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SIJ}IMARY

The singularity expansion method (SEM) is applied numerically to

the electromagnetic dual of the rectangular aperture in a screen of

infinite extent — the rectangular plate in free space. The SEM

quantities are determined through a numerical treatment of the appli—

cable electric field integral equations, and the details relating to

computational efficiency are described. The pole trajectories for the

plate are given for a range of aspect ratios, along with natural modes

at specimen poles. Physical and numerical interpretations for these

data are stated where possible.

Theoretical aspects of SEM relating to coupling coefficient forms

and to the role of complex domain entire functions in the time domain

SEM representation are explored. Correct coupling coefficient forms

are found to depend on the asymptotic behavior at infinity of the fre-

quency domain Green’s function. This asymptotic behavior is unrecoverable

in numerical solutions, however. Tests on the time domain expansion of

the Green’s function are proposed herein to determine the validity of a

particular coupling coefficient form for a particular problem when the

asymptotic behavior is unavailable. It is observed that Baum’s Class 1

coupling coefficient can be made valid in problems where it otherwise

would not apply at the expense of including an entire function contribu—

tion in the time do~tain expansion. This entire function contribution is,

in general, significant.
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1. INTRODUCTION

1.1 Description of the Work

This document presents the results of an investigation of repre—

senting the transient electromagnetic coupling through a rectangular -:

aperture in a conducting screen by means of the Singularity Expansion

Method (1]. The problem is formulated by means of its electromagnetic

dual problem, the scattering from a rectangular plate. Consequently,

the results are equally applicable to both members of the dual pair.

The Singularity Expansion Method (SEM) was introduced by Baum in

1971 (2]. It provides a compact means of representing broadband transient

electromagnetic phenomena on resonant bodies in terms of the complex

natural resonances of the body in the complex Laplace transform plane.

For the problem at hand, these resonances are located numerically by

means of a method of moments solution to an integral equation formula-

tion. The integral equations used to ‘nodei the plate structure are the

integrated forms of the coupled electric field integral equations for the

plate developed by Rahmat-Samii and Mittra [3]. Their original formulation

holds for the real frequency domain, ~~~ extends directly to complex

* 
frequencies for the purposes herein.

1.2 The Singularity Expansion Method

Subsequent to its introduction by Baum in 1971, SEM has been applied

to many problems — both numerically and analytically. In fact, in
S

his introductory paper [2], Baum constructed the formal S~~ solution for

a perfectly conducting spherical scatterer. Ma n n conducted an analytical

solution for a prolate spheroidal scatterer [4]. Umashankar has applied

SEN analytically to the circular—loop wire antenna 15].

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.•



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Man n and Latham [6] made an important theoretical contribution to

SEM early in its development . They demonstrated that in the complex

frequency plane the only singularities in fields for finite perfectly

conducting bodies are poles. This fact precludes the need to consider

branch—cut integrals and allows broader applications of analytic con—

tinuation concepts in the frequency plane.

Tesche performed the first numerical SEM construction (7]. He

considered the problem of a thin cylindrical antenna. Subsequently ,

various workers have applied the method numerically to the L—wira [5],

(6] ,  [9], and several coupled cylinder problems (lO]—[12]. Teache ex-

plored SEN solutions to resistively loaded thin wires [1?].

In previous work , surface problems have been treated by analytical

methods,and numerical methods have been applied only to wire structures.

One contribution of the present work is to indicate the viability of

the numerical approach to SEN on a surface problem. -

1.3 Scope of the Present Work

There are three chapters of original substance in this document.

Chapter 2 delves into some theoretical considerations that are important

to all SEN problems. Chapters 3 and 4 deal with the specific problem

of the rectangular aperture.

Chapter 2 defines the SEN formalism and presents some new insights into

the inversion procedure. In particular, it relates the asymptotic behavior of

the frequency domain SEN representation to the definition of the so—called

coupling coefficient. Because all of the terms which enter into the

asymptotic form are not recoverable in numerically derived SEN solutions , we 
• -

must turn to indirect means of defining the role of the asymptotic behavior.

9 8
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It is shown in Chapter 2 that the asymptotic behavior of the frequency

domain representation dictates the support of the time domain Green’s

function for a given problem.

We introduce two means of overcoming the difficulties presented by

the unavailable asymptotic information. One of the means is a postulated

asymptotic behavior which is conservative and physically consistent. This

postulated form results in a new “class X” coupling coefficient which may

be used directly or as a basis of comparison for other coupling coefficient

forms. The second means is a test on the time domain expansion to deter-

mine for a specific problem whether or not any particular coupling co-

efficient form is consistent with the physical concept of causality. The

class X coupling coefficient, the effect, imposes causality directly.

Chapter 3 presents the complex frequency generalization of the

thin plate integral equations and describes the numerical procedures

used in determining the SEM quantities from this formulation. Because

the present problem is a surface problem, we are forced to be particularly

conscious of numerical efficiency. Some algorithmic considerations

that are important to numerical efficiency are discussed in Chapter 3.

The argument number procedure proposed by Baum (14] was used to advantage

* in isolating the SEN poles in the course of this work. The details of its

application are given in Section 3.5.

Chapter 4 contains numerically obtained SEN data for the rectangular

- ~.* plate. Complete pole data for a portion of the complex plane are given

fo r rectangles with  aspect ratios between 0.1 and 1.0. Representative

natural mode data are given to provide the reader a means of physical

interpretation of the resonances of the structure. Complete mode data

and no rm al iza t ion  constants  are available for the plate in computer data

base form [15].

9ç.
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14 Notation

As in many other fields problem areas, mathematical notation for

SEN that is simultaneously compact and explicit is desirable but a bit

elusive. The notation used herein is built on that of Baum (as in (2]).

Symbols denoting functions are chosen for their connotative value where

possible and their attributes are indicated with bars, tildes, etc.

In particular, a vector quantity is indicated with a single overbar,

and a dyadic quantity by two overbars. Laplace transform pairs are

denoted with the same alphabetic and vector attribute symbols in both

domains. A tilde (-) oversymbo]. identifies the function of the pair

which has as ita domain complex frequency, while the absence of the
* 

oversymbol denotes its time domain counterpart.

The inner product notation (Atr), AG)) means, per Baum, to take

the vector inner product and integrate over the common spatial support.

We have occasion to indicate explicitly time domain convolution and

• complex contour integration in addition to the spatial inner product.

For example,

— L. (~~~~~ , ‘,t — t ’), ~G’ .t ’)) dt ’

indicates that the time domain vector quantity EG, t ) is the time domain

convolution f dt ’ of the vector dot product of the dyed ~ end the

vector ~ integrated over the spatial support common to ~ and ~~. The

transform domain counterpart to this expression is

~G.e) — (!(;,;‘ ,~ ), ~G’ ,s))

where the tildes indicate transform domain image functions. The convolu—

tion in time appears as a simple multiplication in the complex frequency

domain.

10
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2. THE SEN REPRESENTATION AND INVERSION PROCEDU RE

2.1 Introduction

In this chapter, we develop the Laplace transform solution for a

general linear operator equation involving time and spatial variations.

The point of view taken here departs from those of the previous workers

addressing SEN solutions. In any SEN development, the primary concern

is to construct the solution to the operator equation in a Laplace trans—

• form domain, where the transform is taken with respect to the time vari-

able in the equation. Where previous work has viewed this transform

* solution as the composition of a residue series and an entire function

in the transform variable, the present work views the transform domain

solution as the product of a driving term and the transform of a causal

Green’s function or inverse kernel (see, for example , Stakgold (16] .

The Green ’s function may be formally constructed as an eigenfunction

expansion (17]. The inverse transform to the time domain may be taken

by appealing to Jordan ’s lenma and the Cauchy residue theorem.

Indeed, the last step introduces one of the most significant features

in the SEN approach. The appeal to Jordan’s lemma [18] depends on the

asymptotic form of the transform of the solution for large s. The causal

behavior of the time domain solution is imposed through this asymptotic

form.

The asymptotic behavior of the Green ’s function factor in the solu-

tion can, in principle, arise either from the infinite pole series or

f rom the entire funct ion term in the Mi t tag—Leff le r  representation (19]

of the Green ’ s fu nction.  For examp le , the Gr een ’s function for the

11
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wire loop shows exponential asymptotic behavior resulting from the pole

• 
- series (5]. For problems which are solved numerically, only a finite

number of poles in this representation are available to us. Consequently ,

the asymptotic behavior of the transform solution is not directly recover-

able. In Section 2.5.2 we develop heuristically the dominant asymptotic

f orm for the Green’s function of an integral operator with a free—space

wave equation related kernel. This asymptotic form leads to a new type

• of coupling coefficient for the SEN representation. This new “class X”

coupling coefficient is observed to impose causality directly on the

solution. We observe, however, that other coupling coefficient forms

* 
that do not impose causality directly have been used with varying success

• by other workers. A procedure determining when the new form may be re—

• duced to a simpler coupling coefficient form is presented. The pro-

cedure is based on observation of the time domain transform.

- ~~ •; 2.2 Transform Solution of Time Domain Electromagnetic Integral Equations

2.2.1 Laplace transform of integral equation

- - We state a general time domain integral equation for perfectly con-

ducting finite extent bodies in free space as follows.

- L (~~G,~~’ , t — t ’) ,  ~G’ ,t ’)~ dt ’ = ~~(~~,t) , c B,

—

- J(~ , t)  = 0 ‘~ r,~~ r B and t < 0 - (2.1)
E (r ,t) = 0)

12

~~~ 
- - -=•_ •

.-I -
~~~-~- •.$ - - - - 

~~~~ - - - -

---—--a 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~•~~~~~ • • ~~~~ ~~~~~~~ • •



The brackets denote an integration of the vector inner product of the two

operands over the support of the second operand. The r term is a dyadic

kernel to the integral equation; ~ is a characteristic electromagnetic

— quantity, generally a current density ; and E is an incident wave or

driving function field. The dt ’ is a time domain convolution. The

body is denoted by the region B in r space.

We proceed to construct the inversion of (2.1). Provided the

Laplace transforms exist for both the left and right sides of the in-

tegral equation, we may write it in the transform domain

~~~~~~~~~~ 3(~ ’,s)) — ~G ,s) , c B , Re s > 0 . (2.2)

The tilde (-) overbar is used to denote the Laplace transform domain

images of the associated functions from (2.1). In the familiar way, the

convolution over the time variable goes over to an algebraic product

in the transform domain.

We appeal to the physical concept of causality and observe that

each of the three functions in question must be causal in nature so long

as we require that ~G,t) be zero for finite r and t less than some

finite starting time. If all of our functions are causal, we may with

an appropriate shift of origin convert our transform to a one—sided

one. Therefore, it is sufficient to consider all transforms as one—

sided ones, and we define, explicitly,

{f(t)} i(s) = f f(t) e
_ 8t  

dt , Re s > 0 (2.3)

under the condition that f(t) be bounded for t > 0.

13
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2.2.2 An inversion of the transformed integral equation

We may write a formal solution to (2.2) as

iG,s) ~~~~~~~~~~ AG’,s)? (2.4)

where the inverse kernel r 1 (Green ’s function) is the solution to

(F’(~,~’ ,5), ~ G’,~ 0, s))  — To G — 
~~) , (2.5)

is an identity dyad on the three spatial vectors and ~S(r — is a

three—dimensional Dirac distribution. The equations (2.4) and (2.5) hold

in a distributional sense. In fact, Schwartz points out that cannot

be a function (20] - In addition, Man n and Latham have shown that for

perfectly conducting bodies of finite extent, ~ G,~ ’,s) is analytic

in s except for pole singularities (61. This latter property gives us

the means of expressing our desired result, the time domain solution to

(2.1) in terms of residues at the poles of F ’. Since the body is pas-

sive and since a pole s gives rise to temporal behavior exp (s t), we

conclude that all of the poles of have a negative real part so as

to produce decaying time behavior. Further, since (2.1) has a real

• solution, it is evident that the poles must occur in conjugate pairs in

the complex s plane.

For many problems of practical interest, we can recover by numerical
I-

- 

. 
• or analytical methods the poles which dominate the time response for
*

excitations whose spectra are bandljmited. The key to practical appli—
~~1

cation of SEN is to construct the time domain solution to (2.1) in such

a way that it is accurately represented by this hopefully modest collection

of poles.

14
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2.2.3 The Laplace inversion of the solution

The time domain solution to (2.1) is constructed by forming the

Laplace inversion of (2.4) as follows.

~~
(
~~
,t) — 

~~~
- f i(~,s) e

at ds
CB

— 
~G’,s~~ est ds . (2.6)

The integration is over the Bromwich contour, CE, given by

s — a + ju

a > 0  , w e

The real value of s for this contour must be chosen so as to place CB

in the region of convergence for the representation of 3G,s). Conse—

quently, we must have a representation fox ~ ( , s) which is valid in

the right—half plane, i.e., that is convergent and solves (2.2) for s

such that ~ a~, or a fixed positive number.

Typically, in the Laplace transform theory, one appeals to an in-

direct evaluation of the integral of (2.6). Namely, CB is closed with

a semicircular arc of infinite radius either to the righ t or to the left

as indicated in Figure 2.1. The asymptotic behavior of the integrand

generally dictates that the integrand vanish on one or the other of the

semicircles so that Jordan’s lemma (18] is satisfied and the integration

over either the closed contour C3 + C~ or C3 + C, is equivalent to in—

tegration over C
B alone. The composite contours C

3 
+ C~ and C

B 
+ c:

15
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are closed contours. Hence, when integration along C3 is equivalent to

integration over one of these closed contours, we may evaluate the in—

. tegration by means of Cauchy’s residue theorem so that information at the

poles of ~(,s) suffices to represent JG ,t).

Before considering the asymptotic form of 5~G,s) ,  we shall develop

the singularity expansion in a formal manner. The eigenfunction ex-

pansion point of view (17] is taken in this development.

The f ormal solution to (2.2) may be constructed by means of an

eigenfunction expansion. That is, we define the left— and right—hand

eigenvectors t~G~s). ~~G~s) by the eigenvalue equations

(~n
G’
~
5)
~ ~

G,~ ’~s)) — A~~(s)i~~G, s) (2 .7a )

and

(~G,~ ’,s), ~~(~‘,s)) — A~
(s)

~~G~s) , (2.7b)

- - where {A (s)} forms the set of aigenvalues for the operator defined by

We then proceed by expanding ’~verything in sight” in (2.2) in

terms of the L~ . Then by means of the biorthogonality relation between

and we arrive at the explicit representation

— —1 (t G’ ,s ), ~G’,s)) —J(r,s) — A (s) ~~ 
— 

— R (r,s) . (2.8)

a 
n 

(L~(r’,s), R~(r’,s)) ~

* Thus, we may write the inverse kernel in (2.4) as an expansion of
4.

dyadic terms

~ (~ ,s) t (~‘,s)ç ~~~~~~~~~~ — ~ A
1( )  ~ 

— — 
. (2.9)

- 
a 

(L~ (n ’,s), R ( r ’,s))

c. 17
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Now the poles of ~~
1G,r’,s) axe observed to be zeros of {An(8)}• In

(17] Baum discusses the specific associations between elements of the

set of poles of {s }  and elements of the set of eigenvalues {A~ (s)}

and designs an indexing scheme which explicitly represents these

associations . We are not concerned with the specifics of the association

here, however.

Thence, fox t such that the asymptotic behavior of iG,s)exp (st)

allows left closure and assuming simple poles for notational simplicity

1G, t) — -
~~

— f ~ X;
’
(5) 

(i~~cr ,s), i(~’ s)) 
~ (i ,e) e

st ds
~ CB a (L~(r’,s), R ( r ’,s)> 

q

— ~ dA~
(S)

~~ 
—l 

(~ n G’~ sm)
~ ~~~‘ m) 

i (~,s ) e~~ . (2.10)

m ds 
(t G’,s , 

~a
G’
~
5m)) 

n m

The summation embraces the entire pole set The notation used

assumes that — 0. At the poles the eigenvectors i n G~
sm) and

• 
~n
G
~
3m) become the coupling vectors 

~mG) and the natural mode vector

• Mm G)~ 
respectively , i.e., from (2.7)

I

(~mG’)
~ ~‘~“~m~) 

- 0 (2.lla)

and
*

.~-
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~m
G’)) 0 . (2.llb)

Using this modal notation and the relationship

dA (s ) (~ nG~5m)~ ~~~r~~~t~
’,s15

), 
~n~ ’’5m~ds — 

(tn
G’

~
8
m
)
~ ~n

G
~
5in))

we rewrite (2.10) as

1G, t)  — ~ 8 (~ G), 
~G,s)) i~i G )  e m u(t), (2.12)

4.
The normalization constants

8m — (~m~~~’ ~~ ‘~
‘‘~m~’ 

sinG’)) 
—l (2.13)

are introduced in arriving at (2.12). The inner product in (2.12) is

generally defined as a “coupling coefficient” depending on a particular

spatial form of L

The formal expansion of (2.12) is the fundamental SEN form — the

singularity expansion. The construction by which we arrived at (2.12)

is a formal one. As subsequent sections of this chapter show , it is

indeed valid for a sufficiently large t. Pox t less than some time T0,

the right—h and closure to (2.6) is valid and ~G, t) is - zero . However ,

for some solutions , there is a time interval during which neither a zero

value nor the particular expansion (2.12) is a correct representation for

~G,t). The SEN approach for these solutions seeks to modify the cou—

pling coefficient term in such a way that a form similar to (2.12) holds

19
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for all t ime for which ~~(~~,t) is nonzero . In succeeding sections , we

present some alternative coupling coefficient forms to this end and basic

guidelines for usinS these forms .

2.3 An Analytically Tractable Example: The Transmission Line

2. 3.1 Transmission line formulation

The lossless transmission line proves to be an instructive example

*in study ing the principle involved in the SEN representation . The

instructiveness of the problem results from the facts that the SEN rep—

resentation is fully derivable analytically and that we may represent

both resonant and nonresonant structures with finite and infinite extent

lines. Because the residue series is analytically summable, it is pos-

sible to explore its asymptotic behavior and the consequences of trun-

cation of the representation to a finite collection of poles. It happens

that the problem is best addressed through a differential equation

rather than an integral equation of the form (2.1). However, concepts

applicable to the Green ’s function here transfer directly to the “inverse

kernel” Green’s function of the integral equation.

The geometry of the transmission line is defined in Figure 2.2.

The line is shorted at x — 0 and x — L. The wave equation describing

this line and the associated boundary conditions are

[.~~~~
_
~~~~~~]Ix~t 

_ -
~~~~~frE(x,t), 

-

-
* f- I(0 ,t) — -

~~ I(L ,t) — 0 , I(x ,t) — 0, t < 0 . (2 14)

*The author is grateful to Professor D. R. Wilton of the University of
Mississippi for his suggesting the transmission line example and for
providing ’ notes on parts of the formulation presented here.
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In the transform domain

~~ 
— (s/c) 2] 1(x,s) — —-i— ~(x,s) (2.15)

with

-
~~~~~ I (0,s) = f- ~ (L ,s) — o .

We may obtain a causal Green ’s function solution to either (2.14) or

(2.15), and the two are a Laplace transform pair. In the SEN spirit we

write an s—domain Green ’s function, i.e., the Green ’s function for

(2.15). This function is defined by

[~ 
— (s/c)~] ~(x,x’,s) — —~~L. 5(x — x ’) , (2.16)

with

~~‘(0 ,x ’ ,s) — G’(L,x ’,s) — 0 , Re s > 0

• The time domain counterpart G(x,x’,t — t ’) has as a boundary condition

G(x,x’,t — t ’) 0, for t < t ’ . This is a causality condition, which

appears implicitly in (2.16) by way of the region of validity xe s > 0.
- 
~ , That is, we must have a Green’s function representation which is valid

on the Bromwich contour, the real part of which is taken greater than

zero .

22
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2.3.2 Solution for the Green’s function

We choose to write a constructive solution to (2.16) as

~ (x ,x’,s) — -a— ~
_5I’c_ x ’ I/  +~~e~~

2
~~ [e

_91
~~~

t’]/’c 
+ e

_5E2
~~~~~~

’fh’C +

e_3 12
~~~~~~’fh ~ + e

_9 L_
~~~x~)~

F
c]), Re $ > 0 . (2.17)

This form is taken because of its instructiveness in showing explicitly

the traveling—wave components corresponding to a direct wave and an

infinite suimnation embracing reflections and multiple reflections at the

shorted ends of the line.

A closed—form representa~
’ion results directly from (2.17) by way of

the sum formula

~ —s2nL/c —2sL/c —l
L e = ( l — e  ] , R e s > 0
n 0

The closed—form expression is

~ (x,x’,s) .~~~~ (cosh s[L — Ix — x ’I]Ic
,
+ cosh sEL — (x+ x’)lJc).(2.l8)

Alternatively, this form can be constructed directly from (2.16) without

using the su ation form. The expression (2.18) is the unique analytic

I 
~ continuation of the expression (2.17) .

This Green’s function is the counterpart to the inverse kernel r
developed for the integral equation formulation in Section 2.2. For this

example, however , we have an explicit closed—form representation for G.

This function has the residue series representation

~(x,x’,s) - C
a 
s cos(n~xfL)cos(n~x’/L) 

, (2.19)
0 n—0 s + (nitc/L)
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where

n — 0

~ — ç
a 

~~~, n # 0

is Neumann’s number. It may be shown that (2.19) is a complete repre—

sentation for ~ (x,x’,s) as expressed in (2.18). That is , ~~(z,x’,s)

does not have an entire function component in its Mittag—Leffler repre-

sentation. It is clear, however, from (2.18) that asymptotically

~ (x,x’,s) is exponential in character.

We also observe that (2.19) fits the dyadic form of (2.9) for the in-

verse operator, namely, dyadic numerator terms with poles in the denom-

inator at s — ±jn-irc/L . Thus, for a general excitation function ~ (x ’,s),

we can construct

I(x ,s) _ _ _ C__ 
~ 

~~(s cos(rnrx/L)cos(nirx ’JLl 
, E( x ’ ,~ )) . (2.20)

0 n=0 a s + (rnrc/L)

2.3.3 The causal time domain Green’s function

Alternatively, we can invert (2.19) to obtain the causal time

domain Green’s function. Then a general solution may be formed from

the convolution

S

I(x ,t) — 
!: 

(G (x,x’,t — t ’), E(x’,t’)) dt’ . (2.21)

We proceed to construct G(x,x’,t) here because it is instructive to

observe the time domain effects of operations which we perform in de—

• 
- 

terniining I(x ,t) from the transform domain form (2.20) .

24
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The t ime domain Green ’s function is given by

G(x,x ’,t) — f ~(x ,x’,s) e~~ ds . (2.22)
CB 

-

In orde r to evaluate this integral in the conventional fashion , we

require a knowledge of the asymptotic behavior of G. This is discernible

from (2.18) , viz.,

(—s l x—x ’I/c
- j e  , in r.h.p.
G2(x,x’,s) _ 4 ç  s lx— x ’ I/ c . (2.23)

in 1.h.p.

We draw attention to the fact that this information is obscured in the

residue series form (2.19). It is also noteworthy that ~ has different

asymptotic forms in the right— and left—half planes. Thus, for

t < x — x’~ /c we may close CB to the right, and since G has no poles

for re s > 0, G(x ,x’,t) — 0, t < Ix — x’I/c. For t > —~x — x’j/c vs
may close CB to the left and obtain the residue contributions at the

poles of ~ (x,x’,s). We write then

10 , t < Ix —
G(x,x’,t) —

~~ Z cos (nirx ’/L)cos(nirx/L)cos (n,rct/L) , t >

O n—0
(2.24)

For t c (—lx — x’I/c , x — x’I/c) the function must be zero, but the
series representation is valid, tooi It must sum to zero. Indeed , the

I :- -~ time I x — x’ I/c is the arrival t ime for an incident wave at the obser—
-
~~~ vation point x launched from a spatially impulsive generator at x’.

The phenomena coming to play are seen if we use the following distri—

butional identity to sum the above series .
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~ S(x — an) — ~ ej2~~~’
a 

— 

n~O 
~~ cos(2nwx/a) .

This yields

G(x ,x’,t) ~ {6( t — (x — x ’) / c  — 2nL/c]
O n——” -

+ 6(t + (x — x’)/c — 2nL/c]

+ 6[t — (x + x’)/ c  — 2nL/c]

+ ~~(t + (x +  x’)/ c  — 2nL/c]}, t > — Ix — x’I /c ,

(2 .25a)

or

G(x , x ’ , t) — 
4~Z ~~(t — Ix — x’~ /c] + 6(t - (x + x’) / c ]

+ ~ {6(t — Ix — x’I/c — 2nL/c]
n-i

+6 (t + j x — x ’f/c — 2nL/cl

+ 6(t — (x + x’ )/ c  — 2nL/c]

+ 6(t + (x + x’)/ c  — 2nL/c]} . (2.25b )

This distribution is represented symbolically as a function of

time in Figure 2.3. The distribution represents a direct current impulse

arriving at the observation point at a time Ix — x’I/c accompanied by

three impulses arriving after undergoing reflections at one or both

shorted ends of the line. This pattern is replicated with a period

-
~~~ 2L/c since the line is lossless and nondispersive.

We observe that the series representation yields replication into

negative time as well, as shown by the dashed line impulses in Figure 2.3.
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It is clear that if we attempted to apply the series for t < — Ix — x’f/c ,

we would obtain erroneous results. The phenomenon of having both the

series representation and the zero representation for

— Ix — m i/c t c x — x’ I/c is evident, too. The series converges to a

distribution which has zero weight on this interval.

A “physical” interpretation may be placed upon the acausal pulses

which appear in (2.25a). Figure 2.4 is a diagram showing the spatial

location of the current impulses represented by (2.25a) for a source

generator 5(x — x’)6(t). The locations are shown for four times — spaced

at an increment at — with the first sample taken at —at. Using the

t — 0 (second) figure as a reference, we see that the negative time

impulses in the first figure are simply impulses propagating toward

the source so as to coalesce at the source point at t 0. All of the

other negative time terms are earlier reflections of these pulses. The

subsequent propagation away from x — x’ and reflection at the short at

x — L shown in the third and fourth figures are evident. The current

impulses occurring in negative time are a result of applying the singu-

larity expansion for G(x ,x ’,t) too early .

2.4 An Exsmfnation of the Time Domain Green’s Function for the Thin—Wire
Scatterer

The preceding section describes the analytical aspects of an SEN

solution for a shorted section of lossless transmission line . The con—

- 

* sequences of the analysis related to the inversion are evident when

the solution is viewed in terms of the time domain Green ’s function

for the problem. We now turn to the scattering problem perhaps most

V 4 closely associated with the transmission line — that of the scattering

from a perfectly conducting thin wire.
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I(x , O)
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I Cx , At )

- : 1’o i’— cAt x ’ x ’+cAt L

ICx ,ZAt)

4 2cd
t

0 x’—2 cAt x’ I. x

- 

~~- I(x ,t)

r 1+

1 x ’O ,I_x I x~~L
~~~~ • 

Figure 2.4. Diagram of an acausal Green’s function for the shorted
transmission line. The spatial location of the impulses
of current on the line are shown “frozen” in time for
four times each advanced t~t over its predecessor. Time
t — 0 is given in the second graph.
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The SEN solution to this problem must be constructed numerically ,

however. As a consequence, we have available only a limited number of

terms in the singularity expansion. There is no analytical basis from

which we can observe the asymptotic behavior of the transform domain

Green ’s function (inverse kernel) for this problem. We can, however,

compute it within the limits of approximation dictat~d by the amount of

available pole information. Through the previous example we attempt

to conceptually relate features of the time domain and asymptotic transform

domain behaviors. Practically, we determine how to construct the singu—

larity expansion from directly discernible time domain ramifications.

We rely on the results of Tesche [71,113] for numerically determined

SEN quantities for the thin wire . A tabulation of poles , coupling co-

efficients , and normalization constants along with graphs for the natural

mode currents are given in (].3] for ten so—called first—layer poles and

three second—layer poles. The cylinder for which these data are pro-

vided has a diameter—to—length ratio of 0.05. 
-

The geometry under consideration is defined in Figure 2.5. The

wire is located along the x—axis extending from —h to h. We construct

the inverse kernel for the structure from (2.12) by taking

— 

~x 
ó(x — x’)S(t — t’). By using the usual thin—wire analysis

concepts, we observe that the coupling vectors and the currents are

scalar functions of a scalar variable x. Further, each coupling vector
*

is equal to its associated current mode. Accordingly, we write

- .-s t’ S t
r~~(x,x’,t — t’) — u(t — t ’) 

~ 
Bm (Jm(X)i 5(x — x’) e ID ) 

~~~~~~ 
e m

- s (t-t’)
— u(t — t ’) 

~ 
Bm ~~~~~ 

3m~~~ 
e - (2.26)
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We include the unit step function u(t — t ’) at this stage as a pre-

caution to insure that our inverse kernel is causal . This matter is

explored further below . Then for an arbitrary incident field , we con-

struct the current response as

J(x,t) — L (r~~(x,x’,t — t’), 
~ 
. 
~(x ’,t’)) dt’ . (2.27)

The motivation for exploring this example is to show that , indeed ,

an acausal response is contained in the expansion in (2.28) and the unit

step function is necessary to enforce causality in the inverse kernel.

This is readily tested by expanding for specimen source coordinates

x’, t’ and studying the behavior of this expansion for positive and

negative times. A plot of a test expansion of for the wire is given

in Figure 2.6. The expansion is taken with the source point x’ — 0,

• t’ — 0 for two different observation points x — 0 and x — 0.6 h .

We observe from the figure an impulsive current at x — 0 and t a 0

due to the generator ’s “firing.” This impulse divides and propagates

outwardly to produce impulses at ±0.6 ii beginning at a time 0.6 h/c.

The reflections of these pulses are seen at ±0.6 h, when t — 1.4 h/c,

and then merging at z — 0 when t — 2 h/c. This qualitatively predictable

reflection pattern continues. We observe an oscillatory current function

between the expected pulses . This behavior is due to the truncation

-of the residue expansion to a finite number of poles. In fact, as

-~~ mentioned in Section 2.2.1, cannot be a function, it must be a

Dirac—like distribution. The smoothness and the oscillations are

attributable to expansion of the distribution in terms of a finite

number of continuous functions.
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Figure 2.6. Time domain inverse kernel for thin—wire scatterer plotted

as a function of time for a source point at x’ — 0 and two
observation points. The function was expanded from SEN
data at ten first layer poles as given by Tesche [9].

33

h.



r - -  —-- -
~~~-* ~~~— - - - - -~~ - - ---——  

Perhaps the most important feature to observe, however, is the pres-

ence of an impulse at x — 0, at t a —2 h/c and at x — ±0.6 h, t — —0.6 h/c.

These impulses are acausal! We see that, indeed, we must impose causality

on with a gating function in (2.26). The residue series form for

the inverse kernel contains impulses in negative time which are acausal.

The effects of these pulses in a finite series become more pronounced with

increasingly negative time as one would expect from terms of the form

exp(s~t) with re s~ c 0. Other data not shown herein indicate that the

inclusion of second layer poles , whose real parts are more negative, causes

a very rapid blowup in negative time.

The physical interpretation of the negative time impulses is es—

sentially the same as that given for the transmission line in the preceding

section if we consider the additional effects of dispersion and radiative

loss in the antenna problem.

The negative t ime impulses in the S~N representation for the time

~domain Green ’s function affects the form of the coupling coeff icient in

the early time of the transient response of a scatterer. We discuss

this bearing in Section 2.5.3.

2.5 Relation Between Coupling Coefficient Forms and Asymptotic Behavior

2.5.1 Effect of closure time on the coupling coefficient

In Section 2.2.3 it is indicated that the so—called coupling coef-

ficient for the singularity expansion results when t is sufficiently
C

large that we can close the contour to the left in the Laplace inversion.

We now turn to the details of the interrelation between the asymptotic

form for the transform domain current solution and specific forms of

the coupling coefficient.
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We begin with (2.6), the expression for the current solution to

— an electromagnetic integral equation.

—— ‘.‘ _i~~j ~~~~~~~~~~~~ ~(~,s)) e
5t ds . (2.28)

CB

For the present discussion, we consider the incident field ~(~ ,t) to

be a plane wave with a time history f (t ) .  We restrict f ( t )  to have a

transform i(s) which is algebraic. Further, we consider object poles

alone. The concepts which follow are readily extended to include wave—

form poles and more general !(s). These restrictions are cast in the

interest of notational simplicity. A plane wave field may be written

in the time domain as

E(r ,t) — L~ f(t) * 5(t — i/c) , (2.29)

where is the polarization vector of the wave, ~ is~ a unit vector in

the direction of wave propagation and “*“ denotes convolution. This

representation has the transform domain image

~(~,s) — 

~~ 
i(s) ~~~~~~ . (2.30)

We use this expression in (2.6), change the order of integration between

the spatial and transform variables , and denote the spatial integration

explicitly to obtain

, t) ~~ j  j  ~~~~~~~~~~ 
~o e

_5
~~~

’/c i(s) e5t dsd~ ’ - (2.31)
Body CB
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The interchange of integration operators allows us to observe the

asymptotic behavior of the integrand. Were the spatial integral per-

formed f irst, the asymptotic behavior would be obscured in the process.

The- s—dependent terms in the integrand in (2.31) are the inverse

kernel, the exponential of the propagating incident wave, the trans—

form of the incident wave time history i(s), and the Laplace kernel.

The asymptotic behavior of is generally unavailable to us. The

propagat ing wave term and the Laplace kernel each have explicit ex-

ponential behavior. Thus, the algebraic behavior of i(s) and the

potential algebraic behavior of are dominated by the exponential

factors. This restricts our interest in the asymptotic behavior of

to exponential terms. Accordingly, we def ine asymptotic forms for
+C and C as

(a 
_sT

R(~
,
~~
’) 

+
- i~~~~R

(5) e s c C ,,
~~~~~~~~~~ 

~ 
—5TL

(r ,r’) — 
(2.32)

(,~
DL

d
L

(s) e , s € C

where the d(s) functions are algebraic and the are dyads which are

independent of s. The coefficients of s in these terms are dimensionally

equal to time. They depend on both r and r’, potentially, and might be

positive or negative.

We restrict attention to cases whe~e TL(r,r
’) < T~G,~~’) so that

pole information suffices in the representation for the Laplace in—

* version of

1-~
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For t > TL(r,r’) the integrand in (2.31) decays exponentially as

1 s f -
~~ ~ on C:~ 

the left—side closure of CB. For such t we close CB
with c: and a residue series results from the inner integral. For

t < T~ (r ,r’) -< T~G,~ ’) the integrand decays on C so that closing to

the right yields zero. In the dyadic notation of (2.12), we write

explicitly

s (t— ~~~’/ c)
j G, t) = f u [ t — ~~ ~‘/c — TL

(r ,r’)] 
~ 

B ~~(~‘)~~( s )  e ID

Body m 0

M (r) dr’ , (2.33)

where

(1, t > 0
u(t) =~~

t < 0

A bandlimited behavior in i(s) allows us to truncate the series at,

say, M terms in (2.33). Then with some rearrangement we have

M —sa ~ Bm 1 ~~ ~~~G’) e m u ( t  — . ~~~‘ — TL
(r ,r ’) ]  d ’

in Body

• N (~~) e
m 

. (2.34)

The integral factor is a “generalized” coupling coefficient

C 

—s
— f L~ ~ çG’) e u( t  — . 

~~~
‘ — TL

(r,r ’) ]  dr ’
Body

(2.35)
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Then (2.34) is written as the singularity expansion form

- -  N - - - a t
J(r ,t) — 

~ ~~~~ 
Bm flm~~~

t) 14 (r) e m (2.36)

There are two commonly used coupling coefficient forms which may be

interpreted as particularizations of the generalized form in (2 .35) .

Baum terms these as class 1 and class 2 coupling coefficients, respectively

(11 -

A class 1 form results by assuming

—
~~ ~‘/c + t ’ (2.37)

where t’ is some chosen “turn—on time” typically taken to be the arrival

time of the incident wave at the body. This results in the current

expansion

= u(t — t ’) ~ i(s ) B~ ~
(l) 

~~~~ 
e m 

, 

- 

(2.38)

where the class 1 coupling coeff icient is

—s(1) 
1 

~o ~~(~
‘) e d ’  . (2.39)

Body

- 
- 

It is notable that the assumed TL form is independent of ~ and yields a

coupling coefficient independent of both and t. For some applications
C

of SEN such as broadband equivalent circuit modeling, of distributed

structures ( 21] , this feature is useful.

4 A class 2 coupling coeff icient results when TL is taken to be zero.

Then a series in the form (2.36) results but with the coupling coefficient
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2 — — — —s
~(t) — I C (t ~’) e 15 u(t — ~ ‘/ c) d~ ’

Body

— — —s ~~~ ‘/c —
— f E~ C (r’) e dr’ . (2.40)

R(t) m

The integral over R(t), the “excited region,” is explained with the aid of

Figure 2.7. The effect of the unit step u(t — . 
~‘/c) in the coupling co—

efficient integral is to gate the integrand so that it contributes to r~~(t)

only over the part of the body at which the incident field has arrived. A

notable feature of the class 2 form is that it is time dependent. After

the leading edge of the incident wave has cleared the object, it takes on

a constant value identical with the class i. value.

To the best of our knowledge, previous workers in SEN have made their

choice of coupling coefficient forms without benefit of the asymptotic form

of the inverse kernel. In fact, the class 2 choice results from an assumption

that the inverse kernel has no exponential asymptotic behavior, i.e., TL 
— 0

as in the above. (An equivalent point of view is termwise integration of the

series.) The class 1 coefficient is a choice of convenience in the form of

time independent coupling coefficients. In the subsections which follow, we

explore some ways of reconciling coupling coefficient forms with their inverse

kernel expansions. -

~—12.5.2 Reuristic development of the asymptotic form of r — a
conservative coupling coefficient

The transmission line example developed in Section 2.3 gives ,us

insight because the asymptotic form of the transform domain Green’s

function is clearly discernible. In that example, there is some freedom

of choice in the left closure time because of the time interval during

which both the SEN representation and zero are valid representations of

- - the solution.
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Leading edge
- , ; • - of Incident wave

Figure 2.7. Representation of a scatterer showing the “excited region”
over which the illuminating wave has passed.
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The other example in our knowledge where the asymptotic form of

the SEN Green ’s function has been explored is in the loop [5]. For

the majority of SEN problems , which rely on numerical determination of

the component terms for the expansion, it seems unlikely that the

necessary asymptotic information will be directly available. In the

following paragraphs , we develop heuristically a useable form for the

asymptotic behavior and a new coupling coefficient form which results

from it. It is observed to be unnecessarily conservative for the

examples of the transmission line and the wire scatterer considered

in previous sections . But , because of its conservatism, it provides a

“safe” approach to new problems. The next subsection provides a nu-

merical test procedure for relaxing the conservatism to an appropriate

degree.

We consider the asymptotic behavior of the inverse kernel with

the aid of Figure 2.8. The object is represented in a coordinate system

with origin at 0. A source point is located at r a r ’ and an observa-

tion point at r r0. The vector ~ is a local surface vector at r ’

with unit components in two orthogonal directions in the local tangent

plane. At the observation point r0, the current on the body is repre-

sented by ~(~ 01t) in local vector components. Then if an excitation

— ~G’)~
( — ~‘)ô(t) ,

which is impulsive in time and space, is applied at the observation
C

point, we expect a temporal. response which departs from zero only for

t > — r ’f/ c. That is,

~c. 
41
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Figure 2.8. Geometry for discussion of asymptotic form of
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— — (0 , t -c —

J(r 0,t) —( 
—

~~ r0,t) , t > I~~ 
— r’f/c

with 1G0, t) — 0 only at isolated points in t.

By definition, !1 (r ,r’,t) is the kernel of a convolution relating

E(~,t) and ~(~~t) so that

3(~0,t) — L~ 
~~~~~~~~~~~ — t’), ~(‘)*5( — ~‘)~S(t’)) dt’

.

It follows that in the transform domain J(~~,s) and hence

must have an exponential factor to represent the time delay 1~~~~ 
— 
~‘I/c.

We write explicitly

- e 8I ~~~~~ Ik  
~~(~~~~‘,s)

and

- ~ d(s)e_ 9) r
~~ ~~~ f s~ .+ (2.41)

where is a dyadic function, d(s) is a polynomial in s, and D is a

dyad independent of s. This assumed asymptotic behavior implies a

closure time term of the form

C TL
(r ,r) — — Ir — r’I/c

in (2.32)—(2.35). Specifically, a coupling coefficient of the following

form results.
‘

-4

~cJt1
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~‘I/c] dr ’
Body

(2.42)

We term this a “class X” coupling coefficient. (An X—tra cautious one.)

Some observations are in order. First, the class X coupling co—

e1~ficient is dependent on both the observation time and the observation

point. This feature renders it more complex than either the class 1 or

- 

- class 2 forms discussed in Section 2.5.1. Second, the effect of the unit

step function in (2.42) is to enforce causality directly. This feature is

seen clearly in Figure 2.9 for the example of a thin—wire scatterer. The

figure represents the support of current induced by the incident wave at

two coupling points: x — L/4 and x — 3L/4. The coupling is from an

incident plane wave whose direction of propagation forms an angle of

60 degrees with the axis of the scatterer. Consequently , its velocity

component along the scatterer is 2c. The time sequence depicts the

wave arriving at the scatterer at t — 0, coupling at x — L/4 t — L/8,
progressing on at t — L/4c , coupling at x — 3L/4 t — 3L/8, etc. The

support for the current induced when the wave is at x — L/4 is depicted

as impulsive when the wave is at that point then propagating outwardly

at the velocity of light. A similar phenomenon is pictured for coupling

at x — 3L/4. -

A third observation is that this explicit enforcement of causality

may prove unduly stringent. For example , the resonant transmission

line problem in Section 2.3 led to a Green’s function with the asymp-

totic behavior

- (e
5 X ’t

~
’C in r.h.p.

G(x ,x’,s) -
~~ ~~ ~~— ‘ /X C 

, in l.h.p.

44

-- - -
~

___ - -s— - _ ~
- -. -. - . —-—— •---- - —a.-~~--- 

- — 
_ —•-- . — -~~~~~.• -•  

- ----•- - - -• . - - - -  — •-—- — --•- •~~~----~~—---— - -- -----------------



___ 
- .

~~~~~~—-• - --— - —.~~~~~~~~ _ - - - - -_ - - . . ,~~~~~ - - _ -“--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.4

Plane wave

I I I I (F

• XzO XzL/4 X’L/2 Xs3L/ 4 x:L

_________________________________________________________ 

ii
I I t s o

I I t s L / e c

I- ~~~~~~~~~~~~~~~~~~ 
,_ t s L/4 C

I t . 3 L / e c

I L / z c

Figure 2.9. Representation of the expanding of support of current
propagating away from source coupling at L/4 and 3L/4 as
a plane wave passes across a linear scatterer .
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i.e., different asymptotic forms on c and C so that there is a period

of time during which either closure of CB is valid. For this example

we can choose a left closure time TL — 0 and obtain a class 2 coupling

coefficient as in (2.40).

In the following subsection, we relate the function of the asymp-

totic closure time to the time domain inverse kernel. Thereby, we de-

termine tests which may be applied to the numerically expanded time

domain Green ’s function to determine what freedom is available in a

particular problem in choosing a closure time and concomitantly the

coupling coefficient form.

2.5.3 The purpose of the closure time in the time domain Green’s
function

In this section we present some numerical tests which may be applied

for any particular form to determine the acceptability of a given coupling

coefficient form. We develop these tests based primarily on insight into

the relationship between closure time and the time domain form of the

inverse kernel as expanded in a singularity expansion which we gain

f rom the transmission line and straight—wire scatterer examples.

To begin, we recognize the equivalence between the algebraic multi-

plication of the transform domain inverse kernel with the incident field

and the time convolution of the counterpart time domain functions.

That is, the transform domain form for 3G, t) of (2.6)

j(~,t) ~~ 3 f (~~l(~~;I~~) ~G’,s)) 
eSt ds

is equivalent to the time domain convolution
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L. (F~G,~’,t — t’), ~G’,t’)> dt’ . (2.43)

Any assumed asymptotic behavior applied in the inversion of (2.6) is

carried in (2.43) in the individual inversions of and E.

To illustrate we again call upon the straight—wire scatterer ex-

ample. Suppose that we expanded its response due to an obliquely in-

cident plane wave using a class 1 coupling coefficient. In Section 2.5.1

Equation (2.37), it is pointed out that the class 1 coupling coefficient

assumes an asymptotic form

- ~ e
5(t

~~~~~~
’
~
) 

,

where ~ is a dyadic constant. Let us consider a configuration like

that in Figure 2.9 and take the turn—on time t’ 0, the time at which

the incident wave first impinges on the wire. The class 1 assumption is

~—l ~ e
s
~~
rk , in l.h.p.

The extreme value of ‘ in the spatial inner product is ~‘j  — L. In

this extreme by using the class 1 coupling coefficient, we effectively

gate the singularity expansion of !~~~~ ,~~‘,t) with the unit step

u(t + ~ ~‘/c) with ‘ I  — L. This requires that the singularity cx—

pension manifest causal behavior for all t > —~~ r’/c. In the 60 degree

incidence example, this translates to t > —L/2c .

A reference to the plotted singularity expansion of

for the wire given in Figure 2.6 indicates that the required behavior

is not present. There is an acausal impulse at — Ix — x’I/ c so that

the required clear time is not present for all observation points on

L_ _ _ _
,_ 
1 ~~~~~~~~~~~~~III~~~~~~~TI~~~~ _ _



the wire. On the other hand, the class 2 coupling coeff icient, which

assumes that has no asymptotic exponential behavior, i.e., it is

algebraic, dictates a required causal behavior in the expansion for

t >0. We observe from the figure that this is the case within the

frequency and numerical error limitations of the expansion.

Tesche (22] has attempted to use the class 1 coupling coefficient

without success on the thin wire. The results which he presents in

(7],[13] indicate that the class 2 coefficient form is satisfactory .

Wilton and Umashankar have experimented with both forms on the L—wire

scatterer as in [5]. Their experience has been similar to Tesche’s

with regard to the success and failure of the forms (23]. This experience

is consistent with the theoretical evidence herein.

This illustration suggests a test which may be applied in the time

domain to determine the appropriateness of a given coupling coefficient

form to a particular problem. Corresponding to any coupling coefficient

form is an assumed asymptotic behavior for the transform domain inverse

kernel. This asymptotic form in turn implies a tum—on time for the time

domain inverse kernel. For specimen source and observation points , the

time domain inverse kernel can be numerically expanded in the manner of

Section 2.4. By observation, one can determine whether or not the turn—on

time associated with the coupling coefficient in question and the observed

time domain inverse kernel are consistent with causality. Stated as a

C 

“recipe”

- - 
A. Analytical steps 

-

1. For the particular coupling coefficient to be tested , discern

the support of the integrand in the coupling coefficient inner

48
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product, e.g., u(t — t’) as in (2.38)—(2.39) for class 1,

u(t — 
~‘/c) in (2.40) for class 2,

u(t — ~~~
‘ — I~ 

— r’f/c) in (2.42) for class X.

2. Translate the unit step argument into the left—half plane

asymptotic form which it assumes, i.e., exp (sA) , where A is the

argument of the unit step. For class 2 plane wave excitation

this is

a e5t —s~~r / c  (~e
0)

3. Factor out the e8t Laplace kernel and the incident wave

asymptotic behavior. For class 2 this takes care of both factors

above. The remaining term — e° above — is the assumed asymptotic

behavior of the inverse kernel implicit in the coupling coefficient

form. The exponent of this exponential is —s times the implicit

‘ turn—on t ime of the time domain inverse kernel.

B. Numerical steps (assuming that poles , modes , etc., are known)

1. Pick some specimen observation/source point pairs representing

extreme cases (e.g., maximum separat ion on the’ object) and the

transition in between.

2. For sources impulsive in time and space, expand the time domain

inverse kernel in the manner of Section 2.4.

3. Observe the “clear t ime” in the time domain kernel prior to

the arrival of the first causal disturbance. In particular,

note the dependence of this time on r and r’.

C. Compare the required clear time with the turn—on time determined in

Step A3. Does the inverse kernel provide clear time between the turn—

on t ime implied coupling coefficient and the first causal disturbance?

49
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If the answer to this question is “No,” then a more conservative coupling

coefficient must be used. The class X coefficient developed in the

preceding subsection is highly conservative since it imposes causality

directly. The class 2 coefficient is somewhat less conservative be-

cause it reqj4res a clear time from t — 0 to the first causal disturbance.

Experience in using it on many problems corroborates its usefulness,

however. The class 1 coefficient should be used only with caution.

It assumes a clear time o~ —LIc , independent of r ,r’, where L is the

maximum dimension of the object.

A second potential test procedure on a coupling coeffic-ient form is

simply to compare its results with the conservative class X~ form . One

must be cautious to include representative incident angles and spectra

of the excitation in conducting this test, however.

The Step B3 above is the point at which one must exercise proverbial

“engineering judgment.” Obviously, in dealing with graphical data such

as those in Figure 2.6, the decisions are not clear-cut. We use the

qualitative plot of a time domain inverse kernel in Figure 2.10 to point

out the features which one might expect in such a plot. Hopefully,

the most prominent feature will be the expected causal disturbance ar-

riving at t = — 

~‘I/c . The clear time region, if present , must be

an approximation to a zero—weight distribution. In Figure 2.10 we see

depicted oscillations which are significant in magnitude compared with

the proper disturbance. We note, however , that the waveform with which

this function is convolved varies slowly compared with these oscil-

lations if it is bandlimited appropriately for the number of poles used .

Thus , in an approximate sense, these ripp les cancel among themselves
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Figure 2.10. Qualitative representation of a time domain inverse
kernel plot showing the principal features which have

C bearing on the applicability of the kernel.
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in the convolution. The acausal region of the distribution may be marked

by one of two features: either a prominent disturbance prior to

t = — r’l/c or a “blowup” of the expansion. This blowup is expected

at some point in negative t ime , because in negative time, the real parts

of the exponents in the series are positive (the result of the negative

real part of the pole times a negative time).

Another breakup of the representation to which one should be sen—

sitive in studying r is that which is expected from attempting to

apply the SEN method at too high frequencies . That such a breakup is

expected is based on the following reasoning. In the dyadic representa-

tion for the time domain inverse kernel on the wire scatterer, for ex-

ample, -

= 

~ 
8m 

e m 

~~~~ 
J ( x ’) .

To a first approximation, the function of the spatially dependent factor

‘
~m~~~ 

Jm
(x ’) is to delay a pulse in time by a time Ix — x’I/c , viz.,

if at the observation point x’ a x

N S t
r~~ (x,x,t) = A e m = f(t)

m—O

at a point separated from the observation point

M —s I x—x ’ I/c s t

r~~(x ,x ’, t) f(t — Ix — x’I/c) — 
~ 

A e m 
e 
m

m 0

It 1~c seen that if H is increased , the factors exp(—s fx — x’I/c] grow

since Re becomes more negative as m increases . Further , the larger
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a pole in magnitude , the more subject it is to numerical, error . This

error is magnified due to the exponential dependence on the This

error will manifest itself as a blowup in the oscillations in the

clear—time region of the inverse kernel. The net effect is a numerical

limitation on the time resolution relative to body size in a given SEM

solution.

2.6 Conclusions -

In this chapter we present the fundamental formalism of the singu—

larity expansion method. Well—known theory relating the asymptotic

behavior of a function in the transform domain and the support of its

inverse in the time domain is brought to bear on the SEM formulation.

The significant conclusions are summarized in the following list.

1. The support of the time domain inverse kernel to an electro—

magnetic integral equation is dependent on the asymptotic

behavior of the transform domain form of the inverse kernel.

This asymptotic behavior, and hence the support, depend, in

general, on the source and observation points.

2. The dependence of the support on the source and observation

points affects the coupling coefficient form applicable to

the formulation for a particular problem.

3. In a numerically treated SEM problem, we have only a limited

- amount of pole data available. These data are adequate to

• form the components of an approximate solution by way of the

transform domain inverse kernel. It is not adequate to pro-

vide asymptotic behavior of the inverse kernel.
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4. We must turn to other information in order to gain this asymp-

totic information which is necessary to construct correctly the

time domain SEM solution, in particular , the coupling coefficients.

5. The observation of a numerically computed time domain inverse

kernel allows us to choose a coupling coefficient form consistent

with causality. . -

By example , it is seen that for at least one problem , that of a straight—

wire scatterer, direct application of the class 1 coupling coeff icient form

introduces acausal contributions into the solution. This observation is

consistent with the experiences of Tesche and of Wilton and Umashanker in

attempts to apply class 1 coefficients to numerical SEM solutions (22], [23].

Further , Van Blaricum and , independently, Poggio have observed that in

applying Prony’s method to electromagnetics an exponential series alone

cannot describe the time dependence of observed waveforms while the driving

field is present (24], [25]. This observation, in effect, recognizes a

breakdown in the class 1 coupling coefficient SEM form for these problems.

The class 1 form relegates all time dependence to the exponential factors

in the singularity expansion. It indicates that other t’rms in the

representation must indeed be time dependent. This too, is consistent

with the observation in this chapter that , at least for some problems, a
- ‘I coupling coeff icient which varies with time during the passage of the

incident wave is required. A second potential source of the additional

time variation is an entire function contribution during the passage of

the wave.

The discussion in this chapter is based on the objective of writing

the SEM representation for a t ime domain solution in terms of the residue

series alone. We observe , by example , that for some struc tures , the class 1
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coupling coefficient introduces an acausal contribution to the solution.

Baum [1 ] observes correctly that in the Mittag—Leffler representation for

a meromorphic function an entire function with zeros at the poles of r

may be added and subtracted so as to modify the asymptotic behavior of the

pole series portion of the representation. The class 1 form results for

the series by such a manipulation, viz., from (2.9) and (2.13) write

— 

~ ~~~~ 
— 

~~~~ 
MmG) CmG’) + ~~ ‘G,~ ’,s) , (2.44)

where ~~~~~‘~‘ is an entire function in s. Then add and subtract an entire

function with zeros at a — s to obtainm

- 
— , 8 (t’—~~r’)

T1(~,~ ’,s) — e 5(t —p .r ~ I 8m
(S — 

~m~~
1’ 
~ 
m M ( x ~) C

m
(T’)

+ r
~
,(r,r’,s)

— ~
_‘l
(~~~’ s) + ~~~~~~~~~~~~ , (2.45)

where 
~e’ 

is the modified entire function. Now ~~ ‘G,~
’,s) is a unique

- 

- function and its asymptotic form is the same whether it be represented

by (2.44) or (2.45) . However , if we invert the product of

(~~
“(~,r’,s), E(~ ’,s)) from (2.45) we have the superposition of the

series contribution and the entire function contribution. Then, treating

the series inversion termwise, we effectively have introduced the class 1

s asymptotic exponent , TL 
— • ~~‘ + t ’

, to each term in the series.

Thus, a class 1 form results for the series in the time domain:

— ~~G, t) + 

~e
tG,t) (2.46)
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with Y.~ a current expanded by the class 1 expans ion of (2.36) and (2.39) .

The examples of the transmission line demonstrate that J
~ 

potentially

includes acausal contributions. Therefore, the manipulation between

(2.44) and (2.45) necessarily introduces a contribution in J
e,(r,t)

which cancels the acausal portion of L~. The following one—term example

illustrates the principle. Let

- 1 s
Otf(s) = •4—~’ f ( t) u (t) e . 

-

s — S O

- 
- 

- The partitioning below results in a sum form:

—T0
(s
3-s) / r —T0(s0—sfl /f( s )  = e / (8  — + 1, — e J/(s — .

The second term is an entire function. Termwise inversion of this ex—

pression yields

S t  s0t sotf(t) — u(t + T
0

) e — e (u(t + T
0

) — u(t) ]  — u(t) e

In this example f( s)  is the transf orm of a “causal” function. Modifying

the asymptotic form pole term allows the premature application of its

inverse transform but at the expense of an additive canceling term.

By considering the net asymptotic form of r (r,r’,s) as in the

preceding sections, we obtain a time domain representation involving

only a pole series but with a coupling coeff icient of the class 2 or

class X type which is time dependent. By partitioning the asymptotic

behavior between the series and entire functions as in (2.45), we gain

a class 1 pole series form at the expense of a required entire function

to cancel any acausal behavior present in the class 1 pole series.
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3. DETERMINATION OF T}~ SEM REPRE SENTATION
FOR A RECTANGULAR APERTURE

3.1 Introdu.ction

This chapter describes the numerical determination of the SEN quantities

of poles, natural modes, coupling vectors and normalization constants.

The determination is based on a method of moments numerical solution to

the integrated E—field integral equation form for the dual problem of a

rectangular plate (3]. These coupled integral equations have a form

counterpart to the Ha],l~n integral equation for a linear antenna.

In Section 3.2 we develop the integral equations for the problem

for complex frequencies and develop the symmetry relationships which

exist between the natural modes for the problem. The symmetry provides

a significant computational benefit in the numerical solution of the

integral equation.

- ~.. Section 3.3 describes the iwmerical solution procedure based on the

method of moments used in solving the integral equations. Other more

routine computational considerations are discussed there, too. In

attacking a two—dimensional SEM problem numerically, it is essential

to be mindful of computational efficiency.

Section 3.4 presents the results of some numerical checks used to

validate the solution procedure and the programming thereof. These

checks include convergence studies for the poles.

- Section 3.5 describes the polf search strategy used in obtaining

the SEN data for the aperture. The use of argument number in pole lo-

cation is discussed from an applications point of view.
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3.2 Thin—Plate Integral Equation Formulation for Complex Wavenumber

- — 3.2.1 The integral equations for complex frequency

R.ahmat—Samii and Nittra (3] give an integral equation formulation

for the rectangular plate subject to time—harmonic excitation. Their

results may be directly extended to the complex wavenumber case. That

is, for the geometry in Figure 3.1 with exp(st] time dependence,

s — a + ju complex, and an incident plane—wave magnetic field component

— [H~~u~ + H~y~y + H~~~~~~~~~~~~ ] ex~ (s~ i/c], the following coupled

integral equations result:

L/2 w/2 (i (x ,y)’~l (H ~~
••1~

f J ~ X 
~> K(x ,ylx ’,y ’) dx’ dy’ — J.~1!S~’ ° exp(s(p

~
x + p y)/c]

-L/2 -w/2 ~~~~~~~~ ~z ~~H J

+ 

~~~~~~~ 
Cn(j~~~ exp (j(n + l)~~~~ ]

+ () j~~~ exp(j(n - l)+] J (-jsp/c)] . (3.1)

The kernel is given by

I

’ 
K(x ,ylx ’,y ’) — exp (—sR/c]/R (3.2)

with

R - [(x - x’)2 + (y - y~)2]U2 .

The propagation is in the direction of the unit vector ~~. The J~ (x~y)

1L~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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and .J
y

(x,y) denote the respective x and y components of current on the

plate; J~(~) denotes the Bessel function of the first kind; Cn 
are un-

known constants; c is the velocity of light; and (p,~) are the polar

coordinates for the point (x,y).on the plate. Equation (3.1) holds

for x c (—L/2,L/2) and y c (—w/2,w/2) , and z — 0.

It is pointed out that the two integral equations represented by

(3.1) are coupled through the C~ in the sutmiation in the right—hand side.

This summation is simply a Bessel function expansion of the homogeneous

solution to the wave equation which occurs in the derivation of (3.1).

The current solutions to (3.1) satisfy the Meixner’s edge condition

(2]; namely,

— d), y] ~ d1”2

j  [±(L/2 - d), y] + d~~~
2

d + 0  . (3.3)

.J
~ 1x ,± (w/2 — d)]  + d~~

12

J
7

[x ,± (w/2 - d)]  + d~~
2 

-

The first and fourth of these require that the normal component of cur—

rent vanish at the edges of the plate . It is convenient to enforce

these conditions directly in the numerical procedure as a means of eval—

uating the constants C~ . This procedure is described more fully in

Section 3.3.

3.2.2 symmetry conditions for the natural mode currents

The natural frequencies of (3.1) occur when the complex frequency

a is such that there are nontrivial and 3~ and the accompanying C~
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which satisfy (3.1) for — 0. - Such i
x and J

y 
solutions are natual mode

current solutions for the rectangular plate, and the concomitant value

of s is a pole of the plate. The vanishing of incident wave dependence

gives rise to- symmetry in the integral equations. By discerning the

symmetry relations a priori and bringing them to bear upon solution pro-

cedures , one gains significant computational savings in the numerical solu-

tion for poles and natural modes.

The excitation—free form of (3.1) is

L/2 /2
1 7 ~~ K(x , y f x ’ ,y ’) dx ’ dy’ — ~ cjf~ exp (j(n + l)~~~~] J~~1

(—jsp/c)
-L/2 —w/2 -~~

exp(j(n - l)$] 3n_l jsp/c~ (3.4a)

and

-~/: 
f 3~, K(x ,y~x’,y’) dx’ dy’ — 

~ ~~~~~~ 
exp(j(n + l)~~] 3~~1(-j sp/c)

- ~
n_l exp (j(n - l)~ ] 3n 1

By using the symmetry of the Bessel function with respect to order,

expanding the exponentials by way of Euler’s identity, and appropriately

adjusting the indices, one arrives at the following equations after

some manipulation.

L/2 w/2
f f 

~ 
K dx’ dy’ — ~ 

{
~n+l d (cos(n + l)$ J~~1(~jsP/c)—L/2 —w/2 n—0

— Un_l cos(n — 1)~ Jn_i(~
jsp/c)J — f d (sin(n + l)~ in+i

(_ jSp/c)

. - un_l sin(n - l)~ J~_1(-jsD/c~ (3.5a)

61

k _Ir--- -

~~

- - -- - - - - - - - 

~~~~

- 

_
—-j -—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.4



-~~~~~~~~~~~~----—- - ---------- -

and

L/2 w/2
f f 3 K dx ’ dy ’ a ~ j

fl+l d+(sin(n + l)~ i~~1
(—jsp/c)

—L/2 —w/2 ~‘ n—0

+ Un_l sin(n — l)$ Jn_i(_ jsp/c)] + j
n 

d~ (cos (n + l)~ J~~1
(—jsp/c)

- + un_i cos(n — l)+ J~_1(— jsp/c)] , (3.5b)

where

+
d — C  ± Cn n -n

and

rl, n > O
U
n = \~ n < O

It is noted that the d~ multiply terms containing cosine functions in

the ix equation, while they multiply terms containing si-te functions

in the 3 equation. The situation is reversed for the C.y n
Because of the syrmetry properties of the kernel, the integral

operator on the left—hand sides of (3.5) produces a function whose

symmetry character is identical to that of the current on which it

operates. Then, for a given current syimnetry , only par t of the d~ on

the right—hand side may be nonzero because of the sy~~etries possessed

by the trigonometric terms . Thus , the respective symmetries for

and 3 , which are compatible, and the surviving terms in the right—side

series may be discarned by (1) postulating a symmetry for J~ , (2) deter-

mining from (3.5a) which right—hand—side terms survive so as to be
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compatible with the 3~ s~~~etry, (3) observing in (3.5b) the variation

of the terms in the right—hand side which have nonzero coefficients,

an~ (4) determining the Jy symmetry conditions from the symmetry ob—

served in the right—hand side and thus compatible with the postulated

~~ symmetry conditions .

For example, if is syimnetric with respect to the y—axis and

antisymmetric with respect to the x—axis, only sin(n + l)~~~ terms with

n even are compatible in (3.5a). Thus, only C, n even, may be nonzero.

In the right—hand side of (3.5b), the coefficients multiply cos(n + l)$

te rms with n even. These cosines sum to functions which are antisymmetric

with respect to the y—axis and symmetric with respect to the x—axis.

Stated mathematically, if

— J~ (-x ,y) (3.6a)

and

- 
I 

J~ (x ,y) — _J
~ (x,_y) , (3.6b)

then

d+ — 0, for all n , (3.6c)

C — 0, n odd , (3.6d)

and

J ( x ,y) — —J (—x,y) (3.6e)

J ( x ,y) - J~ (x~-~) . (3.6f)

63
“ - I

I.

________ ________
--~~~~~~~~~~

•__
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -
_- 

~~

—

~~~

- -  - -

~~~~

--- — - - - - - - -

.—~~~~~~~~~ ——.—-----—--.--.---



- ~~~--~~~~~ —— . 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - ~~~~~~~-~~~~~-

These vector symmetries are in accord with the general symmetry relations

given by Baum (27]. The information in (3.6) may be used to reduce the

complexity of the integral equations (3.4), viz., by (3.6a,b ,e,f) the

range of each integration may be halved while by (3.6c,d) the zero terms

of the right—hand side are known a priori:

L/2 w/2
I I ~~ 

~
_+
(~ ,y~~ t ,y t) dx’ dy’ — ~ d; j

n
~
l(sin(n + 1)~ .i~_1

(_ js~ /c)
0 0  

- 
n’O

n even

— sin(n — l)$ 3~_1 j5~~~~] (3.7a)

and

L / 2  w/ 2
f f 3 K+ (x ,y~x ’ ,y ’) dx ’ dy ’ = ~ j~~~~

1 d~ (cos (n + l)~ J~~1
(—jsp/c)

O 0 n 0
n even

+ cos (n — l)~ J~~1(— jsp/c)] (3.7b)

where

K
+_

(x ,ylx t ,y ?) — K(x,ylx ’,y ’) - K(x,y~—x ’,y ’)

+ K(x ,yjx’,—y ’) — K(x ,y~ —x ’ ,—y ’) (3.8a)

and

I

—+  , , , I ,
K (x ,y~x ,y ) K(x ,y~x ,y ) + K(x ,y -x ,y

— K(x , y j x ’ ,—y ’) — K(x ,y~—x ’,—y ’) . (3.8b)

For subsequent reference
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.4.4. , , , ,
K (x ,ylx ,y ) — K(x ,y Iz ,y ) + K(x ,y~—x ,y

+ K(x ,ylx ’,—y ’) + K(x,yI—x ’,—y ’) (3.8c)

and

K ( x , y j x ’ ,y ’) — K(x ,y j x ’ ,y ’) — K(x ,y~—x ’ ,y ’)

— K(x , ylx ’ ,—y ’) + K(x , y I — x ’,-.y ’) (3.8d)

are defined as well. Equations (3.7) are enforced for z — 0, x c (O ,L/2)

and y c (O,w/2).

Table 3.1 summarizes the four symmetry cases which are derived as in

the foregoing discussion. By means of this table, four integral equation

pairs can be constructed in the spirit of (3.7) by replacing the kernels

in (3.7) with the appropriate kernels from the table and retaining only

the nonvanishing terms in the series expansion.

Figure 3.2 depicts qualitatively the respective modal current dis-

tributions for the lowest frequency natural resonance exhibiting each

symmetry. -

3.3 The Numerical Model

3.3.1 Discretization of the integral equations

The integral equation pair of the form (3.7) for each of the four

symmetry cases can be discretized by the method of moments. In the

work reported here, two—dimensional, subsectionally constant expansion

functions were used with collocation testing. The zoning scheme is

represented in Figure 3.3.

The unknown currents J~ and J~ were expanded in piecewise constant

functions as in [3] with subsectioning of the form given in Figure 3.3.
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Figure 3.2. Lowest—order natural mode current pairs for each of the
symmetry cases , (a) 3x symmetric w.r.t. x—axis and sym—
metric w.r.t. y—axis, (b) symmetric—antisymmetric ,
(c) ant isysimetric—symmetric, and (d) antisyinmetric—
ant isyinmetric .
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Figure 3.3. Subsectioning for the discretization of the integral equations.
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Notice that half—width patches are used at the edges of the pLa te so

that match points lie precisely on the edge of the plate. The half—

width pulse has proved useful in realizing the actual electrical size

of a body in one—dimensional problems (28] .

The boundary condition — 0 must be enforced on selected patches

at the edge of the plate as discussed in (3]. Concomitantly, only as

many d~’s are retained in the right—hand—side summation in (3.7) as

there are current values preassigned to zero. The shaded patches in

Figure 3.3 indicate the selection of patches where a current component

is preassigned a zero value. At the corner patch, both components are

preassigned zero values. By assigning one match point per expansion

patch and by retaining one series expansion term for each current value

preassigned in each of the two integral equations, we obtain a square

system of linear equations. The truncated summation is taken to the

left—hand side so that a homogeneous system results. The matrix organ-

ization used to represent these equations is given by the partitioned

matrix equation —

I~3 C a ] -

M (x) 3 — 0  . (3.9)

[~ ] [x7~s~
J

The symbols are as follows. The matrix [MX] is the moment matrix for

the ix 
integral equation as given in (3.7a) but with the kernel sy etry

appropriate to the mode symmetry for which an individual solution is

being conducted. The matrix (M
7
] is the 3~ moment matrix as in (3.7b)

with the kernel symmetry compatible with that of the kernel. The
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coupling enters through (M
E]. This matrix is formed by the negative of

sine—Bessel function products on the right—hand sides of (3.7a,b) which

survive under the symmetry considered. Sufficient terms are taken in

the series to render a square system after entries for the edge currents

which are preassigned to zero are deleted from moment matrices.

In using this integral equation in the real frequency domain ,

Rahmat—Samii and Mittra experienced a numerically unstable matrix if the

zero current edge condition was enforced at every zone on the edge

of the plate. This difficulty was attributed to redundancy in the

imposition of the boundary condition and was corrected when the con-

dition was enforced only for every second or third zone at the edge.

The edge current zones in between which were left undetermined attained

a value of :ero within limits of numerical error in the course of the

numerical solution.

The procedure of preassigning currents at preselected edge zones

proved to fail when it was applied in the SEM pole search in the comp~lex

s—plane. It was observed that the moment matrix had zeros in the corn—

plex plane whose associated homogeneous solution did not approximate

zero for the zones in between specified patches. The procedure of spec-

ifying at every edge zone that the normal current component vanish

provided physically consistent solutions.

The matrix in (3.9) is a function of the complex frequency s.

An SEM “pole” or complex resonance occurs when this composite matrix

• has a zero determinant. It follows directly from the analyticity of

the kernels of the original integral equations (3.2) that the determinant

is an analytic function of s throughout the whole of the complex s— 
-
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of equations provides an efficient algorithm (29] for systematically

searching for the values of s for which the determinant vanishes .

Many evaluations of the determinant are required in the course of the

iteration to locate a zero. This places a premium on computational

efficiency in the evaluation of the matrix and its determinant. The

next subsection discusses the means taken to attain computational ef-

ficiency.

3.3.2 Algorithmic considerations in evaluating the system determinant

Some considerations taken into account in generating the system

matrix and evaluating its determinant efficiently are discussed in this

section. Since these two operations must be repeatedly carried out for

many values of s in the course of determining the natural frequencies of

the plate, it is essential that clean, efficient computer programming

- - and coding be used so that execut ion of the program will be affordable.

The volume of code in the algorithms is conaLstently comp romised toward

a larger size in order to meet the following two time—efficient objectives :

1. Avoidance of calculating the same quantity twice; and

2. Avoidance of logical decisions, particularly those which might

be imbedded in loops.

The program is discussed in the context of the following major

segments:

1. Computation of an “interaction matrix”;

• 2. Construction of the nonzero submatrices of the system matrix

from the interaction matrix;

3. Computation of the series terms’ submatrix; and
II-

4. Determinant evaluation.

- 
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The major contribution to the elimination of redundant calculations

is the one—time computation of an “interaction matrix” which is made up

of the individual kernel integral terms from (3.2) for all argi.~~nt

combinations which occur in the computation. The subsequent program

step then picks , by subscript , entries from this matrix and constructs

the appropriate kernel from one of Equations (3.8) according to the

symmetry conditions being solved. This procedure can be viewed in terms

of the layout given in Figure 3.4a. The terms in the interaction matrix

are those evaluated for the match point as shown in the lower left

with the source patches indexed over the entire plate to generate the

matrix . Thus , all geometric relationships which occur in the kernel

terms are encompassed in the calculation. Note that all source patches

are full patches for this calculation. The effect of half patches at

the edges is accounted for by weighting by a factor of 1/2 the edge

contributions. The kernel integral appropriate to the syimnetry is

constructed by summing with correct signs the appropriate elements from

the matrix. Figure 3.4b gives an example of the four source patches

entering into one kernel integral.

Differing degrees of sophistication are required in the calculation

of the interaction terms depending on the spacing of the patches for

which an interaction is being calculated. For the self patch, i.e.,

the patch in which the match point resides , the integration of the kernel

must be performed analytically because of the integrable singularity in

the kernel there. For the patches adjacent to the patch containing

the match point , the kernel is a rapidly varying but well—behaved func—

tion. The integration over these patches is evaluated numerically by

a polynomial approximation. For patches further separated, the kernel
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is slowly varying and the integral is evaluated approximately as the

product of the value of the kernel at the center of the patch and the

area of the patch.

Some minor time economy is achieved in the matrix filling algorithm,

which is a four—dimensional loop . The economy is found in the form of

decision—free indexing, that is, the source contributions from interior

patches , from lx i — L/2 edge patches, from i~~l 
— w/2 edge patches , and

from corners take on different forms. Rather than index over all source

patches with logical decisions implemented to discriminate among the

four cases above , four different loops are used.

The computation of the series term submatrix is relatively straight—

forward. Because the Bessel—trigonometric products appear in two terms

each , they are all precalculated and stored in a vector. The individual

terms are then constructed from them . -

The determinant evaluation profits significantly from an exploitation

of the sparseness of the matrix. Either of two approaches may be taken

to the sparse matrix manipulations. One is to separate the matrix

algebraically and calculate an inverse as a composite of inverses of

terms involving the submatrices. The alternative approach is to attack

the matrix directly with Gaussian elimination exploiting the sparse-

ness directly in the algorithm. The latter approach was chosen for the

present purpose because it is judged to be slightly faster computationally

and because in order to determine natural mode solutions for the SEM

formulation, the homogeneous system of equations occurring at a pole

• 

- 

must be backsolved.

I
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3.3.3 Numerical evaluations of natural modes, coupling vectors,
and normalization constants

In addition to the poles, the associated coupling vectors and

natural mode vectors defined by (2.11) and the normalization constants

defined by (2.13) form the SEN description of a given problem. In a

method of moments solution, these are calculated in a discretized

fashion and are “one—time” calculations for each pole. We need not be

quite so mindful of computation costs as we are in the matrix/determinant

computation which is used iteratively.

The natural mode computation is a straightforward one once a pole

is located. The Gaussian elimination with maximum pivoting used to

calculate the determinant in the course of pole location results in a

triangu]arized matrix which has a zero in the lower—right position when

a zero determinant is computed. Thus , the last triangularized matrix

upon return from the zero search iteration may be backsolved by assigning

a value to the last element in the vector of unknowns and then backsolving

the system of equations systematically. The present work applies this

procedure using the sparse matrix format so as to be compatible with

the determinant evaluation algorithm discussed above.

The coupling vectors are found in a similar manner except that the

transpose conjugate of the moment matrix must be triangularized and

backsolved for the adjoint solution. The transpose conjugate is that

of Equation (3.9). The benefit of sparseness is not as great for the

transposed form because the coupling there appears in the lower rows

of the matrix. The moment matrix can be recalled from storage or re—
‘I

computed and the transpose conjugate formed in the composite format

of (3.9). This matrix is triangularized and back.solved with elementary

routines.

- 
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The normalization constant in (2.13) is computed from the s—derivative

of the moment matrix at the pole and the vectors already computed. The

s—derivative may be formed by analytical differentiation of the matrix

components directly . This amounts to forming the matrix elements as

before with the kernels and Bessel functions replaced by their s—derivatives .

The double inner product in (2.13) becomes a straightforward matrix—

vector product in the method of moments formulation.

3.4 Numerical Checks and Convergence

3.4.1 Pole convergence in the thin-strip limit

Initial tests on the accuracy of the model were made for a rectangular

strip with a shape ratio w/L — 1/10. Such a strip has an approximate

equivalent dipole whose diameter—to—length ratio is 1/b r.

Figure 3.5 gives the results of pole determinations for the first

two poles for various numbers of pulses in the expansion of the current.

The strip was zoned with one pulse across a quadrant. The numbers in-

dicated in the figure are NX,the numbers of pulses along the longitudinal

direction of a quadrant. The differences are small for increasing

numbers of pulses. The NX 6 results for the second pole show some

departure from the trend established by the results for NX — 4 and NX — 5.
This is attributable to the fact that the matrix is on the brink of

numerical instability for NX — 6. The results for NX — 7 , which are not

shown, are observed to be meaningless because of the instability manifested.

For comparison purposes , the first two poles for an equivalent

cylinder (one whose circumference equals the strip width) are given as

computed by Tesche (14]. The equivalent radius taken is, of course , an

approximation . The comparison is observed to be favorable ,within the

expectations concomitant with this approximation.

1. 
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Figure 3.5. Calculated pole locations for thin strip for varying numbers
of zones in the x—direction (cylinder results from Tesche (6)).
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3.4.2 Pole convergence for larger aspect ratios

The thin—strip tests on convergence, of course, tell us very little

about the formulation for apertures of larger aspect ratios. The trans-

verse component of current is quite small on the strip , and the trans—

verse variation of the longitudinal component is not significant over

the small electrical width of the strip .

Figure 3.6 provides some insight into the convergence of the poles

for a range of aspect ratios for several zoning densities . The pole

trajectory is for the second ++ (w.r.t. .1) in the “layer” nearest the

imaginary axis. We note that wL/c7r — 3.0 corresponds to a 1—1/2

wavelength structure so that a density of five zones per L/2 pulses in

the first quadrant is equivalent to 6.67 pulses per wavelength.

The convergence of pole locations for larger aspect ratios was

tested by comparing those obtained with A x 4 zones in the first quadrant

with those computed with 5 x 5 zones. The comparisons are shown as

the solid and dashed lines,respectively ,in the “loop” region. The

aspect ratios are shown as decimal fractions. We observe excellent

agreement in the two trajectories. The error at w/L = 1.0 is 1.16 per-

cent of the magnitude of the poles.

In following a pole trajectory , it is desirable to use the same

number of zones insofar as possible so that a smooth trajectory is

determined. This is not always possible for smaller aspect ratios

because of numerical instability problems inherent in over—dense zoning.

The continuation of the 4 x 4 zone trajectory is shown down to w/L — 0.3

in Figure 3.6. For aspect ratios smaller than 0.3, numerical instability

besets us and the trajectory cannot be determined. In practice, the

numerical instability may be manifested in one of two forms : either
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a failure to converge in the pole search or an abrupt “tailing off” in a

smooth trajectory . The former manifestation forced the termination of the

4 x 4 trajectory. The latter is evident in the 4 x 3 trajectory plotted .

The filamentary dipole pole, which is at sL/cr = j 3.0, is the limiting

point for this trajectory, and the 4 x 3 result is clearly departing from

this. The 4 x 2 trajectory is seen to be consistent with the correct

behavior. Therefore, in steps of 0.1 in aspect ratio, we might choose

the 4 x 4 trajectory between 1.0 and 0.3, the 4 x ~ point for 0.2, and

the 4 x 2 point for 0.1 to obtain a smooth , physically consistent tra-

jectory.

This strategy -was followed in obtaining the pole trajectories

given in the next chapter. Namely, use 4 x 4 zones beginning with the

larger aspect ratios on a trajectory; follow the trajectory as the

aspect ratio decreases , reducing the transverse zoning density only as

much as necessary to obtai a smooth physically consistent results.

Another divergence phenomenon is encountered in tracing the pole

trajectories for —+ and —— modes. We observe that these modes are

antisyimnetric in the narrow direction on a thin strip. Thus, these

symmetry conditions impose 180 degree phase opposition upon closely

spaced currents on the thin strip. We might anticipate an instability

in the integral equations themselves for these modes in thin strips.

(This instability is the counterpart to that which one encounters when

solving two parallel linear antennas which are closely spaced.)

Instability does appear in these solutions. Its manifestation is

that for thin strips with the ~Qngitudinal component of current

80
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ancisymmetric in the transverse direction the pole search converges,

but the point to which the algorithm converges is weakly dependent

(within a few percent) on its starting point. In addition, the pole ’

values obtained depend strongly on the number of zones used. This zone

dependence is evident in Figure 3.7. The result is that none of the

—+ or —— trajectories are determinable by the present means for aspect

ratios of below 0.2 or 0.3. The dominant current component is anti—

symmetric in the narrow direction, however. This results in weak coupling

of these modes for smaller aspect ratios so that they are generally

negligible.

3.5 Pole Location Strategies

The basic pole location method used -in this work was the Muller

iteration to find zeros of the determinant of the moment matrix as a

function of the complex frequency s as was mentioned in Section 3.4.

It appears to be a common trait to numerical SEN formulations that

except for the poles near the imaginary axis in the complex plane , the

contours of the determinant indicate the presence of the zero determinant

in a highly local fashion . The paragraphs below describe the methods

used in locating the poles in an exhaustive fashion without undue dif—

ficulty with the local character of the poles.

Baum [141 has proposed using the argument number of the determinant

of the moment matrix as an indicator of the presence of a zero of the - -

determinant within a prescribed region of the complex plane. The method

exploits the analyticity of the determinant as a function of s. It

follows that the number of zeros of the determinant fl(s) within a region

in the s—plane bounded by a closed contour C is given by
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where Vc denotes the “variation of the argument” of fl(s) around the

contour C. (See, for example, (3].) This approach was used conveniently

and successfully in the present work to localize a pole to a small

region before using the iterative method to locate it specifically.

Figure 3.8 illustrates the method used. The region of interest

in the complex plane was subdivided into moderately sized quadrants.

The argument number was evaluated around each quadrant from twenty—one

values of fl(s) along each side of the quadrant . The contributions to

Nc from each leg of each quadrant were evaluated separately so that only

alternate quadrants needed to be computed. The results of the pro-

cedure for the ++ modes are shown in Figure 3.8 for aspect ratios of 1.0

and 0.5. The pole trajectories eventually determined are included for

reference purposes. It is seen that the method correctly localizes all

of the poles and provides cânfidence that the search is exhaustive.

Each quadrant was subsequently quadrasected. By evaluating the argument

number on the four sides of two of the four subquadrants, the pole is

still better isolated. The Muller iteration was then begun at the

center of the subquadrant to which the pole was isolated and in every

r case converged from that point.

Once the two points on a trajectory corresponding to 0.5 and 1.0

-~ 
- aspect ratios were located, the trajectory was followed by changing the

aspect ratio slightly and by using the pole location for the original

aspect ratio as a starting point. This method of incrementing w/L

fails in some cases when the pole location moves rapidly with respect

to wit. The following projection scheme proved useful in these cases.
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We observe from Figure 3.2 that for w/t — 1 a ninety—degree spatial

rotation of the ++ mode results in the —— mode configuration in the
original, coordinate system. Similarly, the +— mode rotates into itself,

and the —+ mode does , as well. This means that a ++ distribution for

w/L — 2.0 is identical to a — distribution with wit — 0.5. Similarly,

the pole for each case will be identical when normalized to the long

dimension.

Figure 3.9 shows the ++ pole trajectory continued on past w/t — 1.0

to w/L — 8.0. Note that the scales for the plot are normalized to L.

To renormalize, for example, the w/t — 2.0 -H- pole to w, we need to

multiply the pole value st/cu by w/t. Because of the rotation property,

the renormalized wit — 2.0 -I-I- pole is identical with the —— w/L 0.5

pole. This relationship is denoted graphically in Figure 3.9 by the line

segment passing through the w/L — 2.0 point on the ++ trajectory and

striking the w/t — 0.5 point on the —— trajectory. The length of the

segment OB on this line is twice OA. Three other specimen radii in-

dicate this relationship at other points.

It is observed that the —— curve is rapidly varying with respect

to aspect ratio. We can follow it with ease, however , by computing the

-I-I- curve on past w/L — 1.0 in the incremental fashion discussed above

and projecting it outward to form the —— trajectory. This procedure

was employed to advantage in obtaining the results presented in the

next chapter , both by projecting ++ onto —— trajectories and by pro—

jecting +— or —+ trajectories onto themselves. A posteriori tests of

the projection corroborated that the correct pole had been projected.
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4. SEN CUABACTERIZATION FOR THE RECTAZ~GULAR PLATE

4.1 Introduction

This chapter provides the pole and natural mode data for the

dominant terms in the SEN characterization of the rectangular plate.

By duality, the representation applied to the rectangular aperture as

well. The data span the three dominant resonances for the structure —

that is, a range of frequencies extending, nominally , to where the greater

dimension of the rectangle is one—and—one—half wavelengths. The aspect

ratio parameter w/t is varied between 0.1 and 1.0. Rahmat—Samii and

Mittra have observed in previously reported work [1.5] that for frequencies

corresponding to roughly one wavelength and beyond, the aperture becomes

quite broadband so that transient waves with higher frequency spectral

content are passed essentially unmodified. This observation is supported

by the present data which show poles in proximity to one another appear-

ing at higher frequencies.

Representative natural, modes for selected poles are presented

herein. Exhaustive graphical presentation of the corresponding natural

modes here is prohibitively cumbersome both because of their number

(approaching two hundred) and because of the futility of trying to

represent complex vector functions of two variables. More nearly complete

- 

~, data are available in a digital computer data base format, however (3].

The data base storage of SEN data for complex structures, such as the

aperture, is more in accord with ultimate user needs, because a com—

puter is almost certainly required in any useful expansion of the data.

The coupling vectors and normal ~zation constants are a part of

the data base but are not reported here. The qualitative aspects of

coupling are discernible from the natural mode data.
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Section 4.2 deals with the pole locations for the structure and

discusses the resonance behavior of the plate or aperture for the four

modal symmetries. Section 4.2 presents some of the associated natural.

modes which have been selected to be representative of the mode structure

in general. -

4.2 Pole Trajectories of the Plata/kperture as a Function of Aspect Ratio

The locations of poles for the rectangular structure are given in

Figure 4.1 for a region of the third quadrant of the complex plane near—

est the origin. The third quadrant data suffice because all poles have

negat ive real parts and are arranged with conj ugate symmetry in the

complex plane. The poles are normalized with respect to L/cu where L

is the greater dimension of the rectangle. The small numbers adjacent

to trajectories indicate the aspect ratio w/t for the tick mark beside

which the number stands. Ticks are spaced at aspect ratio intervals

of 0.1. Dashed lines indicate the trends of trajectories which are

not completely determined. Poles that are left undetermined on a known

trajectory either are j udged negligible in contribution compared with

poles close to the axis or in the case of —+ and —— modes are undeter-
minable by the present method for the reasons outlined in Section 3.4.2.

We reiterate that in the latter case the coupling coefficients will

be small so that we may neglect these poles.

In the following paragraphs , we consider the physical significance

of the pole behavior as shown in Figure 4.1. We discuss the +4- and

-~~~ 4-— modes as a group and then treat the —4- and —— modes. The former

• group possesses the co on property of being sy~~~tric about the x—axis,

i.e., in the transverse direction. The latter group is antisymmetric
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in the transverse direction. Terminology of the form ++8 is used:

this refers to the upper—left trajectory in the ++ mode pole plot,

which is labeled with the large numeral 8. We remind the reader that

the symmetry indication ++ means that the component of current is

symmetric with respect to the x—axis and with respect to the y—axis .

The ++l , the +—l , and the +42 trajectories may be considered to

be the fundamental resonances for the structure. They are the counter-

part to the “layer 1” poles for the wire scatterer as described by -

Tesche (3]. Indeed, in the thin—strip limit (w/t -
~~ 0), these trajectories

approach those of the thin cylinder. Both the cylinder and the strip

trajectories approach to the nonradiating f ilamentary dipole resonances

given by

st/cv — jl,j2, ...

The dominant poles are observed generally to exhibit decreasing “Q”

(quality factor) as the width of the structure increases - An exception

to this is the “loop” trajectory for the +42 pole. This trajectory

shows a peak in the Q at w/t = 0 .6. This phenomenon is due to the fact

that the w/t = 0.6 aspect ratio admits to simultaneous resonances in

the and components of current. This matter is discussed further

in the next section.

The trajectories, other than these dominant three, show poles moving

toward the imaginary axis with increasing aspect ratio . That is , for

thin strips, the dominant poles alone dictate the principal time de-

pendence of the scattered waveform on the structure. For wider struc—

tures , the “layer 2” poles move toward the imaginary axis and influence

the scattered fields as well. For example, for the square structure

90

S -



with wit — 1.0, we observe roughly equal order real parts for six modes.

These complex frequency data corroborate real frequency broadbanding

for wL/cw > 1 which Rahmat—Samii and Mittra observed in [3].

The region of the complex plane shown in Figure 4.1 is not large

enough to allow comparison with the second layer poles for the cylinder

from [3]. We note, in passing, that in the few observations made,

there is not an agreement between the w/t + 0.1 limits of the nondominant

trajectories in Figure 4.1 and the layer 2 poles of the cylinder. It

is not at all clear whether such an agreement should exist. If it

should, either the failure to go to the filamentary limit or simply

numerical errors inj’ierent in the deep—plane results preclude observa-

tion of it.

The —+ and —— modes cannot be directly related to cylinder modes.
This is due to the nonphysical nature of antisymmetry of the longitudinal

current in the transverse direction in the thin strip limit of these

modes. It is difficult to separate out a dominant set of poles from

Figure 4.]. for these symmetries. We do observe the grouping of many

poles in the square—structure limit very much in the manner of the +4

and +— modes . However , several trajectories move on a path roughly

parallel to the imaginary axis . This increase in Q with the narrowing

of the structure is thus an increase in oscillation frequency of these

modes at an approximately constant damping rate.

We make one other final observation about the poles. It is ob—

served in Section 3.5 that on a square structure the 4+ and —— modes are

identical with a 90 degree rotation of coordinates. A consequence

of this property is that there is a +4 wit 1.0 pole identical. with
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each —— w/t — 1.0 pole. This is evident in Figure 4.1. For example ,

the ——1 and +41 poles are identical for w/t — 1.0. The numbering

scheme for the trajectories is, in fact, chosen so that the ++n and

——it trajectories coalesce at wit — 1.0 for each trajectory.

4.3 Natural Modes for the Rectangular Structure

4.3.1 Graphical representation of the modes

In the four subsections which follow, we present graphical data

intended to characterize the natural modes associated with the poles

shown in Figure 4.1. Complete mode data, i.e., data for each pole

increment, are precluded by the - sheer volume of information involved.

As a result, rep resentative mode data selected from the complete data

base are given In the figures which follow.

Each natural m ode is a two—component complex—valued vector function

of two variables . The form of the displays is evident in Figure 4.2.

Each mode is plotted as a current distribution on a thin—plate scatterer

and separate plots for the x and y current components are given. The

curves are magnitudeiphase representations of the complex quantities.

The rectangular shape of the plate is shown in proper proportion for

each of the current components. The graph below the rectangle gives the

appropriate current component along a cut in the transverse coordinate

y. The graph to the right gives the same current component along a cut

• in x . (No te that x increases from right to lef t looking from below

the x—axis.) The cuts along which the graph is taken are shown on the

rectangle. In the case of multiple cuts in the same direction, a cut

and the graph along the cut are coordinated by the same line type, i.e.,

solid, dashed , etc.

~i1
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— 4.3.2 The 4+ modes

Figures 4.2 through 4.6 are plots of selected ++ Symmetry natural

modes. Some of the features of the currents in Figure 4.2 are Common

to currents of all symmetries . The mode represented, the -H-i

w/t 1.0 mode, is a first resonance as manifested by the single “half—

cycle” behavior in the x—coordinate cut of the 
~~ 

component of current.

The transverse cut — that in the y—coordinate — indicates a steeply

peaked behavior of the current near the edge. This is the representation

obtained by the graphical interpolation through the subsectionally

constant method of moments current solution. It is an approximate

numerical representation of the correct singular current behavior as

given by (3.3). The method of moments solution also manifests an

“undershoot” in the first current zone inward from the edge zone as

indicated near y/L ±0.3 in the figure. Because of the rapid variation

of this hump with respect to wavelength, we hold it suspect. ~ likely

cause for such anomalous behavior is the approximation of a singular

function by a constant zone for the current at the edge. In spite of

these two anomalies, we expect the subsectionally zoned current to

provide good approximate scattered field information at distances from

the plate on the order of nominally one—half wavelength and greater.

Figures 4.3 through 4.5 give the modes for three different aspect

ratios on the +42 pole trajectory. A comparison of Figure 4.4 with

-
. 

4.3 and 4.5 indicates that the transverse — Jy 
— current is much larger

in magnitude for w/t — 0.6 than for 1.0 or 0.2. Indeed, it is the

largest transverse component along the +42 trajectory . This observation

along with the observed loop in the -4-42 trajectory is interpreted to be
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something of a “dual—resonance.” Namely, the aspect ratio v/L — 0.6

admits to a simultaneous resonance in the transverse and longitudinal

current components .

The co~~non feature of a three “half—cycle” longitudinal current

distribution is observed in all three +4~2 graphs . This is consistent

with the concept of a second symmetric resonance. We observe in

Figure 4.5 that for w/L — 0.2 a breakup in the transverse current solution

is manifested by rapidly varying phase and, generally, oscillatory be-

havior of J
y w.r.t. x. This is interpreted as the onset of numerical

noise for the narrow strip where the matrix equations become ill—

conditioned. Recall that we indicate in Section 3.4.2 that the maxi-

mum transverse ~oning density which produces stable and consistent pole

results is used — 4 x 3 zones in this case. Because the transverse

current component is small compared with the longitudinal current corn—

S ponent and because the oscillations in the computed values appromimately

cancel under integration, we expect the scattered fields , which depend

almost solely on J~ for thin strips, to be accep table when computed

from this distribution.

Figure 4.6 shows the 4+3 w/L 1.0 natural mode. It is included

because it is representative of modes associated with the 4+3 and 4+4

trajectories. The characteristics of this mode are similar to the

• 1+1 mode except that the transverse component of current is larger than

the longitudinal component .

4.3.3 The +— modes

• Figures 4.7 and 4.8 give modes associated with the +—1 trajectory

for v/L — 1.0 and w/L — 0.2 , respectively . They support the observation

it ated in section 4.2 that for the dominant resonances the +— modes
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constitute the intermediate resonances between the ++ modes . Comparisons

of Figure 4.7 with 4.2 and 4.3 and of Figure 4.8 with 4.5 show a pro-

gression from one “half—cycle” on +1-1 to two on 1—1 and then three

S “half—cycles” on 442. An additional fea turu , which is common to 4—

and —+ modes, is observable from Figure 4.7.  Namely , on a square struc-

ture a 4— mode or a —+ mode replicates itself under a 90 degree ro-

tation. 
. S

4.3.4 The -+ modes

As Section 4.2 indicates, the —+ and —— modes are related through

their aritisyminetries in the narrow direction of the plate. This symmetry

constraint produces a numerically unstable condition in the narrow

strip limit .

S Figures 4.9 and 4.10 give modal distributions for the —+1 trajectory

and wit — 1.0 and 0.3. The features of modes on the -+2 and —+3 tra—

jectories are essentially the sau~e. The —+1 w/L — 1.0 curves in Figure 4.9

indicate antisyinmetry in the direction transverse to current flow. lxi

S other respects the mode is not unlike the modes discussed in previous

S subsections. The w/L — ‘~.3 mode indicates a new phenomenon, however.

The breakup in the mode solution for narrower strips is manifested in

the dominant current component, indicated here by the oscillations

in magnitude and phase in the transverse direction.

Figure 4.11 gives the natural mode for the —+4 w/t — 1.0 case.

This mode shows a three “half—cycle” variation of each current component

S in the direction of current fic-
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4.3.5 The —— modes

That the ——n modes are identical to the ++n modes under 90 degree

S rotation for w/L — 1.0 means that the data in Figures 4.2, 4.3 and

4.6 may be interpreted as —— mode data with the roles of and J
y

Interchanged. As a companion to Figure 4.2, we present the —— 1 w/t = 0.2 
$

mode in Figure 4.12. It is indicated in several previous sections that

for narrower strips the —— solution becomes unstable. This instability

S is evident in the unusual curve shapes indicating a depletion of cur—

rent near the center of the strip and in the rapid variation of

w.r.t. x.

• Figures 4.13 and 4.14 show modes on the ——6 trajectory. It is

noteworthy that for w/t — 1, the component of current dominates.

The J~ component is small and manifests a rapid variation in phase S

w.r.t. y. The w/L — 0.3 mode on this trajectory indicates the expected

breakup in a subtle fashion only. That is, the 3,, component of current

does not tend toward a singularity at x/L — ±0.5 as expected and as

other cases manifest.

4.4 Conclusions

The poles and specimen natural modes for the dominant resonant

region of the rectangular aperture are given in this chapter . The

computed pole trajectories lend themselves to physically consistent

interpretation. The broadband character of square and near—square - 

S

structures noted by other workers is seen to be due to the relative

proximity of several poles to the imaginary axis in the complex fre-

quency plane. Pole trajectories for modes that have a dominant currentS 
component that is ant isymmetric transverse to current flow are

i•~i9 106
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undeterminable by the present method for strips narrower than about

w/L — 0.3. Because of their antisymmetry, they are expected to con-

tribute negligibly to currents in problems of practical interest.

The natural modes are characterized here by specimen data. The
S

modes are observed generally to be consistent with physical expectations .

Exceptions to this statement occur for the unstable case referred to

above. The satisfactory results are gratifying in light of the low

zoning density in all of the solutions. The data, obtained for 4 x 4

zones/quadrant by and large , should provide good scattered field esti-

mates outside a region near the surface of the structure. The resolution

of the modes can be improved upon by using the pole data herein as

iteration starting points from which to conduct higher—order solutions.

The judgments on the reliability of the computed mode data stated

above are based on the ’~ uthors” experience with previous method—of—

S moments solutions. The conclusions need to be tested for a particular

application before they are applied. In particular, two areas must be

tested:

1. The distance by which an observation point must be separated

from the structure in order to give smooth scattered fields

from the coarsely grained current expansion must be determined;

and

2. The negligibility of —4. and —— symmetry modes for thin structures

must be tested. This may be done by observing the trend in

coupling coefficients for these modes as wit decreases .
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5. CONCLUSIONS

We att empt to fulfill two purposes with the work reported here .

The first is to characterize the dual. problems of the rectangular

aperture end the rectangular p1st.. The second is to clarify some of

the previously unsettled issues in the theory of S~4 regarding suit-

S , ability of particular coupl ing coefficient forms and the rol. of the

entire function portion of the Mittag—Leffler form of the frequency

domain singularity expansion.

That the first of these goals is met is supported by the inclusion

of physically plausible S~ 4 data given herein. Both the poles and

natural modes determined lend themselves to straightforward physical S

interpretation. The natural mode information suffers from a “graininess”

du. to the use of minimal zoning density in the numerical procedures .

It is anticipated that the only limitation imposed thereby is that ’

coupled or scattered fields cannot be predicted from the modes in the

S immediate vicinity of the body .
S The scope of the present effort did not allow time domain sxpansion

of fields f rom the data herein . The ultimate judgment on the correct—
S 

ness and applicability of these results rests in their t ime domain ap—

- 
plications. This testing shall, necessarily include the causality tests

proposed in Chapter 2.

Th. second goal has been partially fulfilled. Again , ultimate judg—

ment must be deferred until the theoretical concepts in Chapter 2 are

S tested for their completeness in a broader range of problems. Specifically,

the conclusions herein on these issues may be summarized as follows .

5’
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1. In a numerically conducted SEM solution , neither the entire

f unction nor the asymptotic behavior of the frequency domain

inverse kernel. is explicitly recoverable .

2. If the Laplace transform inversion procedure is applied to

S the inverse kernel as a unit , assuming the net asymptotic

S behavior is available, the entire function contributes, at

S most, impulsive terms at the “turn—on” of the current.

3. The effect of the asymptotic behavior of the frequency inverse

‘
S 

kernel is to dictate the support of its t ime domain counterpart.

Functionally , in SEM this affects the form of the coupling co-

efficient.

4. The class 1 coupling coefficient and the asymptotic form im-

plicitly assumed in using it are potentially inconsistent with

causality if taken al one .

5. We have developed a conservative “class X” coupling coefficient

which imposes causality directly. Further, we describe numer-

S 
ical, tests whereby one may ascertain the consistency with

causality of a given, less—conservative coupling coefficient,

- such as the class 1 or class 2 forms.

6. The asymptotic behavior of the series portion of the Mittag—

Leffler form of the frequency domain expansion may be modified

to admit to a class 1 coupling coefficient representation .

This can quite possibly lead to acausal contributions to the
S - solution, however, and an entire function contribution with

support over a finite time must be included in the total solu— S

a, tion in order to provide results consistent with causality.

1.12 
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S
. We note several times in Chapter 2 that the class X coupling coef—

ficient may prove unduly conservative for some problems. In fact , it

S is conservative for the transmission line and linear scatterer examples

presented. Further work is needed to determine the conditions under

which the class X imposition of causality may be relaxed to the class 2

form. The asymptotic behavior associated with the class 2 coefficient is

equivalent to the asymptotic behavior of the residue series term by

term. However, this series is not uniformly convergent, in general,

and therefore does not admit directly to termwise integration. However,

in the time domain inverse kernel plots in Chapter 2, the clear time

between t ime zero and the time at which causality predicts the arrival

of an incident wave indicates that the termwise integration would,

S indeed, produce correct results. The question of whether or not there

is ever a need to include an entire function contribution with the

class 2 and class I coupling coefficient expansions remains an open

question. S 
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