x) 8J 4 (2x)]

If the ,essel's functions are replaced by the corresponding
power series, there results

L - r [3! 6! 4! 7F + -5t81 t .

If the povior radiated by a piston membrane of the same size
..ith the velocity amplitude w = 1

(83)

is compared with L, for small values of x , one finds

L, _ 4x4
3!4 (83a)

S2
X1 should replaoe %3 in the denominator of the fraction

preceding the integral sign.
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".:ad IFor 3 = = this becomes

' LIL, 1 /17280. (83b)

This means that if the membrane for L1  is to radiate the same
power as that for L• , then the amplitude of the first membrane
must be178 13

times that of the latter.

For very large values of dlA , on the other hand, we have by
(81) and (83)7

Z - (83c)

* (b) With artificial compensation

From Fig. 27, it is to be seen that the radiation distribution
is also substantially changed by artificial compensation. In general,
the radiation factor for the group consisting of two radiators is

2n +.A/02

(ý5k 4 n d'PJC082 W• ý ( Sinlk) oosydy. (84)

If we introduce a new variable of integration x by

3 d (l - 8l) (84a)

it is found that

(I ( - sin ",

2 d,

H(il)
-1 +-I - * s
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In Fig. 40, 31 is represented for sin yk o, 1, J, 1 . Since
sin y,.= 0 corresponds to the uncompensated casti, it, is seen that for

4Z5 ---- --- 475 ---- ;2

Fig. 40. Radiation factor for two compensated
raciatore (Distance d. compensation angle Yk).

1. sin y .= O ; 2. BllI, - 3. siny =( 4. sin .y i 5, glny , =

dlA< i the uncompensated case always yields larger values. E:.g.,
for dl, = Q 6 = 0.,3: C-1. = o,5.

From thie it follows that the condensation factor of the com-
pensated group in the direction of the line of the radiators (i.e.,

yk= 90') is 1.66 times as creat as the condensation factor of the
uncomnpewiated group in the maxim= direction. If, therefore, with
two nondirectional radiators at the distance d < ).i2 , the greatest
sound intensity for one definite direction is desired, the best
results will be obtained by working with a compensated array.

In general, for a compensated straight line group which con-
sists of n equidistant radiators, the radiation factor turns
out to be

2 01 ' i" ). 2 i ,,4 . '2.,t ) • ens (m . 2.,rd/A in ),k) (85a)
it ft W ti .n(

If the direction of the compensation line coincides with the

direction of the array (i.e. Yk. o, one finds

, -$ I- d 2A t (
m !

I.:5
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Comparing this viith the radiation factor for the uncompensated
case (i.e., yk=O)

fl-i sin .rnd3j (S7
! " • = -n-+ -2- (n -- (87)2d/

we conclude that the straight line uncompensated group with the
receiver distance d has the same radiation factor as the group
compensated in the array direction with the receiver distance d/2.
Or, otherwise expressed, the sound concentration of this straight
line uncompensated group on the normal axis is equal to the sound
concentration of the group compensated in the array direction with
half the receiver distance.

In order to find the radiation factor for the densely covered
circular group with a compensation direction I0oo0), we have to cal-
culate the integral

•< G = ,I siny
= fdqd ('dy~2 siy(88)

0 0

* where, according to (52), R is given by

ý 0 (Cos N - Cos a0)2 + (Cosf c6s) (88a

iince cos A = sin 1, cos i, cos f= sin y sin T it follows that

ýt Jo(kr I' sin', - 2sinysinyocos(T -- ) + sin2yo). (8b)

If, for abbreviation, we set a = kr siny, v = kr sin o, it then follows
by the addition theorem for Bessel functions that

IN J, (1' U2 V2 -2 1v cos q-4 0))()
•" = . (u) Jo(v) 4- 2 J"d (1)J lv) Cos 71()-- T'o)

If we now form the integral

I , (89a)i•,i

b.2.,
.:• then s ince

.'f0 fuir m 4:n { •
J- (,08 f (qT 9-- 'os n (T 'i'O) d , -- r fii,' .b.-b)

it



'A'

the terms with unequal indices fall out and there results

If92dq = Jl(u)J2(v) - 2J2(u)J2(v) + (90)

0

It then turns out that

S J5(kr siny,) f Jo(krsiny) sin ydy (91)
0

.12

'+ 2 J(krsiny,) f J'(krsiny) sinydy-+ ..
0

or since

X; (x.sin y) sin yd y If= a (92)\/V
0 0

it follows that

ig. 1.r k r

cS-=Jr-J(krsinyo) -rfJo(2ý)d+2J(ksin yo).fJ 2 (2ý)d(kl- ". f (93)
0 0

k r
"2J(kr siny0 ) .OjJ 4 (2ý)d+.

0

,, The calculations of the integrals

fp.,(x) 1f Js,,(2x)dx (93a)

may be easily carried out by the relation

SJ,(2x)dx 2•. J,+2 .+1 (2x) (94)
S 110("

with the aid of the Oessel function tables.

•,0

' ) (92) is obtained if, in the well-known equation

.J (x EiA t .V J-1. (2 xsainfy toq)dp (a d)
SC 0

"ioth sides are multiplied by sinvd), and are integrated from 0 to n12
and the relation given by Nielsen (H'andb. der Zylinderfunktionen,
p. 360, fornmula 13ty=0])

a (b)

Is used. 0 0
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The corresponding functions

T. (X)

are represented in Fig. 41.

In Fig. 42 the radiation factor (for the circular group) S(k M)

"is drawn as a function of _ ( r = radius of the circle, X =

iwave length). Here:

Curve 1 represents the uncompensated case (i.e., Vk YO 0°),
Curve 2 represents the case Y= 30
Curve 3 represents the case yi, -oo~.

Besides this, the curves 4, 5, 6:

resulting from this are drawn.

From the latter, it is recognized that with increasing

2,7 r 21tr (2n r)

approaches nearer and nearer to the value 1/2.

This means that, for larger values of r/X and with great di-
reotivity, the condensation factor I =-I is given by 2!.2.

A
Utherwise expressed this says: The length of the circumference of
the circle measured in X , when multiplied by 2, gives the size
of the condensation factor. In connection with the earlier con-
siderations on the condensation factor for uncompensated radiator
arrays, the straight line, a circular line, a circular sui-face
or a rectangular surface, we can formulate the following general
theorem.

ith Zreat irecti-vt the consat on factor i:

1. T times the length of Lhe raa•Qtiruz j easured

inw!a~ve loth S2r Umnqhapecd radito~r arrays

2. 2_.r ti •s-the surface of the radiatin arrangement
znC•,.u ind i . for surface raiaor .
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47I

Fig. 41. Auxiliary functions for calculating
the radiation factor.

0 1 z*!j 1 67 S1

A' Fig. 42. Radiation fnctor of the comnpensated
circular group:

A'~-II;a r I IA Ir fi7.i ~ ur j~-1
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Part Two

THE SOUND FI91D IN THE NEIGHBORHOOD OF THL RADIATOR

3. The group of two radiators

For the previous considerations, the assumption was made that
the field point was at a sufficient distance from the radiating
surface. For this part of the sound field, which is generally
taken into consideration first in the usual practical problems,
there results a simple representation when, to the expression
which characterizes the nondirectional radiation, a factor is

* affixed which is independent of the diLtance of the field point
and depends only on the direction of the field point line.
Furthermore, this characteristic function (the directional char-
acteristic) was only dependent upon one quantity (e.g., the func-
tion 2.1-

A

The sound field was therefore substantially determined by this
one function - the determination being quite general for any
given frequency (wave length) and for any given dimension of the
radiating system (r/A). 'he conditions for the calculation
and representation of the nearby field are considerably more
difficult. First, we are forced to calculate the adjacent field
at so great a nunber of points that the complete field can be
obtained by interpolation, and secondly it is necessary to carry
out this representation for each particular case which is char-
acterized by the ratio of the geometric dimension to the wave
length. The diversity of the problem has now thus become sub-
stantially greater. ,,e will, therefore, have to confine the
representation of the adjacent field to special cases. The sound
field will be represented when we draw curves in the neighborhood
of the radiating system which correspond to a constant pressure
amplitude.

It must first be made clear when a field point is to be re-
garded as belonging to the nearby field and when this is not the
case. The term "nearby field" could lead to the mistaken idea
that it is only a question of the geometry of the radiators so
that one could perhaps say that with a radiating circular piston
membrane of the radius , all field points are no longer to be
regarded as belonging to the nearby field which, e.g., are at a
greater distance from the membrane center than O times the
radius. Actually, this definition is not sufficient since,
besides this, it is also a question of the wave length. In order
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to investigate this more closely we must start from the formula
generally valid for distant and nearby fields and determine under
",hat conditions this becomes formula (6) given for the distant
field.

we assume that the radiating surface of the membrane is in
a rigid infinite wall or acts as a double membrane, where the one
part vibrates syrxnetrically to the other part at each instant as
is represented in Figs. 1-e and 1-f. Here the radiating surface
must consist of several component parts situated in the same rigid
wall., or of several individual double membranes all of which have
a common symmetry plane. We assume the radiating surface to be
at the zero position in the XY-plane and the velocity amplitude
given by

•'•W • (X, y) e • (95)

here we will, in general, assume w(x,y) to be a real function.
Physically, this means that all oscillating membrane elements pass
through the zero position simultaneously, and reach their extreme
positions simultaneously so that (besides nodal lines) only mtions
of the membrane elements which are in phase or in phase opposition
are possible. Basically no difficulties exist in prescribing the
velocity amplitude at every point of the membrane with respect to
amplitude and phase when

V(XY) (y) + iv(xY) (95a)

is regarded as a complex function.

Then for an arbitr field point P in the upper half space
(because of the rigid wall, we can confine ourselves to the half-
space z ' 0 ) the behavior of the sound pressure according to
,RayleighNZ) is given by

r-dF (96)

Here the integration is to extend over the sur-
face F radiating into the half space. r is
the distance of the element of integration dF
from the field point P and R As the distance
of the field point from the coordinate origin

dl ' (see Fig. 43).

X If the field point P has the coordinates,
Fig. 43. For the . 0, Yo' , and the mid-point of the surface
definition of the element dF has the coordinates x, y, the

* nearby field. relation

i = .4 + y'--- 2xx0 .. ~(96a)

* • 2' The theory of sound, Sec. 278.
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then follows from

B 2  x + y -h(96b)

r2 (j: - 1,)2 + ( y o -- 2

t Therefore

r 2 (x cos .i- y cos fl) X2 
+ry21

'R
2

r X Cos~-% - ycosfl X`4 / x o o

I? - 1? -.2 AJP 2 Z~A-i-yo

In this developmient, terms of higher order than the second are
neglected. In place of the earlier formula (which was derived on
assumning a sufficient distance of the field point):

/..R (98

there now follows f rom (96) and (97):

i r
2  

IC~ (99

ROS Wx -t- Y- (xos -j . cost) 2

(99) can therefore be replaced by ('98) vyhen

2 (99a)

V -- U 2 R 2

can be replaced by 1. Since this is to hold for all. values of
and j3 ) It is easy to see that becau~se of the denominator, onou
must have

(2 ~ (100)

* -and because of the numorator it riust be that

(101)

* Iere the exponent of (x~ + (I~ 3 in the second exponential

of the integrand should be chan-ed Prom 3 to 2.
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Since in the most unfavorable case

rx2 + y2 
-- (lOla)

is the greatest distance of a membrane point from the coordinate
origin, (100) asserts that the field point distance R must be large
compared to the greatest linear dimension of the radiating surface
(in the XY-plane). From (101) it furthermore follows that one must
have

A ?. (102)

With small values of X (more precisely, if } . A' ) condition
(102) is therefore more discriminating. If we assume a piston membrane
of 5 cm radius and first use a wave length of 15 cm and then a wave
length of 1 cm, then, according to (100), the sufficient distance R
would be given by R :, 5 cin while in the second case it would, accord-
ing to (102), be givv.n by R .... 73 em.

For two radiators which are small compared to the wave length,
a simple addition replaces the integration of formula (10). ,4e ob-
tain the pressure of the resultant field in the following form:

p ~ ~(103)

Here,

?II, .I2 are the mean velocity emplitudes of F, and 1,
F,, F. are the radiating surfaces
r1 , r2 are the distances of the radiators from the field

point.

If, furthermore, we introdW.e the abbreviations

S : .,., - , (103a)
:2A2

then there results from (103) the relation

C.0 :, (104)

for the pressure amplitude p.

Since we leave the phase out of consideration, we have to in-
vostigate the expression on the right only as regards to its magni-
tude. By a simple calculation, we obtain
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or

(- )2 + (a2 . b-2 + a1 o C( )(105a)

For certain values of (x - y), cos 2 7r (x - y) (and therefore
also ) assumes simple values which are shown in the following
table:

x YIt -o-2 1 a , (x by

-.. + 1 i • F T. - i!"- " xy

(1 a•.r 2 + b ", y"

*-.: - I I :. " -r" h2 'y2 - abl/ y

-2 a rb y

'- a;x-+ h"x -- ab/h y

-. 1 0 + U1 I

1 Ia X2 b. y- - + ab/ay

.I -,2 ax'.r b/i

etc.

The values o0' p/(ca) corresponding to the points lying on
the hyperbolas x y = constant can thus be simply calculated and,
by interpolation, curves of constant pressure can be constructed
for which x and y are the dlstance, measured in wave lengths of
the field point from the two radiators.

Of particular importance is the detertnination of the positions
where the pressure amplitude vanishes. For this it is manifestly
E• necessary that ,t a and-ta. ,. - . ( , , 1, 2t .r ) 4

(Oithout linmiting the generalit, a can be asswued greater than b. )

From this it follows that

II 2 i, , 1

a b -2 (1O5b)
IIh 2' , ' I

lroreover, in order that the circles described by x and y yield
a real intersection point, the coidition

X t.o 05c)

"must be fulfilled for a given distance d of tLke two radiators.
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That is, the condition

ab 2m+ A 2m (106)

must be satisfied.

To each value of m for whiich the inequality (106) is fulfilled
corresponds a zero position of the pressure. If d/A < there are.
therefore no zero positions at all. If a 2, b i, and d1A 4.,
then from

3(2 m+ 1) iŽ8 i2m±+1 (106a)

there result the solut~ions ==I. m=2,m3 If a=3.b=2,
and dIA I then from

5(2m +1)2 Ž2m (3106b)

o~Ly the solution m 0 results.

lig. 44. The zero positions of the sound
0 pressure of two point radiators at

the ditp Xfidifferent

Fig. 44 represents the conditions f or d/ X 5~ a 3 and b' 2,
Here the hyperbola branches

- A/2, 3/2 A, 5/2 1, 7/2 A. 9/2 A (106c)

and the zero positions (1).) (2), (3), (4) lying on them are drawn.
These zero positions are the points of interseotion~of the circles
which are described about the point radiators A, and A, with the
radii

r, 3(2m + 1) d

10~ rn1, 2, 3 , 4) (107)
2~ (2im _1) (1
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ILoreover, all the zero positions lie on one circle which divides
the distance AjA 2 harmonically with the ratio a:b and whose center
lies on AjA, (see Fig. 44). The radius of this circle is

ab d (107a)
a2 -- b2 ).

A representation of the curves of equal pressure may be attained
by graphical means. For this purpose we draw the locus of the termini
of the vector

x (107b)

and of the vector

e - 2rL
t2 =(107c)

This was done by allowing x or y to increase by 0.05 so that each
vector followed from the preceding by a rotation of 2 r -0.05 = 180.
One then needs only to draw the straight lines through the zero point
intersecting each other at an angle of 189 and to lay off on them the
lengths a/x or b/y as the case may be. Two spirals thus result which
.wind around the null-point with ever closer windings. If these spirals
have been ntmbered with the cýorresponding x and y values, all the so-
lutions x, y of the equation

e e

can be given when a straight line of the length c moves so that the
initial point slides on the one (x) spiral and the end point slides
on the other (y) spiral. 6ach positLon of the line C defines by
its initial and end points on the spirals a system of values x, y
which satisfies r,'iation (l4)N"

As an example, we choose , . b : I , i.e., two radiators of

equal intensity. In Fig. 45, the spiral r, c 2•qx is represented
for all values from x -0.5 to x = 5. In order to clarify the draw-
inL, only the spiral points corresponding to the individual values
y = 0-5, y =0.6, y =0.7, etc., to y = 2.5 are represented for

the second spiral r'.. ..'L"% . These are obtained very simply

by reflecting the corrsponding points of the x spiral with respect
to the center. 'iese latter points are marked by small round

A. : circles near which the corresponding figure is given in a square.
If we describe a circle with the radius unity about such a point
of the y-spiral (e.g., the point 1), we obtain by the scale given
on the x-spiral all the values of x (lying between 0.5 and 5) which

* satisfy the equation
+ . I(lo~~a)

' )' Apparently, eq. (104) is ,neant here.
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.e thus read from Fig. 45 the solutions x = 0.50; 0.58; 1.32;

1.70; 2.29; 2.71; 3.28; 3.72; 4.29; 4.72. The relation becomes still
clearer if we draw the curve defined by

2I..- -. • -1= (lOa2)
i e • ! 2 i2

in rectangular coordinates. One half of this curve is given in Fig.
4 6. The other half is secured by reflecting the first half on the
straight line y - x 0. In addition to this the curves for

-i.x I- '_1 x i* 30 i (109)•i e-i'.'. ,,-i •:, 1 :-0,--..... +- = 0
2 x 2

and
.- --- 2 =

are drawn in Fig. 46Zý.

In order to obtain from these curves, which are independent of

* the radiator distance, the corresponding curves of constant pressure

for a given radiator distance (e.g., d/X = 3), we have to draw the

* tvo pointfs A, and A4, at the distance d/X = 3and describe about
these points circles whose radii are given by the coordinates x and

y of the desired point. Here, however, only the coordinates x and

y are to be considered which lead to real intersection points of
v.he two circles. kanifestly, this depends essentially on the radi-
ttor distance. From the condition for the intersection of the two

circles
• "2 d! ½--- (1C(9a)

it follows that
qy r,, Y (109b)

,' ,V sa curves can be Identified as lollows: For their inter-

section with y-x = 0, we have, by the piven conditions and eq. 108:

or -

The value of the e xres!' -n on the left-hand side is 1. lienoe the

abscissa of tho inter c .on of the curve with y-x 0 is x e-

This a.sumns the values 1, 4/3, 2 and 4 for C = 2, 31/2, 1 and

1/2 resnectively.
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If, in Fig, 46, we draw the three straight lines
y + x~ i y/-,rd: i /- 0 (109c)

(where, because of symmetry, we assume r..> r1  and can confine our-

"sselves t,. one quadrant), a rectan-
gular :rij. is then bounded by
these :Jnw- which contains those

J. and onl4 tnose points x, y for
H . which the condition

-- .-- --. -Y - x o (lO9d)

is fulfi.led.

The corresponding strip for d/= 3

140 has been shaded in Fig. 46. One
recognizes that, e.g., of the curve

.- 1 -0(l 
goI ! -"

only the broken part enters into
consideration. If we transfer the
four curves, insofar as they are

49 contained in the shaded strip,, we
thus obtain the corresponding

0 4'•4• X,90 4f 48 V 11 V0 curves of constant sound pressure
- (for one quadrant). Here each

Fig. 46. The functions point of the curves in Fig. 46
Swith the coordinates (x, y) yields
a corresponding point in Fig. 47
as the intersection point of the
circle described about A, with the

radius x and the circle described
Zit Iabout A, with the radius y . It is inportant that one recognizes

from Fig. 46 whether the constant pressure curve consists of one con-
tinuous curve or how many separate curve sections v'esult. Thus for

dA/ 3 the constant pressure curves corresponding to

YI , (1t9f)

yield two separate curwe sections for c 0.5 and three for o 1
while 0 = 1.5 and C = 2 each produce one continuous curve section.
In Fig. 47 the corresponding curves of constant pressure are repre-

.1, sented. The complete spatial distribution is obtained when one allows
the whole structure to rotate about, Tiiree separate surfaces
then result for a = 0.5, five for a = 1 and two each for c = 1.5 and

"a 2. If we allow d/% to assumne snaller values, the corresponding
shaded area in Fig. 46 becomes steadily narrower and the nuubor of
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_ _-l• _ . .. . . . _

Fig. 47. Curves of constant pressure amplitude
for two point radiators at the distance d 3X.

extreme values always decreases until finally for d/X % only one
maximum (on the normal axis) remains for all curves.

In Figs. 48 and 49 the sound fields are drawn for d/X 1 and
for Fig. 48

v, WF 1 w_ F2

2)~ ~2 A'

while in Fig. 49

!vj -2z- 1 2; 2i- =v:, 0,8

According to previous considerations, a null point (in the
spatial sound field, a null circle) must appearO . One sees from
Fig. 49 that particularly in the neighborhood of this null position,
a fair dissymmetry of the sound field is produced.

, For bhese values of a and & (i.e., a= 1.2,=0.8) condition
(106) is sati•sied by the single value m=O. Consequently, by eq.
-lOSb) X= 3/2.y = 1. This point lies within the 0.05 curve of'

Fig. 49. In the previous example with a =L r, the condition for a
null pcint can only be satisfied at Infinity.
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Fie. 48. Curvesi of oonst,-nt soc.ind prf.esure
airplitude for two poin~t ra~diators with

equal deforni-tion vol.umes.
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4. The circular piston membrane

The calculation of the sound field of a piston membrane for an
arbitrary field point in the neighborhood of the membrane raises

considerable difficulties. Therefore we first
investigate the case where the field point lies

Z on the normal axis of the membrane. Then the

!P calculation may be very simply carried outý?.
Since w(x, y) is to be constant ( = w, ), the
calculation of the integral

• (is necessary.

If we introduce the polar coordinates e,
-4 for the surface element, then dE = ededT

and since rQ= + z2, )odo =rdr. (Fig. 50).
Pig. 50. For the calcu-
lation of the circular It then follows that

piston membrane.

2.-t RJrd 2YW'k~u~ I ZIl
J~=jdqTede'. 2 e i k -.ri 'V +? ik

0 0

Usin the easily to be derived relation

sill (110a)

there results:
1 {! ?,! Z (110b)

Upon substitution of this result in (11), there follows:
~~' it ee I

The relative sound amplitude is therefore,

2• !sill -' -2 + Z , I A

From this it follows that m,. a has the value zero for

•ii•Ik R-'/• + :1 k-:'. 4 . 7, (111b....

* 6
"Baokhaus. H., and Trendelenburg, F.i Nor die Richtwirkung von

Kolbenmembranen, Z. teohn. Phys., Vol. 7, p. 630 (1926).
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and the value 2 for

If one denotes the values of 2 corresponding to these extreme
values by zo and z,, the null positions z are given by

2n/ 1, 2,..) (112)

and the "positions of the maximum" by

- (+()(113)
(n + -2)/~

:'" --(-;i-q -)7 - (• = 0, 1, 2,. .

With an increasing radius, the number of the zero and maximum
positions increases. No extreme values can occur on the normal axis

.IC • for membranes whose radius is smaller
- ~than .'*The complete behavior of p/Cca

- -,- for field points on the normal axis of
, - - - the piston membrane is represented in

- -- - Fig. 51. The ordinate is the ratio Z/R.
The four curves correspond to the values

- - - - lkd = 6, 10, 20, and 40 respectively.
- ..... For points with a sufficiently large

value of z , formula (111) transforms
- 9 .- - - into (1) according to a previous con-

-- clusion (p.4 ). By the considerations
-- -on page 60, z is sufficiently large if

irR 2  R
I/ ,ý - and

"* - - -- -- Then, however,",v,@-.--- -• !L ~ )

-/R -j 2-. kz 1 -1.I ) 2z'2 11a

* andSI n R2 10 F'

'.-,-2 si l, . (113b)

V," - so that (111) does in fact transform into
Fig. 51. Pressure ampli- (1) (see footnote 1). If the field point
tude (Ploa ,n the normal axis distance z is chosen as six times the
of the circular piston of radius, there then results for

the radius R. (R2 (.R)
-1. kR ,. 6. , A11 . 10. S. khR 20, o) ) in the cases

4. k)? - 40,A ( r fr.(-

0-71-.

"•ilob"



kR 6, 10, 20, 40, the values -, *, .j, a so that a field point
distance greater than three membrane diameters (at most) can be re-
garded as sufficiently great in the case kR u 6. This does not
bold by any means for the case kR a 20 or for k1R = 40.

It may be mentioned that formula (111) can be generalized to
the case where the radiating surface consists of a sector of a
circular ring with the limiting radii RB and B, and the central
angle %0 instead of a complete circular surface. If the field
point is then located above the center of the circular ring, the
formula analogous to (111)

p-'-o c. asinik Y2R~l(2{~~+ (114)

is then valid.

If the pressure at one special point for a piston membrane with
an arbitrary boundary is desired, one can, after resolving the radi-
ating surface into the corresponding partial domains, apply this

formula and asm up the effects of the
individual component surfaces. Here,
one has only to see that the neglected
parts of the surface are so smell that,
taken together, they make practically
no contribution. The subdivision there-
fore depends essentially on the magni-
tude of the wave length.

Fig. 52. Tor the calcu- The calculation of the integral may
lation of the sound be simply carried out, if the field
pressure on the edge point lies oa I 2ggG Of the membrane.

of the circular If we choose the field point P at the
piston membrane. origin of the coordinate system with

the polar coordinates G, and q, then
(Fig. 52)t

ci:) 22 t/2

-t 2 (114a)
7T 2 r- tk2Rco897dq9

NOW~

.i2
--- _4 2_ 0cotdq) JO(2kW ) iHo(2kR). ( )

,.70
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Here J4 and Ho indicate respectively the Bess.). and Struve
functions of zero order. It then follows thato~

C ou [I-,2ae L 2 + _2 H, (2 k R)

Wit~h the aid of the available tables'i9'for J, and H, we can
represent the behavior of the pressure amplitude on the edge of the
memibrane as a function of 2 n R/A . In Fig. 53,, in addition to this
representation, the behavior of the pressure amplitude at the center
is indicated which is given by (1ll) with Z 0 by

The two curves exhibit a notably different behavior. tihile., at
- - -the center, the relative amplitude p/car

it - [ varies periodically between the values
jf zex-: and two with increasing membrane

- - -- racaiuqat the boundary of the membrane
p/ccr approaches closer and closer to
the value i with inci'easing radi~us.

- I IFrom surface considerations, one is prone
ft 1 I _to assume that with a piston membrane a

son field is developed immediately in
-- 1 ~ front of the membrane which., with in.-

-- - - - creasing membrane radius R (for R>N
Y/ corresponds more and more closely to

- - the sound field of a plane wave. Ac-.
-R -Z- cording to the foregoing., this is by

no means the case. As is well knovwn,
2 J -1 7 thers is asimnilar fallacy when one

f4 allows a plane wave to fall perpendic-
f ig. 53. Pressure amplitu~de ularly on a shield with a round open-

(pica) at the center (1) and ing and believes that by decreasing
*at the edge (2) of the the size of the opening, one can di-

circular piston membrane minish to the point of extinction a
of the radius R. steadily contracting acoustic ttrayn

while in actuality with a decreasing radius (.t-A~) of the opening
*a more and more nearly hemispherical divergence takes place.

We have already seen that the pressure at a gr~ distance can
be simply calculated if the velocity amplitude of the circular mem-
brane w(Q) is given in the form:

IV~e ao 4- (i (I - J i. a,~(I ).( 1 a

McLachlan, W.i On the Acoustic and Inertia Pressure on a
Vibratini, Circular Disk. Phil. Mag. Ser. 7, (132) p 02

Tý~ Theory of Besoel Functions, Cambridge: G. N. Watson 1922.
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Here e is the distance from the center and R is the membrane
radius. ve will now show that, in the simple case n - and for
field points on the .a and on the ed of the membrane,
a simple calculation is also possible. tie set

w(o) 1 O.7)

Then the corresponding pressure amplitude p1 is given by

:, .F

It is sufficient to calculate the pressure amplitudes p, (for
f=0) and P, (for f =). Then from

dF and p, (I -n 2) e*i'dF(17b
P F

it follows that

~P h+ = P-)O + /P,. (11.70)

If the field point lies on the normal a (Fig. 50) at the dis-
tance z then o- r2  - z2, and, since dF = rdrdp , it follows that

YR14aei
2 -kd 2,ri ,ik (117d)Sa/ 'dr.

"We therefore find for the field point on the normal axis

* I --eek ' 1 + 2f 2 {1+ +-i2-•+2k

and by (110)

-- eik 0 ik 'R, F~i Ise.

* If the field po+it is on the edge of the membrane then sirme
(Fig. 52)

R,~~~~ +l cogq Ri#(1b
__ 1' , .'j 2 '- 2 -')q -

dVe ) (1180)

* -74-
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If we integrate with respect to •! , -here results

1- 2--i2klRc + icosq)d 9 ,

J/12 n12 (118d)
1 2i 1 fi2 r 2osq'drne- i2kRcosT 7

k 2 R2
2kkk

2 R 2  T kR A
0 0

Using the relations

Se •xc-2dO - Jo(x) - iHo(x),

I22
--j foeso e- izcosdO -- H1 (x) iJ1 (x)

0

it then follows that for field points on the boundary

1r 1- J,(2kR) J, (2 kR)- + [f11(2kR) ±H, (2kR -A

rI -- J,(2kR) H2i (119)
2-- ---- + Ho(2 kR)

Here J0 and J, are Bessel functions of the zero and first
order and H0 and H, are the Struve functions of the zero and first
order. Witn the aid of the available tables for Jo, Ji, Ho, H, the
calculation offers no difficulties.

The variation of the pressire on the normal axis for the case
j - 10 is represented in Fig. 55 and Fig. 56 for

The oorresponding velocity amplitudes
I:i wI--fl.-.e•IR2 (!.=-o, -J-j, :k½ :+

are drawn in Fig. 54. Furthermore the variations of the pressure at
the center and on the boundary are represented as a function of kR

for w 1 - and w, i t-i' in Figs. 57 arid 58,

N!' MoLachlan, W.i Bessel funotions for Engineers, p. 167
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These two cases., where the field point is (a) on the normal
axis and (b) on the boundary of the circular piston memibrane., are
the only ones for which the evaluation of the int~egral is generally
possible, i.e., expressed in terms of well-known functions which are
available in tables.

4f

42- N

Ai - ~

foth vs- an h c r- -io-. wit th -1---

spo. 67. coprnents (aplit),e atfii) spon. coprenuent (atpit).e (..tj

If we now turn to the generel walculation of the field of a
cirelarpison ~1~uo~%we winl resolve the inte~1.

into its real anid lmginr Bets

woa therefore obtain
- ~*~' 1(120)

VElelctr. Maohr. Teohn., vol, 12 (1935) pp. 16-30.



iI

wherein

1 /sinkr

Pa Jf1IkdF, (121)
1 [Cos kr

Pin = }2-idF

This is advantageous since the relative pressure components Pa

and P,, exhibit an essentially different behavior. If, for ex-
ample, the wave length is so great that 2 nr/l),<< Pa

becomes very small, i.e., the component pm,, (which, with the
velocity amplitude VU = we'" possesses a phase displ "cement of
909) predominates. Physically, this means that the membrane works
on the field almost wattlessly so that it moves a dead mass back
and forth without radiating practically any sound.

in order to be able to evaluate the integrals (121)9 we must
first relate the variable r to the corresponding surface element

(determined by its polar coordinates Q,q)
if we denote the angle which the field

. point line OP forms with the Z-axis by
y. and lot the distance of the field

point P fromO be r while we let r be
p the distance of the field point from

-- - the surface element dF, then one has

SHere the field point p is assumed to
be in the X-Z plane in Fig. 59 which, due

Fig. 59. For the calcu- to symmetry conditions, manifestly does
lation of thu circular not limit the generality. The integrals

piston menbrane. (121) then assume the form2 e." , 2 .-,, .Tk,(
S£,--- , / a ! kr I), , wkr

S(123)
U 0) 4

where the value of r given by (122) is to be substituted. Since
an integration in closed form does not appear generally possible,

one will attempt to so transform the integrands by a series devel-
opment that the variables of integration appear separated. This
is done by a series development whose terms are formed from
spherical harmonics and Bessel functions. Qne has the following
relations ')

Watson, G. N.: Theory of Beasel Functione, p. 366, Cambridge
1922.
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i-'- \t (2tn-+ 1) S.(x)C.',(y) P,,(cosOV, (• y; (125)
Cos +x2ty2_ 2 ycos -

2 ,N(2n-±1)C.(x)S,,(y)P,,(cost). (xzy) (126)

Here P,,(cos#) is the Legendre spherical harmonic and

S W 1" -2"XJ" + I(z) CW, (x) '(- I)" '•xJ_- ,_(x), (127)

where the J's indicate Bessel's functions. These functions may
be relatively simply represented for small values of n as
rational functions of x sinx and cos x Thus

.3,(x)• sinx, Co(;r) = csx,

.-lx) --- ,C 1 x m~ ~
Six

S, 3\ 3X - 03,C X ilA t

•.3(x) = _ 2 -)sinx--- i C(x) l i (128)

wherein between the s,(x) and c(,Ix) the important relation

S. (x) C,, + (r) - s,, (x1) V.() I (129)

exists.

Using the series in (124), (125), and (126) we can now catcu14tv

the integrals (123). We first carry out the integration tenm-wiscý
with respect to 1 P Here we use the well14own relation from the
theory of spheric ba hrnca:

2.2aif' " "< o~t'•'*(u°o~si"uy)"qf= 0. / l'"(eot9H•i'tT)d9- "2.•lI'..,,I)I'. 1 ,(<o','•), , *. )'.

0 ,,

Fro& this it follows that all odd terms drop out and there
reaul~ts;

•" k 6; (4u -t- l)iP: (i)/V•, (,'u%;)~.k':(kr1 ) I S,(,.i~d r, (13.,.."•~4 -t- I) I

"A. l ik -rl) I -,79-

Q'(4 it IIP, (I "I C.....)W
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These term-wise integrations are permissible as long as the
series (124) and (12ý) are uidformly convergent. While this is

A always the case for (124), it holds for (125) only if x yf.ZY .That is, while the development (131) is valid without any limita-
tion (i.e., for arbitrary positions of the field point), (132) is
only valid if the iL2d P distance & greater than th =mebrane

. We must, therefore, seek another development for p, for
field points in the neighborhood of the membrane. In order to
carry out the calculation when r< , we imagine the membrane
of radius co divided into a smaller circle of radius r, and a
circular ring of the width el - r, . If we denote the two re-
sulting regions by F, and F, , the integral over the surface F
breaks down into two sunmmnds. The development (132) is valid
for the first summand except that kri replaces the upper limit
)f integration ke, . For the region F2 , formula (126) is now
to be applied, however, so that the following development is valid
for P. at a field 2d distance smaller than the membrane r =

00

P( n; + 1) . (0)P2(cosy)(

X [S,.(krl),[ 2.,n(x)dx + S2,(kr)DJ'C'a.(X)dxj.
0 kr.

For a practical application of the formulae, a tabular com-
putation of the functions Y

P,.,, S,., C,, fs3.(X)dx, fC 22 (x)dx.i0 (13a)

is necessary. For the spherical harmonics P,(oosy) , tables for the
values of n from 0 to 20 and for v = 0, 5' 900 are giveniý.
The functions S.(M), C.(x) are available for v.ues of X smaller than
2 % for integral values x 0 1, 2,,- ... lOV, and for the inter-
mediate values x a 2.2, 2.j-,....9.-. The tables for

f2St,,(x) dx. and j/C2,(x)dx
0

are given for n = 0,1 , 2, ... 10 and x il, 1.25, s.5, ... 10 in
the appendix. For the calculation of the latter and for small values

i3' The symbols x and y used here refer to eqs. (124) - (127),
inclusive, and are to be distlnguished from the coordinates (x, y)
of the surface element.

S3Phil. Trans. Roy. Soc. Lond., Vol. 203 (1904), p. 100.

'&j' Rep. Brit. Assoc. Adv. Sdi. 1916, pp. 97-107; 1922, p. 263-270.

g Rep. Brit. Assoc. Adv. Sci. 1914, pp. 87-102.

\Bl.1ektr. Naohr.-Teohn.. Vol. 15, (1938), p. 7.
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of X a series development with respect to x is advantageous.
This results at once by a term-wise integration of the wonl-known
series for S,.(x) and C2,(x) . Thus it follows that

X
2
n +2

,s 2 (x)dx 135 .4n+ 1) (
i!2~ 1-- ...22(n+4 (4n+31) ,

. -+2 24 + 2.4.(2n+6)(4n+3)(4n+5)

'2,, (x) dx =1.3.5... (4n- 1)

H--- z _ , +...). (135)

For the larger values of x it is more advantageous to return
to the simple functions S.(x) and C,(x) . For this we proceed from
the equationV.

J. ( v+Ir(, +) '+,± (136)

If we set v=-n-J, p=n,a=m, wo then obtain

( 1-)"X' J- 2n - j (X) ( 3

II

~=2-- (") (2n + 1)(2n + 3) ... (4n - 2m -- 1)x--'"+ J,,_,,-_(x)

From this we find by integrating term-wise considering the re-
lation

fxP+1J,(xldx xP+'J~,1 (x) (136b)

the desired relation

1)" 01. (xx80x +72)+1
S(137)
* -. (-- (2n + 1) (2)1 + 3) X(.r)

-1)" (2 +1)(2P,+3).. (4*' 1). (x)

Nielsen, N.. Handbuoh der Theorie der Zylinderfunktion, p. 269,
Loiptig, 1904.



For the determination of JS,,(x)dx we proceed from the

S, formula o
p

X Jý'- (X)(137a)

and obtain for v =2n -, p =n, s =rn
J.,,+ () 7'• -.-•]7 " "+ I + n* 2 •/ •,J2(-.,, + m )(--) J-.A+iw) (137b)

fl -0

from which we find by term-wise integration considering

:- (' + ý jP --' (X) d _ _ - - I - (137c)

the relation

(-)Js(x)dx 0,-Co()+ ()(2 n+ 1)§7-

0

0 l1f(n)(2n+ l)(2n+3) .. 1). .(x -K.

Here the constant K is to be determined so that the right hand

side of (138) vanishes for x a 0.

6ince

S' (X)
.Co() =and X,( (for x=O) (138m)

we then obtain the value of K by the equation

.ii ( () (2)1 A- :4 )

* ~ ~ * ... (2n 1)

For the expression on the right-'hand side we find the vaLse
2 ' 4 26 ,, n

.,-,Therefore, it tur.is out that

+ X

* 2- • J S .,( ,... ('.

"i- Q0(.), ( " 1)( " / ••'(r dx,( 1"1.a • :Z,,--i ..

a..

, Nielsen, N.t llandbuoh der Theorie der Zylindertunkti:a, p. 269,
* Leiptig. 1904.



We will2 first apply the formulae when the field point is assumed
on (iedirectly in front of) the membrane. Then there ise to be
substituted. .... 2-

cosy = ,P 2 ,(1 M and P2 () (1'~4(2~ (140a)

Six diff erent values of ke, are used (0.5, 2j, 4., 6, 8, and 10) while
the field point assumes all values from r, = 0 to r L immediately
in front of the membrane for each value of Aklo . In the calculations

X. we make use of the fact that the portion due to the interior surface
elements (9 •- rj) is fouaid by formula (1.15) so that for &, and p,
we only have to add the part~s

(41  n + 1)P,,()P,,()S,,( S0,,(x)dx (140b)
11ý0 kr,

and
(4 1) CL', (

k r1  )~iOP.i1S,~r)/C,,x (140c)

dua. to the ring-shapid region.

From tno two components P,:
and 1),, thus obtained 1) j_ -4- p2

I 8  
- - -is then calculated and a curve is

drawn. tiere r,/iL¾ is the a~b-
scissa so that the abscissa 1

- - corresponds to the boundary point
- . - - of the membrane (Fig. 60).

One sees that only for very
41small. valules of ('-(A

* is the pressiiwe amplitude to some
degree constant over tho whole

i sur'facs of the membrane and that
for larger viu.1es of ko, an

[j~ J ever Increasing waviness makes
*(341~ ~ ~Its appearance w~hile the value

~" at the center contUinuously os-

~ imedatey ~and the Výundary value, alvlays
the circular pioton mabran4n~~r,:utas bu h

\y/ For the con-litIon iib heri &ifte i.e., * ths r,)-ld point rn~h
mqbio tlts cocn~itlon woulli soom to !_ oo.y' =0. -,,Iq cons lceer-

'~tion'~~1is ~ikWla to th)e rerAA.i~Wr of' eqviun (11>, j (In-o
eq a t ins (.m-ob)A rid (140o.)



Nk

As an example of the computation with an arbitrary position of
the field point, the calculation procedure for the case ke = 10, kr = 6
will be explained. First the quantities

a2. =(4n + 1)P2.(O) S2 .(kr).[S,.(x)dx (14Od)

are easily calculated using the tables in the appendix. Thus one
obtains

2n 0 I 0 2 4 6 8 .10
a2,. = -0,086 I +03124 1 +1,785 -1,694 +0,222 -0,008

From this we find the value on the normal axis (y= 0):
10
;a:RZ =+ 0,342. (140e)

2n=O

According to earlier considerations (p. 70 ) this value is given

by cos kr - cos l(kr)' + (kg)2  In fact, this yields

* coa6 - cos 1i36 0,960 - 0,618 + - 0,342. (14Of)

This gives an important control for the correctness of the coefficients
a, ne also calculate the coefficients b,, for

p.. =>, b,. P2 . (cosy)

and obtain the following table:

2n= 0 2 1 4 6 8

*- '. I

k. r
Z(4, + I) P1.(0) t".kr R ý,. (-) dx ý,0 ,1 029 061+ ,1

kr

b, +0.0H+,410 -1,518-1,O521+0,927

*2n~~ 10 12 14 1 16 i 18

(4 i + ) P. (0 ý'j8,..r~d -0 171+0.121 --0.0011 0 74 -,6

(4a+ 1)PP.(0) 81.("r' C,.(z)d#r I-0.z95! 4-0.174 -0.122 +0,093' -0,076
ki'

,.- l-0,46! +0,o -00,213 +0.167 -0,137

S-,°'II4t,

!}-a. 4-



Compared with the coefficients a•. , the last terms of the twbo
series here are, say, larger by a po,;er of 10 so that we have to
expect a greater deviation of the sum Xb.,,, from the true value p,,.
In order to obtain a better control vith the directly to be found
values:

-kr
C .(kr)

sin}/2(kr)2 - sinkr= S.+ 1)~,O (x) dx (140g)
and "

"sin" + (k)-0 sinf -r)2= >4n + C.,, C(x) dx

we observe that the summands of the two series in the tables for the
larger values of n oscillate less and

- less about a mean value. iie take account
I ] of this by dividing the last term in the

j two series by 2 and therefore put the
!,,--- -/ •-! value -0.031 in place of -0.061 and the-0, , - value -0.038 in place of -0.076. If

-'Ol.-e we denote the thus obtained sums by
-- -y/ and 2:,, we then have • + 1,091

,_and 12, -1,591, while the true values
give

-•, sin V72 - sin 6= 1,087 (J4i)

811116 - si f72 1,9< as a result so thi•t a sufficient agreement

- obtains here. Of cous, the device can-

-y. '-F I I calculation of p, Nos by,.,,(coH y)
6. o ---- since, due to the factor P,,.(co4 1 ,)

Fo.,•. 61. Sound pressure am- regular oscillations are no longer present.
plitude tyko) of the circu- But, even here one will be able to count
lar piston membrane with on a deviation of at most 0loQ from the
the radius C,, (k-, - 10) and true value. For acoustic calculations,
constant field point however, this accuracy is in general to
distance ,'-)- be regarded as quite su.fficient. Using

the tables for the spherical harnonics, the quantities a,,. Y a,,. (tcsy).!'iV and b~, 1',.(aosy) are then found for y (K 5", l, o° etc. There thus

results the following table Wiere, the values given for p,, and Pa,
are derived from computations origirilly carried out to four decimal
places. Therefore the values of p, and p,, deviate at times ii
the last decimal place from the sum of the numbers standing above
these values):
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0 -0,086 -0,086! -0 0861 -0,086 --0,096 0 ,k-0086 --0,086 -0,096
2 +0,124 1+0,122 +0:118. +0,111 +0,102 1" 'T 0,06o3 +0,047 +0,031
4 + 1,785 +1,717 +1,539!4+1,222 +0.847 -0 ;:- 12---1,305 -0,569[ -0,725
6 -1,694 -1,560 --1, 191! -0,675 ---0,122 01. (---0,695 +40,54A +0,251
8 +0,222 +0,193 +0,116 +0,021 -0,056 -0,09)) 0,0)75~ -0,026 +0,031 +0,066
10-0,00 -,7-0,003 + 0,00 1 +0,003 +-0,0031--0,001 --0.002 --0,0012 -0,001

p=+0,342. +0,379 +0,493 +0,597 +0,688 +0,705.-±0,593 -0,031 -0,463

2n .50* (55' 6-l0- 65' 13, y 7-0' 75'm yW~O' i-~,' W -- 0'

o -0,086 -0,086 -0O,086 -0o,086i -0,086 -- 0,086 -0,08f6 -0,086) --0,086
2 '+0,0151 -0,001 -0,016 --0,029 -0,040 -. 0,049 -0,056 -0,064 --0,062
4 -0,762 1-0,686 - 0,;516 -- 0,277 -0,007 +0,256 +(-0,474 +0,618 +0,669
6 -0,095 I-0,389 - 0,54 8 --- 0,531 -0,354 -0,073 +0,223 +0,446 +0,520
8 +j0 065 +0,032 - 0,016 -0,053 -0,062 -- 0,038 +0,005 +0,045 +0.0,61

10 + +0,00 11+0,002 -j-0,002 - -0,002 -0,002 -0,(001 1+0,001. -f0,002

"p. -0,862 1- 1, 128 -1,179 -0,976 -0,551 -0,008 1+0,559 +0,060 + 1, 115

2n 0*-O 5 ' 10' 15 20~~' '-25' y- 30' ~' 35, 40' 46*

0 +0,019~ 1~0,010 + (,0 19; + (,()1f +0,019 +0,019 -1-0,019 J-0,019* +0.,019: +0,019
2 -F1,4 104-1,393 + 1.34.5 +1,265 + 1,161) +1.030) ±0080 +0,714 +0,535 +0,31535
4 -1,518 + 1,460)- 1,293j - 1,038'- -0.7,21 - 0,375 -0,035 +0,270 -t-0,4 84 +0,616
6 -1,052 --0,968 -0,740; -0:4191 -0,075 +0,214 +0,393 4-0,432 t (1,340 40,156
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Fig. 62. Sound field (pcea)in the neighborhood of the circular
piston membrane c4)



Fig. 61 the two components Pa and. pm1 are first repre-
sent-d individually since a valuable control for the results of the

-~ calcul1ation is furnished by the continuous sequence of the calcu-
lated values. Finally,, the complete behavior of the relatJive

V.pressure amplitude P = fp;' + pM, is obtained by geometric addition
of the corresponding values of P. and p, .(See Fig. 61.)

In this manner, the relative amplitudes f +, were calculated
for three piston membranes (whose radii were given by 4.,~

61 1) fr sch agret nmberof oins oftheneaby feldtha

6he 10)ve or sconsanget nrsumber ofmplintsd ofl the nearby fyiedthat

polat ion. The results are represented in Figs. 62 to 64.

*Fig. 63. Sound field ~,.in the neighborhood of the
circular piston memibl'AnO tk, -o),

Here the numbers on the horizontal axis aro~ the values Yr , so
that the points which &re the length of thea membrane radius distant
f rom the memibrane center lie on tt-o unit semicircle. Ono recognizea

* that the ossential character of the f ield Is det~erzinad by the loca-
tion of the zero and maxim~um values ýwnlh zire found only on the
normal axis). Uf we first ounsider the case kQ1  6, wie see that
the amplitude has approximately the 'va~ ua zero at ýhe center of the



membrane and that on the normal axis with increasing distance, the
amplitude first increases rather rapidly and then rises more slowly
to the value two, and falls off very gradually from there on. Off
of the normal axis lie tw peaks at the height of the center which
are marked by the high pressure lines 1.4. Beyond these peaks a

V

(X 425 4W 4V7 WW

Fig. 64. Sound field tp.- in the neighborhood of the
circular piston membrane (q 1-1o),

uniform drop takes place with increasing radius. If, for comparison,
we now consider the field for ke,-- 10 , a striking similarity of
the configuration of the upper part of this sound field with the
foregoing appears. If we imagine a horizontal straight line drawn
through the zero value on the normal axis, we see that this cuts
the field into two parts of which the upper part is extraordinarily
similar to the whvle field for kt,, -t 6 s is shown in Fig. 63. The

lower part of the field k(., I is essentially different since now

a minimum and a maximum have made their appearance both to the right

and left of the two-point.

If we now allow the radius of the piston membrane to increase

continuously, we then know (from the simple formulae for points on

the normal axis) that the maximum and zero values become increasingly



I ilo,

more numerous and progress upwards while new zero and maximum values
continually make their appearance at the center of the membrane.
According to the above considerations, however, beyond this we have
to expect that the constant pressure curves lying to the right and
left (of the center) also simply move upwards with the upwardly
travelling zero- and two-points of the normal axis without an essen-
tial change in their character. If we have a membrane with an ar-
bitrarily great radius and mark the two last two-values of the ampli-
tude on the normal axis, we will then be warranted in expecting that
the accompanying field, which lies between the planes parallel to
the membrane through these two maximum positions, agrees in charac-
ter with the field represented in Fig. 64. Moreover, according to
Fig. 64, one would suppose that upon travelling from any maximum
position on the normal axis in the vertical direction, just as
many extreme values will be encountered as if one travelled from
the same maximum position in a horizontal direction.

Part Three

THE SOUND FIELD OF THM SPH&RICAL RADIATOR

5. The simple spherical radiator of definite order

An essential assumption for the radiators previously discussed
was the existence of a sound reflecting rigid infinite plane wall.
In its position of rest the radiating surface coincided with this
wall. The calculation of the radiation process was then accomplished
by the calculation of an integral over the radiating surface. For
the problems treated in the following chapters, the radiating sur-
face forms a part of a sound reflecting rigid sphere of fixed radius.
here exists a more general problem since, aside from the amplitude
and extent of the radiating surface, the extent of the rigid wall
can also be changed. "bile formerly, for the circular piston
membrane e.g., one characteriatic function

(J(x)= 2

sufficed to completely specify the sound field for an arbitrary
field-point position at a great distance and an arbitrary membrane
size (in relation to j\ ) this is now no longer possible. On the
other hand there are now quite definite distributions of the ve-
locity amplitude for which the solution becomes conceivable. Here
it is also particularly important that the calculation of the
neighboring field offers wo difficultv . This simple solution
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exists if the velocity amplitude is given by one spherical harmonic
of definite order. This assumption of the velocity distribution,
which at first appears artificial, imediately finds its justifica-
tion in the fact that an arbitrarily given velocity distribution
can generally be reduced to that given by a spherical narmonic.
In the computation of practical problems we will limit ourselves
to those processes which are rotationally symmetric with respect
to an axis through the center of the sphere. The corresponding
spherical harmonics are then given by the well-kmown Legendre
functions

P.(U), =cosy Po(/() z 1, PI(n) W-z, P2 (W) 1.3 ')etc (140k)

,By a spherical radiator of zero oo'der, we will understand a
pulsating sphere for which the individual elements of the surface
vibrate cophasally outwards and inwards with constant velocity
amplitudes. (See -ig. 1-a.) TI.e velocity on the sphere is given by

With a sphere radius r0 and for a field point distance r , the
sound pressure is completely determined by

" I= I + kr° e #12- k(r-+o)I (141)

where, for abbreviation,

P 2A (141a)

From thib follows the pressure amplitude

PO iP(wyj- 4  COU k04 (14.2)•~7 4 <)W.- _ rl ra, i-4:

I•',

For kro< 1 wo obtain the formula given previously:

PO UO (U12a)

The relative pressure amplitude, po/eawo , is then generally
given by

PO 1 0 r,'

Oc1W~(142b)

The curves of constant pressure amplitude are therefore very simply

represented in the spatial sound field by concentric spberes, As

long as kr0 '1 the pressure increases quadratically with kr,
As long as kro >1 , it increases linearly with kr•
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At t

The simple spherical radiator of higher (nth) order'ers crarac-
terized by the fact that the variation of the velocity amplitude w,,
is given by

W, 2,. P.(M,)e•. (142c)

The pressure p.~ at the f ield point determined by the polar
4 coordinates r, y :Ls then generally given by

P_ - p(0) U, eiw ,,+,,2k(. - .k ((-kr) P C) - (143)

Here

F.(ix) (1 + ix)l.,(ix) - ixl'(ix) (144)

and
n''- i (n-1)(n)(n+1)(n+2) .I 3... 2 -n

,,( =]- 2 - 2.4(), + '+ . 42-6 .. 2n(ix)"' (145)

It is better to introduce the Bessel functions S.(x) and CQ(x)
defined by (127) page 79 in place of F.(ix) and f.(ix) Due to
the relations

ji"+le-'•4x.(x) = S.(x) + iC.(x),

i"+le-IZF (ix) = xS,,+1 (x) - nS&(x) + i[xC.+1 (x) - n, 1 .(z)]1, (145a)

we then obtain

0). n 12+ &(kr) + i C,(kr)U.•:;÷ (k . ,r o P. W . (11+6)

where, for abbreviation,
U"• U(X) = xS. +(x) - v, A,, (x).,,(X) =• 9.÷ (x) - n (x). (147)

Then one has
S(147a)

] U(x) Bsil x - x Cos x, 10 (x) Cox x + x sin X, (1..a)
U1 (x) =(2/x -x)ainx -2cosx V(x) =2sinx + (2/x - x)oosxetc.

For the spherical radiator of the first order the velocity ampli-
tude lut is given by

A,(=1,' ()ei. -- ,Cos -,,1" (14 b)

'"YRayleigh: Theory of Sougd. Sec. 323 and following.
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This corresponds to the motion of a sphere vibrating to and fro
as a rigid body. Here the pressure p is given by:

I
_______k_2___ 14 +kr cosy (147c)

: •,~~~~a. w,. e '- -. •-- kr 2+iko

while the pressure amplitude pi is given by

P_ 14 + 9 ~. k2r2 cosy. (147d)

As long as kr0 <1 , the pressure amplitude increases propor-
tionally to kPro . As long as kr,0 > 1, the pressure amplitude in-
creases proportionally to kr0  • If we denote the maximum pressure
amplitude occurring at the field point r- r, and y 0 by p,,, and
require the curves of constant pressure amplitude

p, ap. (a= 1; 0,9; 0,8; etc.), (147e)

it then follows that

+ •A Cosyj -- VI2a.[" 1r + k~ t (147f)

If we choose kr0 = - as an example, then for the field points

on the symmetry axis (y 0) there results:

k= - + (147g)

and from this:

2aV (147h)

Accordingly one obtains for the values of PilPm on the rmmal
Saxis

0/p= o,1 10,2 10,3 10,4 10,5 '0,6 10,7 o0,8 0,9 1

4r/rO- 7,14 13,07 12,53Tio~i~i 4 I 1, 28 1, 17 1, 071 8 1 1

If we now imagine the circles

or= 1,07No, r 1,IVro, r= 1.28o etc. (1471)

constructed, by calculating the y. values we can easily state the
points for the required values of Piu/Pm . for example, on the circle
r 1.28 ro , the values of cos y for the corresponding values of
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Pl/Pm are:

pjp .= 0,7 o,t i 0,5 j 0,4 ] 0,3 10,2 1 0,1

6 5 4 3 2:
COSY 7 7 7 .7 7

As an additional examp2le we give the corresponding tables for kro = 5:

riPIIM l0,1 0,2 0,3 0,4 0,5 0,6 10,7 0,8 0,9 11
r/rO= 9,81 4,91 3,2812,46 1,97 1,65 1,42 1,24 1,11 1

For kr 0> 1 , the corresponding values of r/r. are simply given

, by 1--/? Therefore, in this case

L~iP. pi/p. 0,1 0,2 0,3 0,4 0,5 0,6 10.7 10,8 10.9 1

10-h r) 3,33 2,50I2,O0l1,67 1,43 1,25 1,111 1

In Fig. 65 are drawn t.ie curves of constant pressure for the
spherical radiator of the first order (with 'ro 1 ). Because
of the given antisymmntric distribution of the velocity amplitude

* with respect to the equatorial plane, the character of the field
is essentially different as compared with that of the zero radiator
since the pressure is no% zero in the equatorial plane.

From (143) the pressure amplitude p, for the spherical radi-
ator of the nth order is given by

A t " 1 W ?itT4n+ r (k r,)) P" (cosy), (147j)

vwhere

M. C'(x) I C( I i/At- 1 1 r 3 A (1 5'x + (6/.x + 5/t¶)I

U;(x) + V'(x) I + x'f xI + 4/Ix 1(4 9/1). 4 (+ 9/( ) ( (/-. 60/xA)I + (x -- 27/x + 6 xO/x)2

It is noteworthy that the directional influence - i.e., the
ratio of the pressure amplitude at an arbitrary field point, (r, y)
to the pressure amplitude at the field point at the same distance r
on the symmetry axis ( ry - ) - is given independently of r
simply by Pt,(cogy)so that the behavior of the sound field is obtained
without difficulty from the values on the symmetry axis. In partic-
ular, the noda1 lines P,,(,osy) o, at which the velocity amplitude
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Fig. 65. Ourves of constant sound pressure (1ptp.) for a
radiator of the first order.
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* on th~ radiating sphere is equal to zero, le3termine ;~uite general
*the conical surfaces in space for wThich t heý pressure a;:mplitude in

spavce vanishes.

Caiculations for spherical radiators of a higher order viill not
be carried out since, from a practical stawidpoint., scarcely any cases
occur in w.hich a radiator behaves as a single radiator of higher order.

6. The coimylound spherical radiator

Important for the following is the investigation of the sound
field vihjich is produced by a combination of a series of spherical
radiators of different order. For a sphere with trie radius r,,
-aho s velocity ai,-ylitude w is rePresented by a :iuperpcsition of
sPherical. hamionics

ru[AP,(coay) + AP,(cosy) + ± ,P~cs)e'(14E)

it turns out that the restO.ting pressure is giEn sipyb Lecr
respondingL superposition of the 0ressure dlue to t. ie inclivi.3uaJ. Sphor-

*ical radiators. Then press7ure at ýiic field xeint (r,y -3 then

p ~~~~~S.(kr) + t,.,(kr)A mcoy)
'fU.dkro) + i V..(kr,,) 24)

1)-

Here the A.,s are corist-ant 'luantities wihich) in ý :iv.-.r ca~se,
may be complex (in irder to Lake account ot dif ferent phases). T!~
pr'Inicipal significwico of this ticeorem lijes, however, in its revers-

ibility.o In Ceneral the above velocity dlistribution does not exist
in thle rm.~ (148). Tke essential think;ý nc'm is ,hat by the :Ievelbp-
mont theorem of spherical harmonics an (to viithiin general continuity
requirements) arbitrary function in the forlA (148) can be) r--pc: ented
on thie spherical surface.

Thus tha calculation of' the sound field for ain arbit~r!rily -i%-en
velocity amplitude on the 9,phere is then possib.;-e. '.w will ililutA'ate
this in a special exam,.ple.

On the part of a rigid iinu-ovable sphere which is churacterized
by 0 tý v -.ý yo (a spherical cap), a constant velocity amplitude iv-
is given while for the remaining, part, w 0 (V!ig. 66). Ae~ f irst
have the problem to determine the coeff icients A, of the function

tv: AP (cosy') + A~P (coo.,y)+ ... (15U)



so that

w• • 1for o°_- , ((15a)
w = Oforyo < y-- i800

Here the orthogonality relations for spherical harmonics

+1JPm(/I)P.(II)djl for m ~~ ln
.w m i(ly tb)

+1 1'•~~ P,2ý(• dy,..

-1 -1

ndtubecome useful.

Fig 66 Th aitighlen ive multiply both sides of equation
i spherical cap. (150) by P,(W and integrate from -1 to

+1, we immediately obtain

+1 +1

SlNow in our example W is only different from 0 in the region
':,. oo 7.-%/ 50 s that

A P,2 f a(,udz-,f,,,ud dp As U506e

and~~~o thsgneal.
2n1

!• :•..A, 2-2. + f P.,u()du. (150d)

008 Yj

By the well-known relation of thu spherical harmonics

(2n + 1)P.(x) - [P..I(x) - P..-(i)] (151)

it follows that
S(2 + 1) fP. (,)d• PH P _ (x) -- P H + I(x), (ita 1

I • (152)

f P(,~d I- x.

Thus there results the required representation for w:
00

t, 2 2 [P,,.,(oo• 0 ) - P.+,(oo y0 )]P.(ooey) (153)

and therewith also the required pressure by (149) upon substitution of
the resulting valuos for A..
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If, as a special case, we choose a radiating hemisphere with a
constant velocity amplitude w = I which is completed by a rigid
hemisphere on which w = 0 , we then have to set Co8sVocos90=0.
-: ince

ii~ -. 3.-5 ... (2n - 1) (5a
P11.(0) (1-3a)

2.4.6 ... 2n

and P2.+ 1 (0)= , we find:
1p(os) 1, 11 715

-+ P, (cosy) - -. PS (csy -+- " Y- P6 (cosy) + (153b

and for a radiating spherical cap with yo 60°:

. o= 0,250 + 0,663 P , (cos y) + 0,469 P, (cos y) + 0,082 P , (oos y) (153c)
* - 0,264 P 4(coo y) - 0,306 P,(Cos y) - 0,067 P.(cos y)

+ 0,198 P,( os y) + 0,245 P.(cos y) + 0,057 P,(cos y) -F ,':'• In Figs. 67 and 68 the corresponding approximation**;. yes

W(") a, 'GP.(Cos y) (5d

are represented. The deviation of the approximation function from
the thcoretica] \.1%-u- unity may be determined for y=O . Since

P.(1) = I in w all terms except the first two and the last two then
cancel out so that

'•'P I 1Oc Y.,C O) + P. (ONY) ( •eW(I.) - 2 (1530)

In the present case, yo = 90° , the error therefore appears
equal to P (0)+P.(0)

2
Therefore for n 0, 1, 2, . . etc. it equals

S4-L. etc.

we In order to obtain a better agreement with the first formula,
Swe vrIl introduce the radiating surface F = 2 n r(1 - oosy,) for the
representation of the radiating spherical cap defined by Yo and
having the constant velocity amplitude w . and we will write the
Spressure in the form

•' F. .ae (W 1o '+M/2)y •(r, ro, go) (153f)

Here Po 2-,,, is the pressure amplitude if the dimensions
of the radiator are small compared to the wave length and

+ "(kr)
V(,: k(kr)) (154)

* 1 ,, 1 p. ,, k) T()8 r) 4 iC.(kr)
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Fig 67 Aprxmtinoh

IM w w- m

Fig. 67. Approximation of the
function W-41{o(9OýV`0 1 0))by

spherical harmonics.
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A case of practical importance which has been treated by Rayleigh
) exists when the radiating surface is very small so that o = cos Y

can be replaced by unity. Then formula (154) becomes inapplicable.
However we can easily remove this disadvantage when we consider that
by (l•511ýj,.

N, lin-j [P. i(po() -P,+ 1 (110)]}1 =2v, + 115
VWe then obtain for a p radiator on a rigid sphere

P =po ei (ot +n1 2) (r, rjo , 1), (155)

where

3(r, ro, •, 1) = (2n+ 1)P.(i) S(kr) + iC.(kr)
SU. .(k r) + i V.(k ri)

A substantial sbnplification of the formulae'.ý occurs if the field
point is at so great a distance r that one can set /1(ikr) I
Since

•S. (x) + iC, (x) = in+ 1 -1 zX) (155b)

"S.(kr) + iC.(kr) becomes ijn+le-ik.

vie then obtain

'"• ) =p•"•"''- '> (7, YO), (155c)

where
S ,1(Y, Ye) . . .. - - (156)

U0( r0 +V0(r 0) 1-p 0 . U(k-ro-) + i V.'-(kr0 )

For practical calculation it is advantageous for the summation
to group ti. ermis with the even n and with odd n when we write

(Y, Yo) + + -. (157)

,f"• Uo) 0 (kro) + i Vo(kro) + I---140 + PO

where a contains the spherical harnmonics P1(,u), P.(u,... etc. and S

contains the spherical harnmnics P,(14, P,(u), etc Then since
A P,,,(-1) =P,(aP) and P,, P(--,) - .

1(180o ', Yo) uo -vv 0 + Y-,- Y0 I -. e2 (158)
and

Ay. 00 - Yo) PO , a-+-( + (159)

\;o Eq. (151) is to be useid when L'PiosnitUil's rule is '• nlied in
evsxiatinr, the indetrmirnq'.e form on tl.o lof't of (,5,tx).

FormulAe (153f) x\nd (1F4) xire referred to here.
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Lanifestly, corresponding relations are also valid for field
points which do not lie at a great distance. We need therefore
only to carry out the calculation for o0g y g9o0o, 0 o go9o0  and
the values for 9o0 <y;g 8o0  and 90 0 g 0oay 1800 then result from (158)
and (159),

Physically U156) and (157) signify that one can replace an
arbitrary velocity distribution on the spherical surface by a dis-
tribution symmetrical to the equatorial plane and one antisymnetric
to the equatorial plane. The first conta1L.s the spherical harmonics
of even order while the second contaiins the spherical harmonics of
odd order. By (158) one finds the pressure at the image of a field
point when one inserts the antisymmetric part with the opposite
sign in the formula for the field point. Furthermore, it follovis
from (158) and (159) that

(I- -,o)/(180° - y, Vo) + (I + uo)/(y, 1800- yo 2i
-U, -i V, (159a)

This says that the radiations due to (158) and (159) together yield
the radiation of a spherical radiator of zero order.

As an example, in the table on page 102, the expressions
U,. (kr + sV,.(kr 0) [P.(cos yo) - P.+I(cos y,)] = A. + iB. (159b)

are given for kro = 10 and 0 = 00, 10°, 200, 90. and the correspond-
ing values R(y,yo) for y---0° nd

- - - -- Y= 18 0 0are calculated.

In Fig. 69, the magnitudes of
f,(0, yo) and /(1800, yo) are represented.

"- - -'These curves give a conspectus of the

,, \ - - pressure amplitudes in the principal
- . direction (y = 00) and in the opposite

• direction '(y = 1800) as a function of
S -- -- the size of the radiating surface

.. ' __ j- - (,Y) wzith constant deformation volume
(F w) ,.e immediately recognize

.-- that for small values of Yo in the
S-. 1 principal direction, the double ap-

litude occurs as compared with the
Xm • • • I 1 uV W ai'plitude f:r nondirectional radi-

ation cI a
fig. 69. Pressure amplitude as u

a function of the central Angle If one desires the liargest possible
of the radiating surface with radiating surface, tho greatest
contrant deformation volumes posoible pr'ssur'o anmplitude in the
I, for tha prin'.Ipm1 direcetion principal direction and saiultaneously
,-,,, 2. for the oppo"Ite direc- thU j_'e4Lt03t possible cxtinction for,

tion-l
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the opposite direction, the figure shows that this is attained for

Yo * 200 approximately.

With the aid of the tables for A, + iB,, it is then easy to

calculate the complete sound field (for a great distance of the
field point) for every value of yo Une needs only to compute
the expressions

1

R+iJ= 1  (A, i B) P (cos y) (159c)

and to plot 1
1R2+ J2 as a function of ' . ' components h, J

corresponding to the values yo 1 0°, 30 °, 60 , 900, 1200, 1500, and 1700 are
plotted in Figs. 70 to 76 and the relative pressure amplitudes ob-

tained therefrom are represented in Figs. 77 to 83.

As long as the radiating surface is small, one may expect a
directional effect similar to that of the piston membrane with
increasing yo For the larger values of yo (y,> 900) the radi-
ation will gradually approach that of the nondirectional radiator
until it becomes identical with that of the spherical radiator of
zero order for yo = 1800 . The number of terms which must be cal-
culated to obtain the result with sufficient accuracy increases
"nearly in proportion to the magnitude of kro . And, indeed, it
turns out that the individual terms rapidly decrease as soon as n
has become greater than kr0 so that the necessary number lies
between kro and 2kro . This is connected with a general
property of the appearing Bessel's functions, which exhibit an
essentially different behavior if, with a fixed argument, the
function values are plotted with respect to the index n.

As long as n , x (x) and CO(x) vary between positive

and negative values. As soon as n becomes greater than x
8,(x) decreases sharply and monotonically while C0 (x) increases

in the same way. The same thing is true of U.(x) and V,(x)
In Figs. 84 to 86, U.(x) and V,(x) are represented as a function
of n for x= 4, 10, 20, and 40.

As an example of the general case when the field poLit lies
in ti- neighborhood of the radiator we choose

kro . 5, r 2 ro (i.e.kr 10), yo 300

and calculate the table found on page 110.

For the pressure amplitude p at the field point r=2r,. y=O
7 "we obtain from this

0* (J. W o.a o .• to
-2,03 -2,24i I (159d)
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Fig. 77. Sound. pressure amplitude (P,. for
a radiating spherical cap (Y.-iol).
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Fie, 78. Sound pressure amplitude (?PP.) for
~.a radiating --pherical cap (Y,-3ou0 .
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Fig. 79. Sournd pressure amplitude (pip.) for a
radiating spherical cap 3.
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¾ Fig. 80. Sound pressure amplitude (p/p,) for a
radiating spherical cap (Y°=w°.



7< ~Fig. 81. Sound. pressure amplitude vivo.for a
radiating spherical cap (Y.-i 2 o*).

-ta

fig. 82. Sound presisure amplitude (v~s for a
radiating spherical cap ,1.
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SFig. 83. Bound pressure mp.litude (PIP) for a

•i ~~~radiating spherical cap .- o)
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9 If we imagine a small spherical radiator with the same F w
substituted for the radiating surface, then, in the absence of the

rigid sphere, this would produce at the same field point (i.e.,
field point distance = r/2)

the pressure amplitude

] cPi= .2 (159e)

- ] The complete behavior of the
pressure amplitude at the distance

" -- / r ---2 r, is represented as a function
-. . - of y in Fig. 88. The correspond-

. ing components [R+ iJ=2'a.P.(cosy)]

_ - - are given in Figure 87.

--------- Finally, we will calculate and
--- illustrate by curves of constant

-'1#, 0 'V X ix 40 M 0' pressure amplitude the sound field

of a point radiator located on a
Fig. 87. Sound pressure components rigid sphere - the field being

of the radiating spherical cap confined in the neighborhood of
(,,-0o*) for a small field point the sphere. As an example we

distance r,, ,-6. choose kr, = I and calculate the
pressure for the field points
whose distances r from the
sphere center are determined by

kr= 1.-5, 2, 3, 4, and 5. here, we first calculate the expressions
.a (kr)+iC,(kr)
Un + (n 1) 47,+V. (i) (159f)

(see the tables on page 112) and find therefrom " = and

V .- ' .+i . If we denote the undistorted (i.e., existing in

the absence of the rigid sphere) pressure amplitude by Poý= 2rA

then the relative pressure amplitude is P/Po ýli +. In the

same marner, the relative ampitudes for y = , 10 etc. would
be calculated from the quantities N'a.P.(ooey)

If vie collect the values thus found and plot the calculated
field points together with the corresponding pressures, we can
then draw the curves of constant pressure by interpolation. One
recognizes from Figure 89 that the sound field possesses an
essentially different character because of the presence of the
rigid sphere although the wave length is more than thres times
the diameter.
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Fig. 88. Sound pressure amplitude (pi.) of the
radiatin~g spherical cap (Y.-soo0 for a small

field point distance -rt6)

1,

I.z

Fig. 89. Sound field (p,-,) of the point -shaped
radiator on A rigid sphere(k,1
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7o The disturbance of a sound field caused by
a rigid sphere

4 (a) The derivation of the general formula

SThe influence which a plane rigid infinitely extended wall exerts
on the sound field produced by a radiator may, as is well known, be
easily perceived when a second radiator is introduced which is located
at the image position of the original radiator with respect to the
wall. The re. uired sound field (lying on the side of the original
radiator) then results simply by superposing the two sound fields
produced by the individual radiators. In order to prove this, we
have to show that thn boundary condition for the sound field on the
rigid viall (namely, that the velocity component perpendicular to
the wall vanishes) is fulfilled. Now, however, it immediately
turns out from the symmotrical positions of the radiators that the
velocity vector resulting from the two radiator8 for all field

v points on the wall lies in the symmetry plane, i.e., possesses
no component perpendicular to the *'.all. Lore generally, one can
state that if, in an arbitrary sound field, a surface is present
such that the velocity component perpendicular to this surface
vanishes for all field points on this surface, then this surface
can be replaced by a rigid, completely reflecting, surface without
any change in the sound field. Our problem, to investigate the
influence of a rig'. _phere on an existing; sound field, is then
equivalent to the problem of superposing a second field on the
existing sound field so that on a prescribed spherical surface
the resulting velocity component perpendicular to the spherical
surface shall ianish.

S.e proceed from the undistorted sound field and assume that
this is produced by a point. radiator located at the point A with
the radiating s~u'face F and (constant) velocity amplitude w
Then the sound presaure v, for the field point defined by the
polar coordinates r , y is given by

A .. ... - T..... ... (160)

here R is the distance of the radiator at A from the coor-
dinate origin 0 . It is assumed to be great compared to r
irom (160) with the aid of thu relation

* ct& Cr(161)

there results the radial velocity component

4 .. (Al6a)

4'4



According to the foregoing considerations., we now have to super-
pose an additional sound field whose radial velocity amplitude i,*
is equal iin magnitude and opposite in sign to t, on the sphere

r= r,,. The problem is thus reduced in principle to thle earlier
calculation w~here the -velocity distribution on a sphere was set
fcrth. By previous cons iderations, the solution can be stated
imniediately if the velocity distribution on the sphere is repre-
sented by a series of spherical harmonics. In order to bring this
about we proceed from the relation k/:

2: __k (2n + I)Pn(cosy). (162)

By (161) it then follows tha~t
F. W ei~dl-kR). kS 'O in( S.• (2n r) )P~cs

= 4R \r) (162a)

and since

(dXj -2_ (162.b)

the req.uired velocity represented in the desired form is:
F~zv 100

~A psiwei(-R). :4iy(2n+ 1)i-U.(kr0)Pft(cosy) . (163)

By (14,)) we can immediately specify the sound field produced by
*The pressure pa at the field point r , y is

± 27 1) i' 11(k ro) I'(001;Y) S~r -W~r
kr Uý(kro)+Vk) [~k) + iCY(r] (164)

A~ little manipulation then gives the total sound field existing
in the neighborhood of this sphere in the form

+ k4ýI- 4,~ I ( tkI it'j2) (165)

(2 n .k 0 + 1)iP" V(con, [S (k r) V. (kro) - C. (kr) U. (kro)j,

(b) Thle sound reflection on a rigid sphere

LS the simplest case, we first !investigate tile Pressure ampli-
tude produced at thle field point A (ýi.e., at The position of the
sound radiator itself) by reflection on the sphere*.4'e will compare
this with thle sound Pra'ssure ai:iplitude which is ruflected perpendic-
ularly by a rigid vwall at tile saine distance (as from tho sphere).
If we introduce thle ref'lection factor Z -

43\/ Rakyleigh, Thieory of' Sound, "ec. 334.
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5,, ~~~~by the relation1 2+)(k)

(21 n + 1kr) ±iV(kro)' 16

it then follows from (164) that, since kr» 1, S,,(kr) + iC,,(kr) becomes
equal to 'dei? and cos y becomes unity., one has for the reflec-
tion amnplitude p, due to the sphere.

caF.wPt. 11?2 0~Z (167)
while the reflection amplitude produced by the rigid wall is given by

Pr* A (168)

Therefore

P' _2
7 0Z(169)I.A very simple relation for the reflection factor now results8.

with increasing kr, 0 , Z approaches the value so that for the larger
values of kro0 one can with good approximation set the reflection
factor equal to ~.(169) therefore states:

The pressure amplitude reflected by a rigid sphere with the
radius ro at a great distance R is (for the larger values of k-r0 )

fiiewall paeat tesm itneR i e equal to one.

L-Ao represent the reflection factor, the two components R and
J aecomputed separately and plotted. The functions U,(kr)

and V,(hr) necessary for this are easily found by (147) with the
aid of the tables for 8ft(x) and e(x) .The result of the cal-
culation is represented in Fig. 90.

A' If,, ýurthermore.. R + il is drawn as a vector in the complex
w, lane, one theni has the phase X(tgX PJR) as a function of k,,~.

tt~urn out that the phase remains practically constant while
the reflection factor increasies decidedly (kr,0 1,2) and later
increases uniformly when the refl ection factor reman constant
(Fig. 91). For the general caso Y 1 0 ),we defino the dis-
turbance factor [~(~,~I by

83k 0 R k (r I) *(k r.) i) (k r,) (coxm' (170)
,t

and calculate the corresponding components for k-ro 1, 2, 10 i and
can then represent for every value of kr, the complete behavior of
the disturbance factor as a function of y (Figs. 92 to 99). It

M then turns out that for y 1800 (i.e., the direction opposite to
that of thle sound source) ~increases more and more with kr,
and for tile larger values of kr, is vury nearly determiined by J kr,
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Fig. 96. Fig. 97.

FigA. 92-97. Thle disturbance factor for i
to kvo-8.

~ Fig. 98

Figs. 98-99. The disturbonce ±'actor for
kr,-8 qnld kv - 10.
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However, even for a direction opposite to that of the radiator, the
disturbance amplitude is small compared to that of the undistorted
field.

(c) The sound field in the neighborhood of the sphere

In the inmedi6te neighborhood of the sphere we will have to ex-
pect a substantial distortion of the undistorted field. If we first
inquire as to the pehavior of the pressure amplitude on the line
connecting the radiator with the center of the sphere on the side

* tomards the radiator, then maxima and minima will appear here as
they did in front of a rigid plane wall. As an example, we wil.l

- . investigate the case kr, 2 when we calculate the pressure for
the field points defined by kr= 2,3,.... 10 . If we set kr=kr0
in (165), then due to the relation (from 129 and 147):

S. (kr V.(k r.) - C. (k ro) U. (k r.) k kr., (170a)

it follows that

" - F. we -k + 12)' P. (cos ()
+A(2n + 1)(171)

In accordance with the reciprocity law, this is in agreement with
the previously discussed case where the radiator was assumed to be on
the spherical surface and the field point was assumed to be at a
great distance (Sq. 156).

I• For convergence reasons, it is better not to calculate the field
compo.qed of the original (undistorted) and the distorted field
(= P, + p,)by (165) but to first calculate the distorted field P2 by
(164) and to add the undistorted field O from (160).

Therefore, we first calculate the disturbance factor by (164)
when we set P.(coov) Then

I N1 (2n~3(kr,, kr, 0) (2 n+ 1)i.U T(kr0) 8.(kr• + iC,(kr)]

A,(kr) + iB1 (kr).

V The quantities A, + iB, for kro 2 and kr 2, 3, ... 10 are given
in the following table:

-120-
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To facilitate later calculations, the sums L for even n and

2Xs for odd n were calculated separately.

The values

-p.

then give the pressure amplitudes in front of the rigid sphere in the
direction of the radiator. here the undistorted pressure amplitude
of the radiator is set equal to unity. We see that the pressure ampli-
tudes in front of the rigid sphere vary in a manner similar to that of

- -per (kro -12)
-r.7 N. -

0 1 2 81 f

Fig. 100. Reflection on a rigid
sphere (kro, a 2).

" the reflection on a plane wall except that the variations with in-
creasing distance from the sphere decrease very rapidly. (See Fig.
100.)

½ The complete calculation of the distorted sound field is then
accomplished with the aid of spherical harmonic tables from

*~' 38(kro, kr, y) -- r -• L'(A. -4- iB.)P.(cosy) = RB+ -J. (171c)

* i) The components H and J are first calculated as a function of ,
. for kr = 2, 3, 4, .... 0 and are plotted in Figures 101 to 104. The

quantities -i+ J2

are foind from this and their variations about the undistorted value
one are represented in Figure 105. Here it is seen that the magni-
tude of the variations decreases with increasing kr while the
"number of the variations increases, If the field points given by
icr 2, 3, 4, ... 10 are numbered corresponding to the values in Figure
105, the curves of constant pressure in the neighborhood of the
sphere can be drawn by interpolation. The result is given in
Figure 106. The greatest value (1.66) lies on the surface of the
sphere opposite the sound source ( v ) The smallest value
(0.66) likewise lies on the sphere (v 135Y). For field points
at a distance r > 5 r , the difference between the distorted and
undistorted amplitudes remains below 10%.
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Fig. 102. The components R for
icr =3, 5, 7, 9.
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Fig. 103, The components J for
kr 2, 4, 6, 8, 10.
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* Fig. 105. The deviation of the diiptorted
pressure amplitude in the neighborhood

of the Aphere (radius r ) from the
undistorted am~plitude for the field

point r,Y~) kr=2: kr'-2, 3, 4... 10.

r i
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Fig. 106. The curves of constant sound pressure in
the neighborhood of a rigid sphere with the radius r0
when the 'ound source in at a Preot distance and

kro 2.
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r

ar, (x) 1)f8 x
0

}1:

gW ,()"(z) (z)__________ ___________

1 4,5970 - 10-' -1,5889' 10-'1 1,70456-10- -9,0084 .10-7

1,25 6,8468 -10-1 -3,776 .10-2 6,3780' 10-i - 5,2881 '10-'
1,5 9,2926 - 10-' -7,575 -10-2 1,8601l - 10-' -2,2323 -10-5
1,75 1,1782 -1,3492- 10-1 4,5611 '10-' -7,49665' 10-'
2 1,4161 - 2,1991'- 10-' 9,8396' 10-' -2,1274'- 10-'
2,25 1,628e -3,3440' 10-1 1,9227' 10-' -5,3045'- 10-'
2,5 1,8011 -4,8070' 10-1 3,4718'- 10-1 -1,1934 -10-'
2,75 1,9243 -6,5934' 10-' 5,8749 -10-' -2,46888' 10-3
3 1,9C -8,6889( 10- ,-1 ,4155 d 10- -4,7627 10-3
3,25 1,9w0 -1,1057 1,4412- 10-' -8,6589. 10-'
3,5 1,9365 -1,3642 2,11658 10-1 -1,4959 ' 10-3
3,75 1,8206 -1,6367 3,0013• 10-' -2,4716 10-'
4 1,6536 -1,9140 4,12361 10-1 -3,9266- 10-2
4,25 1,4461 -2,1857 5,6056, 10-' -6,0232 10-:
4,5 1,2108 -2,4409 7,16297 10-' -8,9529 10-.
4,75 9,6240' 10-' -2,8687 9,0998 10-' -1,2933 10-1
5 7,1634' 10-' -2,8590 1,1331 -1,8231 10-1
5,25 4,8791 ' 10-' -3,0029 1,3765 --2,5010 10-1
5,5 2,9133' 10- 1 3,0935 1,6444 -3,360'9 10-'
5,75 1,3881 -10- 1 -3,1264 1,9267 -4,42431 10-'
6 3,9829' 10-' -3,0999 2,2196 -5,7126' 10-1
6,25 0,006' 10- 2 -3,,0154 2,r,144 -7,2433' 10-'
6,5 2,3414 10-' -- 2,8873 2,8026 -9,02689 3 10-'
6,75 1,0700 10-' --2,6930 3,0760 -1,1068
7 2,4608' 10-' -2,4580 3,3228 -1,3360
7,25 4,3208 10-' -2,2273 3,5368 -- 1,5888
7,5 6,533'? 10-' -1,9714 3,7089 -1,8622
7,75 8,9821 '10-1 -1,7188 3,8322 -2,1526
8 1,145 I -1,4835 3,0019 -2,4548
8,25 1,3858 -1,2788 3,9164 -2,7624
8,5 1,0020 -1,1162 3,8731 -3,10698
8,75 1,7808 -1,0050 3,7732 -3,3678
9 1,9111 -9,5150- 10-1 3,6256 -3,6483
9,25 1,9848 -9,5884 10-' 3,4323 -3,9043
9,5 1,9972 -1,0255 3,2048 -4,1232
9,75 1,9476 --1,1507 2,9517 -4,3118

10 1,8391 -1,3241 2,6878 -4,4467
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(-I)"J S,.(x)dx

1 2,8390' 10-" -5,9490- 10-1" 8,8897 10-15 -9,9527 1 10-1"

1,25 2,6112 " 10-8 -8,5647 '10-" 2,0025 10-" -3,5068 10"
1,5 1,5927 ' 10-' -7,5405 - 10-101 2,5431 • 10-" -. 6,4210 ' 10-13

1,75 7,3086 10-' -4,7224 10-' 2,1722 10-11 --7,4763 • 10-1'

2 2,7213 • 10"e -2,3039 10-8 1,3872 10-"° -6,2475 - 10-"

2,25 8,6320' 10-' -9,2821 . 10-8 7,0921 • 10-1" -4,0506' 10-12

2,5 2,4115" 10-' -3,2141 10-7 3,0408' 10-' --.2,1489 10-1

2,75 6,0754" 10-8 -9,8416 • 10-7 1,1303 10-8 --9,6890" 10-1

4., 3 1,4047 10-' -2,7214 - 10-' 3,7328• 10-' -3,8185- 10-"°

3,25 3,0207 1 10-4 -6,9047 10-6 1,1159 ' 10-7 -1,3437 - 10-'

3,5 6,1037• 10-4 -- 1,6275 10-' 3,0635- 10-7 --4,2920-' 1<-0

3,75 1,1684 - 10-3 -3,5991 • 10-5 7,8125 - 10-7 -1,2609' 10-8

4 2,1331 • 10-3 -7,5265, 10-' 1,8679' 10-' -3,44307 10-8

4,25 3,7335- 10-3 -1,4980' 10-' 4,2194 10-' --8,81
S4,5 6,2934. 10- --2,8521 10-' 9,0598 10-6 -2,1309 • 10-'

4,75 1,0254 • 10- -. 5,222". 10 1,8589 10-• 4,89381 0'

5 1,6171 10-' -- 9,2237 10-4 3,6609. 10-' -1,0731 • 10-'

5,25 2,4890- 10-' 1,5769' 10-' 6,9466. 10-' --2,2563• 10-'

5,5 3,7260- 10- .. 2,611PI' 10-3 1,2741 - 10-4 --4,5663 10-'

5,75 5,4464 10-1 4.2244• 10-3 2,2652 10-' -- 8,9231 10-6

6 7,7869- 10-1 6,647 10-3' 3,9134 10 I -1,6886 10 5

6,25 1,090 - 10-1 ' 1'24 10 - 6,5836 10-' -3,1017 10-5

6,5 1,4981 - 10-' 1,6379 10 j 1,0805 .10-' -5,5423 10-5

6,75 2,0209- 10-1 2,2666 10 2 1,7332 ' 10 3 -- 9,6522 10-'

7 2,6797 10-" 3,2769 10 ' 2,7207. 10 ' -1,6413- 10-'
S7,25 3,4960' 10' 4,6527 710-' 4,1857 ' 10-3 -2,7290' 10-'

3,496 - 10- 4,6310-'-
7,5 4,4908 • 10-1 1 6,4934 10-' 6,3180 1 10-' -4,4431 10-4

7,75 5,6843' 10-1 - 8,9182' 10-' 9,3671 1 10-' -7,0914 10-'

8 7,0942 ' 10-' -- 1,2077 10-' 1,3656' 10-' -1,1109. 10-'

8,25 8,7332 • 10-' -- 1,6073- 10-' 1,9587 • 10-' -1,7098. 10-'

8,5 1,0613 -- 2,1123- 10-' 2,7667 - 10-1 -2,5879" 10-

8,75 1,2735 -2,7391 10-' 3,8516- 10-' --3,8513 10-'

9 1,6095 -.3,5062 10-' 5,2873 - 10-2 --5,6537 10-'

9,25 1,7680 --4,4325' 10"- 7,1618- 10-' -- 8,17411 10-'

9,5 2,0467 -. 5,5367 10-1 9,5179 10- I -1,1658 '10-

9,75 2,3427 -6,8329 10-1 1,2649 10-' -1,6405' 10'

10 2,6520 -8,3321' 0"' 1,6614 10-I -2,2792' 10-'
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a, (x) (-1)m fS,.(x)dx
0

Z oz, (z) a',,(z) ] a, (z)

1 8,6608 10-21 -6,0262 • I0-- 3,4296" 10-1'
1,25 4,7721 10-" -5,1906 10-22 4,6183" 10-23

1,5 1,2596. 10-17 -1,9749" 10-" 2,5326' 10-23

1,75 1,9986' 10- 1 -4,2694' 10-" 7,4565110-"
2 2,1844. 10-"5 --6,1016• 10-1 13932' 10-20

2,25 1,7952 10-"14 -6,365- 10-1" 1,8384• 10-19
2,5 1,1779 - 10-13 -5,1564 - 10-1 1,8433 , 10-"8
2,75 6,4390' 10-"3 --3,4152• 10-15 1,4795" 10-17
3 3,0264• 10-12 -1,9138. 10-"4 9,88P.. 10-17
3,25 1,2628• 10-1 -9,3150• 10-1" 5,653e.' 10-"6
3,5 4,6630' 10-" -4,0206- 10-13 2,83.&8• 10-15
3,75 1,5735. 10-"0 -1,5643' 10-12 1,2685' 10-1"
4 4,9031 • 10-"0 -5,5593 Ic -12 5,1385' 10-1"
4,25 1,4215' 10-' -1,8242 ' 10-" 1,9075' 10-13
4,5 3,8658 10-' -5,5765 - 10-"1 6,5529 • 10-13
4,75 9,9271 • 10 "' -1,6002 - 10-10 2,1000 ' 10-12
5 2,4210. 1O-8 -4,3374- 10-1 6,3229. 10-"
5,25 5,6349 . 10-8 -- 1,1165 10-' 1,7992. 10-"
5,5 1,2568 - 10-7 -2,7423 • 10 ' 4,8637 , 10-1
5,75 2,5943. 10-7 -6,4534' 10-' 1,2545- 10-"
6 5,5812 • 10-7 -1,4601 1 10-' 3,2001 1 10-"0
6,25 1,1178 - 10-9 -- 3,1849' 10-' 7,3612 10-1"
6,5 2,1713- 10-' -6,7192 10-8 1,6853 • 10-0
6,75 4,1000- 10-' -1,3741 1 10-' 3,7296. 10-'

P 7 7,5395. 10-' -2,7294- 10-' 7,9970- 10'-
7,25 1,3526' 10-' -5,2771 ' 10-7 1,6648" 10-6
7,5 2,3708, 10-s -9,9447• 10-7 3,3716' 10-1
7,75 4,0662' 10-' -1,8308' 10-' 6,6530' 10-'
A 6,8327- 10-' -3,2951 - 10-6 1,2814 ' 10-7
8,26 1,1260, 10-' -5,8063-' 10- 2,4118' 10-'
8,5 1,8218 10-'1 -1,0029' 10-' 4,4424- 10-7

2 8,75 2,8969' 10-' -1,6998. 10 4 8,0174 - 10 7

9 4,5303' 10-' -2,8298' 10-s 1,4188. 10--l
9,25 6.9741 ' 10-' -4,6307' 10-s 2,4653' 10-'
9,5 1,0677 1()-3 --7,4567, 10 b 4,2097 ' 10
9,75 1,6810. 10-' .- 1,1825. 10-' 7,0671 . 10-'

10 2,3316' 10-' -1,8457 10' 1,1674- 10-'
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( 1)' fO,.(z)dx

j COW cl(z) ,x) ( _ o__)

1 +8,4147" 10-1 +2,4624 -4,2118" 10+1 +2,2493. 1044
1,25 +9,4899 - i0-' +1,5168 -2,3436. 10+1 +7,7199- 10+t
1,5 +9,9750' 10-1 +1,1390 -1,4781 '10+' +3,2872 10+1'
1,75 +9,8399' 10-1 +6,7842' 10-1 -1,0116" 10+1 +1,6310 - 10+1
2 +9,0930" 10-' +2,8508 10-' -7,3071 +9,0571 .10+1
2,25 +7,7807" 10-' -5,9492" 10-1 -5,4629 +5,4977 '10+1
2,5 +5,9847• 10-1 -3,6290' -10-1 -4,1630 +3,5791' 10+1
2,75 +3,81668 10-' -6,2667• 10-? -3,1903 +2,464.1 10+1
3 +1,4112 10-' -8,4887 '10-' -2,4243 +1,7740 10+1
3,25 -1,0820' 10-' -1,0259 -1-,7950 +1,3230' 10+1
3,5 -3,5078' 10-1 1 -1,1535 -1,2597 +1,0140 10+1
3,75 -5,7156: 10-' -1,2280 -7,9256 10-1 +7,9299
4 -7,5680' 10-' -1,2470 -3,7794 10-' +6,2863
4,25 -8,9499' 10-1 -1,2099 -6,99 .10-' +5,0190
4,5 -9,7753 • 10-' -1,0181 +3,2456' 10-' +4,0091
4,76 -9,9929" 10-' -9,7554' 10-1 +6,17756 10-1 +3,179W
5 -9,5892" 10-' -7,8873' 10-1 +8,7147 'I0-1 +2,4794
5,25 -8,5893' 10-' - 6,6631 10-' +1,0833 +-1,8743
5,5 -7,0554. 10-' -3,1899., 10-' +1,2502 +1,3414
5,75 -5,0828' 10-' -1,5896. 10-1 +1,3690 +8,6521 10-1
6 -- 2,7941 ' 10-' +2,0067. 10-' +1,4369 +4,3590 10-'
6,25 -3,3177 10-' +4,4655 10-' +1,4524 +4,7489 10-'
6,3 +2,1512 10-1 +6,0586' 10-' +1,4149 -3,0500' 10-'
6,75 +4,5005 10-' +6,4694' 10-' +1,3257 -6,1638 10-'
7 +6,5609' 10-' +9,8009' 10-' +1,1878 -8,9189 110-1
7,25 +6,2308• 10-' +1,0581 +1,0062 -1,1276
7,5 +9,3798' 10-' +1,0768 +7,8777 - 10-' -1,3211
7,75 +9,9405' 10-' 4.1,0348 +6,4163' 10-' -1,4697
8 +9,8936' 10-1 +9,3482' 10-' +2,7643' 10-4 -1,5707
8,25 +9,2260 •10-1 +7,8233 10-' +4,64 '10-' .-1,6223
8,5 +7,984M9 I- 1 +5,8601' 10-' -2,6226' 10-' -1,6232
8,75 +6,2472 10-' F3,5701' 10-' -- 6,1247' 10-' -1,5735
9 +4,1212' 10-' +1,0841. 10-' -7,3459- 10-' -1,4746
9,25 +1,73900 10-' --1,4549' 10-' -9,1830' 10-' -1,3293
9,5 -7,516- 10-' -3,9003, 10-' --1,0550 -1,1422
9,75 -3,1952' 10-' -,,1109' 10-' -1,1380 -9,1915' 10-'

10 -5,4402 10-' -7,9675. 10-' -1,1633 -6,6835 10-'
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z

(x C ,,(x)d

1 -3,0354 - 10"5 +7,6261 - 10+7 -2,9522. 10+10 +1,6784'-101
1,25 -6,5399' 10"4 + 1,0297 .10+7 -2,5745 - 10+1 +9,3415'-103
1,5 --1,8869.- 104" +2,0434'- 10"4 -3,5286'- 100 +8,8621 104-

1,75 -6,679' .1043 +5,2483 10" -6,6184'- 10+7 +1,2165' 10+10
2 -2,7480'- 10+" +1,6303 .10"6 -1,5625 .10+1 +2,1887' 10+9

2,25 -1,2724.- 10"3 +5,8628'- 10+' -4,4020'- 104" +4,8465'- 10"8
2,5 -6,4771 . 10+01 +2,3692 - 10-" -1,4268' 10+8 +1,2649 - 10+"
2,75 -3,6659' 10+2 + 1,0534 - 10+" -5,1846'- 10+5 +3,7726.10
3 -2,0976' 10+2 +5,0730' 10+3 -2,0711 - 10"5 +1,2671 .10+7

3,5 -1,3062 - 10+1 +2,6156 - 10+3 -8,9675 1044 +4,69965.10

4375 -1,5442 10+1 +1,430836- 10"3 -1,9108 -104 +4,83637 10"9
3,5 -1,83417 10+1 +9,65467 10+2 -1,1604 10"4 +2,37481)10"6
4,2 -1,1361 - 10+1 +6,97320' 10+2 -7,05630 10" +1,33919. 10+6
4,25 -8,94296 .101 -+,1082 .10+2 -5,9318 .10+ +7,7908- 10+"
4'75 -7,2947 - 01 +3,80360 10+' -3,30804 10" +8,4,680 10"4
4,7 -1,79738 0+ +2,38689 10+' -2,2759' 10"3 +2,83637 1044

6,5 -4,389181+ +2,329 10+1 -1,10954 10"3 +1,8370' 10"4
6,56 -3,985110+ +1,89880 10+1' -1,16130 104' +1,1379' 10+4
6,75 -3,2166 +1,,1031 10+1 -8,9730' 10+1 +7,79717 '10"3

576 -2,536 +1,264'10+' -6468'10+' +5,46806 10+

7, -1,4037 +8,4 -194 ý 2327699' 10+' +2,68934-10+3
6,75 -9,193'10- +2,029-128 -3,60674' 10+' +1,9837 0+'
8, -4,7857 10' +1,85842 '1 -2,4661' 10+2 +1,1076' 10+3
0,75 -7,662'10- +4,85071-1+ -2,0087- 10+1 +7,0799'- 10"2
8, +2,8530'10 +3,294701 -1,46529' 10+1 +8,24613 10+1
7,26 +6,17390 10- 01+3,2 0+3 -1,9726' 10+1 48,39613' 10+'

7" ,6 +1,1637 +8,1,94 -3,396504 1 +4,0173' 100'

8,s +1,88776 0- +1,9971 -8,6513+8 +3,2463' 10+1
9,75 +61547391- +9,626610-' -6,8768 101 4-2,633' 10+1

10 +1,0747 +6-,1226 - 10-1 -5,7808 +2,1910' 10+k



,, W (-1)"f C..(x)dx

1 -1,3034 10+16 +1,3251 10+" -1,7076 10+22

1,25 -4,6343. 10+14 +-3,0111 10+17 -2,4809* 10÷20

1,5 -- 3,0468" 10+13 + 1,3722 • 10+16 -7,8401 10+18

1,75 -3,0636. 10+-2 +1,0119" 10+15 --4,2417 10+17

2 --4,2070 10+1 +1,0614' 10+14 -- 3,4005. 10+16
2,25 -7,3339" 10+10 +1,4582 10+13 -3,6836. 10+15
2,5 -1,5441 10+"° +2,4794 10+12 -5,0e19 . 10+14

2,75 -3,7891 10+9 +15,0118 10+1 8,434P 10+13
3 -- i,0556' 10+9 .41,1690 10+11 -81,6486 10+13

3,25 -3,2729" 10+8 -1-3,0759 100+1 -3,6852 10412
3,6 -1,1120. 10+ +8,9712- 10- -9,2379- 10+1
3,75 -4,0893. 10+7 +2,8608. 10+1 -2,5568- 10+11

4 -1,6119 • 10+7 +9,8604 108 -7,7161 10+10
4,25 -6,7547 10+6 +3,6404 1Q+ 1 -- 2,5132 10+1-
4,5 -- 2,9895. 10+6 + 1,4287 10+8 -8,75R7 • 10+9

4,75 -1,395- 0+6 +5924 11+81 -3,2435' 10+9S5 -- 6,7511 . I0÷b +2,5794. 10+7 -- 1,2685. 10+9

•, 5,25 -3,79148 "10+5 +15,1749 • 10+7 -52,2131 10+8

5,25 --3,7918"10+5 -15,5745 10+6 -- 5,24131 10+11
5,75 -9,7272' 10+' +2,7460. 10+6 -2,20411- 10+8

6 -5,4483' 10+4 +1,40Q2" 10+6 -4,6724, 10+7
6,25 -3,1415' 10+4 +7,3712 10+5 -2,2519' 10+7

6,5 -1,8611. 10+4 +3,9972 10+0 -- 1,1211 10+7

6,75 -- 1,1309 10+1 +2,2283 10+0 --5,7521 10+6
"7 -7,0377 10.3 +1,2748- 10+5 -3,0360 10+4
7,25 -4,4794' 10+3 +7,4719- 10+4 --1,6449 10+6
7,5 -- 2,9127. 10+3 +4,4808- 10+4 -9,1369 10+6
7,75 -- 1,9327. 100' +2,7457 10" -5,1947 10*5

8 -- 1,307 10+3 1-1,7173 10+" -3,0191 10+-
8,25 -- 9,0122' 10+1 +1,0952 10+4 -1,7917 10+6
8,5 -6,3233' 10+1 17,1157. 103 -- 1,0844. 10+6
8,75 -4,5133 10 -4-4,7059' 10+" -6,6883. 10+4
9 -3,2751 - 10+ 1-3,1657 10+1 -- 4,1998 10÷•

'4 9,25 -2,4147 10+1 -2,1647 1013 -2,6827 10+4
9,5 -1,8079. 10+1 +1,5039. 10+3 -- 1,7421 10+"

9,75 -- 1,3737 10+2 1-1,0609. 10+3 -1,1487 10+÷
10 -1,0588' 10+2 1 7,5950. 10+2 - 7,6970 10+1

13-
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