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MARGINAL STABILITY ANALYSIS:
A SIMPLER APPROACH TO ANOMALOUS TRANSPORT IN PLASMAS

Understanding anomalous transport quantitatively is one of the
most fundamental and difficult problems in plasma physics. Anomalous
transport is generally harmful to plasma confinement, This is the case,
for instance, with anomalous electron thermal conduction in tokamaks.
Occasionally it is beneficial, as is sometimes the case with anomalous
absorption of laser light in laser fusion schemes. In all cases,
anomalous transport complicates the prediction of plasma behavior.
This paper discusses a marginal stability approach to anomalous
transport which has broughtexcellent results and has greatly simpli-
fied analyses.

We will illustrate our discussion of anomalous transport in
plasmas by looking at two examples. The first is the problem of
low-Mach-number cross-field shocks. The shock width LB here is
determined by the resistivity (i.e., electron-ion momentum exchange)

2
and is given by L. “~ Yy c%p‘VA where 3 is the electron ion

i
collision frequency, ¢ 1is the speed of light, usp' is the electron
plasma frequency and VA is the Alfven speed. Experimentally, the
shock width is about 10 c/wp.. The problem, of course, is that
using the classical collision frequency gives a much smaller shock
width, implying that the effective collision frequency must be

. strongly enhanced over the classical value. The generally accepted
explanation is that the currents required to support the dB/dx

gradients drive ion acoustic mw»;uu«l which then govern the
Note: Manuscript submitted Janvary 18, 1977.
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anomalous resistivity. These microinstability fluctuations have
been observed in the shock frcnt.a

The other example we shall use is the anomalous transport
determining the tokamak temperature profile. The energy deposited in
the electrons is 'ng while the energy flux-out is erTe. Experimen-
tally, one finds that the resistivity M is approximately classical
but the electron thermal conduction xe is greatly enhanced. Again,
the explanation is that the temperature gradient drives trapped-
electron 1nsta.b:llities3 which in turn govern the heat transport. These
electrostatic fluctuations, at kp1 < 1 have been observed in both
TFR" and ATC.’

In each of these cases conventional wisdom dictates the develop-
ment of a nonlinear theory of the instability to derive anomalous trans-
port coefficients. For ion acoustic instabilities, there has been a

great deal of both theory6°8 and mumerical simulastion.’ t

Generally,

these simulations sta.i't a plasma off in a decidedly unstable state

and show that the waves grow exponen‘tﬁially. There is a generally strong

electron heating and the wave amplitude is limited by ion trapping or

some other nonlinear mechanism. After perhaps 10 or 15 growth times,

the situation settles down again, often with the fluctuation amplitude

at much less than its maximum value. Trapped particle instabilities

are more difficult to simulate, but some preliminary m:rl:]'2 has been

done in this area. These simulations appear to come to the same general

conclusions as simulations of ion acoustic instabilities, namely

that the plasma exists in an unstable state for a time of about 10/vy.
How well do the simulations describe the magnetosonic acoustic

shock and tokamek anomalous transport? The typical growth time of

2




an ion acoustic wave is about lo/mpi so ten growth times, the length
of time of just about the longest simulation, 1s about U x 103/wpe.
On the other hand, the time for the plasma to traverse the shock is
roughly the shock width L_ ~ 10c/«npe divided by the Alfven speed
Vv, = cwci/mpi, or about 4 x loh/wpe. Thus even a very long micro-
scopic simulation can only simulate 10% of the structure.

For the tokamak, the situation ismuch worse. At typical tokamak

densities, the basic time scale of the similation is w;', about

3 x 10712 gec. The growth time of a trapped particle instability
is about 3 X 10'6 sec, and the energy confinement time is about
102 sec. “Thus to get any result at all from the microscopic
simulation, the time scales have to be artificially compressed by
orders upon orders of magnitude.

The crucial dilemma is this: Why do real plasmas seem to

exist in an unstable state for long times when detailed simulations
of the basic plasma mechanisms show they should last in unstable {
states for only about 10/y? If, on the Gther hand, the plasma is
stable, why are fluctuations and enhanced transport observed?
’ A partial answer is that instability can only be important for

long periods in a steady-state plasma if some external (to the

instebility) mechanism continually drives the system toward instability.
Let us look at what these external mechanisms providing free energy

are in the case of the shock and tokamak.
For the shock, it is the u % term in the fluid equation which

’ causes natural steepening of the velocity and density profile. The
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source of the energy is the strong flow behind the shock. Since the
magnetic field is essentially frozen into the flow, B also steepens
and therefore % increases. Once this current in the shock front
exceeds an instability threshold, unstable waves grow until the
greatly increased nonlinear resistivity successfully fights the
tendency of the fluid to steepen by dissipating the current at the
same rate it is generated by steepening.

For the tokamak, the mechanism driving the plasma toward insta-
bility is the fact that the resistivity is proportional to r;3/ e
Thus current channels into the hotter regions, heating them further.
This channeling tends to increase the temperature gradient, and there‘-
by drives trapped-electron instabilities. An induced trapped-electron
instability causes anomalous electron thermal conduction, broadens the
electron temperature profile, and combats the channeling.

In steady state, these two conflicting tendencies fight each
other. The natural meeting ground is at a configuration of marginal
stability for the relevant instability. The marginal stability hypo-
thesis then is simply an assumption that the system is at marginal
stability.

The system may either just sit at marginal stability,
as the solid line in Figure 1, or it may evolve as a relaxation
oscillation about marginal stability as in the dashed curve
in Figure 1. In this marginal stability approach to anomalous
transport, we want to stress, the transport coefficient is
not the fundamental quantity to be sought first; rather it is the
plasma profile. Once the marginally stable profile is knowm,
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one can calculate the value of the anomalous transport coefficient
needed to produce that profile. Then, knowing the transport coeffi-
cient, one can use quasi-linear theory to calculate the turbulent
fluctuation amplitudes needed to give that required value of anomalous
transport. Thus, & marginal stability anomalous transport calculation
proceeda in a direction just opposite to what conventional theory
would dictate, as shown in Fig. 2.

We will now discuss the relation between the marginal stability
theory and conventional nonlinear and turbulence theory, and also
discuss how to incorporate marginal stability theory into a fluid or
transport computer code. Usually a nonlinear theory is worked out
assuming that the background plasma profile is somehow held fixed.
Then a nonlinear theory would predict some value of fluctuation
amplitude which we will denote Bz, From this cpNL one calculates a
transport coefficient which then governs the spatial and temporal
evolution of the profile.

As we have just seen,lowever, the marginal stability theory
also predicts a fluctuation amplitude necessary to maintain the
profile at marginal stability. We denote this level by qoMS
Whenever the inequality

s < i @

is satisfied, marginal stability theory will be viable. Indeed,
the nonlinear saturation mechanism would never become operative.
If, on the other hand, Inequality (1) is violated, then the
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transport coefficient is limited to the smaller nonlinear value

and marginal stability conditions could not be maintained. This
would mean, for instance, a shorter shock width or a hotter

tokamak than predicted by the marginal stability anomalous transport
theory.

At this point, it is worthwhile to ask Just how accurately By,
can be predicted anyway. Even where the basic nonlinear physical
mechanism is well understood, the predictions of transport coeffi-
cients can be notoriously inaccurate. For instance s numerous

6-8 and simulations’ * of ion acoustic instability have

theories
shown stabilization by ion trapping or a simple variation thereof.
This nonlinear theory predicts a value of qa;fl/;z. Given the rigor of
most nonlinear theories, this value of %2 can easily be off by a
factor of two. Since the transport coefficient (resistivity in
this case) goes as qﬁL’ this turns into an uncertainty of a factor
16 in resistivity! Thus, if Eq. (1) is violated, one really
cannot predict shock width to better than an order of magnitude.
For the problem of electron thermal conduction in a tokamak, the
situation is much worse if By, < s Here it seems to us, the
basic nonlinear mechanisms are not even understood.

Now consider how accurately profiles can be predicted when
Eq. (1) 1s satisfied. To determine the profile one needs only the
marginal stability condition., This is determined by linear theory,
which is generally well understood. Even in cases where the linear
theory is not well understood, it is certainly much better under-
stood than the corresponding nonlineer theory. Therefore, one can
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reasonably expect to predict profiles to at least within a factor
of two when Eq. (1) is satisfied.

Since calculations of plasma profiles are generally made using
fluid or transport codes, it is useful to discuss just how the
marginal stability approach fits into a transport code. Fig. 3
depicts the dependence of the effective transport coefficient as a
function of a relevant physical parameter such as the current in the
shock, or the temperature gradient in the tokamak. There is a
sharp jump in transport coefficient at the point of marginal stability.
To the left of this jump, the transport coefficient is determined by
its classical value, to the right by ‘pNL‘ :

Now envision what happens as the strength of the external
mechanism forcing the plasma toward instability is gradually increased.
Starting with a very weak source, the profile is determined classi-
cally. The dot on Figure 3 represents the actual system
transport coefficient. As the strength of the external mechanism
increases, the dot moves to the right along the curve in Fig. 3
until it comes to the marginal stability point. Then, as the
mechanism continues to get stronger, the dot climbs the vertical
part of the curve (i.e., keeping the same profile). It is only
when the source strength has greatly increased that the dot reaches
the top of the curve, where the profile icdeteminedbyq»m. At
this point, the profile can -onee.again become sensitive to the
strength of the driving mechanism.

PPR— SRS aasls



This situation is rather like a phase change. Below zero
degrees centigrade, one knows that for every half-calorie added to
a gram of ice, the temperature increases by one degree. At zero
degrees, however, one can add up to eighty calories without
changing the temperature. The temperature is no longer determined
by the heat added, but is fixed at a particular value. To find
the energy content, one measures the fraction ice and fraction water.
Finally, after one has added eighty calories, there is only water.
At this point, the temperature is again determined by the heat
content. For every calorie added the temperature increases one
degree.

To summarize, if one wishes to determine profiles using a
computer code, a transport ccefficient having the functional depen-
dence shown in Fig. 3 will automatically give profiles determined
by marginal stability as long as the external mechanism forcing the
system toward instability is sufficiently weak.

We conclude this article by very briefly showing how the mar-
ginal stability hypothesis works for the shock and tokamak and also
discuss other works which use this basic councept. Much more
detailed discussions can be found elsewherel?”lh. For the case of
the shock, the condition that ion acoustic waves be at marginal

stability reduced to

w\ 3/2 /p \ 3/2 w 2
L B v [1+]2 - exp - == (2)
e dx S m, '1'1 §Ti .




whez_-e Vs is the wave phase speed and all other notation is standard.
Since the jump in B across the shock is known from Rankine-Hugniot
conditions, Eq. (2) above is an expression for L, in terms of a
single parameter, the electron to ion temperature ratio. This was
computed in Reference 13 by setting the temperature ratio equal to
the ratio of heating rates of electrons and ions. Doing so, the
shock width was found to be of order 10c/wpe, in reasonable agreement
with transverse shock experiments. Once one knows the shock width,
one can determine the resistivity. From the quasi-linear expression
for resistivity, one can determine fluctuation amplitude. The result
is ecp/Te ~ 0.05, also in reasonable agreement with laser scattering
experiments.

For the case of the tokamak, the temperature profile is deter-
mined by the condition that the growth rate induced by trapped
electrons and temperature gradient is just balanced by the damping
rate due to shear. (A self-contained discussion of these aspects
of trapped particle instabilities is found in Reference 15.) The
marginal stability condition relating these two quantities is

4aT

r 14 -1 e
/] l-l q?a-%t- 0.25 'l.‘e . (3)

where q is the inverse rotational transform q = rBo/RBP, B, is
the toroidal field, Bp is the poloidal field, R 1is the major
radius of the torus and r 1is a variable denoting radial position
in the discharge. Another relation between Te and q is found




from Ampere's law which says that the current density at position r
is inversely proportional to the resistivity at that point. Assuming

classical resistivity, this relation is

%342)- = 2q(r) [1 e (r) 3{—;-] (4)

Equations (3) and (4) are then two simulteneous equations for T, and
q. Solving them, we find reasonable solutions for the relative
temperature and current profile which depend only on a single
parameter, q(a), that is q evaluated at the tokamak's limiter.

It is important to stress that recent experiments in 'ITR16 also find
this same basic "universal" dependence. Even though the main
magnetic field and current in the tokamak are independently varied
(and the central temperature therefore also varies), the temperature
half width depends only on the single parameter q(a).

Once one has the temperature profile, one can then calculate
the self-consistent thermal conductivity needed to maintain this
profile. From quasi-linear theory, one then can find fluctuation
amplitudes. In Reference 14, we have found ecg/'l‘e ~ 0,015 which is
comparable to what is measured in ATC.

Another example of a system which comes to a dynamic equili-
brium at a marginally stable state is an initially cold plasma
accelerated by an electric ﬁeld.17 Numerical simulations of this
lyltnm show that the plasma electrons accelerate freely for very
early times. Then, a strong Buneman two-stream instability is

v
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excited which slows down the electrons and heats them up. When
the electron thermal velocity Ve exceeds the drift velocity VD’
the instability is turned off. This corresponds roughly to the point
of linear stability for the Buneman modes. The D. C. electric
field then accelerates the electrons further, turning the instability
back on. As is clear from the graphs in Reference 17, there are
oscillations about the marginal stability conditionm, VD = Ve which
exist for long times., It is particularly interesting that the
marginal stability condition is apparently valid even though

the system appears to be in a very strongly turbulent state.

By applying quasi-linear theory along with the marginal stability
criterion, one can estimate the unstable wave amplitude as a function
of time. Since the unstable waves have phase velocity w/k << \A
(in the reference frame in which the ions are at rest), one can
show by quasi-linear theory for a drifted Maxwellian distribution

that the average force acting on each electron is

2
= oV 9.§2 _VD
F~/-;E(m) exp ?; (5)

The average energy loss for each electron is given by

W= akFm~o, (6)

The equatious for the drift velocity and total energy of the
electrons are




dt_D = % - F/m (a)
' (7)
S BT = aEv, ()

where V2 + ‘ﬁD = Vz Now applying the marginal stability condition,
Vp = Vg to Eq. (7v) gives 3 d& = gE/2m, just half the free accele-
ration as found in Reference 17. Then Eq. (7a) gives F = eE/2 so
that one can find the fluctuating field strength from Eq. (5). The

result is

L

@ /% st ®

vhere we have assumed k ~hD.

As a final example, Christiansen and Robertslg’ao have developed
a fluid simulation code to model the time development of reversed
field pinches., As soon as the local Suydam condition is violated,
they switch on an anomalously large thermal conduction. They found
that the plasma profile was nearly unchanged almost independent of
the size of this thermal conduction anomaly. In fact, the system
hovered near the pressure profile necessary for Suydam stability.

We feel that the marginal stability approach to instability-
dominated transport is extremely promising. It provides a simple
and reliable way of estimating plasma profiles. The field ampli-
tudes it has predicted for the shock and tokamak are smsll enough




b" that quasi-linear theory for determining fluctuations is
believable. The profile and transport coefficient can be deter-

* mined accurately even when the details of the fluctuation spectrum
are "blurred" as long as the marginal stability conditions of linear
theory are correct. The method also fits in very well with con-
ventional approaches using fluid codes as the work of Christiansen
and Roberts shows.
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Fig. 1 — Possible loci of the system
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