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CHEMICALLY MODIFIED ELECTRODES. VI. BINDING AND REVERSIBLE
ELECTROCHEMISTRY OF TETRA(AMINOPHENYL)PCRPHYRIN ON GLASSY CARBON
John C. Lennox and Royce V. Murray
Kenan Laboratories of Chemistry

University of North Carolina
Chapel Hill, North Carolina 27514 U.S.A.

In 1975, Kariv and Miller, et al. [1] utilized the carboxylic acid functior
known [2, 3] to exist on thermally oxidized carbon to immobilize an optically
active amino acid ester on graphite through formation of an amide surface bond.
This '"chiral electrode'" was enantiomorphically selective in an electrode reacticu
which produced an asymmetric carbon center, although the degree of selectivity
ir this and a subsecuent example [4] was fairly small. In these covalently
mocifizd carbon electrodes, the immobilized reagent is presumably electroinactive.
We havs cermonstrated [5-7] that covalent immobilization of electroactive reagents
can -z achieved orn metal oxide electrode surfaces using organosilane surface
bondiz

This preliminary report applies Miller's amidization approach to carbon
chemical mecdification to covalently bind electrochemically active reagentec to

glassy carbon electrode surfaces. The desired carbon surface modification chemistry

is

glassy 0 #° soci, 4 47 R 4
carbon A; 2 ~C, = I # o 3 L1}
electrode 7 OH 1L » NHR

where R is an electrochemically reactive moiety. The tetraphenylporphvrin ring
system is an interesting R group because of its known well-behaved non-&aqueous
solution electrochemistry [8, 9], Lecause subsequent metallation of the Immclilized
porphyrin could lead to a family of surface redox systems, and because adsoried
porphyrin and similar moleacular systems are known to exert interesting and

potentially useful electrccatalytic effects [10]. We have applied Reaction 1 t




the p and m isomers of tetra(aminophenyl)porphyrin (designated T(pNH, )PP and

T(mYH, )PP, respectively), and present here evidence that covalent binding deoes
occur. The surface redox reactivity of the tetraphenylporphyrins, as well as
' their (Co) metallated forms, is obsecrved at potentials similar to the solution
analogs.
Anson et al. [11] have described the electrochemical properties of iron(IlI}
porphyrins which under appropriate conditions irreversibly adsorb on carbon
electrodes. We also have knowledge that Kuwana and coworkers [12] have immobilizzc

other recdox systems on carbon using Miller's amidization approach [1].

R s
Exrerirertal
Tzzra(p-aminophanyl)porphyrin, T(pNHp )PP, was obtained by hydrolysis of

tetra(z-amidephenyl)sorphyrin and purified by silica gel column chromatography
using 37:3 (v:v) CEClp:CH30H solvent. Tetra(m-aminophenyl)porphyrin, T(mNH;)PE.
was c-tained by reduction of purified tetra(m-nitrophenyl)porphyrin. Owing to
solulility limitations, after thorough washing with water and CHpClp, T(mNHp)PF
was used as recovered from dimethylformamide solution. The'respoctive p-amido
and rrnitro phenylporphyrin precursors were prepared (condensation of appropriats
benzaldehydes with pyrrole in propionic acid) and purified according to publishel
procedures [13, 14]. Dimethylsulfoxide (DVSO) and toluene (distilled from lNa®)

solvents were stored over molecular sieves. Thionyl chloride was twice distille .

Glassy carbon electrodes cut frem rod stock in ca. 6 mm lengths were

polished on the cylinder end to a shiny finish, ending with 1 micron diamond
lapping compound. Surface oxidation was by evacuation at 500°C for one hour
followed by cooling in air. The electrodes were next refluxed in 5% 50Cl, in

toluene for one hour, removed and washed thoroughliy with fresh solvent, and al:

dried for five minutes. The acid chloride electrodes were amidized bv contac:

with a 5:1 (viv) toluene:CHyC clutlon of the tetra(aminophenyl)porphyrin

=
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(ca. 1 mg/50 ml) for one hour and vigorously washed with CHpClp. The reaction

nedium also contained a few ml dimethylformamide in the case of T(mNi,)'P.
lMetallation of T(pNE,)PP and T(mNHp )PP electrodes was accomplished by a

45 minute contact with a refluxing solution of CoCl; in dimethylformamide follow=z=c

by thorough washing with fresh solvent.

Modified electrodes were mounted for electrochemical experiments using

shrinkable Teflon tubing. All electrochemical experiments were conducted in
0.1 M EtyNClO4 in DiSO solvent, using either conventional cyclic voltammetry or
differential pulse polarography with a Princeton Applied Research lModel 174
instrumsnt under conditions as given by Anson [11]. ESCA data were obtained

using = ZuPont 6505 Electron Spectrometer.

voltammetry of a glassy carbon electrode reacted (see Experimental)
with T(=N5,)7P is illustrated in Curve A, Figure 1. Aside from a somewhat
elevzz=C tackground current on the first potential scan, the pattern of two
reduction and re-oxidation waves persists unchanged for many cycles. The two
observed redox couples exhibit the properties expected for electrode reactions
with stable, surface-immobilized reactants and products [15]; the electrochemical
waves are symmetrically shaped, independent of stirring, and exhibit a linear
dependence of peak current on potential scan rate over the examined 50-4G0 mv/sec
range. The two redox couples are fairly but not precisely charge transfer
reversible; AEpeak is about 30 mv at 100 mv/sec scan rate.

The meta isomer's surface wave characteristics are repeated in cyclic
voltammograms of glassy carbon electrodes treated with T(pNE,)PP. Curve B
corresponds to a T(pillip )PP electrode prepared from the same batch of acid chloriie

1 - ) - Ve A
ectirode of Curve A.

electrodes used to prepare the e
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Anson [11] has used the proclivity of iron(III) porphyrins to adsorb under
certain circumstances on carbon electrodes to observe the surface electrochemistry
of these species. In order to clearly distinguish adsorption from covalent
binding in the present case, a variety of control experiments were carried out.
Figure 1, Curves C and D show that no observable electrochemistry ensues from
treatment of acid chloride electrodes with tetraphenylporphyrin (TPP) or
tetra(p-nitrophenyl)porphyrin (T(pNO3)PP) under conditions identical to those
used to prepare the tetra(aminophenyl)porphyrin electrodes. Curves E-H in
Figure 1 show N 1ls ESCA bands for a set of electrodes pretreated simultaneously
through the acid chloride step and then reacted with T{mNH2)PP, T(pNH2)PP, TPP
and T(mNO )PP, respectively. Only for electrodes treated with tetra(aminophenyl)
porphyrin is there a N 1ls band larger than that typical for blank glassy carbon
(Curve I). These results demonstrate that the binding of the porphyrin to the
acid chloride glassy carbon electrodes is associated with the presence of the
amine group on the tetraphenylporphyrin. Peak diffusion currents for cyclic
voltammetric reduction of a 1 mM solution of T(pNH;)PP in DMSO at unmodified
glassy carbon vary linearly with the square root of potential sweep rate. Also,
contact of a glassy carbon electrode for 30 minutes dith a 0.01 mM T(pNHp)PP
solution followed by potential sweeping in the same solution produces no
porphyrin reduction waves. These observations show that the tetra(aminophenyl)-
porphyrin exhibits in DMSO solvent no special adsorption tendencies for the
glassy carbon electrode surface. Lastly, to emphasize the surface stability of
T(pNH, )PP on glassy carbon, and to rule out possible effects of material trapped
in pores, a T(mNH;)PP electrode was used as a rotated disk as shown in Curve A
of Figure 2. The hydrodynamic voltammogram is almost indistinguishable from the
aquiet solution voltammogram of Curve A, Figure 1, which was obtained with the
same electrode cpecimen.

The preceding results provide strong evidence that association of the




through formaticn of surface amide bcuds as depicted In Feaction l. OCur izbora-
tory's general goal of synthetically predictive surfaca chemicel modificatien
appears to be realized in this case. Ioreovar, tha potentials observec for ths

surface waves (-1.08 and -1.49 volt vs. S.C.E. for tre two waves of T(mlk,)FF

electrode) match rather well with thz ¥nown [9] values for tezraphenylporphyrin

n

dissolved in DMSO (-1.05 and -1.47 volt). The two reduction steps for the
solution TPP species [8, 9] form the :orphyrin anion radical anc dianion, and we

-
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presume from the good correspondence of rednx potentials that the T(plNi,)PP

S\l

T(ri=; )P electrode surface waves lead to tnese same reduction preoducts.
inlle formation of four surface amide Honds per tetra(aminophenyl)porphyrin
is s*cichiometrically possible, this ‘s unlikely on stereochenical grounds. The
amine grous’s phenyl ring position wculd have to be optimal for proper bond

directicnalityv, anc +the amine sites would have to be in good register with acic

ce. Formation of

81}

chlcriZe sites on the underlying glassy carbon electrode surf

ated. Fron

[

at rncsT two amicde tonds per porphyrin might be reascnably specu.
models, the msta (and ortho) tetra(aminophenyl)porphyrins would be more
sterically suited for multiple coupling than T(pNh,)PP. lMultiple amide coupling
wotrld lead to more stable chemically mcldified surfaces, and also should pley an
important role in charge transfer ratz properties of the immobilized redox

system.

Our present data contain no clear evidence for the average number of surface

Fie

amide bonds formed, or for any sucstantive differences Letween T(plNh;)PP and

T(nlH2 )PP electrodes. Both stability and AFW\ay progerties of T(miiky )PP and
(4 ~
T(pkH, )PP electrodes so far appear tc be quite similar. The Curve A-:

of I'igure 1 suggests that a higher coverage was achieved in this instance

the T(mhk,)FP isomer. However, several T(plt, )PP ¢lectrodzs have been pre;

-




with coverages equivalent to that of Curve A. The teirz(eminophenyl)porphivrin

coverages are in fact not precisely reproducible; integration of the surface
current peaks yields a range of I' = 3-11 x« 10710 mole/cr? (using electrode
geometrical area). The level of observed background current parallels the
apparent porphyrin coverage, and comparison of Curves 4 in Figures 1 and 2 shows
that the background current is predominantly surface-contirolled. These, and other
data, and coverage expectations based on molecular models, suggest to us that
surface roughness factors ranging from 2-10 may exist on these chemically

modified electrodes. It is most likely that such roughness is induced during

the elactrode thermal oxidation step. (We should note that apparent coverages

in th2 zZove range are presently quite consistently obtained in current

3

but that too-casual attention to experimental details in the
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overs .. sxzzrimentel preparaticn process can yield apperent zero coverage).
Evaluation and control of glassy carton electrode roughening and the number of

.

surface bends ger tetra(aminoghenyl)porphyrin await further experimentation.

aminophenyl)porphyrin electrodes have promise of considerable
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redox and electrocatalytic versatility if they can be metallated in situ without

loss of the immobilized porphyrin moiety. Curves B and C of Figure 2 illustrate
one successful example of this, in which Co(II) has beern inserted in the porphvrin
ring to definitively alter the observed surface wave redowx properties from those
of the immobilized free base porphyrin to those expected for the Co(Il) + Co(I)

redox process for Co(II)metalloporphyrins in non-aquzous medium [9, 16, 17].

The surface wave redox potential for the Co(II) metallated electrode, -0.83 volt 1

vs. S.C.E., is the same for T(mdHp)PP and T(pX},)PP electrodes, and is in

excellent agreement with that reported [9] (-0.82 and -1.87 volt) for tne
solution form of Co(II)TPP. The ESCA comparison of I 1ls and Co 2p bands in

.
3

Figure 2 is confirmatory evidence for metallation of the surface porplyrin.
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#lze, in one incstance, the reaction cornditions led to ir-omplete metallation;
this electrode exhibited surface waves at potentials for both free and metallate:
porphyrin. It is erncouraging to note that the tetra(aminophenyl)porpuyrin
electrodes survive the reaction conditions for Co(II) metallation. LExperiments
aimed at generating a family of immolilized metalloporphyrins are in progress.
Our electrochemical experiments in this and other [5-7] studies of
chenically modified electrodes have mainly relied on the well characterized
cyclic voltammetric experiment. Anson [11] has recently applied differential
pulse polarography to surface waves of adsorbed species with higher sensitivity
than for cyclic voltammetry. We have also observed enhanced sensitivity for

vrin chemically modified carbon electrodes using this method, see

Figurz Z. The surfzce waves for free base porphvrin and Co(II)-metallated
porcrorin attear at the expected potentials, and again are quite stable under
repestzd ooservation. The pulse experiment detects what is apparently the
s2cond wava [9] for the Co(II) metalloporphyrin reduction. Also, with
botn T(zNH)F? and T(mNH, )PP electroces an additional set of electrochemical
waves aonpears, these are not easily jerceived in the cyclic voltammograms. The
naturs of these waves is not clear, but they vanish upon metallation of the
porphyrin surface (Curves A).

Preparation of T(Nh; )PP electrodes opens an array of experiments directed
at both understanding and application of redox-active chemically modified
electrode surfaces. These include preparation of other immobilized metallated
tetraphenylporphvrins, probing of the correspondence between electrochemistry
of immobilized and dissclved species, and of the effects of the metal axial
ligand. Utilization of the surface-immobilized porphvrin or metalloporphyrin as
a simple electron transfer mediator, or as a reactive !inding site for generaticn
of new reduction or oxidation pathways for a solution species, are electrocatalyi’c

ipplications which should prove interasting.
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Figure 1.

Figure 2.

Figure 3.

Figure Legends

Cyclic voltammetry (100 mv/sec in 0.1 M Et,NC10,/DMSO) and ESCA for

'chemically modified glassy carbon and controls. Curve I: polished,

blank glassy carbonj; Curves D, H: acid chloride form of glassy carbon
"reacted" with tetra(m-Nitrophenyl)porphyrin; Curves C, G: acid
chloride form of glassy carbon '"reacted" with tetraphenylporphyrin;
Curves B, F: T(pNH,)PP electrode; Curves A, E: T(mNH;)PP electrode.
Assorted experiments on chemically modified glassy carbon. Curve A:
A T(mNH,; )PP electrode used as a rotated disk electrode, voltammogram
obtained at 400 r.p.m. and 100 mv/sec; Curve B: quiet solution cyclic
voltammetry at 100 mv/sec of Co-metallated T(mNH,)PP electrode;

Curve C: cyclic voltammetry of Co-metallated T(pNH;)PP electrode;
Curve D: ESCA of an electrode of Curve B, before electrochemical use;
Curve E: blank glassy carbon ''reacted" with CoClp, in DMF.
Differential pulse polarograms obtained with Princeton Applied Research
Model 174 instrument with settings: pulse amplitude 10 mV; d.c. scan

rate 5 mV/sec; pulse repetition rate 2/sec.
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