
AD—AUG 915 MASSACHUSETTS INST OP TECH CAMBRIDGE ARTIFICIAL INTE—CYC F/S 5/7 1OVERVIEW Off A LINGUISTIC TPCORY OF DESIGN.(U)
DCC 76 N I. MILl ER. I P GC1.DSTEIN N00014—75—C—O6 *3

UNCLASSIFIED AI—M— 383 it.
o r

I 7

. I .o~~ Io~~uL~

M~ 1111 2.2
IIIt~~~

I I. I I~

IIIlI~111111.25 tIIII~ 1H8 6 •

MICROCOPY RESOLUTION TEST CHAS~T
NATIONAL BUREAU OE STA NOA ROS-I963 ~~.

UNCLASSIFIED
SECURITY CLASSIFICAT ION OF THIS PAGE (R?i.n Vat. Ent.r.d) /

REPORT DOCUMENTATION PAGE () BEFORE COMPLETING FORM
I. REPORT NUMBER 2. covr AcCESSibM-.1IO ~~ . RECIPi ENT’S CATALOG NUMB ER

A iM- 383

TITLE~~,
4SubtItl.) . TYPE OF REPORT & PERIOD COVERED

3
~ii~~~~j~v iew of~i Linguistic Theory of Des~~~, ~~~~)~~~~~ ,orandum ~,.e p~~ j J

S. PCRFORM1NG ORG. REPORT NUMBER

~~. A UTHOR(S)
-.

. cON’rRACT OR GRANT MUMBER(.)

C~ j ~~~~~~1.j Mifler~~~~~lra P./G&ds~~~~~~ Q~~

9. PERFORMING ORGAN IZATION NAME AND ADDRESS TO. PROGRAM ELEMENT . PROJE CT , TASK
Ar tific ial Intelligence Laboratory A REA & WORK U.’iIT NUMOERS

545 Technology Square ,

Cambridge , Massachusetts 02139

II. CONTROLLING OFFICE NAME AND ADDRESS .I2~
-

—

Advanced Research Projects Agency _ec
-

•
~~~ 7

1400 Wilson Blvd U NUMBEROF PAGES
Arlington , Virginia 22209 31

14. MONITORING AGENCY NAME & ADORESS(U dill S I  ControflInj OllIc•.) IS. SECURITY CL ASS. (of SAl. r .pcrt)

Office of Nava l Research j~~ -~ ‘~ j UNCLASS IFIED
Information Systell s 

____ 

___________________________
Ar lington, V i rg tn ia  222 17 i t  ISA . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

16. DISTRIBUTION STATEMENT (al lAh R.po,S)

Distribution of this document Is unlimited . — — .

17. DISTRIBUTION STATEMENT (of th. ab.Sract ,nt.r. d hi Block 20. it dlll .rsti t from R.poM) 1
M~l~~l5 191?

I t-

‘I. .~ •
. . ,

~~~
•
‘

:~~~ ~~~~~~~~~~~ . U ~~L~U~~L6
IL SUPPLEMENTARY NOTES “~~~~~~~“ : - ~~

. A
~~~~~ • • ~ 

.
.~~.

.
. ‘ ~~~~~~~~~~~~~~~

None

9. KEY WORDS (Conthw. on t•v.tao .id. U n.c...my mid idmiuily by block nimib.P)

Problem solving , Theory of Des ign , Computational Linguistics , Ar t i f i c ia l
Intel ligence , Cognitive Psychology , Information Processing Psychology,
Structured Programming, Planning and Debugging.

20. AB~.~4ACT (Contlnu• on r•~~ f a. aid. U h.c.....v mid id.ntity bp block nion b.r)

SPADE is a theory of the des i gn of computer programs in terms of cornple-
mentary planning and debugging processes. An overview of the author ’s recent
research on this theory is provided. SPADE borrows tools from computational

~~ linguistics -- grammars , augmented transition networks (ATM ’s) , chart—based
parsers -- to formalize planning and debugg ing. The theory has been applied
to pars i ng protocols of programming episodes , constructing a grammar-based
ed i tor in wh i ch programs are written i n  a structured fashion.

DD 1 JAN 73 ~~~~ 
EDITION OF I NOV SS IS O$$OLETE UNCLASS IFIED
S/N 0102 014 6601

F SECU R ITY cLAss IrIcArl o N OF THIS PAGE ($7~.n D.ta st ,.d)r ‘~/O 7I~ ’5
— -_-.----_-—-—----,.~~~~~----~~~~•—.•-_ _---—.-- — _________

—- _ _ _ _ _ _- 

- — -
~~ 

—
~
—---1



-. . Massachusetts Institute Of Technology
Artificial Intelligence Laboratory

Al Memo 383 December 1976 Logo Memo 30

Overview of a LiniuL tic Theory of Design

Mark L. Miller and Ira P. Goldstein

SPADE is a theory of the design of computer program s in terms of
complementary planning and debugging processes. An overview of the

authors’ recent research on this theory is provided. SPADE borrows tools

from computational linguistics -- grammars, augmented transition networks
(AIN’s), chart-based parsers -- to formalize planning and debugging. The

theory has been applied to parsing protocols of programming episodes,
constructing a grammar-based editor in which programs are written in a

structured fashion, and designing an automatic programming system based
on the ATN formalism.

This report describes research done at the Artificial Intelligence

Laboratory of the Massachusetts Institute of Technology. It was supported in

part by the National Science Foundation under grant C40708X, in part by the

Advanced Research Projects Agency of the Depart.ent of Defense under Office of
Naval Research contract N000l4-75-C-0643, and in part by the Division for Study

and Research in Education, Massachusetts Institute of Technology. — __________ 

-.

1~
. _ _ _  

!~F~
_ _ _

-,

— ~-_~~~~~-—mi- —-- - —, - -~ -.- -- -_ - - . . — - -  ~.. ~~~~~~~~~~~~~~~

- ..--— - — t~~~~~~~~~~~~~~~~~~~~~~~~~ — ~~~~~~~~~~~~~ - -



Overview 2 Miller & Goldstein

Table of Contents

1. Introduction
1.1. Objectives and Methodology

1.2. A Linguistic Analogy

2. A Linguistic Theory of Planning
2.1. A Taxonomy of Planning Concepts
2.2. A Gra.iunar of Plans

3. A Linguistic Theory of Debugging
3.1. A Taxonomy of Bugs

3.2. Diagnosis and Repair

4. Normative Aspects
-; 4.1. SPADE -- A Grammar Based Editor

4.2. RAID -- A Debugging Assistant for SPADE
4.3. SHERLOCK -- An Al-CA! Tutor

5. Synthetic Aspects

5.1. PAIN -- An Augmented Transition Network for Plamni’ig
5.2. DAPR -- A Model of Debugging

6. Analytic Aspects

6.1. Protocol Analysis as Parsing
6.2. PAZATN -- A Parser for Elementary Programming Protocols

7. Conclusions

8. References
‘V

___________________________________ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~



-~ — ~--- - - -.-~ .— - - - , - - —-- -.- - ---- --

Overview 3 Miller & Goldstein

1. Introduction

Many problem solving tasks , such as computer programming , - say be
characterized as the design of artifacts. This paper provides an overview of the

authors ’ recent research on SPADE (Structured Planning and Debugging), a theory
of this design process. Our purpose here is to provide a coherent overall
framework. Each topic introduced is covered in greater detail elsewhere

(Goldstein & Miller 1976a,b; Miller & Goldstein 1976b,c,d].

Figure 1 illustrates our perspective on the construction of information
processing theories of cognition . We view this enterprise as involving

normative, synthetic , and analytic aspects. We see it as representing a new
paradigm , based upon a marriage of methods and goals from several traditional

disciplines , including artificial intelligence , psychology, pedagogy, and
computer science.

1.1. Objectives and Methodo log~~ Our own research project may be viewed
as an instantiation of this general paradigm , with sub-projects addressing all
three aspects (figure 2). As shown by the central circle in the diagram, we seek
to construct a computational theory of the design process. We wish to test the

utility and validity of this theory, SPADE , in a var iety of con texts. Th is leads
to specific goals and methods, represented by the three outlying circles in the
diagram , which span the synthetic , analytic , and normative aspects and

applications of the theory.

1. The synthetic (A!) goal is to explore computational theories of problem
solving and learning . The method is to construct programs that embody
these theories. This concern is reflected in our work on PAIN
(Goldstein & Miller 1976b), a problem solving program which will plan and
debug simple blocks world and graphics programs. The support for an A!

1’
theory is determined primarily by the competence and efficiency of the
associated computer program in performing a prescribed set of tasks .

--i

~

-

~

-

~

-,- ~~~~~~~~~~~~~ ~~~~1 _ T~~~~~~~ ~~~~~~~~~



r - - — ----

~~~~~~~~~~

• - - ——-- -
~~

. - -.-:.—

~~

.-
—----- -- ------— ———, - -

~

.—..— - ---------.

~

r~--~ -~~~~~

Overview 4 Miller & Goldstein

FIGURE 1 - INFORMAT ION PROCESSING THEORIES OF COGNITION

• ANALYTIC ASPECT SYNTHETIC ASPECT

.
INFORMATION
PROCESSING

THEORIES OF
COGN I TI ON

NORMATIVE ASPECT

?‘1

-

~~~~~~ 
EDUCATIO N

STRUCTURED

\ PROGRAMM~~~AMMIN G

tt4
~~-~~~~~- —-JJ 1~ T I1T .~~~~



- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Overview 5 Miller & Goldstein

FIGURE 2 - A LINGUISTIC THEORY OF DESIGN AS PLANNING & DEBUGGING

- PAZATN: PATN :
A CHART-BASED AN ATN-BASED
PROTOCOL PARSER PROBLEM SOLVER

14

ANALYTIC SPECT SYNTHE IC ASPECT

THE SPAD
THEORY

A LINGUISTIC
- 

.

- 

THEORY OF DESIGN
S PLANNING &

EBUGGING

NORMATIVE ASPECT
I.

SHERLOCK : A
LoGo TUTOR

SPADE : A
L 

GRAMMAR-BASED
EDIToR ~//

I,‘1
t4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~

-- -

~~~~~~~~



r ~~~~~ - - - -—-—-
~~‘ -~~~~~~ -~~~~~~~~~

Overview 6 Miller & Goldstein

2. The analytic (psychological) goal is to account for the knowledge states

and l ea rn ing  s trategies of indiv iduals .  Our method is to analyze
protocols of subjects interacting with precisely controlled computer
environments as they solve some problem (Miller & Goldstein 1976b]. We
seek to model the  subjec t ’ s current  knowledge , not only about the
part icular  domain , but also about planning and debugging strategies .
PAZATPJ (Miller & Goldstein 1976d], a system to analyze elementary

programing protocols and reveal the use of various plans and debugging

techn iques , incorporates this concern. A theory of design embedded in an

automatic protocol analyzer is supported to the extent to which it can

describe and predict the subject’s responses: both the final solution

and observable details of the design process by which that solution is

found.

3. The normative (educational) g-’al is to prescribe design methodology ~for

both students (such as beginning programmers) and expert human problem

solvers (such as professional programmer s). This is partly a pedagogical
concern : we wish to experiment with the SPADE theory as the basis for a
curriculum about problem solving. At the same time , it shares the

structured programming movement’s concern to improve the quality and

reliability of software. The former concern is explored through the

design for SHERLOCK (Goldstein & Miller 1976a], an hypothetical computer
tutor which embodies our vision of flexible, sensitive uses of computers

to teach problem solving and enhance education. The latter concern is

explored via the SPADE editor (Miller & Goldstein 1976c], a grammar-based
env ir onm en~. to assist beginning programmers in acquiring, and

professional programmers in adhering to, a top-down, structured design1~! discipline. These systems, like PAIN and PAZATN , though potentially

valuable as applications programs, are mainly intended as experimental

tools for testing the SPADE theory. The experimental methodology is to

systematically vary the operation of the learning or programming

environment. The claims of the theory are supported to the extent to

which the system as a whole (as well as its various components) aid(s)

~~~-~~~~~~~~ --~~~~~ T~~~~T~~~ ~~~~~~~~~J _ _ _ _


- —.-- --- ~ ‘- - -~~~~~~~~~— —,. -~~ - —~~~~~ —~ —~~~~---~~~~~~------ — —- -~~~~~~ - - -~~----~~~~ - - - - - -

I

Overview - 7 Miller & Goldstein

the user in solving harder problems more quickly.

Combining these methods and goals into a single research program has

powerful synergistic effects. We have realized this in our particular projects

through the development of a unifying linguistic theory of design .

1.2. A Linguistic Analogy : In developing a formalism for representing

problem solving techniques , we have been guided by a novel perspective: an

analogy to computatienal linguistics. We have found this analogy to be fruitful

for several reasons.

1. Computational linguistics, though intended to illuminate the nature of

language p er .se, has produced a set of concepts and algorithms for

characterizing and explaining complex computational processes which are

both perspicuous and rich in power. Problem solving, as a complex
process , benefits from the application of these tools.

2. Computational linguistics decomposes computations into syntactic ,

seman tic, and pragmatic components . This decomposition clarifies the
explanation of complex processes, when viewed in the following manner:

syntax formalizes the range of possible decisions; semantics the problem

description, and pragmatics the relationship between the two.

3. Computational linguistics has undergone an evolution of procedural

formal isms , beginning with finite state automata , later employing

recursive transition networks (context free grammars), next moving on to

augmen ted trans ition ne tworks , and culminating in the current set of

theories involving frames, etc. Following this evolutionary sequence in

language theories illuminates their complexity. Each phase captured some

properties of lan gua ge, but was incomplete and required generalization to
more powerful and elaborate formalisms. Moreover, the interrelationships

among many of these formalisms have been thoroughly delineated .

T ~~~~~~~~~~~~~~~~~~~~~~ --
_ _ _ _ _ _

--

Overview 8 Mil ler & Goldstein

From this evolutionary perspective, one need not necessarily view a given
stage of theorizing as wrong. Sometimes an earlier theory is wrong, bu t in other
cases the earlier approach can be valuable as an abstraction in its own right.
which illuminates some dimension of the phenomena, even though it is inadequate

as a complete theory. We are following a sequence parallel to that exhibited by

r computational linguistics in our own study of problem solving.

In th is evolu tionar y develo pment of SPADE , our theory of the design

process, two sub-tasks have been addressed . First, we have analyzed certain

intricacies of planning and debugging, such as are encountered in the design of

programs which must take into account interactions in achieving dependent

subgoals. The second sub-task has been to seek a representational framework in

which to elucidate these subtleties, and in which to structure a wide variety of

p lanning techniques . Our approach has been to begin with simple but clear
formal isms , studying their virtues .ind limitations. Our plan is to continue to

investigate a series of progressive ly more powerful and elaborate

representations, after reaching a solid understanding as to where the extra power

is needed , and why.

• To date , we have explored context free planning grammars , an d their
generalization to ATN ’s; we have transferred the insight gained from studying
planning to the development of a model of debugging; we have examined the

metaphor of protocol analysis as parsing, and studied the use of a chart parser

as a means to discovering these analyses.

h.
2. A Linguistic Theory of Planning

The center circle of figure 2 provides the setting for the discussion in

this section and the next . Then , having introduced some basic notions of the
-
~~~~~ SPADE theory of design , we will be in a position to move to the peripheral

aspects (the outer circles) in sections four, f ive and six.

I 

_

~ 4q

— -- ,.-• ----. -• -
~~~~~

—-----‘
~~~ 

.— -- — - ----—-- ---,---- - - - --- -——-— - - -  —- -- —— - ——-
~~~~ 

—-

~~-- - - - —~~~~~ - - - - - - - --

r w ~~~ ~~~

Overview 9 Miller & Goldstein

2.1. A Taxonomy of Planning Concepts: The basis for SPADE is a taxonomy

of frequently observed planning concepts (figure 3). We arrived at this taxonomy

partly by introspection , partly by examining problem solving protocols (Miller &

Goldstein 1976b], and partly by studying the literature on problem solving

(Polya 1957, 1962, 1965, 1967, 1968; Newell & Simon 1972; Sussnan 1975;

Sacerdoti 1975]. We regard the taxonomy as neither complete nor unique . Part of

the research program is the classification of additional techniques and the

evaluation of alternative organizational schemes.

There are three major classes of plans in the taxonomy: identification,

decomposition, and reformulation. Identification means recognizing a problem as

previously solved. Decomposition refers to strategies for dividing a proble•
into simpler sub-problems. Reformulation plans alter the problem description,

seeking a representation which is more amenable to identification or

decomposition . The figure suggests how these classes of plans are further

subdivided in the SPADE theory.

- -: 2.2. A Grammar of Plans: Planning, according to the theory, is a process

-
;

-
in which the problem solver selects the appropriate plan type, and then carries
out the subgoals defined by that plan applied to the current problem. From this

viewpoint, the planning taxonomy represents a decision tree of alternative plans.

The decision process can be modeled by a context free grammar (figure 4) .

Consider the top level rule of this grammar:

P1: SOLVE -> PLAN + (DEBU G].
The nonterminal symbol SOLVE is analogous to the nonterminal SENTENCE in a

grammar for language. In our notation, P1 means that planning is first used tor genera te a p lan , with subsequent debugging then being required to complete the
solution . Since the plan may be entirely correct , DEBU G is in brackets,
indicating that it is an optional constituent.

The disjunctive rule , P2 , represents the choice -- in our taxonomy ——
between the three mutually exclusive categories of plans: identification ,

~~~~~~~~~~T I T ~~~~~~~TITiTT~J1 - TEIJ



— ,—.— — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~•-------——--— —-.-•----- .
~~~~ 

•—i-
~~

_
~_.,-_ —~-~~ .—-— -—-—--- ,—-—-• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Overview 10 Miller & Goldstein

i— PRIMITIVE

— IDENTIFY_H

PREVIOUSLY DEFINED PROCEDURE

i-SET

~.LINEAR—1

I I-SEQUENTIAL
_CONJUNCTION__ 1

~-DECOMPOSITION
I-NONLINEAR-J

I COMPOS 1TION
PLAN — DECOMPOSE—

bROUND

—REPETITION

CURSION

i-REGROUP

- : _fQUIVALENCEH

I-GENERIC (-> EXPLICIT
• — REFORMULATE-

~
SPECIALIZE

_SIMPLIFY
[—GENERALIZE

FANALOGY

FIGURE 3
TAXONOMY OF PLANNING CONCEPTS

~~~~~~~~~ _ _ _ _ _  _ _ _



~~~- i ~
-- — -—— --:L:~

--
~_ ~~~~~~~~~~~~~~

- - --.— -----
~~1~~

Overview 11 Miller & Goldstein

Figure 4. G3: A Grammar’ of Plans

P1: SOLVE -) PLAN + (DEBUG]

P2: PLAN -> IDENTIFY I DECOMPOSE I REFORMU LATE

P3: IDENTIFY -) PRIMITIVE I DEFINED

P4: DEFINED -> ‘use code a ‘get file’

PS: DECOMPOSE -> CONJUNCTION I REPETITION

P6: CONJUNCTION -> LINEAR I NONLINEAR
P7: LINEAR -) SET I SEQ
PS: SEQ -) (SETUP] + <NAINSTEP + (INTERFACE]>C • (CLEANUP]

P9: SET -> <SOLVE>
5

PlO : SETUP -) SOLVE

P11: NAINSTEP -> SOLVE

P12: INTERFA CE -> SOLVE

P13: CLEANUP -) SOLVE
-

- P14: REPETITION -> ROUND I RECURSION
P15: ROUND

-
-> h ER-PLAN I TAIL-RECUR

P16: h ER-PLAN ->. ‘repeat step’ + SEQ

P17: TAIL-RECUR -> ‘stop step’ + SEQ + ‘recursion step’

1The rules of the grammar are written using the following syntax:

disj unction: ‘a I b’ is read as, ‘a or b’;
ordered conjunction: ‘a + b’ is read as, ‘a and b’ where the order is

significant;

unordered con junct ion : ‘a a b’ is read as , ‘a and b’, where the order is
insignificant;

opt ionaii ty : ‘(a]’ is read as, ‘a is optional’;

i teration : ‘<a)5’ is read as, ‘a repeated 1 or more t imes’;

lexica l category : a lower case English phrase enclosed in quotation marks
(e.g., ‘repeat step’) describes a lexical item which is not further
expanded in the grammar.

— ~~~
• —----- ---

~~~~~~
--- - —----—-- - -  - - - - -.-.- --- - - - - — - -

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _____ -~--—- -— - — ~------—-- ——-- - -----—--—-- — -- - —------ - - —.—.—--~- - -~—-— -



- -~~ -~~.--- —~ - --.~~ - ---~~~~~~~~~ ~~ ‘- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - --~~-~- - - - - -~~~~ -—~ - —-- -~ -——--—-- - - - . - - -—- - —-~~ ~~~~~~ -~ - 
-

Overview 12 Miller & Goldstein

decomposition , and reformulation .

P2: PLAN -) IDENTIFY I DECOMPOSE I REFORMULATE
The ve r t i ca l  bars indica te  tha t  a choice is re qui red .  Other  rules  are
interpreted similarly.

The SPADE theory is not restricted to any particular doma in.  However , to
provide concrete examples, most of our papers use problems from elementary Logo

graphics programing (Papert 1971a,b; 1973]. Figure 5 illustrates the grammar

rules for primitives in this domain . Figure 6 shows our favorite example —— a

typical goal undertaken by beginners in Logo programming -- a ‘wishimgwell’
picture . Figure 7 illustrates a solution to the wishingwell problem with its

hierarchical annotation according to our planning grammar.

The grammar of plans represents a useful abstraction of the decision

process involved in selecting plans from the taxonomy. We illustrate this point

in the next section by analyzing debugging in terms of the grammar. Later in the

paper we show how the theory may be extended to include, not only the syntax of
plans , but their semantics and pragmatics as well.

L

3. A Linguistic Theory of Debugging

Of ten problem so lvers mus t decide on a p lan in the face of imperfect
knowledge and limited resources. Even carefully reasoned judgments made under
these circumstances  nay turn out to be mistaken : debugging is then required.
Given e grammatical theory of planning, debugging can be analyzed as the

localization and repair of errors in applying grammar rules during planning . The
linguistic analogy unifies planning and debugging by tracing the origin of bugs
to var ious types of erroneous planning choices.



Overview 
- 

13 Miller & Goldstein

~ - ure 5 Grammar Rules for Logo Primitives

- 

Li. PRIMITIVE -> VECTOR I ROTATION I PENSTATE

L2. VECTOR -> FORWARDIBACK + ‘number’
- [.3. ROTATION -) LEFTIRIGHT + ‘number ’

L4. PENSTATE -> PENI J P I PENDOWN

FIGURE 6 WISHINGWELL PICTURE

A

.q.
0

~~-~~~~~~~~ 11T~Ti~: :LiJi~ ~TI _ _



r p —---- _ -‘-—
~
--

~
-— -—-—--..-

~~~
- -

• -

Overview 14 Miller & Goldstein

r~
C)

•1 c_) C)
‘~~ C) C) C)

C) i-i C)
C) r-

~ C’J
C- .---i .1

c~.

~~~~U) .~ ,i: (-i

~ E-4 : E - ~ ~J E-’ ~~ ~~~~ r~ 0 F—I
‘-4 CI~~~ 0 ~ C~~~~ 0 H

~~~ 

_ _

_ -

~~~~~~~

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ : -- --


-~ Overview 15 Miller & Goldstein

3.1. A Taxonomy of Bugs: Since our planning rules were constructed from

operators for conjunction, disjunction, and optionality, three basic classes of
- • - errors ar ise:

-
~ 1. syntactic bugs, in wh ich the basic grammar is violated , such as when a

-

required conjunct is missing;

2. semantic bugs , in a semantic constraint arising from the particular
— problem is violated, such as when a syntactically optional constituent,

needed because of the semantics of the particular problem, is missing;

3. pragmatic bugs , in wh ich an inappropriate selection from a set of

— - mutually exclusive dis ju ncts is made.

These bug types are illustrated in figure 8. Although these classes are
adequate to characterize many examples which arise in elementary programming,

- - additional categories must be defined to make this taxonomy of bugs complete.

3.2. Diagnosis and Repair: An important aspect of our research is the
-

analysis of techniques for diagnosis and repair of planning bugs. These
• techniques can be classified according to which representation of a problem they

access: the problem specification (or model), the solution (or code), the plan

derivation , or the process state. Techniques for plan diagnosis can be further

categorized according to the type of planning bug hypothesized: syntactic.

• semantic , or pragmatic . (Further details of the debugging theory are presented

in later sections.)

In the next three sections we examine several experimental applications

programs which we have designed and intend to implement. The presentation is
organized according the aspects of the investigation represented by the outer

circles of figure 2. We must emphasize two points: first, that this division by

aspects is a crude first approximation , because of the cons iderable overla p
implied by a unified approach ; second , that while the programs which we have

~~~~~ ~~~~~~~~~ii



r ‘ - -- -~~~~~~~~~~~~~~~

Overview 16 Miller & Goldstein

FIGURE Ra - SYNTACTICALLY INCORRECT PLAN

A NECESSARY CONJUNCT IS MISSING

TO WW
10 TRIANGLE —USE

ID-PLAN

END

WW GET
??? TRIANGLE UNDEFINED ???

(“GET” MISSING. UNGRAMMATICAL PLAN.
DEBUG BY COMPLETING PLAN.)

GET TRIANGLE FILE

FI GURE 8b - SEMANTICALLY INCORRECT PLAN

AN OPTIONAL CONJUNCT IS MISSING

FOR EXAMPLE : “WW ” MISSING INITIAL SETUP, AND INTERFACE FOR POLE .

TO WW
10 WELL —MAINSTEP--1
20 POLE _ MAINSTEP j  ends here

LSEQ_PLAN ‘p”

~~~a
-

•~ starts here

FIGURE 8c - PRAGMATICALLY INCORRECT PLAN

AN INCORRECT DISJUNCT HAS BEEN SELECTED

TO SQUARE INSIDE TRIANGLE I LINEAR PLAN --
10 SQUARE J SQUARE AND TRIANGLE
20 TRIANGLE DESIGNED
END INDEPENDENTLY .

INTENDED PICTURE : ACTUAL PICTURE :

~~~~~~~ 1 I ~~~~~~~ Ii~ ~~~~]



Overview 17 Miller & Goldstein

designed potentially have practical applicability, we regard them pr imarily as
experimental tools, which will serve to test the validity of the underlying SPADE

theory. We turn f irst to the norma tive aspects, describing systems designed to
encourage and teach articulate top-down structured design.

4. Normative Aspects

How can we judge whether a particular grammar of plans captures, at some
level of abstraction, the set of planning decisions which ought to be considered

in solving problems for a domain? One methodology is to incorporate the context

free grammar into a program editing environment , to au gmen t an d d irect the
capabilities of a human user. The critical question then becomes determining the

extent to which such a support system aids or hinders the user. This is the

• rationale for SPADE, an editor that incorporates our planning grammar.

4.1. SPADE -- A Grammar Based Editor: SPADE (Miller & Goldstein 1976c)
— is an acronym for Structured Planning and Debugging Edi tor .  We chose this name

to emphasize the link between our research and the structured programming

movemen t. Dah l, Dijkstra, and Hoare (1972] call for a style of programming which
reflects coherently structured problem solving. But a detailed formalization of

what this style entails is lacking. Our efforts in this direction , therefore ,
naturally supplement the work of Dijkstra and others.

Suppose a problem solver is defining a Logo program for drawing the
wishingwell shown earlier. In SPADE, this is accomplished by applying the

planning gramar in generative mode. For example:

la. What is the name of your top level procedure?

lb. )W

2a. Rule for WV is: SOLVE •) PLAN + (DEBUG].

Rule for W-1 is: PLAN -) IDENTIFY I DECOMPOSE I REFORMULATE.
What now ?

~~~~

— -

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I1T _
~~



Overview 18 Miller & Goldstein

2b. >DECOMPOSE .

In this way, SPADE will try to encourage users to articulate their design
decisions in top-down order. At the same time, the system should offer the user
the freedom to escape from this strict discipline if an alternative solution
order seems preferable. Here the user interrupts the top-down prompting,
suspending one subgoal to pursue another:

6a. Do you wish to include the optional constituent CLEANUP? 
-

• 6b. >LATER

la. Your pending goals are POLE, ... and WELL. What now?
7b. >POLE

The implementation of SPADE involves assigning an interpretive procedure
to each grammatical operator, to perform bookkeeping of the user’s goals.

As a simple example of the experimental utility of SPADE , the
relationship between level of expertise and application of top-down planning can

• be ascertained from the frequency of using the LATER capability . More subtle
experiments along these lines will examine the use of LATER in various planning
contexts.

4 . 2 .  The RAW Debugging Assistant: SPADE keeps a thorough record of the
user ’s planning decisions, called the plan deriuation . Because of this, it is
possible to design a debugging assistant (RAID) for the SPADE environment which
embodies what we believe to be a fairly deep notion of debugging. As the user is

F prompted through the decision tree represented by the planning grammar , those
choices which might lead to syntactic , semantic, or pragmatic bugs can be
internally flagged by the system. In subsequent debugging episodes, RAI D can
alert the user to the relevant bug warnings, thereby aiding in diagnosis.
Moreover , the SPADE monitor can then be reinvoked to guide repair of the bug, by
resuming planning in the context of the culpable decision (figure 9).

-L
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


Overview 19 Miller & Goldstein
-

Figure 9 • RAID Advice for Syntactically Inco~plete Planning Bugs

la. Which subgoal would you like to pursue?

lb. >POL!
-

2a. Rule for POLE-i is: PLAN -> IDENTIFY I DECOMPOSE I REFORMULATE.
What now?

2b. >I D E N TI F Y

3a. Rule for POLE-2 is: IDENTIFY -> PRIMITIVE I DEFINED.
What now?

3b. >LATER .

The LATER command causes further processing of this subgoal to be postponed .
RAID, the debugging component, creates a caveat each time a LATER command occurs.
The caveat records the fact that this part of the plan is syn tact ica l ly
incomplete at this point.

4a. POLE-2 postponed. Your pending goal list contains the remaining subgoal
WELL. Which goal would like to pursue?

4b. >WELL -

5a. We have now completed the WELL subgoal. What now?
5b. >RUN WISHINOWELL

The caveat recorded earl ier is a “demon ,” triggered by prema ture execution of the
procedure being designed . If this occurs , the function of the caveat is to
remind the user of the syntactic incorrectness of the program.

6a. Running WISHDJGWELL at this time results in the bug manifestation:
UNDEFINED PROCEDURE: POLE.

This is because WISHINGWELL is syntactically incomplete: it contains
the pending subgoal POLE-2. The recommended repair technique is to
complete the solution of the subgoal POLE-2. Would you like to work on
POLE-fl

6b. >Yes. -

7a. You were solving POLE via an IDENTIFICATION plan. You postponed the
decision (POLE-2) as to which answer library to use.
The rule for POLE-2 is: IDENTIFY -> PRIMITIVE I DEFINED.
What now?

it — — - _n—- - — — — — -. — — •- ~~.
—- — -- - -— —

_ _ _ _ _ _ _ ~- --~- — —- ~~~~~~~~~~~~~~ -~~~~~--
- - - - - -—--•-------~~---.~~

Overview - 20 Miller & Goldstein

4.3. SHERLOCK -- A Computerized Tutor Computational theories of problem

solving have important ramifications for education. Such theories can serve as

the normative justification for a given curriculum, reveal critical knowledge for

the student excluded from the traditional syllabus , prov ide a basis for
qualitative -- not merely quantitative -- evaluation , and be embodied in

intelligent tutoring programs to serve as personal learning environments for the

student. This position is exemplified by SHERLOCK (Goldstein & Miller 1976a].

SHERLOCK is an hypothetical computerized tutor which represents a long term

research direction rather than a detailed program design. SHERLOCK embodies our

vis ion of flex ib le , sensitive uses of computers to teach problem solving and

enhance education . The other programs we have designed , each significant

undertakings in their own right, can also be thought of as necessary components

for SHERLOCK.

SHERLOCK ’s goal is to imbue a working knowledge of the SPADE theory in

novice programmers. This does not necessarily mean that fifth graders must use
terminology such as context free grammar. It does mean that they should

experience , actively manipulate , and explicitly discuss problem solving

situations which highlight the planning and debugging concepts which the theory
H attempts to formalize. Let us illustrate what this might mean via a brief

dialogue.

SHERLOCK: Hello Debbie.

What problem are you working on today?

-

-

Debbie: >1 am going to draw a wishingwell.

Initially in a less intrusive, backward looking mode , SHERLOCK might
remain silent as Debbie typed in her code for a wishingwell. Unlike the highly

structured SPADE, SHERLOCK will not take an extremely active role in prompting

the student. (We plan to experiment with the relative virtues of these two
• tutorial styles.) However, SHERLOCK might intervene when difficulties were

-
I’-

j
________________________ ____________ _________

~~~~~~~~~~~

-

~~~~~~~~~~
- •~~~~~~~~ ~~~


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -- - - -~~ -~~~~-—~ ~~~~~~-- - • -~~~~~ --
- - -

Overview 21 Miller & Goldstein

encountered by the student.

Debbie: )forward 100

>right 90

>forwar d 500

>Oh no! Erase that last forward.

SHERLOCK: Ok. Forward SOON has been erased.

Do you wish to group the other

limes together into a procedure?

Here , a simple rule of programming style -- the use of subprocedures -- is being
emphasized . -

Man y complex issues are raised by the design of such tutoring programs.
Our purpose in introducing SHERLOCK has merely been to illustrate one potential
pedagogical application for a computational theory of design. The next section

turns our attention to the synthetic aspects of our enterprise, by introducing an
Al problem solver called PATN.

5. Synthetic Aspects

Wh ile con text free grammars can re presen t a useful abstrac tion of
planning decisions, they have limitat ions wh ich preven t them from prov idin g a
complete theory of design . To address this, we have designed PATN , an Al problem
solver . PAIN , like SPADE, starts from our taxonomy of plans. But PAIN takes the

linguistic analogy one step further. An augmented transition network (ATN,

f Woods 1970]) is used, to capture not only the syntax of plans, but also their
semantics and pr agmatic s.

~~~~~~~~~~~~~~~~~~~~~~~~ JT~I~~~~~~~ ii.


_ _ _ _ _ _ _ _ _ _ _

Overview 22 Miller & Goldstein

5.1. PATH -- An Augmented Transition Network for Planning : Figure 10

provides a global view of PAIN (Goldstein & Miller 1976b]. Here the decision to

pursue an identification plan versus a decomposition , for example, is modeled by

an arc transition . Semantics are added, by defining a set of registers to record

the problem description , proposed solution , planning advice , and debugging

caveats. Pragmatic information is also incorporated, by associating conditions

and actions with various arcs. For instance, an identification plan cannot

proceed it’ the problem description cannot be found in the answer library. PATN

elaborates our notion of a plan , by associating semantic variables (snapshots of

the AIN registers) with each node of the plan derivation . One application of

-; PATH is as a module of SPADE, providing an enhanced set of features to aid the

user in communicating pJans. Our implementation plan for PAIN is to provide

SPADE with a mode of operation in which a progressively larger percentage of

planning choices are made without consulting the user.

5.2. DAPR -- A Model of Debugging : PATH can make mistakes. That is,

PAIN wi’.l sometimes introduce what we tern rational bugs into its plans , due to
making arc transitions with inperfect knowledge of subtleties and interactions in

the task donain Naturally, PAIN will come equipped with a corresponding

debuggir,~ module (DAPR). Whereas RAID is designed to assist human programmers in

finding a variety of bugs (primarily by plan diagnosis), DAPR is specifically

designed to analyze PATH ’s bugs, employing three diagnostic techniques : model ,

process, and plan diagnosis. Hodel diagnosis is the basic technique. It amounts

to comparing the effects of executing a plan to a formal description of its

goals , to determine ii’, and in what fashion, the plan has failed . Another DAPR

I- technique, based on Sussman ’s HACKER (1975], is examining the state of the
-: - process at the ttie o’~ the error manifestation . Plan diagnosis is a DAPR first.

I t is accom plished - - examining the caveats variable associated with various

nodes of PAIN ’s plan derivation .

DAPR could be used to provide additional guidance to RAID. This

possibility illustrates the synergism possible when normative , synthetic , and
-~~ analyt ic facets of a cognitive theory are studied in an integrated fashion. In

L
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T~~~~Tiiii~~iiTI



~ ~~~~-~~~.----,—-~~~~~~~~~~ .-

Overview 23 MIller & Goldstein

r~Oil 

_ _ _ _ _  
II

~ -U
~~ 

..4 ,--.l 0 ~ 4J ‘..J ~
— ~r~~ O O c3 .r~~C) ...j  i

~ 4 r~ ~~ ~U C) v•~ ~ ~~ l~ ‘ ‘  —i C)
C) ~..O,~~~J. 0

o~~~O O u ~ 0 ~~~~~~~ j

.—‘ —~ ~ E ~~ ~. U 4-~ v~
+ 0 o c ~~~ -~.. .-4 • ’-l Z~

Cl Et
~~~~~~~~~~~

~~~~~~~~~~ U >  Z ..
~~

‘—‘ 
~-‘:~~ >~p..

’ ~)~~~~-i~~~~~ O c ~ c.) 10 ~-1

• ~~~ O C ) ~~~ CJ~~~ u
4.) 4J ~~~ .,-4

I 0 U ~~ U~ a)~~~ ~~ 
C)~ -~~ 0

I .-, .- 4  .~.4 _
~) 0

z p p P-~~ -~o I •—s ~~~~~~~~~~ ~~~W 0 ~~-W v
• H 

~ dZ (~
4-’ I •.:~ ~~~~ . 

0 
,_. 

- -
IL) IL) IL)h

I

L~1 
_ _  

_
_

~~~~~~~~~i~~~~i 
—

.
-

~~~~I~T~T1IIT :‘-~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _

Overview 24 Miller & Goldstein

the next section we pursue the analytic facet of our investigation of the design

process, introducing PAZAIN, an automatic protocol analyzer.

6. Analytic Aspects

As soon as one has an heuristically adequate theory of design , it is
na tur al to ask , Can the theory provide an account of how peop le solve
problems?0 . The traditional (e.g., (Newell 1966]) experimental technique for

answering this question is the analysis of protocols collected during problem
solving sessions. Whiln this generally implies transcriptions of think aloud

verbalizations, a useful simplification is to examine the sequence of keystrokes

from a console session in a computerized data gathering context.

6.1. Protocol Analysis as Parsing: The analysis task in such a setting

is to interpret user type-ins during a console session in terms of a theoretical

model of the planning and debugging processes. ~ir linguistic analogy is helpful
here, wherein we define protocol analysis as the construction of an hierarchical

description of the protocol in terms of our problem solving grammar . (Miller &
Goldstein 1976b] provides a detailed example of such analysis being performed by

hand. In that paper , we examine a high school studen t’s Logo protocol in detail,
summarizing the sorts of insights obtained when protocol analysis is viewed as
parsing in this sense.

Just as a context free grammar is incomplete as a theory of planning,

likewise a parse is only a partial analysis of a protocol. The theory of
annotation developed in the PAIN work leads us from describing only the structure
to more complete analyses of protocols: an interpretation of a protocol is the
selection of a particular PAIN plan derivation. Hence analysis should consist of
linking protocol events into the data structures of PATH and of advanced versions
of SPADE.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ‘~~~~ 2T~TIi :iI iiiT ~~i1i1



Overview 25 Miller & Goldstein

6.2, PAZAIN -- A Parser for Elementary Programming Protocols: Manual

protocol analysis is unacceptably tedious and informal. Hence (Miller &
Goldstein 1976d] introduces the design for an automatic protocol parser, PAZAIN.
PAZATN will analyze protocols by matching then against possible solutions which

PAIN generates. PAZATN will operate by causing PAIN to deviate from its
preferred approach in response to bottom-up evidence (figure 11). Also, buggy’
versions of synthetic plans (including i r ra t iona l  bug s which would not be

introduced by PAIN) can probably be recognized.

• PAZAIN ’s design is a generalization and elaboration of the coroutine

search plan-finding procedure described for Mycroft (Goldstein 1915]. Looking to

computational linguistics for guidance , PAZATN has been extended to -take

advantage of powerful search strategies developed in research on speech

understanding (Lesser et al, 1975; Paxton & Robinson 1975], as well as
sophisticated data structures developed in work on syntactic analysis (Kay 1973;
Kaplan 1973].

PAZAIN will be cons truc ted ‘
— - cu pp lemen ting PATH with a num ber of

additional modules and data structures. Figure 12 provides a more detailed block

diagram. One data structure, the PLANCHART , keeps track of the set of plausible -
• subgoals which have been proposed by PAIN . Another , the DATACHART , records the

state of partially completed interpretations. A preprocessor module will be used

to suppress uninteresting syntactic details and to perform preliminary

segmentation . The preprocessor employs an event classifier to determine the

syntactic class of each event. Corresponding to each syntactic category, PAZATN
will be supplied with an event specialist which embodies the requisite domain

knowledge for assisting an event interpreter in associating an event of that type
with some synthetic subgoal. Since a purely top down or bottom up strategy would

be too inefficient , a scheduler module is necessary to direct the analyzer

throu gh a bes t first coroutine search ,

Just as PAIN will be implemented by extending SPADE to the extreme of
never requesting guidance from the user, PAZATN will be implemented by extending

______  - --- — - -,,~~----- ---,~~~~---— —.--- ~— 

--~~~~~~~~~ —---“ - -- -- -- ~~-~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~-~— - -~~---~ --



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - •--,- ‘— -~~-— --—•-—-..-

Overview 26 Miller & Goldstein

PROBLEM
DESCRIPTION PAIN

BOTTOM—UP (POSSIBLE PLANS
CLUES GIVEN PROBLEM & CLUES

~~~~ROTOCO~~~1OCOL PAZATN . 

FI GURE 11 - TOP LEVEL ORGANIZATION OF THE PROTOCOL ANALYZER

- — -~~~ ---~~~~ 
-
~~ 

- —
~~~~

--
~~~~~~

- ~~~~~~ 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~

- - 

Overview 27 Miller & Goldstein 

1a.
~~ 

g g .. ~~~~~~ I

L1~~t ~ 
—F

r I L ~~~~~~~~~ H~~~~

TL 
~ ~~~~~~~~~~~~~} 7flh

I I
1;’, 

1 

E

Lii —HI L l 



- -_ —~~~~~~~1~ 1 _  - - •- —_ --- - — — - -~ ——-~ ---- —-—

Overv iew 28 Miller & Goldstein

SPADE to the opposite extreme. That is, in the pure PAZATN situation , the system
must infer the user ’s plan entirely from code level events , with no explicit

articulation of the intermediate levels of the plan . PAZATN will be useful in

increas ing SPADE ’s flexibility in handling aabiguous events, and in alleviating

what might seem to some users to be an excessive allocation of time and effort to

the planning phase . Moreover, systematic experimentation with PAZATN will

provide evidence regarding whether PAIN can serve as the basis for models of
human problem solving.

- 7. Conclusions

We have studied problem solving for tasks which may be characterized as
• the design of artifacts: the outlines for SPADE , a computational theory of

design , have been presented . The norma tive, synthet ic, and analytic aspects of
its role in the overall research en~erprise have been illustrated by introducing

- 
- 

several experimental applications programs . The exploitation of concepts and

- 
-
~ algorithms from computational linguistics is a recurring theme: grammars, ATh’s,

derivation trees, search strategies from speech understanding,  chart-based
parsers. We believe that our unified approach to the objectives of several

fields, utilizing - methods from each, represents a new paradigm which can provide

benefits to all of them.

Much remains to be done. While far greater detail is available in our

other papers, not every detail of the SPADE theory has been specified, Although

almost all of the programs have been designed , even hand-simulated , none have
been implemented. Neither the utility, the validity, nor the generality of the

theory has been demonstrated . If the individual research projects succeed , a new
clarity will have been brought to the study of problem solving. If, perchance,

they should fail, then the reasons for the failures should nevertheless provide

useful insights.



r ir —~~ -~~~ - -~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~ ‘~~~~ -~~~~- —, — ---— ------~ -—--~~ - -

Overview 29 Miller & Goldstein

8. References

Dahl, Ole-Johan, Edsger Dijkstra and C.A.R. Hoare, 1972 . Structured Programming .
London, Academic Press .

Goldstein , Ira P. , 1975. Understanding Simple Picture Programs .0 Artificial
Intel l igence , Volume 6, Number 3.

Goldstein , Ira P., and Mark L. Miller , December 1976a. Al Based Persona l
Learning Environments , Directions For Long Term Research . Massachusetts
Institute of Technology , Artific ial Intelligence Laboratory, Memo 384
(Logo Plemo 31).

Goldstein, Ira P., and Mark 1.. Miller, December 197th. Structured Plann ing and

Debugg ing~ A Lin guistic Theory of Design. Massachusetts Institute of
Technology, Artificial Intelligence Laboratory, Memo 387 (Logo Memo 34).

• Kaplan , Ronald M ., 1973. ‘A General Syntactic Processor. in Randall Rustin
(ed.), Na tura l Language Processing, Couran t Computer Science Symposium 8
(December 20-21, 1971), New York, Algorithaics Press, pp. 193-241.

Kay, Mar tin , 1973. ‘The MIND System.0 in Randall Rustin (ed.), Natural Language
Processing , Courant Computer Science Symposium 8 (December 20-21, 1971), New
York , Algorithmics Press, pp. 155-188.

Lesser , V .R., R.D. Fennell , L.D. Erman and D.R. Reddy, February 1975.
‘Or ganization of the Hearsay II Speech Understanding System .’ in IEEE
Transactions on Acoustics , Speech, and Signal Processing , Volume Assp-23,
Number 1, pp. 11-24.

Miller, Mark L., and Ira P. Goldstein, December 1916b. Pa rsing Protocols Using
Proble m Solving Gramma rs . Massachusetts Institute of Technology, Artificial

Intelligence Laboratory, Memo 385 (Logo Memo 32).

L
_________  ____  ______  ______  _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

j
-— - - -w e. — -_ — fl—.- --~~~~~- - —~~~~ - - - ~~~~~~~~~~~~~~~~ - . -_ —- ~~~~~~~~~~-~~~~~--- — -•



Overview 30 Miller & Goldst•in

Miller, Mark I.., and Ira P. Goldstein, December 1976c. SPADEi A Graaunqr Based

Editor For Planning and Debugging Programs . Massachusetts Institute of
Technology, Artificial Intelligence Laboratory. Memo 386 (Logo Memo 33).

Miller , Mark L., and Ira P. Goldstein , December 1976d. PAZATIS A Linguistic
Ap proach To Automatic Anolg~ t s of Elementary Programmin g P r o t o c o l s .
Massachusetts Institute of Technology, Artificial Intelligence Laboratory,

Memo 388 (Logo Memo 35).

Newell , Allen , June 1966. On the Analysis of Vuman Problem Solving Protocols.
Carnegie Institute of Technology , Preprint of paper presented at the

• International Symposium on Mathematical amd Computational Methods in the

Social Sciences, Rome 1966.

Newell, Allen , and H. Simon , 1972 . Rurnan Problem Solving . Englewood Cliffs, New
Jersey, Prentice-Hall.

Papert. Seymour A., 1971a. Teaching Chi ldren to be Mathemat ic ians Versus

- 
I Teaching About athematics . Massachusetts Institute of Technology, Artificial

Intelligence Laboratory, Memo 249.

Papert, Seymour .~~., 1971b. Teaching Children Thi nking. Massachusetts Institut.

of Technology, Artificial Intelligence Laboratory, Memo 247 (Logo Memo 2).

Papert , Seymour A., June 1973 . Uses of Technology to E hance Education . -
Massachusetts Institute of Technology, Artificial Intelligence Laboratory,

Memo 298 (Logo Memo 8).

Paxton, William and Ann Robinson , 1975. ‘System Integration and Control in a

Speech Understanding System .’ in American Jou rna l  of Computational

Linguistics , Volume 5, pp. 5-18. 

-— —-~~-~~~~ - - - - --~ - -



- -- ~~~~~~- ——---—~~~~--- -
--— —

~~~~~~~~~~~~
---—-

~
-

~ ~~
-
~~~ 

-

II 
b

- Overview 31 Miller & Goldstein

Poly., George. 1957. Ibm to Solve It. New York, Doubleday Anchor Books.

- 
Polya, George. 1962. Nathematic al Discovery (Volume 1). New York, John Wiley

and Sons.

Polya, George, 1965. Nathemstiàal Discovery -(Volume 2). New York, John Wiley
and Sons .

• Polya, George. 1967. Mathematics and Plausible Reasoning (Volume 1). New
Jersey, Princeton University Press.

Polya. George, 1968. Mathematics and Plausible Reason ing (Volume 2). New
Jersey. Princeton University Press.

Sacerdoti, Ear l, Septe.ber 1915. ‘The Nonl inear Nature of Plans.’ in Advance
- Pap ers of the Fourth Zaternational Joint Conference on Artificial

- - 
-

- 
Intelligence , Tbilisi, Georgia, USSR, pp. 206-218,

Sussman , Gerald Jay. 1975. 4 Comp utational Model of Ski l l  Acquisition. New
• York, American Elsevier. 

-

- Woods, William A., October 1970. ‘Transition Network Gra.mars for Natural
Language Analysis. Communications of the ACM, Volume 13, Number 10. -pp . 591-

-~~~~ 606.

•

1 

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

