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CONCERNING THE EFFECT OF SEA CURRENTS ON FREE INTERNAL GRAVITATIONAL WAVES

[Savchenko, V. C. and V. R. Fuks, K voprosu o vliyanii morskikh techenly na svobodnyye
vnutrenniye gravitatsionnyye volny, Arkticheskiy I Antarkticheskiy Institut , Trudy,
Vol. 301, 1972, pp. 114—123; Russian]

Free internal gravitational waves arise as a reaction of a stably stratified ~~]44
heterogeneous liquid to an energetic external action. They carry energy from the
region of an Initial disturbance to the ambient space , tending to return the liquid
to the initial state of equilibrium.

In the majority of theoretical studies of free internal gravitational waves in
the ocean, the basic assumption is that they are small harmonic oscillations of an
ideal incompressible liquid about a certain state of equilibrium. The state of

• 1 rest is usually taken as this state of equilibrium. In this case, the system of
fluid mechanics equations describing the unperturbed state of equilibrium is reduced
to a single equation of statics. Such a choice of the principal state is equivalent
to neglecting the convection terms in linearized equations for perturbations, in
comparison with local changes. V. Krauss5~ Iotes that this operation is inadmissible
in the study of tidal internal waves. A similar situation arises in the study of
other types of internal gravitational waves, whose phase velocities are comparable
to the velocities of sea currents existing in the initial state of equilibrium.

Since the spectrum of phase velocities of internal gravitational waves in the
ocean is fairly wide, and a certain average transport of waters is the rule rather
than the exception for all regions of the World Ocean, it appears that sea currents
(the main flow) must be considered in order to explain many aspects of the dynamics
of internal gravitational waves. Sea currents may cause significant changes in the
frequencies of internal waves, in~g~~ing the dynamic instability of oscillations.

The article presents certain considerations concerning the dependence of the
parameters of free internal gravitational waves on the characteristics of steady
sea currents , derives the necessary condition for the existence of internal gravi-
tational waves, and explains the phenomenon, frequently observed during actual ob-
servations, of an abrupt change of phase of internal oscillations with depth. Also flU
discussed is the question of errors in the determination of the true periods of
internal waves based on obscrvation~ of hydrological elements used as indicators
of internal oscillations. These errors are due to the existence of the main flow

• 
j and are generated by the Doppler effect.

1. In the case of an incompressible heterogeneous liquid , the initial state
of which is the stale of rest, the exact lower boundary of the periods of free
internal gravitational waves was first indicated by Groen.16 Subsequently , on the
assumption of this principal state of equilibrium , estimates of frequencies of
progressive harmonic free internal gravitational waves were made in ReIn. 2 , 6 , 9,
.10, 15, and 17.

Thus , for  examp le , Monin and Obukhov 9 ’1° showed for an Incompressible li quid
that the fr.~quencies of free gravi ta t ional  waves l ie  wi th in  the interval

< ~
2 

< gya 2 ,

*Numbers in the right margin Indicate pagination in the original text .
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where £ is the Coriolis parameter;
a is the oscillation frequency;
g is the gravitational acceleration;
a is the velocity of sound ;

• da2
y = (K— l)g + 

~~

—

~

— is the thermal stability parameter;

K is the expansion exponent;
4 z is the vertical coordinate, directed upward.

Since in adiabatic processes y = a2r (where r = _(..i. . + is the Sverdrup—

• Hesselberg stability and p0 
Is the density in the unperturbed state), by introducing

the ~~is~l~—Brunt frequency N = v’~f and passing to an incompressible liquid (a +

we find that in the ocean, the frequencies of the waves in question satisfy the
inequality £

2 
~ a2 

< N2 .

Reference 2 discusses the case of an iso thermal atmosphere in the absence of
the Coriolis force and shows that all the frequencies of free gravitational oscilla—
tions are bounded by the frequency

a0 ~4K - l)gK~~h~~,

where h is the height of the atmosphere.

In the general case, the height of the equivalent homogeneous atmosphere is
related to the sound velocity a by the relation h(z) — a2K 1g~~, and for an isothermal
atmosphere ~~ (K - l)g.

Obviously, in an incompressible liquid , this case corresponds to a constant
gradient of the density logarithm, independently of the height, and the set of gra—

H vitational wave frequencies has the following frequency as the upper bound:

N = , ~~g~~~~ l np 0 = const.

It will be shown that the characteristics of internal gravitational waves, /116
treated as small oscillations, should depend on the properties of the initial
state of equilibrium.

Let the sea be an ideal , inconipressible , stably stratified , horizontally in—
f i n i t e  liquid of thickness H. We will assume that the density of this layer P~ 

as
well as the velocity u0 and direction of horizontal mass transfer therein are func—
tions of only the vertical coordinate z. We direct the z axis of the rectangular
coordinate system vertically upward , and the x and y axes, horizontally. We place

• 
• 

the origin at a flat horizontal seabed. We denote by ~(z) the angle between the
positive direction of the x axis and the direction of mass transfer at any fixed
level in the layer. Let the perturbation in the liquid be caused by a progressive
free internal gravitational wave traveling at angle ~ to the positive direction of• the x axis. We represent the internal oscill .ations as small harmonic perturbations
of the three velocity components , pressure and density in relation to the principal
state of equilibrium. Let

= r(z)exp (i(at — kx — sy)J,
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where r’ is any of five perturbed hydrodynamic elements;
r is a complex amplitude factor;

k and s are horizontal wavenuniber components for which a arctan s/k;
t is the time;
I is an imaginary unit.

We then have the following second—order ordinary homogeneous linear differen-
tial equation in the amplitude of the vertical velocity of Internal waves v:*

d’w — — I f d~ . ‘1 d 1~ d~• — T im—--r- —u ( l ?_ m 2 (c — !u )~ 
dz (c — u) dg Jf dt

• I. ,n’(c 
_
).{A (C (c a)

II f I d ( d~~\ I d dfll
~~~~~~~~~~~~~~~~~~~~~~ ~~~~m JJ ~ ’ O i ( 1)

where

v = u 0 sIn( s —~~);

The boundary conditio~s for Eq. (1) will be written as /117

w(O) = w(H) = 0 (2)

With £ 0, we obtain from expression (1)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -(
~~~

)}
~~

=
~• (3)

We will hereinafter assume that the function u has continuous derivatives up to
second order inclusive, and the function Po has a continuous first derivative in—
side the layer (0, II].

The conclusion that there is a lower period of internal waves in the presence
of a steady main flow is obtained most simply from the equation for the deviation

~ of the liquid parti cles from the equilibrium position, related to the amp litude
of the vertical velocity w as follows:

w(z) t (z)Im(c — u). (4)

From expressIons (3) and (4), we obtain an equation in ~:

Fr ± 1_.~~1~~~L N~•~• — ~7z~1~=O. (5)
dx~ [ (c _,,) ~Iz dt 

~ (C — u J

Equation (5) should be eximined for homogeneous boundary conditions t (O) = ~ (H) 0

-—
~~~

-—

~~

-•  —-• - 
—________________

This equation can be obtained by simple transformations of the equation given
• .; ‘-

~ ~: In the monograph of V. Krause.5
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To estimate the lower period of free internal gravitational waves, we will use
Groen’s* method,’6 applying it to Eq. (5). Since the function ~ inside the interval
is assumed not identically equal to zero and twice continuously differentiable, for
the stated boundary conditions, according to the Rolle theorem, it should reach an
extreme value in this interval. In this case, there is at least one level Z

j  
for

• which

~~I = ° ~ +~~~1 <°.
• z=Z~ ..

Hence, according to Eq. (5), the following inequality holds for such levels:

N2(c — ) —2 
— m2 > 0. (6)

In deriving inequality (6) , c was assumed to be a real quantity having the
meaning of phase velocity of the internal wave.

Considering that the Internal wave period t = 2ir(mc)~~~, we obtain the fol—
loving estimate from inequality (6):

Hence, the following inequality Is all the more valid: /118

where r.~ — 27rN~~ is the V~is~l~ period , where i\~ =n i~ix iV(z). Therefore, in the

presence of the main flow, there exists no accurate lower period of free internal
gravitational waves . The actual period of these waves may be larger or smaller
than the V~is~l~ period , depending on the sign of the projection of the velocityof steady flow on the direction of propagation of the wave, with the period of
Internal waves r ÷ +0 in the coincidence layer Cc = ii). The meaning of the latter
statement is consistent with Krauss’ conclusion5 that internal waves disappear at
the critical depth , i.e., the level corresponding to the coincidence layer.

2. App ly ing to Eq. (3) arguments similar to those given in the derivation of
• Inequality (6) , we arrive at the inequality

• ) •

Obviously, inequality (7) can be fulfilled only when

• ~~~~~~~~~~~~~~~~~~~~~~ (8)

Hence , intern ii waves with a given ph ise vL]oci ty in the presence of steady
~~~• flows in the liquid can exist only when there cxfsts at least one layer for which

inequality (8) is fulfilled . Let us note that when ~i = const (in the special case
— 0), a known condItion of the existence of Inte rna l  waves follows from inequality (8)

• *ThI5 method was used by M. Yaaui2° in a study of the stability conditions of
-

~~~~~ ~
, internal waves traveling in the frontal zone of a horizontally Inhomogencous ocean
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namely : N2 > 0, i.e., if the state of unIform motion (or the state of rest) is the
principal state of equilibrium, internal waves can exist only when the inhomogeneous
liquid under study Includes layers In which the density decreases with height.

3. We will examine the question of limiting frequencies of free internal gra-
vitational waves from the standpoint of the elgenvalues of Eq. (1). We will assume
for simplicity that a = 8 = 0 (plane motion). Then Eq. (1) will be written in the

• form

~~~~ r~~
. 

____________________ ~~~~~ 
dw• d:’ ~~

‘

x — ( c—  ,z~) [m~(c_ ~~ — 

~~~~~ 
!!!~)}}~ = 0. (9)

To obtain the dispersion equation , we set /11

w = w sin Oz , where w = const. (10)n n
• Then , boundary conditions (2) wIll be met when

}I ’

where
n = 1, 2... is the mode of the internal wave;

• 0 = O(n) is the vertical wavenumber.

Substituting equality (10) into Eq. (9),  we obtain

~ S!fl ~JZ ± {i — 
( c )  (I, — m ~ ~c — 

0 COS ~~~ ÷ (7 fl~~(c — ,, )2 X

x [ IV~ — &(c -- u~~ ± ~~~ ‘ ( c —  zs 0) / - (p 0 ~~ -) ] s in  ~z = 0. ( I t )

We will consider the levels z z*j  for which cos Oz = 0 , i .e . ,  = Hn~~ (j ++) .
Since we are interested only In z*.E  (0 , ~1), for each fixed n we have 3 = 0, 1, 2...,
n— i.

For levels Z*
j
~ Fq. (11) wil l  be ~;r i t ten

~n
1c~ (i — _

~~~

-)‘ (0! ~~~ in’) = i- m~ [ iv~ —~ — ~~ (c -— it o) X

• , d ( (fib ’
4 >~~~~j~~~PU dzHence

• I ~IJ ~ —~ d I dii , \
1’ 

~
—
~ (~~

—) [.Vb + F0 (c _- it~~~~~~o -7 --) 
( 12)-

where A — 2irm~~ is the length of the internal wave.

The right—hand side of equality (12) is positive in accordance with inequality (8).

5
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If u0 0, we find with a high degree of accuracy from expression (12) that
• the frequency of fairly long waves a ÷ 9., i.e., approaches the frequency of iner-

tial oscillations, and the frequency of very short waves a + N, I.e., approaches
• the V~is~l~—Brunt frequency.

In the absence of currents in a horizontally homogeneous ocean, the frequency
of internal gravitational waves is invariant relative to their direction of propaga—
tion. It is easy to see that in the presence of a horizontal current, it is sub-
stantially dependent on the direction of the current, its velocity, and the direc—
tion of propagation of the wave. Indeed, in the presence of the main flow, for /12(
fairly long waves, we find from equality (12)

or 
12 (1 !L)

2

• 2~~I~ 
~~~~~~~~~ (13)

and for very short waves
r d ~ di’ \~ ,

~

or

-
~~ 2z~ I 

_
~~ [1v~ ±p ~~(c — Ii,) ~~ (Po 

~~~~~~~~~~~~-‘:, 
(14)

• It is significant that in general, in the presence of the main flow, there may
exist free internal gravitational waves with periods exceeding the period of inertial

• oscillations. As follows from formula (13), this takes place when a very long wave
• travels in the direction opposite to that of the main flow, this excess being directly

proportional to the ratio of the velocity of the main flow to the velocity of the
internal wave.

All of the above considerations pertain to mutually stable internal waves (c
• being a real quantity). Consideration of the possible dynamic instability of internal.

oscillations apparently will not lead to any fundamentally different concl•usions con—
cerning the effect of currents on the frequency of internal oscillations, but may sig—
nifIcantly limit the actual frequency region of existence of internal waves.

Let us note that the direct application of Groen’s method to Eq. (9) will lead
to the double inequality

-
~~~~ c r

which confirms the validi ty of the approx imations used in the derivations of f o r m u l a s
• 

• (13) and (14) .

4 The literature frequently metions the phenomenon of oscillation ph ise di g—
continuity in actual observations of internal  wavcs.3,4,l’,13 The phase di~;couttnuity
of internal oscillations is easy to explain if it is observed in layers of density
discontinuity, since the conclusions of interface wave theory can be applied  to this
case.7

6 •
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j In a continuously stratified liquid, the presence of a phase discontinuity of /121
• 

~ internal oscillations can, generally speaking, be formally explained on the basis
of a determination of the normal oscillations (modes) of the system. In this case,
it can easily be shown that the depth at which the phase discontinuity is located

• In disturbed motion does not necessarily coincide with the level of the density
discontinuity layer. Moreover, the level at which the phase discontinuity takes
place can be accurately determined in this case as a function of the mode of the

• internal wave.

It is our view that the phenomenon of phase discontinuity may also be explained
by using the theory of hydrodynamic stability of the motion of a heterogeneous
li quid.

Tollmin8 showed theoretically in the case of the motion of a viscous homogeneous
liquid that a phase discontinuity in oscillations determining the perturbing motion

r I may arise during the passage through the critical layer. This conclusion was con—
firmed by the experiments of Schubauer and Scramsted .

For a heterogeneous ideal liquid, a shift in the horizontal velocity of the
main flow frequently causes a phase discontinuity during the passage through the
critical layer. This assertion results from an analysis of the work of Miles.18~’9

• It may be postulated that the phase discontinuity for a given mode of an internal
• wave will occur at the level where the phase velocity of this mode is equal to the

projection of the velocity of the main flow on the direction of propagation of the
wave. This assumption admits in principle an experimental cheek involving special
observations that m a y  be carried out by means of standard oceanographic instruments.

• Let us note that a similar phase discontinuity phenomenon during the passage
through the coincidence layer takes place in the process of generation of wind—
generated waves.14

5. In oceanographic observations , it is sometimes useful to differentiate the
trans formation of the wave process by currents , i .e. ,  to consider the Doppler e f fec t .
In a study of internal tidal waves, such an estimate was made by Bukhteyev1 on the
assumption that the waves travel along the phase boundary of two homogeneous liquids
with a uniform principal motion in the entire system. These results can be easily
extended to the case of Internal gravitational waves of any period , traveling in
an arbitrary direction in a continuously stratified inhomogeneous liquid , in which
the horizontal velocity vector of the main flow is an arbitrary function of the
vertical coordinate.

Then the distortion t~T of the period of internal waves (difference bet wee n the
observed T1 and true T2 periods) may be obtained from the equality

• 

~~~
7’ =7’

~~~
( ! — - -

~~~~~
- J — - 1) .  (15)

S I c — U I

Since In this case u = u (z ) , the magnitude of the distortion of the internal wave
period substantially depends on the relation between the phase velocity of the wave
and the value of the projection of the velocity of the main flow on the direction of
propagation of the wave. Hence, In the general ease, the values of ~T w ill be dif —

- 
• ferent  at d i f fe ren t  observation levels .

— ~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
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d The Doppler effect is usually considered when processing observations made
from a moving ship. The corresponding procedure was given by Krauss5 and Sabinin.l2

• However, in processing observations of internal waves, made from an anchored ship
or by means of instruments mounted on autonomous buoy stations, the Doppler effec t
is usually neglected. It should be kept m m m d , however, that the internal wave
spectra obtained may be markedly distorted because the velocity of the sea currents
at the level of the observations is not zero.

If the actual observations of internal waves are organized so that one can cal—
• culate the phase velocity of a wave, direction of its propagation, as well as the
• speed and direction of nonperiodic currents, then according to equality (15), the

true wave period can be determined from the formula

T! =T I ! I — ~~~L

We will note in conclusion that the “observational” Dopp ler effect and fre-
quency change effect (discussed in sections 1 and 3), physically caused by sea
currents, are not, generally speaking, identical. In particular, it appears that
resonance phenomena in the ocean occ ur at frequencies modified by the presence of
the main flow.
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