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SOME DATA ON LARGE-SCALE FIELD CHARACTERISTICS OF HORIZONTAL VELOCITY COMPONENTS
IN THE OCEAN

[Ozmidov, jR. V., Nekotoryye dannyye o krupnomasshtabnykh kharakteristikakh polya
gorizonta~’nykh komponent skorosti v okeane, Izvestiya AN SSSR. Seriya geofizicheskaya,
No. 11, 64, pp. 1708—1719; Russian]

A series of statistical field characteristics of horizontal velocity /170f
components in the ocean are calculated by using the method of analytical
filtering of the investigated functions in different filter pasabands. It
it shown that the spec tral energy density function of velocity fluctuations
is in good agreement with the 5/3 power law up to 24—h fluctuation periods.
The values of a series of terms in the equation of motion of ocean waters
are also estimated.

At the present time, on of the important problems of naval hydrodynamics is
the determination of the role \~f turbulent friction in liquid motion in the coastal
and open parts of the ocean. This problem may be solved in two different ways. The

first consists in the direct calculation of the derivatives of turbulent stresses —

Pu uj in the Reynolds equations, which describe the turbulent flow studied :

p (8ü~~~~ -°~ L-, — P?-+_ ~L!~~L2 ~
il
~= o  (1)

~ Ot ~ Ox1 I ‘ 8x~ Ox1 ‘ Oxj

where i, J — 1, 2, 3 (the repeating index denotes summation); x~ are Cartesian coor-

dinates; u~ are the averaged velocity components; u~ are the fluctuational or tur-

bulent velocity components, equal to the deviations of the corresponding instantaneous
(nonaveraged) velocity components from their averaged values; Fj are the components
of external forces; p is the pressure ; p is the density of the liquid ; arid t is the
time. The upper bar in the Reynolds equations denotes a gi ven type of averaging
(for example, time averaging) with a definite scale (period). Terms describing the
action of molecular viscosity forces were omitted from Eqs. (1), since they are
negligibly small.

The second method of study ing the role of turbulent friction in the sea involves
the introduction of certain hypotheses relating turbulent stresses in the Reynolds
equations to the field of averaged velocities in the flow. The various coefficients
thus introduced cannot be determined theoretically, but can be estimated experimen-
tally in the turbulent current studied . However, in most cases these coefficients
are not universal constants , but are themselves substantially dependent on the char-
acteristics of the flow velocity field and many other factors. In addition , the
hypotheses themselves are frequ4’nhly inadequately substantiated and their applica-
bility may be called into question. Therefore, the first method of studying tur-
bulent friction in the sea, not involving the introduction of any hypotheses or
coefficients, but based on a direct calculation of the corresponding terms in the /170’
Reynolds equations, appears to be preferable.

*Numbers in the right margin indicate pagination in the original text. 
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A major objective in this case is not only to determine the values of turbulent
stresses and their derivatives, but , most importantly, to study their dependence on
the averaging scale T0, used in resolving the velocity field into the averaged
(regular) and fluctuational (turbulent) components. The special importance of this
question for sea conditions is due to the presence In sea turbulence of eddies of
the most diverse dimensions ; this must inevitably result in a substantial dependence
of the averaged quantities and fluctuation velocities (and hence, Reynolds stresses)
on the scale T0 used in a given problem.

To calculate the forces of turbulent friction from experimental data, it is
necessary to have a long series of observations of curren t velocities at a ser ies
of ocean points sufficiently close to each other. Unfortunately, no such da ta are
available to the investigators at the present time. However, a sufficient number
of day— to—day recordings of horizontal velocity components (illegible] u and
u2 

= v at individual points of the ocean are now available, which make it possible

to calculate the Reynolds stresses _p~~v~ — —pv’u’, —pu ’2 , -pv’2 and to study the
dependence of these stresses on the averaging period T0.

At the present time, most recordings of current velocities in the sea are ob-
tained by means of BPV— 2 type printing meters. By virtue of their structural charac-
teristics, BPV—2 current meters placed in the sea record instantaneous directions of
the horizontal current velocity vector at 10—30 mm intervals , and moduli of this
vector averaged over (illegible] m m .  It is clear that such instruments are not
suitable for studying the Iwfine~ structure of the velocity field and high—frequency
fluctuations in the spectrum of sea turbulence. However, the extremely large hori-
zontal dimensions of the seas and oceans cause the appreciable large—scale character
of horizontal processes. Therefore, in determining the large—scale characteristics
of the field of horizontal velocity components in the ocean, a long series of obser-
‘~ations (on the order of many days) is required , and short—period fluctuations ,
which make a negligible contribution to the total energy of horizontal turbulence ,
may be neglected altogether. Therefore, the selection of BPV—2 should be considered
fully adequate for the study of large fluctuations of the velocity field in the
ocean, which contain a significant fraction of the energy of ocean turbulence.

Major disadvantages of many velocity record ings by BPV— 2 instruments arc the
appreciable errors introduced into the instrument readings by their mobility on
buoy—type anchor devices used in the measurement of sea currents. However, as
evidenced by experience with such buoy devices, appreciable errors are observed only
in the readings of instruments placed in the upper sea levels (approximatel y down
to 100 m). Therefore, we selected for our calculations the data of an instrument
which operated at a depth of 200 m , where the errors introduced by the motions of
the buoy on the wave may be considered absent.

Data of hydrological current meters for studying large—scale horizontal tur-
bulence in the sea were used for the first time by Shtokman back In 1939—40. Tn

1941, Shtokman’ calculated the Reynolds stresses —pu ’v’, —pu ’2 and —pv ’2 for sea
turbulence. This was done by using data of day—to—day current measurements with
the Ekman—Mertz current meter in the Casp(an Sea. The measurements were made
every 2 hours and lasted 23 days. The fluctuation velocities u~ and v’ were deter— /17
mined by Shtokman by subtracting the velocities ~i and V, averaged over the entire
observation period , from the “Instantaneous” velocity values recorded by the current
meter. Later, similar studies in the Black Sea were made by Khlopov

2 and Cezentsvey.
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The latter, in calculating u’2 and v’2, successively used as the “instantaneous”
velocity values those recorded by the current meter and those averaged over periods
of 1 h and 6 h. The fluctuation velocities were obtained by subtracting the values

of the ve1odty~~ and v, averaged over the entire observation period (14 days), from
these “instantaneous” values. This method enabled Cezentsvey to reveal the depen-

dence of u ’2 and v’2 on the averaging period of “instantaneous” velocities. However,

the cons tancy of the basic averaging scale T0, used in the calculation of u and v,
did not permit her to relate u’2 and V ’2 to this scale. As was noted above, it is
precisely this dependence which should be of interest to an investigator.

The Reynolds stresses for sea turbulence for a constant averaging scale T
0 
were

also calculated by Stommel
4 from velocity measurements in the Straits and by tchiye,5

who used for this purpose photographs of the velocity field made with the aid of an
electromagnetic current meter (EMCM) In the region of the Kuroshio.

The quick—response equipment built in the last few years has made It possible
to determine Reynolds stresses caused by high—frequency fluctuations of the velocity

field in the ocean. Studies have been made along these lines by Bowden and Fairbairn ,
6’

8—10 11,12 13Kolesnikov et a!., Grant, Stewart and Moilliet, and Bowden and Howe. In
these authors’ experiments, the duration of the current velocity recordings usually
did not exceed 5 to 10 mm , and the fluctuation velocities were calculated relative
to the velocity components averaged over such a time interval. The majority of
these studies also showed that for such scales of the phenomenon , the statistical
characteristics of sea turbulence obey the relationships established in the theory
of locally Isotropic turbulence by A. N. Xo]mogorov.

In study ing the dependence of turbulent Reynolds stresses in the sea on the
averaging scale T0, it is natural to proceed as follows. Let the recording of any

given component of the current velocity at some point of the sea be described by the
function u(t), which may be considered continuous and differentiable. Such a func-
tion may be represented by a superposition of simple harmonic oscillations with
different amp litudes and periods T~ (or angular frequencies w0 

= 2~r/T~). If by virtue

of certain consideration we choose the time scale of the averaging equal to T0, we
tl,ere !;y refe r all components with periods greater than T0 to “regular” changes in

avcr.iged velocity u(t), and higher—frequency velocity changes should in this case
he treated as turbulent fluctuations u’(t).

In order to separate , In a given curve , the components with periods greater
than T0 from other oscillations , it is obviously necessary to “pass” the function
u(t) thr~ iigh a certain type of filter. In the ideal case, low— frequency oscilla-
tions (with ~ 

~~ 
2ir/T~) should pass ilirough such a filter without any attenuation

(the amplitude rat io of the transmitted to the arriving signal A/A
0 

should be equal

to unity), and the amplitudes of harmonics with frequencies greater than slwuld

fall to zero. The frequency characteristic of such an “ideal” filter is shown in /171
FIg. 1 by a broken line. The function u(t) can be filtered either by means of
electronic devices (the function in this case is given by a suitable electric signal),
or by analytical means. Analytically, the filtering (or smoothing) operation may be
represented as follows:
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ü(t) =~u(i— t ) K ( ~)d r , (2)
-~~~

where T is the integra tion var iable , and the function K(t) is called the smoothing
core.

.4

1,0 
~~~~~~~~~~~~~~~~~~~~~~

O a.’, hi

Fig. 1. Spectral characteristics of smoothing cores (3) (broken line) and (4)
(solid line).

For an “ideal” smoothing with a rectangular frequency (spectral) characteristic ,
shown in Fig. 1 by a broken line, the function K(r) is

K (t) 
__.. _sfluo!~~, (3)

where 2it/T0.

Indeed, if such a core is made to act on a simple harmonic oscillation cog wt,
it is readily seen that this oscillation remains unchanged when w < and will be
completely “extinguished” (the integral in Eq. (2) will be zero) when w > 

~~~~~
. When

w ~~~ the integral in Eq. (2) will take on the value of 1/2.

In a practical application of the smoothing operation to experimental data,
the use of an ideal filter is still difficult in the majority of cases. Indeed ,
function (3) damps out relatively weakl y with increasing 1, and therefore the inte-
gration in formula (2) must be performed over a very large Interval of change in T.
Therefore, instead of cor e (3) , it is necessary to use other functions different
from zero only on a finite segment of the t axis. In this case, the spectral smoothing
characteristic deteriorates to some extent , and becomes different from the “ideal” one.
On the advice of Profeasqr W. H. Munk (USA), we used . a smoothing core of the fol- /1
lowing for., very convenient for practical applications:

~~~ (4)
0
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The spectral characteristic of the smoothing core 4 is shown by a solid line
In Fig. 1. It Is obvious that this characteristic differs appreciably from the
“Ideal” one. When core 4 is used, compone nts w ith per iods greater than T0 are also
partly attenuated, and higher—frequency components do not damp out completely. How-
ever , as is evident from the graph, oscillations with frequencies greater than 2w0
will be prac tically absen t in the smoothed func tion , since the characteristic curve
for w > 2w0, oscillating about the axis of abscissas, approaches it rapidly with
increasing w, and even the first maximum has an absolute value of less than 0.03.
At the point w — w0, the sp ectral charac teristic of core 4, like that of an “ideal”
core , has a value of 1/2.

As already noted, the initial data used In our calculations were the velocity
recordings made by the BPV—2 instrument on a day—to—day buoy station operated in
June—August 1958 in the Atlantic Ocean at a point with coordinates 55°15’ N and
16° 30’ W and a depth of 3080 in. A current recorder registered the velocity vector
modulus and its direction every 30 m m .  These data were used to calculate the
horizontal velocity components u(t) and v(t), which were then subjected to a
smoothing operation. The smoothing was carried out with core 4 using values of
the parameter T0 equal to 3, 6, 12 and .24 h. The smoothing technique Is very
simple. First, for a chosen parameter T0, the values of function (4) are determined
for each instant of velocity recording; these values are then multiplied by the
corresponding values of u(t0 

- r~)~ and the products are summed. The sum thus cal-

culated gives the value of u(t
0
) for a specified value of time t0. Then , the

next instant t
0 + 1st, where t~t = 30 mm , is taken as the initial point, and the

val ue of (t
0 
+ ~t) is similarly obtained. Continuing this operation, we eventually

obtain a series of discrete values of the function u(t), averaged with a given
smoothing period T0. The values thus obtained for smoothed functions of horizontal
velocity components are given in Figs. 2 and 3. In each case, the calculation was
made for 200 consecutive instants t~ , i.e., the interval of change in argument t
in these functions is 100 h.

The graphs of Figs. 2 and 3 clearly show that increasing the averaging period
causes fluctuations of increasingly larger scale to disappear from the curves, and
the curves themselves become increasingly “smoother.”

Having found the values of averaged functions u(t) and ~ (t), one can also easily
obtain the values of the corresponding fluctuation velocities u’(t) and v’(t). It
is sufficient for this purpose to calculate the values of these averaged functions
from the corresponding “instantaneous” values of u(t) and v(t). Squaring u ’ ( t)
and v’(t) (or multi plying then, out) and averaging, we obtain the values of Reynolds
stresses (we neglect the minus sign, and p = 1) for a given averaging scale T0.

The values of u ’2 , v’2 and u’v’ calculated in this manner for T0 3, 6, 12 and 24 h
are given in the table. It is obvious from the data of this table that , as expected ,
a regular increase in the turbulent stresses u’2 and ~~~ 2’ is observed with increasing /1~
averaging period T0. At the same time , ~?~

T remains very small for all T~. This

fac t, along with the approximate equality of u’2 and v’2 (when T0 — 3, 6 and 12 h),
atte sts to the isotropy of turbulent fluctuations of these dimensions in the inves-
tigated turbulent current in the ocean. This Is also indicated by the tabulated
data on the correla tion factor between u’ and v ’. Indeed , this factor may be /171
assumed equal to zero within the accuracy of the calculation. The isotropy of

5



I
u(c ’i~eC)

Fig. 2. The function u(t) for various averaging periods:
a — “instantaneous” values of the function u(t);
b — with averaging periods of 3 h;
c — 6 h ;  d — 1 2 h ; e — 2 4 h.
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Fig. 3. The function v(t) for different averaging periods:
a — “instantaneous” values of the function v(t);
b — with averaging periods of 3 h;
c —  6h; d —  12 h; e — 24 h.
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AVera&fnp _s~a3 L_ — ——
0,5 3 6 12 2~Quantity

—, l O ’  s~c..’ 34.~9 5,82 2,91 1.85 0,73

— 9,8 16,3 32,0 83,3
c.i~’sec

t — 13,3 19,1 28,7 45,6
c.w ec~~ — —0,9 0,1 0,8 3,7

- 
_i’,’_ — — —0,08 0,01 0,03 0,06

if c.’s’sec’ — 23,1 35,4 60,7 128,9

c. ’~~ec —1 14,7 13,9 13,2 11,5 9,1

C.I~~ 4~ 8,2 7,4 7,0 6,1 5,2

v
/
(
81I f0-~~~ ec~-’ 22,2 ‘- 8,9 7,8 6,1 3,3

1O~~c.w iec ’ 26,7 8,9 5 ,6 3,3 1,1

turbulent fluctuations breaks down to some extent only in the region of the 24—h

ayeraging scale, where the values of u’2 and v’2 differ appreciably. This phenomenon
is apparently due to a strongly manifested singularity in the region of the velocity
fluctuation spectrum , i.e., ordered tidal oscillations of the diurnal period , which
are distinctly different in the graphs of Figs. 2 and 3.

Data on the magnitude of u’2 and v’2 also make it possible to analyze the
behavior of the sum of these quantities with increasing T0. As can be readily seen,
this sum is merely the total energy E (per 1/2 unit mass) of horizontal turbulent
fluctuations with periods shorter than T0. Increasing the averaging period from T~
to T~’ should give an addition to the turbulent energy, due to velocity fluctuations

with periods located in the interval ~T T~ - T6.* If the smoothing is performed

with a whole set of smoothing parameters T0, one can then, generally speaking, plot
a graph of the function E(T) (or E(w)). In other words, this method can be used to
study the energy spectrum of large—scale turbulent fluctuations of the velocity field
in the ocean. If however the increment of E(w) due to turbulent fluctuations in
the frequency interval Aw is divided by t~w, we obtain still anot!u~r important charac—
.teri.stic of turbulence — the spectral energy density f (w) = E~E(~ ) / ~w. Obviously , in

*It should be emphasizcd that the statements made here will be strictly valid
provided an “ideal” smoothing of the functions u(t) and v(t) is used. In our case,
they hold only with a certain approximation . In addition , it should be kept in mind
that a certain error is also introduced into the values of the function E as a result
of the limited duration of the velocity component realizations used in the calculations

.8
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Fig. 4. Experimental values of the FIg. 5. Experimental values of the
function E(w) and theoretical curve function f(w) and theoretical curve
of the 2/3 power law. of the 5/3 power law.

our case, only three values of the function f(w) can be obtained , which were found /17]

to be 4.2.l0~, l7.3•lO~ , and 93.4•lO~ cm
2 sec l

.* Since the &~ values used for
calculating f(w) are very large, it remains unclear to which w one should refer the
values of the function f(w) that were obtained in this manner. For this reason,
the graph of Fig. 5 does not show points of the function f(w), but rather, rectangles
with bases equal to Aw, and heights corresponding to the values of f(w) for these
intervals of change in the variable w.

The values of the function E(w) are shown in Fig. 4. As is evident from Figs. 4
and 5, the experimental values of the functions E(w) and f(w) are in good agreement
with certain regular curves whose shape will be specified below.

The theory of locally isotropic turbulence offers expressions for the functions
E and f which hold in the so—called inertial subinterval of turbulence scales.
These expressions are 

-

- 
*I should be noted that the functions E and f can obviously also be obtained in

the usual manner , I.e., by a Fourier transformation of the correlation functions for
• the velocity components in the flow in question. However, our method of smoothing the
functions u(t) and v(t) with different averaging periods T0 has the advantage that it
makes it possible to avoid nonstationary long—period fluctuations in the velocity field
and in addition , along with the values of the functions L and [symbol illeglbleJ, one

can also obtain data on the derivatives a /3t and 3v/~t f or d if feren t T0, so that one
can in turn compare the orders of the terms in the Reynolds equations, as will be die—
cussed in detail below.
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E ( k )  c,e”k ’I ’, 1(k)  = c2s’1’k~’1’, (5)

where k is the wavenumber; c is the dissipation rate of turbulent energy per unit
mass, and c1 and c2 are dimensionless universal constants.

The observations whose data are used in this study were performed at a fixed
point of space, and therefore in order to be able to apply formulas (5) to these /171
data, it is necessary somehow to replace the space variables in Eq. (5) by time
variables. This substitution may be made with the aid of the hypothesis of “frozen
turbulence.” According to this hypothesis , turbulent eddies with a space wavenumber
k during their motion through the observation point give rise at this point to velo-
city fluctuations with an angular frequency w related to k by k = w/V, where V is
the velocity of “transfer” of turbulent eddies by the mean flow. The “frozen
turbulence” hypothesis is accurate in the case of turbulent flows in which the energy
of turbulent fluctuations is much lower than the energy of mean motion. In our case,
this condition is not fulfilled very well. Indeed , as can be easily seen from the
tabulated data, the rms values of the flow velocities at high values of T0 approach
the mean flow velocities (in absolute value). This fact , along with the
marked variability of the mean velocity with time , makes it necessary to apply the
“frozen turbulence” hypothesis only very carefully to the data under consideration .
However, we will use this hypothesis anyway, if only to get an idea of the possible
form of the dependence of E and f on the frequency w. Formulas (5) are thus trans-
formed to

E(w) = a,w~”, /(w) =~
- Q2W~~” , (6)

where . 

-

a, ~ c,c’t’ V’Fs 
~2 C2e’1’V1~’. 

/

The graphs of functions (6) are shown in Figs. 4 and 5. The values of coeffi-
cients a

1 
and a2 were chosen as follows: a1 

= 0.161 cm2 sec 8/3, a2 
= 0.153 cm2 sec 8/3.

As is evident from these graphs, the experimental points are in very good agreement

with the theoret ical  expressions (6) , wi th  the exception of the values for  T0 
= 24 h

(w = 0.73~ lO~~ sec~~), which a re locat ed slightly above the theo retical curves.  This
may again be explained by the presence , in this frequency region , of tidal currents
giving a definite “spike” in the spectral functions E(w) and f(w). Obviously, one
mi ght suspect that such good quantitative agreement between experiment and theory is
due to an accidental favorable combination of errors Introduced by the perturbations
and inaccuracies listed above. However, one can apparently state with a fair amount
of confidence that the experimental data confirm the app licability of the expressions
of the theory of locally isotrop ic turbulence to the i nvestigated scale interval of
horizontal t u cbu lent  formations in t h me sea. This conclusion should not be p a r t icu l a r l y
surprising if one recalls  that the horizontal  dimensions of the ocean are of the order
of thousands of kilometers , whereas the spatial dimensions of the investigated pheno-
mena (calculated by mul t ip ly ing the T0 values by the corresponding mean current  velo-
c i t y )  are only 1—1 .0 km. For phenomena with such spatial  dimensions , t he hypothesis
of local isotropy had also been confirmed previously by checking the appl icabi l i ty
of the 4/3 power law to the coefl icien t  of horizontal  turbulent  d i f fus ion  In the
ocean. 14
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The above values of the coefficients a
1 and a2 in formula (6) make it possible

to estimate the order of magnitude of the turbulent energy dissipation rate in the
sea, C. Considering that the velocity V is of the order of 10 cm/see, and the con—

stants c
1 
and c

2 
are taken to be equal to unity, the order of magnitude of C is

found to be 10— 2 cm2 sec 3
, which is in good agreement with previous estimates of

15c In the sea.

The last two rows of the table give the ruin values of the time derivatives of Ill

of the velocity components u(t) and (t) averaged with a different scale. These

derivatives were calculated by dividing the different between consecutive values of

u(t) and v(t) by the time interval separating these values. It follows from the

table that the ruin values of au/st and ~v/ ~ t are substantially dependent on the
averaging scale, decreasing with T0. This result Illustrates once again how care-
fully one must make the estimate of the order of the terms in the equations of motion
of seawaters. In making this estimate, it Is always necessary to specify exactly
the scale of the process to be described by a given system of equations of motion.

An analytical expression for the dependence of the rms value of ~u/~ t (or ~v/~t)
on the averaging scale T0 may be obtained from the following considerations . Obviously,

au/Dt is determined mainly by the smallest—scale velocity oscillations existing in

the function u(t) (i.e., oscillations with period T0). However, according to the

theory of locally isotropic turbulence , the amplitude of these fluctuations Au is
proportional to T0 to the power 1/3. And since the characteristic time At for this

fluctuation is again equal to T0,we obtain for the rms value of the derivative 3u/3t

i/i’ Oti \2 i/ / Ad \Z TI’ -,
V I,jj~) ~~y~~~~~~=v- —~~ vT~”1 (7)

where y is a proportionality coefficient.

Expression (7) may be obtained from the r e l a t i o n  between the rms value of the

derivative Du/~ t averaged over the interval T and the structural function of the
velocity field D (r). Indeed , we have

- u (O) ~2 lIfl~,~ (T)
T 1 7’

If however we now use for the function D (T) the 2/3 power law known in the

theory of locally isotropic turbulence , we immediately arrive at Eq. (7), obtained
above.

A graph of the power law (7) with proportionality coefficient y = 0.59 cm
is given In Fig. 6. It is evident from th is figure that the experimental points
are again in good agreement with the theoretical curve, once more confirming the
applicability of the theory of locally isotropic turbulence to horizontal pro—
ceases of a given scale in the ocean.

11
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Fig. 6. Experimental values of the derivatives ~~/~3t (circles) and ~~~ (crosses)
for different averaging periods, and theoretical curve of the 2/3 power law.

The values obtained for the nonstationary terms In the Reynolds equations of /171
motion may be compared with the values of the components of the Coriolis force,
which plays an important part In the dynamics of sea currents. Calculation of the

components of Coriolis accelerations In our case leads to values ranging from l.8 10~~
to’ O.6~ l0~~ cm sec~

2 (depending on the mean velocity). Comparison of these figures
with values ~f nonstationary terms in the Reynolds equations leads to the conclusion
that these terms surpass the components of the Coriolis force only for averaging
scales (phenomena) shorter than 2—8 h. For larger—scale processes, terms with
the Coriolis force become predominant in the equations of motion , and such processes
may in a ei•rtain sense be considered quasi—stationary.

In cui:h u sion , it should be noted that the numerical estimates given in this
study for 1 argo—scale characteristics of the field of horizontal velocity components
In the ocean ai-e obviously typical only of the dynamic conditions existing during
the observation period. Under diffcrent conditions , however, such estimates may
of course change markedly. However , it may be stated with sufficient reason that
the general character of the dep~imdcn cc of the investigated characteristics on the
averaging scale T0 is fairly universal and determined solely by the general charac-
teristics of turbulent liquid motion.

•Academy of Sciences of the USSR, Received 21 January 1964
- Institute of Oceanology
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