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i Introduction

The complete calculation and representation of sound fields
involves considerable difficulties even in the cases of simple
radiator arrangements. —For“this reason, no systematic treatment
of the subject is available to the author's knowledge..»In the
following treatment, an attempt is made to develop the basic
formulae and concepts and to apply them practically in a series of
simple examples. Due to the extraordinary simplification, it ap~
pears justifiable at first to confine the calculation to a region
at & great distance from the radiator. With this limitation, the
transition from the non~directional to¢ the directional radiator is
made very simply when the formulae for the non-directional sound
emitter are modified by an additional factor designated as ths
directional characteristic or the radiation factor. Also, with
this simplification, the calculation of the sound field of membranes
(which, in contrast to the piston membrane, do not need to have con-
stant vibration amplitudes and may possess nodal lines) then er-
counters no particular difficulties.

The second part treats the represqntation of the sound field in
the immediate neighborhood of the radiator. The case first investi-
gated, that of two point radiators, shows that even here substantially
more complicated circumstances exist. OUne is therefore forced to
describe the sound field at every point. This is done most simply
when the constant pressure amplitude curves are drawn. In the case
of the circular piston membrane, which is of considerable practical
significance, the valuss on the normal axis and also in the immediate
neighborhood of the membrane can be very plainly stated. From the
fact that, with diameters increasing in relation to the wavelength,
an ever increasing number of null values and maximum values result
on the axis, it tollows that the piston membrane with increasing
radius produces no sound field even in the axis neighborhood compa-
rable with a plane sound vave. In the cases where the diameter is
not too great in relation to the wave length, the calculatioas of
the sound field can generally be carried out at nearby points. The
graphical representation of the curves of constant pressure amplitude
provides a simple conspectus of such sound fields.

The spherical radiators which are treated in Part Three have a
particular significance. For sound velocity amplitudes given on the
sphere, the sound field can be calculated wven for nearby field points,
It is shown in a series of examples that the formulae, which at first
appear involved, are quite useful for practical calculation.
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In order to avoid a complicated appearance of the text, the
theoretical derivations are given only in so far as is necessary for
comprehension, and references are given to the existing literature
for the remainder. Alsc, for simplicity, the calculation and repre-
sentation of the sound velecity amplitudes are avoided and only the
pressure amplitude is used to describe the sound field. Thereby the
uge of the velocity potential is completely avoided since the concept
possesses mainly a mathematical significance and according to experi-
ence provides no pleasure for the practical physicist.

A2l considerations are based on a given velocity amplitude of the
vibrating membrane; or, what amounts to the same thing, a definite
sound velocity amplitude immediately before the membrane (imagined
stationary) is prescribed.
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Part One

THE SOUND FIELD AT A GREAT DISTANCG FROM THS RADIATOR
1. DNondirectioral radiation

We start with radiators of zero order, i.e., with radiators
whose radiating surface moves cophasally outwards and inwards.

The simplest case is a breathing or pulsating sphere (Fig. l-a).
Here the velocity amplitude is the same for all points of the radi-
ating surface. In general, the motion of the radiating surface is
described by the behavior of the velocity amplitude tw = w: et
of the membrane. w will in general be different at different points
of the radlating surface.

It is advantageous to introduce the velocity amplitude w in-
stead of the displacement amplitude a (for which the relation
w=9%nna existss) since the latter achieves a particular signifi-
cance only in very infrequent cases.

Wie first consider the series of radiator forms represented in
Fig. 1. The radiators l-a to l-d are rotationally symmetric about
a vertical axis through the cernter. The radiators l-e to l-g are
likewise rotationally symmetric or have a rectangular cross section
like l~h. The rest position of the membrane is indicated by a
heavy broken line, the position of maximun displacement is dotted,
and the rigid supporting wall is indicated by a solid line. The
maximum amplitudes of the periodically (sinusoidaliy) moving
msmbrane are indlcated by the greatly enlarged arrows. The
linearity of the general wave equation depends on the assumption
that the pressure and velocity amplitudes of the sound field be
small. This assumption is fulfilled in practice except for
unusually strong pressure variations (@.g+, explosion waves).
Furthermore, the separation of those membranes vibrating sym-
metrically with respect to the middle plane (e.g., in Figs. 1-e
and 1-f) is assimed so small that the membrane zero position can
be regarded as practically coincident with this middls plane.

It then turns out that the sound field can be very simply
determined if the two following assumptions are fulfilled:

A+ TIhe dimensions of the radiator in every direction are
amall compared to the wave length.




B. Ihe field point lies at a sufficiently great distance
from the rediator.

From the general formulae (to be explained later) it then follows
that the behavior of the sound pregsure is represemted in the simple
form:

po — poei(wl—kr+nj2)

(1)

where the sound pressure amplitude p, is given by

c-c+F.w,

Po = 22r ) (2)
and the total radlated sound power L, by

Lo=@§/2ca/\4nr2=-%c-an~f—'2-¥£:l (3)

We see that the pregsure amplitude is described in a very
simple manner by the standard quantities and that each of these quan-
tities appears linearly. The significance of the various symbols is

as follows:

0 is the density of the medium

¢ 1s the velocity of scund in the
medium

¥ is the total radiating surfacd¥y

is the mean velocity amplitude

of the radiating surface

v 1s the distance of the field
point from the center of the
radiator

A 1is the wave length

k 4is the wave number ( gu-/)\ ) and

w 1s the circular frecusncy 2wn.

Ei

The preduct ¢+o 1s termed the specific
acoustic resistance. For plane waves its
magnitude is determined by the ratio of the
sound pressure amplitude to the sound velocity
ampUtude. For the two values with which we
are principally concerned, thoge for air and
water, we have 43 and 1.5 x 107 absolute C.G.S.
units respectively as the value of c«¢g .

Fig. 1 Simple radiators
In the goneral case the velocity amplitude
w(x,y,2) varies for the individual points of

v ['or mambranes which vibrate in a riglid wall we will denote the
surface radiating into the halt space by F so that the "2" ian the de-
nominator of equation 2 drops out.

-2~




the membrane. In this case w, is given by

Wy, = %/w(m,y, 2)dF. (‘l")
F:
The influence of the membrane is given by the product #.u,
If we define the volume swept by the oscillating surface during each
half period as the deformation volume of the radiator, then two radi-
ators of equal frequency have equal deformation volumes if the product
F-w, has the same value for both. This is so since the displacement
amplitude a(x,y,z) differs from the velocity amplitude w(x,y,z) only

by a constant factor (w = 2mmea),

From the fact that the quite varied vibration forms of Figs. l-a
to 1-h produce the same sound field for equal values of F-w, , we
will quite generally conclude: For radiators which are small compared
to the wave length and whose membrane motion takes place in phase,
the sound field at a comparatively great distance is determined by
the formuias (1), (2), and (3). This means that under assumptions. A
ard B two sound radiators for which the frequency and the product F-uw,
are identical, produce the same sound field, independently of the
separatc values of displacement amplitude and radiating surface. In
Fig. 2 three different radiators corresponding to Fig. l-e and 1-f
are represented with equal deformation volumes, i.e., equal values
of Frw, .,

The shaded surfaces represent the maximuwn amplitudes in one
direction of the vibrating membranes in two mutually perpendicular
planes. The velocity amplitude correspon to that of Fig. 2-b is
given byw = (i — o?/o})*, Then for tihe three (3) cases of Fig. 2 the
equal values

1, S O

5 @, 2 [ (L —g¥eifede = yeim, ) = yaia. (ha)
] 3 6 8
I}

result for ruw,

Tt is advantagecus to set up a simple example as a standard form
since from it the sound pressure can be specified under quite general
conditions because of the linear influence of all of the independent
variables. As such a standard form we consider a piston membrane in
a rigid wall which produces a sound pressure amplitude of 1 dyne/c,m2
at a frequency of 800 cps on the noxmal axis at 100 cm distance (which
corpresponds to the sound pressure amplitude for normal speech immedi-
ately in front of the mouvh of the speaker). we thus find that with
a velocity amplitude of 10 cm/sec the surface radiating intc the half
space must be 10 ecm?. It is to be particularly noted that formula 2
is valid for all plane beamed radiator arrangements if the field point
1lies on the normal axis at a sufficient distance from the radiator.

3




This will be explained in the next chapter. Therefore a radiating
surface of 100 cm? also produces a sound pressure amplitude of 1
dyne/er® at a field point 10 m distant on the normal axis., Finally,
the formula is likewise valid¢/ for a spherical radiator of zero order
for a sufficient distance of the field point.

The corresponding sound power per em€ for the standard form is
(according to 3)

L 1
ZnLr’ =53 = 1,16 - 10~ % erg/sec cm? = 1,16 . 10~? Watt/cm®, (4b)

In water the sound pressure amplitude » = 800 dynes/cm?®
results for the same assumptions (with the same frequency - therefore
a different wave length) and the sound power becomes

2. 106 (Le)
Lo . 8-100 2,13 ergfsec cm? = 2,13 + 10~7 Watt/ecm® .

One thus sees what a decisive influence the "sound resistance"
(specific acoustic resistance) exerus. In order for the membrane to
impress the same velocity amplitude in water as in air at the same
frequency 184-fold power must be produced. On the other hand for a
membrane which is to radiate at an equal wave length the same power
in air as in water it follows that

wy /18 108

we 43 (44)
i.e., the velocity amplitude w, of the membrane in air is then 60
times as great as the velocity amplitude w. in water while the
displacemert amplituds of the membrane in air is about 13 times as
grea’ ag that in water.*

\2/This is so with the provision of Note 1.

%
That the numtor 13{60/4.5) should be changed to 270(60+4,5)
is shown by the following:

Using the statement made at the end of the paragraph follewing
eq. 4, one has from eq, 4d:

. Q .
Moo ZTRL 4 60 or Sow Togu
W, iy w Qw € per (‘. o
Sinoe A 1is to ve constant for the Lwo oases, we have 4 = f’_‘* = £

7
} 7,

~ &, Henco 2w G0 4y = 270, o
~w T

or Jw . Cuw
g Ce
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2. DBeamed Radiation
A. The directional characteristic

(a) For a definite fr«: ency

We row drop assumption (A) but i ->se instead the condition that
the membrane vibrates as a double membrane cophasally toward the two
sides ~ the middle plane at every moment of the vibration being the
symmetry plane. uxamples of such membranes are represented in Figs.
l~e and 1-f. 3ince the whole proc:uss above the symmetry plane repre=
sents the process below the symme*ry plane, a rigid wall can be in-

troduced at the position of the symmetry

plane without changing ths sound process
in any- way. In place of the double-sidedly
acting membrane, one can then just as well
imagine the one half of the sound field
produced by a simple membrane vibrating
in a rigid wall., This is significant
o4 ¢ince & membrane vibrating in a large
rigid wall appears in practice rather fre-
quently. without particular erphasis in
z overy case it is assumed in the following
examples that the radiating surface con-
Fig. 3. Nondirectionsl Sists of such double membranes vibrating
radiation. symmetrically to the central plane or of
membranes vibrating in a rigid wall for
which only the one half space is considered which is cut off by the
rigid wall and into which the one half of the membrane with the sur~
face I radiates. If we imagine that.the elementary waves produced
by tleo individual elements of the radiator act together (as puint
sources) at the field point, it is then clear that the concurrent
action in uniform phase at far distant {ield points prevails for
all directions as long as the individual elements are at a distance
d from one another which is small compared to A 3 Otherwise,
the elerentary waves arrive at the field point with a phase diffei-
ence which is no longer neglipible (Fig. 3) with a resulting lack
of spharical symmebry. .e can take account of the latter conditions

\'4 The qualifying condition here would ralher seem to be that
the over-all dlmension of the radiatins onsomblae be small comparaed
to A . The statencnt in the text could he construed to mean this
tf 4 were taken to rapresont the digtance between any two alenents
(inoluding the two most Jdistant alements) instead of being merely
the distanoce bolween two adjacent elements as is shown in Fip, 3.

b




by applying the directional characteristic R® . hence in place of
(2) we have the formula

P=po‘m» (5)

wherein p, has the value given by (2) while ® is defined as the
integral over the surface F:

R

1 [ tk(zcoso +
= — . 3 ycosf)
wm.Fz’:‘ w(z,u)- e o sBJdF, (6)

Here the rigid wall with the membrane (in the position of rest)
is thought to be in the plane of the coordinate system. Since the
XY-plane is the symmetry plane for the
sound field, we can coniine our con-
siderations to the space lying above
the XY-plane and therefore disregard
the symmetrically downward oscillat-
ing part of the double membrane (Fig.

A).

Let « , Band y be the direc-
tion angles for the corresponding
field point line, x and y the co-
ordinates of the point belonging
to the element of lntegration df,
w(x, y) the corresponding velocity

Fig. 4. DBeamed radiation. amylitude and let k = 2w/N . ue
note that if the wave length A
is great compared to x and y - i.e.,
great compared to the dimensions of the membrane - the axponent
undor the integral approaches zero so that

%o el pdr (6a)

w,
»

and therefore by (4) bucomes equal to 1 as was to be exvected., #g
has already been indicated, it is ossential to note that %t like-
wise bocomes 1 for a large F if the field point line coincides
vith the 4-axis (since a —~ 00" and p=80° ),

The validity of (5) rosults from the general basic relation
(for a surfaco I on an infinite plane) given by Rayleigh\¥/:

4 The Theory of Sound, Sec. 278,

~6-




1 fope™ 1 p (7)

ihen we introduce the pressure

p=—o (&)
in place of the velocity potential ¢ and replace the mormal velocity
oo
W = w(x, y)ent (9)
we immediately obtain
: et (10)

p == .:.;;_.“_’e(ml/ W(I.y) 3 . dF.
}-

We will now consider the sound field at a great distamce from
the radiating surface and accordingly assume that the field point P
is at a sufficient distanceR from O sc that the connecting lines
from it to the individual radiator elements dF can be regarded as
parallel. (A more accurate formulation will be given later (p. 59).)
If we then drep a perpendicular from dF which is determmined by
the coordinates (x, y) to OP intersecting OPat Q then

OQ==xcosa+ycosfi and r= R — (rcosa 4 ycas f).

Since R rxcosx--yeosf ~ We can replace ¥ by R in the
denominator and obtain:

(11)

p= ,';; e“‘“'*“ﬂfw(x, y)etktasonat yoos) g p

and from this, considering (2), (4), and (6), there results the
formula (5).

\§'Here the symbol r desipgnates the distance from the field
point to the surface element whereas the same symbol, as employed
in equations (1) and (2), signifies tho distance from the field
point to the center of tne radlator (see the list of definitions
on p. 2).

-
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We shall assume for what follows that the radiating surface or
the radiating system possesses 2 point of symmetry, which coincides
with the coordinate origin, such that w(x, y) = w(-x, ~y).

(That is, two membrane points situated in image fashion with respect
to the membrane point of symmetry have the same amplitude and phase.)
The integral (11) may then be written in the real form:*

(11a)

Re= w—iifw(z, y)cos [k{xcosa + ycosB)]dF .
F

We will furthermore confine the field point line to a definite
plane (the measuring plane (die Peilebene)) which is to coincide
with the ZY-plane. Then since «=90" and g+ y=90° (Fige 4)

R = _l*fw(x, yycos{kysinyld F. (12)

w,F
F
In many cases, interest in the behavior of ® does not extend
to the whole measuring plane but, particularly with sharply beamed
radiators, only to the immediate neighborhood of the principal

maximum at ¥y =0

For this range coslkysiny| can be replaced by 1 — 3 k*y?sinty and
it is found that

R=1-—- Bein'y /.w(x. YyRF. (12a)

P

If we imagine the radiating surface element dF at the point
(x, y) of the membrane replaced by an element of mass

dm== w'(;'l,?)dF (l2b)

then

. .
Py = oo o W@, PN PRAF = [ yidm
BT e I.t-"/ lj ( 120)

denotes the moment of inertia with respect to the X-axis of the
stationary membrane thus covered with mass (total mass 1), and
for amall valuesg of y we can write

* Aprarently this is the real form of eq, 6 instead of eq, 11,




’ R =1—}ism?y.T,. " (13)

This formula is often suitable for a quick determination of the
directivity (die Peilschirfe) of radiator arrangements.

As an example we will investigate four simple radiator arrange-
ments (Fig. 5):
1, Two point sources
2. The circular line densely filled
with radiators
3. The rectangular piston membrane
4. The circular piston membrane

We find the moment of inertia T and the
corresponding approximation formulas without
—v  difficulty:

/Z L Ter 1o

N————y

z % k%sin2y « r?,
2 T,="_ Ry=1— 1 k*sin®y - ~
. 2 _— ) = — —_—
» o (13a)
2
4 8. Ty=T7, Ry=1- -5 Kisinty - T
2
z i 4 T, = ’; y  Re=1-— —é-kaamzy o
. p. ,
ay For these four cases the directional

characteristics may be generally calculated
by carrying out the integration in Eq. (6)\

rd
val
There results (see Fig. 5
74
tkrainy —tkrelny 9
o R, = 8——~~—-«<+-2ve»~—*~~ = cos[——’;—v sin y] (1)
z

Fig. 5. Caleulation of W,
the directional
cheracteristic

i

4
_)2 feik(xeosaJAyconﬁ)ds
2nr

en

- 2lnfe\kruluymw‘dq, Jo( " sin }’) (15)

0

\/ Zlectr. Nachr. Techn., Vol. 4 (1927), pp. 259-253.

\8/F‘rom equations (13a),the following meanings of ¥ are to be

inferred: r = one-halfl Jistance hetween elements, for two poinut
sources,
B r = radius, for ring and piston,

r

one half the sida of the square plston membrane.

: -




¥

pr=""4

1 [ ) sin (?_;rz sin y)
ERS = 5; / eikysinydy =t (16)

7
-7
r %‘n 9
1 _ 9 J,k—;f—rsiny)
Ry =, fodp [eitesmrenrdy =5 [ododo(kesiny) =2 ————.  (17)
-——s8my
[y o . A
0 0 0

2ar

With the abbreviation >3 siny="Zsiny =z, it is found that

Ry =rcosz, Ry=Jy(x), Ry= ?j{f’ R = 2 () , (17a)

xr z

where gy O Jy(e) signify Bessel's functions of the zero or
first order respectively. By the well-known series development the
correctness of the approximation formulae may be immediately con-
fimmed. One thus obtains

2t zt sin z?
cosx:l._._,é”_*....' Jo(x);:l——4»+-..’ r-—x—-=1~—"6+-.._‘ (l’?b)
2J,(2) r?
o=l

In order to obtain a general meagsure for the directivity we
will inquire as to the angle ¢ in the measuring plane %ZYS which
the field poinmt line forms vith the Z-axis when the sound energy

jg reduced to half the maximum value, (i.e., the amplitude is re-

duced from 1 to  1/y2) (Fig. 6).

We will denote this angle as the half-value beam width in this
measuring plane@. A simple calculation then yields with sufficient
accupracy for practical purposes the following simple relations:

¥ It is hore assumed that there is some directivity so that the
half-value width amounts at most to $0°,

=10




@, = 15°1/d for two point sources

@, = 20°2/d for the circular line (18)
g, = 25°4/d for the rectangular pistcn membrane

@, = 30°4/d for the circular piston membrane.

The error here is less than 1° for A = d and decreases pro-
portionally for smaller values of A .

The angles 15°, 20°, 25°, and 30° are then characteristic of
the directivity. vwe will emphasize this by a special term - the
directivity coefficient (das Peilmass). The directivity coefficient
is in general differemt for every measuring plane. In order to
obtain the directional characteristic for a measuring plane com-
pletely, the characteristic functions will be plotted as a function
of x and a variable scale will be placed
below the X-axis, which permits reading
off the directional characteristic for
each value of d/\ and sach angle v.
Thus the complete behavior of the direc-
tional characteristic as a function of 4
in the above four examples and for all
values of q/Awhich lie between 0 and g
can be immediately ascertained from Fig, 7.
If, for example, the directional character-
=y  istic for the densely covered circular line

R = Jo(einy) is desired for g/A = 3,
and y=40°, one follows the iine d/A = 3

‘ to its intersection with the 4O° line and
Pig. 6. Definition of reads off the corresponding ordinate on
the beam sharpness. curve 2, It is thus found that R=40,15

(see the broken line in fig, 7).

As an additional example, we mention the straight line group
which consists of a number of uniform nondirectional individual
radiators arranged at equal intervals on a straight line. Jue
to its specisl significance in practice, we will investigate this
arrangenent very closely. Let the radiators lie on the Y-axis
at a distance d f{rom each other and let them have the coordinates:

Ypr Ypts e Wep-t)r Yepy (18a)

Here the coordinate origin is tu coincide with the middle radi-

ator for an,odd number of radiators (»- 2¢- 1)and is to lie midway
between the middlemost radiators for an even number ¢f radiators

(n = ¢ H . In the first case one would then set »- ¢ - 1, p- I =g--2
etc., while in the second case one would set p--q .}, p- 1y .1, etc.,

(Fig. 8).
«ll=

bor




R TN A . QA N S 1 ey

L —
S

L L] /

\ AL ]
VANIIZNII2NEIs
* A\ \

e L L1\
Lo T T |
L PR s w  ar
T I " Wi w/ /:5/ é T
A [ / L/ §7
p Va4 ,,/% ‘
f, % //A/
et A / J/I/ 7 Ry=c052
V /. 2R, - Jx)
A de":,,:'

”m“"a—{fﬁ)

| (
9 é ¢ é 4 v F 3 u % ¥ & 2 &

Fig. 7. General representation of
the directionsal characteristia,
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soteristic of the densely covered circular line (Di=-
ameter d)., 3. Directionnl characteristic of the
densely covered rectangular surface (Length d) in the
eyxmetry plane. 4. Directional charecteristic of the
densely covered circular surface (I'ameter d),
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In general, then, for an arbitrary index 1, the relation
y=1d is valid. If, for abbreviation, we set

tkdsiny _.

e Z, {18b)
we then find the directional characteristic from (6) when we replace
the integral by a summation sign

m=-+p

i "
R 2 (1¢)

mu=—p

The geomstric series on the right may be easily summed and one
obtains:

m _ -1 Z-pzhwl_l __1 zr+§_z-m+§) (18d)

n z—1 L S

from which follows (when  eitdsnr  is again introduced for z)
. ] ,
R = Ti[(l-i— -é-)deiyl (186)

n 8in [—2— sin y}

Since for odd numbers, ¢ + £ is replaced by 9=+ = # and for
even numbers ¢ +-L is replaced by ¢ = 4 , the general result
is that . %

sin nm-isih y,
R LA (19)

n8in '—{-I-sin
1 b4

- where k:%’-‘ is substituted for k.

In order to obtain a clear understanding of the general be-~
havior of the directional characteristic for different values of
d/N we first consider the function given by

- sinng | ‘20)

tusing |

in which % has been replaced by r and ( i:';;('1 siny ) by ¢ . The
ocurve given b¥ (20) in the polar ooordinates (r, ¢ ) is now easily
understood. lhe principal maximum is attained at ¢ =0 and ¢ ==
(and multiples of m ). In betwsen lie n - 2 secondary maxima
which are separated by the zero positions ¢-- ‘n"(kz_-x, 2, 0=,

=13




If a atraight line is drawm parallel to the ordinate axis at
the distance 1/n , it touches the curve at the points which cor-
respond to the angles

L 3 211.:1
= 5w R o Tap % (208)

It is seen that the positions of the secondary maxima are, to a good
approximation, defined by the angles

3 5. =3 (20b)

=T Ty
? 2a7° 2n 2n

(due to the symmetry with respect to the ordinate axis we can limit

ourselves to the values of ¢==z ). Fig. 9 shows the behavior

for n = 6 . Here the broken line curve is an ellipse with the
semi-axes 1 and 1/6 on which
lie all the maximum values of

-

_. Sin b (20¢)
6 sin ¢
The secondary maxima (in the
first quadrant) coincide, to a
~d - g00d approximation, with the
RNy R VY contact points between the el-
lipse and the straight line
drawn parallel to the ordinate

’ axis at the distance 1/6.
Flg. 8. Tor the calculation of For a more ~ccurate deter—
the straight line group. mination, the equation
ntge =tgng (a)

d
resulting {rom ;1”;=0 must be solved. This may be done simply
if equation (21) is written in the form

@ = i arctg(ntge). (22)

The approximation valuss just found are substituted in the
right hand side of (22) and a better approximation is obtainad. Then

this better approximation is again substituted in the right hand side

of (22) ete, If %=2—'—';-:: 'n 4s substituted as a first approximation

in the right hand side of (22), ¢, —¢ then results as a second
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Fig. 9. Marking the positions end magnitudes of
the secondary maxima of the directional charescter-
istic for the straight line group of eix radiators.

approximation where ¢ is given by

BN =tem

If, eugey,n = 6 and m = 1 then g, —45° and from
tg e = } (22b)

g = 1°35' 80 that ¢, =43°25', The third approximation yleldse = 0°5
and @, = @, — & = 43°20 , Thus 6 tan ¢, = 5,66 agrees with
tan 6 ¢, = 5.67 to within an error of less than 1%.

If we denote the coordinates for the meximum value by ., ¢.
then (20) and (21) must be fulfilled simultaneously. Therefore

ronEsinde, = sindng,, (23)
gty = tgingn (21*)
and dividing (23) by (24):
r, contgy, o cosing, (253)
15~ ~‘

e



adding (23) to (2h4a),

T?n [nZSinz(pm + cos? ‘Pm] =1, (%b)

That is, the maximum values all lie on an ellipse with the semi~
axes 1 and 1/n. In order to perceive the dependency of the directional
characteristic on d/A and » , we have only to consider how the
discugssed r, ¢ curve is affected by the transformation R =, and
9,:’1; sinv into the r, » plane.* Dus to symmetry, we can confine

ourselves to the first quadrant ( = }iZ) and from the corres-
ponding range O=g¢= T‘l{i can state the positions and number of
the principal and secondary moxima. The size is manifestly not
changed by the transformation.

If we compare two arbitrary straight line groups I and II where
I is characterized by =,,d,,4, and I by n,,d, 4,  then

. sinmyp, ady .
1™ qysing,’ L 2 Y ( )
8in 2y @, ady . she
.’.2 = . 2L Qo == smy .
nysing, Ay

Since one is concerned with only small values of y» in estimating
the directivity, sin ¢ can be replaced by ¢ . And since, for
small values of ¢ , the inequality

8IN Ny ¢y 8in Ny,
ne T2

(244)

is fulfilled when and only when »,¢y<ny¢, , it then follows that
the directivity of II is greater than, equal to or less than that
of I according as n,dy/i, 1s greater than, equal to or less than
mydiji, o With the same frequency and total length the more densely
covered group therefure has a smaller directivity (broader beam).
And two groups with a different length and a different number of
radiators can possess the same directivity.’ For example, since

md, nyd,

Y =3 the groups = I§ d, =4/ and =38, dy~= 14 have
equal directivity while their bass lengths have the ratio of 17
to 12.

For a number of directional radiators (in a rigid wall), the
caleulation is subgtantially simplified when the radiators are
uniform (so that each radiator by itself would produce tue same
directional characturistic)., If we imagine a nondirectional (pointe
source) radiator in place of euch individual directional radiator

* Apparently the W , ¢ plane 1s meant here,
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and call the directional characteristic of the system thus composed
of nondirectional individual radiators %, , and the directional
characteristic of each individual radiator @, , then the direct-
ional characteristic % of the whole arrangement is simply given
by the product, i.e., % =i, %,.

For example, the directional characteristic of an arrangement
in a rigid wall consisting of two identical circular piston membranes
of radius r and with a center-to-center distance aq in a rigid wall
turns out to be

R = cos

22 cos ﬁ] 2J,(krsiny) (25)

krsiny

e prove this theorem, first expressed by Bridge{% as follows;

Let there be given in the.XY-plane a system I of n nondirectional
(point-source) radiators with the coordinates

@ 1), L g - (@ g, (25a)
the velocity amplitudes
Wy, Wy .. Wy, (25b)
and the radiating swrfaces
R S T (25¢)
and for this system, set
Wi F g Fy 4 o A w B = A (254d)

Furthermore suppose a system II of m nondirectional radiators
correspondingly characterized by the quantities

O N A R AT B (25)
wyl, wy oo W, (25f)

‘;'- ]4“3' . I‘,,", (258)

ll‘;l ‘;; “*_ ‘N';II":»/ e _|[‘ u'l,:‘ F::, . .4". (25h)

\19899 1. Poincare, Theorie de la lumiers, p. 158.
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Now in place of each radiator of system II, the system I is to
be set so that the new system III is correspondingly characterized
by the quantities

(12';,’-’(-1';, ?/;;”1“?/1), (l‘;,’-!» x.’?i ?/Z‘i‘!/:’) ces (QTZ +1-':,, !/;f -+ ?/fz) (251)
wy - wl, wy, W, w, w), p=1,2,3...m.
Fo R FiFy ... FIF, |

The directional characteristic W of the system III results
then from the general formula (0) where the integral must be replaced
by the summation sign. Thus

m n
1 1 T N e Pk{{x +a0) cosa -+ (i + v j
R == Y ‘5 : wy Fw et () g} vosa -+ (uy *‘"/v) cosi}, (253)

p=1q9=1

while the directional characteristic 9 of I is given by

n

W A;’ 2 ll‘:’ I",‘, K klrgrosa bygcosp] ( Zsk)
21

and the directional characteristic W' of II is given by

m

W D gl o i cou] (25m)
p=1

From this it follows immedistely that %' =% W’ . This
theorem can serve to derive another group arrangement whose
directional characteristic possesses a simple form from a simple
straight line group arrangement. If we let the directional
characteristic of a straight line group which consists of n
nondirectional radiators with equal surface placed at equal in-
tervals on the Y-axis with the velocity amplitudes wy. wy, ... w,
be

W ey, ], (25n)

and denote in particular the directional ciaracteristic of n unit
radiators by

xitin g

L L ning’ (26)

then

wind 'S

T AL (26a)

-18.




If we now replace each radiator of this group consisting of two
elanents by the same group, then from the original group

G = X X (26b)

there manifestly comes the following group

= ¥ X X X (26¢)

That is: we obtain a group of 3 elements (1 2 1). The corresponding
directional characteristic [1, 2, l] is then, according to the
theorem of Bridge equal to cos®g.

Correspondingly, it follows that

@ = {1, 11[1, 1]{1, 11 =1, 3, 3 1] = cosg, (264)
5= 11 (0, (3) .. ()] = cos” g (26e)

In order to find the symbolic product

W, My = Ly, ag . a1 by, by . 8,] (26f)

i.e., in order to find the directional characteristic of the straight

line group which results if sach individual radiator of the one
group is replaced by an equal and similarly directsd group (so that
the original radiator and all radiators appearing in its place lie
on the same straight line), we form the following rectangular schewue:

by by by ; b,

a,  wyh oahy aby

I FURVIN A R

ay ayhy aghy aby

U Lty

~ b



It is then easily perceived that for the determination of ®,-%,,
the sums must be formed of the products contained on the diagonals.
It thea turns out that

R My - [agby, a0y + a3y, a5y -+ ayby -+ ayby, + o (268)
-} ambn -1 @y by, a‘r:bn]-

This result may also be explained in a simple manner by con-
sidering the product

(0% + aga® 44 @, &) 0y X + byat 4 o bany  (26h)
Sy b2 s (ay by b oagby)ad - @, b,amin

Of interest is the converse of the question: With a hypothetical
straight line group with a fixed number and distance for the receivers,
how can the directional characteristic be changed by changing the in-
dividual velocity amplitudes, i.e., by changing the sensitivity.

Thus with six radiatore which are arranged at a uniform distance d
on a straight line the following seven directional characteristics
are obtained:

sin G
?Rl 6‘.5 ) “,’,,1‘1.1.1] (‘N.U“P‘
sinhyg  winle

TN 9 o999 LA
})eg‘ 65 (5'3 llyun-')ﬂ» ‘IJ 5“1“(}‘ 2““‘4))
N gindy sindg
PRRU 2,3,8,2 e T,
Wy Gl (L2382 daing dsing

sindg g sin zq-)'a
'4Mu¢'(2mnq,' (27)
sin de )‘3 sin 2
Yring!  Duing’

M, G @ (L8443, L] -
W, EE (LR, 85,38, 1 (

) y - sindg ain gl
RO I TR B N TR A

sin ¢
dning

W, 6 (15,010, 10,5, 1) (

3
) oot

ad
Here the abbreviation ¢ =a siny  is used.
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The corresponding directional characteristics are represented
in Fig, 10. According to the moment of inertia theorem it is immed-
iately clear that the directivity of %, 1is greatest. Since the
sensitivity of the receivers becomes more and more concentrated near
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i straight line group of six ‘ “ l RN
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senaitivity.
y Fig. 11. Secondary maxima

of the etraight line group
of eix receivers with
different sensitivity.

the center, the directivity must then of necessity decrease more and

W more. Fig. 10 shows this. It appears of considerable importance
that an oppesite trend exists for the sizes of the secondary maxima.
The part of the curve corresponding to ¢! is greatly enlarged
in Fig. 11 in order to show the size of tho secondary maxima and




it is evident that,with regard tv the size of the secondary maxima, R,
is very unfavorable. Thus, e.g., for ¥, sizes of the secordary
maxima remain below 1% as compared with 24% for %, . Witha

fixed arrangement of radiators we can thus influence the directivity
or the sizes of the secondary maxima in the most favorable sense by
adjusting the sensitivity (i.e., the amplification) as is necessary.

In order to derive the directional characteristic for the rec-
tangular group, we proceed from the general directional characteristic
of the straight line group. Here we substitute cos 3 for sin vy
in Formula (19) in order to show that the relation holds independently
of the measuring plane. It was necessary for Formula (19) that the
measuring plane coincide with the ZY-plane. Ve then obtain

I (28)

N

Fig. 12. Rectangular group.
Fig. 13. Rectangular piston

pembrane.

of m vadiators parallel to the X-axis (Fig. 12), according to
the rule given above the directional characteristic of this rectan-
gular group then turns out to be:

mnd

8 t
oA

wain dy
A

nady

A

iy ol
< u8in [ A” cos

cosf

cmm] sin ‘
)

B (29)

Lo

If we allow d, and d, to become smaller and smaller and m

and n to increase arbitrarily so that, in the limit, md, e and
ndy=—b (Fig. 13), we then obtain the general directional charac~

teristic for the rectangular piston membrane:
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sin lai coszxi 8in bx cosﬂ]
5 aan T (30)

bn
o coRa - cos f§

Here, it must be supposed that the membrane oscillates cophas-
ally on both sides of the XY-plane or that it oscillates in an in-
finite rigid wall as a simple piston membrane.

In place of the densely filled circular line, a circular group
is frequently used in practice which consists of a definite number
n  of radiators which are arranged equidistantly on a circle
of diameter d <~k If we choose n  as an even nuiber (n = 2m),
then by summing up the response of each pair of diametrically
aituated radiators, the following relation for the directional
characteristic may be easily derived:

m=—1

R = -71; Z cos{n; siny [cos ((p - 7::)]} (31)

k=0

Here the field point line is determined by ¢ and 1y (ses
Fig. 14). For the larger values of m , in particular, calcu-
lation by (31) is very time consuming. By the use of Bessel's
functions, the sum may be transformed into an infinite series
which is considerably more convenlent for the calculation. It
then turns out that

<

R == J( smy) F 2 -y zpm\n; Bmy) cos2pmep, (32)

P

The practical significance of this relation which, at first,
appears complicated, is immediately recognized if it is considered
that the firast terms in the sum v,, ./,  etc., very rapidly
assume a practically nsgligible value so that it is generally suf-
ficlent to consider only the first term  J,, .

loreover, with the aid of (32) the frequently important ques-
tion can be decided as to how densely a circular line must be cov-
ered by the radiators in order that the directional characteristic
may be indistinguishable from that of the continuously covered
circular line. If we chooge, say, four receivers, then the decisive

1
\} Alectr. dnchr. lech. Vol. 6 (1929), p. 170, (or the NRL
translation (;114) of this puner).
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Fig. 14. Calculation of the
directional characteristic

correction term is smaller in absolute value than j2J,, (%‘f siny)!.
A I

If we demote the part from y=0(/;=1 to y=y \where y,  corre-
sponds to the first zero position) as the principal part of the charac-

teristic of R=J, (’113 siny) then 7 is determined by ’iii sin y, = 2,4
and since Jo(x) < 0,06  fora<od,

the principal part of the characteristic
is then not changed. That is, the direc-
tivity of a circular group of four radi-
ators is completely equivalent to the
directivity of an arrangement which is
densely covered with radiators regardless
of how great a radius is chosen for the
arrangement. It can likewise be concluded
that the complete behavior of the direc~
tional characteristic of the circular
group can be represented with sufficient

accuracy by J, (7’—;‘1 sin y) if the number n

of the circular group. is so large that the condition

AL (33)

is fulfilled.

Since the circumference of the circle is =d -~ n-« where ¢ 1is
the distance measured on the arc, we can then so formulate the con-
dition (33) that the distance measured on the circle between two
neighboring radiators must be somewhat smaller than |/ (more pre-
cisely (a/i<1-2/x) ) in order that the circular group directional

a

characteristic may be given by Jo( ) Bilw) N

Closely comnected with the beam sharpness of an arrangement is
the matter of the resolving power (Trennschdrfe). Then it is a
question of when a receiving arrangement is in the position to per~
ceive separately two sound gources placed at a great distance away
and at a small distance from each other. If we imagine a sound
gource placed symmetrically on each side of the perpendicular bisec-
tor of a receiver arrangement (sources 1 and 2) and at a great dis=~
tance r and if we imagine furthermore a circular surface as the
receiver arrangement (Fig. 15), being rotated about the X-axis, then
the principal maxima produced by each radiator will be perceived

T
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separately if the distance g between the radiators is sufficiently
great. If one assumes with Rayleigh that
the maxima can then be separated if the
1 maximum of one coincides with the minimum
— |af— of the other, the necessary condition

Air

13%% ’;—d sing = 3,83 (33a)
——
then follows from the fact that the equa~
4 tion

2J, (ﬁfi-ainq,)
Fig. 15, Resolving power A _ oo (33b)
of the circular piston 24 ing
membrane. 4

is fulfilled for “lsing=383 Since

8in ¢ o @ = afr (33¢)
it follows that

dja > 1,227/a (34)

In order, therefore, to be able to separate with an acoustical
objective radiators placed at a great distance p from the objectivs
and at a small distance o from each other, the diameter of the ob-
jective measured in wave lengths must at least be equal to r/qg.

The preceding considerations referred exclusively to the case
where all varts of the radiating membrane or radiating system moved
with the same amplibtude and phase. In practice this is not by any
means the case, In general, the force exerted on a membrane is not
uniformly distributed over the whole surface but is exerted at the
midpoint or along a line, Since there is no absolutely rigid mem-
brane (sbove all mot if, in addition to rigidity, as small a weight
as pogdible is necessary to produce a good efficiency and frequency
response), the force acting, say, at the midpoint will, due to the
(damped) propagation with finite velocity of the tranverse elastic
waves, be able to act nelther in phase nor with uniform amplitude
on, say, the outlying elements as soon as the dimensions of the
membrane are no longer small compared to the wave length of this
transverse wave. [Furthermore, the membrane is generally retarded

~25m
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in its motion by its support at the boundary. In principle making
allowance for a different phase in our
formulae will cause no difficulty. we
would then need to use the given velocity
amplitude w(x, y) as a complex quantity.
For simplicity we will confine ourselves
to a variable amplitude and accordingly

4 assume w(x, y) as a real function.

As the simplest example, we consider
/*—b the directional characteristic in the
z ZY-plane of the rectangular membrane
represented in Fig, 16 where the membrane
Fig. 16. Vibraetion form is shown at the moment of greatest de-
of the rectangulsr flection.
membrone wiz,y=1-y.
Here w is to be given byw(y) = 1 — y2/b2
Wle then find that

+b

w'm.Fzza,f(l——%:—)dy:2a-2b'§- (34a)
b
so that
Wy = § (34b)
and
2% [ ¥
R S (35)
where
W= 2—Z-I—’siny (35a)

In order to find the divectivity coefficiert, we have to calcu-
late the value of u for which %R~ 0.707. It then results that
u= 1.8, The directivity coefficient is then equal to 1,8/n = 33°
and the half.value beam width ¢ is given by ¢ =383“4/2b , Using
the approximation formula, we would find that

2nb )2 sinty

w1 (O (350)

26
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and hence that
@ = 33,56°+ A/2b. (35¢)
As a second example for the rectangular membrane we choose
(Fig. 17):
w(z, y) =1 — 2%/ (35d;
and find w,=1%.

For the directional characteristic in the ZY-plane, it turns
out that

5o 12 (M _Cosu‘) —3ne - (35)

W\ u

T T AR P
| LA DIE A
/—VI

e A T et
Mﬂgmml G 24/

we here determined the direc-
tivity coefficient from

oo 12 /si i ,
</ (5 con) 3 5t om0, (3¢)
,{ and it hence follows that u=44,

The directivity coefficient is
Fig. 17. Vibration form of the  ©h4WS  44/m=80° while the half-

rectangular membrane wey=1-zp,  VeLue Deam width is ¢=80°-1/26 .

Bere something new occwrs since R does not possess a maximum
but 8 minimum on the Z-axis. a serie§ development of R ylelds:

m:l..*.—l%...

Fig. 18 shows a comparison of the directional characteristics
of the rectangular piston membrane of length 2b and the two latter
membranes. Une recognizes how substantial is the change if a mem=-
brane with nodal lines is operative in place of the desired piston
membrane. On the other hand, this knowledge cen be turned to good
account if, with a large membrane (whioh is necessary in order to
provide the required energy), it is a question of avoiding & sharp
convergence,

As the third example we choose a tightly stretched circular mem-
brane. Here we can generally carry out the calculation for the curves

Qg' 3ae Note 7.
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given by wie)=(1 - ¢*r)" . (Fig. 19 represents the curve
w(e) = (1 — ¥ for n = 0, 2, 4, and 8,) Thus we find\}y

1
W, == e —
m n + 1 T B

und: S’l\”—: DI IR (n -+ ])! 1!".*..‘.(@. (37)

whereir J»#l{u) is the Bessel's function of the order (n-+1) and

2nr
u= - siny.

et
48 ~<\ ! \\\
\\ \
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Fig. 18. 1. Directional cherecteristic of the rec-
tensulaer piston membrane in the symnetry plane.
2. Directional characteristic of the rectengular
stretched membrane in the symmetry plane. %, Di-
rectionel characteristic of the rectangular mem-
brane with nodal lines in the symmetry plene.

From the approximation formula calculated with the moment of
inertia:

W . r’rn:‘ s_inyv

Ml (37a)
we find the half-value beam width to be

@ = 15% Y-k Lo Ar, (370)

The cormplete behavior of directional characteristics corresponding

/ W,
g SEe) 4 B
t P'\‘\P~~\ T W {
v TN ]
n JA et
¢

ar a2 43 a¢ a5 46 Q7 g8 49 W0

—

Fig., 19, Vibration forme ww - otme
for 0,8, 4, A,

3
J*./Ann de Physs, Vol. 7 (1v30), n., 972,
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to the vibration forms of Fig. 19 is represented in Fig. 20 for
n= 0,24, 8 It is to be mentioned, however, that by a linear

AT
:.:3'*\\ ]
W \ RN .Y
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m“r \ \‘ \‘ \.\
R 3
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Fig. 20, Directionsl characteristic of the
circulsr membrane with the vibration
form ww=a-om*for 1=0,2,4,8
combination of the vibration forms (w=(l —g?r%)"* an arbitrary ro-
tationally symmetric vibration form of the membrane (even with nodal
lines) can be represented to an arbitrary degree ol approximation.

.e can state the directional characteristic corresponding to a
general vibration of the membrans

w(g) == ag + ay (1 - 0¥r%) + ag(l —@¥/r8)2 + -+ + @, (1 — @¥r¥)" (38)
It is
1 T () Ja(u)
R = ey e Qg o L 92 1 g, T
ao+%af+%a3+“'+niﬂrl“n “ ot (39)

+ 2n+l.n!Jn+x(“)]

An exceptional case arises if the expression in the denominator

1 1
ao_}. 'Eal'*"“ +;‘—~Ta,‘ (398')

vanishes. Then formula (39) for % becomes unusable. However, the
difficulty may be inmediately rewoved if the pressure amplitude is
calculated directly by equation (11). It then follows that

p- ::fef"’(x. yyeitvsinrg g (390)
F
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and for y =0

P= “—I‘g‘ w(z, y)dF =0 (390)
F

This means therefore that since w, =0 the pressure amplitv-s
at a sufficient distance on the normal axis vanishes. In addition, it

_ TIANT T
= S \\

IS ¥ 0 \
L, /
L/
Wy g W
u-f{ds‘mf

Z

Fig. 21. Circular membrane with

Fig. 22, Relative sound pressure
the deformation volume zero.

amplitude of a eircular membrane
with the deformation volume zero.

is clear that the directional characteristic (which represents the
ratioc of the pressure amplitude in an arbitrary direction to the

pressure amplitude on the pormal axis) loses its meaning. In other
respects, the calculation offers no difficulty.

A suitable example is glven by w=1- 2%

Therefore we
have g = —1,a,=+2 q=0a...=0 (366 F:Lg 2).

Here w,=0and p is found from

P T P ) - Sg(w)] (40)

where

(. 2J
we Mhwing, Wy = L ) L ompl B (40a)

For small values of u , it is recognized from th: series devel-
opment,

‘R ( R u® b u’
u) - Rolu) - o:‘:n"'z*-1:4y+ P21 (41)

that even for directions in the neighborhood of the Z-axis the effect

of the membrane is extraordinarily small. The complete behavior of
Ry(u) — Rylw) is represented in Fig. 22,
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(b) The directional characteristic for a noise.

In practice, of the sound sources which are to be measured
(e.g., underwater), twoe essentially different types are to be dis-
tinguished. &ither it is a question of artificial sound sources
which are to send out pure tones (1light ship transmitters, bells,
signal senders on ships) or of more or less natural sound sources
which possess a noise~like character and which are generally un-
intended and undesired (propeller noise, machine noise).

Therefore an investigation to determine how the preceding con-
siderations may be applied in such cases suggests itself. Here we
will assume the case occurring most frequently in practice where a
noise source is present from whose continuous spectrum a definite
frequency range (bounded above and below) is received. As is well
known, this may be accomplished without difficulty by an electrical
filter. It is additionally assumed that the receiver receives all
frequencies of the range in question with equal intensity in the
principal direction - i.e., that the transmitter favors no frequency
and also that no frequency dependency exists on the path from the
transmitter to the receiver in the medium (absorption, reflection).
We will, with advantage, define the quadratic mean value

/ n

& = "/ ;n_;.}._..;ifg‘ﬁsdn (h2)

as the directional charecteristic where », and 2, are the limits of
the range and % is the previously defined directional characteristic
dependent on the frequency n.

If we choose as the simplest measuring apparatus two nondirec-
tional receivers separated by the distance d (which is small com=-
pared to the wave lengths in question), then

Hy

©, =~ | h»ﬁ-é;;;/'oos“(n»zq gin y)dn. ([,_23)
Carrying out the integration:

O = [y T oonter 4 2 W3)
wherein for abbreviation




nd gin y nd giny =z
71/1 c'— == "z‘; - " (
L;B&)

nd . nd .,
nszm‘y = '}"2' sm'y = x._,

One sees that for =z,==, formula (43) goes over into the original
directional characteristic ®, in (W4). It is

®paz-z=VE+ §c0s2% = cosz. (;‘.,,31))

We will initially investigate the behavior of the directional
characteristic when the pass band is precisely ouec nctave, Here we

set
nd
Ty=2, ¥y =x=—j-siny

and obtain:

T 1anz .
©, = v2-%2 0083z, )

From Fig. 23 we see that the directioml characteristic is now
substantially different from the previous one (for a single tone, Fig.
7, curve 1), Instead of the zero and unity values appearing period-
ically with increasing x , there appears here only one principal

12
1p-
10
[
[

&‘TW\YL-.

Fig, 23. Directional characteristic of a
streight line group (length a) for octave
reception:!

1., Two receivers, 2, Three receivers,
X, Four receivers, 4. Six recelvars,
5. Densely aovered.
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maximum with the value unity. 4nd for the larger values of x , the

curve, oscillating, always approaches the value 7} . In order

to investigate the influence of the number of receivers for octave
reception, the cases are represented in Fig. 23 when the receiver
array consists of 2, 3, 4, 6 and very many receivers = the total
length of the array being kept constant and equal to ¢ . One
sees how the directivity decreases here also with an increasing
number of receivers. Simultaneously a steady decrease occurs in .

the value wnich the curve approaches with increasing % “siny .

The values corresponding to the receiver niubers 2y 3, 4y and 6
are respectively Vi, Vi, % and 1y}

while the value zero corresponds to a large number of receivers.
In general, for a straight line group of p receivers at the

saxe distance d and for a frequency range from » to »+p» it
is found that

/
X ‘1 2 sinmpz
&, =, P 2 (n—m) - >~ cos[(p + 2)ma]. (45)

mpx

In order to learn the influence of the size of the pass band,
the cases n = 6,p = 0; 0.2; 0.5; 1; 3 are represented in Fig. 24.
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File, 24, 1influence of the band width oa the
directional charncteristioc of a straight line
group of six reveivesrs,
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It is ceen that the size of the pass band determines the amount of
the variation above 12 and that the greater the pass band,

the smaller this variation. In Fig. 24,

A Curve 1 corresponds to the case n =6 p =3

Curve 2 corresponds to the case n = 6 p = 1

Curve 3 corresponds to the case n = 6 p = 0,5

Curve 4 corresponds to the case n = 6 p = 0,2

Curve 5 corresponds to the case n = 6 p = 0.

y The values of —Z—-siny are read on the abscissa axis. a =54

is the length of the base.

Ag a further example, we consider the noise reception for a
" 3 dense recelver array on the c¢ireular line and on the circular sur-
R face. The corresponding directionsl characteristics are
)
R : /“ T TR
o 1 ofund . . / U [ (14-6)
g U8 l 'i'x',"f-’T;,,‘]"\ . sm/)dn l xaur‘./.ﬁ,(x)dx,
L3} n
. .l n;
‘ ! onnd P TR T
5.’:> // ) 4J;( PR ;»):ln // \ !_‘f:(f_(l')‘{_x (47)
- @3 E / -;I-;—_-:"';l . nll ) g g "“;—‘rl-/ l‘l‘! » .
\ N ( . umy) o
Ny

where again

/A d
Xy I;j siny and 1y - ’;a giny o (47a)

ad
For octave reception (r = 2u - 22w ' siny)

o, V ! [ By (48)

r

This 1s represented in Fig. 25, For comparison, the ordinary
direct ional characteristics corresponding to the upper and lower
linits of the octave are also inserted (curves 1 and 3).
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Fig. 25, Directional characteristic of the densely covered circular line.*
1. For the fundamental (wave length A ). 2, For the octave (wave
length ,to A/2). 3. For the harmonic (wave length A /2).

(e) With artificial compensation

When the position of a sound source is to be determined with a
given receiver array, this can be done by rotating the array until
the maximum intensity is attained on the indicating instrument (or
for the ear). When the elements of the array lie in one plane, this
maximum response is obtained when the plane of the array ls perpen-
dicular to the sound direction.

However, the same result, which depends on a coincidence of
phase, can also be attained by artificial compensation without
rotating the array. This is done by variable electrical delay
circuits which are inserted between the fixed receiver array and
the indicating instrument. <%ach position of the compensator, which
controls the delay time, corresponds to a definite direction in
space (in the measuring plahe) for which the receiver array is in
phage. In order to find the direction of the sound souvrce, leaving
the array fixed, one now has only to turn the compensator and read
off the corresponding beam angle.

Artificial compensation by electrical delay circuits is quite
importent for divective reception. Not in the least contributive
to its usefulness 18 the simplicity and accuracy of the opsration

) of the electrical circuits. These generally consist of a number of
: uniformly constructed sections which contain self-inductance and
. capacitance and are so assembled that the self-inductance colls are

Using the indicated argument in this fipure, the curves for
the fundamnental and the harmonio will be identicval, If, however,
sin Y is used as the arzument, ourves similar to ocurves (1) and
(3) will pe ovtained but curve (1) will correspond to the harmonic
while ourve (3) will correspond to the fundamental frequency.

. "35“




inserted in series while the condensers are in parallel. If ¢ is
the value of the self-inductance and ¢ the capacitance of the con-
denser, the delay furished per section of the circuit is yg-g.

Furtiermore, this delay can be made quite independent of the frequency
if one arranges it so that the limiting frequency defined by
11
ST
is sufficiently far above the frequency range to be passed. In this
way one succeeds in imparting a pure time delay per section to a
noise signal without changing its character.

If we have an arbitrary receiver array arranged in space then
the compensation apparatus can be obtained in a very simple maaner
for a given measuring plane by a sirgle delay circuit. If we imagine
the receivers projected on the measuring plane (XY-plane) and that
their coordinates are given by (T, ¥) (@ ¥ ... (xy,) 1t is then clear
that for a compensation in the measuring plane only these projections
are of concern. Vtherwise expressed, the individual receivers can
be arbitrarily displaced perpendicularly to the measuring plane with-
out any change in the compensation action. If, for simplicity, we
confine ourselves to three receivers, the nabural directional char-
acteristic is then given by

R - &‘:\:“Cik(!unnsa+yn(-(»sﬁ)‘ (1-&9)
nm=1
where 1 and B are the direction angles cf the field point line. If
we let the compensation direction in the measuring plane have the
direction angles ¢ and y , then, upon applying the delays, the arti-
ficial directional characteristic is given by

3
Ri = § D eiklantcona - cong - yateonst = couy], (50)
=1

If we allow the sound source, i.e., the {ield ;oint line (», 8)
to shift so that it males a complete circuit, W, assumea its greatest
value when the direction of tho sound sowrce coincider with the com~
pensation direction. lxactly tho sams circumstances occowr, however,
{f, with a fixed sound source, we allow the compcnsasion line (¢, v)
to shift.

If we regard th> configuration of Fig. 26 as a scale drawing of
the receiver array which can be rotated about the origin 0, then in
the rotation the correct retardations x,cos¢ ty,.wy are attained
simply as the projections on a fixed line which we will agsume to
be the X-axis. If we ructheimore imagine perpendicular contact bars
which are connected with the individual sections of the delay circuit
(as is shown in Fig. 26) and place sliding contacts at (x,y) (2, 4y), (2 )
which are constantly connected with the one terminal of the corres-
ponding receiver while the other terminals are connected with a
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Fig. 26. Compensation apparatus for a group of
radiators (1, 2, 3) (small in comparison
to the wave length) with an arbitrary
arrangement in space.

common return conductor at the circuit input, then each impulse from
a receiver reaches the input of the amplifier with the desired delay.
At the same time, by an appropriate deasign of the delay sections the
time delays of the circuit are to be made to correspond to the ve-
locity of sourd.

For the uncompensated group the directional characteristic is
independent of the position of the object to be located. This is
not the case, however, with the compensated group. Here the di-
rectivity will be so much the more dependsnt upon the angle the
mord the pattern of the projections of the receivers on the measur~
ing plane departs from that of a circular array. If we consider
the straight line group of Fig. 8, the directional characteristic %,
for the compensation direction characterized by 4, is given by

sin "—;‘u! (siny — sin yo)]
mk = 1 — - - hd ( 51)

7 8in [ v (siny - sin po)

In Fig. 27 the directional characteristics are represented in
polar coordinates for a straight line group (n =6, d - 4/2) for the com=
pensation directions O°, 459, 60°, and 90°; here the secondary max-
ima are left out. It 1s noteworthy here that the directivity is
changed unly slightly at »,=456°+ However, for larger angles a
decided broadening of the principal maximum arises. Furthermore,
the principal maximum no longer lies symmetric to the compensation
diroction. This has the consequence that too great a value for y,
is found if the measurement is undertaken in the usual manner wherein

=3l




the compensator positions for equal loudness on both sides of the
maximum are determined by ear and the mean of these positions is

talen.

PRI Lt
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\

!

Fig. 27. The directional characteristic of a straight

line group of six radiators with compensation.
1. o= 0% 3. yy = 45°%, 8. yo = 00%, 4. y, = 00°,

These disadvantages of the straight line group will be avoided
if the densely covered circular group is used so that the measuring
If we next calculate the

plane coincides with the receiver plane.
directional characteristic of the circular group compensated for an

arbitrary angle s, f 5 Wwe find that
. (51a)
}){k [ 21 . / et k(2 (von s — conay) + ylcoufd — cmd.)lda‘
nr,
If we let a=rcosp and y=rsing and set
ool - oon By
WP ouy - con ' (51b)

it then follows that
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1 7. = -
Ry = _2_;;-/ ik 1c08 @ (cosa — CoB ) + sln g (cosf cosﬁ.)],d(p,
[1]
2

(52)

R = _217_:_ {eikrl(cosa-—cosa.)‘-b-(cosﬁ—cos;!.,)‘cos(q: - %)d-q;,

and 0
Ry = J, (ﬁ—z—;—t—r }(cos&x — coseg)? -+ (cosf — cos ,Bo)z)

For &, = 90, f, = 90°, R, must become the uncompensated directional chare
acteristic as given by (15); if we let cosa, =cosfo=0 in (52) it
then follows that

Ry == Jo( 2 sin ), (52a)

gince

1 (cosa — cosag)? - (cosff — cosfy)2 = Y costux + custh

(520)

=¥ 1— cos?y =ciny,

If the sound source is on the X-axis and the
XZ=plane is the measuring plane, then, since
x,=0, fo=90°, =90° (see Fig. 28):

R = Jo (5 - 2sin2 (53)
If the sound source is on the X-axis and the
XY¥-plane (receiver plane) is the measuring
plane, then, since &, =0, fy=980°, &+ f==90":

Ry = Jo (l;immf‘;-). (54)

In practice, this last case, in which the
measuring plane and the receiver plane coincide,
is of particular significance. From formula
(54) we recognize that the directivity of the
compensated group agrees with the directivit
of the uncompensated group (see formula (15){
80 that we again have to choose the angle 20°
as the directivity coefficient. If a definite directivity is required,
the ratio of the circle diameter to the wave length is thus determined.
If we choose a half value bean “iid“.ﬁ}) of 13° as an exanple then from (18)

{

—— R
g = 1,5.

Fig, 28, Different posi-
tions ¢f the measuring
plane for the compen-
sated circular group.

PR
The remaining question is: how many radiators are necessary in order
that no practical difference may exist between the resulting direc-
tional characteristic and the directional characturistic of the
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densely covered circular group. If, for simplification, we allow the
compensation line to go through a radiator, we then find an analogous
representation by Bessel's fumtions\{jz :

?R,,_J( sin) Z ( sin )('OSMP* (55)

From this it also follows that the directivity of the compensated
circular group agrees practically completely with the directivity of
the group consisting of four radiators. If the complete characteristic
is to agree, the inequality

nzi% 1o (558)

must be fulfilled. Or, the distance ¢ of two neighboring radiators
must be somewhat smaller than A/2 . liore precisely

T<T— (55b)

In other respects, the formula provides a substantially more simple
calculation of the directionmal characteristic.

As an example we caleculate the directional characteristic for
n=6, d=424 and find the following tables by the approximation formula

= Jy(4,71 sinx/2) + 2J4 (4,71 s.n &/2) cos3 . (55¢)

x L 4nsna2 | ST 20 TishacosSal By

0 000 1 ' 0 o

10, 042 0,06 ' 0 0,90
2 | 0,82 0,54 0 0,84
30 1,22 0,86 ; o 0,86
40 1,66 0,45 : 0 0,45
5 ' 190 0,23 0 0,93
60 | 2,38 0,02 : 0 0,02
70 | 270 0,4 0 . =014
80 ; 3.08 —0,27 —~0,01 o028
90 . 333 --0,35 . ] o085
100 -~ 381 0,30 40,03 —-0,38
Ho 3,88 - 0,40 ; +-0,07 ~0,33
120 408 .-0,39 . 40,10 - 0,20
130 427 -0,37 ' +0,12 --0,25
140 443 0,34 i 40,08 0,28
150 4065 - 0,31 i +0,00 0,81
160 4,654 0,29 ‘ 0,10 SRR
170 4,00 - 0,27 . BN P 0uh
180 451 027 ' S 021 o048

14 glekir, Nechr.=lechn., vol. 6 (192¢), p. 176, (or the NRL
translation (jl14) of this paper).

* Ine series called for by tha summation sign should be
multirlied by the faotor 2,
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. while the direct calculation by the formula

R = ${cos[n(1 — cosx)] + cos[Fm(cos(x + 60°) — cos60°)]

4 cos[$z(cos(a + 120°) — c08120°)] (56)

yields the following table

« ! = cosg;:GW) cos (Z,-:;‘.:O’)  cos 3 gy icos »3—.-::,-, icos 3 gy b1V
i 1—cose —c0s60> | —cos120° 4 ! 4 N i

o 000 | 006 | oo | 1 | 1 o1 1

100 002 | —016 . 014 : 1 \ 0,03 | 095 0,96
201 006 | —033 : 026 | 09 | 073, 08l 0,84
30; 013 ; —050 | 037 | 095 ; 0,38 : 0,64 0,66
0l 023 | —o6i 044 | 086 | 000 | 048 045
500 0,37 @ —0,84 048 ¢ 067 @ —041 1 041 0,22
60! 050 | --1,00 050 | 030 1 —060 ¢ 037 0,02
0] 066 | —14 048 -+ 000 . 090 043 014
80! 0,83 | —1,27 ° 034 ! —037 © -099 ° 048 —029
9| 100 | 137 ° 036 ; —071 : —100 . 086 —035
1000 1,17 1 —144 026 | ~0,93 | —0,97 :+ 081  —0,36
110] 134 | —148 o014 ¢+ 100 | —095 1 08 033
120 1,5 | --1,50 000 | o—~002 | 00247 1 —0,28
130] 1,64 1 148  -018 | —0,76 | —085 | 003 025
40| 1,77 ~144 ' —0,33 @ —059 | —087 | 073 024
150 mv!-w7,_m0jwm -1 i 038 - —0,32
180 1,94 : 1,27 —067  —012 | 099 i 0 —0.37
170| 198 | —114 i —084¢ | —008 | —090 | 037 044
180 2,00 ‘ Z100 | 100 ;0 | —069 - —069 = —046

In agreement with the general procedure, it is seen that the

’ correction term 2J, has no influence to o ==60°. If the require-
nent .. 2nd
nar 2

is not fulfilled, the secondary maximum can assume considerably greater
values than the extreme values given by Jy(),

Fig. 29. Directional characteristic Fig, 20. Directicnal characteristic

: of the compenssted circuler group of the compenstted cireular group
; : with a sufficient number of vith an insufficient nunter of
radletors. radiators,



As an example, we calculate the case »=26, di=15 by the
approximation formula (Fig, 30). For comparison the directional char-
acteristic for n=14,dA=15 which is given simply by J,(2 nsin «/2)
is also plotted (Fig. 29). Both directionmal characteristics agree
completely as to their principal parts (i.e., to the first minimum)
but then depart considerably in the magnitudes of their secondary
maxima.

B. The radiation factor

(a) At a fixed frequency

The directional characteristic has its practical significance
when it is a question as to the accuracy with which a beamed re~
ceiver system (which, e.g., can be rotated) can locate a distant
sound source. Also the behavior of the directional characteristic
will determine the freedom from disturbance in certain directions.
From the transmission viewpoint, however, beyond the question as
{0 the total power radiated, it is generally a question of con-
centrating the sound transmission in a certain direction or plane
in order to increase the efficiency of the array. Here the ques-
tion is how great is the sound concentration in the given direc-
tion as compared with that for nondirectional sound radiation.

In order to calculate the total power of a beamed radiator,
we proceed in a manner similar to that used in introducing the
directional characteristic in which we start with formula (3)
for the nondirectional system and then calculate the influence
of the beaming by the use of a factor & which we designate as
the radiation factor. Thus for the total radiated power L
we obtain the relation

1 ¥
L= L,® = 5 conuf, 55 €. (57

Here © 1is defined by the integral over a sufficlently large
spliere K with the radius R:

@=;}§;/mndx, (58)
X
where ® 1is the directional characteristic defined by (6) and dK is
the surface element of the sphere with the raddus R . Now,
viith directed sound radiation, the sound energy passing through
the unit surface of the sphore with the radius R in the direc-
tion defined by the directional characteristic ® is given by

! wiit e

2co . 2¢0 “?c.an“—_&"—‘ﬁ_ﬁ" (59)




&ha

On the obther hand if the total sound power given by (57) is
radiated spherically, the sound energy passing through a unit sur-
face would then be given by

L 1 wF2 &
rpey -l A T e vy - 3 (60}

For each direction characterized by the directional character=~
istic the ratio of p¥2coc from (59) to LjanR: from (60):
P L m
o TR G (61)
states how many times as great the sound energy is in the considered
direction as compared with that for spherical propagation. Gener-
ally, it is referred to the principal direction for which =1 .
when this is so we will demote the thus
gtandard quantity 1/& as the condensation

factor f.

\ “e will illustrate the significance of the
\ radiation factor in a simple example. ‘e
\R consider two equal radiators, small compared
! ‘\ to the wave length, and assume that the total
i ! ra’'ated power of the system consisting of
0 S the two radiators is to remain constant whils
we change the distance between the two radi-
Fig., 31,For illus- ators. On the basis of symmetry, the power
trating the radi- radiated by each of the two radiators then
ation factor. naturally remains constant. vwe will then
find the sound pressure amplitude at a great
. distance R on the normal axis of the system
(Fig, 31). One could then be led to the following fallacy: Radi-
ator (1) produces the sound pressure amplitude:

B O W g

P F (6la)
Likewise radiator (2) yields the pressure amplitude

=y F (61b)

Since the signals from the two radiators are in phase on the
normal axis, the resultant sound pressure amplitude at P must be
equal to twice that duse to an individual radiator (independently of
the mutual distance of the radiators). But we know that a direc-
tional effect dependent on the distance of the two radiators -
i.e., a sound condensation variable with the distance of the radi-
ators - exists on the normal axis. The error is due to the fact
that,with constant sound radiation of the individual radiator, its

3=




velocity arplitude is by no means independent of the sound pressure .

produced by the second radiator on its membrane. In addition to the
work which the individual radiator must
do with an undistorted sound field, it
rust, in the presence of a second radi-
ator, overcome the pressure exerted by
this on its membrane. This additional
work will be different with the phase
difference, i.e., with the distance
between the two radiators. (Quite sim-

# ilar to this is the case where, in a

©_~J half space cut off by a rigid wail, we
pid bring a radiator of constant sound power
nearer and nearer to the wall,) In order
(4 to investigate this quantitatively, we

calculate the total radiated power of
the system consisting of two cqual radi-
ators (1) and (2) at the distance d
(Fig. 32).

Fig. 32, For calculating the
rediation factor.

By (57)

2
L—_—;c-o-nw'},,(z{;L-@, (62)

2 L4
g = 4—’-11—33 [SR’dK = 1~;R¢fd:p /da cos’ ("Ad cos a)aina, *
. J

0 ¢

_ 1y, . sin2ad/2 (63)
&= (1 T "2adiz )

Fig. 33, curve 1, shows the dependence of the radiation factor
on /A . If we viere able to keep ., for the two radiators constant,
according to (62) the radiated power would vary in the same mamier
as 2 in Fig. 33. Conversely, if we keep L constant and vary the

ilstance, »} must vary with 1.&
Mo~ | since, with constant L ,
=\ 0 T R .| wnust remain constant. Aand, with
1 ; : constant total radiation, the sound
fas—1\ AN l'”"":egigsp‘; intensity retains its maximum in
P /£ ST the synmetry plane if the condensas
Kv tion factor -1/ is a maximum.
o ‘ 1T T we eausily compute that this is the
’ — — 75— case ford/A =0,715 and that the
Ho. maximum value of { hers becomes

ocual to 2.554. This moans that

if we radiate a definite sound
power by two individual radiators -
each nondirectional in itself -
instead of using one nondirsctional
* The factor Rz should also apprear in the numerator of the

fraction rreceding the double integral in the right membver

of this equation, '

Fig., 33, Rediation fector of a eys-
ten coneisting of two raaiators
(dietence d)
1. In phase. 2. In phase opposition.
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rzciator, then in the maximum case 2.55-fold sound energy per unit
surface can be attained in the symmetry plane as compired with the
nondirectional sound radiation. In the same manner, we can inquire
as 16 the maximum condensation factor with arrays of 3, 4, 5, etc.
vibrators arranged on a straight line equidistantly and always find
one quite definite value of /M for which this is the case. This
yields the table given below.

P foae=1Smae forafd If we denote the radiation factor forn
' 2 =25 =075 similarly arranged radiators by S there

L Z : f:‘§5 ! =g;; thus results the general foxmula‘{s/.
S 5 —1 - 0:86:5) s ; '
= s Zos . Zow &= h(n+2 ) (u ey SENZAR), (6
"} i m=1 )
% For n= 2, 3, 4, 5, 6, radiators, j=1/g, 1is represented in
‘: . Fig» 340
i " If q is equal to A/2 or an inte-
4 , gral multiple thereof, then from (64):
‘: :;‘ s / Sn = 1/n, (6ua)

i.e., the condensation factor is then
equal to n , This has been pointed

~
Y
/:)//)

s / / 7 out by Lord %ayleigh 1%, The calcula~
s VAV i - tion of the circular piston membrane is
TV AN A % also due to himl}. For this it turns
4 - out that
AN PR
. az////(’\\ L Co = Gaapl 1™ “2nap | (65)
By 2%

wherein 4 is the diameter and J,

o gF o w w11 demotes the Bessel function of the first
order. From this it results that for
large 4/ M\, the condensation factor £
of the circular piston membrane is

by
!

Fig. 34. Condensction factor

of the straight line group EPUREPR
(d = distence between two f=2n )%, (66)
radiators),

where F denotes the surface of the
membranse.

N . . . ... . L .
R R R e S
e . g e S

1. Two radistors. 2. Three
radiators, &, Four radie-
tors. 4, Five raaiators.
5. 8ix radistors.

i
\}Ann. d. Phys., Vol, 7 (1930), p. 964.

1% 0n the production and distribution of sound. Phil, Mag,, 1903,
pp. 289-306.

{7 The theory of sound, sec. 302,

=5~




Also, the radiation factors of the circular membrane whose ve-

locity amplitude is

w==(1—p¥r2®

(66a
may be calculated with the aid of the Bessel's funciions. For )
wy =1 — g%/r? there results the radiation factor
6 =222 + £ - Y09 e (67)
and for w,= (1 —p?r?¥? _:’fthe radiation factor is
et (U s - e ) (69
In general, by the series development for
= (1~ g¥r2)" (68}
it turns out that
By= 1o Gt (z/2 o
+2 " 2 +2(n+3) 3+ 2+ 3)(n+4) ’
@ = 1=+ 5 D )

2n 4 T)at

o emkwe
3387+ 2% (n43)(n+4)

The radiation factors ., ©,, &, are represcnted in Fig. (35).
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Fig. 25. 1, Radiation fector of the
circular piston memtrane w=1,

2. Radiation factor of the stretched
membrane (wei-o',

3. Rediation factor of the
renbrane iws(i-eiM'
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Fig. 36, For the calcu-

lation of the radistion

fector of the rectenguler
pieton membrane,




for 2 rectangular piston membrane whose one side (b) is small
corpered to tae wave length while the other side (¢) is arbitrary
(Fig. 36), the radiation factor

cn
LS T
sint 27 (cos 7) ”
st Ay = L [y
2 (%”) cos? y 2_21‘__ g (70)
R
2
& :_hwsin’cn/l -|-_1__7;%§dt _ sin®exfd 1 S_20n
I A T/ T S
results.
If one replaces the sine integral
z
Siz = ["Far (70a)
0
by the approximation
Siv= =5 (=g - 5, (700)
one obtains
. 1 sin2x 2z] *® cn
G=grlr—le— S+ | o= (71)

For larger values of ax(x=2), one will ve uble to use the approxi-
mation i 1
’ =3 OF C=3r7gm

as is seen in the following table

Y . ‘ Sogx wintr . Sidr sty L)
) | = 2t z z* 2r ., 22
: 0 1 S 25 1 0,688 10,548
: 02 098¢ 3 - 0473 0,447

0, 0,088 ;35 0,408 0,408
06 1 oMb o4 0,358 0,361
08 ool togs 0,323 0,924
1 0891 15 0205 0,204
1,2 0,858 | 85 0271 0,260
: 1.4 0813 e ¢+ 024 0,248
5 16 0,766 8.5 0,230 0,230
I 1.8 0,719 7 | 0,214 0,014
: J 0,613 7.0 0,20 0,200

* sin 22

The third term in the brackets should be = .77, The
last term in the brackets shonuld be vos Jx x
<
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The maximum condensation factor £ then turns out to be 2¢/4
for large values of c¢z/2 . This therefore means that a narrow
rectangular piston membrane (in a rigid vall) with one side equal
to 10 wave lengths sends out in the symmebtry plane 20 times as
much sound energy per unit surface as compared viith nondirectional
radiation.

If b is not small compared to the wave length g can generally
be represented by the following series\lﬁ’.

s=n(f)— 5 S n) ER S - )
where .
Pl = 5 [T (1= 5] (73)
10 @ i

Fig. 37, Functione for the calculation of the radiation
factor of the rectangle.

Thegse Ifunctions aru represerted in Fig. 37. Hers it is seen
tlat as soon as ¢/ bocomes greater than 5, ¢, ¢g ... can be re-
pluced by ¢, . It then follows from (72) that

NJ Ann. d. Phys.,Vol. 7 (1950), pp. 953957,
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2

‘sinz (_lz_n_ cos )
3 ¢

c=n(7) % —/g;g‘;;)‘rd‘?' (74)
The integral .
=7 —?Hd¢ (74a)
is found by the series development:
el 3(_1_';1 (Ef ) (ﬂl o (75)

or,for the larger values of bx/i , better by the Bessel function
scries

p= bn/l[J1(2nb)+2Ja(2nb +oJ, (2nb)+ “']' (76)

For the larger values of baji this series is considerably more
convenient to evaluate. It turns out that for bsax/1>3 the value
of the bracketed sum differs from unity only by (a few) percentid
ihe value of the function

w8

rop() = j Bmx((::f:w de (77)
is reprcaented in Yig. 38.
w1 .
| :
0 0 O O
2 ]
!
i
4 [ [ H v
4 4 J r“ﬁ(_‘_ [ $

Fig, 28, Auxiliary function for the
calculetion of the rediation factor.

QﬁL This ia agjudged to ‘e the menaning of the followins sentence
i1 vhich one or more woras have ppoerrently heen left out: *Una zwar
erflut aich, dens fllr A7/2 » 3 cer Wert acr in der eakigen Klemmer
fteaenden Supme nur um Prorente von Eine abweicht.®

w9




If we therefore assume that ¢fA>5 and 4Ai>1 , the con-
densation factor then becomes
f e enfA bafd _ 2nF
- n[ém =T (78)

The condensation factor is represented for values of bx/i
and c¢m/A betwsen O and 10 in Fig, 39. Here are drawn the curves

24
~ X

J
§
7
t 1 T
4 7 H ]

<

Fig. 39. Oondensstion factor of tue rectangular
piston memdbrene. (The numbers on the curves are
the condensation factor.)

for which the condensation factor possesses a constant value. We
find, e.g., the same condensation factor £ = 7 for a square for
which b #/A = ¢ #[A=8,16 a8 for the rectangle bn/i=0,5: cnji=10 even
though the surface of the rectangle is only half as large. For
ami < 1 and br/i< (quarter) circles result. For [>10,
(in the mere central part) the curves are hyperbolas. This last

means that with sufficlent accuracy, one can write [=2xnFis .

In the caleulation of directional characteristics, we have
remarked that whenever individual parts of the membrane vibrate
in opposite phase, the direction effect 1s substantially affected,
This influence must also be effective for radiation factors. As
a very simple example, we calculate the radiation factor of two
radiators, small compared to the wave length, at the distance d
which vibrate in opposite phase. A computation analogous to that
on page 43 ylelds




’ 1 sin2zd/A
o e= (1= (79)

We obbain the corresponding curve by reflection of the curve
1 in2ndfA
@ = (14 Ba2nd, (63)

Sndfi |

on the horizontal line y = % (see Fig. 33).

The maximum of £ occurs here for E)%'E=7,725, i.e., for
djA=122 and it amounts to 2.29,, This is the condensation factor
at the position where #H=1 and corresponds to y=24°, While,
with two in-phase radiators, we could obtain a 2.55-fold condensa~
tion (for y=0°), with two oppositely phased radiators there re-
sulted at most a 2.29-fold condensation (fory=24°). For the ex-
ample on page 30 where w, vanished, the radiation factor must
naturally lose its meaning and we must calculate ihe total power I,

by the formula (59). Then from

g F
p= L0 R @) — Ryla) (&0)
it follows that
_lero i N tiK ¥
. L= jig F* [ By(2) — Ro () PAK (&)
K
Ml J (23 4J4(2 8J,(2
= 47'(0()'? 33 ‘iat) + '*_3;6?_) - _—;;i‘.i) )

If the Bessel's functions are replaced by the corresponding
power series, there results
Fafle2oat 2.32% 0 3.4.08 .
L= 4”“’)12‘[’3'! ot T I T e ‘ (62)
If the powor rediated by a piston membrane of the same size
vith the velocity amplitude w = 1
!.a@.?)). (83)

: o2
Ly=23m.c.0 (lw i

fa e
is compared with L, for small values of x , one finds

: L 4
L: = 31ép (83a)

2B,

' >\2 ghould replace AS in the denominator of the fraction
preceding the integral sign,

A S TN




For r= %‘f = % this becomes
Ly/L, = 1/17280. (83b)

This means that if the membrane for L, is to radiate the same
power as that for L, , then the amplitude of the first membrane

must be V17280 = 131
times that of the latter.
For verg large values of 41 , on the other hand, we have by
3)8

(&) and (8
%:‘“‘“;“' (83¢c)

(b) With artificial compensation

From Fig. 27, it is to be seen that the radiation distribution
is also substantially changed by artificiasl compensation. In general, .
the radiation factor for the group consisting of two radiators is
2 4 22
& = i}ﬁ/ d(p/coaz [f‘xd, (siny — siny,)| cosydy. (826) . :
0

- nj2

If we introduce a new variable of integration Xx by

= ’-'; (siny — siny;) (34&)
it is found that
%‘!(l ~slny,)
& = 25“1‘/ costrdax, (85)

d
R ':1-(1‘- siny,)

sin 2ad
1 A 2nd
G =1+ Y/ lcou( 1 smyk)l]‘

T s 0
L4 R 5.
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In Fig. 40, &, 1is represented for sin y,=0,4, 4,4, 1 . Since
sin ., =0 corresponds to the uncompensated case, 1iv 1s seen that for

N
\\\ »

kS

&
W ZH
7

- =
5 =4
7 X T
% 425 ~~ qso 75 100 135
—— —

Fig. 40. Radiation fector for two compensated
radiatore (Distence d, compensetion sngle 7).

I

Lsinye=0) Zosinype =45 3oslnpe=4; 4. sinye =13 5. sinypee )

d/A <} the uncompensated case always yields larger values. £E.g.,
for dfh=1§6=1083: €, =o04.

From this it follows that the condensation factor of the come
pensated group in the direction of the line of the radiators (i.s.,
7, =980°) is 1.66 times as great as the condensation factor of the
uncompereated group in the maxamum direction. If, therefore, with
two nondirectional radiators at the distance d < 12 , the greatest
sound intensity for one definite direction is desired, the best

results will be obtained by working with a compensated array.

In general, for a compensated straight line group which cone-
sists of n  equidistant radiators, the radiation factor turns

out to be
n-q
1 2 \! o S (e 2 3) ooy (s 2rdjAsin p) (85&)
& " + 1 (- m).2 mednd/A '
mo ]

If the direction of the compensatinn line coincides with the

direction of the array (i.e., y, -t ), one finds
! Q) i dord)
- b RN sin(m e dad) \
= " } TR (n m) “modadih (86'
m 1
—53-




Comparing this with the radiation factor for the uncompensated
case (i.e.s y,=0)

n—-1 . 2nd
6—-!_.}- 9 smm-——r )
n nZ 1(n--m)~—~—-~m'2nd--ﬁ‘ .

me=

(87)

we conclude that the straight line uncompensated group with the
receiver distance d has the same radiation factor as the group
compensated in the array direction with the receiver distance d/2.
Or, otherwise expressed, the sound concentration of this straight
line uncompensated group on the normal axis is equal to the sound
concentration of the group compensated in the array direction with
half the receiver distance.

In order to find the radiation factor for the densely covered
circular group with a compensation direction (x,f;y,), we have to cal-
culate the integral

2
4 i

L
&y, = 2—;] qu‘/dyW giny (88)
0

0

where, according to (52), ® 1is given by

R =J, (”; ¥ (cosax — cosag)? -+ (cosf — cosﬁoji) (88a)

dince cosx = sinycosg, cos f =sinysing it follows that

(86b)

R = Jo(kr) sin?y — 2siny sinyg cos{g — ¢q) -+ sindy,).

If, for abbreviationm, we set u=ikrsiny, v =krsiny, it then follows
by the addition theorem for Bessel functions that

R=J, (}' ut g o — 2 v"cbs;'(ti‘r:—q'oﬁ ( 89 )
= Jo() o) + 2 3 U, () (0) cosn(p — g)

Nl

If we now form the integral
§£i§“d¢» (89a)

0
then since

2.

- R v 1O firm 4 X
Jumm(q Go)rosn (g - gl d g - 17 fir m - n {89b)




the terms with unequal indices fall out and there results
2a
Ql;/mzd‘%’ = Ji(u)Jiv) 4 2B ()3 @) + - -. (96)
0

It then turns out that

A

& = Ji(krsiny,) - [Jé(krsiny) sinydy (91)
0

{2
+ 2 Ji(krsiny) [ Ji(krsiny) sinydy+ oo+
o

or since
ntfe 20
[Jf, (zsiny)sinydy = fJ,,‘ (92)\/
0
it follows that
. ; kr
'_ Gu=Ji(krsiny) -, [Jo(26)d6+203 krsinyy) -~ [1,(26) a8
'o ko [ L/ 2 (93)

+ 203 (brsinyy)- f~h(2£)d5+
[

The calculations of the integrals
(Pn(x) = ‘_{J31r(2r)dw (93&)

«

may be easily carried out by the relation
/ Jr(2x)de = 22,‘]”9”“(2") (9[;.)

nwt)

with the aid of the Pessel function tables.

— e e mn 3 odm .

e R e e v r v o g ey
" é BT hte

: 3 €% (92) is obtained if, in tho well-known equation
I n2
)+ ;,g‘ Jy (v siny) == f.l:.()xumymnqp)dq: (a)
' ¥ o
fi toth sides aro wmultiplied by sinydy and are interrated from O to a2
= and the relation given by Nielsen (Handb, der Zylincerfunktionen,
K pe 380, formula Lly=0])
[
o nida2
‘ :;r/ ‘/xuium/(J‘siuwsinw)dwdw'=;/(x) (b)
1 . 0 0
is used,
. ~55~
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The corresponding functions
P ()

are represented in Fig. 41.

5

In Fig. 42 the radiation factor (for the circular group) @k(z—’;—r)

is drawn as a function of -2—;_'—’ (r = radius of the circle, A =

wave length). Here:

Curve 1 represents the uncompensated case (t.e., y, =y, =0,
Curve 2 represents the case v, =30,
Curve 3 represents the case y, = 90°.

Besides this, the curves 4, 5, 6:

2nr 2nr
Y

resulting from this are drawn.

From the latter, it is recognized that with increasing
2ar 2ar ., (277
N A @“<' A')
approaches nearer and nearer to the valus 1/2. .

This means that, for larger values of r/MN and with great di-
rectivity, the condensation factor ;=1/8, is given by ?;1.2 .
Utherwise expressed this says: The length of the circumference of ‘
the circle measured in N , when multiplied by 2, gives the size
of the condensation factor. In connection with the earlier con-
siderations on the condensation factor for uncompensated radiator
arrays, the straight line, a circular line, a circular swrface
or a rectangular surface, we can formulate the following general

theorem:
vith great directivity the condensation factor ig:

1. Iwo times the length of the radiating line measured
‘ in wave longbhs for line-shaped radiator arrays.

2. 2. 7w times the surface of the radiating arrangement

meesvyved dn it for surface radiator arrays.




|
i
;
; Fig. 41. Auxilisry functions for caleulating
; the radistion factor.
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Part Two
THE SOUND FLALD IN THi NsSIGHBORHOOD QF THE RADIATOR

3. The group of two radiators

For the previous considerations, the assumption was made that
the field point was at a gufficient distance from the radiating
surface. For this part of the sound field, which is generally
taken into consideration first in the usual practical problems,
there results a simple representation when, to the expression
which characterizes the nondirecticnal radiation, a factor is
affixed which is independent of the distance of the field point
and depends only on the direction of the field point line.
Furthermore, this characteristic function (the directional char-
acteristic) was only dependent upon one quantity (e.g., the func-
tion Q2ar .

XN )
The sound field was therefore substantially detemmined by this
one function - the determination being quite general for any
given frequency (wave lem_;th') and for any given dimension of the
radiating system (r/N). The conditions for the calculation
and representation of the nearby field are considerably more
difficult., First, we are forced to calculate the adjacent field
at so great a number of points that the complete field can be
obtained by interpolation, and secondly it is necessary to carry
out this representation for each particular case which is char-
acterized by the ratio of the geometric dimension to the wave
length. The diversity of the problem has now thus become sub-
stantially greater. re will, therefore, have to confine the
representation of the adjacent field to special cases. The sound
field will be represented when we draw curves in the neighborhood
of the radiating system which correspond to a constant pressure
amplitude.

It must first be made clear when a field point is to be re-
garded as belonging to the ncarby fisld and when this is not the
case. The term "nearby field" could lead to the mistaken idea
that it is only a question of the geometry of the radiators so
that one could perhaps say that with a radiating circular piston
membrane of the radius ¢ , all field points are no longer to be

regarded as belonging to the nearby field which, e.g., are at a
greator distance from the membrane center than 10 times the

radius. Actually, this definition is not sufficient since,
besides this, it is also a question of the wave length. In order

-58-
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to investigate this more closely we nust start from the formula
generally valid for distant and nearby fields and determine under
what conditions this becomes formula (6) given for the distant
field.

We assume that the radiating surface of the membrane is in
a rigid infinite wall or acts as a double membrane, where the one
part vibrates symmetrically to the other vart at each instant as
is represented in Figs. l-e and 1-f. Here the radiating surface
must consist of several component parts situated in the same rigid
wall, or of several individual double membranes all of which have
a common symmetry plane. We assume the radiating surface to be
at the zero position in the XY-plane and the velocity amplitude
given by

w = w(z,y)et (95)

Hare we will, in general, assume w(x,y) to be a real function.
Physically, this means that all oscillating membrane elements pass
through the zero position simultaneously, and reach their extreme
positions simultaneously so that (besides nodal lines) only motions
of the membrane elements which are in phase or in phase opposition
are possible. Basically no difficulties exist in prescribing the
valocity amplitude at every point of the meunbrane with respect to
amplitude and phage when

w(@,y) = u(x,y) + iv(z, y) (y5a)
is regarded as a complex function.

Then for an grbitrary field point P in the upper half space
(because of the rigid wall, we can confine ourselves to the half-
space 220 ) the behavior of the sound pressure according to
Rayleigh\z}’ is given by ‘

. 0y €O e 't
p == ellatt ), 7wa&¢) lap, (96)
Here the integration is to extend over the sur-
face F radiating into the half space. r is
the distance of the element of integration dF
from the field point P and R is the distance
of the field point from the coordinate origin

(see Fig. 43).

¥ If the field point P has the coordinates,
Fig, 43. For the To. Uy 709 &0d the mid-point of the surface
definition of the elanent dF has the coordinates x, y , the
nearby field. relation

s R 0% 4 R - 220y - 20y, (96&)

> :
34 The theory of sound, Sec. 278.
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then follows from

2. 2 2 2
B = T+ Yo -+ T

(96b)
R G S (TR TN L
Therefore
T - Blegesxt yoosp) f”_:ﬁ,y,“l‘i,
K & o (97)
T reosysycosf bttt 1 iweosy + yeos fi2
R R T2 g T2 (”""“H ' )'

In this development, terms of higher order than the second are
neglected.

In place of the earlier formula (which was derived on
assuming a sufficient distance of the field point):

)= ;CGH ﬂi(mt+ a2—kR) / ‘IIP(:II, y) elh (reosa 2 yeosp) g

(98)
P
there now follows from (96) and (97):
P = ‘)‘ ;’{ pitmt . a2k "’./‘w(.v, y) + eikzensa s yeusp)
F
Bk W (reos v geosa)
. eEUE i , x (99)
I Yeogy - yeosf 0 “M'——ﬁ ,"'»7 T g-A dF.
Y vy palE Y lreos s yeas )
(99) can therefore be replaced by (98) when
[ VAT reoson - yeosp)
'... ) " { R/ l)l (99&)
reosy o yeosf Pt op bopreosy 4 yeosfiy?
b I3 T2k T (' R )
can be replaced by 1. Since this is to hold for all valuses of
and f , it is easy to see that bocause of the denominator, one
must have
2y
Auf‘ L (100)
and because of the numerator it must be that
LR (101)

-

dore the exponent of (ruvs® + 4eus B3 4n the gecond exponential
of the integrand should bs changed from 3 tao 2.

«60=
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Since in the most unfavorable case
Yat 4 y? e 0, (101a)

is the greatest distance of a membrane point from the coordinate
origin, (100) asserts that the field point distance R must be large

"; : compared to ths greatest linear dimension of the radiating surface
. (in the XY-plane). From (101) it furthermore follows that one must
E have

§ _ SRS (102)

With small values of N (more precisely, if / "= £ ) condition
(102) is therefore more discriminating. If we assume a piston membrane
of 5 cm radius and first use a wave length of 15 cm and then a wave
A length of 1 cm, then, according to (100), the sufficient distance R
would be given by 2. 5 c¢m while in the second case it would, accord-

K ing to (102), be given by R _.75cm.

AT

For two radiztors which are small compared to the wave length,
a simple addition replaces the integration of formula (10). We ob—
tain the pressure of the resultant field in the following form:

7:)(3.” e

, et
L L R ST R ] (103)

1

p = ci(wli ;

- T = e X
e R

Here,

wy, w, &re the mean velocity emplitudes of F, and F,,

P, F, are the radiating surfaces

r,r, are the distances of the radiators from the field
point.

.
IR OP- e O5 G G

If, furthermore, we introduce the abbreviations

g
?4' w ¥ w, b, . r r
- T N T (103a)

then there results from (103) the relation

koo
§ oo - 1] I/ T2y
s P R iz e e -
i; R coa i & Yy (l%)
S DL
E ‘f : . for the pressure amplitude p.
% g ; Since we leave the phase out of consideration, we have to in-
o OB : vestigate the expreasion on the right only as regards to its magni-
ey A : tude. By a simple calculation, we obtain
c[:r l‘\‘: i Z.)Ems“:r(.r- o (‘: Z ]J.sm":z(.z“ ) (105)

4
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or

c‘-")‘;}=l‘-(fl)2+(5)z+25""“”‘"‘“‘”' (105a)

For certain values of (x = y), cos 2 T (x ~ y) (and therefore
also c" , /) assuues simple values which are shown in the following
table:

| »

r—-y I ‘lr‘us‘l.—x(z—y)‘ n
0 + 2 ax -+ bly
ok S 1 jab et by F by
! 0 podad 4 by
B ‘ -1 datrt 4 Wyt — ablry
4 ’ -2 ar ~by
O bt R T w
B i 0 Jafat 4 R R
TN i -1 ja? £? 0yt b/.r:y
1 - 2 aw v by
e w1 VT T ably
etc.

The values of p/(ca) corresponding to the points lying on
the hyperbolas x y = coustant can thus be simply calculated and,
by interpolation, curves of constant pressure can be constructed
for which x and y are the distances measured in wave lengths of
the field point from the two radiators.

Of particular importance is the determination of the positions
where the preasure amplitude vanisheg. For this it is manifestly

necogsary that ; ‘I' and that . .., Vl-ui‘)vl(m oLy

(uithout limitixig the generalit, g can ~be,\ assuued greater than b.)

From this it follows that

o b2 (105b)

Moreover, in order that the circles described by x and y yield
a real intersection point, the coudition

{105¢)

ro oy d I + UB

mu3t be fulfilled for a given distance ¢ of the two radiators.




That is, the condition

I ‘+
orb o
[
o 3
+
('3
>R,
v

2 (106)
must be satisfied.

To each value of m for which the inequality (106) is fulfilled
corresponds a zero position of the pressure, If d/i<i there are
therefore no zero pogitions at all. If a=2, 6=1, and dii=4,
then from

3(2m - 1) =8=2m + 1 (106a)

there result the solution8 m=1 m=2 m=3 +» If a=3.b=2,
and dj/l=1 then from

Em+1)=2 z2m+ 1 (206b)
oaly the solution m = Q0 results.

A' 4
i

Pig. 44, The zero poaitionl of the sound
pressure of two point radiators at

the di d = B for 4iff
° “Sﬁﬁgmz\oﬁ‘ vg umen.“wt

Fig. 44 represents the conditions for 4/ A=5, am3and b = 2,
Here the hyperbola branches

= vy == A2, 8/24, B/24, 721, 9/24 (106¢)

and the zero positions (1), (2), (3), (4) lying on them are drawn.
These zaro positions are the points of intersection.of the circles
which are described about the point radiators A4, and 4, with the

radid
r 3@m4-l)d
no R
=1,2,8,4 1
o 2@m4l)d (m ) (307
AT 4
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Loreover, all the zero positions lie on one circle which divides
the distance 4;4, harmonically with the ratio asb and whose center
lies on 4,4, (see Fig. 44). The radius of this circle is

__ e ¢ (107a)

=R

A representation of the curves of equal pressure may be attained
by graphical means. For this purposs we draw the locus of the termini
of the vector

~i2nz

P S (107b)

x

and of the vector

—_—a %)
o~ iy

= b (107¢)

This was done by allowing x or y to increase by 0.05 so that each
vector followed from the preceding by a rotation of 2 T 0,05 = 18°.,
One then needs only to draw the straight lines through the zero point
intersecting each other at an angle of 1&° and to lay off on them the
lengths a/x or b/y as the case may be. Two spirals thus result which
wind around the null-point with ever closer windings. If these spirals
have been nunbered with the corresponding x and y values, all the so-
lutions x, y of the equation

-~ -1
Pttt e ey

Ity R (108)

can be glven when a straight line of the length ¢ moves so that the
initial point slides on the one (x) spiral and the end point slides
on the other (y) spiral. tach position of the line ¢ defines by
its initial and end points on the spirals a system of values x, y
which satisfies riuation (14)¢3-

As an exanple, we choogse «—b=1 , i.,e,, two radiators of
equal intensity. In Fig. 45, the spiral r, --¢*"/r is represented
for all values from x =0.5to x =5. Inorder to clarify the draw=-
ing, only the spiral points corresponding to the individual values
y =0.5, y =0.6, y =0.7, etc., to y =2.5 are represemed for
the second spiral v, -« "%y | These are obtained very asimply
by reflecting the cormsponding points of the x spiral with respect
to the conter. Thegse latter points are marked by small round
ciroles near which the corresponding figure is given in a square.
If we describe a circle with the radius unity about such a poimnt
of the y-spiral (o.g., the point 1), we obtain by the scale given
on the x-spiral all the values of x (lying between 0.5 and 5) which
satisfy the equation

RAED]

R TR ! (108a)

&Y Aprarently, oq. (104) is meant here.

~blype
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Fig, 45, Spirals for the calculation of the nearby field

of two point redistors,
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iie thus read from Fig, 45 the solutions x = 0.50; 0.58; 1.32;
1.70; 2.29; 2.71; 3.28; 3.72;5 4.29; L.72. The relation becomes still
clearer if we draw the curve defined by

l!e_ I:‘-)_:ril_. N ¢ Si2ay - 1= 0 (lo&))

&> ’ y i

in rectengular coordinates. One half of this curve is given in Fig.
L6. The other half is secured by reflecting the first half on the
straight line y -« x =0. In addition to this the curves for

.c—-i*.‘.-:.r . ‘,“i‘lvy 1 %i'"i:'” e—i‘.::.y! 3 (109)
R i Sl st Rk
and
e 2o e 12Ty
-4 P — 2220

are drawn in Fig. 46¥%,

In order to obtain from these curves, which are independent of
the radiator distance, the corresponding curves of constant pressure
for a given radiator distance (eegey d/A = 3), we have to draw the
two points 4, and 4. at the distance d/N = 3and describe sbout
these points circles whose radii are given by the coordinates x and
y of the desired point. Here, however, only the coordinates x and
y are to be considered which lead to real irtersection points of
“he two circles. MNanifestly, this depends essentially on the radi-
tor distance. From the condition for the intersection of the two
circles

R (10981)

it follows that
yvxodidoy (109b)

\"} These curves can be identified as “ollows: For their inter-
section with y-x = O, we have, by the piven conditions and eq. 108:
i..’ 2 e‘é"’”} = C
x
or . - CX
cou bx ~1ow RX[ =07

The value of the exrrese® n on tha left-hand side is l. Hence the
abscissa of tue inter « .on of the curve with y=x = 0 is x = .éé.

This assumes the values 1, 4/3, 2 and 4 for ¢ = 2, $/2, 1 and
1/2 rosnactively.

b6




If, in Fig, 46, we draw the three straight lines
y+ta=di, y—w=di, y—a=0 (109C)

(where, because of symmetry, we assume r,>r,  and can confine our-

selves to one quadrant), a rectan-
gular :iri;: is then bounded by
these . in2: which contains those
and oniy tnose points x, y for
which the condition

y-rxdlhooy —a

220 (1094)

is fulfilled.

The corresponding strip ford/A =3
has been shaded in Fig. 46. One
recognizes that, e.g., of the curve

te~ idarx e 12ay

Lo e (109)

only the broken part enters into

consideration. If we transfer the
four cwrves, insofar as they are
contained in the shaded strip, we

i

'

r o '""I e

| ] [ [ i thus obtain the corresponding
§ 20 2% 48 &2 R

Tee curves of constant sound pressure

(for one quadrant). Here each

Fig. 46, The functions point of the curves in Fig, 46
BT e b LR with the coordinates (x, y) ylelds
x v a corresponding point in Fig. 47

as the intersection point of the

circle described about 4, with ths

radius x and the circle described
about 4, with the radius y . It is important that one recognizes
from Fig. 46 whether the constant pressure curve consists of one con-
tinuwous curve or how many separate curve sectlons result. Thus for

d/N = 3  the constant pressure curves corresponding to
FLT (109¢)

vield two separate cwrve sections for ¢ = 0.5 and three for ¢ = 1
while ¢ = 1.5 and ¢ = 2 each produce one continuous cwrve section.
In Fig. L\’I the corresponding curves of constant prossure are repre-
gented. <Lhe complete spatial distribution is obtained when one allows
the whole structure to rotate about 41, ., Tiree separate surfaces
then result for ¢ =0.5, five for ¢ =1 and two each tor¢ = 1.5 and
¢ = 2. If weallow q/A to assume smaller values, the corresponding
shaded ares in Fig. 46 becomes steadily narrower and the nuwber of

~67-
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Fig. 47. Ourves of constant pressure amplitude
for two point radiators at the daistance d = 3\,

extrems values always decreases until finally for /A = } only one
maximum (on the normal axis) remains for all curves.

In Figs. 48 and 49 the sound fields are drawn for d/A = 1 and
for Fig. 48

w ko w

e B R |

F
onT T Ton
whils in Fig. 49

why
2

.
we Fy

= 1,2, '2’)'.5— = 0,8

According to previous considerations, a null point (in the
spatial sound field, a nwll circle) must appear€p . One sees from
Fig. 49 that particularly in the neighborhood of this null position,
a fair dissymmetry of the sound field is produced.

@ For these values of @ and & (li0s, A = 1.2,@= 0.8) condition
(126) is satisfied by the single value m=O. Consequently, by eq.
(106b) 2= 5/2.y= 1, This point lies within the 0,05 ocurve of
Fig, 49. In the previous exampls with @ =4, the condition for a
null pcint can only be satisfied at inlintty.
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Fig. 48. Curves of constent scund pressure
arplitude for two poirt radiatcrs with
equal delormation volunes.

Flg. 49. Curvee of constant sound pressure
arplitude for two point radiatcre with
different deformation velumes.
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4. The circulsar piston membrane

The calculation of the sound field of a piston membrane for an
arbitrary field point in the neighborhood of the membrane raises
considerable difficulties. Therefore we first
investigate the case where the field point lies
Z on the normal axis of the membrane. Then the
calculation may be very simply carried outS.
5ince w(x, y) is to be constant ( = w, ), the
calculation of the integral

J= [ ar (109g)

is necessary.

If we introduce the polar coordinates o, ¢
for the surface element, then dF =pdedg
2=t - 32 d == . F . .

Fig. 50. For the czaxlcu-a-md since r*=¢'+:t, edo =rar. (Fig, 50)

lation of the clrcular It then follows that
plston membrane.
2x R YR & 2
. . - 1kr L 2 iVRY + 2t ‘ (llO)
0 0

z

Using the easily to be derived relation
i ViR
e e 2 Bt (110a)

there results:

N T
Ju:Zi.sin{ﬁ!llx"*+:‘-'-~- :!}(-""—'{‘" b (110b)

Upon substitution of this result in (11), there follows:
ko

. |[m "’.,k t 1 e
p 2ce0. U‘u-.\‘il\{ 2 RO :]}-(r [t g e )!. (111)
The relative sound amplitude is therefore,
i RS ' a :
L_'o 2sm{_2 h R - ~|= (1lla)
Fron this it follows that pec-o has the value zero for
RYRE 22— bz 20, b, L (lllb)

@ Baokhaus. H., and Trendelenburg, F. ”ber die Richtwirkung voa
Kolbenmembranen, 2. techn. Phys., Vol. 7, p. 630 (1926).




B eV A

and the valus 2 for

EVRR Y22 —ke=n, 37, ... (111e)

If one denotes the values of g corresponding to these extreme
values by 2, and :, ths null positions 2z are given by

RT: o
W= g =1,2,..) (12)
and the "positions of the maximum" by
R 132 11
3T ("+?z") (113)

Sm = —_('27{';;1-)7).7'_ . (n==0,1,2,.. B
With an increasing radius, the number of the zero and maximum

positions increases. No extreme values can occur on the normal axis
for membranes whoge radius is smaller

30, T
/ \ \ than A. The complete behavior of p/co
a4 7 \ for field points on the normal axis of
2 the piston membrane is represented in
. / Fig. 51. The ordinate is the ratio z/R.
/ The four curves correspond to the values
20}- For points with a sufficiently large
A value of 2z , formula (111) transforms
4 ) / ,\ inte (1) according to a previous con-
[ 1 clusion (p.4 ). By the considerations
j” \ on page 80, z is sufficiently large if
N \ nR® R
12 ™ | and RSN
L/ ) 5 ‘
© P Then, however,
v =] o LR R
P < BB G2 ke ka(l4y o) —ke="0 (1138)
w // — and
4e L " N
e v )

b= go that (111) does in fact transform into
Fig. 51. Pressure ampli- (1) (see footmote 1). If the field point
tude wee ,n the normal axie distance g is chosen as six times the
of the circular piston of radius, there then results for

the radius B. AR (kR

kR0 2 kR <10, 8 kR~ 20, 1 N
! o kR - o, 2. (or for 2(kz)

) in the cases
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kR =6, 10, 20, 40, the values 1, %, §, ¥ so that a field point
distance greater than three membrane diameters (at most) can be re-
garded as sufficiently great in the case kR= 6. This does not
hold by any means for the case kR = 20 or for xR =40.

It may be mentioned that formula (111) can be generalized to
the case where the radiating surface consists of a sector of a
circular ring with the limiting radii R, and R, and the central
angle ¢, instead of a complete circular surface. If the field
point is then located above the center of the circular ring, the
formula analogous to (111)
} o+ 2% Yo+ R +Vei+ R} (114)

I p=%-wo-c-osin{—’;—[}}zz+12§—— z’—i—R’f]; ¢
is then valid.

If the pressure at ope special point for a piston membrane with
an arbitrary boundary is desired, one can, after resolving the radi-
ating surface into the corresponding partial domains, apply this

formula and sum up the effects of the
individual component swrfaces. Here,
one has only to ses that the neglected
s parts of the surface are so small that,
' taken together, they make practically
- mo contribution. The subdivision there-
fore depends essentially on the magni-
tude of the wave length.

P

2
.f;'/e-l'kZRcoufd(p = Jo(2kR) — S H,(2kR), (114b)

0

Fig. 52. For the calcu- The calculation of the integral may
lation of the sound be simply carried out, if the field
pressure on the edge point liea on the edge of the membrane,

of the circulsr If we choose the field point P at the

piston memdbrane. origin of the coordinate system with

the polar coordimtes o, and ¢ then
(Fig. 52):
u ait 2 Rcoy 2 a2
[t aF= 2 [ag [ottedg, = [dpl1 — e-ikereor)

. ; (TR} 0
! s (14a)
, - '72 — _‘_2_kls-|‘k212coi¢dq,.
;", 6
*f Now
g
v
L
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Here J, and H, indicate respectively the Bessel and Struve
“ functions of zero order. It then follows that}

p=cooeior L0 4 L opm) (125)

With the aid of the available tables€¥for J, and H, we can
represent the behavior of the pressure amplitude on the edge of the
membrane as a function of 2xR/i. In Fig, 53, in addition to this
representation, the behavior of the pressure amplitude at the center
is indicated which is given by (111) with 2z = ¢ by

g’; = 2sin 'Z;E (116)
The two curves exhibit a motably different behavior. while, at

, the center, the relative amplitude p/co
i varies periodically between the values

" 7 zer) and two with increasing membrane
1 radiug at the boundary of the membrane
y / \ | p/co approaches closer and closer to

the valus % with incireasing radius.
From surface considerations, one is prons
to assume that with a piston membrane a
sound fiald is developed immediataly in
@ ] front of the membrane which, with in-
o /N - creasing membrane radius R (for R» 1)
N // N4 }‘.\L/ corresponds more and more closely to
o // ~ 7 the sound field of a plane wave. Ac-
cording to the foregoing, this is by
no means the case. As is well kmown,
o 1 ,;K_{ # 7 % thers is a similar fallacy when one
allows a plane wave to fall perpendic-
Pig. 63. Prossure amplitude ularly on a shield with a round open-
weo at the center (1) end ing and believes that by decreasing
at the edge (2) of the the size of the opening, one can di-
circular piston membrane minish to the point of extinction a
of the radius R. steadily comtracting acoustic "ray"
while in actuality with a decreasing radius ¢ (o) of the opening
a more and more nearly hemispherical divergence takes place.

]
M 1
\\

}
1

e have already seen that the pressure at a great distanse can
be simply calculated if the velocity amplitude of the circular mem-
brane w(p) is given in the form:

w(p) == ay + uy (.l - };:) b ay (1 - IL;:)Q et a,.(l - 1";:)". (116a)

‘3} Mclachlan, W.: On the Acoustic and Inertia Pressure on a
Vibrating Circular Disk. Phil. Mag. Ser. 7, (1932) p. 1022.

<% Theory of Bessel Functions, Cambridge: G, N. Watson 1922.
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Here o is the distance from the center and R 1is the membrane
radius. we will now show tlat, in the simple case n =1 and for

field points on the nmormal _gg and on the edge of the membranse,
a simple calculation is also possible. e set

wio)=1--71-2. (u7)

R2

Then the corresponding pressure amplitude p, is given by
b= = [ 1) S (117a)
F

cge

It is sufficient to calculate the pressure amplitudes p, (for
f=0) and p, (for £ =1). Then from

" %/S_rf.dFa.nd Py = l/( e ar (117b)

I(

it follows that
pr=(1 = po+ Im- (1170)

If the field point lies on the normal axis (Fig. 50) at the dis-
tance 8 then o3 =% —22 and, since dF =rdrdp , ib follows that

YR+ VAT R
2w (1 + R’)] PRITE P if:;./,.ze»ikrdr' (1174)

D=
We therefore find for the field point on the normal axis

oy = e“““{l + k’R* + i:‘;;}w e VR B kﬂif’ {1+ iky R 523 (118)

u U

and by (110)
Py = €K gk VRS, (11.8a)
If the fisld point is on the edge of the membrane then since
(Fig. 52)
0= R* 4 o} — 20, Rcosg, 1~ 1(:: 2}%‘ CORG — }(;3 , (ll&))
o 2Reusy
L ke |20icon 1
b / d¢ /4’ llr{ QR ® '"ideQl- (ll&)




If we integrate with respect to ¢, , there results

ni2
P = Z-_l}? . _721] {E% — icosq — ei2kRcosy (k% + iCOS‘P)}d‘}” »
0 e " (1184)

1 2 1 2/ v 2 .
pllr) — EE'F_ﬁkVR—Ic_?ﬁ*'?je aZI:Ecosq:d(P__E,R ';]COSQDG szRcosrpd(p'
0 0

Using the relationdéy

a2
'_72; /e— treust () Jo(l’) — IHOK:L) ,
0
9 nl2 9 (llae)
7{/ cosfe~ iecosdg g = —— Hix) — i, (@)
(¢

it then follows that for field points on the boundary

01— Jo@kR)  Jy2kR) | [Hy2kR) | H,@2kR) 4
P =R T T
o = l_’;‘.’,;@.’f.@. + v; H,(2kR). (119)

Here J, and J, are Bessel functions of the zero and first
order and H, and H, are the §truve functions of the zero and first
order. With the aid of the available tables for J,, J,, H,, H; the
calculation offers no difficulties.

The variatjon of the pressure on the normal axis for the case
kKR = 10 is represented in Fig. 55 and Fig. 56 for
W= —/-(_)2/13, (/'::'0) :i:i" :{:ﬁ) Itl)

The corresponding velocity amplitudes
we=1--frg3R? (f =0, -4, -k 4, 1

are drawn in Fig. 54. Furthermore the variations of the pressure at
the center and on the boundary are reprssented as a function of kR

for we=1-—uyR¥ and w=1-p¥YR* Iin Figs. 57 and 58.

\Z}MOL&C}II&X}. W.: Bessel funotions for Engineers, p. 167
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Fig. 54, Thv veloclity amplitudes
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Pig. 96, Pressure amplitude .vcn on tne
normal axis for the velocity amplitude
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Fig. 56, Pressure amplitude...on the normal
axis for the val~~ity amplitude
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These two cases, where the field point is (a) on the normal
axis snd (b) on the boundary of the circular piston membrane, are
the only ones for which the evaluation of the integral is gemsrally
possible, i.e., expressed in terms of well~known functions which are

available in tables.

10
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! X4 a2 a ]
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¥ig. 657. Pressure axplitude at Fig. 58, Pressure amplitude at
tha center (1) and at the bound- the center (1) and at the bound-
rry point (2) for the vibration ary point (2) for the vibration
forg v -1 -ovar and the corre~ form v~1-{& with the corre-
sponding components (x.J, (A, sponding components .. (k. Jy.

If we now turn to the genersel calculation of the field of a
circular piston membraned(y we will resolve the inteyral

¥
into its real and imaginary parts.

We therefors obtain
b= ‘ (120)

 Wee' V(P + ipai,

0
2 Eloktr. Nachr. Techn., vol. 12 (1936) pp. 16-30.
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wherein

1 smkr

-__/S‘?ikldp

This is advantageous since the relative pressure components P
and p. exhibit an essentially different behavior. If, for ex-
ample, the wave length is so great that 2arfAg] s Pa
becomes very small, i.e., the componemt »,. (which, with the
velocity amplitude m =w,e'“t possesses a pvhase displ cement of
90°) predominates. Physically, this means that the membrane works
on the field almost wattlessly so that it moves a dead mass back
and forth without radiating practically any sound.

In order to be able to evaluate the integrals (121), we must
first relate the variable » to the corresponding surface element
(determined by its polar coordinates o.¢ )
If we denote tha angle which the field
point line OP forms with the Z-axis by

7. and let the distance of the field
point P from O be » while we let r be
the digtance of the field point from
the surface elemsnt dF, then one has

r= YR + ¢ — 2r,pcospsiny. (122)

Here the field point P is assumed to
be in the X~Z plane in Fig. 59 which, due
Fig. 69. For the calcu- to symmetry conditions, manifestly doses
lation of thu ecireular not limit the generality. The integrals
piston membrens. (121) then assume the fom
th en 5
/dw/gd mqu P 1/ dqr/ede uos;kr) (123)

u ¢ [} ]

whore the value of r given by (122) 1s to be substituted. 3ince
an integration in closed fomm does not appear generally possible,
one will attempt to so transform the integrands by a series devel=-
opment that the variables of integration appear separated. This
is done by a series development whose terms are formed from
spherical hamonics and Bessel functions. "ne has thw following
relations ¥} :

s Y- Rryend 4N )8 () 8, () P leos D), (124)

prs-trgems raimy

\}a'mtaon. G. N.: Theory of Beasel Functions, p. 366, Cambrldge
192
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R S g P

- A;mﬂlm,‘zu}.{% "';"-‘»"M’ef-

wP,

PR o B A

1
o /’(;Zn + 1) 8, () Co{y) P (cosd), (x=y) (1z5)
cosf Ty Tayesd _|"'i
Voifyi—Rrycoss 1
ps "0(2n+l)0,,(x)S,,(y)Pn(cosa9). (2z2y) (126)

Here PF,(cos®) is the Legendre spherical harmonic and
Sule) =} Gadusi(@,  Cule) = (—11r] Tl i), (127)

where the J's indicate Bessel's functions. These functions may
be relatively simply represented for small valuses of pn as
rational functions of x , sinx and cos x . Thus

Sylr) = sinz, Cylw) = cosw,
S, () = -'-‘i:’- — cosz, C, () = sinx 4 "‘:‘",
Sale) = 3~ 1)sing - S cos, Cyla) = S sin 5 1)cosz, (128)
8y(z) = (‘; ~ 3)sinz Cyfa) == (5 — ] sine
- (l:; - 1) CO8L, + (lj — g) CO8X,
wherein between the §,(2) and (,(z) the important relation
Sy (@) Cpi (¥) = 8, (2) Oy () =1 (129)

exiats.,

Using the series in (124), (125), and (126) we can now calculuty
the integrals (123)., We first carry out the integration term-wisc
with respect to ¢ . Here we use the well-known relation fyom the
theory of spherical harmonics:

Sx 2a
j}’,,.,,(cosqwiuy)dg':» 0, [ Pyulconguing)dg - 23 Py (1) Py, (cosy), L)
0 0

From this it follows that all odd terms drop out and there
resulta:

Pa - ‘," \\’(u + )P, (H)l'“(rux;}.\'_.,.(kr‘)7';;'..,,(.():1&‘. (120
! N‘dl) 1]
~ IS
Pu k’r‘ ‘.\_:(4" s D P Py (eos P) Coulhry) [ Syalr)de. (132)
&) "
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These term-wise integrations are permissible as long as the
series (124) and (12‘(’») are uniformly convergent. While this is
always the case for (124), it holds for (125) only if 2=y g8,
That is, while the development (131) is valid without any limita-
tion (i.e., for arbitrary positions of the field point), (132) is
only valid if the field point distance is greater than the membrane
radius. We must, therefore, seek another development for p, for
field points in the neighborhood of the membrane. In order to
carry out the calculation when 71 <e: , we imagine the membrane
of radius ¢ divided into a smaller circle of radius r and a
circular ring of the width o1 —7n . If we denote the two re-
sulting regions by », and F, , the integral over the surface F
breaks down into two summands. The development (132) is valid
for the first summand except that #47n replaces the upper limit
~f integration kg, . For the region F,, formula (126) is now
vo be applisd, however, so that the following development is valid

for pn at a field point distance smaller than the membrane radius:

-l 2
Pu = gy 2 (414 1) Pya (0) Poy (c057)

n=0
k.h k [

x [cwcr,)lg Sen e+ Ssalhr) / Can(e)ds].

(133)

For a practical application of the formulae, a tabular com=
putation of the functions N .
P,, 8,, C,, |Sym)dx, [Cynl)d2

JEuberic (133)
is necessary. For the spherical harmonics P,(occsy) , tables for the
values of n from O to 20 and for ¥ =0°5°...80° are given<ty,

The functions &8,(x),C,(*) are available for values of x smaller than
2 d{.& for integral values x = 1, 2’8@".10 , and for the inter-
me te values X = 2.2, 201&,00-09- » Th‘ tables fOI‘

({San(o’)dz- and [Cy,(x)d2

ave given forn = 0, 1, 2, ... 10 and x = 1, 1.25, 1.5, «es 10 in
the appendix. For the calculation of the latter and for small values

$% The eymbole x and y used here refer to eqs. (124) - (127),
inolusive, and are to be distlnguished from the coordinates (x, y)
of the surface element.

Q¥ Phil, Trans. Roy. Soc, Lond., Vol, 203 (1904), p. 100.

35 Rep. Brit. Aseoc. Adv. Sol. 1916, pp. 97-107; 1922, pp, 263-270.
<Y Rep. Brit. Assoc. adv, Sei, 1814, pp. 87-102.

86 Elektr. Naohr.-Techn., Vol. 15, (1938), p. 73.
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of x , & series development with respect to x is advantageous.
This results at once by a term-wise integration of the well-known
series for §,,(x) and C,,(x) . Thus it follows that

xintt

/ S B T P TR
X( 1 P 2t (1314')
2n 42 2@2n+ 4)(dn+3) +ia (2n+6)(dn+3)(dn+5) )
&
[Contwyda = 22 fn 1)
(135)

i T at
x(2n—~1+2(2n—3)( nt i@ o Han Dy T )

For the larger values of X it is more advantageous to return
to the simple functions §,(x) and C,(x) » For this we proceed from

the equatione?,

(”) v-p(@) = I'(v+1)2( 1)‘( )I<‘w+). ,,:“ (x), (136)

If we get »=—n—4,p=n,s=m, WO then obtain

(=1t gy (2) (136a)
:Z:(r':) (20 + 1)(2n + 3) ... (dn — 2m — Lam=n+iJ_,_ (x)
From this we find by integrating term-wise considering the re-

lation
[2241J, (@)dz = aP*1d,, () (136b)

the desired relation

(=1 [Conleddz = Sofa) + ) (20 4 1) S
' ¢ (137)

( )(3’*+1)(2n+3) R

~ (=10t n@n ). @n -Gl

\‘T’.} Nielsen, N.: llandbuch der Theorie der Zylinderfunktion, p. 269,
Loipzig, 1904.
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For the determination of [S,,(x)dx , we proceed from the

formula 8 0
P
@) U s 1
p! _;;\p*w ( % )( )J - 2p ra(2) (137a)
and obtain for v=2n +4,p=ns=m
J'z” +§(JJ) = n! é;-— :n)": (n i ;"‘ - l)(i‘i)m J"m+§("")5 (1‘37b)
m- 0
from which we find by term-wise integration considering
fm_ EDHI] L () de = — :’PPJ(‘”) (137¢)

the relation

AP = e (1) 2+ 142
0

— (3 )(2,: Fuyen 4 g o (138)

(4n— I)S, 1 (%)

(- 1)%:’&)(21‘4-1)(2n+3). ~K.

Hore the constant K is to be detemmined so that the right hand
side of (138) vanishes for x = Q.

Since
Sru |(J') R l
: T 1845 2m— 1 (fOX‘ X.zO) (13&3')

™

C,(0) =1 and
we then obtain the value of K by the equation

wf WY@ D@0 3 - )
+ ( “(” U I T P 1D )

(139)

For the expression on the right-hand side we find the value
L (139)
Therefore, it turns out that
(-~-l)“\lr-\'».-.,(-l')d.r ey S
hn e e s 38 g (140)

— (o(l’) r(')(_'n .. l) o“?

Se W)

AR Vil TE TR N TE M R TP ) -

\ﬁ Nielsen, N.: landbuch der Thsoris der iylinderfunkticu, pe 269,
Leipeipg, 1904,
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We will first apply the formulae when the field point is assumed
on (i.e., directly in front of) the membrane. Then there is to be
substituted:

cosy=1,"Py(l)=1 and  p, (o) =(—1p1 7 2020 (108)

Six different values of ko, are used (0.5, 2, 4, 6, 8, and 10) while
the field point assumes all values from r, =0 to r =p, imnediately
in front of the membrane for each value of k4o, . In the calculations
we make use of the fact that the portion due to the interior surface
elements (0=r) is found by formula (115) so that for p, and ,,

we only have to add the parts

~ ko, .
_Iél,r,;zv(_4n+ 1){5,,(0)P,_.,l(l)sg,,(kr,l)‘./ 8y, (2)d2 (140Db)
n=0n ¥y
and
, 3
1 g”"’ N koy \9
iy 2 (40 4 1) Py (0) Loy (1) Sy (kry) [ Cop(2)da (140c)

n=0 kr,

dus to the ring-shaped region.

From the two components p,
and p, thus obtained p= bl + );%,
is then calculated and a curve is
drawnc ner'e Tlllgi is the a.b"
scissa so that the abscissa 1
corresponds Lo the boundary point

of the membrane (Fig. 60).

One sees that only for very
small values of ko, (kp, <2 4)
is the presswre samplitude to some

‘
S
1

yelf

L,A degree congtant over thoe whole
ey surfacs of the menbrane and that
e taa SOT SR S for larger vitues of 4p, an

i ever increasing waviness makes
oowouogyofe ¢4 4 48 & j4g appearance while the valus
e at the capter continuously os-
c¢lllates betwogn zere and two
wen tumedintely tn front of and tha b::undaz'y value, always
i the ciroular pislon membrans ﬂ’m‘uai’ ~luctuates about the
(Reddus 7 . valus £

Lokoywd 2 4pmd 8 boowd, 4 bpwt
& kl‘\ RN S *'_ﬁ s 10,

Fig. €0. Sound preesurs amplitude

T e

.\'. A

1 v

39
" For the condition as hevrs sunted, i.c,, the flald point un Lhe

f Taabrang, Lhs condition would scem to :w cosy =0, This considers
2 . ntion anrlies likewise to the reminder of egwations (1400 ) and to
spations {140b) and {140e).
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As an example of the computation with an arbitrary position of
the field point, the calculation procedure for the case ko =10, kr =6
will be explained. First the quantities

ko
tgn = (41 + 1) Py (0) Sy (k1) [ S0 (2)dz (1404)
0

are easily calculated using the tables in. the appendix. Thus one
obtains

ne= | 0 2 4 | 6 8 10
an= | —0086 | 40124 | +1,785 | —1,604 | +0,222 | —0,008

from this we find the value on the normal axis (y=0):

L
Sa,,= + 0,342, (140e)

2n=0

According to earlier considerations (p. 70 ) this value is given

by  coskr — cos Y(kr)? + (ko)? . In fact, this yields

c086 — cos 136 = 0,960 — 0,618 = - 0,342 . (1u0£)

This gives an important control for the correctness of the coefficients
@y o #ie also calculate the coefficients o, for

P :"Z b!n P?n (COBY)
and obtain the following table:

= | 0 | 2 | 4 ! 8 | 8

\ kr ‘ | !

Wi+ 1) Poa0) f‘e.l(f.') [ Syol2)dz 5 +0,008" 41,3171 +0,208 —0,631 | 40,287
{ ! ' !

i N
ko . i f
Sln(kr) \w I
G+ PO 'jc'a.(:)«lx +0.012~+0.093',—-l.727(—0.421;+0,640
ke ) Il | ,
bios 400181 £1,410 —1,818 —1,062 40,027

e |10 12 14 16 | 18

kr ! :
(45 + 1) P, (0} S!":(:'«)j Siala)dr ’ —-0,in ‘ +0,121 --0,001 140,074 | —0,081
1]

&p ’

Sialk

454+ 1P D 9,1‘(; ') /’Cn(l)dl‘ ||--0.'.!95f +0,174  -0,1221 40,003 ; —0,076
ir '

b= | —0,466! +0,285] ~0,213 +0,167 —0,137




Compared with the coeificients a,, , the last terms of the two
series here are, say, larger by a power of 10 so that we have to
expect a greater deviation of the sua 2b,, from the true value p,.
In order to obtain a better control with the directly to Le found
values: -

=) kr

sin}2(kr)t — sinkr= (4 4+ 1) P, (0) Gl s, (@) (140g)
and n={ ('I )
sin Y(BrJ® & (kQ)F — sin Y2(6rE = > (4n + DPua(0) 2282 (0, 292 (140h)

n=0 kr

we observe that the summands of the two series in the tavles for the
larger values of n oscillate less and
less about a mean value, We take account
of this by dividing the last term in the
two series by 2 and therefore put the

P

# A < W value =0.031 in place of =~0,061 and the

1 7 f value -0.038 in place of ~0.076. If

8 v ! f we denote the thus obtained sums by )
BN ¢ and D, we then have | = +104]

o AN \ and 2, = —1,591, while the true values
K A / give
& 4 / 7 sin y'72 — sin 6 = 1,087 (lyoi)
d 7 /k\ \ ] and

::: \ \ sin}138 — sin y72 = — 1,585 (1403)
oy : [ as a result so that a sufficient agreement
i \ obtains here. Uf cousse, the device can-
z not be applied generally (y k0) for tue

- 1 caloulation of py = X by, Py,lcony)

6w N Sw NN X
r— since, dus to the factor P,,(coxy)

Fiz. 61, Sound preesure um- regular oscillations are no longer present.

plitude meey of the eircu~  Tut, even here one will be able to count
lar piston memdbrane with on a deviation of at most 10% from the
the radius e -1 and true value., For acoustic calculations,
constant field point however, this accuracy is in general to
distence rr-u. be rugarded as quite sw'ficienmt. Using
the tubles for the spherical harmonics, the quantities a,,- P, (cosy)
and b, P, (e0osy) are then found for y -0 3" 10° etc. There thus

results the following tuble (Here, the values given for p, and ».
are derived from computations originally carried out to four decimal
places. Therefore the values of p, and p, deviate ut times ia
the last decimal place from the sun of the numbers standing above
these values):




o= ()® ’.’—_Q
y=10 ‘,—a

Ty =100 y=13° p =200 e lh -4 sms 330

Tr=40° = 450

—0,086 | —0,086

40,124 40,122
+1,785|+1,717
—1,604 | —1,560
+0,222 | 40,193
—~0,008| —0,007

——0,086’-—0.08(3 0,086 — (hims - anmf - O0R6
40,118, 40,111 0,102 =000 - 077 0,063

—0,086 —0,086
0,047 +0.031

+l,539:+1,222 +UB4T 0 g2 0,306 —0,569 0,725
—L18L; —0.675 0122 0,80 - -aatd 40,695 0,548 41,251

+0,116|+(),021 —0,056 —0,080 - 0675 0,026
—0,003 +0,001 40,003 +0.003i ~0001 —0.002

40,031 40,066
—0,002 —0,001

pu= +0,342 40,379 +0,493 +0,597 40,688 +0,705: +0,503 | v,é0,

—0,031 0,463

- e e tamla .

Zp Fpe B0 p=55° | pm BTy W30 | p=70° Dp=ih pmd0° peoss® oy s 90°
0 —0,088!—0,086: 0,088 —0,086 —0,086 —0,086—0,086 | —0,086 —0,086
2 130,015 | 0,001 —0,016 —0,029 " —0,040 —0,049 | —0,056 | —0,064 --0,062
+ —0,762 1 0,686 - —0.516 0,277 0,007 . 40,256 | 4-0,474 : +0,618 40,668
6 - —0,085 —0,380 —0,648 0,631 —0,354 | 0,073 } 40,223 | +0,448 +0,529
8 40,085 ;40,032 -0,016 —0,053 --0,062:--0,038 | 40,005 | 40,045 -+0,081

10, +0,001 I +0,002 1 +0,002;, — 0,002 .~0,002 [ —0,001 | +0,001 --0,002

Pa= —0,862 1,128 —1,179 . 0,876 —0,551 | —0,008 | 40,559 i +-0,960 | +1,115

By 00 g5 jy c10° [y 15y 200 p 2y 30y o B g 40 Ly 450
0 +0.019;+0,019 +0.0|9i+0,()19'+0‘019 40,010 +0,018 40,019 +0,018: 4-0,018
2 1410 41,308 1345 + 1,265 + 1,160 41,030 0,880 +0.714 +0,535° +0,356
4 [— L3R [ +1,460 —-1.293'|—1,038’-—0.72I ~ 0,375 —(,035 40,270 0484 +0,618
8 |—1L0562]--0,868 — 0.7402——0,418'—0,()75 40214 +0,303 40,432 +0,340 40,156
8 [0027 [ 0804 0484 0080 ~0,234 — 0,376 —0,314 —0,107 +0,129- +0,276

10 |--0,166]~0373 0,148 +0,077' 40,187 +0,142 40,008 —0,1I1R --0 1381 - 0,054

12 {0285 40.218 40,085 - 0,101 —0.104 0,007 +0,080 +0.074 — 0,008° —0,078

14 |- 0204]—i4137 0,014 +0,086°+0,034 0050 -0.085 +0,002 +0,055, 4 0,022

16 [40,187 [ 0,001 --0,038. —0,06801 10,013 0,058 +0,001 ~ 0,043 - 0,011 40,038

18 | 0137~ 0,081 +0,045 +0,0311-0,035 0,021 40,031 +0016 0,028 - 0,012

Pu= — 0,500 —0A7H

278 — 0,048 40,244 FO626 1,008 11,200

4+ 1378 +1,341

2

o e wes BR°

R L L I

PN Ly 80°

0 10,018 10,010 0010 ! 40010 |
A0 0008 0178 —08u 0457 o ed 0841

2
4
4
]
10
12

S HOBBL ¢+ O5RE 0,430 0285 L0608 - 0217 - 0408

C-0058 - 0242 0,388 --0,330

40,018 NP F0018 0,010 ] 40,019
S O088 - 0,706

0,526 . 0,508

0220 0,045 40,130 4 0,278 40,820

40,274 0,182 0088 . 0224 0258 0088 0,002 0,187 40,253
P 0,125 40,088 - 00157 0,002 -0, 108 —0,080 49,070 0,114
C— 0080 0015 5 08 40,047 - 0628 - 067 0,030 -

14 i-u‘():m;...(),rwz 40,012 40,047 " 40018 a036 - 0087
16 140010020020 . 0025 40,021 40020 0013 0082
130,027 - 40,000 - 0,03 0000 4 0,028 40,003 - 0,025 - 0,001 40,026

FH081 40,008
1 0,013 50,045
1t 00K 0,088

Pas HLOGG L0504 0007 0,533 0964 - 1,186 ] ~1,082 - 0,503 0,388
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Flg. 62. Sound field (pco)in the neighborhood of the circular
piston membrane e -4
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.. Fig, 61 the two components p, and p, are first repre-
sent.d individuslly since a valuable control for the results of the
calculation is furnished by the continuwus sequence of the calcu-
lated values. Finally, the complete behavior of the relative

pressure amplitude p=1pi+p., 1is obtained by geometric addition
of the corresponding values of », and », . (See Fig. 6l.)

In this manner, the relative amplitudes }7 +p? were calculated
for three piston membranes (whose radii were given by ‘;’%g = 4,

6, 10) for such a great number of pointe of the nearby field that
the curves of constant pressure amplitude could be drawn by inter-
polation. The results are represented in Figs. 62 to 64.

Fig. 63. Sound field (wm in the neighborhcod of the
circular pleton membrane . -u.

Heie the numbers on the horizontal axis arv the values ryo, , 80
that the points which sre the length of tie membrane radius distant
from the membrane center lie on tt.e unit semicircle. uUno recognizes
that the assential character of the fleld is detexminad by the loca=~
tion of the zero and maximum values {whlch are fown only on the
normal axis). If we first consider the case kg, - ¥, we see that
the amplitude has approximately the vaiue zero at ihe center of the

~86~




membrane and that on the normal axis with increasing distance, the

amplitude first increases rather rapidly and then rises more slovly
to the value two, and falls off very gradually from there on. Off

of the normal axis lie two peaks at the height of the center which

are marked by the high pressure lines l.4. Beyond these peaks a

R e Jerd S
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. ks NXWGHNK 74 5 TNY
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i‘* : 4 w (24 (X7 o [} a5 475 @
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% L Fig. 64. Sound field yr» in the neighborhood of the
= circular piston memdbrane e -:1o).

I .

uniforn drop takes place with increasing radius. If, for comparison,
we now consider the field for kg =10 , a striking similarity of
the configuration of the upper part of this sound field with the
foregoing appears. If we imagins a horizontal straight line drawn
through the zero value on the normal axis, we see that this cuts

the field imto two parts of which the upper part is extreordinarily
similar to the whole field for 4o —6 as is shown in Fig. 63. The
lower part of the field kg =10 1is essentially different since now
a minimum and a maximum huve made thoir appearance both to the right
and left of the two-point.

AT

I we now allow the radius of the piston membrane to increase
continuously, we then know (from the simple formulae for points on
the normal axis) that the maximum and zero values become increasingly
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more numeroug and progress upwards while new zero and maximum values
conbinually make their appearance at the center of the membrane.
According to the above considevations, however, beyond this we have
to expect that the constant pressure curves lying to the right and
left (of the cemter) also simply move upwards with the upwardly
travelling zero- and two-points of the normal axis without an essen-
tial change in their character. If we have a membrane with an ar—
bitrarily great radius and mark the two last two-values of the ampli=~
tude on the normal axis, we will then be warranted in expecting that
the accompanying field, which liss between the planes parallel to
the membrane through these two maximum positions, agrees in charac-
ter with the field represented in Fig. 64. Moreover, according to
Fig. 64, one would suppose that upon travelling from any maximum
position on the normal axis in the vertical direction, just as

many extreme values will be encowrtered as if one travelled from

the same maximum position in a horizontal direction.

Part Three

THE SOUND FIELD OF THE SPH&RICAL RADIATOR
5. The simple spherical radiator of definite ordsr

An essential assumption for the radiators previously discussed
was the existence of a sound reflecting rigid infinite plane wall.
In its position of rest the radiating surface coincided with this
wall, The calculation of the radiation process was then accomplished
by the calculation of an integral over the radiating swrface. For
the problems treated in the following chapters, the radiating sur-
face forms a part of a sound reflecting rigid sphere of fixed radius.
Hepe exists a more genersl problem since, aside from the amplitude
and extent of the radiating surface, the extent of the rigid wall
can also be changed. 'hile formerly, for the circular piston
mexbrane e.g., one characteristic function

(2'!-‘3:—@, ¥ = 2;’ siny)
sufficed to completely specify the sound field for an arbitrary
field~point position at a great distance and an arbitrary membrane
size (in relation to A ) this is now no longer possible. On the
other hand thore ave now quite definite distributions of the ve-
locity amplitude for which the solution becomes conceivable. Here
it is also particularly important that the caloulation of the
neighboring field offers mw difficulty. This simple solution
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exists if the velocity amplitude is given by one spherical harmonic
of definite order. This assumption of the velocity distribution,
which at first appears artificial, immediately finds its justifica-
tion in the fact that an arbitrarily given wvelocity distribution
can generally be reduced to that given by a spherical narmonic.,

In the computation of practical problems we will limit ourselves

to those processes which are rotationally symmetric with respect

to an axis through the center of the sphere. The corresponding
spherical harmonics are then given by the well-known Legendre
functions

Pylp), = cosy [Polw) =1, Pulu) = s, Polp) =5 (w— gJete ] (140K)

By a spherical radiator of zero o.sder, we will understand a
pulsating sphere for which the individual elements of the surface
vibrate coma.sally outwards and inwards with constant velocity
amplitudes. (See fig. 1-a.) Tre velocity on the sphere is given by

10 = wyet L, (140m)

With a sphere radius r, and for a field point distance r , the
sound pressure is completely determined by

- ik
Py = PO )w°l +’k?r“et[wt+n/2 k(r—r), (141)
where, for abbreviation,

h coa-F
P = (141a)

From this follows the pressure amplitude

| cow,  kir}
(0) L G0Wy i .
Po=P %0\ s T Ry 1 (2)

For kr,<«1 wo obtain the formula given previously:
‘o F
Po= iy %o (12.23)

The relative pregsure amplitude, pycow, , i3 then generally
given by
P _ Lk

cowy  kr “-H“’?‘l', (MZb)
The curves of constant pressure amplitude are therefore very simply
represented in the spatial sound field by concentric spherea. #s

long as kr<l , the pressure increases quadratically with k7, .
As long as kr,;»1 , it increasss linearly with ir,

~9l-




The simple spherical radiator of higher (nth) order¥%is charac-
terized by the fact that the variation of the velocity amplitude w,
is given by

w, = w, + P, (1)t (1429)

The pressure p, at the field point determined by the polar
coordinates r, y 1is then generally given by

Po = PO, + Fl0t+ A2 —kir =), f"(ii:’)P Tw). (143)
Here
F (i) = (1 + ia)f, (iz) — izf,(i2) (144)
and
i) =14 D DBy e (W45)

It is better to introduce the Bessel functions &,(x) and C,(z)
defined by (127) page 79 in place of F,(iz) and [,(iz) . Due to
the relations

frHle-izf (1x) = Sp{x) + 1Cyula),
ntle-iz P (1x) = 28,41 (x) — nSu(2) + i[2Cpyy (@) — 00, (2)], (145a)

we then obtain

ot iy SelkP) + 3 Culk)
Po = PO+ el WEHAID) (lr:)‘+'V (ero) Py(u). (146)

where, for abbreviation,

Uy (x) = a8, ,,(x) ~ n & (2),
Valz) = :EO“_H(Z‘) ~nC, (). (l]l-'?)

Then one has
Uylx) = sinz — 2z o008 x, Volz) = cos x + xsinz, (L7a)

U(2) = (2/z — a)sing — 2cosz V() = 2sinz + (2/x — x)cosxeic,

For {he spherical radiator of the first order the velocity ampli-
tude ty; 1is given by

Wy = wy Py(p) el = wycosy - el (1470)

\ijRayleigh: Theory of Sound, Seo. 325 and following.
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This corresponds to the motlon of & gphere vibrating to and fro

as a rigid body. Here the pressure p, is given by:
c1
DR o
)

P kg r .
w'wl,e.(‘wmu_,,u =% e _1) cosy (147¢)
t( 7
while the pressure amplitude p», is given by
P —-E—r"’—--k—,l-;z}/i + kmcosy. (474)

As long as  kr,<1 , the pressure amplitude increases propor-
tionally to k®r . As long as kr,>1, the pressure amplitude in-
creagses proportionally o k7, . If we denote the maximum pressure
amplitude occurring at the field point r=7 and y=0 by . and
require the curves of constant pressure amplitude

pl = apm ((l = ly 0)9; 0)85 etc o)’ (M'ZQ)
it then follows that
— -
P kry 1+ R
Py = OB - = (147£)
1+ by

If we cloose kr,=1 &as an example, then for the field points
on the symmetry axis (y=0) there results:

R
C= Gy kel , (Ue)
and from this:
1 I.«--—»——1::_:
kr ==y F1 4 1+ 8, (147h)

Accordingly one obtains for the values of P:/Pw on the normal
axis
pilpa==| O1 |02 |03 |04 |05 "08 |07 |08 |09 | !
Mrom! 1,04 | 3,67 | 2,63 | 108 | 105 1 144 | 128 [ 107 | 107 1

If we now Imagine the circles
rety, r= 10Tr, r=117r, r=128r,, etc., (Ls74)

constructed, by calculating the y. values we can easily state the
points for the required values of  #/Pw . Yor example, on the circle
r = ls287y, , the values of cos y for the corresponding values of
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py/pp ave:
Pilpa= | 07 | O 05 | 04 | 03 [ 02 | 01
BEEBEEEERE
cosy = 7 7T 007 T 0T T

As an additional example we give the corresponding tables for kr, = 5:

pl/pm=| 0,1 10.2 |0,3 | 04 !lo,s |o,6 ,0,7 |o,s 109 1

vt =| 9,81 | 4,01 | 3,28 | 2,46 | 1,07 | 1,65 | 142 | 12¢ | 1,11 | 1

For krn,>1 , the corresponding values of r/r, are simply given
by 1/;’}‘ . Therefore, in this case

P1/Pm =| 0,1 |0,2 .0,3 lo,4 ;0,5 }0,6 |0,7 ;0,8 ]0.9 l 1
hre=l0 |5 |333]260] 200167148125 101 ] 1

In Fig. 65 are drawn tie curves of constant pressure for the
spherical radiator of the first order (with #r=1 ). Because
of the given antisymustric distribution of the velocity amplitude
with respect to the equatorial plane, the character of the field
is essentially different as compared with that of the zero radiator
since the pressure is now zero in the equatorial plane.

From (143) the pressure amplitude p, for the spherical radi-
ator of the nth order is given by

- Si(kn) + L (kn)

Py = .po . U'"l Erj{k};)tf:h_r:(k’o) P" (COS)/) N (M?j)
where
n == I 0 1 ‘ 2 4 3
S eS| L [T L et @R (L 153 (8 4 15

Uh(2) + Vala) Lok o] 28 o 40 , (- 9/r) b (e - O/ (T — 80/x®)® + (& —~ 27/ -+ 60/ 23)*

It is noteworthy that the directional influence - i.e., the
ratio of the pressure amplitude at an arbitrary field point, (r.7)
to the pressure amplitude at the fisld point at the same distance p
on the symmetry axis ( ry -0 ) - is given independently of r
simply by #,(cosy)so that the behavior of the sound field is obtained
without difficulty from the values on the symmetry axis. In partic-
ular, the modal lines P,(cosy) 0, at which the velocity amplitude

=Qly~
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Curves of constant sound pressure m.mw for a
radiator of the first order.

Fig. 65.
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on the radiating sphere is equal to zero, determine guite generally
the conical surfaces in space for wnich tiie pressure a:plitude in
space vanishes.

Caiculations for spherical radiztors of a higher order will not
be carried out since, from a practical standpoint, scarcely any cases
occur in which a radiator Lehaves as a single radiator of higher order.

6. The compound sphsrical radiator

Important for the following is the investigation of the sound
field wihieh is produced by a combination of a series of spherical
radiators of different order. For a sphere with tne radius r,
whose velocity auplitude w is represented by a superposition of
spherical hammonics

W = (4 Po(cos ¥) + 41 Py(cos ) + - + 4, P, (cos p)) ! (b8

it tuwrns out that the resulting pressure is given simpiy by the cor-
responding superposition of the Jressure due to tue individual spher-
ical radiators. Tho pressure p at e figld oint (7,9 is than

n

Cl S (kr) 4+ iC (k)

p = pOgitwl+a) Uj(l(u_f.,; i“i'V":((kr)o)' A Prlcosy). (L4y)
m=Q

Here the 4nS are constunt uuantities which, in « _iven cuse,

may be complex (in urder to take uccount ot different phasces). ihe
principal significance of this tieorem lies, however, in its revers-

ibility. In peneral the above velocity distribution does not exist

in the form (148). The essential thing now is that by tie develop
ment theorem of spherical hamonics an (Lo within general continuity
requiraments) arbitrary function in the form (148) can ve represented

on tie spherical surface,

Thus the calculation of the sound {isld for an arbiir«rily .-iven
velocity amplitude on the sphere is tlen possib.e. e will illwstrate
this in a special example.

On the part of a rigid imrovable sphere widch 1s churactericed
by 0:y%y (a sphorical cap), a constant velocity amplitude . — I
is given while for the remaining part, w -0 (Fig. 66). we lirst
have the problam to determine the coefficivnts A, of the function

w = 4, Py(cony) + 4y P, (cosy) 4 - (-‘-SO)

=90~




so that

w=1for0° =y <y,,
w=0fory, <y=180° (150a)

Here the orthogonality relations for spherical harmonics

ib‘ 41

- [ Pulp) Palp)dpn =0, for mn  (150b)
B )

% . /&) an (‘u) d,u 2'7;‘_}‘_"]’.

Al -1

% become useful.

% Fig. 66. The redlating vhen we multiply both sides of equation
128 spherical cap. (150) by P.(#) and integrate from =1 to
% +1, we immediately obtain

: +1

. 2

?: ‘:/IAanh“)diu = 4 /P,,[/l dl‘ = A, 2m (lsOC)

and thus generally,

AP B

Now in our cxample w is only different from O in the region
cosy,su=1 8o that

?,"._+_1 f Pu(u)d (1508)

€08 ¥y

By the well~known relation of the spherical hammonics

(21 + 1)Py(2) = 55 [Pay1 (@) = Py_y(a)] (151)

e SR f". ﬁ:zﬁa,fw" T

[ PSS

it follows that

3’; ' (2n+1)jP (Wdp = Py_y(2) — Pyrl2), (nzzl) (152)
!Po(,u)d;t=l-—:v.
Thus there results the requ:lxed representation for wi
o= LTy Z [Pu-1(008 76) = Py 1(008 y0)] Pu(008 ¥) (153)

L

and therewith also the required pressure by (149) upon substitution of
the resulting valuoa for 4,.




If, as a special case, we choose a radiating hemisphere with a
constant velocity amplitude w = 1 which is completed by a rigid
hemisphere on which w = @ , we then have 10 set cosy,=c0s80°=0-

“ince
_ 0l:83:5 . @n—~1) 153a
Paal0) = (—1p 1130 (153a)
and Py ,1(0)=0 , we find:
w=~;—+%P,(cosy)—-%-%Ps(cosy) - H-%—;Ps(oosy)—i- (153b)

and for a radiating spherical cap with y, =60°

w = 0,250 4 0,663 P,(cos ) + 0,489 Py(cos p) - 0,082 Py(cos ¥)

1
~ 0,264 P, (cos y) — 0,308 Py(cos y) — 0,087 P,(cos ) (153¢)
+ 0,198 P, (cos y) 4 0,245 Py(cos y) + 0,057 Py(cos y) —«++
In Figs. 67 and 68 the corresponding approximation cu. ves
M1}
w® ==Z;a,,.P,..(cos ¥) (1534)
-

are represented. The deviation of the approximation function from
the theoretical value unity may be determined for y=0°, OSince
P,(1)=1inw" all terms ocxcept the first two and the last two then
cancel out so that

Wgy =1 — Py (0087'0)24‘ Py (003}’0). (1530)

In the present case, y,=00° , the error therefore appears
squal to Py 0+ R0
2
Therefore forn = 0, 1, 2, . « « etc. it equals

In order to obtain a better agreement with the first formula,
we will introduce the radiating surface F=2nri(l —ocosy,) for the
representation of the radiating apherical cap defined by v, and
having the constant velocity amplitude w , and we will write the
pressure P in the fomm

4 F.
b= coe et A B, ro, s o). (1531)
gl
Here M= ‘ -Z;,-"’ is the pressure amplitude if the dimensions
of the radiator are small compared o ths wave length and

Solhr) 4+ 1Cukr)
N y . 0 3
‘l (r) Io./l.‘lto) Uo(kru) Ao Vo(k'o) (151&)

1 -
+ 1 "‘0% Pn(:“)l.Pn-'l(/-‘o) =Py l(l‘o)]

Sulkr) 4 i€, (kr)
Ualkrg) ki ¥ (k)

e
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A case of practical importance which has been treated by Rayleigh
exists when the radiating surface is very small so that 4 = cosy,
can be replaced by unity. Then formula (154) becomes inapplicable.
Howevers we can easily remove this disadvanbtage when we consider that

by (L51)¢},

Jim {2 Py (e) = Paa (ol = 2+ 1 (154a)
We then obtain for a point radiator on a rigid sphere
= o @R, 10 1), (155)
where -
Bl to, 1) = D (2 )Py () i Ttk (1558)

n--0

A substantial simplification of the formulae$Z occurs if the field
point is at so great a distance r that one can set f,(ikn)=1 .
Since

8, (@) + 10, () = " le "7 (1) (155b)
S,(kr) +iC,(k*) becomes irtle-ikr,
vie then obtain

P o= Py R [y, y), (155¢)
wiiere

1 P P(l‘)[Pn ﬂ)” w1 (")
1 7= 5, g o7 1—;:02 T e 4 iy - (156)

For practical calculation it is advantageous for the summation
to group ti. ‘“erms with the even n and with odd n when we write

i
/(7: )’o) = Uo(kro) +$V°(k;o) +‘ 1“_ Ho @1 + l __N @ (157)

where ©, contains the spherical harmonics Pu(p), Pi(u),... ete. and G,
contains the spherical harmonics P,(u), Py(u), ... ete . Then since

Pan(—#) :::PR”(‘N) and P‘),n rl("’/‘)'_: '_P?.a&l(:“)"

JO80° =y pg) =y foy r'f'p., Sy o & (358)

and
[(y, 180° — g} = 'U'o’:;j“-y(; l+y & + 1 T e (‘51' (159)

v En. (151) is to be used when L'lesnital's rule is arrlied in
evaliptine the indetsrmim‘e form on tho left of (15407,

& Formulae (183f) and (1%4) are referred to here,
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lanifestly, corresponding relations are also valid for field
points which do not lie at a great distance. ie need therefore
only to carry out the calculation for 0=y=90° 0=y, =00° and
the values for 90°s<y=180° and 90°s y,s 180° then result from (158)
and (159).

Fhysically (156) and {157) signify that one can replace an
arbitrary velocity distribution on the spherical surface by a dis~
tribution symmetrical to the equatorial plane and one antisymmetric
to the equatorial plane. The first contaiis the spherical harmonics
of even order while the second contains the spherical harmonics of
odd order. By (158) one finds the pressure at the image of a field
point when one inserts the antisymmetric part with the opposite
sign in the formula for the field point. Furthermore, it follows
from (158) and (159) that

(1= o)/ (180° = 3, 70) + (L + il (7, 180° = yof = =250 (159a)

This says that the radiations due to (158) and (159) together yield
the radiation of a spherical radiator of zero order.

A3 an example, in the table on page 102, the expressions

"u+l

Uakro) + ¢ V.(lcro) [P,,(COS 70) - Pﬂ+1(coS yo)] == An + iBn (159b)

are given for kr,=10 and y,=0° 10° 20° ... 90¢° and the correspond-
ing values f(»,%) for y=0° .nd

2,

& y=180°are calculated.
"
" \ - In Fig. 69, the magnitudes of
\ f(0° vo) and  f(180°, y,) are represcnted.
" ‘; B These curves give a conspectus of the
12 pressure amplitudes in the principal
[m \ direction (y =0°) and in the opposite
3 1 \ direction '(y =180°) as a function of
ul- 4+ the size of the radiating surface
o X (70) with constant deformation volume
(#:w) . e immediately recognize
4 B L - that for small values of ¥ in the
ot A\-f WL\ principal direction, the Jdouble amp-
i litude occurs as compared with the
¢ » W x e wow omom m  applitude for nondirectional radi-
A ation _craF.w
(])0—— 22r )

Tig. 69. Pressure amplitude as -

a function of the central angle If one desires the lurgest possible

of thn rediating surface with radiating surface, the greatest

conetant deformation volumes possible pressure anplitude in the

1. for the principal direction  principal direction and simultaneously

w-m 2, for the oppoaite direc- thu ;reatest possible extinction for
tion o~ 1w,
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the opposite direction, the figure shows that this is attained for
Yo = 20° approximately.

With the aid of the tables for 4,+ B, , it is then easy to
calculate the complete sound field (for a great distance of the
field point) for every value of y, . Une needs only to compute
the expressions

R+iJ = 1—_17 (4 + iB,) P, (cosy) (159¢)

and to plot VR*+J?* as a functionof 7 . L~e components k, J
corresponding to the values y, =107, 30°, 60°, 80°, 120°, 150°, and 170° are
plotted in Figs. 70 to 76 and the relative pressure amplitudes ob-
tained therefrom are represented in Figs. 77 to &3.

As long as the radiating surface is small, one may expect a
directional effect similar to that of the piston membrane with
incressing vs . For the larger values of ¥, (¥, >90° the radi-
ation will gradually approach that of the nondirectional radiator
until it becomes identical with that of the spherical radiator of
zero order for y,=180° . The number of terms which must be cal
culated to obtain the result with sufficient accuracy increszses
nearly in proportion to the magnitude of 47, . And, indeed, it
turns out that the individual terms rapidly decresse as soon asn
has become greater than &kr, so that the necessary number lies
between kr, and 2kr, . This is connected with a general
property of the appearing Bessel's functions, which exhibit an
essentially different behavior if, with a fixed argument, the
function values are plotted with respect to the index n.

Ag long as »<% , 8 (z) and C,x) vary betwsen positive
and negative values. As soon as n bLecomes greater than x ,
8,(x)  decreases sharply and monotonically while C,(x) increases
in the same way. <The same thing is trus of U, and V. .
In Figa, 84 to 86, U,(x) and V,(x) are represented as a function
of n for x=4¢,10,20,and 40,

Ag an example of the general case when the field point lies
in the neighborhood of the radiator we choose

krg= 08, r=: 21 (1,0, kr = 10), y4 = 30°
and calculate the table found on page 110.

For the pressure amplitude p at the field point r=2r, y=0
we obtain from this

ool .uw . craF.w
= Y208+ 22400 = B0 301, (159d)
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Fig. 79. Sound preesure amplituds wir) for a
radlating spherical cap «.=u0".

Fig. 80, Sound pressure amplitude @y for a
radiating spherical cap =)
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Fig. 82. Sound pressure amplitude ws for a
radiating spherical cap (=180

-109-




T T A R TR TR S

Fig. 83. Sound pressure amplitude wm for a
rediating spherical cap (n=170°.

" [Py - 1(c0880°) - Py 4 y(c0830°)) {Sx (10) + 1Cx(1D)
(1 —¢0830°) (Un(B) + { V"n(5)}
0 +0,1853—0,0177 4
2 4-0,8176+0,2193 §
4 +0,2625+0,9462 {
6 —0,1480—0,0467 4
8 —0,00744-0,0228 §
10 —0,0035-+-0,0017 §
12 — (0,002

>0 +1,1052-1-1,1256 ¢
1 40,5007 40,0128 i
3 40,7837 40,6100 ¢
8 --0,4259 4-0,4508 1
7 40,0041 50,0108 §
9 —0,0087 40,0073 §
11 o~ 0,0000 40,0021 §
2 +0,000041,1104 ¢
o +2,02824-2,2360 ¢
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If we imagine a small spherical radiator with the same F-w
substituted for the radiating surface, then, in the absence of the
rigid sphere, this would produce at the sams field point (i.e.,
field point distance = 1-/2)
the pressure amplitude

3¢ T ! ™
¥ ! j py= G g (159¢)
V 1 By = g

“ B I .

. \ The complete behavior of the

’ \ pressure amplitude at the distance

| o \1 \ r=2r, 1s represented as a function
o ‘ of y 1in Fig. 88, The correspond-
N~ \ O | ing components (R4 iJ=>"a,P,(cosy)]
i \>/.1 / i are given in Figure 87.

4 M = Finally, we will calculate and

illustrate by curves of constant

AN ww W #°  pressure amplitude the sound field
of a point radiator located on a

Fig. 87. Sound pressure components rigid sphere - the field being

of the radiating spherical cap confined in the nsighborhood of

n=3° for a small field point the sphere, As an example we
distance (r=tn, krn=o). choose kr,=1 and calculate the

pressure for the field points
whose distances r from the
sphere center are determined by
kr= 1.5, 2, 3, 4, and 5. Here, we first calculate the expressions
: Splkr) +1C, (k)
R AV ES AT (159¢)
(see the tables on page 112) and find therefrom N, =Yg, and

2=, . If we denote the undistorted (i.e., existing in

Foweso

the absence of the rigid sphere) pressure amplitude by » == o1r
then the relative pressure amplitude is »im =31+ . In the

same manner, the relative ampiitudses for » = 59, lO°, atc. would
be calculated from the quantities a,P,(cusy) ,

If we collect the values thus found and plot the calculated
field points together with the corresponding pressures, we can
then draw the curves of constant pressure by interpolation. Une
recognizes from Figure 89 that the sound field possesses an
essentially different character because of the presence of the
rigid sphere although the wave length is more than thres times

the diamster.
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Fig. 88. BSound preassurs amplitude wmw) of the
radiating spherical cap =30 for a small
field point distance (r=2n, trn=-b)\

Fig. 89. Sound field wwps of the point ehaped
radietor on & rigld sphere wr-u.
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7. The disturbance of a sound field caused by
a rigid sphere

(a) The derivation of the general formula

The influence which a plane rigid infinitely extended wall exerts
on the sound f'ield produced by a radiator may, as is well known, be
easily perceived when a second radiator is intmduced which is located
at the imare position of the original radiator with respect to the
wall. The re;uired sound field (lying on the side of the original
radiator) then results simply by superposing the two sound fields
produced by the individual radiators. In order to prove this, we
have to show that the boundary condition for the sound field on the
rigid wall (namely, that the velocity component perpendicular to
the wall vanishes) is fulfilled, WNow, however, it immediately
turns out from the symmetrical positions of the radiators that the
velocity vector resulting from the two radiators for all f{ield
points on the wall lies in the symmetry nplane, i.e., possesses

no component perpendicular to the wall. bore generally, one can
state that if, in an arbitrary sound field, a surface is uvresent
such that the velocity component perpendicular to this surfucs
vanishes for all field points on this surface, then this surface
can be replaced by a ripgid, completely reflecting, surfuce without
any change in the sound field. Owr problem, to investigate the
influence of a rigl | .phere on an existing sound ficld, is then
eguivalent to the problem of superposing a sscond (ield on the
existing sound fleld so that on a prescribed spherical surface

the resulting velocity component perpsndicular to the spherical
surface shall vsanish,

we proceed from tho undistorted sound field and assume that
this is produced by a point radiator located at the point A with
the radiating swface F and (constant) velocity amplitude w .
Then the sound pressure p for the field point defined by the
polar coordinates r , y is given by

py = ¢ (;.Aﬁl;'uf et (wt ~kR 1 n Aevkreosy (lbo)

Hore R 1s the distance of tihe radiator at A from the coor—
dinate origin 0 . It is assumed to be great compured to r .
From (160) with Lhe aid of thu relation

PP

U ak Cr \161)
there resulvs the radial velocity component
w, —fcw et ki fler ) (16la)
" $aR (r ’
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according to the foregoing considerations, we now have to super-

pose an additional sound field whose radial velocity amplitude v*
is equal in magnitude and opposite in sign to v, on the sphere

r=r,. The problem is thus reduced in principle to the earlier
calculation where the wvelocity distribution on a sphere was set
ferth, By previous considerations, the solution can be stated
immediately if the velocity distribution on the sphere is repre-
gented by a series of spherical harmonlcs. In order to bring this
about we proceed from the relation ¢3:

eikreony =Zin§'}c~'j’—) @5+ 1) Py (cos ). (162)
By (161) it then follows txn’z:o
by = T2 itwt- . kz (2 (20 + 1) Paleos ), (1622)
and since
(3. _;x)) Q;(f)_ (162b)

the reqguired velocity represemted in the desired form is:

o= b= Y et ,2( n+1)ivU, (kry) Paloosy) »  (163)

n=0

By (149) we can immediately specify the sound field produced by
vt + The pressure yp, at the field point r, y is

pa:*_c ‘;AP ‘W ilwt- kR ¢ Al
(2n+ Vil (kro) - Pycosy) : . . (l&\‘)
u Unlbre) i Vatkry) - Lon(k7) A Gk,

=0
A little manipulation then gives the total sound field existing
in the neighborhood of this sphers in the form

" -+ Py =3 ¢ “)‘li s ettot =kl s n'd) (165)

i ‘1("n e l)x““}’,,(wﬂy) o
I.r‘_/ 1/.(1,0 _’_'y“ur) [bn(‘r) Vn(kro)_cn(kr)un(kro).l‘

[ ]
(b) The sound reflection on a rigid sphere

As the simplest cagse, we {irst investigate the pressure ampli-
tude produced at tihe field point A (i.e., at che position of the
sound radiator itself) by roflection on the sphere. we will compare
this with the sound prossure amplitude which 1s ruflected perpendic-—
ularly by a rigid wall at tho same distance (as f{rom the sphere).

If we introducoe the reflection factor Z -:{|

33 Rayleigh, Theory ol Sound, Cec., 334.
Y & Y
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by the relation

o
= LN gy @ 1)UL (kry)
s k’%;o AR A CARETA ok (166)

it then follows from (164) that, since kr>1,8,(kr)+iC,(kr) becomes

equal to ™'-e~*** and cos y becomes unity, one has for the reflec-
tion amplitude o, due to the gphere:

coF-w

Pr = oy @i 74, (167)
while the reflection amplitude produced by the rigid wall is given by

P = - 4'112. (168)
Therefore
i=rZ (169)

A very simple relation for the reflection factor now results.
With increasing kv, , 4 approaches the value % so that for the larger
values of kr; one can with good approximation set the reflection
factor equal to . (169) therefors states:

The pressure amplitude reflected by a rigid sphere with the
radius r, at a great distance R is (for the larger values of kr,)
given by /R if the pressure amplitude reflected by an in~
finite wall placed at the same distance R i3 set equal to one,

To represent the reflection factor, the two components R and
J are computed separately and plotted. The functions U, (kr)
and V,(kr) necessary for this are easily found by (147) with the
aid of the tables for S,(x) and ((z) . The result of the cal-
culation is represented in Fig. 90.

If, ‘urthermore, R ¢ iJ is drawn as a vector in the complex
glane, one then has the phase y(tgy - J/'R) as a function of k.
t turns out that the phase remsins practically constant while
the reflection factor increasss decidedly (kr,- 1,2) and later
increases uniformly when the reflection factor remains constant
(Fig. 91). For the general csse ( y {0 ), we define the dis-
turbance factor |g(kr,y| bY

B v DU ke

Jlkry, )= ‘-‘lf“..\'.d (—1jn ['_(.Z(l; :’) :).l' .‘ff(;:o) Pyleony) (170)
and cslculate the corresponding components for ir,=1,2,...10 and
can then represent for every value of kr, the complete baehavior of
the disturbance factor as a function of 3y (Figs. 92 to 99). It
then turns out that for y =180 (i.e., the direction opposite to
that of the sound source) |4, increases more and more with i,
and for tie larger values of r, is voery nearly determined by 44r, .
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However, even for a direction opposite to that of the radiator, the
disturbance amplitude is small compared to that of the undistorted
field.

(c¢) The sound field in the neighborhood of the sphere

In the immediste neighborhood of the sphere we will have to ex-
pect a substantial distortion of the undistorted field., If we first
inquire as to the ;shavior of the pressure amplitude on the line
connecting the radiator with the center of the sphere on the side
towards the radiator, then maxima and minima will appear here as
they did in fromt of a rigid plane wall. As an example, we will
investigate the case kr,=2 when we calculate the pressure for
the field points defined by kr=2,3,...10 . If we set kr=ir,
in (165), then due to the relation (from 129 and 147):

8, (ko) V() — Cy (ko) U, (kre) = kry, (170a)
it follows that

¢-a t(wl—-2R+ N "-th
b= g Frweiot-srtam ST gy 4 ) -U—j,;;m‘f;’,‘:%gm. (171)
fn=0

In accordance with the reciprocity law, this is in agreement with
the previously discussed case where the radiator was assumed to be on
the spherical surface and the field point was assumed to be at a
great distance (&q. 156).

For convergence reascens, it is better not to calculate the field
composed of the original (undistorted) and the distorted field
(P =9+ p,) by (165) but to first caloulate the distorted field p, by
(164) and to add the undistorted field p, from (160).

Therefore, we first calculate the disturbance factor by (164)
when we set Py(cosy) =1 . Then

. 1Sy (@0 )it U, (k) .
8(1&1’0. kr, 0) = Lr 2: U,(kr{,) +‘ Valkty) [Sﬂ(kﬂ + ‘('u(kf).l (1718.)

Ll

s 3 Aplkr) + i By (k).

The quantities A, +iB, for kr,=2 and ir=2,3,...10 are given
in the following table:
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To facilitate later calculations, the sums > for even n and
2s for odd n were calculated separately.

The values
p=|20 +2 —e | (17w)

then give the pressure amplitudes in fromt of the rigid sphere in the
direction of the radiator. Mere the undistorted pressure amplitude

of the radiator is set equal to unity. We see that the pressure ampli-
tudes in front of the rigid sphere vary in a mammer similar to that of

N 16

AVAN i

Fig. 100. Reflection on a rigid
sphere (kr, = 2).

the reflection on a plane wall except that the variations with in-
creasing distance from the sphere decrease very rapidly. (See Fig.

100.)

The complete calculation of the distorted sound field is then
accomplished with the aid of spherical harmonic tables from

Blkry, kr, y) - e—tkreoay ::Z(A,. - 1B,) Py{cosy) = R 4-1J . (1710)

The components R and J are first calculated as a function of »
for kr=223,4,...10 and are plotted in Figures 101 to 104, The

quantities VR LT

are found from this and their variations about the undistorted value
one are represented in Figure 105. Here it is seen that the magni-
tude of the variations decreages with increasing kr while the
nunber of the variations increases, If the field points given by
kr=2,8,4,...10 are nunbered corresponding to the values in Figure
105, the curves of congtant pressure in the neighborhood of the
sphere can be drawn by interpolation. The result is given in
Figure 106, The greatest value (1.66) lies on the surface of the
sphere oppogite the sound source ( »—~0 ), The smallest value
(0.66) likewise lies on the sphere ( ¥ —138° ), For field points
at & distance r> 54 , the difference between the distorbed and
undistorted amplitudes ramains below 10%.
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" o

O u(z) = (~1>~({ 83 n(z)dz

z o (z) 03 () o(z) o (z)
1 4,6070 - 102 —1,5889 - 10-3 1,7045 - 10+ —9,0064 - 10-7
1,25 6,8468 - 10-1 —3,776 -10-% | 86,3780 104 —5,2881 + 10-¢
1,6 9,2926 - 10-1 —7,676 -10-% | 1,8601-10-3 —2,2323 - 105
1,76 1,1782 —1,5402 - 10-1 | 4,6611 - 10— —17,4065 - 10-¢
2 1,418) ~2,1081-10-1 | 9,8396.10-2 —2,1274 - 10-¢
2,25 1,6282 —3,3440 - 10! 1,227 - 10-% —5,3045 - 10+
2,6 1,8011 —4,8070 - 10-1 | 3,4718-10-% —1,1934 - 102
2,76 1,0243 —-6,6034 - 10-1 | 5,8749 - 10-2 —2,4688 - 103
3 1,9900 —8,6880 - 10-1 | 98,4165 10-% —4,7627 - 10-*
3,26 1,964 -1,1067 1,4412 - 101 —8,8689 - 102
3,6 1,9365 —1,3642 2,1186 - 10 —1,4959 - 10-3
3,76 1,8206 —1,8367 38,0013 - 101 —2,4716 - 102
4 1,6636 —1,8140 4,1236 - 10 —3,0266 - 10-2
4,26 1,4461 —2,1867 5,6056 « 10! -6,0232 . 10-2
4,6 1,2108 —2,4409 7,1628 - 101 —8,0520 - 10-3
4,76 9,6240 - 102 —2,6687 9,0008 - 10} -1,2933 - 101
b 7,1634 - 10! —2,8580 1,1331 —1,8231 - 101
5,26 4,8791 - 101 —3,0029 1,3765 --2,6010 - 101
5,5 2,9133 - 10 —3,0836 1,6444 —3,3609 - 10
5,76 1,3881 - 102 -3,12684 1,9267 —4,4243 - 101
(] 3,9829 - 107 —3,0009 2,2106 —5,7128 - 10-1
6,26 0,0508 - 10-* —3,0154 2,R144 —7,2433 - 10}
8,6 2,3414 - 102 —2!8873 2,3026 -9,0248 - 10+
6,75 1,0700 - 10-1 --2,6980 3,0760 —1,1088
7 2,4608 - 10~ —2,4580 3,3228 —1,3360
7,26 4,3208 + 10! —2,2273 3,6368 —1,6888
7.5 6,5337 + 10 —1,9714 3,7089 —1,8622
7,76 8,0621 + 102 —1,7188 3.8322 -—2,1528
8 1,1468 —1,4835 38,0019 —2,4048
8,28 1,3858 —~1,2788 38,9164 —2,7624
8,6 1,8020 -1,1162 3,8731 —3,0008
8,75 1,7808 —1,0050 38,7132 -3,3678
9 1,8111 —9,61560 - 10-1 | 38,6256 —3,6483
8,28 1,0848 —0,6884 - 10-1 | 8,4328 -3,0043
9,6 1,0072 -1,0285 3,2048 —4,1232
9,75 1,0476 --1,15607 2,0517 —4,3118
10 1,8801 —1,3241 2,688 —4,4467
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\

o2} = (—1)"(1) Ssa(z)dz

F'3 alz) 610 (z) ' 013 (2) a1 (z)
1 28300 10~ | —b5,9490 - 10~ | 8,887 -10-1 | —9,0527 - 10
1,26 2,6112+ 10~ | —8,6647 -10-1 | 2,0025-10-* | —3,6068 - 10-1¢
1,5 1,5027 - 10~ —7.5406-10-10 | 2,431 -10-2 | —6,4210-10-1
1,75 7,3086 - 10-7 | —4,7229 - 10-% | 2,1722-10-1 | —7,4763 .10~}
2 2,7213-10-¢ | —2,3039 - 10 | 1,3872+10-% | —6,2476-10-¥
2,25 8,6320 - 10-¢ | —9,2821-10-8 | 7,0921-10-1° | —4,0508-10-1
2,6 24115+10-5 | ~-3,2141-10-7 | 3,0408-10-° | --2,1489-10-0
2,75 8,0764+10- | —9,8416-10-" | 1,1303-10-% | 90,6800 -10-1
3 14047 - 104 | —2,7214-10-¢ ' 38,7328 -10-% } —3,8185-10-1°
3,25 30207 - 104 | —8,9047-10-¢ ! 1,1158-10-7 | -1,3437-10-
3.5 8,037 - 104 | —1,6275-10-5 , 3,0635-10-7 | --4,2020 - 109
3,75 11684 - 102 | --3,6091-10-% | 7,8125-10-7 | —1,2600-10-
4 21331-10-% | —7,6265-10-5 | 1,8679-10-¢  —3,4430.10-8
4,25 37335 - 10-3 | —1,4080 - 10-¢ | 4,2194 - 10-¢ ‘—-8,8147-10-3
4,6 86,2034 - 100 | —2,8521-10-¢ | 90,0508 -10-¢ | 21300 - 107
476 1,0254 - 10-* | -.5,2220-10-4 | 11,8689 - 10-° | —.4,8038 - 10-7
b 1,6171 - 10-2 | - 6,2237 - 10-4 3,8600 « 10-3 l —1,0731 - 10-¢
5,25 24800 10-2 | —1,6760-10-2 | 6,0466-10-5 | --2,2563.10-¢
5,6 37260-10-2 | -.2,8104-10-2 | 1,2741-10-¢ | —4,5663-10-¢
5,75 54464 10-F - 4,2244-10°3 | 2,2662-10-¢ | - 8,0231-10-¢
6 71,7868 - 10-* 6,6407 - 10-3  39134-10-¢ | —1,8886-10 .
6,26 1,0008 - 10-1 © w2410 % | 6,5836-10-¢ | —3,1017-10-8
6,6 1,4081 - 10- 1687910 2 | 1,0805+10-% | 5542310
8,16 2,0208 - 10-! 2.2666 + 10 * 1,7332 .10 3 - 9,6622 - 10-%
v 2,6797 - 10 3.2760-10 | 27207103 | —1,6413-10- .
7,25 34060 -10°1 ©  4,8527-10°% | 4,1867:10- | —2,7200 - 10~
7,6 44008107 | 84834102 | 8318010 —4,4431 - 104
7,16 5,6843-10-1 | - 8,0182.10% | 9,3671-10-  —7,0914 - 10-¢
8 70042 - 107 | -~1,2077-10% | 13668-10-* | —1,1100-10-
8,25 87332 - 10 | --1,6073-10-% | 10687-10-* | —1,7008.10-
8,5 1,0613 ~9.1128-10-t | 2,7667-10-* | —2,6870 10~
8,75 1,2736 27391 - 10-! | 3,8516-10-* | --3,8543 10~
9 1,6005 .4,56062 - 10-* | 5,2873:10-% | --5,6637 - 10
9,25 1,7680 ~4,4326-10-1 | 7,1818-10-1 | —8,1741 10~
9,6 2,0487 _.5,5367-10-1 | 9,6779-10- | ~1,1688 - 10~
9,16 £,3427 ~6,8320 - 1071 | 1,2640-10-1 | —1,6405-10°2
10 2,8520 —8,3321 - 10-} | 1,6614 - 10-1 | —2,2782-10-
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Oynl®) = (—1) g Syu(@)dx

z ou(2) | au@ o (®)
1 8,6608-10-0 | _g,026210-% 3,4206 - 10-%7
1,25 47721-10-% . —51906 - 102 4,6183 - 10-%
1,5 1,2696 - 10-7 ! —1,9749 - 10-® 2,5326 - 10-2
1,76 1,0088 - 10-18 —4,2694 - 10-19 7,4565 - 10-2
2 2,184 - 10-15 —6,1016 - 10-10 1,3932 - 10-%0
2,95 1,7952 - 10-1¢ —6,3565 + 10-V7 1,8384 - 10-19
2,5 1,1779 - 10-% —5,1564 - 10-10 1,8433 - 10-18
2,75 6,4390 - 10-1 38,4152 - 1016 1,4795 - 10-17
3 3,0264 - 10-12 —1,0138 - 10-1¢ 9,881° - 10-17
3,95 1,2528 - 10-11 ~9,3156 - 10-14 5,653 + 10-1¢
3,5 4,6530 - 10-1 —4,0206 - 10-1 2,3348 - 10-1%
3,75 1,5735 « 10-10 —1,5643 + 1012 1,268 - 10-1¢
4 4,9031 - 10-10 —5,5503 + 1C 12 5,1385 - 10-M
4,25 1,4215 - 109 —1,8242 - 101 1,9075 - 10-1
4.5 3,858 - 10-9 —5,5765 + 10-1t 6,5520 - 10-19
475 9,0271 - 10-9 —1,6002 - 0-10 2,1000 - 10-12
5 2,4210 - 10-# —4,3374 - 10-10 6,3220 - 10-12
5,25 5,634 - 10-8 ~1,1165 - 10-° 1,7992 - 10-1
5,6 1,2568 - 10-7 92742310 ° 4,8637 - 10-1
5,76 2,6043 - 107 —6,4534 - 10°° 1,2545 - 10-10
8 5,5812 - 10-7 —~1,4601 - 10-° 3,2001 - 10-10
6,25 1,1178 - 10-Y --3,1849 - 10~ 7,3612 - 10-10
8,6 21713 - 10- —6,7102 « 10-8 1,6853 - 10~
8,75 4,1000 - 10-¢ —1,3741 - 10~ 3,7296 - 10~
7 7,5305 » 10-¢ —2,7204 - 107 7,8070 - 10-9
7,26 1,3526 - 10-6 —5,2771 - 10~ 1,8848 - 10-0
7.6 2,3708 + 10-5 —~0,0447 - 107 3,9716 - 10-8
7,75 4,0862 - 10-4 —1,8308 - 10~ 8,6530 - 10-8
8 6,8327 - 10-5 —3,2061 - 10 1,2814 - 10~
8,26 1,1260 - 104 —5,8063 - 10-¢ 24118 - 107
b 1,8218 - 10-4 1,002 + 108 4,4424 4 10
8,76 2,8060 - 10-¢ —1,6098 - 10 8,0173 - 10 ?
9 4,5303  10-4 —2,8208 - 10 14188 - 104
9,26 6.9741 + 104 — 4,6307 - 10+ 2,4663 - 10-9
0,6 1,0677 - 10-3 —T,4567 10 4,2007 - 10 *
0,75 1,6810 - 10- —1,1825 - 104 7,0671 - 10-8
10 2,3318 - 10~ —1,8457 « 104 1,1974 - 10




E
an(2) = (—1)*[ G, (z)d

4 $alz) {olz) $ulz) Lo (2)
1 +8,4147 - 10~ | 42,4624 —4,2118 - 10+1 | 4.2,2493 - 10+3
1,25 49,4809 - iv-1 | +1,5168 —2,3436 - 1041 | 17,7199 - 10+
1,6 49,9760 - 10-1 | 4-1,1380 —1,4781 - 10+1 | 43,2872 - 10+3
1,75 49,8389 - 10-1 | 48,7842 -10- | —1,0116-10+ | 41,6310 - 1o+
2 +9,0830 - 10 | 42,8508 - 10~ | —7,3071 48,0671 - 10+
2,26 47,7807 - 101 | —5,9492-10-* | —5,4620 +6,4077 - 1041
2,6 45,9847 101 | —3,6200 10 | —4,1630 +3,6791 - 10+
2,16 +-3,8166 - 10~ | —6,2667-10~" | —3,1808 42,4641 - 1041
3 +1,4112 - 10 | —B,4887 10t | —2,4243 +1,7740 - 10+
3,25 —~1,0820 - 10-* | —1,0259 —1,7956 +1,3230 - 104
3.6 —3,6078 - 101 | —1,1536 -1,2507 +1,0140 - 10+!
3,76 —5,7166 - 10-1 | —1,2280 —7,9266 - 10-1 | 47,0280
4 —17,5680 - 101 | —1,2470 —3,7794 - 10-1 | 4-6,2863
4,256 —~8,8400 - 10-1 | —1,2089 —6,98 -10-* | 45,0190
4,6 —9,7753 - 10-* | —~1,0181 +3,2456 - 10~ | 44,0061
4,76 —9,0020 - 10! | —8,7664 10 | +6,1776-10-1 | 43,1798
& --$,5802 - 101 | —-7,8873-10-1 | 4-8,7147 .10~ | 42,4794
5,26 --8,6893 - 10-* | —5,6631 10! | 41,0833 41,8743
5,5 —7,0654 - 10 | ~-3,1860 + 10-% | 41,2602 +1,3414
5,76 -5,0828 - 101 | --1,6808-10-! | +1,3800 48,8521 - 10-1
6 --2,7041 - 102 | 42,0067 -10-' | +1,4368 44,3580 - 101
6,25 —3,3177: 10~ | 44405610t | +1,4524 44,7489 + 10~ '
6,0 +2,1512 - 10! | +6,6588 - 10! | +1,4i49 —3,0500 - 101
8,76 44,5005 - 10~ | 48,4684 - 10~ | 41,3257 —6,1638 - 101
7 +-6,6600 - 10~ | 4-9,800010-1 | 41,1878 —8,0180 101
1,28 +5,2308 - 10~ | 41,0881 -+1,0062 —1,1276 »
1,5 +9,3798 - 10- | 41,0706 47,8777+ 10 | —1,3211
716 40,0408 - 10-1 | 4.1,0348 +5,4163 - 101 | —1,4007
8 40,8030 - 10! | 43,3482 - 10+ | 42,7043 .10~ | —1,5707
8,25 49,2260+ 10-t | 4.7,8233+10-* | +4,84 -10-* | -1,0228
8,6 47,0849 < 1C ' | +-5,8001 < 10-1 | —2,06226.10-% | —-1,6232
8,78 40,2472 - 101 | 13,6701 < 10~ | --5,1247-10-1 | —1,6738
Y 44,1212 107t | 41,0841 - 10~ | —7,3489: 10~ | —1,4746
9,28 41,7300 - 10~V | --1,4540+10' | —0,1880-10-1 | —1,8208
9,6 —7,6162 10+ | —8,6003 102 | —1,0680 -1,1422
0,18 —8,1062 + 10~ | —.,1109-10-% | —1,1380 ~8,1015 + 10-
10 —35,4402:10< | ~7,0575-10- | —1,1633 --0,0835 » 10+




Lonla) = (—1)*[ Cyp(z)da

z 4o @ | @ tu®
1 —3,0854 - 104 | 47,5261 - 10+7 | —2,0622 - 10+10 | 41,6784 - 10412
125 | —6,5300 104 | +1,0207 104 | —2,5745-10% | 40,3415 - 10+
L6 | —1,8869-10+ | 42,0434-10+ & —3,5286- 10+ | 48,8621 10410
175 | —6,6769 - 104 | 5248310+ | —6,6184+10+ | 41,2165 - 10+10
2 —2,7480 - 104 | +1,8303 10+ | —1,5625- 10+ | 12,1887 - 10+
2,95 | —1,2724- 104 | 45862810+ | —4,4020-104 | 44,8465 - 10+
25 | —6,4771-10+7 | 42,3002 10+ | —1,4268-10+ | 41,2640 - 10+
275 | —3,6659+ 10+ | -1,0634 - 10+ | —51846-10+ | 43,7726 - 10+
3 —2,0876- 10+ | +5,0730 10+ | —2,0711 - 10% | 41,2671 - 10¥7
3,25 | —1,3062 30+ | +2,8156-10+ | —8,9675+ 10+ | +4,6005 - 10+
3,5 | —8,5442-10+ | +14308-104 | —4,0608- 10+ | +1,8233- 10+
3,75 | —58347 10 | 48244710+ | —2,0606 10+ | +7.7485 - 10+
4 ~4,1365 - 10+ | 44,9763 10+ | —1,0857 - 10% | 43,4099 - 10+
4,26 | —3,0205-10 | +3,1312-10+2 | —5,8075- 10+ | +1,6687 - 10+
45 | —2,2817-10% | 42,0460 10+ | —3,3024- 10+ | 48,3497 - 104
476 | —1,7507-10% | 41,3836 10+ | —1,9518 10+ | 44,3637 - 10%
5 —1,3841- 109 | +0,6546 - 10+ | —1,1054 - 10+ | 42,3724 - 1044
5,95 | —1,081+10+ | 46,9320+ 10+ | —7,6630+10% | 41,3371 - 10+
55 | —8,0468 45,1082 - 1041 | —4,9318 10+ | 47,7008 - 10+*
575 | 17,2047 +3,8636 - 10+ | —3,3080 - 10+¢ | +4,6808 - 10+
8 ~5,9788 +2,0080 - 1041 | —2,2750 - 10+ | +2,8034 « 10+
6,25 | —4,8018 +2,3209 10+ | —1,8079 - 10+ | 41,8370 - 10+
66 | —3,9867 +1,8588 - 10%1 | —1,1815- 10+ | 41,1060 - 10+
6,75 | —3,2108 +1,6081 - 104 | —8,5730 - 104! | +7,9717 - 10wt
7 —2,6361 +1,2204 - 10% | —-8,4568 - 1041 | +5,4343 - 10%
7,8 | —1,93%0 +1,0143 - 10% | —4,0548 - 10% | 48,7843 - 109
75 | —14087 +8,4104 ~3,8309 - 10% | 2,680 - 10+
776 | —9,1032 10~ | 47,0128 —3,0074 - 104 | 41,0485 - 10+t
8 —4,7867 - 10~ | -5,8421 —2,4061 - 10% | +1,4376 - 10+
8,25 | —7,685 -10-t | +4,8607 —2,0087 - 104 | 41,0700 - 10+
8,6 [ -+2,8840.104 | +3,0071 ~1,6520 104 | +8,2401 - 10+
315 [ +6,1730 102 | 43,2503 —1,372610% | 48,3081 - 104
0 +8,0070 - 10 | +2,6877 —1,1470 - 104 | 45,0348 - 10%
0,28 | 41,1698 +1,0034 ~9,6504 +4,0173 - 104
0,8 | +1,8776 +1,4546 ~8,1368 +3,2468 - 104
075 | 41,0487 +0,6260+ 10 | —6,8048 +-2,6533 - 104
10 +1,0747 +8,1225 - 10 | —5,7808 +2,1910 - 10%

=131~




lyn(@) = (=1)*[ Cyu(2)da

z [T ¢ 4] T S lx) {ao ()
1 ~1,3034 - 10418 | 41,3251 - 10+® —1,7076 - 10+22
1,25 —4,6343-10+4 ¢ 43,0111 104V —2,4808 - 10+20
1,5 --3,0468 - 10+18  © 41,3722 - 10+18 —7,8401 - 10+18
1,75 ~3,0636 - 10412 1 41,0119 - 10+13 —4,2417 - 10417
2 ~4,2070 - 10+ ¢ 4+ 10614- 10+ | —3,4005- 10+18
2,25 —7,3330 10+ ' L14582-10+1% 1 —3,6836 - 10+
2,5 —1,5441 - 1040 | 42,4794 - 10+ ~5,0818 - 10414
2,75 —37891-10+ | 4.50118- 101 —8,4349 - 10+
3 —1,0566-10+ | 41,1600 - 10+1 —1,8486 - 10+12
3,25 —3,2729- 10+ ' +3,0769 - 10+1 38,6852 - 10+12
3,6 —1,1120- 30+ i 48971210+ —9,2379 - 10+
3,75 —4,0893-10+7 | 42,8608 - 10+° —2,5668 « 10+11
4 —1,6118-10+7 ' 49,8604 -10-5 | 771611040
4,25 —8,7547-10+ | 1+3,6404-1Q*® | --2,5132.10+1
4,6 —2,9805 10+ | 41,4287 - 10+ —8,75%7 - 1049
4,75 —1,3805- 10+ ! 458224 - 10+ —3,2435 + 10+
5 —6,7511-10+  ©  +2,5794 - 10+ —1,2685 - 10+°
5,25 —3,4148-10+% 41,1749 - 10+ —5,2131 - 10+8
5,6 —~1,7919 - 10+%  :  4-B,57456 - 10+ —2,2411 - 10+
5,75 —9,7272 - 10+ | 42,7460 « 10+¢ ~1,0041 - 10+
6 —54483 - 104 | 41,4002 - 10+¢ —4,8724 - 1047
6,25 —3,1415 - 10+ 47,3712 10+ °  —2,2519- 10+
8,6 —1,8611 - 10+ +3,0072- 100 1 _1121) 10+
6,75 —1,1309 - 10+¢ +2,2283 - 10+ | 5,762 - 10+ .
7 —17,0877 - 10+3 +1,2748 110+ | —3,0360 - 10+*
1,25 —4,4794 - 1042 +74710- 104 | —1,8449 - 10+
1,5 —2,8127 - 104 +4,4808 - 10+ | —5,1360 - 10+t
7,16 ~1,8327 + 1041 42,7457 1044 15,1047 - 10+
8 —1,3075 - 1043 FLT178- 104 0 —3,0101 . 10+
8,25 ~9,0122 - 10+2 +1,0952 - 10+ —1,7917 < 10+
8,6 —6,3233 - 10%2 +7,1157 - 109 ~1,0844 - 1048
8,15 - 4,5133 10+ 44,7058 - 1040 | —6,0883 - 10+¢
9 - 32751 - 104 13,1657 100 14,1008 - 10+
9,26 -2,4147 - 10+2 F2I847 104 2,0827 - 10+
9,5 ~1,8079 - 10+* +1,6030 - 1008 ' —1,742] . 10+
8,75 —1,3737 - 10%% FLOBOY - 16+3 | —1,1487 - 10+4
10 —~1,0688 - 10+2 17,6060 - 10+ T .7,8070 « 104
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