AD=AD36 915 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE=-~ETC F/6 5/7
OVERVIEW OF A LINGUISTIC THEORY OF DESI@N.(U)
DEC 76 M L MILLERs I P GOLDSTEIN NOOO14~-TS~C~0643
NL

| UNCLASSIFIED . AI-M-383

...... 2

i § &

== & 2 22
||||| T
e g

lL2s flie e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-f

1

UNCLASSIFIED ¥

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

[

REPORT DOCUMENTATION PAGE | | | / pernehldSIRuSTIONS ou
[T REFORT NUMBER — 2. GOVT ACCESSION.NOL 3. RECIPIENT'S CATALOG NUMBER /
AIM-383

O\

. TiT 5?(774 Subtitle) . TYPE OF REPORTY & PEPIOD COVERED
S e - b
} Overfview of a Linguistic Theory of Design, 9 memorandum vepto)
~) “Go
s - . PERFOAMING ORG. REPORT NUMBER

(7. AUTHOR(#) ?Em GRANT NUMBER{#)
Mark L.IMiller &l ira P./koldstein / NEBD1 4-75-C~0643 g
WNo F—CY§783

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Artificial Intelligence Laboratory A R e
545 Technology Square
Cambridge, Massachusetts 02139

AA036515
N

11. CONTROLLING OFFICE NAME AND ADDRESS ; —
3 Advanced Research Projects Agency // ec ®76
1400 Wilson Blvd 2 12. NUMBER OF PAGES
Arlington, Virginia 22209 31

14. NbNITORING AGENCY NAME & ADDRESS(M dift t Controlling Ollice) 18. SECURITY CLASS. (of this report)

Office of Naval Research <) 4 UNCLASS IFIED
Information Systems o\ !
Arlington, Virginia 22217 IJF » 188 DECL ASSIFICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Distributfoh of this document is unlimited. .

A AT-M-=23, hogo-M-34| ﬁ%cgnn%

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report) U R 4
- MAR 15 1977
’ i Y
| o vee. UIEOEITTG
Fal 3 $o% P e Lo WAV
— - . SiE e —]

18. SUPPLEMENTARY NOTES L, £ g 5 ity 3B
& z'...‘;‘j,‘é[i l 4 €t £ & g & Bl ,l J % .'h”t

None

19. KEY WORDS (Continue on reverse side if nscessary and Identify by block number)

Problem solving, Theory of Design, Computational Linguistics, Artificial
intelligence, Cognitive Psychology, Information Processing Psychology,
Structured Programming, Planning and Debugging.

T Bk . .

Noid
20. ABNACT (Continue on reverae alde if n y and identify by block ber)

SPADE is a theory of the design of computer programs in terms of comple-
mentary planning and debugging processes. An overview of the author's recent
research on this theory is provided. SPADE borrows tools from computational
linguistics -- grammars, augmented transition networks (ATN's), chart-based
parsers -- to formalize planning and debugging. The theory has been applied
to parsing protocols of programming episodes, constructing a grammar-based
editor in which programs are written in a structured fashionia\

-
v i

)

>
PR T

DD , 5", 1473 EOITION OF 1 NOV 63 1S OBSOLETE UNCLASSIFIED :

JAN 73
SECURITY CLASSIFICATION OF THIS PAGE (#hen Data BEntersd)

L HOTHES)3

e

Massachusetts Institute Of Technology
Artificial Intelligence Laboratory

Al Memo 383 December 1976 Logo Memo 30

Overview of a Lingui:tic Theory of Design

Mark L. Miller and Ira P. Goldstein

SPADE is a theory of the design of computer programs in terms of
complementary planning and debugging processes. An overview of the
authors' recent research on this theory is provided. SPADE borrows tools
from computational linguistics -- grammars, augmented transition networks
(ATN's), chart-based parsers -- to formalize planning and debugging. The
theory has been applied to parsing protocols of programming episodes,
constructing a grammar-based editor in which programs are written in a

structured fashion, and designing an automatic programming system based
on the ATN formalism.

This report describes research done at the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology. It was supported in
part by the National Science Foundation under grant C40708X, in part by the
Advanced Research Projects Agency of the Department of Defense under Office of
Naval Research contract N00014-75-C-0643, and in part by the Division for Study
and Research in Education, Massachusetts Institute of Technology.

A

o e

e

-8 ALIIGYVUVAY/NOLLNRIELSIO

<7148 K/pue "TYAY

el |13 (E1VE- 14

S

3JuA0NNYNE

8211008 Jjog
/s

”

S ‘ o

Overview 2 Miller & Goldstein
Table of Contents
1. Introduction

1.1. Objectives and Methodology
1.2. A Linguistic Analogy

2. A Linguistic Theory of Planning
2.1. A Taxonomy of Planning Concepts
2.2. A Grammar of Plans

5 3. A Linguistic Theory of Debugging
3.1. A Taxonomy of Bugs
i

3.2. Diagnosis and Repair

4. Normative Aspects
4.1. SPADE -- A Grammar Based Editor
4.2. RAID -- A Debugging Assistant for SPADE
4.3. SHERLOCK -- An AI-CAI Tutor

5. Synthetic Aspects
5.1. PATN -- An Augmented Transition Network for Planning
5.2. DAPR -- A Model of Debugging

6. Analytic Aspects
6.1. Protocol Analysis as Parsing

6.2. PAZATN == A Parser for Elementary Programming Protocols

7. Conclusions

8. References

T

Overview 3 Miller & Goldstein

1. Introduction

Many problem solving tasks, such as computer progrnming.,'nay be
characterized as the design of artifacts. This paper provides an overview of the
authors' recent research on SPADE (Structured Planning and Debugging), a theory
of this design process. Our purpose here is to provide a coherent overall
framework. Each topic introduced is covered in greater detail elsewhere
[Goldstein & Miller 1976a,b; Miller & Goldstein 1976b,c,d].

Figure 1 illustrates our perspective on the construction of information
processing theories of cognition. We view this enterprise as involving
normative, synthetic, and analytic aspects. We see it as representing a new
paradigm, based upon a marriage of methods and goals from several traditional
disciplines, including artificial intelligence, psychology, pedagogy, and
computer science.

1.1. Objectives and Methodology: Our own research project may be viewed

as an instantiation of this general paradigm, with sub-projects addressing all
three aspects (figure 2). As shown by the central circle in the diagram, we seek
to construct a computational theory of the design process. We wish to test the
utility and validity of this theory, SPADE, in a variety of contexts. This leads
to specific goals and methods, represented by the three outlying circles in the
diagram, which span the synthetic, analytic, and normative aspects and
applications of the theory.

1. The synthetic (AI) goal is to explore computational theories of problem
solving and learning. The method is to construct programs that embody
these theories. This concern is reflected in our work on PATN
[(Goldstein & Miller 1976b], a problem solving program which will plan and
debug simple blocks world and graphics programs. The support for an Al
theory is determined primarily by the competence and efficiency of the
associated computer program in performing a prescribed set of tasks.

R T T T T s

.,—‘ LA A BT -prrl_ 3 s T 2 4
5 P et R = A

Overview 4 Miller & Goldstein

FIGURE 1 - INFORMATION PROCESSING THEORIES OF COGNITION

PSYCHOLOGY

ProTOCOL ANALYSIS
MODELLING HuMAN
INFORMATION
PROCESSING

™

ANALYTIC ASPECT SYNTHETIC ASPECT

ARTIFICIAL
INTELLIGENCE

PROBLEM SoLVING
PROGRAMS

INFORMATION
PROCESSING
THEORIES OF
COGNITION

NORMATIVE ASPECT

EDUCATION

Al - CAI
STRUCTURED
PROGRAMMING

Overview 5 Miller & Goldstein

FIGURE 2 - A LINGUISTIC THEORY OF DESIGN AS PLANNING & DEBUGGING

PATN:
AN ATN-Basep
PROBLEM SOLVER

PAZATH:
A CHART-BASED
ProTocoL PARSER

ANALYTIC ASPECT SYNTHETIC ASPECT

THE SPAD
THEORY

A LINGUISTIC
THEORY OF DESIGN

NORMATIVE ASPECT

‘HW"‘M" %) -
e, *. “ .

§ b b i iy

SHERLOCK: A
Loco TuTor

SPADE: A
GRAMMAR-BASED
EDITOR,A//

Overview 6 Miller & Goldstein

2. The analytic (psychological) goal is to account for the knowledge states

and learning strategies of individuals. Our method is to analyze
protocols of subjects interacting with precisely controlled computer
environments as they solve some problem [Miller & Goldstein 1976b]. We
seek to model the subject's current knowledge, not only about the
particular domain, but also about planning and debugging strategies.
PAZATN ([Miller & Goldstein 1976d], a system to analyze elementary
programming protocols and reveal the use of various plans and debugging
techniques, incorporates this concern. A theory of design embedded in an
automatic protocol analyzer is supported to the extent to which it can
describe and predict the subject's responses: both the final solution
and observable details of the design process by which that solution is
found.

. The normative (educational) gral is to prescribe design methodology -for

R0 By Sraw TR e g

both students (such as beginning programmers) and expert human problem
solvers (such as professional programmers). This is partly a pedagogical
concern: we wish to experiment with the SPADE theory as the basis for a
curriculum about problem solving. At the same time, it shares the
structured programming movement's concern to improve the quality and
reliability of software. The former concern is explored through the
design for SHERLOCK [Goldstein & Miller 1976a], an hypothetical computer
tutor which embodies our vision of flexible, sensitive uses of computers
to teach problem solving and enhance education. The latter concern is
explored via the SPADE editor [Miller & Goldstein 1976¢c], a grammar-based
environment: to assist beginning programmers in acquiring, and
professional programmers in adhering to, a top-down, structured design
discipline. These systems, like PATN and PAZATN, though potentially
valuable as applications programs, are mainly intended as experimental
tools for testing the SPADE theory. The experimental methodology is to
systematically vary the operation of the learning or programming
environment. The claims of the theory are supported to the extent to
which the system as a whole (as well as its various components) aid(s)

T ————

Yy L4

o S aa

e e e

Overview ‘ 7 Miller & Goldstein

the user in solving harder problems more quickly.

Combining these methods and goals into a single research program has
powerful synergistic effects. We have realized this in our particular projects
through the development of a unifying linguistic theory of design.

1.2. A Linguistic Analogy: In developing a formalism for representing
problem solving techniques, we have been guided by.a novel perspective: ‘an
analogy to computatienal linguistics. We have found this analogy to be fruitful
for several reasons.

1. Computational linguistics, though intended td illuminate the nature of
language per se, has produced a set of concepts and algorithms for
characterizing and explaining complex computational processes which are
both perspicuous and rich in power. Problem solving, as a complex
process, benefits from the application of these tools.

2. Computational linguistics decomposes computations into syntactic,
semantic, and pragmatic components. This decomposition clarifies the
explanation of complex processes, when viewed in the following manner:
syntax formalizes the range of possible decisions; semantics the problem
description, and pragmatics the relationship between the two.

3. Computational 1linguistics has undergone an evolution of procedural
formalisms, beginning with finite state automata, later employing
recursive transition networks (context free grammars), next moving on to
augmented transition networks, and culminating in the current set of
theories involving frames, etc. Following this evolutionary sequence in
language theories illuminates their complexity. Each phase captured some
properties of language, but was lncomplefe and required generalization to
more powerful and elaborate formalisms. Moreover, the interrelationships
among many of these formalisms have been thoroughly delineated.

st i

U et S

pu

-

%
“
R
B
b

o

)

¥

Overview 8 Miller & Goldstein

From this evolutionary perspective, one need not necessarily view a given
stage of theorizing as wrong. Sometimes an earlier theory is wrong, but in other
cases the earlier approach can be valuable as an abstraction in its own right,
which illuminates some dimension of the phenomena, even though it is inadequate
as a complete theory. We are following a sequence parallel to that exhibited by
computational linguistics in our own study of problem solving.

In this evolutionary development of SPADE, our theory of the design
process, two sub-tasks have been addressed. First, we have analyzed certain
intricacies of planning and debugging, such as are encountered in the design of
programs which must take into account interactions in achieving dependent
subgoals. The second sub-task has been to seek a representational framework in
which 'to elucidate these subtleties, and in which to structure a wide variety of
planning techniques. Our approach has been to begin with simple but clear
- formalisms, studying their virtues and limitations. Our plan is to continue to
investigate a series of progressively more powerful and elaborate
representations, after reaching a solid understanding as to where the extra power
is needed, and why.

To date, we have explored context free planning grammars, and their
generalization to ATN's; we have transferred the insight gained from studying
planning to the development of a model of debugging; we have examined the
metaphor of protocol analysis as parsing, and studied the use of a chart parser
as a means to discovering these analyses.

2. A Linguistic Theory of Planning

The center circle of figure 2 provides the setting for the discussion in
this section and the next. Then, having introduced some basic notions of the
SPADE theory of design, we will be in a position to move to the peripheral
aspects (the outer circles) in sections four, five and six.

VA«,,..W.W....,..,,,H-W,H.A,.,,,_
A j‘"ﬂ..'."?' % s
R T - SRR

P25 ol
RS

(ree
=

Overview 9 Miller & Goldstein

2.1. A Taxonomy of Planning Concepts: The basis for SPADE is a taxonomy

of frequently observed planning concepts (figure 3). We arrived at this taxonomy
partly by introspection, partly by examining problem solving protocols [Miller &
Goldstein 1976b], and partly by studying the literature on problem solving
(Polya 1957, 1962, 1965, 1967, 1968; Newell & Simon 1972; Sussman 1975;
Sacerdoti 1975]. We regard the taxonomy as neither complete nor unique. Part of
the research program is the classification of additional techniques and the

evaluation of alternative organizational schemes.

There are three major classes of plans in the taxonomy: identification,
decomposition, and reformulation. Identification means recognizing a problem as
previously solved. Decomposition refers to strategies for dividing a problem
into simpler sub-problems. Reformulation plans alter the problem description,
seeking a representation which is more amenable to identification or
decomposition. The figure suggests how these classes of plans are further
subdivided in the SPADE theory.

2.2. A Grammar of Plans: Planning, according to the theory, is a process

in which the problem solver selects the appropriate plan type, and then carries
out the subgoals defined by that plan applied to the current problem. From this
viewpoint, the planning taxonomy represents a decision tree of alternative plans.
The decision process can be modeled by a context free grammar (figure 4).

Consider the top level rule of this grammar:
P1: SOLVE -> PLAN + [DEBUG].
The nonterminal symbol SOLVE is analogous to the nonterminal SENTENCE in a
grammar for language. In our notation, Pl means that planning is first used to
generate a plan, with subsequent debugging then being required to complete the
solution. Since the plan may be entirely correct, DEBUG is in brackets,
indicating that it is an optional constituent.

The disjunctive rule, P2, represents the choice -- in our taxonomy --
between the three mutually exclusive categories of plans: identification,

Overview 10 Miller & Goldstein
PRIMITIVE
— IDENTIFY
3 PREVIOUSLY DEFINED PROCEDURE
-SET
|_.LINEAR—
-SEQUENTIAL
| CONJUNCTION—
-DECOMPOSITION
| NONLINEAR~
: : -COMPOS1TION
PLAN |— DECOMPOSE—
-ROUND
—REPETITION—t
: | RECURSION
_REGROUP
| —FQUIVALENCE—
5 ~GENERIC ¢-) EXPLICIT
£ [REFORMULATE—
i"
" - SPECIALIZE
3 L ~GENERALI ZE
-ANALOGY
FIGURE 3

TAXONOMY OF PLANNING CONCEPTS

Overview

11 Miller & Goldstein

Pl: SOLVE

P2: PLAN
i P3: IDENTIFY
P4: DEFINED
PS: DECOMPOSE
P6: CONJUNCTION
P7: LINEAR
P8: SEQ
P9: SET
‘ P10: SETUP
: ’ P11: MAINSTEP
P12: INTERFACE
P13: CLEANUP
P14: REPETITION
P15: ROUND
P16: ITER-#LAN

P17: TAIL-RECUR

= WA roes

significant;

= Bk
T v

iteration:

o
-

(e.g.,

lexical category:

Figure 4.

->
->

>

ordered conjunction:

unordered conjunction:

&

£ insignificant;
&

3{ optionality:

&

1

G3: A Grammar" of Plans

PLAN + [DEBUG]

IDENTIFY | DECOMPOSE | REFORMULATE
PRIMITIVE | DEFINED

"use code” & "get file"
CONJUNCTION | REPETITION

LINEAR | NONLINEAR

SET | SEQ

[SETUP] + CMAINSTEP + [INTERFACE]>" + [CLEANUP]
<SOLVE>"

SOLVE

SOLVE

SOLVE

SOLVE

ROUND | RECURSION

_ITER-PLAN | TAIL-RECUR

. "repeat step" + SEQ

"stop step" + SEQ + "recursion step"

lTho rules of the grammar are written using the following syntax:

+ disjunction: fa.l b®" is read as, “a or b";

*a + b" is read as, "a and b", where the order is

"a & b" is read as, "a and b", where the order is

"[a]" is read as, "a is optional®;

'<a)" is read as, "a repeated 1 or more times";

a lower case English phrase enclosed in quotation marks

"repeat step") describes a lexical item which is not further
expanded in the grammar.

g T T

¥ .s ;’v' e

»

T v,

>
R]

B e
\.. ‘}_.“, g 8

>
-

Overview 12 Miller & Goldstein

decomposition, and reformulation.

PZ2: PLAN -> IDENTIFY | DECOMPOSE | REFORMULATE
The vertical bars indicate that a choice is required. Other rules are
inteipreted similarly.

The SPADE theory is not restricted to any particular domain. However, to
provide concrete examples, most of our papers use problems from elementary Logo
graphics programming ([Papert 197la,b; 1973]. Figure 5 illustrates the grammar
rules for primitives in this domain. Figure 6 shows our favorite example -- a
typical goal undertaken by beginners in Logo programming -- a "wishingwell®
picture. Figure 7 illustrates a solution to the wishingwell problem with its
hierarchical annotation according to our planning grammar.

The grammar of plans represents a useful abstraction of the decision
process involved in selecting plans from the taxonomy. We illustrate this point
in the next section by analyzing debugging in terms of the grammar. Later in the
paper we show how the theory may be extended to include, not only the syntax of
plans, but their semantics and pragmatics as well.

3. A Linguistic Theory of Debugg;gﬁ

Often problem solvers must decide on a plan in the face of imperfect
knowledge and limited resources. Even carefully reasoned judgments made under
these circumstances may turn out to be mistaken: debugging is then required.
Given a gramﬁatical theory of planning, debugging can be analyzed as the
localization and repair of errors in applying grammar rules during planning. The
linguistic analogy unifies planning and debugging by tracing the origin of bugs
to various types of erroneous planning choices.

e e ——

Overview

13

Miller & Goldstein

Ll.

L2.

L3.

L4.

Figure $ Grammar Rules for Logo Primitives
PRIMITIVE -> VECTOR | ROTATION | PENSTATE
VECTOR -> FORWARD|BACK + “number”
ROTATION -> LEFT|RIGHT + "number"
PENSTATE -> PENUP | PENDOWN

ok e
S i

,,.‘,,
A e,
- - e &

B P

FIGURE 6 WISHINGWELL PICTURE

e —

s e

Miller & Goldstein

14

FTT4~08 13D~ qumuamo..Taszma -QI- *** (T73M) dEISNIVW-

Overview

***dINIZEQ~ °°° (J00¥) dJdILSNIVW=—

00T JTONVIYL |

i
\

02T Tuory— "°° mDZ/mm.HU-“
i
06 GQEVYMYOd— " °° mmbZHg..w.Gmwll NIT-*°°DdQ-"°"** (JOO¥ 3 dT0d NIIMLIAL) HOVJIYILINI -

06 HhQHlIIII...mDBmm;
IAILININd—AI- °°* (370d) JILSNIVH-

JCT QYVMYOJ

.

06 Id3T— ' .maz«mauuﬁomml NIT— **D3d—**(IT0d % TTIM NIIMIHE) FOVIMIINI—

¢S MUYM¥od—" " "dILSNIVW

2qod-dsn

c0T U¥vnos

]
AAILIWIYd —dI— ** *dnLIs-

06 LHOIY

TTIMONIHSIM 404 FJYL NOILVAI¥IQ TYOIHOMWHIIH QILVIAIVEEY

(TWNOIJ

~03S—-NIT-03Q-NVId-IAT0S

Py 5 . 2 "
2 2 & . S e e o o

-

i .1 ;af P

T s,
>

3

T At

.

e

-

P AT
e A

-

-

Overview 15 Miller & Goldstein

3.1. A Taxonomy of Bugs: Since our planning rules were constructed from
operators for conjunction, disjunction, and optionality, three basic classes of
errors arise:

1. syntactic bugs, in which the basic grammar is violated, such as when a
required conjunct is missing;

2. semantic bugs, in a semantic constraint arising from the particular
problem is violated, such as when a syntactically optional constituent,

needed because of the semantics of the particular problem, is missing;

3. pragmatic bugs, in which an inappropriate selection from a set of
mutually exclusive disjuncts is made.

These bug types are illustrated in figure 8. Although these classes are
adequate to characterize many examples which arise in elementary programming,
additional categories must be defined to make this taxonomy of bugs complete.

3.2. Diagnosis and Repair: An important aspect of our research is the
analysis of techniques for diagnosis and repair of planning bugs. These

techniques can be classified according to which representation of a problem they
access: the problem specification (or model), the solution (or code), the plan
derivation, or the process state. Techniques for plan diagnosis can be further
categorized according to the type of planning bug hypothesized: syntactic,
semantic, or pragmatic. (Further details of the debugging theory are presented
in later sections.)

In the next three sections we examine several experimental applications
programs which we have designed and intend to implement. The presentation is
organized according the aspects of the investigation represented by the outer
circles of figure 2. We must emphasize two points: first, that this division by
aspects is a crude first approximation, because of the considerable overlap
implied by a unified approach; second, that while the programs which we have

e L

Y A VT TR

——r

E LR S
Y .

f

S B

..‘i
- . *

Overview 16 Miller & Goldstein

FIGURE 8a - SYNTACTICALLY INCORRECT PLAN
A NECESSARY CONJUNCT IS MISSING

TO WW
10 TRIANGLE —USE
ID-PLAN
END
WW GET
22?2 TRIANGLE UNDEFINED ?22?

("GET" MISSING. UNGRAMMATICAL PLAN.
DEBUG BY COMPLETING PLAN.)

GET TRIANGLE FILE

FIGURE 8b - SEMANTICALLY INCORRECT PLAN
AN OPTIONAL CONJUNCT IS MISSING

FOR EXAMPLE: "WW" MISSING INITIAL SETUP, AND INTERFACE FOR POLE.

TO WW g
10 WELL —MAINSTEP
20 POLE —-MAINSTEP:l ends here
. SEQ-PLAN P
aa J
A

starts here

FIGURE 8c - PRAGMATICALLY INCORRECT PLAN
AN INCORRECT DISJUNCT HAS BEEN SELECTED

TO SQUARE-INSIDE-TRIANGLE LINEAR PLAN --

10 SQUARE SQUARE AND TRIANGLE
20 TRIANGLE DESIGNED

END ! INDEPENDENTLY .

L
INTENDED PICTURE: ACTUAL PICTURE:

rfT

a 4 g e

g

BT Aot

o $ 1

S 3

Overview 17 Miller & Goldstein

designed potentially have practical applicability, we regard them primarily as
experimental tools, which will serve to test the validity of the underlying SPADE
theory. We turn first to the normative aspects, describing systems designed to
encourage and teach articulate top-down structured design.

4. Normative Aspects

How can we judge whether a particular grammar of plans captures, at some
level of abstraction, the set of planning decisions which ought to be considered
in solving problems for a domain? One methodology is to incorporate the context
free grammar into a program editing environment, to augment and direct the
capabilities of a human user. The critical question then becomes determining the
extent to which such a support system aids or hinders the user. This is the

rationale for SPADE, an editor that incorporates our planning grammar.

4.1. SPADE -- A Grammar Based Editor: SPADE [Miller & Goldstein 1976c]
is an acronym for Structured Planning and Debugging Editor. We chose this name

to emphasize the link between our research and the structured programming
movement. Dahl, Dijkstra, and Hoare [1972] call for a style of programming which
reflects coherently structured problem solving. But a detailed formalization of
what this style entails is lacking. Our efforts in this direction, therefore,
naturally supplement the work of Dijkstra and others.

Suppose a problem solver is defining a Logo program for drawing the
wishingwell shown earlier. In SPADE, this is accomplished by applying the
planning grammar in generative mode. For example:

la. What is the name of your top level procedure?
1b. >wWww

2a. Rule for WW is: SOLVE -> PLAN + [DEBUG].
Rule for WW-1 is: PLAN -> IDENTIFY | DECOMPOSE | REFORMULATE.
What now?

A% : "!QA ewr

o 5%
el

r'_‘*ﬁﬂ‘.m_, s

S

-

Overview 18 Miller & Goldstein

2b. >DECOMPOSE.

In this way, SPADE will try to encourage users to articulate their design
decisions in top-down order. At the same time, the system should offer the user
the freedom to escape from this strict discipline if an alternative solution
order seems preferable. Here the user interrupts the top-down prompting,
suspending one subgoal to pursue another:

6a. Do you wish to include the optional constituent CLEANUP?
6b. DLATER

7a. Your pending goals are POLE, ... and WELL. What now?
7b. >POLE

The implementation of SPADE involves assigning an interpretive procedure
to each grammatical operator, to perform bookkeeping of the user's goals. '

As a simple example of the experimental utility of SPADE, the
relationshlp between level of expertise and application of top-down planning can
be ascertained from the frequency of using the LATER capability. More subtle

experiments along these lines will examine the use of LATER in various planning
contexts.

4.2. The RAID Debugging Assistant: SPADE keeps a thorough record of the
user's planning decisions, called the plan derivation. Because of this, it {is
possible to design a debugging assistant (RAID) for the SPADE environment which
embodies what we believe to be a fairly deep notion of debugging. As the user is

prompted through the decision tree represented by the planning grammar, those
choices which might lead to syntactic, semantic, or pragmatic bugs can be
internally flagged by the system. [n subsequent debugging episodes, RAID can
alert the user to the relevant bug warnings, thereby aiding in diagnosis.
Moreover, the SPADE monitor can then be reinvoked to guide repair of the bug, by
resuming planning in the context of the culpable decision (figure 9).

PEETT— 11

ey m———

Overview 19 Miller & Goldstein

Figure 9 . RAID Advice for Syntactically Incomplete Planning Bugs

la. Which subgoal would you like to pursue?
1b. >POLE

2a. Rule for POLE-1 is: PLAN -> IDENTIFY | DECOMPOSE | REFORMULATE.
What now?
2b. >IDENTIFY

3a. Rule for POLE-2 is: IDENTIFY -> PRIMITIVE | DEFINED.
‘ What now?
3b. JLATER.

The LATER command causes further processing of this subgoal to be postponed.
RAID, the debugging component, creates a caveat each time a LATER command occurs.
The caveat records the fact that this part of the plan is syatactically
incomplete at this point.

4a. POLE-2 postponed. Your pending goal list contains the remaining subgoal
WELL. Which goal would like to pursue?
4b. JWELL

5a. We have now completed the WELL subgoal. What now?
5b. JRUN WISHINGWELL

The caveat recorded earlier is a "demon,” triggered by premature execution of the
procedure being designed. If this occurs, the function of the caveat is to
remind the user of the syntactic incorrectness of the program.

6a. Running WISHINGWELL at this time results in the bug manifestation:
UNDEF INED PROCEDURE: POLE.
This is because WISHINGWELL is syntactically incomplete: it contains
the pending subgoal POLE-2. The recommended repair technique is to
complete the solution of the subgoal POLE-2. Would you like to work on
POLE-27
6b.)Yes.

7a. You were solving POLE via an IDENTIFICATION plan. You postponed the
decision (POLE-2) as to which answer library to use.
The rule for POLE-2 is: IDENTIFY -> PRIMITIVE | DEFINED.
What now?

n»‘f"!&., —-wr
" . B

T
BRI

Overview £ 20 Miller & Goldstein

4.3. SHERLOCK -- A Computerized Tutor Computational theories of problem
solving have important ramifications for education. Such theories can serve as

the normative justification for a given curriculum, reveal critical knowledge for
the student excluded from the traditional syllabus, provide a basis for
qualitative -- not merely quantitative -- evaluation, and be embodied in
intelligent tutoring programs to serve as personal learning environments for the
student. This position is exemplified by SHERLOCK [Goldstein & Miller 1976a].
SHERLOCK is an hypothetical computerized tutor which represents a long term
research direction rather than a detailed program design. SHERLOCK embodies our
vision of flexible, sensitive uses of computers to teach problem solving and
enhance education. The other programs we have designed, each significant
undertakings in their own right, can also be thought of as necessary components
for SHERLOCK.

SHERLOCK's goal is to imbue a working Rnowledge of the SPADE theory in
novice programmers. This does not necessarily mean that fifth graders must use
terminology such as context free grammar. 1t does mean that they should
experience, actively manipulate, and explicitly discuss problem solving
situations which highlight the planning and debugging concepts which the theory
attempts to férnalize. Let us illustrate what this might mean via a brief

dialogue.
SHERLOCK: Hello Debbie.
What problem are you working on today?
Debbie: >1 am going to draw a wishingwell.

Initially in a less intrusive, backward looking mode, SHERLOCK might
remain silent as Debbie typed in her code for a wishingwell. Unlike the highly
structured SPADE, SHERLOCK will not take an extremely active role in prompting
the student. (We plan to experiment with the relative virtues of these two
tutorial styles.) However, SHERLOCK might intervene when difficulties were

Overview 21 Miller & Goldstein

encountered by the student.

Debbie: >forward 100
>right 90
>forward 500
0h no! Erase that last forward.

SHERLOCK : Ok. "Forward 500" has been erased.
Do you wish to group the other
lines together into a procedure?

Here, a simple rule of programming style -- the use of subprocedures -- is being
emphasized.

Many complex issues are raised by the design of such tutoring programs.
Our purpose in introducing SHERLOCK has merely been to illustrate one potential
pedagogical application for a computational theory of design. The next section
turns our attention to the synthetic aspects of our enterprise, by introducing an
Al problem solver called PAIN.

S. Synthetic Aspects

While context free grammars can represent a useful abstraction of
planning decisions, they have limitations which prevent them from providing a
complete theory of design. To address this, we have designed PATN, an Al problem
solver. PATN, like SPADE, starts from our taxonomy of plans. But PATN takes the
linguistic analogy one step further. An augmented transition network (ATN,
[Woods 1970]) is used, to capture not only the syntax of plans, but also their

semantics and pragmatics.

ot sl o e Sl e

st e b

i

T B aiian

R A

TS

o

Overview 22 Miller & Goldstein

5.1. PATN -- An Augmented Transition Network for Planning: Figure 10
provides a global view of PATN [Goldstein & Miller 1976b]. Here the decision to

pursue an identification plan versus a decomposition, for example, is modeled by

an arc transition. Semantics are added, by defining a set of registers to record
the problem descripiion, proposed solution, planning advice, and debugging
caveats. Pragmatic information is also incorporated, by associating conditions
and actions with various arcs. For instance, an identification plan cannot
proceed if the problem description cannot be found in the answer library. PATN
elaborates our notion of a plan, by associating semantic variables (snapshots of
the ATN registers) with each node of the plan derivation. One application of
PATN is as a module of SPADE, providing an enhanced set of features to aid the
user in communicating plans. Our implementation plan for PATN is to provide
SPADE with a mode of operation in which a progressively larger percentag§ of
planning choices are made without consulting the user.

5.2. DAPR -- A Model of Debugging: PATN can make mistakes. That is,

PATN will sometimes introduce what we term rational bugs into its plans, due to
making arc transitions with imperfect knowledge of subtleties and interactions in
the task donmain Naturally, PATN will come equipped with a corresponding
debugging module (DAPR). Whereas RAID is designed to assist human programmers in
finding a variety of bugs (primarily by plan diagnosis), DAPR is specifically
designed to analyze PATN's bugs, employing three diagnostic techniques: model,
process, and plan diagnosis. HMHodel diagnosis is the basic technique. It amounts
to comparing the effects of executing a pla'n to a formal description of its
goals, to determine if, and in what fashion, the plan has failed. Another DAPR
technique, based on Sussman's HACKER [1975], is examining the state of the
process at the time of the error manifestation. Plan diagnosis is a DAPR first.
It is accomplished Hv examining the caveats variable associated with various
nodes of PATN's plan derivation.

DAPR could be used to provide additional guidance to RAID. This
possibility illustrates the synergism possible when normative, synthetic, and
analytic facets of a cognitive theory are studied in an integrated fashion. In

Miller & Goldstein

23

Overview

NIV JO Md1A VOO V =-gp JuA9Id

L AITIQIT LoMsue dYy3l
UT PUNOJ UOTINTOS oYl uanady,, - (W)ALxexqri-»S
o° D 1E03aNSs SnuTW $IUJIUO0D :
Ju21and $37 03 syeod 103sTI0X 395, ~-sTeOH_1SAY_» STEBOH
1suoT3oy drduexyg

1o JUIWOTO OTIOUOE T St pIajuds
-oadox uotadiassap wopqoad ayi sp, - (W) 9TXUIY
wefaeaqrr zomsuez oyl ur Suryifue

d3y

...mll

(w) dIBTNWIOIIY -

Aq poydizcu uorzdradsop worqoad sy, - Lxeaqrq 3N
{SUOTITPUO) dldwex]

strofgns jo 30s juoxIng-STBOD 193ST33Y
(uotacataop ueld) UOIINTOS JUDIIND - § IOISTZANY
uotidradsop worqoxd 21807 938ITPOIJ - |4 I91STIdY
:sI103sT80y ordwexg

(k) 3uspuadapur

TIN

04 = STeoy NIT

e

LIS LNOD

+ 0ds

N (&)

OJ'IN

(94Y) 9ATOS» (D) IS W) m:oﬂuuaaouca_mwm
STBO9H 3S3Y » ST[LOYH

sTe0H 1saTji » SIBOY

d001T
LNININIIZY

(W) 91Idudy

2da

|

(W) 3torrdxg

T

(W) oztaeour-> W

oo o —

(1) AzexqT->8

/r

19PON »1

Vi
J3
g \
|
(€)1
(2)
NYIS
(1)
zuaumﬂm 3N
az NmL

e il B o sk T S B o

T

1 ’l’v'« e

Overview 24 Miller & Goldstein

the next section we pursue the analytic facet of our investigation of the design
process, introducing PAZATN, an automatic protocol analyzer.

6. Analytic Aspects

As soon as one has an heuristically adequate theory of design, it is
natural to ask, "Can the theory provide an account of how people solve
problems?". The traditional (e.g., [Newell 1966]) experimental technique for
answering this question is the analysis of protocols collected during problem
solving sessions. While this generally implies transcriptions of think aloud
verbalizations, a useful simplification is to examine the sequence of keystrokes

from a console session in a computerized data gathering context.

6.1. Protocol Analysis as Parsing: The analysis task in such a setting

is to interpret user type-ins during a console session in terms of a theoretical
model of the planning and debugging processes. Our linguistic analogy is helpful
here, wherein we define protocol analysis as the construction of an hierarchical
description of the protocol in terms of our problem solving grammar. [Miller &
Goldstein 1976b] provides a detailed example of such analysis being performed by
hand. In that paper, we examine a high school student's Logo brotocol in detail,
summarizing the sorts of insights obtained when protocol analysis is viewed as
parsing in this sense.

Just as a context free grammar is incomplete as a theory of planning,
likewise a parse is only a partial analysis of a protocol. The theory of
annotation developed in the PATN work leads us from describing only the structure

to more complete analyses of protocols: an interpretation of a protocol is the
selection of a particular PATN plan derivation. Hence analysis should consist of
linking protocol events into the data structures of PATN and of advanced versions
of SPADE.

Overview 25 Miller & Goldstein

6.2. PAZATN -- A Parser for Elementary Programming Protocols: Manual
protocol analysis is unacceptably tedious and informal. Hence [Miller &
g Goldstein 1976d] introduces the design for an automatic protocol parser, PAZATN.
: PAZATN will analyze protocols by matching them against possible solutions which
PATN generates. PAZATN will operate by causing PATN to deviate from its
1 preferred approach in response to bottom-up evidence (figure 11). Also, "buggy"
versions of synthetic plans (including irrational bugs which would not be

introduced by PATN) can probably be recognized.

PAZATN's design is a generalization and elaboration of the coroutine
search plan-finding procedure described for Mycroft [Goldstein 1975]. Looking to
computational linguistics for guidance, PAZATN has been extended to -take
advantage of powerful search strategies developed in research on speech
2 understanding [Lesser et al. 1975; Paxton & Robinson 1975], as well as
sophisticated data structures developed in work on syntactic analysis [Kay 1973;
Kaplan 1973].

i

PAZATN will be constructed #* supplementing PATN with a number of
additional modules and data structures. Figure 12 provides a more detailed block
d.lagram. One data structure, the PLANCHART, keeps track of the set of plausible
subgoals which have been proposed by PATN. Another, the DATACHART, records the
! ‘ state of partially completed interpretations. A preprocessor module will be used
to suppress uninteresting syntactic details and to perform preliminary
segmentation. The preprocessor employs an event classifier to determine the

syntactic class of each event. Corresponding to each syntactic category, PAZATN

‘ will be supplied with an event specialist which embodies the requisite domain
5,, knowledge for assisting an event interpreter in associating an event of that type
j; with some synthetic subgoal. Since a purely top down or bottom up strategy would
?—: be too inefficient, a scheduler module is necessary to dire¢t the analyzer
?’ through a best first coroutine search.

i

44

i Just as PATN will be implemented by extending SPADE to the extreme of

never requesting guidance from the user, PAZATN will be implemented by extending

Overview

Miller & Goldstein

PROBLEM

PROTOCOL

DESCRIPTION

PATN

BOTTOM-UP
CLUES

POSSIBLE PLANS
GIVEN PROBLEM & CLUES

..........)

PAZATN

ANALYZED
PROTOCOL

qeccccccce

FIGURE 11 - TOP LEVEL ORGANIZATION OF THE PROTOCOL ANALYZER

NLVZVd d40 WVIOVIA %0019 - ZT aundld
3 ,_
e '
-
2 pr——m— - ————mmm - |
= 1 70201044
= :] _ v
-}] F————-— - - | ‘ _ ,
H !] 9 | w 1
~ [. il ey 1511 _...n..n-a . !
m " “ ‘ AN " “
| 1511]| v
) ' _
| 81 ¥0SS3I0VdNd
“ NNAK e _
]
. CETE NPT .
NS
SNOILviuduaiN | et o D bileo ity l— SINIAZ e -
K- (wiwve) - —— - ———— 1N3A3 s 03141SSVI1D :
2 ~
~ /// _
/ N\ ///
AN
S1S1V193dS eeo see 1N3A3
AWO AOVd VIVQ = @ ---- { |
]
| ! '
AD14 VIV + 0¥INOD » @E—— 0
o i e LUVHINV W
300K zaﬁﬁuo W
o
=
N
k (V]
v i
% |
h
)
. _,
k..

Y we g o i SN | <% 2 (8
PRRS Gy < aw&spw.::.#wmm.,, e

TR e

: e
A

b -

Overview 28 Miller & Goldstein

SPADE to the opposite extreme. That is, in the pure PAZATN situation, the system
must infer the user's plan entirely from code level events, with no explicit
articulation of the intermediate levels of the plan. PAZATN will be useful in
increasing SPADE's flexibility in handling ambiguous events, and in alleviating
what might seem to some users to bhe an excessive allocation of time and effort to
the planning phase. Moreover, systematic experimentation with PAZATN will
provide evidence regarding whether PATN can serve as the basis for models of
human problem solving.

7. Conclusions

We have studied problem solving for tasks which may be characterized as
the design of artifacts: the outlines for SPADE, a computational theory of
design, have been presented. The normative, synthetic, and analytic aspects of
its role in the overall research encerprise have been illustrated by introducing
several experimental applications programs. The exploitation of concepts and
algorithms from computational linguistics is a recurring theme: grammars, ATN's,
derivation trees, search strategies from speech understanding, chart-based
parsers. We believe that our unified approach to the objectives of several
fields, utilizing methods from each, represents a new paradigm which can provide
benefits to all of them.

Much remains to be done. While far greater detail is available in our
other papers, not every detail of the SPADE theory has been specified. Although
almost all of the programs have been designed, even hand-simulated, none have
been implemented. Neither the utility, the validity, nor the generality of the
theory has been demonstrated. If the individual research projects succeed, a new
clarity will have been brought to the study of problem solving. If, perchance,
they should fail, then the reasons for the failures should nevertheless provide
useful insights.

Overview 29 Miller & Goldstein

8. References

Dahl, Ole-Johan, Edsger Dijkstra and C.A.R. Hoare, 1972. Structured Programming.
London, Academic Press.

Goldstein, Ira P., 1975. "Understanding Simple Picture Programs.” Artifictal
Intelligence, Volume 6, Number 3.

Goldstein, Ira P., and Mark L. Miller, December 1976a. AI Based Personal
Learning Environments: ODirections For Long Term Research. Massachusetts
Institute of Technology, Artificial Intelligence Laboratory, Memo 384
(Logo Memo 31).

Goldstein, Ira P., and Mark L. Miller, December 1976b. Structured Planning and
Debugging: A Linguistic Theory of Design. Massachusetts Institute of
Technology, Artificial Intelligence Laboratory, Memo 387 (Logo Memo 34).

Kaplan, Ronald M., 1973. "A General Syntactic Processor." in Randall Rustin
(ed.), WNatural Language Processing, Courant Computer Science Symposium 8
(December 20-21, 1971), New York, Algorithmics Press, pp. 193-241.

Kay, Martin, 1973. "The MIND System." in Randall Rustin (ed.), Natural Language
Processing, Courant Computer Science Symposium 8 (December 20-21, 1971), New
York, Algorithmics Press, pp. 155-188.

: Lesser, V.R., R.D. Fennell, L.D. Erman and D.R. Reddy, February 1975. 1
w "Organization of the Hearsay II Speech Understanding System.®” in IEEE '
é' Transactions on Acoustics, Speech, and Signal Processing, Volume Assp-23, |
b Number 1, pp. 11-24.
1% |
5 |
i'; Miller, Mark L., and Ira P. Goldstein, December 1976b. Parsing Protocols Using

¥

Problem Solving Grommars. Massachusetts Institute of Technology, Artificial
Intelligence Laboratory, Memo 385 (Logo Memo 32). 1

wei i“'«\ s
o B A

L g T
o iy e

.“'
»

Overview 30 Miller & Goldstein

Miller, Mark L., and Ira P. Goldstein, December 1976c. SPADE: A Grammar Based
Editor For Planning and Debugging Programs. Massachusetts Institute of
Technology, Artificial Intelligence Laboratory, Memo 386 (Logo Memo 33).

Miller, Mark L., and Ira P. Goldstein, December 1976d. PAZATN: A Linguistic
Approach To Automatic Analysis of Elementary Programming Protocols.
Massachusetts Institute of Technology, Artificial Intelligence Laboratory,
Memo 388 (Logo Memo 35).

Newell, Allen, June 1966. On the Analysis of Human Problem Solving Protocols.
Carnegie Institute of Technology, Preprint of paper presented at the
International Symposium on Mathematical and Computational Methods in the
Social Sciences, Rome 1966.

Newell, Allen, and H. Simon, 1972. Human Problem Solving. Englewood Cliffs, New

Jersey, Prentice-Hall.

Papert, Seymour A., 1971a. Teaching Children to be Mathematicians Versus
Teaching About Mathematics. Massachusetts Institute of Technology, Artificial
Intelligence Laboratory, Memo 249.

Papert, Seymour A., 1971b. Teaching Children Thinking. Massachusetts Institute
of Technology, Artificial Intelligence Laboratory, Memo 247 (Logo Memo 2).

Papert, Seymour A., June 1973. Uses of Technology to Enhance Educatton.
Massachusetts Institute of Technology, Artificial Intelligence Laboratory,

Memo 298 (Logo Memo 8).

Paxton, William and Ann Robinson, 1975. *"System Integration and Control in a
Speech Understanding System."™ in American Journal of Computational

Linguistics, Volume 5, pp. 5-18.

v "7”; 5.,“ "

i v

N —

Overview 3l Miller & Goldstein
Polya, George, 1957. How to Solve It. New York, Doubleday Anchor Books.

Polya, George, 1962. MNathematical Discovery (Volume 1). New York, John Wiley
and Sons.

Polya, George, 1965. Mathematical Discovery (Volume 2). New York, John Wiley
and Sons.

Polya, George, 1967. MNathemetics and Plausibdle neuo_uu (Volume 1). New
Jersey, Princeton University Press.

Polya, George, 1968. Mathematics and Plaustble Reasoning (Volume 2). New
Jersey, Princeton University Press.

Sacerdoti, Earl, September 1975. "The Nonlinear Nature of Plans.® in Advance
Papers of the Fourth Intermational Joint Conference on Artifictal
Intelligence, Tbilisi, Georgia, USSR, pp. 206-218.

Sussman, Gerald Jay, 1975. A Computational Nodel of SR{ll Acquisition. New
York, American Elsevier.

Hood.'./._ ‘William A., October 1970. “Transition Network Grammars for Natural
Language Analysis.® Communicetioas of the ACN, Volume 13, Number 10, pp. 591-
606.

