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INTRODUCTION 

Powder  metallurgy   (P/M)   steel   forging  has   received   increased  attention 
during   the  past   few years.1'2'3    As  a viable  production  technique,   cost 
advantages  can  be   realized  through more  efficient  material   utilization  and 
reduction  of machining operations.     Depending on   the application,   steel 
powders  can  be   forged  cold   (less   than  SOO^)"'5  or hot   (1500   to 2200°F).6'7 

The  basic process   involves   five  steps: 

Powder »     Preform »   Sinter »    Forge »    Finish 

Each of  these  steps   requires  considerations  peculiar  to the P/M forging 
process   to obtain  good quality   forgings. 

The  primary thrust of P/M steel   forging  development has  been   to  repro- 
duce   the  properties of  conventionally   forged  products   in   the  P/M  forged 
part.8'9     Attainment of  these properties   requires  closing voids normally 
present   in  standard  P/M  parts   in  such  a manner  as   to  fully  densify  and 
achieve  a  sound metallurgical   bond  during  forging.10     Significant   lateral 

i    "Forging of P/M Preforms",   Modern   Deve1opments   in  Powder  Me ta11urgy, 
(Ed.  H.H.  Hausner),   Plenum Press,   NY,   1971,   Vol.   k,   p.   369"523. 

2 R.F.  Halter,   "Recent  Advances   in   the  Hot   Forming of P/M Preforms", 
Modern   Developments   in  Powder  Metallurgy,     (Ed.   H.H.  Hausner),   Plenum 
Press,  NY,   1973,  Vol.  7,  p.   137-152. 

3 R.   Gold,   "Production  P/M Hot   Forging   is  Here",   Precision  Metal,   Vol.   33, 
No.   11,   1975,  p.  23-26. 

u     Gustafen,   D.A.,   "HD:   P/M « High   Density  Parts  via P/M Techniques",   Metal 
Progress,   Vol.   101,   No.   4,   1972,   p.   *»9-58. 

5 R.H.  Hoefs,   "High-Density  Cold-Pressed  Parts  Substitute  for  Ferrous 
Castings",   Metal   Progress,   Vol.   107,   No.  2,   1975,   p.   71-80. 

6 H.F.   Fischmeister,   L.   Olsson,   and  K.E.   Easterling,   "Powder  Forging", 
Powder  Metallurgy   International,   Vol.   6,   No.   1,   197**,   p.   30-39. 

7 Laily,   F.T.   and Toth,   I.J.,   "Forged  Metal   Powder  Gears",   Technical 
Report  No.   11960,   September   197**. 

8 Cull,   G.W.,   "Mechanical   and  Metallurgical   Properties  of  Powder  Forgings", 
Powder  Metal lurgy,   Vol.   13,   No.   26,   1970,   p.    156-161*. 

9 Lally,   F.T.,   Toth,   I.J., and  DiBenedetto,   J.,   "Forged Metal   Powder 
Products",   SWERR-TR-72-51,   August   1972. 

io M.J. Koczak, C.L. Downey, and H.A. Kuhn, "Structure/Property Correlations 
of Aluminum and Nickel Steel Preform Forgings", Powder Metallurgy Inter- 
national,   Vol. 6,  No.   1,   1972*,  p.   13-16. 
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deformation   under high   forging   temperatures  and  pressures   is   required  to 
achieve   this effect.     As   a   result,   the  processing   route   (powder  characteris- 
tics,   preform density,   lubrication,   sintering  conditions,   and   forging  para- 
meters)   significantly  affect   the structural   integrity  and  the  attendant 
mechanical   properties  of  the  P/M  forging.     Consequently,   careful   control   of 
the  processing   route   is  adamant   to   insure   reproducible  properties  equivalent 
to those of  conventional   forgings  of  similar  composition. 

Because  of  the   importance  of  the  processing   route,   studies   involving 
investigations   into  the  effects  of processing variables  on   final   forged P/M 
steel   properties  have  been   initiated at  Rock   Island Arsenal.     Previous 
efforts   concentrated on  the  variables  of preform density,   lubrication,   defor- 
mation,   forging  temperature,   and  forging pressure.11    The  purpose of  the 
following  study was   to  investigate   the effects  of sintering  conditions  and 
particle  size  distributions  on   the  physical   and mechanical   properties  of 
steel   P/M  forgings. 

The  study was   divided   into  two sections:     the   first  established  the 
effects  of  sintering  conditions,   and  the  second  determined  the effects  of 
particle  size  distributions  on   the  steel   P/M  forged  properties.     The  sinter- 
ing  parameters  studied were   flow  rate of  reducing gas,   flow  rate  of carbur- 
izing  gas,   sintering  time,   and  sintering   temperature.     Various   unimodal   and 
bimodal   distributions  designed   from statistical   powder  blends were   used   in 
the  particle  size   distribution   study. 

SINTERING  STUDIES 

Procedure 

Commercially  available  prealloyed  4600   steel   powder was   used   in   the 
sintering  studies.     The  chemical   analysis  of  the  powder   is  shown   in  Table   I 
along with   the  chemical   analysis   required  by  AISI   specifications   for wrought 
4600  metal.     The   4600   steel   powder had  a  composition  which  was   modified 
(lower  manganese,   higher  molybdenum)   ostensibly   to  promote  processing  charac- 
teristics.     Flake  graphite was   added  to the   4600  powder  to obtain  0.4-percent 
carbon   content.     The  powder was   characterized  according  to size  and  size 
distributuion   (ASTM  B-214-56),   apparent   density   (ASTM B-212-48),   and   flow 
rate   (ASTM  B-2 13'48)   as   shown   in  Table  2. 

Individual   particles  were evaluated  by  scanning electron  microscopy   (SEM) 
and  standard optical   metallography;   see   Figure   I.     SEM    examinations  showed  a 
distribution  of  sheroidal   to popcorn-like  shapes.     Metallographic examinations 
showed  the  microstructure  of  the  4600  powder  particles   to  have   a  generally 
uniform grain   size of  ASTM No.   12. 

11 A. Crowson, R.J. Grandzol, and F.E. Anderson, "Properties of P/M Steel 
Forgings", presented at Powder Metallurgy in Ordnance Up-Date Seminar, 
Metal   Powder   Industries   Federation,   1975»   in   press. 



TABLE   I 

Element 

Carbon 

N i eke 1 

Molybdenum 

Manganese 

Copper 

Chromi urn 

Phosphorus 

Sulfur 

SI 1 icon 

Oxygen 

CHEMICAL  ANALYSIS  OF  4600  PREALLOYED POWDER 

AISI 
Spec!fi cation 

1.65  - 2.00 

0.2     - 0.3 

0.6     - 0.8 

0.0A max 

O.OA max 

0.02   - 0.34 

A.O.   Smith 
EMP  4600 

1.77 

0.48 

0.23 

0.05 

0.05 

<0.01 

0.02 

0.07 

0.152 



TABLE 2 

CHARACTERISTICS OF 4600 PREALLOYED POWDER 

U.S. Screen Size Sieve Analysis, wt% 

+80 (180U) 0.1 

-80 +100 4.5 

-100 +140 14.5 

-140 +200 23.4 

-200 +230 7.5 

-230 +325 18.7 

-325 (44U) 31.3 

Apparent Densi ty  (g/cm3) 2.99 

Flow Rate  (sec) 25.8 



NITAL ETCH 

FIG. 1   PARTICLE SHAPE AND MICROSTRUCTURE 
OF 4600M POWDER 



Rectangular bars 3"l/2" x 3/V' x 1" were compacted with a graphite spray 
die wall lubricant to 80$ of theoretical density.  The preforms were batch 
sintered in a hydrogen-methane atmosphere followed directly by forging in a 
preheated die (350-^00°F).  The sintered preforms were forged by a "minimum 
deformation" process" resulting in approximately 5$ lateral deformation dur- 
ing the forging operation.  Final density, decarb depth, surface hardness, 
and oxygen content in the resulting forgings were used to evaluate the respec- 
tive sintering parameters. 

Results and Discussion 

The effects of various sintering parameters on the final forging P/M 
steel properties were studied.  Parameters such as flow rate of hydrogen, 
flow rate of methane, sintering time, and sintering temperature were investi- 
gated.  Since previous investigations have shown that oxygen content and 
final density in the forgings strongly affected impact and ductility prop- 
erties, these criteria were used in evaluating the sintering parameters 
studied. 

The residual oxide content as a function of hydrogen flow rate in the 
final forgings is shown in Figure 2.  Various hydrogen flow rates ranging 
from 6 SCFH to 30 SCFH were used.  The preforms were sintered at 2200°F for 
J*0 minutes in a hydrogen-^ methane atmosphere.  The methane addition pre- 
vents extensive decarburization during sintering.  As noted from the result- 
ant graph, the oxide content in the forgings decreases dramatically with in- 
creasing hydrogen flow rate.  Increasing the flow rate from 6 SCFH to 30 SCFH 
reduces the oxide content by one-half.  To meet military specification 
(MIL-F-^5961) requirements for oxide content (<300ppm) in P/M steel forgings, 
a minimum hydrogen flow rate of 12 SCFH is necessary. 

Decarb depth and surface hardness as a function of methane concentration 
are shown in Figures 3 and A, respectively.  The amount of decarburization 
during sintering decreases with increasing methane concent rat ion.  Decarb 
depths on the surface of the forgings range from 0.09 inch down to 0.001 inch, 
depending on the concentration of methane gas.  Correspondingly, an increase 
in surface hardness is apparent with increasing methane concentration.  To 
meet military specification requirements for surface hardness (Re 30-33) and 
decarb depth (<0.001 inch) 5 percent by volume of methane is necessary in the 
flowing gases. 

Various sintering times at 2200°F and 18 SCFH hydrogen flow rate were 
used to determine the optimum preform sintering time necessary for P/M steel 
forgings.  The final densities of the forgings in relation to the various 
sintering times utilized are shown in Table 3.  Sintering times in increments 
of 10 minutes (ranging from 10 to 60 minutes) were investigated.  Sintering 
times of 30 minutes or longer are necessary to obtain P/M steel forgings with 
near-theoretical density (99-5 + percent).  The effect of sintering time on 
the oxide content in the final forgings is shown in Figure 5.  A dramatic 
decrease in oxide content is seen as the sintering time varies from 10 to ^0 
minutes.  Sintering times greater than **0 minutes only gradually decrease the 
oxide content in the forgings. 

* Process developed by TRW under prior Government contract. 
6 
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TABLE 3 

SINTERING TIME   ■ -  FORGED DENSITY OF *4600 PREALLOYED POWDER 

Sintering 
(min) 

Time Densi ty 
(g/<V). 

7.78 

Density 

10 99.0 

20 7.78 99.0 

30 7.83 99.6 

to 7.83 99.6 

50 7.83 99.6 

60 7.83 99.6 

TABLE k 

SINTERING TEMPERATURE - FORGED DENSITY OF ^600 PREALLOYED POWDER 

Sintering Temperature Density Density 
(°F?  (g/cm3) (%) 

1900 7.80 99.2 

2000 7.78 99.0 

2100 7.81 99.*♦ 

2200 7.83 99.6 
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Four preform sintering temperatures (1900, 2000, 2100, and 2200°F) were 
investigated to determine the effect of sintering temperature on P/M forged 
properties. A sintering time of 40 minutes and a hydrogen flow rate of 
18 SCFH were used. The relationship between final forged density and pre- 
form sintering temperature is shown in Table 4.  An increase in sintering 
temperature (1900 to 2200°F) results in a slight increase in the forged 
density (99.2 to 99.6$).  Sintering temperature has a significant effect 
on the oxide content in the resultant forging, as shown in Figure 6.  Oxide 
content dramatically drops as the sintering temperature is increased from 
1950 to 2200°F.  The oxide content of the forging is approximately 1400 ppm 
at 1900°F, whereas, at 2200°F the oxide content is below 200 ppm. 

POWDER DISTRIBUTION STUDIES 

Procedure 

Commercially available prealloyed 4600 powder was separated into indi- 
vidual fractions and blended to form various unimodal and bimodal distribu- 
tions. The distributions were formulated from statistical models described 
by the binomial distribution. The equations used were: 

x|(n-x) 1 PX (l-p)n      for x = 0, 1,   n (1) 

(0.5)n        for normal distribution (2) 
x 

nl 
(n-x)l 

where n is the number of data points which establishes the distribution 
curve and p is the fraction of large particles in the distribution. At 
p»0.5, the distribution will have an even, normal distribution of large 
and smal1 partIcles. 

Five values of P(0.2, 0.4, 0.5, 0.6, and 0.8) were used for the unimodal 
distributions.  The five unimodal distributions obtained are shown in Figure 
7.  At p=0.2 and 0.8 the distributions are skewed towards smaller and larger 
size particles, respectively.  The two distributions in the middle, p«0.4 and 
p=0.6, are  distributions slightly skewed from the normal. 

The type of bimodal distributions used was designed by incorporating two 
values of p from the unimodal curves.  After careful selection of a variety 
of bimodal distributions, four bimodal distributions were used that would 
cover the range of interest (see Figure 8).  A combination of pB0.1 and p=0.6 
forms a bimodal distribution predominantly of smaller size particles.  The 
distribution p=0.1 + 0.9 is a bimodal distribution of equal weights of very 
large and very small size particles.  A combination of p=0.2 and p*0.8 forms 
a normal bimodal distribution.  The last distribution, p« 0.4 + 0.9| is a 
bimodal distribution predominantly of large size particles. 

The powder blends were characterized according to size and size distri- 
butions, apparent density, and flow rate.  Individual particles were evalu- 
ated by scanning electron microscopy and metallography.  The powder blends 
were mixed with 0.4% flake carbon, compacted to 80% theoretical density, 
sintered at 2200°F for 40 minutes, and forged in a warm closed die to 

12 
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produce fully dense forgings. The forgings were tested for density, grain 
size, decarburization, elongation, yield and tensile strengths, carbon and 
oxygen contents, and Charpy impact energy. 

Results and Discussion 

The powder characteristics for the unimodal distributions are shown in 
Table 5.  Apparent densities of the unimodal distributions were found to 
decrease with increasing particle size.  Correspondingly, the flow rates were 
found to increase with the particle size of the distribution.  Table 6 on 
bimodal distributions also shows similar relationships with particle size 
and the powder characteristics of apparent density and flow rate. 

Powder characteristic differences were strongly influenced by the 
shapes and sizes of the individual particles in the distributions.  The 
shapes and sizes of powder particles in two distributions are  shown in 
Figure 9.  The smaller size particles (represented by a p=0.2 distribution) 
are relatively smooth and essentially spheroidal.  The larger size particles 
(represented by a p=0.8 distribution) have a variety of shapes and are 
characterized by a "popcorny" nature.  These characteristic differences in 
shapes also influence the green strengths of the compacted preforms.  As 
expected, preforms compacted from large size particle distributions have 
greater green strengths than preforms from the smaller size particle distri- 
butions.  For example, at 6.3g/cm3 the green strength for the £»0.2 distri- 
bution is 1530 psi, compared to 1810 psi for the p«0.8 distribution.  This 
increase in green strength occurs because the "popcorn-1ike" shape of the large 
size particles can achieve better interlocking among the individual parti- 
cles than the relative smooth shape prevalent in the smaller size particles. 

The objective at the outset on the study of powder distributions was 
to determine what effect (if any) powder distributions had on final forged 
properties.  Table 7 shows the  mechanical and physical properties of the 
final forgings from the various unimodal powder distributions.  The densi- 
ties, tensile strengths, and yield strengths have little variation from one 
powder distribution to another.  However, the ductility properties, impact 
strength, and oxygen content are influenced by the particle size distribu- 
tions.  The relationship between particle size and oxygen content in the 
final forging is shown in Figure 10.  The oxygen content varies linearly 
with the particle size.  An increase in particle size shows a corresponding 
increase in the oxygen content of the P/M forging.  Consequently, increasing 
the particle size decreases the impact energy as shown in Figure 11.  The 
log-log relationship established in Figure 11 is described by the empirical 
equation 

w=58u~°*22 (3) 

where W   is   the   impact  energy  and  u   is   the  particle  size.     The  effect  of 
particle  size on   ductility  properties   is  shown   in   Figure   12.     A decrease   in 
particle  size   increases   the elongation  and   reduction   in  area   in   the   forgings. 
The  ductility  properties  are  strongly   influenced  by  the  particle   size  up  to 
a  critical   value   (^80u).     Particle  sizes  smaller  than   80u only  slightly 
increase   the  ductility  properties. 

16 



TABLE 5 

POWDER CHARACTERISTICS OF UN I MODAL DISTRIBUTIONS 

Sieve Analysi s, wt % 

U.S. Screen Size P=0.2 P*0.4 P-0.5 P=0.6 P=0.8 

-100 (149M)   0.1 0.3 2.5 20.3 

-100 + 140 0.3 8.7 23.6 45.3 70.7 

- 140 + 200 5.9 39-5 49.1 42.3 8.6 

-200 + 230 10.6 18.2 12.8 6.0 0.4 

-230 + 325 31.6 22.9 11.6 3.5   

-325(44p) 51.6 10.6 2.6 0.4   

Apparent density 
(g/cm3) 2.88 2.82 2.76 2.76 2.77 

Flow rate (sec)      28.3      29.2       30.7      31.9       33-2 

17 



TABLE   6 

POWDER CHARACTERISTICS OF B1 MODAL DISTRIBUTIONS 

i ze 

S ieve Anal ysi s,  wt % 

U.S.   Screen  S P«0.1+0.6 

1.2 

P= =0.1+0.9 

26.3 

P-0.2+0.8 

10.2 

P=0.A+0.9 

-100(H*9u) 25.2 

-100  + l**0 23.0 23.9 35.6 29.3 
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TABLE 7 
f 

PROPERTIES OF FORCINGS FROM UN1MODAL DISTRIBUTIONS 

Distribution 

Properties 0.2 0.4 0.5 0.6 0.8 

Density (%) 99.5 99.6 99-5 99.5       99.6 

Tensi le (ksi) 138 1 40 138 139 139 

Yield (ksi) 132 133 131 132 131 

Elongation (%) 15.1        U.4 13.3       12.3        13-3 

R/A {%) 44.8 44.6 42.7 38.0       38.6 

Impact (ft-lbs) 25-5 22.5 22.0 21.0        20.0 

02 (ppm) 158 185 203 2^1 246 
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TABLE  8 

PROPERTIES  OF  FORGINGS   FROM BIMODAL   DISTRIBUTIONS 

Di stribution 

Propert ies 0.1  ♦ 0.6 0.1+0 • 9 0.2 + 0.8 0.*4 + 0.9 

Density   (%) 99.8 99.5 99.*♦ 99.5 

Tensile   (ksi) 136 ]k0 138 136 

Yield   (ksi) 128 13<» 133 129 

Elongation   (%) U.8 13.8 13.7 12.5 

R/A   {%) J*9.0 kk.O kk.B kk.O 

Impact   (ft-lbs) 23.0 21.5 22.5 21.0 

02   (ppm) 183 191 197 200 

Zk 
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FIG. 13   SCANNING ELECTRON (A) AND MICROPROBE 
(B) PHOTOGRAPHS OF MANGANESE OXIDE 
INCLUSION IN 4600 M POWDER PARTICLE 
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FIG. 14   SCANNING ELECTRON (A) AND MICROPROBE 
(B) PHOTOGRAPHS OF MANGANESE OXIDE 
INCLUSION IN P/M STEEL FORGING 



Mechanical   and physical   properties   for bimodal   distributions,   as  shown 
in  Table 8,   show  results  similar   to  the  unimodal   distributions.     Again, 
particle  size   influences   the  ductility  properties,   impact  energy,   and oxygen 
content   in   the  P/M  forgings.     The  P/M   forging   from  the  p=0.1   * 0.6  distri- 
bution  has   the  highest   impact  energy,   percent elongation,   and percent   reduc- 
tion   in   area  as well   as   the   lowest  oxygen   content. 

The  differences   in  mechanical   and  physical   properties   for  the   various 
powder  distributions  can be  explained  by  a   closer  examination  of   forging  and 
powder particle  cross   sections.     Examination  of  powder  particle  cross   sec- 
tions  by  SEM   reveal   inclusions   in   some  of  the   large  size  particles   (see 
Figure   I3A).     The  characteristic  dendritic structure of  the   inclusions   is 
typical   of   manganese  oxide.     Positive   identification  of  a  concentration   of 
manganese   is   shown   by  rnicroprobe  analysis   (see   Figure   13B) ,     Further  analysis 
of  sectioned   forgings  by  SEM shows   the  manganese oxide   inclusion   still 
present   (see  Figure   1*0.     The  manganese oxide   inclusions  are  more  prevalent 
in   forgings   forged   from   large  size  particles   than   from small   size  particles. 
Thus,   complete   reduction  of   the   manganese oxide   inclusion   does  not   occur 
under   the   prevalent   sintering  conditions   and   could be  the   reason   for   the 
property   differences  noted   in   the   powder  distribution   forgings. 

CONCLUSIONS 

Selection  of  proper  sintering   conditions   is   paramount   to obtain  optimum 
physical   and  mechanical   properties   in  P/M  steel   forgings.     The  oxide  content 
and   final   density   in   P/M steel   forgings   are  strongly  dependent on   sintering 
temperature,   sintering   time,   and   flow  rate of   reducing  gas   (hydrogen).      In- 
creasing   the  sintering  temperature   in   the   range of   1900   to 2200°F decreases 
the   final   oxide   content   sevenfold.     Correspondingly,   increasing  the   flow  rate 
of  a   reducing gas  significantly   reduces   the   final   oxide  content.     This  effect 
is  due   to  the   lowering of  the   resultant   dew point   in   the  sintering   furnace. 
A normal   sintering  time of  **0  to 60 minutes   is  sufficient   for P/M steel   pre- 
forms  before   forging.     Longer  sintering  times  only  gradually  decrease  the 
resultant   oxide   content.     To prevent  decarburization   during  sintering,   care- 
ful   control   of  the   flow   rate of  the   carburizing gas   (methane)   is  necessary. 
The   decarb  depth  and  surface  hardness  of  the   final   forging   is  significantly 
affected  by   the   carburizing  gas   concentration.     Five-percent   methane   in   the 
flowing gas   is  necessary  to prevent   decarb  depths  of  more   than  0.001   inch. 

The   size  distribution  of  the  powder particles   influences   the   resultant 
density,   oxygen   content,   impact  strength,   and  ductility  properties   in  P/M 
steel   forgings.     The  property  differences   relate  to  the   incomplete   reduction 
of  manganese oxide   inclusions  prevalent   in  many of  the   large  size  powder 
particles.     The  powder  distribution  study  showed a gradual   decrease   in   the 
mechanical   properties  of   the   forgings with   increasing powder  distribution 
size.     Whether   this  decrease   is  significant or not,   depends entirely on   the 
specification   requirements   for  the  particular  P/M steel   forging  application. 
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FUTURE WORK 

Fundamental studies on the deformation and fracture behavior of sintered 
**6XX powder preforms at hot working temperatures will be initiated.  The 
deformation and fracture behavior will be studied systematically under a range 
of stress and strain states by means of upset tests.  The analytical stress- 
strain relationships established will be utilized to determine the design 
criteria for sintered steel preforms for forging.  Design criteria to be 
established are:  attainment of full density and a sound metallurgical struc- 
ture, and prevention of fracture during forging. 
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