
AD—A036 8Th NORTH ELECTRIC CO GALlON OHIO FIG 17/2CO$UItRIICATICNS PROCESSOR SYSTEM. (U)
JAN 77 K HAGSTROM. B BEIZER F30602—73—c—o3lq

*ICLASSIFIED RADC—T R—76—394—V OL—8 NL._________

—~~- ~~~~~~~~~~~~~~~~ ~~ ~~~~~ T:: T~T~Ti~~ ~1—

L
_ _ _

__

~~~~~~

.

7 -39k, Vo1~ane VIII (of e1~ *)
~~~ PIM1 ¶Lbclr~1ca1 ~~port :
~~ ~ant*ry 1917

H V

(~~~~~ ~ C1JN1~ CATI~~~
$oTt~h E1~etrLc Co~pany

L ~Ii i 5

/
V

~~~~~~~~~ 
~~~~

“
~~ : ‘.

-

•~~~ V

- -- ~ - -~~-~~~~ - - - V - - -- - . .

r~ ~~~

~

—

~~ the .~~ll It s. of each vol luas$ have b~~~ ~~~~iM4
ints the .EoUo*tng reports: Voluøss I - ZIIII V01u 5 IV & V1 • vott 1~ VI
& VII, nd ‘Voi~~~ VIII.

This report has been r.vi.~sd by the R*DC ZnforeaU~~ Office (01)
and is relwablt to the NstiO~ai led rinforuation Servics (11$) .
At NTIS it viii be reI.issbie to the S~.r*l páblic including for.*Vi

This ieport has been reviewed ~~~ approved for pdblic*tiOo.

£P1~~V~~:

D&JIIL 3.)~ A1JLIPP*
PrO j set 1n~inser

T~~ifliC*l Director
co~~ ii4~CatiOes & Control Division

[7~~~
,o~ ~~~ J

I /iIj / ~~~ ~~. auss

// ~ / f Acting ChiSf , Wlini Of1tce~~~~~~~~

I LI / /f /it]
Id.,,

Do sot rst~~’e thl cOp~. Ietain or deStroy.

- í

iL~ ________

J ~~~~ ..
...—

~
- .-.--- .

.--...
~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~

UNCLASSIFIED
$ICu~~uT Y ~~~~$$i~~ICAt iON or TNIS PAG E (~h.n Ow. Law.,.~~ __________________________________

/ 17) REPORT DOCUMENTAT~OH PAGE BEFORE COMPL ETIN G FORM

~~~~~ 2. GOVT ACC ESSION NO. 3. ~ CCIPICNf S CATALOG NIJMUE~

RADC TR—76—394r~Vol . (of eight) ~
4. TITL E ,d Su b Uf l i) ~~~~~~ 4 F

Fina l echnica l e te I ~4 ~O~~t~ICATIONS PR~~ESSOR SYSTD1, ,Jun~~j~~3 - Mar
.

0 ~~ O~ MING ORG. ~~IPO~~T N •E~N,A

—~~~~~~~~~ S. CON~~* ACT O~ GIANT NUMSEN(S)

KennetLy~1agstrom ~
—-

~
—— - ..- ..

-
Boris/$eizerf Data Systems Analysts ~~ F3%6,02—7 3— C—0314 ,

S PER~ O~ MI$G O~ GANIZA TI 0N NAME AND AD ONESS 10. . GJI
S
A M E

~~
EM

~~
N
T
T. .IIOaiST . Y A SC

L North Electric Company
553 South Market Street 6~Z2.O~F .-; -

Galion OH 44833
-

~~~~~~~~~ 45l~~90’4 .~~
)

II. :CNTNOLLING OFFICE NAME AN D A DONESS ~~~~~ 
¶r~wEPu~~T.&~.*-~

Rome Air Development Center (DCLT) (j~ 
Jan~~~ p77 ) 

____Griffiss AFB N? 13441 ‘
~— ‘*. NU M SE N

140
1 ~~~~~~~~~~~~~ AGEN CY NAME 4 ADDNES5IsI dafl .c.n t f,00’ ContcotIffi4 Olbe.) IS. Sic umi ~~~~~~

Same
t~NCLASS D
IS.. DECL S IO ICAT ION DOWN GRA DI NG

N/A 
IC E U L E

t S . D1STRIRUT ION STATEMENT (of ff1. R.pon)

Approved for public release; distribution unlimited.

Il. DIST RISUTION ST A T E M E N T  (0! A. .b.t,.e, .n:.r.d ffi Block 20. II dill.r•flf Iron , R.pofl)

Same

IS. 5IJPPI .EMEN TA NY NOTES
RADC Project Engineer: Because of the small size of each volume, volumes

- Daniel .1. McAuliffe (DCLT) have been combined into the following reports:
Volumes I — III , Volumes IV & V, Volumes VI & VIII,
and Volume VIII.

IS. K EY WO RDS (Coatin ~• on n v. ,.. aid. ii n.c...vv id IdInllfy by block fluniib .r)

Co unications Switching, Couununications Processors, Processor Architecture ,
Circuit Switching,~~essage Switching, Packet Switching, Base Distribution

~2~ TY 21’
30 A$4TNAC T (Continu i ,s,scs• aids II nsc .s..ry id ld.nIIf y by blOck *uWibs?)

This report covers the results of a study to develop a hardware architecture
which will be the basis for a family of cossnunications processors for applica-
tions processors for application in circuit, message , packet and base
comunications switch configurations. Over 23 switching equipments were
investigated from which a functional baseline was defined for use in the sub—
sequent studie s f or evolving an advanced Comunications Processor System (CPS)
architecture . These switches included circuit, message, and packet switching

DO , 2~~~S 1473 EDItION 0? I NOv51 II OUOLE?E UNCLASSIFIED
SECURITY CLASSI FICAtION OF tHIS PAGE (USia. Sw. Smtw.d)

I .—~~ I 

_ _  _ _ _  :

~~ ~~~~~
a _

~&_~ _i__ 
_________S.,, ~~a _ __ .J.__ __ —— — S.- — -.. .s~~~~~~ —__. .7 .-S.... k s.. ~~~~~~~~~~ — _J —__&_ ._—



~n”~~~~~~~~--

UNCLASSIFIED
SECURITY Ci.AIIIPICAYIOM OP THIS PASE(URa. Dais laisa.d’ ) -

equipments which were felt to be typical of traditional and advanced switching
concepts. As an example, the ANITTC-39 , AUTODIN, ARPA Network were used as
part of the circuit, message and packet switching baselines respectively . Air
Pores lass communications studies were used as the baseline in that area .

Pros this baseline, a set of fifteen primitive functions were derived which
represent the needed capabilities for any generally applied communications
processor (CP).

The latest in the state—of—the—art in ADP technology was investigated to
determine the best and most viable approach to the CPS. The goal being to
develop a family of CP’s which could be used to satisy switching needs for
circuit, message, packet, base communications applications or in an integrated
node of the future.

The results of the investigation were continually the subject of trade—of fs
through the use of an analytical modelling technique. The final outcome of
this effort is a ten part specification detailing the performance requirements
of each unit comprising the communications processor.

‘This report is organized into eight volumes as follows: Volume I — Executive
Summary; Volume II — Definition of Problem; Volume III — Modelling; Volume
IV — CCC Architecture; Volume V — CPS Architecture ; Volume VI — Software
Generation; Volume VII — Appendices; and Volume VIII — CPS Central Processor
Specification.

Sr

UNCLASSIFIED
SECURITY ci. all PlC AtlOw OP THIS PAGE VUS,s, Osia ZWI.r.d

_________________________ — -

_.~~~~~ 
‘

~~~~~
—
~
--

~
-- ~ -. ~~

_.
~~~~~~~~~~~~~~~~~~~~~~ -~- — -~ -~~ ~~~ ~~~ — .— -

~~‘ -
~~~~


— .. ys ’—..—’—~~
- .! ~~~~~~~

-.,, ~~~~~~~ -. ~— -~ - r

I

- - - -.- --- - --,..-—---.----- —- --- -—

VOLUME VIII

-

,

. SECTION I

GENERAL SPECIFICATION
FOR THE

CPS CENTRAL PROCESSOR

I .~

I -

~
S
t

— -~~~~~— — — -- — -

~~~~~~~~~~~~~~~~~~~~ 

— —

~~~~~~~~ ~

- _____

SPECIFICATION FOR THE
CENTRAL PROCESSOR

OF THE
CENTRAL PROCESSING SYSTEM (CPS)

TABLE OF CONTENTS

PARAGRAPH TITLE PAGE

1.0 Scope I— i
1.1 General I— i
1.2 Background I—i 7
1.3 Technical Assumptions 1—2

-

~~ 1.4 Specification Organization 1—2

2.0 Applicable Documents 1—3
2.1 Published Documents 1—3
2.1.1 integrated Circuit/Message Switch Feas— 1—3

ibility Model Development Final Report

2.1.2 Communications Processing System Study 1—3
-

Final Report

2.2 CPS Program Documents 1-3
2 .2. 1 Prolegomenon to the Architecture of the 1—3 - ,

Communications Switching Processor

2.2.2 Communications Processing System Study 1—3
Interim Report

3.0 Central Processor (CP) Specification 1—3

3.1 General 1-3

3.2 General Characteristics of the CP 1-4
Architecture

3.2.1 Units 1—4

3.2.1.1 Processing Unit (CPU) 1—6

3.2.1.2 Interrupt Control Unit (ICU) 1—6
-

.
3.2.1.3 General Purpose Channel Unit (CU) 1-6

3.2.1.4 Memory Unit (MU) 1—7

1 - 3.2.1.5 Memory-to-Memory Transfer Unit (MMTU) I-?
S

3 2 1 6 System Monitor Unit (SMU) I—?

3 2 1 7 System Clock Unit (SCU) I—I

I—ti

- — — -~~—- — - - - - —

— ~ -
— A.~.g_..... ~~

~~~~~ ~~~~~~~ ~.. ~~~~~~~~~~~~~~~ .. - ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~



- -.-v~-.- -- - — . - -— 
~~~~~~~~~~~~~~~~ ~~~~~~ .f l.Li TL T -  

— - — -----. —.~—s. --~.’-
.
~~ -

.5 t
TABLE OF CONTENTS (Continued)

PARAGRAPH - TITLE PAGE

• 1 1 3.2. 1.8 Bootstrap Unit (BU) 1—7

-
3.2.1.9 Performance Monitor Unit (PMU) 1—7

-
-

3.2.1.10 Matrix Unit (XU) 1—8

- 3.2.2 The Matrix 1-8
3.2.3 Maximum CP System

3.2.4 Inter—Unit Communication 1—9

3.3 General Features of Units 1—9
~~

- 3.3.1 Control Cache Memory

3.3.2 Ports 1—10
3.3.3 Maximum Unit ID (MID) 1—10

11 3.3.4 Logical ID (LID)/Physical ID (PID) 1—10
3.3.5 ICU ID, Interrupts 1—10

1 3.3.6 Logical Independence I—il
3.3.7 Instruction Stacking I—li

.1 ~
3.3.8 Command Execution Speed I—il —

H 3.4 Priority Operation i—u

- - 3.5 The Unit as a Source 1—12

3.6 The Unit as a Destination 1—13

3.7 Generic Unit Micro-Commands 1—14
3.7.1 General 1-14
3.7.2 Command Formats and Modes 1-15
3.7.2.1 General 1—15 -

f~~ 3.7.2.2 Person Mode 1—15 -

3.7.2.3 Chaining Mode 1-16 -

3.7.2 .4 Indirect Mode 1—17

3.7.2.5 Command Length 1-17

3.7.2.6 Non—Descriptors 1—17

3.7.3 Single Character Commands: SS — 00 1—18
3.7.3.1 Transfers 1—18 -

~~~~

I—u i

• -

_ _ _ _ _ _ _ _   

— 
_  

- - -  

_ _ _—5—.- —--5———- — —S.—-- — ~~~~ ~~‘- •—~~~—-~



1~ - 
-. - - — 

~r S ~~~~~~-~--- r~~~~~—’-- -~ - - 

/ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~ - -.

TABLE OF CONTENTS (Continued)

PARAGRAPH TITLE PAGE

3.7.3.2 Non—Transfers 1—18
3.7.4 Two Character Commands : 85 — 01 1—20
3.7.4.1 Transfers 1—20
3 .7.4.2 Non—Transfers 1—21
3.7.5 Three Character Commands : SS 10 1—22

3.7.5.1 Transfers 1—22

3.7.5.2 Non—Transfers 1—22

3.7.6 Four Character Commands: SS — 11 1—22
3.7.6.1 Transfers 1—22

3.7.6.2 Non-Transfers 1—22

3.8 Input/Output (I/O) Operations and Inter— 1—23
Unit (IU) Repertoire

3.8.1 General 1—23

* 3.8.2 I/O Commands and Channels 1—23

3.8.2.1 General 1—23

3.8.2.2 Overview of Command Operations 1-24

3.8.3 IU Command Modes 1-25

3.8.3.1 General 1—25

3.8.3.2 Termination Modes 1—27

3.8.3.2.1 General - 1-28

3.8.3.2.2 Error Terminations 1—28

3.8.3.2.3 Interrupt Terminations 1—28

3.8.3.2.4 Condition Chaining Mode 1—29 -~

3.8.3.2.5 Command Termination Mode 1—30

3.9 Controls and Consoles 1—30

3.9.1 General 1—30

3.9. 2 Unit Alarms and Controls 1—30

3 9 2 1 Matrix Units 1—31

3 9 2 2 Memory Units 1—31

3 9 2 3 Channel Units 1-31
- - S

r .‘~

~~~~~
- I—iv

- L.5 ..

- - 
.
~

~~
. -

- — - .- - ,  - - ——- --5 - -— ---5— - —. . ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ .. - . -~~ -“-.~~—- ~~~~~~~ .~~~•



- . - —-—
-...- - - - -

— . — — — — —

TABLE OF CONTENTS (Continued) - 
S

PARAGRAPH TITLE PAGE

j 3.9.2.4 Memory—to—Memory Transfer Units 1—31

.3.9.2 .5 Processing Unit 1—31
3.9.2.6 System Monitor Unit 1—31
3.9.2.7 Sys tem Clocic Unit - 1—3 1
3.9.2.8 Bootstrap Unit 1—32
3.9.2.9 Performance Monitor Unit 1-32

3.10 Devices 1—32
3.10.1 General 1—32
3.10.2 Moving Head Disc 1—32
3.10.2.1 General Characteristics 1—32
3.10.2.2 Controller 1—33
3.10.3 VDU 1—34
3.10.3.1 VDU Characteristics 1—34
3.10.3.2 Controller 1—34
3.10.4 Keyboard/Printer 1—34

3.10.4.1 General Characteristics 1—34 -

3.10.4.2 Controller - 1—34
-

~~ 

3.10.5 Digital Line Termination Buffer 1—34

3.10.6 Low Speed Multiple Line Buffer 1—35

3.10.7 Scanner/Distributor 1—36

3.10.7.1 General Characteristics 1-36

3.10.7.2 Principles of Operation (Scanner 1—36 -

Functions)
3.10.7.3 Controller Scan Functions 1—38 

-

3.10.7.4 Output Functions 1—40

3.10.7.5 Applications 1—41 1 -

3.10.7.5.1 Circuit Switching 1—41

3.10.7.5.2 Message and Packet Switching 1—42

3 10 7 6 Technical Control Functions 1—42

- .~- - .

I-v

~

- . - - —



~~~~~~~ .,—‘.~~~
—----- —..

~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
— .,F— - —--- - - -“--— 

.- 
---— - -. -5— - -

r
TABLE OF CONTENTS (Continued)

PARAGRAPH TITLE PAGE

3.11 Application Considerations 1—43
3.11.1 General 1—43
3.11.2 Typical Message Switch 1—43

- 3.11.2.1 Functional Configuration 1—43
3.11.2.2 Sacrifice Schedule 1—45
3.11.2.3 Physical Configuration 1—45
3.11.3 Packet Switch 1—47
3.11.3.1 Functional Configuration 1—47
3.11.3.2 Sacrifice Schedule 1—47
3.11.3.3 Physical Configuration 1—47 

-

3.11.4 
- 

Circuit Switching 1—47
3.11.4.1 Functional Configuration 1—47

3.11.4.2 Physical Configuration of Large Circuit 1—51
Switch

3.11.4.3 Configuration of Moderate Circuit Switch 1—51
(600 Lines )

3.11.4.4 Very Small Circuit Switch 1—55
3.11.5 Technical Control System 1—55
3.11.6 Digital Concentrator 1—55

I

I

- --~c~r~&- ~~~
-

- -~
- -

1—vi

I

I 

_ _ _ _ _ _ _

- 
- - 

—..

-—~~~~~~
. 

- -



p - p . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~

-5 

-. - - -r!~~~~ 
_

~~~~
‘
~~~~

- 
:~~~~~~~

- - :
~~~~ ~~~~

- --5

ABBREVIATIONS

BU Bootstrap Unit
central Processor

CPS Communications Processing System
CPU Communications Processing Unit

- CRC Cyclic Redundant Code
CU Channel Unit

DID Destination Identity
DLE Delete
FE Front End
FIFO First In-First Out

-

I - I~ U Interrupt Control Unit

ID Identity
- - I/O Input/Output

ITS In—Transit Storage

I/U Inter—Unit

LID Logical Identity

MID Maximum Identity
-

-1 MMTU Memory—to—Memory Transfer Unit

Message Processor
MU Memory Unit

PID Physical Identity
- .~~ ~ PMU Performance Monitor Unit

-

ScU System Clock Unit

~- j ~•, SID ~ource ~~entity
~~~ ~ - SMTJ System Monitor Unit

SOB Start of Block

-

~~ 
~ VDU Visual Display Unit

XU Matrix Unit

I—vu
-St 

— — - -- --~~~~~~~--— - -~~~“-- - - - - - -—



- 

r~ ,r ~~~~~~~r~ — - ~-- .~~.- —~-~-~ -
~~~

—- ~
____ _

~
._
~~~~ _~~~~ ~~~~ ~~~~~~~~~~~~ j ~~~~~

-
~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

LIST OF FIGURES

FIGURE TITLE PAGE

I-i Central Computing Complex Architectural 1—5
Overview

1—2 Scanner Operating Principles 1—37

1—3 Functional Configuration of Typical Message 1—44
Switch

1—4 Message Switch Physical Configuration 1—46

1—5 Functional Configuration of a Small Packet 1—48
-

- Switch
1—6 Small Packet Switch Physical Configuration 1—49
1—7 Functional Configuration of a Circuit 1—50

Switch 0

1-8 Physical Configuration of a Circuit Switch 1—52
1—9 Moderate Sized Circuit Switch — Functional 1—53

Configuration
1-10 Physical Configuration of Medium Circuit 1-54

Switch

I—il Unattended Circuit Switch 1—56

1—12 Physical Configuration - Small Circuit 1—57
Switch

1—13 Single Thread Small Circuit Switch 1—58

1—14 Functional Control of Tech Control System 1—59

J C ~q
—

-. I—viii

- 4~ - _
~~~ 

.
~~~~~

-
~~~~~~~~~~~

- - ——— - — -
~~~

- .--.. .
~~~~

-- . .  - - - - -

- S-~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 

-

~~—.•— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.- ---.~~~~~~ ~~~~- —--— --- .-. — - — ~~ -*.~~~~~~~~ ~~~~~~~~~~ -‘~~ . - ~~~~- .. ~~~~ -...~~~
á_______

~~ ‘ ‘ ~ --
-

~~ v
— —.5— ~~~~~ -.- -.....LL.. - W.~~~P~~~~~

—

1.0 SCOPE

1.l t~ General

This document Is the specif ication for a Central Processor
— (CP) which is specifically designed for Communications Pro—

cessing System (CPS) applications. These CPS applications in—
d ude: circuit switching, message switching, packet switching, -

digital multiplexers and concentrators. In this context, cP
refers to a set of equipment which contains Communications Pro-
cessor Units (CPU ’s) , Input/Output (I/O) channels , performance
monitor units, channel units, control panels , some form of data -

and program memory and a means to interconnect them. Therefore,
this specification describes a family of computer controlled

-
i units which together comprise a CP and which can be equipped in

various combinations and numbers to perform, efficiently , any
of the CPS applications or any combination of them.

1.2 Background

The CPS Study Program (refer to 2.1.2 below) considered ,
as part of the study, a wide variety of existing and planned
communications systems in all of the CPS applications mentioned
above. This baseline study was performed to define the require— -

ments of a CP which could be used efficiently in any of these
applications. The systems studied included the entire gamut of
communications systems from very small to very large in terms

4 -

of lines, trunks, circuits, and terminals, from low traffic per
-

- inlet to very high traffic per inlet, and from individual sys-
tems to entire interconnected networks.

One of the major conclusions derived from this study was
that any CP which could fit any of these applications efficiently

-

must be highly flexible in terms of size (the number of units
equipped) and capability (the types of units equipped) without
changing the basic architecture.

-
‘ A second major conclusion was that, for efficient operation,

the ability to make maximum use of the system’s resources must
be inherent in the CP’s architecture.

Of all of the existing systems studied, none remained
static during its service life. Each system had gone (or is
going) through modifications to its hardware or software or both
to accommodate new or expanded requirements. This leads to a

t third major conclusion; the CP’s architecture must facilitate
adaptation to new or expanded requirements with a minimum dis—
ruption of service and, preferably , be amenable to these changes
while “on— line”. -

‘1

I-i

5.
- ,

-
5,4 .~ —

-5

—

5-— — - -5

—

__

A fourth major conclusion reached was that all existing
and planned processor controlled systems featured a distributed
control architecture and that a distributed control architecture
would best satisfy the future cPS requirements.

This specification describes a CP which satisfies the re-
quirements of all of these major conclusions.

1.3 Technical Assumptions

The entire cp concept described in this specification is —

— based on the assumptions concerning Integrated Circuit (IC)
technology contained in the CPS study Statement of Work.

It is assumed that an IC technology will (or does exist)
which will result In gate densities on the order of 2000 to
5000 per 150 mil square chip with a quiescent power dissipation

~1 of 1 milliwatt per chip (200 nW-per gate). It is also assumed
that the on-chip gate delays of this technology will be on the
order of 3 to 5 nanoseconds. The technology projections de-
scribed in Volume V 1 Section 3 of the CPS Study Final Report
indicate that these assumptions are not unrealistic (refer
specifically to the I2L technology description).

1.4 Specification Organization

This document , the CP specification, actually consists of
a set of eleven specifications. A general CP specification and
a specification for each of the ten unit types which comprise
a CP. The specification titles and the sections in which they
are contained are listed below:

Central Processor (CP) Section I
Specification

Communications Processor Unit Section II
(CPU) Specification

Interrupt Control Unit (ICU) Section III
Specification

Channel Unit (CU) Specifica— Section IV
tion

Memory Unit (MU) Specifica- Section V
tion -

-

Memory—to—Memory Transfer Section VI
Unit (MMTU) Specification

System Monitor Unit (SMU) Section ViZ
Specification

H 1—2 :1-
-

- -
~~

-

‘5 -
~~~~~ 5,’

s—.,. ~

.1
1 _____,I 

~~
_________ • .5’ __________ _____________



- 
-_______ 

-- - . - 
-

-5

System Clock Unit (SCU) Section VIII
Specification

Bootstrap Unit (BU) Specifica— Section xx
tion

Performance Monitor Unit (PMU) Section x
Specification

Matrix Unit (XU) Specification Section XI

This CP specification is a preliminary specification of a
Central Processor which satisfies the functional requirements
derived in the CPS Study Program. It is not a hardware specif i—
cation as such, although a set of hardware specifications could
be derived from it and the information contained in the CPS
Study Final Report .

5 
2.0 APPLICABLE DOCUMENTS -

2.1 Published Documents

2.1.1 Integrated Circuit/Message Switch Feasibility Model De—
velopment, Test and Evaluation

RADC—TR—72—27 , Volumes I , II , I II  and IV

2.1.2 Communications Processor System Study Final Report

RADC—TR-76- , Volumes I thru VII

2.2 Program Documents

2 .2. 1 Prolegomenon to the Architecture of the Communications
Switching Processor; January 25 , 1974

— DSA 292—TR-7

2.2 .2  Communications Processor System Study Interim Report

3.0 CENTRAL PROCESSOR (CP) SPECIFICATION

3.1 General

The C? is a distributed system architecture composed of
semi—autonomous units. Advantage has been taken of large scale
integrated circuit technology to make the units “smart”. Many
of the capabilities normally associated with a CPU have been re— - - 

-

distributed and allocated to other units .

1—3

~~-5 —
‘5

- - -

5 - ..

— -5———— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ______________ 

I
— --- 5 ~~~~~~~~~~‘~~ ‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

____- - -
- - - ~~ r~~

- - -

~~~~~~~~~~~~ - .

3.2 General Characteristics of the C? Architecture

Figure I—]. is an overview of the architecture. The heart
of the architecture is an interconnection matrix which allows
all compatible units to communicate with one another. The archi—
tecture has the following characteristics:

(1) Modularity at the unit level.

(2) Replication as needed at the unit level.

(3) Automatic graceful degradation and recovery .

(4) Self—failure detection.

(5) Built-in diagnostic facilities and commands.

(6) Built—in monitoring capabilities.

3.2.1 Unit s

A unit is the basic interchangeable , replicable element
- 

- of the architecture. Examples of units are:

(1) General purpose processing unit (CPU).

(2) Interrupt control unit (ICU).

(3) General purpose channel unit (CU).

(4) Memory Unit (MU).

(5) Memory—to-memory transfer unit (MMTIJ).
-

‘ 
(6) System monitor unit (SMU).

(7) System clock and timing unit (SCU).

(8) Bootstrap unit (BU). S

(9) Performance monitor unit (PMU).

(10) Matrix unit (XU).

-
- - :  All units have the following characteristics :

5’ (1) Common interface with the matrix and with each
other

(2) Unit generic micro-instructions

i~- - —
~~

-:-
~

-
~~ 

5 . ‘—4

1—



_
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 7~~~~~~~~~ 

~~~~~~~~~

1 P ~ CESS1PG
I UN IT (lIlT

CPWIEL UNIT f~
. —•1 r’e-VRV isiii

L aw.€LLMT I—;- — 
~~~~~~~~~~~~~~

I C~~~ CTION - • _____________

0 J0€. (1411 I~•~~ . i
MATRIX —1 IE?’E~ Y UN1T

1V~~~RY 10 P€~~~Y
‘mNGFER UNIT

~~
‘ —1 CLOCK A1~

• I TIMlP~~ UNIT

S S

~~~~~~ RY TO ,e~ v — —1T~ JISFER t1411 TIMIPG UN IT

S 

l~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~

~~~I4TROL L14IT J _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _...l I • •• .•  I
CONTROL UNIT ~~‘dI T~~~LR4IT 

J [ 
IOIFTOP UN IT

FJ&t~ 1-1 LNr~L w~ ri~ cDPw ~~ IflECflI~L ~ ERVIB4
- I

- ~ —

- -~~~~~

-~~~~~~~~~~~

1—5 

— 

.5;



-1~~
•-S”

~~~-’-’—’,-------~ ~~~~~~~~~ ~
V5 -

~~~ ~~T- ’5 ’~’ ‘
~‘ 

‘‘- - - - - -

6~~ ~IIuI

(3) Dynamically modifiable logical identity which can
differ from its physical identity .

(4) Interchangeability with any other unit of the same
type.

(5) Self—failure and malfunction detection.

(6) Interconnection to other units via the matrix.

(7) Logically isolatable from other units.

(8) Power isolation from other units.

The following is a brief review of the various units of
the C?. More detailed descriptions are to be found in subsequent
specifications.

3.2.1.1 Communications Processing Unit (CPU)

The processing unit is a general purpose digital com-
puter. It has a 32 bit word length, character , half—word , and
word addressing. The repertoire has been optimized for the
communication task. It is a generalized register machine , having
16 registers of 32 bits each. Each register can be split in
half and used independently . The machine is paged, with page
size of 65,536 characters.

3.2.1.2 Interrupt Control Unit (ICU)

All interrupts generated in the system are transmitted
to the interrupt control unit(s) through the matrix. In addi-
tion to the normal interrupts (e.g., transfer termination ,
special characters , etc.) the ICU gathers, interprets, and acts
upon all alarm conditions.

3.2.1.3 General Purpose Channel Unit (CU)

All devices are connected to the complex by means of a
general purpose channel unit. All channels provide the fol—
lowing capabilities:

(1) Programmable speed
- 

1 (2) Master or slave mode
(3) Direct memory transfers

(4) Chained I/O operation
- 

. .  (5) Full duplex operation

- -

1—6
- -~~~~~ - 

- -

.5’

: ~~~~~~~~~~~~ 
- - ‘ ‘  - -  

- - .. - 
-

-
5
’ — - S .  - - .5 _ _

~~~~~~~~~ 4~. ~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
- -

-.5 ~~—~--- —-—----- —~~~~~- L. ~~~~~~~~~ 4 4 ~~~~~~~~~~ _ .5- - -5.5 -5— —~~—-- — .5 -5 ~—

A channel may be used to terminate more than one phys—
ical device if a device controller of the proper type has been
designed. The device side of the interface is a character
interface. The matrix side of the interface is logically a
word interface. The device side interf ace is universal. All
controllers must be built to serve that interface.

3.2.1.4 Memory Unit (MU)

The memory unit is a module of 65,536 characters. From
the programmer ’s point of view, word, half—word , character, and
bit addressing are provided.

3.2.1.5 Memory-to—Memory Transfer Units (MMTU)

The memory-to-memory transfer unit is used to make
memory—to-memory transfers and other transfers between passive
units. Its operation is transparent to the programmer. Each
MMTU takes up two unit numbers.

3.2.1.6 System Monitor Unit (SMU)

The system monitor unit is a watchdog unit over the
- - CPU ’s. It expects signals from the CPU’s on a periodic basis.

Should an expected signal fail to arrive on time, the monitor
unit will initiate corrective action , ranging from re—initial—
izing the faulty CPU to throwing it out of the complex and re-
assigning a standby CPU to the task.

3.2.1.7 System Clock Unit (SC!fl

The system clock unit provides a master timing source
and time of day clock for the entire complex. It is address—

- - able and programmable.

3.2.1.8 Bootstrap Unit (BU)

A unit which can, under operator control, perform the
-
- f loading of various control memories and unit ID’s as necessary

-
. to get the system into operation .

3.2.1.9 Performance Monitor Unit (PMU)

The performance monitor unit is a unit which is equipped
with high impedance probes used to monitor activities within the
complex. It is used to gather statistics on the complex’s per-
formance and internal matrix traffic. Its primary use is for
system tuning although it can be helpful in software diagnosis.

1—7

- -
~

-
~

— -
-

~~~

- -

~~~~~~~~~~~ 

- - - -

~~~~ 

- - -

3.2.1.10 Matrix Unit (XU)

The matrix is a distributed system containing a number
of submatrices. Under normal operation, there is no need to ex-
plicitly access a submatrix or its controls. However, in the
event of a submatrix failure, subinatrix restoral, system boot-
strap, or other conditions described elsewhere , it is necessary
to force the state of the matrix and/or to query its status.
For this reason, each submatrix control is also access ible as a
unit through data paths that traverse the matrix itself.

3.2.2 The Matrix

The matrix is a distributed, modular structure with in-
herent graceful degradation capabilities. It is the means by
which data and control paths are established between all units
of the complex .

The connection duration is typically of the order of a
few memory cycles to a few milliseconds , but can be modified
every memory cycle if necessary. The operation of the matrix is
for the most part transparent to the programmer. The matrix is
the functional counterpart of the various busses found in pre-
vious system architectures. The matrix control is performed by
a distributed control system and shares the graceful degradation
capabilities of the matrix proper. Failure of part of the matrix
may cause the system to slow down, but will not cause it to fail.
Requests for connections are not directly under program control
but are derived from the nature of the transfer or instruction
being executed. The matrix is self-diagnosing and creates
interrupts in the event of improper connection attempts.

The following conventions are used to establish a path
through the matrix :

(1) A connection is normally initiated by an active
-

- 

- 
unit.

(2) The initiating unit is called the “source unit”.
Its logical identity is called the “source identity”
(SID).

(3) The receiving unit is called the “destination unit”.
Its logical identity is called the “destination
identity” (DID).

(4) Every unit has a unique logical identity - else

t there has been a malfunction .

!~

1—8

- - —-‘---------- ---——-- --5- .~~‘-- —.5 — - -.5



— 
~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ —-5—- 

~~~~~~~~~~~~~

(5) Source and destination have nothing to do with the
direction of data transfer — only with the identity
of the unit that initiated the transfer. A passive
unit, is normally a destination unit . An active
unit may be either a source or a destination unit.
Some specialized units may be only source units.

A complete description of the matrix and the signaling
scheme used to establish paths through the matrix can be found
in Section XI, the Matrix Unit Specification.

3.2.3 Maximum cP system

A complete C? system can consist of no more than 254
units. Units are categorized as being either active or passive.

— Memory and matrix units are passive. Most other units are ac-
tive.

3.2.4 Inter—Unit_Communication

Communication between units and control over units is
obtained through the use of a unit level micro—instruction
repertoire. There is a substantial amount of overlap between
the unit repertoire and the I/O repertoire of the system ; in
many cases , the commands are indistinguishable . Unit level corn—

-
- 

- 
mands fall into two categories: unit generic commands and unit

S 
specific commands. Generic unit commands are identical for all
units and can be applied to all units. The behavior of the

- - unit under a generic command will be the same (except for some
details) for all units. A given OPCODE in the generic reper-
toire can be expected to have the same action in all units. A
unit specific command has an interpretation which is peculiar
to the unit. The same OPCODE presented to some other unit could
result in totally different actions. The unit generic reper—
toire will be discussed in this specification. The unit specific
repertoire will be discussed in the specification pertaining to
those units.

j 3.3 General Features of C? Units

3.3.1 Control Cache Memory

Every unit has a high speed cache memory used for prior-
ity control and instruction validation. The memory can range in
size from 128 bits to 512 characters. The specific size is

4 variable and the operation differs from unit to unit. As a
minimum, the control memory specifies whether or not a command
can be accepted from a given SID, and with what priority that
command should be executed. The validation/priority field is
from one to four bits in length. The code “0” always means that

1-9 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~I~~ T~~1- -T.~-


-.5 ~~ ~~~~~ ~~~~~~~~ - -—----~~1E~ --r-’5- -— .___
~_~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~

- - .
‘5”

~~~~~ . — -- - — - —  - -5

-

a command cannot be accepted from the SID in question . The
operation of the priority/validation memory consists of
using the received SID as an index to the control memory and

- - 
‘ 

thereby fetching the priority/validation field . The control
memory may contain other fields whose interpretation is peculiar
to the unit .

- 3.3.2 Ports 
-

A unit may have one or more ports into the matrix . A
port is used to establish a path with some other unit. Only
one port in each of two interconnected units is allowed to
participate in the connection. Which ports are involved is
arbitrary . Thus , if unit A has two ports, and unit B has four
ports , only one of unit A’ s ports can be connected to one of
unit B’ s ports. One and only one of a unit ’s ports can be
designated as the primary port. The designation of the primary
port is done by use of a micro—instruction. The primary port
establishes tie—breaking in the event that two commands at the
same priority are active simultaneously. Ports are numbered
sequentially from 1 through N. The port numbering cannot be
modified. Port priority is established (in decreasing order)
by counting cyclically from the primary port. Thus, if a unit
had four ports, and port #3 had been designated as the primary
port, the port priority order would be 3, 4, 1, 2. Ports which
are CLOSED are skipped in the priority ordering.

H A port can have states which correspond to the states of
a matrix link, that is: FREE, RESERVED , BUSY , LOCKED, ERROR ,
DEAD, as well as other intermediate transient states. Port
states are partially controllable through the use of unit micro—
instructions.

3.3.3 Maximum Unit ID (MID)

Every unit stores as a constant the numerically largest
unit ID to which it is allowed to respond. This may correspond
to the numerically largest ID in the system, but does not have
to. The MID is changeable through the use of a unit generic
micro—instruction.

3.3.4 Logical ID (LID)/Physical ID (PID)

Every unit , except XU’s, store their own programmer modi-
fiable LID, as well as their own physical ID. Physical ID’s
cannot be modified under program control. Physical ID’s can be

I ! read through the use of a unit generic micro—instruction.

3.3.5 ICU ID, Interrupts

Every unit stores the logical ID of two other units, to

L 

i-i:

_—•—

~~



L22~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 
-— .-

~
--

~~~
-
~~

—
~~~~--

-
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ —---.5-- ~~~~~~~~~ .-,-.-. ——-u.-— .---- --.~

- 
~~~~~

- - - - --5---__ -- .5-- -

which it is to respond should an interrupt be required. Typi-
cally, these are the ICU and the back-up ICU, however , this is
a usage convention and can be modified under program control.
Interrupts may result from normal unit operation or from mal-
functions. When these occur, the unit responds by transmitting
an interrupt code along with pertinent interrupt related infor—
mation. The interrupt code and the associated information is
peculiar to the unit and may be interpreted differently from
unit type to unit type. The primary and secondary ICU ID are
changeable through the use of unit generic micro—instructions.

-~~ 3.3.6 Logical Independence — Power Transient Protection, Mal—
- ‘ function Detection

Units are to the maximum extent feasible, electrically
and logically independent of one another. Interfaces have been
designed with safe logical values so that open line conditions
will not impact the rest of the system. Some units have their
own power transient protection (e.g., memory units). Illogical
conditions are detected by the unit’s logic where possible and
result in the generation of an appropriate interrupt.

3.3.7 Instruction Stackifl,g

Each unit is capable of storing one instruction per port.
Some units may be capable of stacking more than one instruction
per port. Instruction stack entries are not tied to the port as
such. That is, a unit with 8 stack entries could stack three
commands for one port, two for another, etc.

3.3.8 Command Execution Speed

While a given command such as an I/O command could entail
many transfers over a long period of time , each such operation ,
when examined as a sequence of micro—instructions , takes place -

at the maximum matrix/unit speed. Thus, the transfer of char—
acters for a channel operating at 100 characters per second,
would be treated at the micro—instruction level, as 100 separate
single character transfers every second.

3.4 PyiorIty Operation

H
The following priority rules apply to all units:

I - (1) Unit (SID) priority as stored in the cache memory (if
H stored) is applied first.

(2) If there is no stored priority, or if the priorities
for two SID’s are the same, port order applies.

1—11

~~~~~~~~~~ 

- - - - ~~~~~~~~~~~~~~~~~ .~~‘.,.a. —... - St.a.*. .- _C-_ -.- -fl. —_  —— ,, . 5 _.__ ,,S. -— -
.

- - 
—S - ~~~~~~~~~~~~ 

~- - - - - - - -- -..-~~-—-- - —~~~~~-- - .5— — ‘~~~~~ - —_-5—~~~~ 
~~~~~~~~~~~~~~~~~~ - - ~___ ~~~~


~-5 -5-5
_____ ~~ ~~‘~~‘

(3) If the unit is a single port unit (actually or effec—
tively by virtue of ports being closed), or if other—
wise command priority has not been resolved by the
above rules , then unit specific priorities based on the
OPCODE of the instruction are applied.

(4) If the priority has not been resolved through the use
of rules 1 through 3 above, then FIFO applies.

(5) The exception to the above rules is the ABORT GLOBAL
command which aborts all pending commands and thereby
takes priority.

3.5 The Unit as a Source

A unit may issue a command directly as a result of its own
operation , or indirectly as a result of the operation of some
other unit. Furthermore, the command may have come from within
itself, or may have been supplied externally — again through the
action of some other unit. However, many steps of indirection
are involved , ultimately the unit comes to the point where it
will issue a command to some other unit . The following steps
are involved in the unit ’s behavior as a command source :

1. Select Port

- I The highest priority (cyclic order from the primary port)
free port is selected for the issuance of the command, un—
less a RESERVED or LOCKED port to the DID in question al-
ready exists.

2. The DID, SID, and OPCODE character(s) are transmitted
sequentially without waiting for a validation in the
form of an echo DID. It is (correctly) assumed that
in most cases the command is valid and that it will get
through the matrix. I.f the reflected DID does not
match that which was transmitted, the path kill signal
is sent, and the transmission of the OPCODE is curtailed.

— An interrupt is fabricated for transmission to the
primary ICU. The interrupt contains: the SID, DID,
OPCODE, PORT NUMBER, and the interrupt code “BAD DID
REFLECTED”. The interrupt is sent on a different port
if possible. .1

3. Transmission of the rest of the command (SID and OPCODE)
Ii implies that someplace along the line, the destination

unit will signal back its tentative acceptance of the
command. If command is not accepted , from the point
of view of the source , a PATH KILL signal will appear.
In this case , the source unit will signal the fact by
generating an interrupt with the same information as

112

- - ~~~—~~-,—— — ——.5 - — - - . 5 - - - ~~~~~

—-5
~~~~~~~~~~~ _________ _________—- - 5 -  -

before , except with a “COMMAND REJECTED” interrupt
code. Mere failure to get through to the destination
unit , as signalled by a BUSY, does not result in an
interrupt for the typical unit level command .

The transmission of the OPCODE (which is of a known
length) sets off a timer (actually a counter of char—
acter transmission periods) in the source units. The —

S counter establishes a window within which the destina-
tion unit must respond with a LOCK signal. The window
time includes the transmission delays of the matrix for

-
.5 

the round trip. Should the LOCK signal , or BUSY - in
general, a state change signal — fail to appear within
the window , it is assumed by the source unit that the
destination unit has failed to get all the characters
of the command , or is expecting more characters than
are forthcoming. The source unit will respond to this
situation by the generation of an appropriate interrupt .

4. During the data transfers (if that is the nature of the
operation) both the source and destination units esta-
blish windows based on the length of the transfer and
monitor the duration thereof to see to it that all
characters and no more than were expected are trans-
ferred. Recall that the direction of data transfer
does not necessarily relate to which unit was a source
or which unit was a destination .

5. The completion of the transfer or instruction execution
is signalled by the destination unit. This results in
changing the port state and the state of the link at-
tached to the port to the RESERVED state, unless the
path had been locked by a LOCK command.

A unit may initiate a command prior to the completion of
commands on other ports. At any instance of time , however , there
is only one micro—command active for a given port . The ability

- - to issue simultaneous commands (on separate ports) is a peculiar—
ity of the unit.

3.6 The Unit as a Destination

A unit ’s destination behavior is complementary to its be—
havior as a source. The following steps are entailed in the
unit ’s behavior as a destination :

1. There is no port selection, except that which is im—
plicit in the traffic pattern through the matrix. The
connection attempt is made on a free port, or in the
case of usurpation , on a busy, reserved, or locked port.

- I.

1—13

t 

________________________________- 
- - - ~~~~~~~~~~~~ -

-
5 -- :-- - - - - - - -

- -

—-5- —i—-- - 5— .5--—-. - - - 5 - 5 - 5 — —’-- 



- •~~
_-

~ ‘-~~~ ? “ - “~•‘ —- ‘-5~~~~~~~~~~’- ‘ 5 - r~~~~~~~~~ ’~~~~~~~ . -

— - — - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

2. The received DID is compared , bit serially , by the
destination unit. At the first instance that it has
been determined that there is mismatch , the unit re—
sponds with the NO signal , which will have the effect
of clearing that path. Note that the DID code could
come into more than one port simultaneously. Once the
DID has been validated and found to match , the desti—

- 
- nation unit sends it out as a reflected DID.

3. The SID is accepted and is used as the first part of
command validation . At the first bit in which it is
determined that the SID exceeds the MID stored in that
unit , the unit responds with a command rejection signal
back to the source and an interrupt to the ICU , con-
tam ing the SID, DID, PORT NUMBER , and the code “SID
REJECTED” .

4. OPCODE validation proceeds as the OPCODE is received . -

Validation may require that more than one character of
the OPCODE be examined. The validation rules are
peculiar to the unit . An invalid OPCODE is rejected
by a path KILL signal and a transmission of an inter-
rupt to the ICU containing the SID , DID , and “OPCODE
REJECTED” code in the interrupt .

As with the source unit , the destination unit establishes
a window for the receipt of the complete OPCODE . In the
case of the destination unit , matrix delays do not have
to be taken into account . If the OPCODE should be cur-
tailed or extended (e.g., extra characters) an appro-
priate interrupt will be generated.

5. The completion of the transfer or the instruction exe— -

- - cution is signalled by changing the state of the path.

6. If the same SID should appear simultaneously on two or
more ports, the responding port is chosen in port order.
The unused ports are given a path KILL signal.

3.7 Generic Unit Micro—Commands

3.7.1 General

This section is a discussion of the generic unit micro— 
- 

-

commands ; that is, those commands which apply to all units. It
should be pointed out that the term “generic” can be occasionally
misleading . It is not absolutely true that all generic commands
in all modes can be issued and acted upon by all units. Some
modes, for example , the indirect mode , can only apply to units
which have or are memory units. In some cases, the interpreta—
tion and details of a “generic” command will differ from unit H

- 
- , to unit — but the general action and intent will be the same. -

- - 
1—14

- - -~~~~~~~~~~~~~~~~ - - - - -—~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~ —
~~~~~~~~~~~~~ -~~~l-,~

—- ‘-~~~~~~~~~~~~~2~~~~~~ ~~~~~r —~~~~~ -~~~~--wp - -
~~~~~~~~~~~~~~~~~

I
--

Unit specific commands fall into the OPCODE structure of the
generic commands and are discussed separately for each un it
type. Each unit contains the logic to validate comTn~nds that
it receives. When command validation fails, the destination
unit (the one that interprets the command) generates an inter—
rupt to the ICU.

3.7.2 Command Formats and Modes

3.7.2.1 General

A unit micro-command is a string of characters of S

variable length . The first character (after the SID and DID
characters) is either a command or the descriptor of a com—

-
-

- S mand. Command descriptors are used to provide various modes
of operation for commands. The first bit of the command is the
D bit. If D = 0, the character is a command. If D = 1, the
character is the descriptor of a command , which is to be found
as the next character in the command stream . A descriptor can
precede any valid command. The descriptor can specify a combi—
nation of three modes of operation : first person/third person ,
direct / indirect , chained/unchained. These terms are defined
in the sequel. If a command is not preceded by a descriptor ,
it is in the first person , direct , unchained mode . The over-
whelming majority of unit micro—instruction executions are in
this mode. If the D bit of the command is 1, the next three
bits specify the mode of the command as follows:

BIT 2 - First or third person mode

BIT 3 — Direct or indirect mode

BIT 4 - Chained or unchained mode

BITS 5, 6 — Command type descriptor
00 = generic unit micro

BI TS 7 , 8 — Termination code
00 = normal termination for generic unit

micros.

3.7.2.2 Person Mode

Three different units are potentially involved in the
execution of a command: the unit that initiates the command
(first person — “I”) , the unit that receives the command (second
person - “YOU”), and possibly a unit that is the object of the -

command if different from the first two units (third person —

“IT”). The forms that a command can take , then , are :

I—l5

~~~~~- — — - —~~~~~~~~-~~~~~~—~~L~- — -  - ~ --~~~~~~~~~ --



_____ __

“I tell you to do such and such” (first and second
person)

or

“I tell you to do such and such with it” (first, second ,
and third person).

S In the first case, the source and destination are the
participants in the command . In the latter case, the source
directs the destination to become a source for the execution of
a command with another destination.

We call these modes the “first  person ” and “third
person” mode respectively . Generic unit commands and unit
specific commands , when used as micro—instructions which form a
part of a higher level command , are normally executed in the
first person. When unit commands are used as part of I/O corn- . -

mands, they are generally used in the third person mode. Thus,
a CPU issuing a command to a channel, directing it to transfer
data to a memory is a clear example of the use of the third

11 person mode. On the other hand, the same CPU requesting that a
unit transfer its status to a CPU register is an example of a
first person mode command.

A command given in the third person is identical to a
first person command, except that immediately preceding the re-
maining characters of the command is the logical ID of the
“third person” that is to be involved in the execution of the
command. The destination unit stores the command and the UID
of the third person unit , completes the command sequence with
the source unit , frees the path, and thereafter , reissues the
command as if it had originated with the destination unit . The
destination unit therefore becomes the source unit for the re—
issuance of the command. The only change that occurs to the
first character of the command is to change the person bit from
the third person mode to the first person mode. Validation
windows are adjusted to take the person into account.

3.7.2.3 Chaining Mode

This bit indicates that the command in question is part
of a chain of commands. In addition to the other command parts,
a unit ID (typically that of a memory) and an address (another
two characters) is provided. The unit which executed a chained
command retains the unit ID and the address. Upon completion
of the present command , it fetches a new command from the m di—
cated memory location. Chaining applies to either person modes.
Chaining continues until an unchained command has been reached.
Note that the act of chaining allows a source unit to execute

1—16

F:
‘S.

.

.5 
5_ ~~i__k_~~~ J _ ___ .5 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- — — - - - --- - - . 5  ~~~~~~~~~~~~~~~~ _________


r ~~~~~~~~
- — - -— ~~ -~~~~ - -~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _______

-- .5 - - - .5- ~~ ~~~~ - - - 5-- -

- - 5 -— ___

a string of separate commands without intervention by the unit
which initiated the chain. Command validation and priorities
for chained commands are established with respect to- the unit
from which the command is fetched and, except for the first com-
mand of the chain, not with respect to the unit that initiated
the chain. Once the chain has been kicked off , the unit fetches
the commands from the other (the memory) unit and treats it as
if the memory unit had initiated the command. From the point of
view of the memory unit, the fetch is accomplished by a normal
fetch micro (see below). It is the receiving unit that does the
interpretation of this data as a command rather than as data.

3.7.2.4 Indirect Mode

The indirect mode is like the chaining mode except that
there is no command following the descriptor character, only the
unit ID and the address at which the command is to be found.
Indirect mode commands specify where the unit Is to find the
command which it is to execute. The format is:

[
DID I SID J DESCRIPTOR J UID J ADDRESS ADDRESS

16 CHARACTER
3.7.2.5 Command Length

While the issuing unit always knows the command length
at the time of issuance, in the case of indirect or chained mode
commands , the command length is determined by a combination of
the descriptor and the first character, or more , of the command .
Where the command itself is not to be found in the issuing unit ,
the number of additional characters to be transferred is deter-
mined by the unit , and depending on the nature of the command ,
another micro—instruction may be executed without releasing the

-

port , or controls are established which will cause the proper
number of additional characters to be transferred .

3 .7 .2.6 Non—Descriptors

If the first character is not a descriptor , as m di—
cated by a D bit = 0 , it is a command and has the following
format :

O S S UUUUU

The S bits specify the number of characters to follow
-

- the given character , excluding those added by virtue of the
descriptor and the modes therein. A micro-command , therefore,

~~~~~; _~ can consist of 1, 2 , 3, or 4 characters , corresponding to S bit
~ 

~~~~~ values of 00, 01, 10, and 11, respectively .

.5
~.~~~ _~:-‘ - -

,

—.
,

~
-~~

-.t- 1—17
- -

_
~ _~~5 _ ;

IL~~~ . —

ILL

- --
• .

—
- -

~~
-——-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -C-—— j ______

— ~~~~~~~~~~~~~~~~~~ ‘i_ __—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.-
~~

.--
~~

_-
~
--
~~~~
.

-___

3.7.3 Single Character Commands: 55—00 1 -

These commands are the most frequently used micro—corn-
mands. They have been encoded Into single character OPCODES in
order to minimize matrix transfer times. The first bit of the
OPCODE designates if the command is a transfer. There are five
bits in the OPCODE. The first bit designates a transfer or a
non—transfer . If a transfer, the remaining bits designate the
size and direction of the transfer. If a non—transfer, the re—
maining bits designate which of 16 micro—instructions it is.

3.7.3.1 Transfers - DSSU 0001XNNN

- J These commands are all of the form:

Transmit 2 — transmit or receive N characters.

The “X” bit designates whether the direction is a trans-
mit or a receive. The NNN bits designate the number of char-
acters to be transferred , as a number from 1 to 8. The code
000 is by convention used to denot e a transfer of 8 characters.
This is the work-horse micro-level transfer command. It is used
between units and memory for almost all purposes . The “transmit-
2” portion of the command is interpreted by the destination unit
(typically a memory) as an address. We use the generic notation
X2XN or X2RN to designate variations on this command; where “R”
means “receive” or “read” . Examples of the use of this command
are :

X2R 1 — single character read by a CPU , or cycle stealing -

read of a single character by a channel.

X2R2 - memory half-word read , as might be used by a
CPU in an indirect address operation .

X2R4 - full word read, as might be used by a CPU in an
operand fetch , or a normal instruction fetch.

X2X1 — Cycle stealing of a character into memory.

X2X4 — word transfer from CPU to memory or channel to
memory.

3.7.3.2 Non-Transfers - DSSU 0000 XXXX

Mnemonic Name Description

•
~~~F GO OFF-LINE The logical ID of the unit is set to

zero. The unit is reset and an m di—
cator light on the unit is lit. The

S unit cannot be brought back to on-
line operation except by pressing a

‘C

1—18

.5-5- . - --5- .- .5 

~~~~~~~~~~~~~
_ 5

_
S ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ - . .5 - - - - —-~~~~~~~~

—.5- —— -
~~~~~ 

--5— - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

- -



~~~~~~~~~~~~~~~~~ r ~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~-~--- - ~~~~~~ -~~~~~~~ - --— 

5 ~~~~~-

Mnemonic Name Description

physical reset button.

REST RESET The unit is reset to the quiescent
state with respect to everything but

—

I
the logical ID which is unchanged.

CLOS CLOSE The unit will refuse to respond to
any command except an OPEN command.

S.
The state of the unit is not changed
otherwise.

- -
- OPEN OPEN Reverses the action of the CLOSE corn-

-h mand.

POWR POWER DOWN Same as close except that the unit
enters a special power down safety
state and re—opens itself at the con—
clusion of the power transient. The
unit will not respond to any command
as long as it believes the power to
be inadequate.

RTST RETURN STATUS The unit responds by transmitting a
unit specific status code .

XORO XORO Transmit nothing , receive nothing.
A noop operation used primarily for

S

diagnostic purposes.

LOCK LOCK PATh The unit keeps the path (on which the
command was received) locked until
unlocked or usurped.

UNLK UNLOCK PATE Unlocks a path on which it is re-
ceived. Has no effect on a path al-
ready unlocked.

FINT FORCE INTER- The unit responds by transmitting an
RUPT interrupt to the ICU. Giving the

usual interrupt related details
(CODE , SID, DID, etc.).

PTJST FETCH UNIT The unit responds by transmitting a
STATE character corresponding to Its in—

terna] control state. This Is a
diagnostic command.

—
- LART LOCAL ABORT Aborts all commands pending for that

SID.

:1

1—19

LL 1~~~~~~~~~~~~ _ Li

—— —5- - ~~~
—

Mnemonic Name Description

GART GLOBAL ABORT Aborts all commands pending.

INXT INCREMENT This is a diagnostic command. The
STATE internal state counter of the unit is

treated as a gray—code counter. Re-
ceipt of this command causes the
count to be increased by 1, and the
unit is allowed to perform exactly
one state change. The state resulting
from this operation is transmitted
back to the requesting unit. This
command must be preceded by a LOCK
command.

QUEP QUERY PID The unit responds by transmitting its
-

physical ID to the requesting unit.

xXXX UNASSIGNED

3.7.4 Two Character Commands: SS O1

3.7.4.1 Transfer Commands

The bits of this command are defined as follows :

OO11IDXX NNNNNNNN

The D bit is defined as before. The S bits are “01”.
The fourth bit , whose value is 1, indicates that this is a
transfer. The I bit indicates the direction of the transfer -

-

source to destination or destination to source, and the D bit
specifies if the information transferred is data or If the in-
formation is control information, such as the contents of the
unit’s cache memory. Bits 7 and 8 are reserved for variations
in the interpretation of this command. The second character of

-
- the command specifies how many characters are in the transfer.

Note that there is no address in this command and the source or -

destination unit (depending upon the direction of the transfer)
must be able to interpret where the data in question is to come
from or go to. Examples of the use of this command are:

- J XORN OO11O1XX — transmit 0, receive NNNNNNNN

XOXN OO1100XX - transmit 0, transmit NNNNNNNN
-
~~~ 

- 

The convention NNNNNNNN .= 0 is used to indicate a trans—
- -~~~~ - - fer of 256 characters. This command is used for block transfers

from channel to channel at full channel speed where an address
- - does not have to be supplied.

_ . 5C
.

.__ _
- “:. 1—20

S I

~~~~~~~ ~~ 
- - -

- - .5 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~

— ~~— —~~ ~~~~~ — v.. ~~~~~~~~ ~~~~~~~~~~~~~~~ — __1~~~~__ -~~~ .-— --— ______5_____ __ ___J
______’

.5
-

_ _
—---—----.5- --- - --__

SST1 Set State 1 00110000

SST2 Set State 2 00110001

SST3 Set State 3 00110010

SST4 Set State 4 00110011

Used to set up to 1024 characters (in increments of
256 characters) of a unit’s cache memory (the source) to the
specified destination. These commands are referred to as SET—
STATE N commands.

FST1 Fetch State 1 00111000

FST2 Fetch State 2 00111001

FST3 Fetch State 3 00111010

FST4 Fetch State 4 00111011

• Used to fetch up to 1024 characters into a unit ’s cache
memory. These commands are referred to as FETCH STATE N commands.

3.7.4.2 Non—Transfers OO100XXXX NNNNNNNN

SLID SET LOGICAL ID — the logical ID of the unit is
changed to NNNNNNNN.

SMID SET UNIT MAX - the maximum value of the LID that
the subject unit will accept corn—
mands from is set at NNNNNNNN .

SICU SET ICU ID — the ID of the primary ICU for that
unit is set by this command to
the value NNNNNNNN.

SISU SET SECONDARY - the ID of the secondary ICU for
ICU ID this unit is set by this command

J to value NNNNNNNN.

CLPN CLOSE PORT N - port N of the unit is shut down -

and will not be used again until
opened. If the unit does not
have N ports , the command is ig—
nored and the fact is signalled

- by an interrupt. This command
is used to patch around certain
types of matrix failures. If —

.1
- closure of the port will cause

the unit to be left without an

.5 1—21
.5 -

.5,

k~~~~~t

— - -----.5---— .5-

—- .5 -
~~~~~~~~~ ~- 5 - rnV~~’~~ 5-~~~ --—~~~~ - .- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ______________________ - —

open port , the fact will be sig—
nalled by an interrupt and the
unit will enter the CLOSED state.

OLPN OPEN PORT N - this reverses the action of the
CLOSE PORT N command. This corn-
mand can be received on any free

• port , whether OPEN or CLOSED.

SPNP SET PORT N TO - port NNNNNNNN is thereafter
-‘ PRIMARY designated as the primary port.

STAT SET STATE - the unit state is set to that
specified by the second character.

3.7.5 Three Character Commands: SS 1O

3.7.5.1 Transfers

- J Three character transfer commands are analogous to the
two character transfer commands , except that a single character
code can be transmitted preceding the transfer . The interpre—
tation Is unit dependent.

3 .7.5.2 Non—Trans fers

CNID CONVERT NULL - if the logical ID of the desti-
ID nation unit is 00000000 and its

physical ID matches that which
is transmitted as the second
character of the command , its
logical ID is changed to that
which is found in the third char-
acter. This is an important com-
mand for restoring failed units

-
or for bootstrapping a system .

- ; 3.7.6 Four Character Commands: SS—ll

3.7.6.1 Transfers

•
1 The same transfer modes as were found in the two char- -

acter commands are provided. The additional two characters are
now interpreted as a memory address. This command is used to

- transfer blocks of data to and from memory , and more important ,
—

~~~ 
to load and store the contents of cache memories, or registers - 

—

for an Interrupt. 

- - 
- 3.7.6.2 Non—Transfers

.v ~~~~~~~~~~~ 
- •

~ 

‘-.---‘,- .~q
- The following commands are available in a four char-

acter version It is assumed that in this case, that one of the

1-22

.5



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ :
•_

_-5’__ - - _ • ~~~~~~~~~~~~~~~~~~~~~~~~~~
-

units is a memory or other unit that can make use of a 16 bit
address field. The effect is to load or store the information
in qu.stion from or to memory as appropriate:

RETURN STATUS (TO MEM ORY), FETCH STATE (AND STORE),
QUERY PID (AND STORE), SET LOGICAL ID (PROII MEMORY),
SET UNIT MAX (FROM MEMORY), SET STATE (FROM MEMORY),
INXMT (AND STORE), SET ICUID (FROM MEMORY), SET
SECONDARY I CUID (FROM MEMORY).

3.8 Input/Output (I/O) Operations and Inter-Unit (IU) Repertoire

3.8.1 General

The I/U repertoire (“Inter—Unit”) of the CP is an inde-
pendent instruction set that is used to regulate and control
the inter—actions of units. It is in no way tied to the oper-
ation of CPU’s. In fact, I/O operations and inter—unit opera—
tions can be initiated, executed, and terminated without the
intervention of a CPU, should that be desired. Part of the I/U
repertoire has already been presented — the unit generic micro—
commands. The I/U repertoire has four primary uses:

(1) Input/Output Operations

(2) Bootstrapping

(3) Recovery and Reconfiguration

(4) Micro—Level Control of Inter—Unit Operations

The major distinction between I/U micro—commands and I/U
macro—commands (or just “commands”) is the existence of a com-
mand descriptor character. An I/U macro is a specification for
the automatic execution of a number of I/U micro—commands. For

• example, a command to transfer data from a channel to a memory -

would result in a series of micro-level X2X4 commands sufficient
to accomplish the entire transfer. The control logic is part
of the unit that executes the command. In general, the re—
ceiving unit responds only at the micro-command level and has

.5 no need to distinguish whether this is a separate micro—command
or part of a longer sequence of micro-commands that was initi—

S ated by an I/U macro.

3.8.2 I/O Commands and Channels

j
. - - 3.8.2.1 General

The CP engages in two types of communications : in—
I ~~ ternal and external. Internal communications are for the most

part transparent to the programmer and involve inter—unit trans-
fers as discussed in this section and in subsequent sections for

-
- ..~~-,- ~~

1—23

•&~~~~~ 4 . I

— .5 - - - - - - — _ -—~~~~~ _— -
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

p—
~~~~~~~~~~~

—-
- 1~ -_ _

~ - 
-
, - -

individual unit types. External communications are two devicesr which are not themselves units. All devices are attached to
the CP by means of channels and all channels are identical, ex-
cept for the number of ports. All input/output operations are
performed through a hierarchy that consists of: unit, channel,
device controller, and device. Philosophically , an I/O command
consists of a string of characters as follows:

H UNIT GENERIC COMMAND
UNIT SPECIFIC COMMAND - CHANNEL GENERIC COMMAND I/U 

-

MACRO
DEVICE CONTROLLER COMMAND
DEVICE COMMAND

At each level, the subsequent part of the command
string is considered to be data. Thus, the channel, considered
as a unit, treats the channel generic command as data as well as
the device controller command and device command portions. The
channel , in its role as a specific kind of unit , interprets the
channel generic portion of the command , and treats the device
controller and device commands as data. The device controller
(if any) interprets its portion of the command , and passes on
the device specific command to the device, which does the final
interpretation . Each level in - the hierarchy then treats the
portion of the command that is to be interpreted by the next
level as if it were data. I/O commands in the CP are therefore
all constructed commands. Only unit generic commands can be
issued directly under the I/U repertoire . The reader , however ,
should not jump to the conclusion that each I/O operation will

— require the explicit construction of a four level hierarchy of
commands. This has been a philosophical rather than substantive
discussion of the I/O repertoire. In practice , a major part of
the above hierarchy of commands is automatically fabricated by
the channel (see Section VI).

3.8.2.2 Overview of Command Operation

It is desired to set up a transfer of ten blocks of
1024 characters each from a moving head disc unit to a number 

-

of 256 character dynamically allocated data blocks contained in
a memory unit. It is also desirable to have a record , in memory ,
of the fact that each 256 character block and eacfl 1024 char-
acter block has been successfully transferred. Furthermore, it
is necessary to have an interrupt at tbe conclusion of the en-
tire sequence.

The process would start with a device imperative macro, -

whose device specific data would contain the information : “seek .5

track N”. The termination code for this command would result in
the chaining of the fact that the seek had been done , in a-pre-

1—24

— - - 5 - - .,

-
t 

- -

—— 
_____ 

.5—- S S.5~~ ~~~~~~~~~~~~ ~~~~~~ _ - . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-



— -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~ 

— . - --—c.
~~~~

. 
~~~~~~~ ~

- — r” ~~~~~~~~~~
-
~~~~ 

~~~~~~~~~

determined location, as part of the termination condition of
the I/U macro. This first command would be command chained to -

a transfer I/U macro that would specify the memory locations
into which the information was to be placed. The transfer com-
mand would also contain device specific information that would
specify “Sector 17”. The command would have been specified as
a sequence of 256 character transfers and data chaining would
be used. The termination sequence of each 256 character sub-
transfer would specify that the fact of conclusion of transfer
of that 256 characters be placed in a specified location. The
transfer rate in the case of a disc is controlled by the disc ,
therefore, the channel would be slave to it. Buffering in the
channel would have been arranged to have transfers occurring in
groups of 4 characters each. As each buffer full was acquired ,
the channel would execute a unit level micro—instruction to

S transfer the accumulated group of four characters into the
specified memory locations. This would be done through the use
of an X2X4 micro—instruction. The paths would normally be freed
between each group of four transfers , and potentially , the
channel would be free to accept other commands from other units.
All commands, except an ABORT command , however , would be re-
jected until the entire transfer had been finished. Each new
sector READ would be initiated by another chained I/U macro.
The command chain would continue in this manner , until the

• last command of the sequence. This command would have a termi—
nation specification for an interrupt, rather than a chaining
of the termination data. If at any time during the course of
the command execution, the device sensed a condition that re—

4 quired attention on the part of the channel, or some additional
control informat ion, the flow of data would be interrupted and
a control code would be transmitted to the channel , indicating
if it were an error termination , a normal termination , or a
special condition. Any of these could be followed by auxiliary
data which is passed on to another unit and otherwise ignored
by the channel.

3.8.3 IU Command Modes

3.8.3.1 General

The following must be distinguished in any I/U command : - -

(1) The identity of the unit that initiates the corn—
mand.

• (2) The identity of the unit that receives the corn—
- - • mand.

I
(3) The identity of the unit where the command is to -

be found.

I
1—25

-
_

- _ _~1 - --

4i~

.5 —-V -

I ~~~~~~~~~~~~~~~~~~~~~~~~ ~~T ‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~

(4) The identity(ies) of the unit(s) that will partici-
pate in the command — that is, the units that will
actually execute the command.

(5) The manner in which the command will be terminated.

(6) The identity of the unit (if any) that will re—
spond to the completion of the command.

These unit identities, in the typical system tend to
be locked to one another , and there is no flexibility in their
assignment. I/U command initiation in the CP, unlike most other
systems , is not restricted to a CPU. Most active units can
initiate I/U commands. Most units can receive unit specific
commands, which in the case of a channel unit , turns out to be
I/O commands. The command itself may exist in a memory unit , or
may be built—in to another kind of unit , sucn as a bootstrap

- unit . On the other hand, the command may be “found” in the unit -

-

that initiates it. Identification of the participating units
is the most standard part of the I/U command specification.
Typically , the participants are a channel and a memory , or twQ

- - channels. Only rarely is the participant a CPU. Finally, I/U
commands require a termination specification . This is not al—

-

-

ways done by means of an interrupt . In some cases , no action
is required upon completion. The action could range from an
interrupt (in which case a cPU would be named), to merely
placing the completion code in memory (in which case a memory
unit is involved), or it could result in a recovery action which
could involve the bootstrap unit or the system monitor unit.

[f the actual I/U command is part of the command initi-
ation sequence — that is , the init iating unit and the unit where
the instruction is to be found are identical — the command is
said to be in the direct mode . If the instruction is to be
found in some other unit, the instruction is said to be in the
indirect mode. Most I/U instructions are executed in the in-
direct mode.

- ; The I/U command might be an individual command or it
‘I might be part of a chain of commands wherein the completion of

a command automatically initiates the execution of the next corn-
mand in the chain, until the end of the chain has been reached.
In this case, command chaining is said to be used. In an
analogous manner , if the command involves a data transfer , the
data itself can be chained : successive blocks of data would be
transferred , under the same command , until the end of the data
chain had been reached. In this case, data chaining is said
to be used. Data chaining can operate under command chaining ,
so that the initiation of a single I/U command can result in
the setting of a chain of commands each of which transfers its
own , variable length , chain of data.

-J - .

1—26

-,—----—-.—-•-
~~~~~~~

--•-—-----.
~~~~~~~

-
_-___ 5-

~~~~~~~~~~~~~~~~~~~~ 
-.5-— -v5-----5--- ’-’.--- ~~~~~~~~ 5— 5- .— —..- —.5

—-— —-—---—---~~----- _________

In addition to command level chaining, and data
chaining, it is possible to specify condition chaining. This
provides the automatic ability to chain codes generated by the
device in response to special conditions detected regarding the
operation in progress . Examples of the use of condition chaining
are : normal terminations, short block terminations, detection
of special characters or character sequences, detection of any
other condition which must be noted, but for which interrupts
are not necessary.

The designation of the command mode, as to direct/in—
direct, chained/unchained, and first—person/third—person is
provided by the appropriate three bits in the command descriptor.
If the first character of the command is not a descriptor, then
by definition , the command is generic unit micro—command in the
first—person , direct, unchained mode. All generic unit commands
described in this section are potentially usable as individual
I/U commands.

One category of commands, the generic unit micro—
commands , have already been defined. Three more categories of
commands are now added: channel imperatives, device commands , and

- 
- 

inter—unit transfers. The channel imperative commands are unit
specific commands in which the unit is a channel. The same for-
mat, and indeed some of the same commands may apply to other
units and will be discussed In that context. The designation of
the command category is done by the command descriptor bits, 5
and 6. Third person , direct/indirect, and command chaining
modes apply to all four categories of commands. The various
command categories will be discussed in subsequent sections.

A command can be terminated in one of four ways:

(1) Do nothing.

(2) Interrupt.

(3) Chained condition code.

(4) Another command. 
-

The selection of the command termination mode is made
by the use of bits 7 and 8 of the descriptor. Generic unit -

micro-commands are normally terminated in the do—nothing mode.
If they are issued without a descriptor, then per force there is —

a -~o-nothing termination . Command termination modes will be dis—
cussed in the next subsection.

3.8.3.2 Termination Modes

- 

- 

1—27

t .5— —.5 —— — —5-.- . 5

.5— 1 11a..... .. — — -



LI- -—
~~~~~~

- -
~~~~~~~~~

--
~~ 

- 

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

P1 ~
‘ 

—
— - — -

3 . 8 . 3 . 2 . 1  General

The termination modes provided are intended to allow
the adaptability of the CP to a wide class of devices, many of
which have yet to be defined or put into production. The termi-
nation mode of an I/U command is a specification of what is to
occur inter—unit at the completion of the command , and in some
cases , to allow a means to deposit auxiliary data into memory
that describes data being transferred, but is not part of the
transfer data proper. For some devices , the desirable mode of
termination is an interrupt . For other devices , the placement
of status data on queue is the best approach. The choice is in
general arbitrary , depending upon the peculiarities of the de-
vice and the application.

3.8.3.2.2 Error Terminations

Whatever termination mode has been selected, every
unit and every device that might be connected to a channel can
detect malfunction conditions and/or errors in the specification
or execution of a command. All such error conditions , when de-
tected , will force the curtailment of the active I/U command(s)
for that unit, the curtailment of data and command chaining , and
the generation of an interrupt with an appropriate interrupt
code, to the ICTJ. The error termination mode does not have to
be specified. It will always occur and will override any other
termination mode that has been specified in that command or one
of its component parts.

From the point of view of a channel, a device error
is whatever the device chooses to call an error. Consequently , -

the device or the device controller interface logic can be de-
signed to provide a pseudo error termination which will result
in an interrupt, for conditions which are operationally not
errors at all. This is a matter of device design and software.
The “device error” mode can be used in combination with other
termination modes to provide a conditional branch in the program

• based on conditions detected by the device. Again , this is a -

matter of device design and application software.

3.8.3.2.3 Interrupt Termination

An interrupt termination is specified by setting bits
7 and 8 of the command descriptor to 01. The conclusion of the -

- 
command will be an interrupt, containing the SID, a unit level 

-

interrupt code, and a variable number of device supplied termi-
nation data. The programmer does not have to specify how many ;

characters this is. The interrupt will be properly constructed j
by the channel, in response to the interrupt data provided by -:
the device

- * 

1—28

1.S_ 
•

- .i~ 
~~~~~~~~~~~~~~~ ~~~~~ - - -

— -—-—~.-~ —---- --•-----‘•--— —5--.____~ ..5_~_ ~~~~~~~ ~~
. - --~~ ~~~~~~~~~~~~~~~~~~~~~~~~

- S - - - -


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~ ~~~~~•~~V~ ’5~~~~~~~~~~~~~ 5 ~~~~~~~~~~~~~~~~~~ - -

-

3.8.3.2.4 Condition Chaining Mode -

The chaining mode provides a means by which the
termination information can be placed into a specified linked

-
~ list of termination data. This can be examined by a CPU at

leisure. Often , the information is required merely for book-
keeping purposes and a timely response is not needed. Condition

-
- chaining may occur at any time. The selection between condi—

- tion termination or interrupt termination is made by the device.
- - If chaining has not been specified , then the occurrence of a
- S

special condition by the device will result in an interrupt —

H e.g., it will be treated as an error interrupt.

- Condition chaining is initiated by issuing at least
- -

-

one I/U command that contains the chaining data. The chaining
- - data consists of 4 additional characters , consisting of the

following :

Unit ID - the LID of the memory unit where the
chained data is to be stored.

Link Address — the first address at which the ad-
- dress of the data area into which

the condition data is to be stored
is found . This must be in the same
unit as the data.

-
Link Increment — a number from 1 to 256 which speci—

fies how many character locations
- are to be added to the link address

to get the next link address.

H If the unit ID is 0008, chaining is discontinued.
There will be no link address or link increment. If the unit

H ID is
~~~~~ 

chaining is in effect and the link address is used
-
~~~ to continue the chain. Should an I/U command be executed that

employs the chaining mode, but does not contain the unit code
the unit code it does contain , as well as the link address

and link increment will be used, effectively, shifting the condi-
tion chain to another unit or another area of the specified unit. -

Since condition chaining is active until terminated by a 000 ID
or by an explicit command to that effect, only the first command
in a chain of commands has to specify that condition chaining
be used. Subsequent commands can specify interrupt termination ,
command termination , etc.

-
Operationally, the link address is used to fetch the

- -

- first address at which the condition data is to be placed.
-

~~~ 
Thereafter , for each condition encountered, the link address is

- 1—29

1~~ ,

LL - 

_- — ~~—~—-- ‘- — - - --——— - . 5~—— -- -—•--~~ - 5~~55~_ , ~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~ .—“-S,•--—--,, S--~---— ~~~~~~~~~~~~~~~~~~~~



~~~~~~‘

incremented and the next address for the condition data is
fetched out of the specified unit . Only one condition chaining

- - can be established per unit at any given time. That is, condi—
-

tion data relating to input, output , or other conditions will
be intermixed , in the order they were detected by the unit.

3.8.3.2.5 Command Termination Mode

TFc command termination mode is selected by setting
bits 7 and 8 of the command descriptor to 11. The complete com-
mand is followed by another command , which must be in the in—

p
. direct mode. That command can itself be chained. The command

will be fetched by the unit and executed in the normal manner.
However, the command chaining data will be kept for the original
chain. This allows the termination of a command in a chain to
initiate the execution of another chain of I/U commands. At the
conclusion of the secondary chain of I/U commands , control will
return back to the original chain. If the secondary or termi-
nation chain should also call for command termination , the top-
most level will be lost. Caution is advised.

3.9 Controls and Consoles

3.9.1 General

There are no special consoles or control switches other
than those which are associated with specific units, as described
below. All other such functions are provided through a combina-
tion of terminal devices and software. The controls associated
with the various units can be remotely located and brought to a
central panel (for example , to a CPS Maintenance Position). All
units have the following controls and/or indicators:

(1) Power on/off switch.

(2) Power on/of f indicator.

(3) Reset button .

(4) Off—line button.

(5) On—line/off—line indicator .

(6) Major alarm indicator.

Specific unit types have additional controls as described
below.

3.9.2 Unit Alarms and Controls - -
-

1~-

-

-
- . . 1—30

-
S - - -~

______ ~~~~~~~~~~~

_________________________ ~~~~~~~~~~~~~~~~~~~~~~~ .5-~ -~~L r - _ - f - -1
— S

— 5- -—--

3.9.2.1 Matrix Units

No other indicators or controls.

3.9.2.2 Memory Units

No other indicators or controls.

3.9.2.3 Channel Units

• (1) Device alarm.

(2) Device alarm reset.

(3) Four activity indicator lights corresponding to
each direction of each interface. These lights
glow in proportion to the character transfer rates
in each direction of each interface.

3.9.2.4 Memory-Memory Transfer Unit

No other indicators or controls.

3.9.2.5 Communications Processing Unit

(1) State indicator lights for each program state and
- - the trap state. Glow is proportional to time

spent in each state.

(2) Halt/run light.

(3) Run/step switch.

(4) Step button.

3.9.2.6 System Monitor Unit

(1) Clock failure light , audible alarm, and acknow—
ledge button.

(2) Unit failure light and acknowledge button for
every logical unit tied to the SMU.

(3) Common alarm horn.

3.9.2.7 Clock Unit

(1) Loss of sync alarm, light, and acknowledge button.

(2) Time of day display. : - -:

-‘ -5-’

1—31

- .., - .- - - -

-

- -
~~~~~~ 

——— - — - - - —~
,-——- - -

~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(3) Reset button.

(4) Stop buttons (seconds, minutes, etc.).

(5) Hold button.

3.9.2.8 Bootstrap Unit

(1) Ten digit keyboard with decimal point for initi—
- : 1 ating bootstrap sequence.

(2) Bootstrap failure alarm, light and acknowledge
button .

(3) Pause light.

3.9.2.9 Performance Monitor Unit

No other indicators or controls.
5-

3.10 Devices

3.10.1 General

The term “device” is used here to identify system compo-
nents which are not units, but which are needed in support of
the communication tasks of the complex. Devices fall into two
general categories: (1) general purpose computer devices which
differ little from their commercial counterparts, and (2)
specialized communication devices. The former need little in
the way of explanation — the latter are discussed in greater
detail.

All devices in the CP are terminated on one or more
channels. A given device may service more than one line. In
which case, the device is- actually a controller of other lower
level devices.

3.10.2 Moving Head Disc

3.10.2.1 General Characteristics

The CP moving head disc is an adapted commercial unit.
-- -t It uses removable disc packs. The basic characteristics are:

Minimum seek time - 5 to 7 milliseconds

Maximum seek time - 50 to 70 milliseconds

Number of cylinders — 100 to 512

Number of tracks/cylinders — 10

I’
-

.
-; Capacity - 50 million characters

1-32

-.5— .5 - - — .5- --- --- ,: SSt,S,fl!~~, , t Xi.~~ ., ~~j J,,..._2 .. —s—-

j~~~~~_~~~’’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .5— ~~~~~ 5-- ‘-5 —---- —--- --

Sectors per track — 16 to 256

3.10.2.2 Controller

The controller is avai lable in various configurations
ranging from lxi to 4x8. The first digit refers to the number
of channel connections and the second refers to the number of
disc drives. Thus, a 2x4 controller is connected to 2 channels
and has 4 drives. The controller has the following characteris-
tics.

(1) Simultaneous transfers on all channels: e.g., a
2x4 can perform two simultaneous transfers on any
two of the 4 drives.

(2) Independent seek on all connected drives.

(3) 512 character instruction/condition.

(4) One sector buffer for every drive.

(5) Variable physical/logical identities for all
drives.

(6) Optional 2 and 4 way character level interlace.

(7) Positive seek commands to specified cylinder
(i.e., SEEIC CYLINDER NM , rather than SEEK NN
CYLINDERS FROM PRESENT POSITION).

(8) Positive identification of innermost and outer—
- , most cylinder.

(9) 5% spare cylinders with transparent identifica-
tion and allocation.

(10) Head position query instruction (i.e., positional
data for cylinders, but not for sectors).

(11) Parity check and generate on all read/write
operations.

(12) Re—read parity check on all write operations.

I ~ (13) Positive lockout until disc drive is up to speed.

(14) No program restrictions (i.e., there is no corn-
H

- mand sequence that will cause heads to crash).

- I ~. (15) Logical and physical independence of controller
sections (i.e., a 3x5 controller is effectively
3 controllers each of which can behave as 1x5

:1 1—33

— -—5 -—--— —.5-- — .5— -—- ~~-.-.-- —.5—
-- .-—-S~~~~~.- -_5-,.5-- ~~~

‘

-5-- -—-~~~~~~~ —~~~~~~~-r V V

- .5-—— - - - . 5- - - - — - —

controllers).

3.10.3 Visual Display Unit (VDU)

3.10.3.1 VDU Characteristics

Screen Width - 80 to 130 characters

Screen Height — 25 to 50 lines

Buffers — 3 pages screen storage , one line
input and one line output storage.

Character Set - ASCII plus extended communications
- functions.

Refresh Rate — 30/second

Additional Fea- - 3 color , light pen , cursor ,
tures vector mode (for graphics). In—

sertion into formats.

Keyboard - ASCII keyboard with coinmunica-
(Optional) tions functions.

3.10.3.2 Controller

Controllers are available in lxl to 4x16. Every VDU
has a variable physical/logical identity. Up to 16 VDU’s may
be connected to one channel.

3.10.4 Keyboard/Printers

H 3.10.4.1 General Characteristics

(1) Pin—feed, fan—fold , multi—ply paper.

(2) 130 characters carriage width.
(3) 30 characters per second.
(4) ASCII keyboard with communication functions.

3.10.4 .2 Controller —

See VDU controller options.

3.10.5 Digital Line Termination Buffer
- -

- 5- The digital line termination buffer device is used to
terminate full—duplex synchronous and asynchronous data lines
at a variety of speeds and codes. The line buffer is tied one
to a channel. It has the following characteristics :

1-34

_______________ — ~~~~~~~~~~~~
. - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-~~~.‘
-

~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~-~~~~ 
‘i,T -

~~~~~~~~~~~~~~~~ 
5- 

~~ -r _ _  
- - - ---- :11,

(1) Speed - variabis fros 150 baud to 50 kb.
H (2)  Codes - various 5 6, 7 and S lsv.1 cod.. program-

mable.

(3) Modes - full duplex , half dup lsx , o- ~wo si~~1sx;synchronous and asynchronous ; variowi polling pro-
cedures.

(4) Checking - progr’~~ab1e CRC polynomial on input
and output . Per character parity co~~atib1. withcode.

- 1  (5) Deletion and insertion of sync character. and DLE
characters .

(6) Programmable significant character and character
sequences of not more than 4 characters each.

• Option to select interrupt or condition chaining
on detection.

(7) 4 character buffer on input and output.

(8) Multiple channel termination option (e.g., double
homing to channels as an option).

3.10.6 Low Speed Multiple Line Buffer
-

: The low speed multiple line buffer is used to terminate
full duplex synchronous and asynchronous data lines at a variety
of speeds and codes. The line buffer is tied at one to a

-

S channel. It has the following characteristics :

- 

- (1) Number of lines — 1 to 64.

(2) Sampling rate — 7, 11, 15 per bit (middle 3 bit
- ;  concensus).

(3) Output distortion — less than .5%.

(4) Speed — variable from 45.5 baud to 300 baud.

(5) Codes — various 5, 6, 7 and 8 level synchronous
codes , programmable per line.

(6) Modes — full duplex, half duplex, simplex, synchro— -

nous and asynchronous; various polling options.

(7) Checking - programmable CRC, parity check and gen—
. 5 ;  eration as required by code.

135 -

.5

- — . 5 - — - - —  ~~~~~~~~~~~~~~ -~ - -  S~~~~~- 



- 5 - - - - - - -

•1

- 
- - - — --— - - - -- -

(8) Deletion and insertion of sync and DLE characters.

(9) Programmable significant character detection as in
the digital line termination buffer.

(10) 2 character buffer on input and output.

1 (11) Multiple channel option.

Characters arrive interlaced in memory as a pair of
characters which identify the line number (logical) and the
received character. Output characters are read out from a
memory buffer where they have been stored as a pair (LINE#-
CHARACTER).

3.10.7 Scanner/Distributor

3.10.7.1 General Characteristics

The scanner is a general purpose device intended to
fulfill all scanning operations in message switching , circuit -

switching, and tech control. It is based on an exception scan-
ning approach. That is, a scanning indication is provided only
if a state change has been detected on a line. It is also used
to distribute state change commands to lines. The following
general characteristics apply:

(1) Number of lines per scanner - up to 4096.

(2) Scanning rate — programmable up to 1000/line/
second.

(3) Line state — unipolar or bipolar - three levels
detectable.

— (4) Distribution rate — 1000 changes/line/second.

(5) Interfaces — interface by means of general pur-
pose interface module(s), providing digital

- i (binary) input and output on the CP side of the
interface and line compatible levels on the line
side of the interface.

3.10.7.2 Principles of Operation (Scanner Functions)

- .5- . Figure 1—2 shows the organization of the local scanner
module. Each such module can terminate up to 16 lines. A line
may use either un ipolar or bipolar signaling. A state is repre—
sented as a two bit signal; with 00 indicating the ground state

5- 01 and 10, the possible two other states if bipolar signaling
is used. The state 11 indicates error conditions. The dotted

1—36

- 5 - - .

— ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~
—5.



— -r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~j -:__
-__- - .~~~~~ - - -- .— - ----—

~~~~U)

H

-

_ _ _ _ _ _ _ _

_ _ _

L

_ _

C ___ ‘U. I
I

_
I

_ _ _
I

-

-

_ _
_ _

~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _  _ _ _  

- 

_ _

I..._ _  _ _  

-4

~ 1

-

~~

-- 

- -

~~ .5

FIGiJIE 1-2 SCNI~ER OPERATIN G PRINCIPLES

S.

1 1—37



______________________________________________________________________________ — — ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Z ._. - _—_-__ —

-
, 

.5

-

lines in the figure are the outline of the local scanner inte-
grated circuit. Eight (8) leads in this chip can be strapped
to ground to supply a physical identity for this chip.

The analog signals are converted to compatible analog
levels by means of external interface circuits which are not
shown here. The levels are further converted to digital levels
by the conversion/interface circuit portion of the chip. Logic
in the state/change detection section detects state changes in
the analog lines. A state change must be stable for a minimum
of 250 micro-seconds before it will be recognized. Only the
last state change that occurred will be recorded. If more than
one state change should occur prior to readout, the code 11
will be transmitted. For example, if the state had been 00
then changed to 01, and then back to 00 or to 10 before it is
read-out, the state reported will be 11 rather than 10. Period—
ically, under program control, the identity of the local scanner

- - 
will be transmitted serially on the control bus. Along with
this will be a gating signal. The named line group responds
by transmitting the state changes it has detected serially in
the following format:

LINE NUMBER I OLD STATE I NEW STATE
I j

The local scanner control logic raises the output gate
line and keeps it up until all state changes (up to 16) have

- 

- been transmitted. The first character transmitted is 11111111,
which is used to synchronize the transmission. This is followed

H by however many state changes may have occurred. The conclusion
of the transmission is signalled by dropping the data output
gate line logic level. If no state changes have occurred, the
control logic will transmit only the sync character. Transmis-
sion is at 4 million bits per second.

In addition to state change detection, the scanner
module can provide readout of the absolute state of the lines,
in the following format :

LINE 0 STATE 1 LINE 1 STATE .... J LINE 15 STATE j

3.10.7.3 Controller Scan Functions

The controller responds to device specific scan corn-
mands of the following form:

-: SCAN LINE STATE CHANGES - scans all line groups
- 

- .
~~~~~

- : - starting with 000 and ending
with 255 for state changes
until either complete or L

.5 r
1—38 -

-

-
‘

5
-- ~~~~

1:.
~

5- .

~~~~~

- ~~~~~~~~~ ‘S~~~~~~
-•— - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~

~~~~~~ _~__ -S_S~~. .. 1_..._ - - -L


-5
~~~
-_~~~~~~~~~~~~

5- - - 
-- 

- 
~~~~~~ -5-- ~~~~~~~---- —-------- --— - - -

—- —5 -, . - .5

until the buffer is full.
The buffer contents are
transmitted to the channel
when full. If buffer f ii.—
ling occurs prior to the
scanning of the last imple-
mented group, a condition
will be signalled via the -

channel (either under condi—
tion chaining or interrupt
as desired).

CONTINUE STATE CHANGE - continue with previous
SCAN state change scan if the -

scan had stopped because of
a full buffer. The same as— SCAN LINE STATE CHANGES if
the previous scan had com-
pleted.

R~~ET SCAN — resets the scan to 000 line
group. No effect if already
at 000.

SCAN STATE CHANGES - scans the state changes of -

the indicated group only.
0 The controller does not

wait for a full buffer in
thu case but transmits the
changes (if any) as soon as - -

they are received.

SCAN STATES - scans the current states
of all lines up to a buffer

—

full. Same behavior as
state change command when
buffer is full.

CONTINUE SCAN STATE - analogous to CONTINUE STATE
CHANGE SCAN for states

:j rather than changes.

SCAN STATE GROUP~
55

— reads out the current state

I of the indicated group.

The following formats are used with the various com—
- - mands :

~- 1
- I 1-39

-~~~

L ‘ ~~~~~~~~~~~~~~~~~~~~~~

—

5-11~

,.
- -

—--
~~~~~~~~~~~~~

- - -
~~~~~~

-
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~ -

-

SCAN LINE STATE CHANGES:

I I I I
LINE GROUP LINE # OLD STATE NEW - STATE]
LINE GROUP LINE # OLD STATE NEW STATE]

- - I I

.

I

S _ I
LINE GROUP LINE # OLD STATE NEW STATE

I I

SCAN STATE CHANGE GROUP N:

LINE GROUP N LINE # OLD STATE J NEW, STATE]
LINE # J OLD STATE NEW STATE

1
LINE # OLD STATE NEW STATE PAD CHARACTE R

Possible pad character to f i l l  out to even number of -‘
characters.

SCAN LINE STATES :

F LINE GROUP N STATE STATE. STATE STATE1
I STATE STATE I STATE STATE STATE STATE STATE STATE I
ESTATE STATE I STATE STATE LINE GROUP N+l ]

Possible pad character to fill out to even number of
characters. -

SCAN STATE GROUP N : 
-

As above, with a pad character at end of group.

3.10.7.4 Output Functions

The line scanner/distributor operates in an output
mode over a different set of control busses, independently of
its scanning operation. On output , the distributor can be set

1—40 
- 

:

Lk. 
— — 

~~~~~~~~~~~ —~~~~
— ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~


~~~~~~~~~~~~~~~~
---. ~~~~~~~~ -_ 

- —- —- - 
~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 5-T
~~~~~~~~~~~~ i

-

to change the state of specified lines to specified values. A
256 character con’n~nd buffer is used5 for this purpose. The corn—
mand format is:

LINE GROUPI LINE #1 NEW STATEI
LINE #]NEW STATE I ILINE #jNEW STATEI - •

LINE GROUPJ

Pad bits (0, 2, 4, or 6) are used to fill out each
group to the nearest character. The entire command chain is
padded out to the nearest character pair. Pad bits are not
transmitted. Upon receipt of a full or partial buffer full of
state change commands (as a device specific command via the
channel) the controller serially transmits the commands on the
data bus in the order they occur in the buffer. The proper
line group responds upon detecting its own identity by raising
a control line on a return bus. The controller then transmits
the rest of the state change commands serially . An invalid
state change command is not transmitted but is signalled by
means of an interrup t (or condition chain entry) via the channel.

3.10.7.5 Applications

3.10.7.5.1 Circuit Switching

The scanner is primarily intended for use in line
supervision functions in circuit switching , TELEX, or dial-up
message switched trunks. General line supervision is programmed
to scan all lines every millisecond. This is adequate for the
highest normal circuit switched signaling speeds. Somewhat
lower rates could be used with a slight complication in the
software. For example, all lines are scanned every ten milli-
seconds. If there is at least one active line in a group of 16,
that group is given 9 supplementary scans every ten milliseconds.
Various strategies of this kind can be employed to reduce total
number of executed scans. Since the scanning is effectively an
exception report system, the fact that typically there are very
few state changes assures us of having relatively few responses
to a scan.

Supervision functions are programmed much in the
way they would be in a micro—computer scanner. All timings are
done by software. On-book, off—hook and hook flash are done by
programed timing. Dial pulse capture and assembly can be done
on the line side of the switching matrix using the scanner. The
high resolution of the scanner allows all circuit switched dial -

- - _ pulse rates to be accommodated. DTMF receivers can be treated -
.

- -
~- -

- as a group of lines. The receiver itself is stripped of the - ..

-

-

- 1—41

-.5 ~~ - — -.5-5.5-
-

--

5- -
—~ L~~~~_~~~~~’ -

~~
—.

~
-- —

~~
. 5- —.5 __________________________________-r —--
~~
-- -- - — ~~~~~~~~~~~~~~~~~~—~~~~w-~~~-~-

-—--
~~

- — -~~~~~~~~~

normal logic and simply reports state changes in the various
tones. These are confirmed and converted to internal BCD re-
presentation by software. Other signaling speeds which require
more complex controls over several signaling lines can also be
accommodated with ease.

The output functlons of the scanner are used to
create dial pulses and to set the state of the various lines .
Again , only state changes must be provided. Timings are done
internally by software .

The following elements can be controlled or monitored
by the scanner :

(1) Subscriber lines .
(2) Subscriber ring relay .
(3) Ringback bus .
(4) Tone bus.
(5) Hold bus (actually an unlatch) .
(6) AC address signaling receiver lines .
(7) AC address signaling sender lines .
(8) Various special t r a f f i c attendant lines.

3.10.7.5.2 Message and Packet Switching Applications

In typical message switches , the application of a
scanner falls into one of three categories: (1) applications
which are really circuit switching functions, (2) applications
which are really tech control functions, and (3) true message
switching applications. The true message switching applications
of the scanner are almost non—existent. While the scanner could
be used to perform bit sampling and character assembly on low
speed lines, if the number of such lines is large, the multiple
line buffer device is a better choice for the purpose. A more
likely use of the scanner in message switched applications would
be in the implementation of message switching like functions
that occur with low frequency in circuit switches.

a 3.10.7.6 Tech Control Functions

Most message and circuit switches have collocated
technical control functions. Furthermore, there are large scale
stand—alone tech control facilities. The scanner input capa-
bilities can be used to advantage to detect and (subsequently
by a CPU) process logical alarm conditions. Monitoring of -

several thousand test points is not a significant burden with

-

:~ the scanner. Conversely, the output functions can be used to

1—42

-.5--—-- -

__

. — - .5—- - - - - . - - - - - - - _ -.

_____ — - .5 . —
~~~— - ~~~~~~ --~. - -s--- -- 

—
- 5~~~~~~~~~~ ~~~ - - -

.5 

— 
. 5- -

change the state of devices that are normally manipulated by a
tech control facility , where such state changes are relatively
simple on/off functions.

3.11 Application Considerations

3.11.1 General .5

This section shows various system configurations as
constructed from the units of the CP. Each configuration is
shown in functional and in physical form. The following systems
are discussed: typical message switch, packet switch , circuit
switch , tech control system, and digital concentrator. These
applications are intended to illustrate the use of the CP in
representative systems. They are not intended as final designs.

- 
;- 3.11.2 Typical Message Switch

3.11.2.1 Functioz?~l Configuration

Figure 1—3 shows the functional configuration of a
typical message switch in simplified form . Digital lines are
terminated on a pair of low speed multiplexer—buffer devices if
they are at -300 baud or less Medium and high speed lines are
terminated on high speed line devices at one per channel. Some
of these are connected to more than one channel. Functionally ,
the communication lines are terminated on front—end CPU ’s. The
front-end CPU’s are also used to terminate the various traffic
service VDU ’s, printers, and keyboards. These are ganged to-
gether in groups of two or three per channel.

The message processor is also the system executive -

processor. It carries the bulk of the memory. It is function-
ally closely coupled to the ICU , which uses its spare capacity
to monitor line status condition and tech control alarms. The
ICU is therefore connected to a set of scanners used for this
purpose . The message processor also controls six disc devices.
Two of these are used for in—transit message and historical

- - storage . Two are used for message accounting, journalling and
ledger data; one contains all system programs, and the last is
a spare .

There is an off—line CPU with two memory units which
is used for standby purposes. There is also a system service
CPU which is functionally connected to the Bootstrap Unit , the
PMU ’s and a system disc used to store test and diagnostic pro—
grams and other information needed to maintain the system.

1-43 i i

.5
-

- - . 5 -  .5 S _ _S .5. 
~~~~~~~~~~~~~ ~~~~ - - - - - .

~.5. ~~~~~~~~~~~~~ — ~S_S~ ~.55~__~ L ~~~~~~~~ . 4 5 _ ~~~~~~ — I a..SdSZ. ~~ s

‘

~~~~~~~~~~~ iT~~J~ 
-5

~~~~~~~~~~~~~~~~~~~

_

! ft ft .5

99c)9

LiI—~
-

~~~~~~~~~p 

~~!

[~~Il r j
~,_. \I1 \IIT ‘S 

,,
h

l

L.__~ ._J 

~~~s~~~~~~~ S 
\ _ _ ‘ L._._(~)

:

1

;

5 /
, /~ I ~~/

- -: - -
~
-

~~~~- .5

1—44
~~

-. 
~~~~~~~~~~

L ~~ L.. . ~~~~~~~~~~~~~~~~~~~~~~~
_ -

—~~~.— ~~ S . ~- ..

3.11.2.2 Sacrifice Schedule

The following order is used to sacrifice functions in
the event of various failure types:

CPU failures:

Standby cPU
First Front-end CPU
1eV (ICU functions taken over by MP)
System Service CPU

4 Memory Unit failures:

First and Second Standby MU
First System Service MU

-

— Two MP Buffer MU’ s
One FE MU

Disc failures :

Back-up Disc
MP System Disc
First Journal—Ledger Disc
First ITS Disc
System Service Disc

VDU/Printers/Keyboards : .5

H Traff ic Service Positions - all but one
System Control Positions — all but one

Half of the System Service Positions
Remainder of Traffic Service Positions

3.11.2.3 Physical Configuration -

Figure 1-4 shows the physical configuriflon of the
message switch corresponding to the functional configuration of
Figure 1—3. There are a total of 63 active and 54 passive units.
Most of the passive units are XU’s. The passive unit stage , H -
while constructed out of 4 x 12’s is actually used as 3 x 12’s.
This side of the matrix could be reduced by not providing dual -:
ports for the XU’s. Connections are not totally symmetrical.
Traffic patterns and the grading effect of primary port assign-
mente should be used to advantage to bias higher traffic

1—45
t
-

.5—

_________ .5 ~~

_ _ _ .5

~~1H~~H I H ~
_ _ _ _ 1 .5 ’

-

~~~~~~

E

~~~~~~~~~~~~~~~~ j 1.~~~~~~~~~~j  

~~~1 L _ 
_

1-46

5 ’
f ~~~~~~~~~~~~~~~ s - I- 

— 
-

—

— -—h — ~~~~~~~~~~~~~~~ ~~ _____________



______ 
_

~~~~-.--.~~~~~~~~~~ —~~~
--—-.

~ .wr ~~~ ii_~~~~: _
—

~~~~
-r— — - 

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~
_ _ _ _ —.5-- - ---.5 -

—

connections to take advantage of the multiple paths that are
available as a result of the asymmetries. The scanners are not
connected to two channels since they do not perform primary
functions in a message switching system.

3.11.3 Packet Switch

3.11.3.1 Funct ional Configuration

Figure 1-5 shows the functional configuration of a
small packet switch which handles only packet switched formats.
There are no disc units, nor are there extensive facilities for
tech control , t r a f f i c service and system control functions.
Since the bulk of the processing load is in the FE CPU ’ s , the
MP CPU is relatively lightly loaded and can be used to implement
the ICU functions as well. VDU’s are used for system control

• and for maintenance functions.

3.11.3.2 Sacrifice Schedule

The sacrifice schedule Is similar to that of the mes-
sage switch. First the standby CPU is sacrificed , then a FE
CPU , and the system service CPU (if necessary).

3.11.3.3 Physical Configuration

The physical configuration is shown in Figure 1-6 .
Because of the relatively small number of units , it is possible
to employ a three rather than a five stage matrix. The large
triangular center stages are used to cross—connect channels for
through packet t r a f f i c . That is , High-High packet t r a f f i c for
which the system has no accountability can be cut—through once
the processing has been done to determine which outgoing line
is to be used. Condition chaining for SOB detection and packet
header capture is used to allow the FE CPU’s to validate each
packet. Once this has been done, the rest of the packet does

-
- not have to come through memory . The buffering in the channel

units and the line buffers allow ample time for this processing
to take place .

3.11.4 Circuit Switching -

3.11.4.1 Functional Configuration

Figure 1—7 shows the functional configuration of a
•
‘ large (i . e. , several thousand lines) circuit switching system

based on the CP. This represents the upper end of circuit
switching systems likely to be implemented using the CP. In
many applications the various functional roles of the CPU’s
would be combined . The following combinations are likely :

_ t
-
~

.g

L~~ .5. . ~~ - - .5- ~~~-- - - . 5— . 5- --
.5

_ r ~~~~~~~~~~~~~~~~~~~~~~~~~~~

9Jf

__

-E

S (I, I
_ _

.5 - ~~~~~~ I ___

—

- ~~I
_ _

1
_ _ _

>.

- _ _

EH~ I I~ hf~J
L IT

I ~~~~~~~~~5
5.

_ S . I

L ~~~~~~~~~~~~~~

•.
-

-

1—48

_ - - ~~~~~ •-.5-~~~~~ .5---_—— -_ ~~~~~~~~~~~~~~~~~ - -

p. ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ _~~~
_

, __
- -

- _ _ —-:_~~~~~~~~~~~~~~~~~~~~ __ —
~~
-“- - - -

~~~
- -

~~~~

_ _ _ _ _ _____ ~~~~~~ !~ ~1:11 III 14 Iii Iii -

h ~~~~~~:

4 I I- ~~ *

~~~; .~~~~

1’ J4[ 
______  ______  

1!~J _____  III ______

.5- [ij i~ ~ ______  ______  

! f] [!
~~ ~ _____  ~_JI~ ~ 

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ _ _ _ _


I

-

~~~~ 

- - - -~~~~~~~~L 
~~~~~~~~~~~~~~

_ _
~~~~~~~~

- - -~ - - 
- - -

-~~~~~

~~~~~~~ 

‘

.
~~~~~~~ ~;: rif;l

I 

~fg

_ _ _ _  
$1.

H —

_ _  

~
f

~IIE~~ 
~~~~~ 

h

- j I I .

.5 ~~ ~ II ~~ ~

.—__.__
~ ~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~ I ~ I

-
j L~_ J I ~~~ I I I I I L ~J• 1

Pi, W r~ r~i• (Iii E.!_IJ liii

- . 1—50

I. -

I~~T I __ _ _
.5 - --- --- —-5 ---- — 5.—— S5~~~_-__.~~ -L

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~i



-
~~~ .~~~r

(1) Traffic Service with Call Control

(2) Marker with Call Control

(3) ICU with Marker

We have shown a large number of traffic service posi-
tions and a traffic service CPU in recognition of the fact that
military switching may involve a greater degree of traffic ser—
vice than would be typical in a commercial environment. The
system service CPU and its associated configuration is essenti—

.5
ally the same as that of the large message switch. Clock distri-
bution lines and SMU connections are not shown for simplicity ’s
sake. Also not shown are the multiple connections for the matrix
controllers , and scanner/distributor .

The box labeled “Registers, trunk signaling , etc.”
represents all line terminating and register type devices. The

• “MY” device in particular represents SF, MF, DTMF, etc., or
possibly a programmable unit that performs all such signaling
functions. Frequency receiver/senders may actually be split
into separate receivers and senders which individually contain
very little logic. They would then be terminated on the scanner/
distributor. This depends upon the number of such units employed
and the details of the system design.

The digital line buffers and trunk signal devices are
whatever are needed appropriate to the interfaces (both analog
and digital) with which the system will have to contend.

3.11.4.2 Physical Configuration of Large Circuit Switch

Figure 1—8 shows the physical configuration corre-
sponding to the functional configurations shown in Figure 1-7.
The layout is similar to that which was used for the typical

• message switching system and the matrix is approximately the
same size. Note that the scanners and (external) matrix control-.
lers are each terminated in two channels, which in turn are dual
ported.

3.11.4.3 Configuration of Moderate Circuit Switch (600 Lines)

Figure 1-9 shows the functional configuration of a more
moderate circuit switching system. Note that many of the func—
tions have been combined and that tech control related processing
has been virtually eliminated as a separate function. The number
of traffic service positions have also been reduced significantly .

- . - - - The corresponding physical configuration is shown in Figure 1—10.
Note the substantial decrease in the size of the matrix. As with
the small packet switch, we are again able to use a three stage
matrix. Unlike packet switching , in which there can be consider—

~1Ie :i~i~iTi’ :~ii~1:::iii .:::~:~_~_.~

~
1 .

_ _ _ ~~ L~ 1 ~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

H~~~~~~~ii~i~~iiiil~
~~~~~~~~~ 

:~
H

LL IL 1I [L IL

1—52

.5
. -—~~~~~~~ -—~~~.5 — ~ --.5- 5- .5— ~~~~~~~~~~~~~~~~~~~~~~~~ — - . 5 - S -

- - r---:r---’-
~~- -

~~~~~~ --.5- ~~~~~~~ -.---5 ~~~~~~~~~~~~~~~~~~ - -
- —.5 - --.5 - - _,--— .5

_~~ ••5•~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_

I

D:sc
SCNIN LRS 1—

~ 
~~~~ ~~ PROC ~IEC.

1. UNR SUP~RV1SI~ 4 - CALL COEROL
• ~~G1STDS.

z. MMKER ______________
SUF~CRS 3. ~~

- MSG HANOUNG

__________________ 4 . TECH CONTROL - TRAPF: c SERV ICE

~H CONTROLLERS

,,
~ i~ ~~ MU •4~

rc1TcP~1 I ~~~ I
PM~S ~~ - .5

FIGL~ 1-9 ~CII’~TE SIZ~ C1~~J!T ~~tTC~ - RP4CT I~l~L ~WRIRAT1~I

H
;

1—53 -

-
-

~~~~~~~~~~~~~~~~~~

- - - 

~~~~~~~~~~~~~~ ~~~~ 
_____ ___________


~~~~ - -.5-
~~~~~

,--
5,

.5

~flF~l1~1flNI~
•1

x

In
1’ • In

-

_ _

- - - - - -

F

’-

~

-=

~~~

1—-—

~~~~~

’-’ ~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~ -~~- -~~~~~~~~~~~~~~~ ---~---- —.~~~~~. - ~.-~~~—-- —r-~~~~ —

System has only a moderate amount of this activity and conse— -

quently a minimal sized 4 x 4 triangular submatrix will suffice.

3.11.4.4 Very Small Circuit Switch

Figure I-il shows the functional configuration of an
unattended (except for traffic service) circuit switching system,
such as might be used for a large PBX or equivalent. It is a
dual thread system in keeping with the typical military mission ,
but does not have the usual built-in test hardware. If the CPU
or any component should fail, a service technician, equipped
with the proper tools will be sent. Repair may require temporary
shut—down . The corresponding physical configuration is shown in
Figure 1—12 . Units have been simplified in keeping with reducing

-(the complexity of the recovery programs and the fact that there
are no trained technicians on the premises. An active-active
triangular stage is not provided. Such traffic would have to be

— accommodated by transferrin ! data to memory first .

FIgure 1-13 shows a single thread version of the same
system . In this case, the multiplicity of ports have been pro-
vided only for traffic reasons and not for viability reasons..
This allows the use of a single stage matrix. The SMU is only
used to provide failure alarms and automatic bootstrapping of
the system from what are (hopefully) transient malfunctions. In
such a case , the SMU would effectively force a re-bootstrapping
of the system from the copy of the program stored in the BU.

3.11.5 Tech Control System

The tech control system functional configuration is
similar to that which is shown in Figure 1— 7 for circuit
switching systems. The configuration is shown in Figure 1—14.
There is still a matrix control function. In this case, it is
used to control automated patch—bays. Traffic service positions
are replaced by stations at which tests can be initiated and
directed. In addition to the scanner/distributor , a number of
specialized (analog) test equipment is provided. Disc units are
used to store channelization details. As in all of these systems, .5

minor circuit switching and message switching functions must be
performed and appropriate line termination and sensing devices .5

4 are provided.

3.11.6 Digital Concentrator

The physical configuration of a small concentrator would
be similar to that of the small circuit switch. The scanner

.5
would be replaced by low speed line multiplexers or by individual
line termination devices if medium and high speed lines are used.
Concentrators are typically single thread systems and the same
savings as were obtained in the small circuit switch can be ob— -

-
.

tam ed here.

p . ~~~~~~~~~~~~~~ - _
.—~~~ -

~.—~~~
_ --

~~~~
--

~~~
-r-

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~__ .5

‘—S

k ___ ___ ~~~~~~~~~ _ _ _  

S

I 

_

I 
Li t; 

~ 
- H

1-56



~~~ 5~~~~~~~~ 5 . 5 -. ~~~~~~~~~~~~~~~~~~~ —-,---- -,5.—- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

.5—-- -. 

5,

,

~ 

j ~~~~~~~~ 

6 OIOR*L~~~~ 6 PORTS 

2 5 4  : :
- ~‘: 2 ~~ TS \ / ~?~

a s .

2 ~~~~~~~~~~~~~~~~~~~~~~~~ J 2 PORTS -

2 ~~~ lI 2 CH~~~ILS
CONTROL SINGU PORT PORTS

T R P ORTS

•

1 ~~~~~~~~~~~~~~~~~ TS

i 
.5 

- ________

I -  - ‘~~~ 2~ P O R 5  .5 T5 Tv- S

FIrM 1 -12 ~fsSICt ~ fI~~ATION - S’~U. CI~~ ’II1 94T104

It ,
.—_—5 —.-—-—- - _ —S-- _- -—— .- S--——



.5 p . 
- 

-: ~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~.- --.5 ~
_ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~_‘-~1

-

~ ~~~~~~~ 6 CHANNELS
6 PORTS

~

-
-

S 16 X 8

VDU/KBD CHANNEL 1 PORT

~~~~ 
PORT

SCANNER -~ CHANNEL 
1 PORT 

- 

_
~~~~~~~ORT XU

-

CONTROL __________ 1 CHANNEL
PORT

~~~~~~~~~~~~~~~~~~~~ O~TS

~~~~~~~~~~~~~~~~~~L~ORT 

•

•1

~~~~~~~~~~~~~~~~~~ 1 PORT

[

~~~~~~~~~~~~~~~~~~~ RT5

- . s . 14 UNITS 15 PORTS 6 PORTS 4 UNITS

F1GU~ 1-13 SIMIE 1H~bJ~ S~1 CHCILIT SW1TO~
.5

~~~~~~~~~~ S-~~~~~

. 

1—58

- — - __________ ~~~~~~~~ — - .-, - .5 
~~~

_
~~~~~~~~~~~~~~~~

• 
~~

-- •



—---.5 —5-— — ::: ~_._:~
:— ----————-—-—--——-- - _ _ 

— . 5  
.5—- 

- 
-c--- - - - - - - -----._--‘- _

~--_~ __
- ,.~ -, -.---~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :i ~~ ii___— _.i:__._.__~~ 

-- --- -- .5--- 
- ~~~~~~~~~~~~~~~~~ --

!\I:I_.
~ 

‘

.

~~~~~~~ 

_ _ _ _

~~1 HHI
r~~~~~~~

r—L!
~

J
~

~~~~

_ _ _ _ _ _  

~ ~~~~ ~~ 

~~

—t—

~~~

”

~ -

t

.

_ _ _ _ _ _

~~~~~~~~~~~~~~~~~~~~ 

_ _ _ _ _ _

• 
5,-a - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~.5 - 

- - “ - S  -
~~~~~ _


I ~~~~~~~~~~~~~ - -
~

—
----.5

- -
~

——

~~~~~~~~~~~~~

—

- . 5— - - — -  

1
.5— 3 -

- SECTION II

SPECIFICATION FOR THE
COMMUNICATIONS PROCESSING UNIT ( CPU )

OF THE

- 
CPS CENTRAL PROCESSOR 

-

I

I’
~~~

’- - - S-S.
-
~~~ fl

- ..:
- -5

Si ~
I_ S _

t
.,~ 

:-
~~

tx-i

—
~~~~~~~~~~ 

—.5 — —
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ——.5— — 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


L . SPECIFICATION FOR THE
COMMUNICATIONS PROCESSING UNIT

OF THE
CPS CENTRAL PROCESSOR

TABLE OP CONTENTS

PARAGRAPH TITLE PAGE

1.0 Scope 11-1

2.0 Applicable Documents II—] .

3.0 Communications Processing Unit (CPU) II—] .
Specification

3.1 General Characteristics 11—1
3.1.1 Overview I l—i
3.1.2 Addressing 11—1

-
- 3.1.3 Registers 11—1

3.1.4 Register Sets II—2
3.1.5 Instruction Stack 11—2
3.1.6 Unit Characteristics II —3
3.1.7 Arithmetic II —3
3.1.8 Machine Versus Assembler Addressing II—4
3.1.9 Extended Range Addressing II—4

3.2 Memory Reference and Indexing 11—4
3.2.1 Unit Identification II—4
3.2.2 Index Arithmetic II—5
3.2.3 Index Modes 11-5
3.2.4 Indirect Modes 11—6
3.2.5 Application 11—6

3.3 Instruction Repertoire II—6
~
--~~~

-
~~~; 3.3.1 General 11—7

- — 
- - -

3.3 2 Register Set Instructions 11—7
3 3 3 SubroutIne Call and Return Instructions 11—9
3 3 3 1 General 11—9

H
“—i i

.~:. - ?!‘- -

- ‘- 
-

- —~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.5- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



p . - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -5 - --  

~

•‘ . , .

~~~

• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-5-_-_
~-—5,—_ -5

~~~~~~~~ ~~~~

TABLE OF CONTENTS (Continued)

PARAGRAPH TITLE PAGE

3.3.3.2 Operation of the Stack 11—9

3.3.3.3 - Stack Protection 11—10
3.3.3.4 Call and Return Instructions Il—li

3.3.4 Skips, Jumps and Executes 11—12

3.3.4.1 General 11—12

3.3.4.2 Unconditional Jump Instructions - 11—12
- 

3.3.4.3 Unconditional Execute Instructions 11—13

3.3.4.4 Conditional Skip Instruct ions II— 13
3.3.4.4.1 General 11—14
3.3.4.4.2 BIt Conditioned Register Skips 11-14

3.3.4.4.3 Skip on Word , Character , Half—Word 11—14

- 3.3.4.4.4 Double Element Skips 11—15

3.3.4.4.5 Memory Reference , Single Operand Skips 11—16

3.3.4.4.6 Dual Operand, Memory Reference Skips 11-16

3.3.4.5 Conditional Executes 11—17

3.3.5 Load/Store Memory Instructions 11—17

3.3.5.1 Load/Store Registers 11—17

3.3.5.2 Load/Store, Half-Word , Character , NW Mode 11—17

3.3.5.3 Load/Store via Registers 11—18

3.3.6 Single Operand in Memory via Register 11—19

3.3.7 Bit Manipulation in Memory via Register 11—20

P 
- 

3.3.8 Operations between Registers and Memory 11—20

3.3.9 Shifts and Rotates 11—23 
“ 3.3.9.1 Logical Shifts 11—23

-, 3.3.9.2 Arithmetic Shifts 11—24 -

3.3.9.3 Rotates 11—24
- I ~

‘-  
~

-

~
-

1~~~~ 3.3.10 Count Instructions 11—24

~‘
• —

- 

~~~~~~~ ~- -C’~- .~ -’~~~- . ‘ S
--5- s 4 ~ ’,-- ’~-~

S. h — u i

— —.5—---- A5, _~ A~~~~ S~~~~ S. ~~~ -S - 5 5~~~~~_ , - _a -

- d~ -~~~~~ __________

-—--- ------- - —~—- -- -
-.5 — - —

TABLE OF CONTENTS (Continued)

PARAGRAPH TITLE PAGE

3.3.10.1 Count in Registers 11—24
3.3.10.2 Count in Memory 11—25

3.3.11 Tally Instructions 11—26

3.3.12 Double Register Operations II—27

3.3.13 Triple Register Operations 11—28

3.3.14 Single Register Immediate Operand 11—29

3.3.15 Dual Register, Immediate Operands 11—29

3.3.16 Stack and Queue Management Instructions 11—30
3.3.16.1 Push and Pop Instructions 11—30

F 3.3.16.2 Pull and Shove Instructions II—31
3.3.16.2.1 FIFO Chain Structure 11—31
3.3.16.2.2 FIFO Chain Operation 11—33
3.3.16.2.3 Instructions II—33

3.3.17 Miscellaneous Instructions II—34
3.3.17.1 Analyze 11—34
3.3.17.2 Halt 11—35
3.3.17.3 Select Next Level 11—35

3.4 Inter—Unit (113) Instructions 11—35
3.4.1 General 11—35
3 .4 .2 Single Character IV Micro—Instructions 11—35
3.4.3 Two and Three Character IU Micro-Instruc- 11—36

tions —

3.4.4 Issue of IU Command via Register II-37
3.4.5 Issue of IV Command via Memory 11-37

3.5 The CPU as a Unit II-38
- - ~

_
_

~~~_ j  
—

3.5.1 Control Memory II-38 
-

- -

3.5.2 Command Protection 11—38
-
-

Ih—iv

_________ ________ ~~~_



‘~~~r~s ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ 
-.5- - - 

~~~~~~~~~
- - ‘

~
—-- -5”— - —

.5

- - - -- .5- - .-- —-.5---- - -

I TABLE OF CONTENTS (Continued)

PARAGRAPH TITLE PAGE

3.5.3 Port Priority Control 11—40 1 -

3.5.4 Port Command Stack 11—40
3.5.5 IU Commands 11—41

3.6 CPU Alarm Processing and Traps 11—42

H 3.6.1 General 11—42

3.6.2 Self—Detected Alarms 11—42

3.6.3 Trap Operation 11—42

3.6.4 Trap Related Instructions 11—43

3.7 Flags and Breakpoints 11—45

3.8 Operating Modes 11-46

F
-

4

- J -

_ _
_

~~~

‘S
.;_

~~~

-S

-
-

t .{ E•

- It—v

L t :
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- — -- - - - - . ______

- ~~~~~~~ —~~~~~~a.--~~_~~~~~ ~~~~~~~ —a--- ~~~~~~~~~~ - ~~~~~~~~~~ -



- 1 ‘
~~~~~~~~~~~~~~~

‘
~~~~~~~~~~~~~~~ 

L ~~~~~~~~~~~~~~~~~~~ ~—~-‘~~~~~~~~~~~~r- 7~~~~~ - -~~~--.-- --- -

1.0 SCOPE

This document is the specification for the Communications
Processing Unit (CPU) of the CPS Central Processor (CP). It
defines the architecture , features and instruction repertoire
of the CPU. The CPU is one of several units which together
comprise the CP.

2.0 APPLICABLE DOCUMENTS

Central Processor Specification (Section I of the CPS
Central Processor Specification).

3.0 COMMUNICATIONS PROCESSING UNIT ( CPU) SPECIFICATION

3.1 General Characteristics

3.1.1 Overview

The processing unit of the CP is a general purpose stored
program digital computer . It has a basic operational word
length of 32 bits. While the CPU has a general purpose instruc-
tion repertoire , many aspects of that repertoire as well as
specialized instructions, make it optimum for the communications

H task . -

3.1.2 Addressing

H Three types of elements can be addressed in memory :
words , half—words and characters. An address can be either
directly incorporated into an instruction , or can be in a
register which is referred to by the instruction . In addition ,
normal indirect addressing and a variety of indexing modes are
provided . Every memory reference must either directly or in-
directly incorporate a unit ID which identifies the memory unit
which is to be accessed. Five character length fields, stored
in registers, are used to provide a unit ID implicitly. One
field is part of the program counter. The other four fields
are specified by the value of a two bit field in the memory
reference instructions. This two bit field, called the AUGMENT
field, specifies which of four characters in the registers is
to be used to augment the basic 16 bit address, thereby identi—
fying the memory unit.

- 
— 3.1.3 Registers

The CPU is a generalized register machine. It has 16
registers of 32 bits each. These can be addressed and manipu— - -J - - - - - lated as: 16 registers of 32 bits, 32 registers of 16 bits,
64 registers of 8 bits, or any sensible combination thereof.

It-i 
-

- 5---

~~
_ _

~~~~~~
. _ _

~~~~ --- - - -- -- - - - - - -~~~
—.. _~~~~~



-~~ 
5 5 - . 5~~55~~~~S••.5 —“r ~

---——— 
~~~~~ 

—

~~

-— p . - . 5 —
- — -

This provides the progra~~er with the ability to split a 32 bitregister into four tally counters, or an address field and two
counters , etc.

The contents of registers 0, 1, and 2 are used for
special functions:

Register 0 — 24 bit program counter , 8 condition bits.
Register 1 — 4 Unit ID’s — for memory unit address aug-

mentation (i.e., page registers).

Register 2 — subroutine stack pointer , 8 flag bits.

While the interpretation of the contents of these reg-
isters is predetermined , the programmer can (with caution)
manipulate them at will.

3.1.4 Re~gister Sets

Every CPU has four complete sets of 16 registers. At any
instance of time, the CPU is in one of four program states,
corresponding to which of the four register sets is in use. Ex-
ternally generated interrupts may cause the CPU to shift from
one register set to another. Similarly , the programmer can
select which register set is in operation at any instant of
time. The shift from one register set to another takes only the
time required to execute the register set or program state shift
instruction. Instructions are provided to allow the entire con-
tents of a register set to be loaded from memory or to be stored
in memory , effectively allowing the implementation of an arbi-
trary number of program states.

3.1.5 Instruction Stack

An eight word instruction stack for instruction look—
ahead is provided in every CPU. This stack can be used to store
from 7 to 32 instructions. It should not be construed from this
statement that instructions have variable lengths. CPU instruc-
tions are 32 bits long but the stack mechanism takes advantage
of the op—code structure to compact the representation of some
instructions. Instructions on the stack may vary in length from
8 to 36 bits. This is an internal matter and transparent to the
programmer. The most often used instructions will average 16
bits in length , consequently allowing the stack to hold 8 in—
structions. - :

-

~

The instruction stack facilities are used to set up
tight loops and other repetitive processes that have a minimum

~~~ r .  number of memory references. The CPU uses whatever opportuni—
ties arise to make additional memory fetches of instructions.

- 
— - 11—2

-- - .5 ~~—--



— 
— 

1—  - — _~~_r~~~~~~ * *5 S. - 5- —----55—-5’._.-~~~_._5_ — —S — .

For example , if operands are not being fetched as a result of a
particular instruction execution , an additional instruction will
be fetched instead and placed into the stack. Eventually , the
stack is filled with instructions. New instructions enter the
bottom of the stack and displace previously used instructions
out of the top of the stack. New instructions fetched are al—
ways pushed to the topmost available location in the stack. If
the stack is full, new instructions entering at the bottom will
force old (used) instructions to be displaced from the top.
This process continues unless a branch instruction is fetched.
This includes conditional and unconditional JUMPS, SKIPS , and
EXECUTE instructions. The occurrence of such an instruction in
the stack stops the migration of instructions, but allows the
stack to be filled up to capacity . Instruction execution pro—
gresses until the branch type instruction is reached. If the
branch is to an instruction within the stack, that instruction
is pushed to the top and additional instructions are fetched in
to fill out the bottom. If the branch is to an instruction not
presently on the stack , the stack is cleared and a new fetch and-
stack build cycle is started .

All stack operations are transparent to the programmer.
However, a knowledge of the operational details of the stack
mechanism is essential if advantage is to be taken of it in the
construction of tight loops, executed wholly out of the stack.
The execution time for stacked instructions is typically 250

- - nanoseconds, providing an effective four fold increase in CPU
speed when compared to executions which involve memory refer-
ences.

3.1.6 Unit Characteristics

Some of the functions traditiotally associated with CPU’s
are not implemented in the CPU of the CP. These functions are —

accomplished by other units. Predominant among them are
memory protection and interrupt/priority control. However, the
CPU is still a unit of the CP. Consequently, it has all the
typical unit characteristics - modifiable LID , prior ity/protec—
tion cache memory , response to I/U commands , etc. The CPU can

( be provided with 1, 2 , or 4 ports . In most cases , the 4 port
configuration will be used. As with any other CP unit , the CPU
has a unit specific repertoire which defines its behavior in
inter—unit operations . Its unit specific repertoire has fea—
tures common to memory units and channel units. (Refer to
Sections VI and VII).

3.1.7 Arithmetic

The number representation system is 2’s complement. In
a].l arithmetic operations between elements of different sizes

- 

— 

- 

11—3

- 4
- 5

- 5 a--- - - - - - - - - - - - - -.5- —-- —  - 
- -.

— 
~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~

- — - .& . 4 & S ~~~~~~~~~~ L.~~~UL. ~~~~~~~

- ~~~ ~~ _ _ _ _

(e.g. word and character) justification is with the smaller ele-
ment in the least significant position. Results are always in
terms of the larger element . Overflow and underf low flags are
set in accordance to that of the larger element involved . Over-
flow and underf low flags remain set until explicitly reset by
the programmer.

3.1.8 Machine Versus Assembler Addressing

All addressing specifications in this specification are
described as absolute addresses . The reader should not construe
from the description of the various instructions, particularly
the variable length skip instructions , that absolute or relative

-

‘
to absolute addressing is required in the assembly source langu-
age . As in all assemblers , symbolic addressing is used. The
target of a skip instruction is treated like the symbolic ad—
dress normally used for a j ump . The assembler will provide the
proper skip value. If this is out of the permissible range of
the skip instruction , appropriate assembler diagnostics will be
issued .

3.1.9 Extended Range Addressing

-
‘

Where the address portion of an instruction which ref er—
ences memory is found in a half-word register , or in memory , as
in an Indirect reference , the contents of that registers loca-
tion is interpreted in terms of the unit being referenced . Since
a half—word register is 16 bits long , it can be used to refer—
ence 65 , 536 words , half—words , or characters. Thus , word refer-
ence via a half—word register has a span of 4 units; half—word
reference a span of 2 units and character reference a span of
one unit . The inclusion of indexing can further extend the
range . If a half-word index mode is applicable , the word range
can be extended to 8 units , the half—word range to 4 units , and

-
- the character range to 2 units. This characteristic should be

-taken into account when setting up to load unit ID ’ s in the
Augment (AUG) fields . Often , because of extended range addres-
sing , it will not be necessary to reload the AUG f ield.

3.2 Memory Reference and Indexing

3.2.1 Unit Identification

Every memory reference must ultimately , directly , in—
directly , implicitly, or explicitly , result in the specification
of at least one unit ID. There are two ways in which such unit
ID’ s can appear in an instruction : immediately as a part of the
instruction , or via a pointer to one of the four characters in
register 1. If the UID appears immediately in the instruction,
it is an eight bit field. If the UID is in register 1, it is

_ ‘. 4 .~
_ -

_
- ‘

- _ - ~~

. — ; . I

11— 4

I- -
~~~~~~~~~~~~~~~ T’T ~ z~i_ ._,..I ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-



r:L.5 _ -.-~ - - 5~---~~~~~.~-— - - _,’r, 
~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~

—“
~~~~

- ‘ - -
~~~~

‘ ‘-

~~~~~~~~~~~~~~~~~~~~~~~ -. _~~~~~~~~~

pointed to by means of a two bit AUGMENT field which specifies
which of four characters are to be used.

3.2.2 - Index Arithmetic

Index arithmetic operations are carried out with all
participating elements interpreted as positive integers. Justi—
fication is to the smaller element of the pair. All index
arithmetic operations are carried through to the UID segment of
the address , permitting indexing across unit boundaries. How—
ever , a corollary to this is the fact that overflow will occur
only for attempts to get beyond unit 477, and underf low only for
attempts to get below unit 000.

3.2.3 Index Modes

H There are three index options : none , addition , and B +
C*I. The normal indexing (addition ) is available for some
instruction classes in both a pre-and post index mode. This
results in four sets of indexing operations: N(one ) , B(ase
addition , pre indirect), P(ost indirect addition), and C(onstant
multiplier). If Indexing has been specified , then the first UID

- - I is always via an AUGment field.

B Mode - This corresponds to normal pre—indirect indexing
operations in which the index value is added to
the base address to produce the resulting ad—
dress for that part of the effective address

— calculation. The index value can be contained
in a half—word register or in a register char-
acter .

P Mode — This mode applies only if an indirect operation
has been specified. The indirect operation is
first carried out , fetching a new address , to
which the index value is added. The index value
can be contained in a half—word or a register
character.

C Mode — In this mode of indexing the product of a multi—
plier constant and an index value is formed .
This is added to the base address in the instruc—
tion. The index value can be contained in a
half-word register or in a register character.
The multiplier can be contained In a register
character or be an immediate field in the in—
struction. The C mode is not available with

—I all instruction classes. Indexing always pre—
cedes indirect operations in this mode.

- 
- 11—5

‘ 15 . 1
- 

- - . 5

______ ~~~~~ _ ~~~~~~~~~~~~ . .. . 5. ~~~~~~~~~~~~~~~ -~~~~.—. ~~~~~~~ : ~~~~~~



—

3.2.4 Indirect Modes

The first memory access of an indirect operation is al—
ways a fetch of a half-word which can contain a word , half-word
or character address. The UID (first UID) can be via an AUGMENT
field, or be an immediate operand in the Instruction itself. A
second UID must be specified to direct which unit the indirect
address refers to. This can also be an immediate eight bit
field in the instruction or be specified by means of the AUG
field. However, only one of the UID’s can be immediate. More
specific rules apply in combination with the indexing modes as
follows:

N Modes — If no indexing has been specified , one or the
other but not both UID’s can be immediate.
Alternatively , both UID’s can be obtained by
specifying the AUG field.

B,P,C Modes - If indexing in any mode has been specified ,
then both UID’s are obtained via the AUG-
ment field.

3.2.5 Application

Not all combinations of indexing and indirect apply to
all classes of instructions. The particular index/indirect
modes which do apply are specified with each instruction class,
by means of the following mnemonics : NN , NI , BN , CN , BI , P1,
CI.

NN — no index , no indirect
NI — no index , indirect
BN — Base plus constant index , no indirect
SI — Base plus constant index , with indirect
CN — Base plus constant times multiplier , without in-

direct
H CI — Base plus constant times multiplier , with indirect

- ‘  P1 - index addition post indirect

For each of these , there is a further specification of
- 4 the location of the UID(s), the index value , and the index con—

stant , as appropriate to the instruction class. Where a speci—
-; fication does not exist , the option is not allowed for that

— instruction class.

3.3 The Instruction Repertoire

11—6

-.5 -

.5-— - ——- ———
~~

.—-- 5— —5 — ~~~~~~~~~~~~~~~~~~~ _.. ..La.~P ~a



__— ‘r—~~~
J--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--

3.3.1 General

The instructions are presented from a functional point of
view, as a sequence of fields. The proper range of values for
each field is included in the instruction specification. For
example :

SHFC::OP(L(eft)), R(ight)): CRAR2g5 : VALUE~
is the specification for a shift within a specified

register character . The interpretation of the specification is:

OP - Indicates a variation of the basic operation .
-

-

In this case , L (left) or R (right).

SHPC - Mnemonic for a character shift instruction.

• CHAR2~
5

- A register character address , whose value is
anything from 0 to 255.

VALUE~ - Indicates a shift from one to 8 bits.

In source language , the instruction has the following
appearance :

SHFC L 60 3

Indicating a shift left of character 60 by 3 bits.

Instruction structures are described only from the point
of view of their functional appearance. These do not necessarily
correspond to the bit patterns that they are translated into by
the assembler . There is no simple , one—for—one representation
of instructions that corresponds to specific bit patterns in the

- - instructions.

3.3.2 Register Set Instructions

These commands are used to modify the working register
set . The sets are numbered 0 to 3 , with set 0 having the
highest priority. Upon shifting register sets, control is

—
transferred to the new set . The contents of the old set is un—
affected .

GOTON :: VALUEg

Unconditional transfer to register set VALUE.

.5—
-5 - -. --

— I

-
- BLOCK :: VALUEg

Prevents interrupts whose priority is VALUE from causing
a shift to register set VALUE.

BLOND :: VALUEg
Prevents interrupts whose priority is VALUE or lower from

causing a shift to another register set .

UBLOK :: VALUE~
Unblocks interrupts at priority VALUE . Has no effect if

already unblocked . -

H
UBU~D :: VALUEg

• Unbiocks interrupts at VALUE or lower .

STALL :: VALU4

Stalls all interrupts until af ter the execution of the
-

- next N Instructions , where N is specified by VALUE .

Interrupt stalls, such as those obtained through the use
of the STALL instructions, or other instructions which have a
STALL option , are cumulative and apply to instruction executions .
For example , the instruction sequence:

H STALL 4
STALL 4
STALL 4

causes a cumulative stall of the next 12 instructions,
two of which were the second and third STALL ’S - consequently
there would be a cumulation of 10 instruction stalls beyond the
third STALL . An 8 bit stall counter is maintained for each CPU.
Since only the active level can be stalled , only one stall
counter is kept . If the cumulative stall plus the additional
stalls exceeds 255 , a stall of 255 will be executed. As each
instruction is executed , the stall count is reduced by one. The —

following commands in this set automatically create a stall of
one instruction : GOTON , WAITS , SLECT . Note that this means ,
GOTON , WAITS , an d SLECT , when issued at their own level (i . e . ,
the program is in state 3 and GOTON 3 is issued) resets the
stall counter to 1.

WAITS :: VALUEg

Transfers control to register set VALUE and halts. The
-

-

next instruction will be executed only upon the receipt of an

11—8

L

- _ -

~

_ _ _ _ _ _ _ _ _ _ ~~~~~~~~—-
— p

~~~~~~~~~~ .~~~_5 
~~~~~~~~~~~~~~~~~~~~~~~ —- — IS~~a~~~~p - - 

- -

~~~~ -5 ..I 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .5 — -.


- -
—— ----- --~~ ~~ —-— -... —- -,- , ‘~‘W’~-

-5 .5.- - - - -
—

4—

interrupt at level VALUE. Higher level interrupts will over-
ride this function.

SLECT :: VALUE~

Transfers control to set VALUE and causes a four instruc-
tion stall. All registers are wiped clean except 0, 1, and 2.

3.3.3 Subroutine Call and Return Instructions

3.3.3.1 General

Two instructions are provided to effect subroutine calls
and returns. The issuance of a CALLS Instruction causes the
proper jump to the called subroutine as well as the storage of
the return address in a stack set up for that purpose. In addi-
tion to the basic return address data, the system will store an
8 bit flag character. Similarly , the RETURN instruction causes
a jump back to the proper return point , with a return 8 bit flag
character , as well as adjusting the stack pointer. The pro—
grammer can specify as many or as few separate stacks as he

-
- wishes. All stacks are limited to 256 locations (e.g. nesting

of 256 subroutine calls per stack). Should either end of a
stack be violated , the CPU will jump to programmer defined

-
I standard locations for that stack.

H 3.3.3.2 Operation of the Stack

The format of the contents of register 2 is:

I FLAG BITS UNIT ID 14 BIT WORD ADDRESS I X X I

The first 8 bits contain flags which can be manipulated
- and ac-ted upon by the programmer . The next character contains
the unit ID in which the subroutine stack control word will be
found. The next 14 bits specifies the location of the sub-
routine stack control word. Bits XX have functions discussed
elsewheres. Issuing a CALLS instruction causes the contents of
the subrcutine stack control word to be fetched from memory .
The subroutine stack control word has the following format :

I COUNT I UID I STACK ENTRY ADDRESS BASE IX X I

The first character contains the present stack count ,
— which can be anything from 0 to 255 entries. The next char—

acter specifies the (memory) unit in which the stack is to be
- I found, and next 14 bits ~pecify the top of the stack. Having

fetched the stack control word , the following events take place:

11—9

____ 5.— —5. .5- —-- -.5-

11111.. — -_~~~~ 5..- —-.5 ~~~~~~~~~~~~~~~~~~~~~~~~ 5- - — _ ___‘~‘1L 5 —i—- —
~~~~~~~~~~~~~~~~~~~

. - ‘
~~~~~

-
~~ —-~~~~~~~~~

--

5. -.5 -
~~~~~

-.
~~~

—-.‘--
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-~~—----— ~~ _ ~~~~~~~ -~~~ -~-- ~c

—

(1) The count is decremented by one .

(2)  The new stack entry address is calculated relative
to the stack base address.

(3) The following information is placed in the stack
entry :

RETURN JUMP ADDRESS
- 

A_ _ _ _ _ _ _

FLAGS UID ADDRESS X X I

The flag field will be set to the values of the flag
character in register 2. The UID—ADDRE SS fields will  be set to
the return address (the value of the PC + 1). Bits XX will be
set to an optional value specified in the call instruction.

The issuance of a RETEN instruction reverses the pro-
cedure as follows :

( 1) The return address is fetched from the current
stack position , via the contents of register 2
and the appropriate stack control word.

(2)  The flag bits contained in the stack entry are
- 

I used to replace the flag bits in register 2.

(3) The count f ield is incremented by one.

(4)  The stack entry is decremented and checked.

(5) The program counter is replaced by the return
address.

- 
I (6) A stall of XX is added to the present value of

the stall counter .

3.3.3.3 Stack Protection

Locations one word past the last valid stack address
‘ ( i . e . ,  that address at which the count field is equal to —1) and

locations one before the first  valid stack address ( current
stack address < stack base address) should contain the address
of jump instructions, stall value and flag bits.

- t If the end of the stack should be overrun , the CPU
— will execute a jump to the specified location , setting flag

bits as stored in the return word , with the indicated number of
instruction stalls. Similarly , if the top of stack should be
“underrun ” , a jump to the location specified by the programmer

- - - - - -~1- - ~~~~~~~~~~~~~~~~~~~~~ 
• — -~ 

--5

~~~~~~~~ — - —~~~~~ - - -.5 —5--—---- --—---- -—~~~~ ~__5_ -5~~~~ 55~~ 55555~~~S -~ ~~~~~~~~~~~~~~~~~~~~


.5— -,~~~--—--55- ~~~~~~~~~~~~~~~~~~~
—.

~~
--- — ~~~~~~~~~~~~ 5~~~~5.~~ -.5

~~-. — 5 -

- .

~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~ -

-

for that condition will be executed. In this way, the progra er
can specify the maximum subroutine call depth, separately for
each stack, and can further specify what corrective action will
take place in the event that either the top or the bottom of

i i the stack should be overrun.

3.3.3.4 Call and Return Instructions

The call instruction has the following formats:

CALLS :: AUG~ : ADDRESS~
6’383 : STALLINg : STALLBACKg

CALLA :: UID~
54 : ADDRESS~

6’383 : STALLINg : STALLBACKg

The two different forms of this instruction allow a
subroutine call via the AUG field specified (register 1 UID’s)
or in the absolute mode (CALLA) the explicit specification of
the unit being called. In either case, a word address is pro—
vided. The STALLIN field specifies an addition from 0 to 3 to
stall counter. The STALLBACK field specifies the number of in—
structions to be stalled upon return from the subroutine call.

There are two return instructions : RETRN and RTJMP.
RETRN performs the return as described above and there are no
optional fields . The specification for RT~MP is given below :

RTJMP :: REGISTER SETg : UNIT ID~
55 : WORD ADDRESS~

6 ’383

The normal return from a subroutine is done , placing
flags in register 2 , updating the stack control word , etc.
However , instead of jumping to the normal return address, a
register set change is performed as well as a jump to the speci-
fied address. Should return stack underf low occur as a result
of executing this instruction, the underf low jump will override
the specified jump , and the register set change will not occur.
Interrupts are stalled for one instruction past the RTJMP.

These instructions are also available with a B mode
• indexing , in which the index value is found in a register char-

acter. The return instruction RETRN can in the indexed mode,
perform an indexed jump based on the contents of a specified
register character. Typically, it would be on the contents of
the return flag character in register 2. This is used in con—
junction with multiple exits from subroutines. The formats are:

CALLS AUGg ADDRESS~
6’383 STALLINg STALLBACKg

B-INDEX CHABA63 : BN0

RETRN B-INDEX CHARACTER ADDRESSg3 BN

11—11

— - - — -. ____ — 5 -  —5.- —5.— - - -5--
- 

— - -- —~~~~~ 
- —5 - — -5~~5-5-. ~-~~5.••5-5_ . . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
___  

- ~~~~~~~~~~~~~ .—~~~~~~~ -

3.3.4 Skips. Jumps, and Executes

3.3.4.1 General

Three types of branching instructions are provided :
jumps, skips, and executes. Jumps have a wide range and can go

- 

- from unit to unit with a variety of indexing and indirect modes.
Jumps are all unconditional . The skip instruct ions provided
here are all conditional and variable length in either direction.
The indexing for the skip instructions are operand based. The
counterpart to the jump and skip instructions are the uncondi-
tional and conditional execute instructions. The former execute
a (short) list of specified instructions unconditionally. Like
the jump instructions , they have a broad range, with indexing
and indirect options.

3.3.4.2 Unconditional Jump Instructions

JUMPA :: UID~
53 : ADDRESS~

6’383 : NN

I J JUMPS :: AUGg : ADDRESS~
6’383 : NN

r J JUMPS :: AUGg : ADDRESS~
6’383 : CHARAg3 : BN

JUMPS :: AUGg : ADDRESSg2 ’767 : AUG2g : NI

JUMPS :: AUGg : ADDRESSg2 ’767 : CHARAg3 : AUG2g : BI

JUMPS :: AUGg : ADDRESSg2’767 : CHARAg
3 : AUG2g : P1

JUMPH :: AUGg : ADDRESS~
6’383 : HWRAg1 : BN

JUMPH :: AUGg : ADDRESSg2 ’767 : HWRAg’ : AUG2g : B!

The fields are interpreted as follows:

UID — absolute Unit ID of’B bits.

AUG - specification of augment field in register 1.

ADDRESS — address of instruction (0—16,383 in direct —

- modes) or address of address (0—32,767 for
indirect mode)

- - CHARA — name of register character.

AUG2 - second augment field to provide second
. 5 .  memory unit number for indirect operations.

-
~~~~ 

HWRA — name of half—word register. -
~~~~~~~

11—12

••~~I~

L 
—

~~
-
~:h 
~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ - 

~~~~~~~~~~~~~~~~~~ - - ; - - - - -.

— — — —.5-- —.5 —~~~—~~ — -— 5’~~
. —.5—— —5.-—-.-— 

_•••
~~ —.5 —5 .5 —~~



~‘~-r~ -s-s- — — - - - - ]—

-

--.5
,

The instruction specifications are interpreted as fol-
lows :

JUMPA - direct jump to absolute instruction ad-
— dress specified by the unit ID and address

in the instruction.

JUMPS :: NN - direct j ump using the AUGMENT field for
the UID.

JUMPS :: BN - indexed j ump via AUGMENT field , with in-
dexing by the contents of the specified
character field. (CHARA) or specified
half-word register (HWRA).

-‘1 JUMPS :: NI - indirect jump with AUG and AUG2 providing
the first and second UID respectively.

JUMPS :: BI - indexed indirect jump with index value in
specified character (cHARA) or in sped —
fled half—word register (RWRA).

JUMPS :: P1 — indexed indirect jump with indexing oc-
curring post indirect.

3.3.4.3 Unconditional EXECUTE Instructions

Field interpretations are as in the jump instructions.
The new field “VALUE” specifies the number of instructions to be
executed. EXECUTE ’s of JUMP ’s and other EXECUTE ’s is allowed ,
however , the return data is lost for double EXECUTE’s; control
returns to the most recently issued EXECUTE. EXECUTE of a JUMP
is equivalent to jumping and coming back without doing anything.
Caution is advised.

EXECT :: AUGg : ADDRESS~
6’383 : VALUE~

5 : NN

EXECT :: AUGg : ADDBE5S~
6’383 : VALUE~

5 : CHARA~~ : CN

EXECT :: AVGg : ADDRESSg2 ’767 : VALUE~
5 : AUG2g : P1

The NN mode performs a normal direct execute. There is
no BN mode. This is provided by issuing a CN mode EXECT with
VALUE — 1. The CN mode performs an indexing of the form ADDRESS
+ ( CHARA ) * VALUE and executes VALUE instructions. As usual,
the notation “ ( XXX ) “ means “the contents of XXX”.

3.3.4.4 Conditional Skip Instructions

11—13
11

fr _ S_ s

-
.5

_ _ _  
~~~

- —~~~

-..-_ -..-—- s- ~~~~~~ —_. -5-- ~~
-

3.3.4.4.1 General

Al l conditional skip instructions provide a forward
or backward skip of 0 to 255 instructions except SKPMB :cN which
has a range of —128 to +127. Skip values are best visualized in
terms of what happens to the program counter.

SKIP 1 PC -* PC+2

SKIP+N PC -~~~~ PC +N+l

SKIP 0 PC -~~~~ PC +1 (SKIP 0 instructions be-
have like NOOP ’s in
this respect)

SKIP—i PC ~ PC (Loop in place)

SKIP-N PC —
~~~~ PC -N+l

3.3.4.4.2 Bit Conditioned Reiister Skins

SKIPB :: CHAftA~~ : BITS : SZIP~~~ : T7 :

SKIPS :: CRAR43 : BITS : SKIP~
55 : TI : v4

SKIPB skips on th. value of BIT ii dRAMA , an amount
equal to SKIP. Th. skip can be executed on the bit value b.iag
TRUE - 1 — set or the bit value being FALSE - 0 — reset . 3K1P8
operates the same way with regard to the skipping port ion of the
instruction , with th. following differenc•s. If the skip 1. on
TRUE , and the skip is taken , th. bit will be reset . Simi larly .
if the skip is on FALSE and the skip is taken , the bit will be
set. These instructions could be called : SKIP ON SKi AND
RESET and SKIP ON RESET AND SET. If a skip value of 0 is used .
the SKIPS instruction is used to reset bits (TV • T) or to set
bits (TI — F). The PB field indicates forward or backward . A
SETBIT pseudo instruction is provided in assembly language .

3.3.4.4.3 Skip on Word. Character Malt-Word

SKIPW :: WRA~~ : SKIP~~~ : COND : FB~

SKIPH :: MWRAg’ : SKIP~
55 : COND : PB~.

- - - 

- SKIPC :: CHAR43 : SKIP~
55 : COND : FB~

j  ~: - 
- 

These instructions differ only as to whether a word,
half-word , or character register is referenced , as indicated by

11—14

- - - - 5. - —- ——- .5 - - -- -  —5--——- - 
--

- 5
.5 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —~--— - -- ---.5——— —.5 - --—---5.- - .5 —5- — .5---— — —__ —--~~•-~~~~~~ 
— - ‘.

_‘-.
~~~~~~~

-_ —- - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-5

S i

the Uk HIRA , and CILARA fields respectively. The following

r condition options may be used for all of these instructions:

P081 — indicated element is numerically positive

NEGA - indicated element ii numerically negative

ZERO - indicated element has value zero

NERO - indicated •ls ent is not zero

Odd and even valued skips can be obtained by using
the appropriate BEIPB or SKIPS instruction of the leant signif i-
cant bit of the elemsut . These are also provided as ass~~~ler
pseudo-op..
3 . 3 . 4 . 4 . 4  Double El.ment Skips

These skips -depead upon the relative values of two
elements being considered. The following combinations are
mechanized: WCSD-WOSD , ULP-WOBD-1A13-VOID, RAL7-WOSD-CRAMACTU ,
and CIIA*ACTU-CRAIIACTU.

Th. following conditions apply for the skips :

A is grea ter than B

A~~~B A ii gr.ater than or equsl to l

A — B  A i s equal t o B

B A is less than or equal to B

B A is less than B

A~~~~B A i s not equal to B

• A  a Iii A is equal to the absolute value of B

A - - B  A t s equal to -B

The instruction formats are :

SKPWW :: WRA~~ : WRA~~ : SKIP~
55 : COND : FB~

— SKPNE :: HWRA ~~ : 0WRA 31 : SKI P ~
55 : COND : FB~~~

SKPHC :: HWft&~~ : C UtA~~ : SKIPg55 : COND : P4 
- -

SXPCC cHAMp cu~ a&~~ SKIP~
55 COND P4

7
11—15



I ~~~~~ :E~~~
5 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3.3.4.4.5 Memory Reference, Single Operand Skips

SKPMB :: AUG~ : HWRA~
1 : BIT~ : SKIP~

55 : TF~ : :
NN

SKPMB :: AUG3 : HWRA31 : BIT 7 : SKIP~
127 : TFF

CHARA
0

: VALUE0 : CN

In both of these instructions the skip is conditional
on the value of a bit in memory . The character address is con-
tained in the half—word register. BIT, SKIP , TF are defined as
before . The Cli mode provides indexing by the contents of char-
acter register CHARA multiplied by VALUE. With VALUE = 1, this
provides the equivalent of the NI mode.

SKPMW :: AUGg : RWRAg’ : SKIP~
55 : COND : P4

SKPMH :: AUGg : HWRAg’ : SKIP~
55 : COND :

S~~MC :: AUGg : HWRA~~ : SKIP~
55 : COND : F4

The address is contained in a half—word register for
th en. instructions. The conditions are POSI, NEGA , ZERO , NERO.

3 . 3 . 4 . 4 . 6 Dual c~ erand Memory Reference Skips

SKRMN :: AUG3 : HWRA31 : øwa*3
~ : SKIP~

55 : COND,4 0 0 0

SKRM C::AUG 3 : HWRA g :CHARA 63 : 5KIP 255 : COND :0 0 0

SKRCC :: AUG3 : ii~R*
3 : cii&iu63 : SKIP255 : COND

B 0 0 0 0
FB~~~

In al l cases : The unit ID is in the indicated AUG
field: The address of the memory referenced element is in the
first half—word register . The address of the second element
being compared is in the second half-word or character address .
The cond itions are as in the double element skips , A > B, A ~ B,

4 A B , A~~~B , A < B , A~~~B , A IB I , A -B. SKRUHcompares a
register half-word to a memory half-word. SXRMC compares a
memory character to a register half-word , and SKRCC compares a
memory character to a register character.

11— 16

- —- — —5.- - - - 5- ---5- - --—---—- .55-----— - -

— ~~~~~~~~~~~~~~~~~

.5 ~~ - - -

-_~ -—s-S~,-_.s-.___ - - ~~~~~

I -

-

3.3.4.5 Conditional Executes

EXECB :: AUGg : ADDRESS~
6’383 : CHARAg3 : BIT~

COUNT~
5 : TF

EXECC :: AUGg : ADDRESS~
6’383 : C I U ~~ : COND

COUNT~~

EXECH :: AUG~ : ADDRESS~
6’383 : HWRA~~ : COND : COUNT~

5

EXECW :: AUGg : ADDRESS~
6’383 : WRA~~ : COND : COUNT~

5

EXECB executes the instruction at the specified address
depending upon whether the bit specified in the register character
CHARA and BIT is true or false as specified by the TF field.
Zero to fifteen instructions can be executed . EXECC , EXECH , and
EXECW perform conditional executes on the condition of char-
acters, half—words and words respectively , whert the condition
is either POSI, NEGA , ZERO, or NERO. This - prov ides executes on:
Positive, Positive or zero, negative, negative or zero, or zero.

3.3.5 Load/Store Memory Instructions

3.3.5.1 Load/Store Registers

LOADR : : AUG~ : ADDRESS~
6’383 : REGA~

5 : NUMB~
6 : SETg

STORR :: AUGg : ADDRESS~
6’383 : REGA~

5 : NVMB~
6 : SETg

These instructions load/store NU~~ registers (32 bits)
starting with register REGA in register set SET. LOADR and
STORR will carry over into the next register set . If the speci-
fied total is greater than register 15 in set 3 , and the oper—
ation is LOADW , the excess words will be p laced in register set
0. Similarly , if the operation is a STORW , the data will be
taken out of set 0. Caution is advised in the use of this in-
struction .

3.3.5.2 Load/Store , Half—Word , Character , NN Mode

LOADH AUGg ADDRESSg2’767 HWRA~~

STORH AUGg ADDRESSg2’767 HWRAg1

11—17
r ’ ~~~~ -

~

~l ~~~~~~~~~~~~~~~ - -
-

[.~
~~~~~ (-~

__ 
S

- -  - 
_

— ~~~~~~~~~~~~~~ .— - 

— - 

5- p - 

-

— .5- - —‘5-- - - -  ~~~~~~ ~~~~~~~~~~~~ ~~~~~



— ~~ ~~~
5- -- -~~~~~~-‘5-~~~~~~~ 

~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 

-
~~ -~~5-~~ — -----—- --— -—- ——  - -I ---- ,. 

,— ——--5- — .5-- —

LOADC :: AUGg : ADDRESSg5 ‘535 : CHARA~
3

STORC :: AUG~ : ADDRESS~
5’535 : CHARAg3

These instructions perform the indicated load or store
for the character or half-word register specified from the
memory address specified.

3.3.5.3 Load/Store via Registers

- LORDW :: AUGg : HWRAg’ : REGA~
5 : CHARAIN DEX~

3 : BN

STRDW :: AUGg : HWRA~’ : REGA~
5 : CHARAINDE X~

3 : BN

LORDH :: AUGg : HWRA~~ : HWR.A~~ : CHARAINDEXg3 : BN

STRDH :: AUGg : HWRAg’ : HWRAg’ : CHARAINDEX~
3 : BN

LORDC :: AUGg : HWRAg’ : CHARAg3 : CHARAINDEXg3 : BN

t~1 STRDC :: AUG~ : HWRAg’ : CHARA~
3 : CHARAINDEXg3 : BN

LORDW :: AUG~ : HWRA~
1 : REGA~

5 : CINDEXg3 : AUG2g : BI

STRDW :: AUG~ : HWRA~
1 : REGA~

5 : CINDEX~
3 : AUG2g : BI

LORDH :: AUG~ : HWRAg’ : HWRA~~ : CINDE43 : AUG2~ : BI

STRDH :: AUG~ : HWRAg’ : HWRA~
1 : CINDEX~

3 : AUG2g : BI

LORDC :: AUG~~ : HWRA~
1 : CHARA~

3 : CINDE43 : AUG2g : BI

- -

~~ STRDC :: AUG~~~ HWRA~
1 : CHAR43 : CINDEX~

3 : AUG2g : BI

LORDW AUGg HWRAg’ REGA~
5 CINDEX~

3 AT.~~ P1

~ 

STRDW AUGg HWRA~
1 REGA~

5 CINDE X~
3 

AUI P1

\
~~ - -~~ - :,~ --‘

_ _ _  ____ \

~~~~~~~~~~~~~~~~~~~~~~~~~~ 

S - --

~

- -
-
~~~~~~

- .

~
-—..• - - 

- 

~~

- - - - -5 - —5-

- - 5  __ ___ ~~~~~~ ___~__.5 _ _ ’_~ __ _.5 ~ I- ~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ __ .5 _ _ a A ~~~~~~—.__.5_ - - -~~~~~ -—~~ - - .5-—



I

LORDH :: AUG~ : HWBA~
1 : HWR4] : CINDEXg3 : AUGg : P1

STRDH :: AUGg : HWRA~
1 : HWRA~~ : CINDE X~

3 : AUG~ : P1

LORDC :: AUG~ : }IWRA g’ : CHARAg3 : CINDEX~
3 : AUGg : P1

STRDC :: AUG0 : HWRA0 : CRARA0 : CINDEX0 : AUG0 : P1

These instructions perform load/store of words , half—
words , and characters. The address portion of the instruction
is contained in the specified half—word register. Note that the
range of the contents of the specified register depends upon
whether the item is a word , half-word , or character. For words ,
the range is 65 , 536 words , qr four memory units , or 3 memory
units beyond the one specified by the AUG field. For half-words ,
the range is 65,536 half-words, or 2 units, while for characters ,
the range is one unit — that which is specified by the AUG field .
The second specification (REGA , HWRA , or CHARA ) specifies the
source/destination element as a register , half—word register , or
character register. All of these instructions are indexed by

H the contents of a spe-cif led character register CINDEX . The in—
direct modes , as usual , have a second AUG specification given by
AUG2 , as usual.

3.3.6 Single Operand in Memory via Register

OPERW : AUGg : HWRA~~ : OPS : NN

OPERH : AUG~ : HWRAg’ : OPS : NN

OPERC : AUG~ : HWRA~
1 : OPS : NN

OPERW : AUGg : HWRAg’ : CINDEXg3 : VALUE~
6 : OPS : CN

OPERH : AUG~ : HWRA~~ : CINDEX~
3 : VALUE~

6 : OPS : CN

OPERC : AUG3 HWRA31 : CINDEX63 : VALUE16 : OPS : CN0 0 0 1

AUG and HWRA as usual specify the AUG f ield the half-word
register that contains the address. Extended range addressing
applies . CINDEX is the register character containing the index
value . VALUE contai4s the multiplier for the CN mode . VALUE 1

• 1
11— 19

I S - .5

_ _  

I - --.
--5-- -— ..._ ; - - —a’  ~~~

~‘



__________________________________________________ - - - . 5  _ ----5--—-- ~ 5~~~~~

— converts these instructions to the BN mode, however , the assem—
bier provides pseudo ops OPERX:BN. The operations specified by
OPS are : CLEAR (set all 0’s), LOGICAL COMPLEMENT , ARITHMETIC
NEGATE , and ARITHMETIC ABSOLUTE VALUE .

3.3.7 Bit Manipulation in Memory via Register
—

SETBT : AUGg : HWRAg’ : BIT~ : NW

CIJRBT : AUGg : HWRA~
1 : BIT~ : NN

COMET : AUGg : HWRAg’ : BIT~ : NW

SETBT : AUG~ : HWRAg’ : BIT~ : CINDE43 : AUG2 : BI

CLRBT : AUGg : HWRAg’ : BIT~ : CINDEX~
3 : AUG2 : BI

COMET : AUG~ : HWRAg 1 : BIT~ : CINDEX~
3 : AUG2 : BI

SETBT : AUG~ : HWRA~
1 : BIT~ : CINDEX~

3 : VALUE~
6 : CN

CLRBT : AUGg : HWRA~
1 : BIT~ : CINDEX~

3 : VALUE~
6 : CN

COMET : AUGg : HWRAg’ : BIT~ : CINDEXg3 : VALUE~
6 : CN

- : 
- These instructions provide the setting (SETBT), resetting

( CLRBT), and logical comp lementing ( COMET ) of the specified BIT ,
H to be found at the character address in half—word register HWRA .

The index is given by character CINDEX. The Cli mode is also used
to provide the BN mode by using a VALUE of 1. Assembler pseudo-
ops are provided by SETBT:BN, CLRBT:BN and COMBT:BN.

- 
1 3.3.8 Operations Between Registers and Memory

DOTMW :: AUGg : HWRA~
1 : WRA~

5 : OPS : NW

DOTMH :: AUG~ : HWRAg’ : HWRAg’ : OPS : NW

DOTMC :: AUG~ : HWRAg1 : CHAR43 : OPS : NW

11—20
r



Fr -

P AO—A 036 8fl NORTH ELECTRIC Co GALlON OHIO n e  17/2
COI*LRIICATIONS PROCESSOR SYSTEM. (U)
JAN 77 K HAGSTROM. B BEIZER F30602—73—C—031*

UNCLASSIFIED RAOC—TR —76—3914—VO L—a Pt.

2o~3

U



— — .

—.——-— - ——..-- ——-- —-~--
-.---- .-.- - 

~~~~ - -.
--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—

DOTWM :: AUG~ : HWRA~~ : : ops :

DOTHM :: AUGg : HWRA~
1 : HWRAg~ : 01’S : NN

DOTCM :: A1JG~ : ca&a&~~ : ops : NN

DOTMW :: AUGg : HWR4’ : WRA~
5 : CINDEXg3 : ATJG2 : OPS : BI

DOTMH :: AUGg : HWRAg’ : HWRA~
5 : CINDEX~

3 : AUG2 : OPS

BI

DOTMC :: AUG~ : HWRA~
1 : CHARA~

5 CINDE43 : AUG2 : OPS

BI

DOTWM :: AUG~ HWRA~
1 WRA~

5 : CINDE43 : AUG2 : o~s

BI

DOTHM :: AUG~ : HWRA~~ : : CINDEXg3 : AUG2 : OPS

BI

DOTCM :: AIJGg : HWRAg’ : CHARA~
5 : CINDEX~

3 : AUG2 : OPS

BI

DOTMW :: AUG~ : HWRAg’ : WRA~
5 : CINDEX~

3 : VALUE~
6

OPS :CN

~::: 
::~:U~~ : : HWRA~~ : CINDEX~

3 : VALUE~
6 :

DOTMC :: AUGg : HWRAg’ : CKARA~~ : CINDEX~
3 : V&LUE~

6

OPS:CN

DOTWM AUG~ WRA~
5 : CINDEX~

3 : VALT.1E~
6 :

OPS CN

11—21

— — — i ..—- — - ~~~~~~~~~~~~~~ 
-



DOTHM :: AUG~ : HWRA~~ : BWRA~~ : CINDEXg
3 : VALUE~

6

OPS:CN

DOTCM : AUGg : HWRAg’ : CHARA~
5 : CINDEX~

3 : VALUE~
6

OPS : CN

DOTMW :: AUGg : HWRAg1 : WRA~
5 : CINDEX~

3 : AUG2g : OPS :

DOTMH :: AVGg : HWRA~
1 : }IWRAg’ : CINDEXg3 : AUG2~ : OPS

DOTMC :: ATJGg : HWRAg’ CHAR43 : CINDEX~
3 : AUG2~

OPS : PI

DOTWM :: AUGg : HWRA~
1 : WRAd5 : CINDEXg3 : AUG2g : OPS

P1

DOTHM :: AUGg : HWRAg’ : HWRAg’ : CINDEX~
3 : AUG2g

OPS:PI

DOTCM :: AUG~ : HWRA~
1 : CHARA~~ : CINDEXg3 : AUG2g

OPS : P1

These instructions come in four sets of six. The differ-
ent sets correspond to the NN, BI, CN, and P1 modes, with BN
obtained from CN by setting VALUE to 1 as usual. The mnemonics
are interpreted as follows in terms of operands A and B:

DOTMW - it is a word operation and the A is in memory
while B is a word register.

DOTWM — word operation with A in a word register and B
in memory. j

DOTMH , DOTHM , DOTMC, and DOTCM are interpreted similarly,
except that the operands are half—words and characters. OPS is
one of the following arithmetic or logical operations. In all
cases but one, the B operand is modified and the A operand re-
mains unchanged.

11-22



-V. 4-

A + B

A - B  -~‘B

A and B —~‘B

Ao r B —~~B

AB or A~ —
~~~~ B (Logical inequivalence)

AB or i ~ —
~~~~ B (Logical identity — coincidence)

A ~~ B (Interchange A and B; both A and B
changed)

A or B -
~~~~~ B (A implies B)

3.3.9 Shifts and Rotates

All shifts and rotates are done in registers.

3.3.9.1 Logical Shifts

SHIFW ::WRA ~
5 :LR~~ : Z O : NUM~~~: NUM~~

SHIFH :: HWRA~~ : LR~ : ZO : : NUM~~

SHIFC :: CHARg3 : LR~ : ZO : NUM~ : NUM~

These shifts are done on words, half-words or char-
acters. The element is specified by WRA , HWRA , and CHARA re-
spectively. All shifts occur in two steps — first in one
direction , and then in the other. The direction taken first is
specified by the LR field. If LR is L(eft) there will be a left
shift followed by a right shift. The number of bits shifted on
the first shift is specified by the first NUM field. The number
of bits on the second shift is specified by the second NTJM field.
If only one NUM field is specified in the source code, the
second NUM field will be set to zero, resulting in an ordinary
left or right shift as specified by the LR field. Bits which
are shifted out are lost. The ZO field is a two bit field which
specify what will be shifted in on the right and what will be
shifted in on the left. For example:

SHIFH 14 L 0173

Specifies that first a left shift of 7 bits will be
performed and the vacated bits on the right will be replaced
with l’s. This will be followed by a right shift of 3 bits,
with the vacated bits on the left replaced by 0’s

11—23

_____a___~k~ ________

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~ — —--

3.3.9.2 Arithmetic Shifts

Left arithmetic shifts are equivalent to multiplication
by powers of 2. Right arithmetic shifts are equivalent to divi-
sion by powers of 2. The sign of the operand is preserved and
the shift—in bits are consistent with the arithmetic shift mode
and the sign. Arithmetic shifts are unidirectional. The appro-

• priate overflow bits (word, half-word , and character) will be
set should that occur as a result of the shift.

SHATD :: WRA~
5 : LR~ : NUM~

1

SHATW :: WRA~
5 : LR~ : NUM~~ . 

I

SHATH :: HWRA~
1 : LR~ : NUM~~

SHATC :: CHARA~
3 : LR~ : NUM~

SHATD is a double arithmetic shift. In a left shift,
this carries over into register (WRA)—l. In a right shift the
carry over is to (WRA)+l. The Overflow flag is set only upon
double register overflow on a left shift. The contents of the
adjacent register is cleared before the shift and the sign is
corrected.

3.3.9.3 Rotates

Rotates are logical , unidirectional , and single ele-
ment.

ROTAW :: WRA~
5 LR~ : NUMg’

ROTAB :: HWRA~
1 : LR~ : NUM~~

ROTAC :: CHAR43 : LR~ : NUMg

3.3.10 Count Instructions

3.3.10.1 Count in Registers

These instructions count the number of leading,
trailing, or internal zero’s or one’s of a specified word, half—
word, or character element into a specified character register.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ _ _ _ _ _ _ _ _ _ _ _ _

I
KONTW :: WRA~

5 :LT:Zø : CHARAg
3

KONTH :: RWRA~
1 : LT : ZØ : CRAR43

KONTC :: CHARA~
3 : LT :

KOMEW :: WRA~~ : ZØ : CHAR43

KONEH :: HWRA~
1 : ZØ : CHARAg3

KONEC :: CHAR43 : Z~ : cHARA~
3

The first field (WRA , HWRA , CHARA) specifies the ele-
ment being counted. The second field in KONTW, KONTh, and KONTC
specifies whether leading or trailing bits are being counted.
The Z~ field specifies whether Zero’s or one’s are being counted,
and the CHARA field identifies the register character in which
the count is being made. KONEW , KONEH and KONEC count the speci—• fied bits without regard to where they appear in the element.

3.3.10.2 Counts in Memory

Equivalent instructions to the above are available
which performs the same function for a word, half—word , or char—

L

acter in memory . Again , the element being counted is not affected.
The first field specifies the AUG and the second field (HWRA)
specifies the half—word register in which the address of the ele-
ment to be counted is to be found.

KOMTW :: AUGg : HWRAg’ : LT : Z~ CHARAg3 MN

:~
KOMTh :: AUG~ : HWRAg’ : LT : ZØ : CHARAg3 : MN

KOMTC :: AUGg : HWRAg1 : LT : Z~ : CHARAg3 : MN

Ko:Tw AuGg HWRAg: LT ~~ ca&a.~
3 CINDEX~

3

KOMTH AUG0 HWRAo LT ZO cHARA0 CINDEX0
BN

4
11—25

4
4

r.~~

.—

t 2 J ~~~
~~~~~~~~~-:: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —.— ---- —--—

KOMTC :: AUGg : HWRAg’ : LT : Z~ : CHARAg3 : CINDEX~
3

KOMEW :: AUGg : HWRA~
1 : Z~ : CHARA~

3 NM

KOMEH :: AUG~ : HWRA~
1 : Z~ : CHARAg3 : MN

KOMEC : : AUG~ : HWRA~ ,
1 : ZØ : CHARA~

3 : MN

KOMEW :: AUG~ : HWRA~
1 : Z~ : CHAR43 : CINDEX~

3 : BN

KOME~ :: AUGg : HWRAg 1 : Z~ : CHAR43 : CINDEX~
3 : BN

KOMEC :: AUGg : HWRAg ’ : ZØ : CHARA~
3 : CINDEXg 3 : BN

3.3.11 Tally Instructions

These Instructions perform a conditional skip based on
what happens to a character or half—word register as a result of
an addition or subtraction of an immediate operand. The format
is:

TALYH :: OP~~~ : VALUE~
6 : HWRA~

1 : SKIP~
55 : FB

CONDITI ON

TALYC :: OP~~~ : VALUE~
6 : CHARAg3 : SKIP~

55 : FB

CONDITION

Where :

OP — specifies addition or subtraction .

I VALUE — is an immediate positive integer operand .

HWRA , CHARA - is the address of the half—word register
or character being modified .

~~ SKIP — is the skip value.

‘~:~ 
•
~

-?

11—26
~

•
~~~~~~

••

~~

•

_____________ _

~

••4•_ ~~~~~~~-------—S---.•— ~. L . ___

_ _ _ _ _ _ _ _ _ _ _ _
S

CONDITION - is one of the following: OVERFLOW , UNDER-
FLOW, POSITIVE, NEGATIVE, ZERO, POSITIVE OR
ZERO, NEGATIVE OR ZERO, POSITIVE ONE.

PB — the direction of the Skip.

3.3.12 Double Register Operations

These are all operations between registers of various
sizes. The fourth character in the mnemonic is by convention
the A operand and the mnemonic Indicates whether it Is a word
(W), half—word (H) or character. The fifth character in the
mnemonic Is by convention the “B” operand and follows the same
rules. The results of the operation Is always placed in the B
register, except for the interchange. B register overflow and
underf low flags will be set for the arithmetic operations , but
not for the logical operations. In the case of the interchange
operations where a smaller element is being moved into a larger
element , the smaller element is right Justif led and the higher -

order portions of the larger element is unaffected.

OPSWW :: WRA~
5 : WRA~

5 : OPS

OPSHW :: HWRAg’ : WRA~
5 : OPS

• OPSCW :: CHARA~
3 : WRA~

5 : OPS

OPSHH :: HWR4’ : HWRAg’ : OPS

OPSCH :: CHARAg3 : HWRAg1 : OPS

OPSCC :: cHARAg3 : ~~~~~~~ : o~s

The operations are:

A + B —k B Addition

A — B —k B Subtraction

• A ’ B —
~~~~ B Multiplication

• B/A —
~~~~ B,A Division, remainder in A.

£ —b B Transfer

A ~~~~~~~~~~ B Interchange

—A -.—~~~~ B Arithmetic negative transfer

11—27

—
— • —• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —

__ Shl - -~~ -~~ ~~~~~~~~~~~~~~~~~~~~~

I B Logical complement transfer

A ‘ B Absolute value

Aor B ‘- B OR

A and B ~ B AND

AB V I ~ - B Equivalence , coincidence

A~ V lB > B Inequivalence , exclusive OR

AB)‘ B Not B and A

IV B - B Not A or B

~ B Not A and B, Sheffer Stroke func-
tion

3.3.13 Triple Register Operations

In all of these operations, the elements are identical
in size. There are three versions for word , half—word and
character mode:

TOPSW :: WRAA~
5 : WRAB~

5 : WRAC~
5 : OPS

TOPSH :: HWRAAg’ : RWRABg’ : HWRAC~
1 : OPS

TOPSC :: CHARAA~
3 : CHARAB~

3 : CHARAC~
3 : OPS

The operations are:

A + B

A - B —~~C

• A . B —~~C

B/A —~ C remainder in B

A ~ V B C —
~~~~ B conditioned disjunction , select

A or B according to C.

~ 
j A V C B —k B A or B if C is True ; otherwise • 

-

A - O R through mask in C.

A (
~ V B) —~ B A and B if C is True , otherwise

A - AND through mask in C.

11—28

___________________________________ - —-- ~~-~
•
-~~ - - • - -~~

~~~ - - ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ . — .  —~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ - ••~~~. ——.~- •


I — ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- • — •

_ _ _ _

-
•

C(X ~ V AB) V ~ A -
~~~~ B A B , otherwise A through

mask in C.

3.3.14 Single Register Immediate Operand

In all of these operations, one of the operands is to be
found as an immediate operand of the instruction. The register
always takes the role of the B register in the equivalent double
register operations. All double register operations discussed
in 3.3.12 above apply. IMMHW and IMMCH stand for immediate
operand half—word, and immediate operand character. The inter-
pretation is logical or arithmetic depending upon the operation
selected.

V MPSHW :: IMMHW : WRA~
5 :

MPSCW :: IMMCH : WRA~
5 : OPS

MPSHH :: IMMHW : HWRAg’ : OPS

MPSCH :: IMMCH : HWLAg1 : OPS

MPSCC :: ~MMCH : CHARA~
3 : OPS

3.3.15 Dual Registers, Immediate _Operands

• There are two instructions in this set for half—words
and characters . Other than the fact that one of the operands

H is immediate , the operations are the same as for triple register
functions , with one of the registers being replaced by the sped —
fied immediate operand. Operands are Interpreted as arithmetic
or logical in accordance to the selected operation. The instruc—
tion formats are :

TIMOH :: HWRAA~
1 : HWRAB~~ : IMMHW : OPS

TIMOC :: CHARAg3 : CHARAB~
3 : IMMCH : OPS

The operations are:

A + I M M O P  —~~ B

A - I M M O P  —~‘ B

A * I M M O P  — ø B

A/IMMOP —
~~~~ B , remainder in A. ~

, • _
;

•
~~~~

~

11—29 

-- -~~~
---- 

_ _ _  

. •
~•

— 
• •-~: ~~~

—a—- ~~~~~~ — - ..S& — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~fl t.c.na. _ahitiai ~~~, aSS ~~~~~ .J



___________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ .~~~~~~L_~_L - - —--- - -

A * IMMOP V B * IMMOP -
~~~ B conditioned disjunction

• according to value of
immediate op.

A V IMMOP * B —~~ B A or B selected by IMMOP .

A * (IMMOP V B) —~~ B A and B selected by
IMMOP .

IMMOP*(i*~ V A*B) V IMMOP*A ~~B A B selected by
• IMMOP .

3.3.16 Stack and Queue Management Instructions

H 3.3.16.1 Push and Pop Instructions

• Push and Pop instructions are provided in the word ,
half—word , and character modes. Control is via a designated ‘1
word register which is identified by the first field of the
instruction. This control word contains the UID of the memory
unit where the stack control word is to be found , the stack con-
trol word address, and 8 flag bits. The operation is like the
operation of the subroutine entry—exit stack. Stack overrun
and underrun protection is provided by placing the appropriate
jump instruction in the boundary locations. Half—word and char-
acter stacks must terminate on word boundaries. Two forms of
these instructions are available ; with the number of characters,
half-words, or words to be PUSH’ed or POP’ed given as an immed-
iate operand ; or with the number specified in a register char-
acter.

PUSHW :: WRA~
5 : iMM~

6 : WRA~
5

POPPW :: WRA15 : 1MM16 : WRA 15
0 1 0

• ~usmi :: wii~
5 : i~ ,i~

2 :

POPPH :: WRA~
5 : IMM~

2 : HWRAg1

PUSHC :: WRA15 : 1MM64 : CHARA63

POPPC WRA~
5 IMMr CHARAg3

11—30 i •

~ ~~~~~~~~~~~
— — - - a- --- -. - —

I ~
.

~
—

•~__ — ——~--•- •— _ — a ~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ _______ — ~~~~~~~~~~~~~
—

~~~



• •~~~~~~~~~~~~~~~~~~~~ .• ~~~-~~~~~~~~~~~~~~-~~~~~~~ - r ~ ~~~~~~~
‘ • - 

-
_ __  —--

~~
---‘----

~~~~~~~~~~~ ~~ rL~~’~_ - ~~~
-

~~~~~~~
— —

~~~
--- ——-- • -- ———- — —

• PUSCW :: WRA~
5 : CHARAg3 : WRA~

5

POPCW :: WRA~
5 : CHARAg3 : WRA~

5

PUS CH :: WRA~
5 : CHARAg3 : HWRAg’

• POPCH :: WRA~
5 : CHARA~

3 : HWRA~
1

PU$CC :: WRA~
5 : CHARA~

3 : CHARAg3

POPCC :: WRA~
5 : CHARAg3 : CHARAg3

The f irst field specifies the control register. The
second field is either an immediate operand or a character ad—

• dress . In either case , it specifies the number of elements
which are to be PTJSH ’ed or POP ’ed. The last f ield specifies
the first register word , half-word , or character which wil l
participate in the operation . Assembler checks are provided
for those instructions with immediate operands to see that over-
runs are not specified. If more characters are specified than
possible (e .g . PUSH 14 words star t ing with register 6 , or POP
26 characters start ing with character 44) loading and unloading
will take place only for the real registers . There will be no
carry into the other register sets. Similarly , only the proper
n umber of characters will be wri t ten into memory . An interrupt
will , however , be generated Indicating the attempted violation .

-4
3.3.16.2 Pull and Shove Instructions

3.3.16.2.1 FIFO Chain Structure

The various PUSHX and POPPX instruct ions provide
contro l over a programmer specified LIFO (Last—in-First—Out)
stack. An analogous set of instructions provide control over
a FIFO chain (First—in—First—out). The chain controlled via a

• register which points to a chian control word in memory . The
first (highest order) character of the register does not partici-
pate in these instructions and is unaffected. The second char-

- • acter contains the UID of the memory unit in which the control
-

•
word and the chain will be found. The third and fourth char—
acters contain a 16 bit word address. Extended range addressing
applies here ; consequently, the chain itself and the chain con-
trol word could be in any of four contiguous memory units.

• ~~~~
•

11—31
• •-~~

•
•~

~~~~~~ ~~~• . --
~~~~• . •~~~

•• •- ~~~~~~~~~~~~~~~~~~~~~~

•~~~~~~~~ TT’ ~~~~ i:~~
—--:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

All FIFO chains are word chains and are exactly 256
words long. The chain control word has the following format:

TOP COUNT BOTTOM COUNT HEAD OF CHAIN ADDRESS

The chain itself has the following structure :

1—2

1—1 - 1
HEAD OF CHAIN _________________________ 0

____________________________ :1

CURRENT TOP ___________________________ 3
-

— 
.- 249

__________________________ 251

______________________________ 252

CURRENT BOTTOM _______________________ 253

______________________________ 254

1+256 

255

The Head of Chain Address is a 16 bit word address
relative to the UID in which the chain control word is found.
It points to the “head of the chain ” , which is a marker for the
first of 256 words that comprises the chain. It is not to be
confused with the “TOP” or the “BOTTOM ” of the chain . Locations
1—1 , 1—2 and 1+256 are loaded with programmer specified instruc—
tions, used to control chain overruns and underruns. The 1—2
location will not be used in most applications and is optional.

— 
t_~

•
~

.

11—32

• 
~~~~~~~~~~ .~~~~_~•_• . —• • - ~~ a—~~~~~~ •-••~~ —~~~. -

-

- •

• •
• —•-— ——~~~ ~~~ — _

~~~-~~—•-.‘.~~ ~~~~~~~~ • ~~~~ ----——~~~ •- - -— ---—- • •- —~&—~~~~ •—-—•—— --~~ —•• ••- -•~~~~~~~~~ -- ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~••~--‘ • • -• •



- 
- ---- - ~ • H~L~~~~ __ _ _ _

3.3.16.2.2 FIFO Chain Operation

The TOP indicator specifies the oldest entry in the
chain. Normally , data is taken off the chain from the TOP. If
a PULL instruction is issued, the spec ified number of wor ds are

• 

• “PULL’ed” from the TOP location and the TOP counter is decre—
• mented and appropriate amount. The chain is rotary , so that if

words are PULL ’ ed from before location 0 relative to the head of
chain address, subsequent words will be pulled from location 255
and up. Prior to the execution of a PULL instruction , the rela—
tive position of the BOTTOM and the (TOP-NUMBER OF WORDS PULLED)

• ‘ is checked for underrun . If underrun would occur as a result of
the PULL , the PULL Is not executed, but the instruction in 1-1
is executed instead.

A SHOVE instruction adds words to the chain starting
with the current BOTTOM, also wrapping around location 255 to 0
as required. If the BOTTOM should overrun the TOP, the instruc-
tion at location 1+256 will be executed and the SHOVE instruc—
tion will be aborted .

Current TOP and BOTTOM are always assumed to be cor-
rect prior to the execution of these instructions. Hardware
logic properly controls the switchover which occurs, when going
“around the bend” .

3.3.16.2.3 Instructions

SHOVE :: WRA 15 : 1MM16 : WRA15
• 0 1 0

PULLS : : WRA~
5 : IMM~

6 : WRA~
5

These instructions perform SHOVE’s and PULL ’s using
the first WRA for the address of the control word. The immed-
iate operand specifies the number of words to be SHOVE’d or
PULL ’ed and the second WRA specifies the register from which or
to which the data is to come or go. Register boundary conven—
tions are the same as for the PUSH :nd POP instructions.

SHOVE :: WRA0 : CHARA0 : WRA0

SHOVE :: WRA~
5 : CHARAg3 : WRA~

5

These perform the same operations except that the
number of words manipulated is found in the specified CHARA

“—33

k — 

~~~~~~
— — .—

~~~—-~~~
- - - • • • _ _• —~~

-
~~_ - ~ • ‘.

• - • - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~
6~

APEND :: WRA~
5 : IMM~

6

APEND :: WRA~
5 : CHAR43

BHEAD :: WRA~
5 : IMM~

6

BHEAD :: WRA~
5 : CHAR43

CURTL :: WRA~
5 : IMM~

6

CURTL :: WRA~
5 : CHARA~

5

H UPEND :: WRA~
5 : IM!4

6

UPEND :: WRA~
5 : CHARA~

5

These instructions all refer to the contents of the
specif led register for the location of the control word. The
number of words operated on is specified by either the 1MM field
as an immediate operand , or the contents of the CHARA field.
The APEND instruction moves the bottom pointer DOWN the number
of word locations specified , without clearing the contents. The
CURTL Instruction moves the bottom pointer UP the specified
number of words. The BHEAD instructions move the top pointer
DOWN, and the UPEND instructions move the top pointer UP. In
all cases of overruns or underruns, the appropriate instruction
in locations 1—1 and 1+256 will be executed.

3.3.17 Miscellaneous Instructions

3.3.17.1 Analyze

ANALZ :: AUG~ : ADDRESS~
6’383 : WRA~

5 : MN

-H ANALZ :: AUGg : ADDRESS~
6’383 : WRA~

5 : AUG2 : NI

ANALZ :: AUGg : ADDRESS~
6’383 : WRA~

5 : HWRAg’ : BN

t Fetches the contents of the word specified by AUG -
• ADDRESS, interprets that word as an instruction , performs all

indicated effective address calculations and returns the final
address including its AUG into register WRA . The operations
specified by that instruction are not carried out. All registers

- • and memory locations other than WRA are not affected.

- ~~~~~~~~—••a—.-------- --- - - - .- - -.
- - • •-~~•~.• -~~ • ~-

•
•

-

-.•--•.-—-,——-- --
~

--
~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ _ _  ____ _

• - - -  -~~-~~~ --—

3.3.17.2 Halt

Performs a halt of the CPU at all levels. Processing
does not resume until initiated externally by a OPEN unit micro.

H This is the equivalent of a self-inflicted CLOS. The external
command could have been generated through a channel by means of
an operator ’s console, etc. The instruction Is simply:

HALTS

3.3.17.3 Select Next Level
- 

• SNAPS

This instruction terminates processing at the present
level and resumes processing at the next lower level which is
not blocked. Return to this level following a SNAPS is to the
next sequential instruction following the SNAPS, unless other
instructions have been executed to change the program counter.

3.4 Inter—UnIt (I/U) Instructions

3.4.1 General

The CPU, as a unit of the system, and particularly in its
role as a controller of units, must be capable of Issuing
various I/U instructions. Many of these come about in the course
of ordinary instruction execution ; but most I/U instructions are
not part of the CPU repertoire itself. I/U instructions may be
issued in several different ways, depending upon the I/U Instruc—

• tion itself , and the mode used to Issue it.

L 

3.4.2 Single Character I/U Micro—Instructions

The following single character I/U micro-instructions
may be issued directly within the CPU repertoire. The format
is specified below:

GOOF :: UID~
55

REST :: UID~
55

CLOS :: UID~
55

4 OPEN :: UID~
55

POWR :: UID~
55 

•
-

255RT S T : : U ID0 : CHARA

“— 35

I



•~ “ r~ -~~ ~~ 
- 

—

~~~~~~~ 

-

~~~

.- - - • - -

~~

-- • 
•1

CHARA specifies the character location in which the re-
sponding unit’s status code will be placed.

XORO :: UID~
55

I LOCK::  UID~
55

UNLK :: UID~
55

• PINT :: UID~
55

FUST :: UID~
55 : CI EtA~~

The units control state is placed in the character reg-
ister cHARA .

- • LART :: UID~
55

GART :: UID~
55

INXT :: UID~
55 : CII~jt~~~ : STATE~

55

The resultant control state is placed in the character
register CHARA . The forcing state is specified by the immediate
operand STATE.

QUEP :: UID~
55 : CHARAg3

The units physical ID is placed in register CHARA .

3.4.3 Two and Three Character I/U Micro—Instructions

SLID :: UID~
55 : NEW LID~

55

• 
SMID :: UID~

55 : NEW MAX ID~
55

SICU :: UID~
55 : NEW PRIMARY ICU ID~

55 :
SISU UID~

55 NEW SECONDARY ICU ID~
55

CLPN UID~
55 PORT NUMBER~

11—36

• -
. •

b

_________ ____________ • • • •. .

— -- - - • -



.- - -
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —— --- —-- --—_ — — —

OLPN :: UID~
55 : PORT NUMBER~

SPNP :: UID~
55 : PORT NUMBER~

STAT :: UID~
55 : STATE~

55

CNID :: PID~
55 : LID~

55

• $ A unit ID does not have to be specified since the UID ~000 is implicit in the CNID command. -

•

3.4.4 Issue of I/U Command via Register

• The format of these commands is:

ISSUE :: UID~
55 : DESC :COMM : WRA~

5

The command is placed in the registers starting with WRA .
The second field of the command is either the first character of
the command , or the command descriptor if a third person, in-
direct or chained mode has been specified. The command is ex-
tracted starting with the specified register. If the command
should overrun the registers in the active register set, a
diagnostic interrupt will occur. Caution is advised in using
this mode for the transfer micros since the result will depend
upon what other commands were pending at the time . Generally ,
the data will come to and from registers. Caution is similarly

L 

advised in using the SST and FST commands in this mode since it
may result in overlaying the CPU ’s own control cache memory.• Such commands should all be issued in the third person mode.

3.4.5 Issue of I/U Command via Memory

These instructions fetch the I/U command from the speci—
-~~ fled memory locations and re—issue the command as if it were Its

own. This is not to be confused with the third person mode.
The same command issued in the third person mode, would make it
appear that the memory had issued the micro—instruction. The

• issuance of this command ties up two ports. Subsequent instruc-
tions will be executed if they are not I/U instructions. The I/U
instruction length is determined by the port logic and does not

• 
have to be specified.

- ISSUM :: UID~
55 : AUGg : ADDRESS~

6’383

The UID of these commands can be that of the CPU itself.
This allows all I/U instructions to be issued by the CPU.. 1

-
• 11—37

- ~
. I - • - ~~-~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ --~~

--~~~~ --——- --- - —~~~~ 
---

~~~~~~~~~~~~~~~~~~~~~ 
-

Z~~~~~~~~~~~~~ r~’ ‘o~~~~~~~~~~~~~ r~ ~~~~~~~
-~~.- -- —s~~~ - -—-,

Caution is advised.

3.5 The CPU as a Unit

3.5.1 Control Memory

Every CPU has a 128 or 256 character control cache memory .
The control memory is used to store priority and protection in-
formation for all other units in the CP. The SID of the re-
questing unit is used as an index to the control memory to fetch

• a character with the following structure : the interpretation
is similar to tnat of the memory unit control cache memory (see
Section V, paragraph 3.2).

P S I
I

~ ~1~
-
~
-..—

1

I i~ I -I-- I

• P fIeld — Three bit port priority field. A priority of
• 0 means that direct communications between the

specified unit and this CPU is not allowed.

S field — Two bit command protection field.

H I field — Interrupt priority field. Provides a built—in
priority category to be used in servicing inter—
rupts. A value of zero indicates that the unit
is not allowed to issue interrupts to this CPU.
The normal setting for this field is 1. With
this value, the CPU will respond only to the

• I/U interrupt commands discussed in paragraph
3.5.4 and the FINT command. Other values pro— -

duce special actions discussed elsewheres.

3.5.2 Command Protection

If the priority (P—field) is zero, then no commands are
allowed. Commands are subdivided into four categories as shown
below:

11 10

SET STATE GO OFF-LI NE
SET UNIT MAX CLOSE
SET STATE 1, 2, 3, 4 OPEN
INXMT POWER DOWN
SET LOGICAL ID RESET

i- ~~• - CONVERT NULL ID ~•

11—38
• ;-~~.~-~ A -

______________________ -~~•—
•-— — __

~~_ :_

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

F r  -- -

11 (Continued) 01

SET ICUID OPEN PORT 
- •

SET SECONDARY ICUID CLOSE PORT
FORCE INTERRUPT
SET N PRIMARY

00

FETCH UNIT STATE
- 

QUERY PID
RETURN STATUS

:1 LOCK PATH
UNLOCK PATH
FETCH STATE 1, 2 , 3, 4
XORO

• LOCAL ABORT
GLOBAL ABORT
ALL TRANSFERS -

H These categories are called 3, 2, 1, and 0 commands re—

L 

spectively. Category 0 commands are those which can be used in
-
• the course of normal data transfers , or which cannot change the

state of the memory unit . That is, they are “safe” commands —

their execution are not likely to cause problems.

Category 1 commands change the routing of data through• the matrix and can thereby affect matrix efficiency . Similarly ,
forcing an interrupt improperly will not generally cause system
malfunction but only cause spurious processing to occur.

Category 2 commands are used to change the state of the
unit, but not its logical identity or the contents of the con—
trol memory . Inappropriate execution of this command will
definitely affect performance , in fact, can cause the system to -

fail, but will not cause the system ’s logica] integrity to be
corrupted .

Category 3 commands are used to change the state of the
unit , its logical identity , and in the case of the INXMT corn—

~• mand, can cause the unit to behave in a totally bizarre manner
(deliberately for diagnostic purposes). Consequently , the exe—

• cution of these commands must be well guarded. Typically, cate—
gory 3 commands are executable only by CPU’s, the ICU, the SMU ,
and the BU. 

11—39 

-. S -- - — - — 
-. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~

-- - - - ~-~~~~- -  
-
~::T ~~ ~~~~~~~~~~~~~~~~~~~

The selection of which categories of commands are allowed
• a particular unit is determined by the value of the S—field in

the control word for that unit , in accordance to the following
scheme :

S 00 — category 0 commands only

• S — 01 — categories 0 and 1

S = 10 - categories 0, 1, 2

S 11 - all commands

3.5.3 Port Priority Control

Priority control rules are established as follows: 
-

(1) If the SID’s of the two commands are not equal, then
priority is established by the priority in the P—
field.

(2) If the P—field priorities are the same, the priority -
is established by the port order.

(3) If the SID’s are the same, the priorities are neces-
sarily the same since the same unit is involved. In
this case, the following scheme holds:

a. Category 3 commands have priority over 2, 1, and
0.

b. Category 2 commands have priority over 1 and 0. ‘

c. Category 1 commands have priority over 0.

d. If two or more commands for the same SID are in —

• 
- the same category , they are serviced in strict

FIFO order.

H 3.5.4 Port Command Stack

A stack entry consists of four characters. The number of 
-

• stack entries provided is double the number of memory ports.
-

• Stack entries can be used for any commands from any port - that
is, a particular stack entry does not have a built—in association
with a particular port. A stack entry consists of the following :

(PORT), S ID, OPCODE

(PORT), SID, OPCODE, OPCODE CONTINUATION

(PORT), SID, OPCODE, ADDRESS

11—40



r 5-- — —•- •----——•- —=•~ •- —5— 
__________________ 

____ -

• The OP~~DE could take one to four character spaces. If -

the total command requires two characters, then two commands
can be stacked in one entry.

Commands are stacked only when they are received on a
port which is in the locked state. Control line signaling by
the source unit is used to specify that a new command is on the
way. Commands are stacked in accordance to the priority scheme

- f  discussed in section 3.5 above. The new SID is compared to the
4 previous SID for that port - if they do not match, all stacked

commands for that port are aborted. A port could be in the
locked state either as a result of an explicit lock command or

- • because it is waiting for the completion of an ongoing memory
j operation. The port remains locked as long as there is a corn—

mand stacked for that port. Instruction stacking operations
are transparent.

3.5.5 I/U Commands

The CPU responds to all the generic unit commands when
given in the proper mode. There are additional I/U commands
related to the handling of external interrupts. These are dis—
cussed under the ICU. In addition, the CPU responds to the
following unit specific commands:

SET STATE:XX The program state is changed to XX.
Execution continues with the current
PC value for the new state.

LOAD REGISTERS:XX :CRARA :LENGTh :DATA

The registers in the specified set are
force loaded starting with the char-
acter register specified. The number

• of characters is given by LENGTH . All -
•

processing is suspended while this corn—
mand is taking place. All other port
operations are held up.

DUMP REGISTERS :XX : CRARA :NUMBER :UID: ADDRESS

The NUMBER of registers in set XX
starting with CkJARA are dumped to the
specified memory location. All pro-

4 cessing is suspended while this command
is in effect. The register contents - 

-
- - - ( themselves are not affected.

These commands , may with caution, be self—issued - that
is, with the CPU as the object of the command.

• t
11—41 tI

- 
_~~~~~~~S•

•~~~~~~~~
•• • _ —••-•-—-— - -. • • • •- - ~ -- •-•---- _-5-—— -- - - -

~-••—



- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
w•• .- •

~~~~~~~~~~~~~~~~~~~ 
-

3.6 cpu Alarm Processing and Traps

3.6.1 General

Most events that would class ify as interr upts in a
typical computer are either queued in memory directly as a re—
suit of I/O operations, or are handled by the ICU. Should the
ICU determine that the CPU in question is to be interrupted , the
ICU will force the subject CPU to the proper state and to the
proper instruction within that state. However , there are a
number of conditions which are detectable by the CPU, in which
the CPU itself can and should take action , without waiting for
the ICU. In all of these cases, however , an interru pt message
will nevertheless be transmitted to the ICU. Subsequent ICU
action might override the action taken by the CPU. This is a
programming matter.

-
• 3.6.2 Self—Detected Alarms 

-

All interrupts and interruptable conditions detected
directly by the CPU itself will result in a self—interrupt in
addition to the interrupt message sent to the ICU. Self—
detected interrupts are limited to malfunction and alarm condi-
tions detected by the CPU. Included in these are:

L
(1) Power alarm.

(2) Parity error in received matrix transmission .

(3) I/U micro issued by CPU is rejected.

(4) I/U micro issued by CPU not completed.

(5) Interrupt chain violation (see Section III).

(6) Other alarm conditions (to be specified).

3.6.3 Trap Operation

The CPU contains the UID, the word address of the head of
a list of instructions and the number of instructions for each
entry on the list (trap entry length) in an internal register.
The trap entry list consists of a list of set of instructions,
(e.g. 17 entries of 12 instructions each). Every entry on the
list must consist of the same number of instructions . Upon

- 
detection of an alarm condition, all normal processing is sus-
pended and control shifts to the trap list. If the memory unit

1’ required to execute the trap list cannot be reached because of
say, a parity error or permanent blockage in the matrix , the CPU
will halt and issue a major alarm interrupt to the ICU. Failing

• that, it will issue a major alarm interrupt to the alternate ICU .

11—42

- 1~~* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 5 

- - - -

-- - - - • ~~~~~
- •~ ~~~~~~~~~~~~~~~~~~~ 

•— -.-—
~

-- •••
~

-
-
~~~

-
~~~~

-
~~~

-
~~~~~~~~~ 

—
- 



The alarm condition code is combined with the present
program state and multiplied by the trap entry length. The re-
sulting number is used as an index to the trap entry list. The
instruction starting with the calculated location in the trap
entry list are then executed. This mode of operation takes pre-
cedence over all other program states. Each entry in the -trap
entry list can consist of an instruction sequence of up to 16
instructions. Jumps and skips may be taken at will. Similarly ,
EXECUTE instructions may be issued. However, at the conclusion
of the number of instructions that were declared as the length
of the trap entry list, control will revert back to the current
program state and PC value. This could be a different state and
PC than the one that had been left , since the programmer could
have issued instructions that changed the state and/or the PC.
Additional interrupts (self—generated) can occur, but will not
interrupt the current sequence of instructions.

The trap mode has no registers of its own. All normal
mode registers can be used as desired in the trap mode. The
set is selected by issuing a state change instruction. Note
that the CPU will revert back to the last state selected. In—
structions executed in the trap mode will not modify the PC of
whatever state the CPU is in. Overflow and underf low flags,
however , will be set and reset in the normal manner. All instruc-
tion executions while in the trap mode are relative to the UID -~
stored in the trap control register. This UID will override all
other PC UID’ s. Similarly , in all other instructions which cause
an effective jump, such as jump instructions, subroutine entry
and exit instructions, program state change instructions, etc.,
the base UID for instruction execution will not be changed - it
will remain the UID stored in the trap control register.

Execution of the first instruction in the trap list cor—
responding to the interrupt code has the effect of turning off
that alarm. If more than one alarm condition should occur
simultaneously , the trap will be to the smallest numerical value
- e.g., corresponding to the lowest number alarm. Other alarms
which occur while in the trap mode are not lost; but are ignored
until acted upon explicitly . When acted upon , they are reset.
Additional alarms or a given type occurring prior to the acknow—
ledgement of that type of alarm will be ignored. Operation in
the trap mode overrides stalls in the normal program states.
Stall counts are not affected by the trap mode. Effectively,
entering the trap mode causes a permanent stall for all levels.

3.6.4 Trap Related Instructions

The following IU unit specific instructions are provided: 
-

LTRAP — Loads the trap register with the three characters -

provided. S 
-
.

11—43 

- - — - •- - —.5- — _~~~ •~~ .5-.5.~~ _•~S• •_ - 5~:~’I ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~



____________________ -
~~—5---- _ _- -~-~~~~~~~~~~

STRAP — Stores the trap register contents.

When issued as cPU instructions, they take the following
form :

LTRAP :: UID~
55 : WRA~

5

STRAP :: UID~
55 : WRA~

5

• These instructions can be self—issued.

SI~~ST::

This instruction causes a skip equal to one more than the
program state value — if the program state is 0, a skip of one
instruction will be executed. If the program state is 1, a skip
of 2 instructions will be executed , etc.

RMAIN :: IMM~
55

This instruction, if executed in the normal mode has no
S effect. If executed in the trap mode will cause the trap mode

L to be in effect for an additional 1MM instruction executions ,
up to a total maximum of 255. If , for example , the trap mode
counter is at 200 and an RMAIN::200 is issued, the CPU will re—
main in the trap mode for 255 instructions .

ALLAY:: : IMM~
6,383

This instruction is issued from a program state and forces
an entry into the trap mode , at the location specified by the
immediate operand relative to the base address in the trap con-
trol register. Once the shift is executed , operation is identi-
cal to the normal trap mode operation.

DOWNN::

Forcible exit from the trap mode to the current program
state. No effect if in the normal mode.

- DSI~~S: :

Remains in the trap mode if there is another alarm
- 5- .

’-; 
• pending , and executes the trap list for that alarm. Otherwise,

- 

- 
- - exits the trap mode to the current program state.

- ~~

S- 

- 
CLEAR :: IMM~

5

:: 
- 

11 44

5-
&. ._ _ _  ~~~~~_ • -

~LS.Sa.- ~~~~~~~~~- -  ~~~~~~~~~~~~ 
_ • ._ ~~~~ & ½k , 

- • - - S 
-

5’ .5__a___ ~_ ..._ S_~~~~_ & _ ~~~~~~ t aas~. ~~~~~~



II 
~;- 

—,,—- —5-—
~~~~

--5
~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~• - - -

~~~~~ 
#1

-

‘ S

Clears the alarm code specified by the immediate operand.

-~~ BLOCK :: IMM~
5

Blocks alarms for the alarm code specified by the immed-
iate operand.

CLAR M : : IMM~~

Unblocks alarms for the alarm code specified by the im-
mediate operand.

3.7 Flags and Breakpoints

The CPU provides for up to 256 control flags to be used
for various purposes in sets of 32 each. These flags are in-
dependent of program state and are not affected except under
explicit instructions from the program . All operations applied
to non—existent flags will be ignored . The following instruc-
tions are provided for manipulating these flags :

SETFG :: FLAG~
55

Sets the indicated flag.

RSTFG :: FLAG~
55

Resets the indicated flag .

COMFG :: FLAG~
55

Complements the indicated flag.

SKIPF :: FLAG~
55 : TF~ : SKIP~

55 : FB~

SKUPF :: FLAG~
55 : TF~ : SKIP~

55 : FB~

These two commands are analogous to the bit conditioned
register skip instructions SKIPB and SKIPS, except the condition

- - is that of the flag. The SKUPF instruction will set or reset
the flag as appropriate if the skip is taken .

j LOADF RANGE~ WRA~
5

A

11—45
-

~~~~
•

* - S._ . •t

- III~~~T T I ~-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-

-S--

DUMPF :: RANGE~ : WRA~
5

These two instructions, respectively, load and store a
range of 32 flags to or from the indicated word register. Flags
are grouped into 8 ranges of 32 flags each , as indicated by the
range field.

RETRF :: FLAG~
55 : TF~ : AUGg : WORD ADDRESS~

6’383

If the instruction specifies a TRUE condition and the flag -

is not set, or if the instruction specifies a FALSE condition
and the flag is set, the instruction will execute a normal sub—
routine return . If however , the indicated flag is in the re—
quired condition , the instruction will execute an unconditional
branch to the named location . In this case, the stack will not
be affected. This instruction can always be used instead of a -

normal return instruction. It is used for performance monitoring
for establishing the equivalent of console breakpoints , and

- 
halts , without paying a penalty if the condition indicated is -

not met .

HALTF : : FLAG~
55 : TF~

Executes a hal t conditional on the specified flag .

3.8 Operating Modes

The CPU has two operating modes - STEP and RUN . The RUN
mode is the normal operating mode . The STEP mode is used for
diagnostic and de—bugging purposes . These modes are set by use
of a pair of unit specific IU instruction . Receipt of the first
STEP command sets the STEP mode . Each additional STEP command
allows the execution of the next instruction .

-~~~ ~
- ‘:

‘

~~1,4 T J
11—46 

S.—— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -S.--—’— ~~ 5-



_ _ _ _ _ _ _  

-~~~ 5-.- -- - --5 -- --‘— S 
----5- - - --— -

-5-  ----S.-- - -- • S S~~ - -:i
~
:-- 

~~~~~~~~~~ 
___•--•- ‘-——.

~~~~-~~~~~~~-~—~~-—-‘-—--,.SS- -• -. — _ •~~ 
—•

SECTION I I I

SPECIFICATION FOR THE
INTERRUPT CONTROL UNIT

OF THE
CPS CENTRAL PROCESSOR

Ill—i -~~~~

——S. - - S. - - L. ~~~~ ~~~~~~~~~~~~~~~~~ — —~~-—~~— —-—~———.-—~~--—-— --—-——--—
~~



- 5 _ -.-_----- - •

SPECIFICATION FOR THE
INTERRUPT CONTROL UNIT

OF THE
CPS CENTRAL PROCESSOR

TABLE OF CONTENTS

PARAGRAPH TITLE PAGE

1.0 Scope 111—1

- 2.0 Applicable Documents 111—1
2. 1 General CP Specification 111—1

3.0 Interrup t Control Unit (ICU ) Specification 111—1
• 3.1 General 111—1 . 

-

3.2 Structure of Interrupt Messages 111—2
3.3 Hardware Operation of the Interrupt 111—2
3.4 ICU Software 111—3
3.4. 1 General 111—3

• 3.4.2 System Wide Major Alarms 111—6
3.4.3 Unit Alarms 111—6
3.4.4  I/O Terminations 111—6
3.4.5 Other Terminations 111—6

3 ,5  ICU Designation and ICU Failure 111—7

L-.; 

___ _ _

5 5 _
S

~~~
,
. _

_~ 5-i
-5 -

(-
S

~~~~~
,
-~~

:
1 

Ill-il 

- -

55 5~~~~ 5~~~~ ~~~ -Se

~S e ’.. ~~~~~~~~~~~~ - ~~~~~~~~~~~ ~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——- - S-’--.SS’S— -S-S- - S__~~~~~ 
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~


5 — —--5-.— — -‘-5 ,—. —-5--..- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~ ~~~~

__ 
~~.. . __; — —• — —~~~~~-5- —- - - S —S -S -5- —  

-
,

• 
I

LIST OF FIGURES

FIGURE TITLE PAGE
Ill—i Interrupt Table Structure 111—4
111—2 Interrupt Flow Chart 111—5

U

- - ‘v- -
~

5 . -
- 5 .-’

5
- Ill—u i j :~

~ .:~
;

S.. ~~~~~~~ 5.

. 5

_ _ _ _- . 5 -—_ _~~~~~~~~~~ --_~~~~ - -S5•~~~~~ -
-—-—-

~~~~
- S - -5 -p -

— ~~~~~~~~~
~~~~~~~~~ ~~“ 5 -~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~ — S..

— 
— - --—

~~~~

——— -
-

• 1.0 SCOPE

This section is the specification for the Interrupt Control
Unit (ICU) of the CPS Central Processor.

2.0 APPLICABLE DOCUMENTS

2.1 General Specification for the Central Processor

(Section I of the CPS Central Processor Specification)

3.0 INTERRUPT CONTROL UNIT (ICU) SPECIFICATION

3.1 General

The ~P does not have an interrupt facility in the ordinarysense. Unlike other systems in which interrupt lines connect
devices to the (typically single) CPU, there is no direct con-

- - I nection between a unit and the ICU. The connection is established
through the matrix. Furthermore, the identity of the ICU is
dynamically variable . At any instance of time, two ICU ’s may be
defined. Units that would in an ordinary system respond to a
situation by issuing an interrupt to a particular CPU, will re-
spond instead by transmitting an inter~’upt message to the primaryICU . Failing to connect with it, it will re—issue the interrupt
message to the secondary ICU. Once tI’e ICU has accepted the
interrupt message, the unit is effectively freed of its respons-
ibility regarding that interrupt. It~ subsequent action depends
~ipon the nature of the interrupt message .

The ICU , upon receiving the interrupt message, processes
II it and determines which CPU (if any) is to be interrupted. If

a CPU is to be interrupted , it will do so. That interrupt ac—
tion may consist of any of the following in any combination :

a. Forced program state change.

b. Loading registers of a given set to stored values .

c. Loading of the cache memory .

-
In the course of processing the interrupt , the ICU may have

• recourse to examine the state of the CPU it is to interrupt ,
therefore, it has the ability to query its logical ID, its

I physical ID, the contents of its cache memory , the contents of
its registers , etc. It is clear , that the ICU can be called

- upon to perform somewhat complicated actions. Actions that are
normally wired to the logic of the interrupt control hardware.
However , in the CP, the ICU functions are performed by just

H -
another CPU that has been assigned to that task. Therefore, all

-
-.

of the features and capabilities of the CPU described in Section
- -

S
. .

1’

• .
~~

S
S 111—1

~
- I

~
• ‘ •

~~~
-

¶ 

_____  _______  

-
-5- - - 

—.--—
~~~~~~~~~~~~~~~~~

- — ~~._. . .L -. ~~— - - ‘- .-.S - - - ~~~_.2 . ‘ ‘
~~~~~~~~~~~~~~~ -~~!_ ~~~ ~~,..... aa



_-_~~~~~~~~~~~ 

~~~~~~~
_

~~~~~~~~~
..____________________________

-
~~ II apply to the IC U as well.

3.2 Structure of Interrupt Messages

Interrupt_messages are transmitted as IV micro-commands
with the code xxxx. The structure of the entire message is:

COMMAND CONTROL 1 FIR ST I NTERRUPT
SID XXXX CHARACTER CHARACTE R

H 
_ _

Up to 31 additional words for

the interrupt message.

Every interrupt message consists of at least four char-
acters. The first character , as usual is the SID. This is fol-
lowed by the command , with the code XXXX. This is followed by
a control character (described below) and at least one additional
character with interrupt specific data. This can be followed by
up to 31 more words of interrupt data. Interrupt messages are
always a multiple of 4 characters in length. Interrupt messages
are transmitted one word at a time.

The control character consists of two fields:

C—field - a three bit field which identifies the gen-
eral nature of the interrupt . 000 is re—
served for major alarms. The coding is

S particular to the device and the type of
interrupt.

L—field - a five bit field which specifies how many
additional words there are in the interrupt
message.

- 
• These fields are generated by the unit in accordance to -

built—in logic.

._ 3.3 Hardware Operation of the Interrupt

The C—field value is combined (by concatenation) with the
- • • - ‘~ • •~ I—field in the cache memory to provide a six bit index value.

This index value is used with the trap register UID to -create

111-2

~
-:
~
i 

5

5

5;

j S
~~i



• ~~~~WW~~~~~~~~ t ’~~ fl -~--n~cw- ~~~ar’~~- .5~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ — ____________________-S -- - — --—~~~—-- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . r ~~~

— --—— -- ‘—~ ci-~~~
-

- f a word index for the low order 64 words of that memory unit. If
the index value is 0, the interrupt will be handled in the trap
mode with index value 0, which should have been set up to corre-
spond to the treatment of external interrupts which are to be
handled by the trap mode. Otherwise , the contents of the refer-
enced word is fetched. It is interpreted as a FIFO chain con-
trol word using the same ICIJ as a base. The interrupt message
length is used to determine if there will be an overrun. If an
overrun will occur , then instruction at 1—2 of the chain will be
executed (effectively in the trap mode), ot herw ise , successive
words of the interrupt message will be stored on the chain. CPU
instruction execution is locked out until the check has been
performed. The structure of the tables and registers involved
is shown in Figure 111—1. Figure 111—2 is a flow chart for the
operation .

Note that because extended range addressing applies, the
interrupt FIFO chains can be in any of the 4 adjacent memory
units starting with the UID specified in the trap control reg-
ister. However , the chain control words must be in the first5 64 locations of the UID specified by the trap control register.

3.4 ICU Software

3.4.1 General

The ICU hardware identifies the nature of the interrupt
and decides if it is to be treated in the trap mode or in the
normal interrupt mode. If it is to be treated in the interrupt
mode , the interrupt message, as originally received is queued
on one of up to 63 FIFO chains. Hardware provides protection
against chain overrun. The hardware effectively performs a S

SHOVE operation .

All remaining treatment of the interrupt is performed by
IC U software. Since the original interrupt message is queued
without change , arbitrary relations between the interrupt type,
its priority , the unit it came from , the CPU (if any) which is

5 j to be interrupted , the program state and location to which the
interrupt is to force the CPU , e tc . , may be established by the
software. Interrupts can be divided into three convenient cate-
gories, depending upon the intended response:

(1) Major alarms with system impact .

(2) Alarms with unit impact .

(3) Normal I/O terminations which require interrupt .

5

-

-

(4) Non-interrupting terminations and other conditions.
•

-
~

H 111—3

IL
_ _ _ _ _ _ _

_ _

- — ~~ ~~~~ ~~ - - — ~~1 1

-
_

S

~~ -
5 - S - -

-

. 1 1 Fiel d F rom -
C Fiel d From

-

CPU Cac he Memo ry Interrupt Message

I IF 1di [C~~~d]

I
] Interrupt Index Field WIDY I . ADDgESS .

I” OP ~01JADDRES~~
1

- 1 o~ ~OL1ADDRES$ 2
- OP OT. DRESS 3 FIFO Chain Control

0P 0 Wor d

H
_ _

B0T~ XXXXX ~~1 62

H
BOT . XX XXX SSJ 63

XXXXXX-2
-

- I _5_
1XXXXX-1

-

~~ /
xxxxxx _ _ _ _ _ _ _ _ _ _ _ _ _

—

FIFO Chain for

-~

BOTTOM

TOP—~ _ _ _ _ _

• XxXxXX+256 —
5 -~

1 FIGUI€ 111-1 INTERI~P1 TPBIE ST~JCflJ~
-

S 11I 4
‘.

5 .

_ _ _ _ _ _ _ _ _ _ _ _ _
-

-

-

~~ _S
~ ~~~~~~~~ ~~~~~~~~~ ______________ ___________________

rp~~-.5- ,--

I-

L~J

.5,

• ~~~~~~~~

liii
9

_ _ _ _

I

~

- .
1

- S

5
.

‘ S

111—5

-
- - - 5 _

r
,

‘ “~~_~~~ Z __—~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ..—
~5—-’ —--,-——r’--”--- -~~~ _,~~~ ‘~~~~~ ~~ -~~ .,_~~. ,._ ~~~~~~~~~~~~~~~~~

— -5- --- - — S-S.-- - - - — -

3.4.2 System Wide Major Alarms

System wide major alarms will result in either reconfigur-
ation of the system , re—start of CPU’s, or reloads of program

—
memories . Interrupts in this category generally result in exe-

H cuting a complex program which will involve closing units down ,
re—bootstrapping them , or force starting from predetermined
locations. LID’s may be changed. Some elementary test and
diagnostic procedures may be executed to identify the malfunc—
tioning unit . ICU, CPU or ICU memory unit failures should be
included in this category. Trap mode or high priority program
state should be used to service such interrupts.

3.4.3 Unit Alarms

These interrupts are from a symptom point of view localiz-
able to the unit that issued the alarm. However , it can turn

S
out that the problem is a system wide problem. This would be

• the case if several units responded to a particular situation ,
each one giving its own version of the alarm condition . The
centralized position of the ICU can be used to advantage to

H make this distinction. For example , a center stage matrix unit
S - has malfunctioned , resulting in parity errors in various trans-

mission traversing it. Assume that the parity error occurred
-

• only on the path from a memory unit to a CPU. The CPU provides
an alarm for “memory parity error”. The active unit stage also
provides an alarm for the center stage parity error. The center
stage, however , is itself oblivious. The resolution of this bug
would be a self—initiated restart on the part of the CPU. The
ICU, however , seeing the pattern of alarms Involved , could be
programmed to conclude that the malfunction is most likely in
the center stage. That stage would be cut off and handed over
for diagnostic tests. The other units involved would merely
retry. In most cases, unit alarms would be localized to the one
of two units involved in a transfer and the ICU would simply
take retry action if this made sense.

j

3.4.4 I/O Terminations

Most I/O terminations, because of command chaining , data
chaining, condition chaining, and the ability to chain interrupts -

-

as part of the specification of the IU command will not result
in interru pts. However , if true interrupts are required , the
ICIJ software will first determine which CPU is to be interrupted

•
1 and how. This can include an examination of the subject CPU’s

state and PC.

3.4 .5 Other Term ina tions

Other conditions which under ordinary circumstances might S

be treated by interrupts , even though they result in an inter— •

S
ru pt message transm ission to the ICU , need not result in the

111—6

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——~~~~~~—-—- ——~~~ —— -— — — S

~~S_54

r
~~~- 

~~~~~~~5 . 5  _ 5
__ _~-~~~~~~~~~~ 5 - - - . - - .5~~~~~

S
~~=,~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I-

bona tide interrupt of any other CPU. This could come about
because of peculiarities of the device design , or because of the
functional role played by the device in question. Thus, all
channels will give interrupts on missed transfer conditions.
However , if the channel in question is being manipulated by a
diagnostic program in a diagnostic CPU, it may be desirable not
to actually interrupt that CPU, but rather to queue the condition

S as detected. Similarly, other “off-line” diagnostic tests could ,
because of unit malfunctions , cause all kinds of events that
would normally result in interrupts, but because of the inter—
position of the ICU, they could be treated in a less frenzied
manner.

3.5 ICU Designation and ICU Failure

Every unit contains the UID of the ICU and some other CPU
designated as the alternate ICU . Failure to transfer an inter—
rupt message and receive confirmation thereto from the primary
ICU will result in the transferring unit’s unilateral transfer
of the interrupt message to the designated alternate ICU. The
ICU CPU itself must contain the same two UID’s. The primary
ICU for the primary ICU should be the alternate ICU. The alter-
nate ICU for the primary ICU should be some third CPU, typically
concerned with system level executive functions, or otherwise
one allowed to execute instructions out of the memory unit(s)
that contain the recovery procedures for ICU failure. The
primary ICU for the alternate ICU could be the primary ICU,
while the secondary ICU for the secondary ICU could be the same
third CPU. Note that the designated alternate need not “contain”
(i.e., be allowed access) to the entire ICU tables and memory ,
a small subset of this is all that is necessary.

-

S
r’

s I
-5.

1 1 1— 7

~~~~

_

- 5 ~
S -

~

S. --
~~~~~~

— i~_ - -

~~~~~~~

- - _ _ _ _ _ _ _

5- ~~~~~~~~~~~~ —~~~~~~~~~~~~~~~~~~ - - ---
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 5-~~~~~~~~’ -

— -5---

SECTION IV

SPECIF ICATION FOR THE
CHANNEL UNIT

OF THE
CPS CENTRAL PROCES SOR

Ii

S.

‘v—i

3/ 

- 

~~~ 

- - - — - 5-- --~~~~- S .5S~~.5• -

SPECIFICATION FOR THE
S CHANNEL UNIT
4 OF THE

CPS CENTRAL PROCESSOR

4 TABLE OF CONTENTS

PARAGRAPH TITLE PAGE

1.0 Scope IV— l

F 2.0 Applicable Documents IV—l
2.1 General CP Specification IV—l

3.0 Channel Unit (CU) Specification IV—l
3.1 General IV—l
3.2 Channel Interfaces IV—].

3.2.1 Channel—Matrix Interface IV—l
3.2.2 Channel—Device Interface IV-l

3.2.2.1 DCA , CDA Lines IV— 3
3.2.2.2 YT Lines IV-3
3.2.2.3 Data Lines IV— 3

3.2.2.4 Parity Lines IV—3
3.2.2.5 Control Transfers Between Channel and P1—3

Device
3.3 Channel Characteristics IV—4
3.3.1 Channel Master/Slave States IV—5

j 3.3.1.1 General IV—5
3.3.1.2 Device Side Behavior of Master/Slave Mode IV—6

3.3.1.3 Master/Slave Designation IV—6
-

3.3.2 Speed Control IV—6
3.3.3 Channel Buffers IV—7

3.4 Transfer Commands IV-8

3.4.1 Command Structure IV—8 S

3 4 2 Data Chaining IV—l1

3.5 Bilateral an~ Dual Transfers IV—ll —

3.8 Device Commands IV—l4
.:- -

~~

Iv—ii

• - - -- 5 -

II— - r
~~ ‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ • 5 - .‘•~ •~~~~ 5 -~~ • -~~ ~~~~~~~~~

_~~~~~~

~
~

— S

3 TABLE OF CONTENTS (Cont inued)

PARAGRAPH TI TLE PAGE

- 3.7 Channel Imperative Commands IV-l6
-S

3.7.1 Generic Unit Imperatives IV—16
- 3.7.2 Additional Commands IV-l6

3.8 Immediate Mode Operation IV— 17

I

- 1

-~ S i

S 5 -
-- - S _I ~ S - •~ —

~5~~~~~

I
4 IV—iii

- -
~ S1

S _
• ~ I

- _ _ -~~~ — - - - ----- -- - S

—-5 —.5 .— 5— ~~~~S_____S


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

LIST OF FIGURES

FIGU RE . TITLE PAGE

- 
- I IV- 1 External Interface of Channel IV-2

IV-2 Connection of Two Asynchronous Lines IV-5
IV—3 Connection to Variable Speed Boram IV-5
IV—4 Asynchronous Line to Synchronous Line IV—6

- IV— 5 Buf fe r  Action IV-7
IV-6 Transfer Command Structure IV— 10
IV—7 Transfer Combination Set Up IV- 12
IV—7a Transfer Combination Set Up Continued IV-13

-IV—8 Device Command Format IV— 15

S 

5~-~tr

ri :- -

- - - 
S

IV-iv

~~~~~~~ —~~~~~ 5- —


r~
---— -- -- - ~~ ~~ -~~~~~ -

~~~~~~~~~~~~~~~~~~~~~~~~~-
~ 

~~— - - -55 -

- r 1.0 SCOPE

This section is the specification for the Channel Unit (CU )
of the CPS Central Processor .

2.0 APPLI CABLE DOCUMENTS

2.1 General Specification for the Central Processor

(Section I of the CPS Central Processor Specification).
- - 3.0 CHAN NEL UNIT (CU) SPECIFICATION

3.11 Geners]I

All communications between units within the CP and devices
— 

external to the CP is via channel units .  The Channel Units
(CU ’s) ,  therefore , provide the means for the CP to communicate
with the outside world.

3.2 Channel Interfaces

3.2.1 Channel—Matrix Interf ace

The channel has a normal unit interf ace with the matrix.
That is , there is a validation/priority cache memory (256—512• bits for three priority levels) and LID , MID , ICU ID , etc. ,
storage . In addition , the channel stores in a number of reg-
isters , additional information required to execute I/O transfers
or other I/U commands. These registers contain a unit ID , and
depending upon the unit type , an additional two characters of
address data. The following information can be stored : data
address , data count , command chain address , data chain address ,
condition chain address , and termination instruction. A channe l
can be involved in three simultaneous transfers (2 inputs and
one output) and consequently the above information can be held S

for each of the three transfers. These instruction storages
S are over and above the registers used to store micro—commands.

• 
• The micro—command storage registers are still required because

a given I/U macro is executed as a sequence of unit generic
micro-commands .

3.2.2 Channel—Device Interface

S 
- - A channel has two interfaces: an internal interface

S which is a standard unit interf ace to the matrix, and an ex-
I - ternal interf ace , which is also a standard interface. While the

internal interf ace may have one or more ports , the external
:
‘
~~‘ interface is always a single port interface. That interface is

a full duplex , character parallel interface , with a number of
1- control and timing lines. Figure IV—l shows the structure of - - - -

the external interface. •
-

IV-l -

~~~~~~~~~~~~~~~~~


—
— —‘. , ~~ ----5 - - • -• • —- . ~~~~~~~~~~~~

--— - S

j DCA
S <. — CDA

Y TI

S Y12 i~-

DEVICE ~~
-*-- CHANNEL

OUTPUT ~~
-

~~ INPUT
SIDE -*~ ~ SIDE

~~~~~~~ DATA
4-
4-

-~~~

~ PARITY

DCA
CDA -‘
vii

~~YT2
DEVICE 

___________________- 
___________________ CHANNEL S

INPUT ~~__  
5’ 

OUTPUT
S 

SIDE F- 
- 

4- SIDE

DATA 4-

_ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _  
S

-
~~

4- PARITY

FI~J~ !V-1

:. . J~~
•
-

—~~~~~~~~~ 
C 

~~~~~~~~ -- ~~~‘I ~5- 5 - ~~~~~~~~~~ 


~~555 5.5 - — —~~~~~~~,5---- 5- -

The interface is symmetrical and can operate in the full
duplex mode. Except for the direction of the signals involved ,
the interface from the device input side to the channel output

5.
side, and the interface from the device output side to the
channel input side are identical. There are a number of other
control lines which have not been shown in the interest of
clarity. Each half of the interface consists of the following
lines: DCA , CDA , YT , DATA , and PARITY . Each is discussed be-
low.

:1
3.2.2.1 DCA, CDA Lines

The DCA line is a signal line whose logical value speci-
fies that a single character transfer of data or control is to
occur. If the DCA line value is “ true ” then the character is on
its way , and has been initiated on the behest of the device.
That is, the device is providing the clock. In this case, the

• channel input side is slaved to the device output side. Alter—
natively , if the CDA line is activated , it indicates that the
character is transferred on the behest of the channel — in which
case , the device output side is slaved to the channel input side.
The DCA and CDA line perform identical functions on the other
half of the interface.

3.2.2.2 YT Line

The logical value of the YT line (“true—false ”) m di—
cates whether the current character is to be treated as data or
if it is to be interpreted by the recipient. Thus, in a-trans-
fer from the device to the channel , the YT line specifies if the
current character is data or control. Similarly , in the opposite
direction , the state of the YT line specifies if the device is
to interpret the character as data or control .

3.2.2.3 Data Lines

The data lines are 8 lines in parallel , used to trans-

S
fer a character between the device and the channel or vice versa.

3.2.2.4 Parity Line

Every character transferred across the interface has a
parity bit. That parity bit is checked by the recipient of the
transfer.

3.2.2.5 Control Transfers Between Channel and Device

The channel passes control information to the device .
Some of that control information is given to the channel as data,
while some of it is derived by the channel and re—packaged , so
to speak for the device . The former data is not interpreted by

IV-3
S

• 5 5
~~~~~~~~~~~~~~~~~~~~~~~ - 

-~~~~~~~~ -- - r  ~~~~~~~ .— -.S-S- - ~~~~~~~ --  5— 

-

- - -‘5 - —--‘~~~~~~~~ ——5-- —S.5---~_’.- - S5~S•~
_ 5~ 

- 
- 1. ~~~~~~~~~~~~ _~•.~•



-~~~~ —-- —I
-- - --.5-- 

—

the chan nel, the latter must be. Similarly , there is a needto pass control type information from the device to the channel.Again , there is information which is to be treated by thechannel as data, and information which is to be interpre~~~ bythe channel , converted and re-packaged for some other unit tohandle. There is, therefore, in operation over the control inter—
face between the channel and device a primitive instructionrepertoire. The operation of this repertoire is completelytransparent to the program~~~ It is of interest Primarily tothe designer of a device, Particularly , the designer of a devicechannel interface.

(1) Control over transfer length:
Transfer length , be it of control information ordata , Is done by means of the COfldj tj 0~ of theappropriate DCA or CDA line.

(2) Distinction between control and data:
If the characters are to be interpreted by the de-vice or (in the Opposite direction) by the channel ,• the appropriate YT line will, be raised.

(3) All commands , whatever the direction or the modeof transfer consist of at least one character Acommand given to the device by the channel is eitheran INPUT (to the channel), OUTPUp (from the channel)or device imperative In all three cases, this maybe followed by device specific data Which is inter~preted by the unit. In particular the deviceimperative must be followed by a character thatSpecifies the particular imperative command.
(4) A device communicating control information to thechannel has the following choices: error termina-tion , normal termination special condition informa...

4 
tion . Each type identifies the direction (ifapplicable) of the transfer involved. The comple-tion of the execution of any Command Is signall,e~by a termination character sequence . Like thechannel_device commands, the device_channel infor-mation can be followed by a number of auxiliarycharacters which are not to be interpreted by thechannel, but rather, are to be passed on by theS I  channel to the appropriate unit. Special Conditioninformation can be sent at any time and does not

j necessarily correspond to the termination of a corn—j mand .

3.3 Channej, Characterjstj,~

IV-4

- 5-

-.5-. — ~~~~~ ~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~



- 
— ----~~~~~—- ~---.- • -

~~~~~ - - ..- -.-• - 5
-
~~~~~ 

‘- - --------.5
~~~~~~~~~~~

_- —---------S—-
- S ~~~~~~~~~~~~~~~~~ SS• - - S — -S~~~ -5~ rn-*5.5-...-rS., SS~~~-r ~S 5 S ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ - ___________ -

3.3.1 Channel Master/Slave States S

3.3.1.1 General

A channel I~as two interfaces — with the device and with
- _ the matrix. In any transfer of data, be it into or out of the

system , in addition to specifying the direction of the transfer ,
we must specify which device is to provide the clocking for the
transfer. For example , if the device is an asynchronous input
line) it is clear that the channel cannot tell when the next
character is to be expected. Somehow or other, t he dev ice mus t
initiate the transfer . In this case , the device is the master
and the channel is the slave. Carry this further, and say that

S
the characters are being transferred to memory. The memory can-
not initiate the transfer since it does not know when the channel
will have a character ready for it. For this interf ace, it is
the channel which is the master and the memory which is the
slave. Consider now the interconnection of two such full duplex
asynchronous lines , as shown in Figure IV—2.

• J DEVICE I~s -

~~~~~~ 
CHANNE~1~S ¶MATRIX 

~ 
M~ CHANNEL J4-s Ml DEVICE

M = M A STER
S=SLA VE

FIGURE IV-2 - CONNECTION OF TWO ASYNCHRONOUS LINES

Both channels are in the same state, being MASTER on
1, output to the device and SLAVE’d to it on input. The matrix

Interface, however , has the situation reversed. Consider now ,
the connection of a block addressed random access memory which
can operate at whatever speed it is capable of, being connected
to a disc unit , which has a preset clock speed. The situation S

is now depicted in Figure IV-3.

DEVICE M~ CHANNEL~~~ I4MATHIX ~~~ CHANNEL ~~~S M~~~ DISC

—

FIGURE IV-3 - CONNECTION TO VARIAB LE SPEED BORAM

This connection should make it c lear that MASTER/SLAVE
states have nothing to do with transfer direction and that the S

- S

two paths could be in different states independently . There
will be, in this case , an alterna tion of MASTER/SLAVE acr oss the

J - S--’ (_
5.-’ ~ -

-
~~~~ 

• IV—5

— —- - - -
s f f , _ _ 1 ..S.J~~ - . A ~~~~~. -- -

-

— - - — — — ~~~~~ -i’ —- -—-
~~

—.--.—-~~ ~W~~~~r.y~~~~~~~ 5-

— - - --_ -=_
S--- -----— -

channel. If an asynchronous line is now hooked to a synchronous
line , the situation of Figure IV—4 might develop.

_______ ________ (MASTE R) (SLAVE) ______

(~~~~~~E [~
3 CHANNEL

_ _ _ _
MATRIX ___ CHANNEL

~~ ~l ~1
FIGURE IV-4 - ASYNCHRONOUS LINE TO SYNCHRONOUS LINE

Now one or the other channels must have a SLAVE/SLAVE
set up. This kind of hook-up would not be made unless there
were some assurance that things would not go wrong. But , there

S is a limited amount of buffering in the channel. At very slow
charac ter rates , in cases where delays were not important , this
configuration could conceivably come up.

• The final configuration need not be drawn. It is
clearly the MASTER/MASTER mode , in which the channel is acting S

as a master in both directions. Under these circumstances , the
channel initiates all character transfers at a programmed speed.

The MASTER/SLAVE designation is applied separately as
S

to the direction of the transfer, however , all ports will have
the same designation in the same direction. MASTER/SLAVE desig-
nation applies to the controlling clock for data transfers. It
does not apply to the unit ’s ability to receive commands , to
issue commands , etc.

3.3.1.2 Device Side Behavior of MASTER/SLAVE Mode

On the device side of the interface, the equivalent
action is determined by whether the DCA or CDA line is raised
to indicate if a character is on the way. If the DCA line is
used, the channel is in the SLAVE mode. If the CDA line is
used , the channel is in the MASTER mode.

3.3.1.3 MASTER/SLAVE Designation

The MASTER/SLAVE mode is set through the use of the
unit generic micro-command STAT (SET STATE) with the code
0000XXXX. Where the X bits designate MASTER (0), or SLAVE (1) ,
in the following order : device side input leg , device side out—
put leg, matrix side input (al] ports), matrix side output (all
ports).

3.3.2 Speed Control

‘4 Speed can be selected for a channel if and only if all

55~~

S

1V6

; S
,
~
’
~~~~

--

— 
~~~~~~~~~~~~~~~~~~~ —.~~~ SS-- S S - --

—.5-— __S___SS •• _____~~~~~ 5S __ __ ~~~~~~~~~~ ~~~~ ,~~~ —

- - -~~~~~~~~~~ -- — ~~ ~
- —

~
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~

~~ SS —
— - —

interfaces are in the MASTER mode. That is, the channel must be
S controlling the data transfers in both directions and providing

the timing pulses to both the internal unit (matrix side) and
the device. This is done by using a channel specific non-
trans fer co~~and “SET SPEED”. The speed code is a four character
binary field (32 bits). A speed of 0 is interpreted to mean
that the channel will free—run and will transfer characters on

S 
request characters at the maximum rate it is capable , without ,
however , overrunning buffers or otherwise messing up through
lost characters and the like.

• Speed control is achieved by using the speed control bits
as a countdown value. At each matrix character transfer clock
period (approximately 50 nanoseconds) a counter in the channel
is decremented. When that count reaches zero, the transfer re-
quests are issued and the counter is reset to the value pro—
grammed. In effect , the programmed count value provides a divi-
sion of the matrix clock rate. For example , to provide 5 level
baudot output at 45.5 baud, a count value of 325274710 is pro-

grammed. The channel may not succeed in transferring the char-
acter the first time it tries because of matrix blockage , busy
units, etc. If the character is transferred at any time pre—
ceding the conclusion of the current countdown , it will be con-
sidered as having successfully transferred the character. If
the character is not transmitted (or received) prior to the
conclusion of the countdown perio4, then a missed transfer inter-
rupt with appropriate Information is generated.

3.3.3 Channel Buffers

The channel has a four character data buffer for each in-
let and outlet. That is, there is a four character input buffer
on the device side , a four character output buffer on the device

S side, as well as four character input and output buffers on the 
-

matrix side. All ports share the matrix side buffers. The two
buffers for a given direction act as a pair. The way in which

H characters are transferred from one buffer of a pair to the
other can be controlled. The pairs in both directions always
operate in the same buffering mode. Figure IV— 5 depicts the
action of a buffer pair in one direction :

Device A4 A3 A2 Al J

________B4 B3 B2 Bl ~~ Matrix
- 

-~ - . “

FIGURE IV-5 - BUFFER ACTION
- - 

IV-7  

~~~~~~~~~~~~ — .- _
~~~~~J~T .._ ~ - -55-5 -5.-- - -- _ _ -_-~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-



-. — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

~~~~r - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

- SINGLE CHARACTER BUFFER

TWO CHARACTER BUFFER

.~~~~~~~~~~~~~~~~~: B : J B l
,

THREE CHARACTER BUFFER

POUR CHARACTER BUFFER

• FIGURE IV-5 — Continued

IV—7A

_ _ _ _ _ _ _ _ - . ~~~~~~~ • ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~
-. S -~~~~~~~

___ —-5---—- -~~~~~~

Five modes of buffering are available: single character,
double charac ter , triple character , four charac ter , and free.

SINGLE - The incoming character is accepted into buffer
A4. It is immediately transferred to buffer Bi

¶ and out of the channel. The additional buffer
space is used if needed because of matrix block-
age, etc.

DOUBLE - Characters are transmitted a pair at a time.
Normally , A3A4 is transferred to B2B1 and out.
However , the additional buffer space is used if
necessary because of blockage, etc.

TRIPLE - As above , except that characters are handled as
triples.

FOUR - As above , except that characters are transferred
:1 four at a time. As the B buffers are outputting ,

the A buffers can be accepting input from the
device.

FREE - The buffers are treated as a serial shift reg-
ister in which Al is tied to B4. As many char-
acters as possible are accumulated. The number

S of characters accumulated at the next available
transfer period is the number of characters
transmitted . This could be anything from 1 to
8 characters.

S Each transmission is accomplished by a channel generated
transfer micro—command. The channel constructs the command ap-
propriate to the number of characters that are to be transferred.

3.4 Trans fer Commands

3.4.1 Command Structure

Two basic transfer commands are available: IN and OUT.
“IN” is understood to mean a transfer from a device into the
CP. “OUT” is understood to mean a transfer from the CP to a
device. The device in question might need auxiliary data in
order to be able to accomplish the transfer. This is provided
by adding a variable length auxiliary data field which will be
passed on to the device whilst being treated as data by the
channel. A transfer could involve a memory reference, in which

S case a memory address is provided. Furthermore , if the transfer
S is to a memory reference device , then there is an option for 4

data chaining. Input transfers are similar to output transfers,
-

~ ~e - ~ however , dual transfers may be specified , so that input signals

I V—8

S’ 4 - .-
-

- S

i_ _ S ~) S - I 4-

• 5 5 - ~- -- it . - S - - S - - ___________

5 5 . • -
1.S_ _ _.S ~~~~

S _55~~.-~SSS,S _.5 - _ . S ’ - 55--- - -—- - . 55 . -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —.5- - - -- —-.5 5 S _.5. .~~~_sS 5 -S~-sS5.--~- 5 - 5 5-_-S.-_ 5 - S55

— - -—---— -.— ‘~~~.“-~
-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~ 
-
~~~~~

- 
_

~~
can simultaneously be routed to two different memories. The
channe l must in this cas e have at leas t two por ts. Trans fer
lengths of 1 to 32,768 characters can be set up. In addition ,
a free-running transfer, with no specified length can be esta-
blished . Each direction of the transfer is established by a
separate command.

The I/O command structure is shown in Figure IV-6.

The skeleton of the command is as usual ; consisting of
-~~~ the DID, SID , DESCRIPTOR, the I/O command proper , and the termi-

nation comman d, if any. Additional fields due to person ,
chaining, and indirect operations are not shown. The I/O command
itself consists of a control character followed by a number of
additional , optional fields. The control character has five
subfields, interpreted as follows:

I — defines the direction as IN or OUT.
a

M — specifies if the data will involve memory refer—
ence. Note that this does not necessarily imply
the use of a memory but any unit for which an

- • 
additional 16 bits is meaningful . If memory
referenc e has been specified , the channel will
issue X2XN or X2RN commands for each data group
transferred. If memory reference has not been
specified , the micro—command will be of the form
XOXN or XORN , as appropriate to input or output .
If memory reference is employed, there will be an
additional two address characters in the optional
fields.

S 
A — this field specifies if auxiliary data is to be

transferred to the device. The auxiliary data
S in question could be, for example , the sector and

track address for a disc unit.

LENT — this specifies the number of characters in the
auxiliary data. Up to 16 auxiliary characters
can be sent, with 000 interpreted as 16, as usual.

C - specifies data chaining to be used.

The control character is followed by transfer length
characters. The first bit of these characters indicates if the -

. -

transfer is fixed length or of indefinite length . If the trans.-
- 
:- fer is fixed , then the remaining 15 bits specify the length in

charac ters , with the usual convention of 0 as 32768.

Following the length field indicator, are the auxiliary
characters which are transferred to the device. This is fol—
lowed by two address characters , if memory referen ce has been

IV-9

.5— - - - —.5~~ - - S - - -- -5--~~.-- ~~~~~~~~~~~~~~~~ _ _ _ _ _  _ _ _ _ _



________________________________________________________________  ____ -

- - 
- . S

r~ 
~~ 

- “F-~~
55

~~~ -——-=---— - - - --.5

~~~~_ DID J SID J DESC RIPT O R I/u CONtIAND TERMINATION CO~~A ND j

I~ ~~A~C j  L’EN~ T~ I ~~T !R i~~ N ~~~ FIE! ~ L~E ! N G  ~T~N IO~P ~T~~I ~O j N ~ A~~ L~ IFi ELbS~ 1
CHARACT ER 1 CHARA CTERS 2, 3

El I • ‘I I AUXILIARY DATA FOR DEVICE

Li i ~ i i i ~ I ~ ~ j J  MEMC R~ ~~~~~~~ ~: _ :  -
~~~~~ ~~~~~~~

1:
~
‘ i LINK FIELD ADDRESS ~OR D A A

L i LIN K FIELD INCREMENT

L I • •f J ‘~ RMIN ATIO N INSTRUC T IONS

FJ3UI~ IV-6 TRA~1SFER ~~T1~ND STRUCPJI~

. S

“I ~

-

~

4 -
S

‘.-~~ IV—l0
5 -

- - _ .�.~I

~~~~~~ui~
._ 

~~~~~~~~~~~~~ ~~~~~~~~ .-. k~~~ L... . ~- .Z—.~.- :_-55-5-~~~5.•5~~,5.5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


I, ~~~
-

~~~~
- ‘ - - 

~~~~~~~~~~~~~~~~~~ 
55 ::~~~~~~~~ - - -r- -‘=~

::- - S

- - — - — 5- 5 - - - --

specified. These characters are the address of the first char-
acter in to which data will be stored or from which data will be
fetched, as appropriate. If data chaining has been specified ,
additional characters follow before the normal command. These
characters specify the termination sequence for each component
of the transfer. These are not to be confused with the termi—
nation action of the I/ O command , which is independent of the
data block termination action.

3.4.2 Data Chaining

Data chaining operates under command chaining. That is,
a chain of I/O commands can be set up, each of which can specify
a chain of data transfers. Data chaining can only be used with

4 memory reference modes. At the conclusion of the transfer , the
channel will read two additional characters from the memory at
a link address location in a manner identical to what was sped —
fled for condition chaining. If the operation had been an input
operation , then it would read the two characters from the link
field address and the link field increment. These characters
will be interpreted as a link to the next block of data — i.e.,
the next block to be written to, or to be read from. Clearly,

—

data chaining must be contained within the same memory module.
The new address is used to replace the old address characters
and the command is essentially re—issued. A chain address of
l77777s is interpreted as the end of the chain , and therefore ,

the conclusion of the command.

The termination character specifies one of three termi-
nation modes: do nothing , interrupt , linked . The do—nothing
mode needs no elaboration ; the data transfer continues until
the chain is depleted. If the interrupt mode has been selected
an interrupt containing the usual SID, DID information as well
as an I/O transfer code and the final address to which or from

S which data was transferred. If a linked mode has been specified ,
the termination data will be added to the condition chain.

3.5 Bilateral and Dual Transfers

Transfer commands establish only one transfer at a time -
4 ! in one direction . The channel , however, is capable of providing

three simultaneous transfers, two of which can be input t ransfers.
The variations on a theme of transfers that can be set up are
shown in Figure IV-7.

In Figure IV-7a , a simple transfer has been set up, say ,
4 with data chaining , separately in one or the other direction . •

The channel stores the address of the link fields for data
-

chaining and keeps track where each successive character is to
go. In Figure IV—7b , a chaining has been added , but a uni-
directional transfer mode has been maintained. Now , in addition

IV— 1l

L_ _____ _ _ _ _ _

_ _ _ _ _ _ _

-55 __.n --
— -- ~~~~~~~ —wr - r-~ -~?ry! 1Z.__ j — - ---- -~~-—

- 5-- --5— - 5 —

J
DEVI C~
]

DATA
~~

FDAT
~~~~~ UNIT

j J 
DEVICE~~ DAT9 CHANNE ~~~ DAT1 1

r 

A - $ :MPLE T RANSFERS S

~~~~~~ 
C1ANN EL~~~~~~~

JN T T

rDEJ C: ~~J A A j r~~~N~~cL~~~~~~~~1j :: T~

I

B - SIMPLE T RANSFER WITH COMMAND CHAI NING

UNIT J UNIT 1
I DEV IC E~

J
_5)ICLIArINEL

_)[UNIT J ~
DEVIC j(

_55J CHANNEL UNIT J
UNIT 1 UN:T

-j C - SIMPLE TRAN SF ER WITH CO~~AND AND CONDITION CHAINING
I

H
F1GU~ IV—7 TR~I’~FER Q 1’13LNATIOI~4 SEF-IP

IV— 12 -

- - 5 -, .
-

5

- -

- _______________

~~~~~~~~~ ~~~~~~ - ___________ . 5 S 5 -  5555



___ - - --—~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -

- UNIT~~~~j 
S

/ UNIT]

DEVICE 
Ik~~ATA 

5~f CHANNEL 
c _—_I UNIT

UNIT
]

-
- 

~
- UNIT

/

S~

j 

-~

I D - BILATERAL TR~NSFER WIT H COMMAN D AND CONDITION CHAINING

S S

-~ UNIT

UNIT

DATA DATA
DEVICE CHANNEL UNIT

UNIT

UNIT UNIT UNIT

£ - DUAL WRI TE , BILATERAL TRANSFE R W ITH COMMAND AND CONDI TION CHAI N I NG

FIGUI~ IV-7A TRP~4SFER W~ 1NAT1~J~ SET-tF ~D~ITP41ED
IV—l3



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

to the data chaining information , it is necessary to keep track
of the command chaining information. In IV-7c, condition
chaining has been added , for which link data must also be kept.

In Figure IV—7d , a bilateral transfer with condition and
command chaining has been established in both directions. There
are now two command chains to keep track of , one for each direc-
tion . The condition chain , however , is common . In Figure IV—7e ,
the most complex possible transfer has been set up. The input
is simultaneously being written tc two d i f fe ren t (memory) units .
Three command chains are involved . The condition chain is again
common . This last case is established by setting up three sep—
arate commands . A channel imperative command , HOLD , is used to

-

- delay the ini t ia t ion of the transfers unt i l another imperative
command , GO , is given . This can be used to enhance synchrony
between input and output , or between two elements of a dual
write operation . Note that synchrony is not guaranteed. The
dual write operation cannot be performed unless the channel has

S at least two ports. Furthermore , the dual write operation can—
-

-
not be performed to the same uni t .

3.6 Device Commands

A device command is not interpreted by the channel . It is
passed from the channe l to the device exactly as received , ex-
cept for str ipping of f some characters of information . Since
the channel does not interpret device commands but rather treats
them as data , the device command structure is extremely simple
as shown in Figure IV-8.

Th e interpretation of these f ields are :

DID , SID - usual meaning.

DES - the command descriptor .

LEN - the length of the command , excluding the termi—
S nation sequence , as measured from the f i rs t S

character past the LEN character . Note that if
a command is issued in the INDIRECT MODE , the
SID is not stored , but everything else must be.
Lengths can be from 1 to 256 characters , with
the value 00000000 interpreted as 256 .

LID3 — the logical ID of the DID specified for the
third person mode .

- : UID — the unit ID to which the command is chained.

ADDRESS — the address in the unit to which the command is
chained.

IV— l4

-. s~~~. ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ - - - S S S 55 - _ - -
-~~~~~_ s — _-

S S

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~ -~-~;. - -~

_ - -- ; .~~~~‘/T T . T~~~~~

F

S

S

S

.

- S

5 5 - SS i S
I—

—

LU:1
LU —

—

L

S _

i

~.)

—
~~~~LL

- . — ‘I, 
—

2
I 

øS_ — —

2 —

— ~~
_

2 — 1 -
—

-•
. — — S1 - ~~ —

— SJ 
— — 

‘I)

—

4 ;  .!
• -

. 

IV-15 —

r.
—--- S 

• ‘ . • .5 •~ _•~~



____S__.5S__~_~~~ _,,_.~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——

TERM — the first character of the termination command.

COMMAND - arbitrary characters.

The channel , or any other unit which can respond to a de—
vice format command , strips off all information and passes on

:1 
the “COMMAND” portion to the unit to do with as it wishes.

3.7 Channel Imperative Commands

3.7 . 1 Generic Unit Imperatives

All generic unit  imperatives can be issued wi th  a de—
• scriptor , ef fec t ive ly  converting them to channel imperative

commands .

3.7.2 Additional Commands

HOLD — This command is issued to delay the in it i—
ation of a chain of commands . It is used
when an input and output t ransfer  must be

S ini t iated simultaneously , or when dual
write operations are set up . This corn—
mand holds all pending commands unt i l
the GO command is given.

:1 GO — Allows pending commands to start .

HALT IN - Allows the completion of the present in-
put command , including all data chaining ,
but curtails fur ther  commands in the
chain until a GO command is given .

HALT OUT - Same as HALT IN except for output .

GO IN — Same as GO but applies to input only .

GO OUT - Same as GO but applies to output only .

HALT IN DATA - Same as HALT IN but also curtails data
chains in progress , allowing the present
block in the data chain to complete.

HALT OUT DATA - Same as HALT IN DATA , but for output .

NO—OP - Does nothing , is used to change the condi—
tion chaining data when it is desired to
do so without an explicit t ransfer  corn-

:-~~~~~ mand.
- 5 - 

-~~~ 
‘.-.-~~

-

- 
-
-

I V— l 6

5 - - 

_ - _
~~~~—~~— S _ - S _:S~~~~~~~~~~~~ -5~~~•• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~


- s - s~ss 5 5 - •~~~~~~~_~_ -_ -s-
,

-

S ~~ - - - - - -5 5- — - - - - - - 5 - —

3 . 8 Immediate Mode Operation

The I/U repertoire in conjunction with the design details
of the device can be used to implement an immediate mode I/O
command operation . In this mode, true data is contained as part
of the command. Similarly , input data is placed in a buffer area
which is part of the command itself. This can be implemented by
designing the device or device controller so that it interprets
the device specific data which is part of the I/U command , as
data rather than as control information. Condition chaining can

— be used to accomplish the same thing on output , where the ad-
dress of the command would be used as the chaining data.

I

is

- I I

I
S
i’

5-IS, ~~
S

~~ :~~ -~ S
- -

IV—17

I -

-
S

_ _ _ _ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- ‘ . I r~~..~~ -r .- - L ” -  .s
- -— S 

—
- 55 .555 5~~ 5 S 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - -

~~~~~
- — _ _ 

~S 4 ~~5.5~SS _55.~ 5.IS55 - 5 5- ~5 - -

SECTION V

SPECIFICATION FOR THE
MEMORY UNIT

OF THE
CPS CENTRAL PROCESSOR

~:1i

v—i -

- ‘.
5-

~~~~~~~~~~~~~~ —~~~ -~-~T~~ ~~~~~~~~~~~~~~~ 
—.—— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~

—
~~~

-—
~~~~


-•--- -~
----w -’-- ~~~~~~~~~ 5- -

r~ ~~r - —
-
~~~~

- _ -— — -5

SPECIFICATION FOR THE
MEMORY UNIT

OF THE
CPS CENTRAL PROCESSOR

TABLE OF CONTENTS

PARAGRAPH TITLE PAGE

1.0 Scope V—l

2.0 Applicable Documents V-i
2.1 General CP Specification V—i

3.0 Memory Unit (MU ) Specification V— i
3.1 General V—i
3.2 The Control Memory V—i
3.3 Memory Cycle Operation V—2
3.4 Protection Features V—4 S
3.4.1 General V—4
3.4.2 Command Protection V—4
3.4.3 Data Transfer Protection V—6
3.4.4 Control Memory Layout V-7

3.~ Priority Control V—7

3.6 Memory Command Stack V—8

i ’
S- - - - - - v—Li

I5

’ 
•,

_  _ __ _  

- 

_ _ _- - •~~~~•Si~•~~~ø - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - 5 -- --- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --



~~~U,IS 
•• ‘fl .5~~~~~~~~~ - 5_ “-5~ ’~~ ~~~~~ -‘ - r ~~~~~~~~~~~ ~LS ’ ‘

~~~~~~~~~~~~~~~~ 
w.n—~ r — r ’rrfl ~~”-’.r-w--- —r-_-_ .__ --,.-- -- , - - - _-,.

-55 
—

LIST OP FIGURES

FIGURE TITLE PAGE

V-i Control Memory Entry Format V-i
V-2 Memory Cycle Overview V-.3

~

S 
- 5- - ,

-Se 
~

- 5 - :

v— Lit

—Ia



55,-— 55 55—----- 
- ----5 —--—- ~S~~S 55—

-5 —-5. - - —-- — - - - - - ~~~~~~~~~~~~~~~~~~~~~~~~ ‘5’

_1.0 SCOPE

This section is the specification for the Memory Unit (MU)
of the CPS Central Processor.

2.0 APPLI CABLE DOCUMENTS

2.1 General Specification for the Central Processor

(Section I of the CPS Central Processor Specification)

3.0 MEMORY UNIT (MU) SPECIFICATION

3.1 General S

The standard memory unit of the CP is a 65,536 character
addressable module. Memory units are self-contained and have
individual power supplies and power transient protection . Char-
acter parity is generated and/or checked on every memory opera-
tion . Memory units can be equipped with 1, 2, or 4 ports into
the matrix. A full memory address is a 24 bit field , of which
the most significant 8 bits is the LID of the memory unit. -S

3.2 The Control Memory

Every memory unit has a 256 or 512 character control memory.
- 

- The control memory is used to store priority and protection in-
formation for all other units in the CP. The SID of the re—
questing unit is used as an index to the control memory , to —

fetch a pair of characters. The character pair has the following
structure :

-; ________
A
_________

P M S ’
I I I I

~ _1 _ i  t ~ 1 I I

Ri R2 R3 R4

FIGURE V-i - CONTROL MEMORY ENTRY FORMAT

I * P—field - A four bit field which designates the priority
that the source unit will have relative to other
source units that can use t1~e memory. A priority
of 0 is interpreted as not allowing that source
unit access to the memory.

v—i
-
~~~ t~~

S ,- -
~S l .

LL
_ _— ~~ ~~~~~~~~~~~~~~ ~~~~~~~~~ — — A — -~--- — ~~~~~ ~~ —

p — ~~~~~~~~~~ 5-_’.555.5__•~~ .5 ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ I~~~~~

M—field - A two bit field that determines the interpreta-
tion of the R/A field. If it is zero, the R/A

- field is interpreted as a set of four read/write
-

restrictions. If it is non—zero, the R/A field
S is interpreted as an address (in the control

memory) where a set of restrictions for that
-

I
source unit will be found.

- - 1 S-field - A two bit f ield that specifies what kinds of non—
transfer commands can be executed by that source

H unit in this memory unit .

R — f i eid — Two bit fields . The f irst bit specifies if
• reading is allowed , the second bit specifies if

-
writing is allowed.

A-field - An eight bit address field which points to one of
256 character pairs in the control memory .

The layout of the control memory is established by assembly
language declarations . If a physical memory unit has been as-
signed to a new logical role (i.e., its LID has been changed),
its control memory must be loaded to the values appropriate to

- that role. This is done through the use of the SET STATE-2 or
SET STATE—3 commands (see Section I , paragraph 3.6.4.1). A 256
character control memory is loaded by using the SET STATE—2 corn—

-

5 inand. A 512 character control memory (256 character pair en-
tries) is loaded by using the SET STATE-2 followed by the SET
STATE-3 command.

3.3 Memory Cycle Operation

Figure V-2 shows the control flow for the memory cycle. The
operation begins with the accumulation of the SID bits, most

L significant bit first . As these bits are accumulated , they are
compared to the value of the maximum logical ID (MID) stored in

:, that memory module. As soon as it is determined that the SID is
H greater than the MID , the command will be rejected. Otherwise,

the control logic waits until the entire SID has been received.
This is shown as a parallel operation since the rejection could

4 ‘ occur prior to the accumulation of the SID, but the SID compar—
ison takes slightly longer (for a full 8 bits) than the accuznu—
lation of the SID bits.

-
S Once the SID has been accumulated , it is used as an address -

to the control memory, to fetch the character pair corresponding
to the SID. The priority is checked. A zero priority indicates S

j ~~ _ _
_
_\ that the source unit has no privileges in this memory unit ,

,~~
~~~~~~~~ whereupon the command is rejected. If there is a non—zero pri— S

- . ority, the priority logic is entered . This could cause some

V-2

-‘ .,S—~ s..~~~~~~~ i_55 — ---—---s-.--.- _ - • ._•;;S_;_ - ___________________________



- ~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 
SS ~- 5~~~~~~5~~ 5-, 

~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~i~”~~~ ” ” ~~~~~~~~ 
- S

55 -- ---5—
—

----------- - - - 5 - —- - - - -5 --

F-

- -
111-,~~~~55 111 0

I U) 0
-~~~~ r~~

1—
~
, .1 111 ~~~~

S

I I ~~ I -~
(>5- ~ .J a

-
~~~~ S i > i ~~~lilI~~~~I

S - U) W I)  —
,SS t — 

~~~~~0 I—
-

& _ J
5 -

* 0
0 Z I.)

4

-is.
U) S
113

- L
>5-

4 4~~~~t llS 0 0
0

-(U
4 0 0

4
S 111

5 >5- I

I’-
z

Hi 0

H

111
1 0

1
L~~~

I U U)

. 1 5 .
5 5 -

S I- lu
55

,
. •

Si 5 -
• ‘ U S

-~~~~ .5- 4

£ Z
U) -

S
5 •

• li i

- S.. ~•
-

~~~~~~~~ 
V — 3

‘5,

- S

•



S - 
—~~~~~

SS S IS __________ -

- - - - --55---- - - —--—55---- - -  - —_ — -—-- ----S - S S - S -- - S -—~~--.-—

delays. We have not shown the details of the priority logic in
this flow chart .

The next phase of the memory cycle operation is to accumu—
late the OPCODE. OPCODES are classified as being either data
transfers or non—data transfers. In this context , the various
OPCODES related to the control memory are classified as non—data
transfers. The OPCODE is compared to the S-field to determine
if the command is a data transfer , and if not , if it is allowed
for that particular source unit in this memory unit. If the

• command is not allowed , it is rejected . Otherwise , the memory
unit goes into the (non-data transfer) command execution phase.

S Concurrent with the examination of the S-field , the M—fieid 
-

is used to determine how many R-fields there will be and whether
or not the R—fields are direct or indirect . If direct , the R—
fields are found in the second control character - and there are
four of them. If the M—field specifies an indirect R—field ,
then another control memory fetch must be executed , using the
S-field (the second control character) as an address , as modi-
fied by the several most significant bits of the address (this
is explained in greater detail later). In either case, whether
direct or indirect , a sufficient number of most significant bits S

(2 for the direct mode , 3, 4, or 5 for the indirect modes) must
- - be accumulated before the read/write restrictions can be evalu—

ated. The most significant bits of the address are used as an
S index to the R-fields. The R—fields specify whether a read or

write, both , or neither , operation can be performed for that
source unit , in this memory unit , in the specified subdivision
indicated by the R—field selected. If the command is allowed ,
it is executed , otherwise , it is rejected.

3.4 Protection Features

3.4.1 General

The memory units of the CP each contain their own memory
protection information . Memory protection is provided against
failures by all units of the system , not just CPU’s. There are
two major categories of protection : command protection , and

-; data transfer protection. Command protection specifies what
commands the source unit is allowed to execute vis—a—vis this

4 memory unit. The data protection specifies what read/writeS 
¶ operations are allowed in what subdivision of the memory unit

by the specified sot~rce unit. 
S

3.4 .2  Command Protection

-~~~~ If the priority (P—field) is zero, then no commands are
allowed. Commands are subdivided into four categories as shown
below :

V-4
- - ‘ S

IS 
- - - -- S -~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~


• ~~~~~~~~~~~~~~ ~~~~~~~~—.-—--~~~ -~~~~~~~~~~
--— i~~~~~~~~~~~

’
~~~ 

_~~~L _ __
I — , .  

~~~~~~~~~~~~~~~~~~~~~~ 

-

F

11 10

SET STATE GO OFF-LINE
SET UNIT MAX CLOSE
SET STATE 1, 2 , 3, 4 OPEN
INXMT POWER DOWN

I _S i SET LOGICAL ID RESET
CONVERT NULL ID
SET ICUID
SET SECONDARY ICUID

01 00

4 OPEN PORT - FETCH UNIT STATE
CLOSE PORT QUERY PAD
FORCE INTERRUP T RETURN STATUS S

SET N PRIMARY LOCK PATH
UNLOCK PATh -

-

S FETCH STATE 1, 2 , 3, 4
- -

- - S

XORO -
-

- - LOCAL ABORT
GLOBAL ABORT
ALL TRANSFERS

These categories are called 3, 2, 1, and 0 commands re-
spectively . Category 0 commands are those which can be used in

- the course of normal data transfers, or which cannot change the
state of the memory unit . That is, they are “safe” commands —

their execution are not likely to cause problems .

Category 1 commands change the routing of data through
the matrix and can thereby affect matrix efficiency. Similarly , S

forcing an interrupt improperly will not generally cause system
-‘ malfunction but only cause spurious processing to occur. I

Category 2 commands are used to change the state of the S

unit , but not its logical identity or the contents of the con-
- - . trol memory . Inappropriate execution of this command will def in-

itely affect performance , in fact , can cause the system to fail ,
- but will not cause the system ’s logical integrity to be cor—

rupted . - -

V—5
5555 - S -

~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~ 5-~~~~ - 

-

~~~~~~~~~~~~~~~~~~~~~~~~~~ ____  ___________  ______



-~ —‘- --.-. = —-— ~~~~~ 
~~~~~~~ — —

!~

Category 3 commands are used to change the state of the
unit , its logical identity , and in the case of the INXMT command ,
can cause the unit to behave in a totally bizarre manner (de— —

S liberately for diagnostic purposes). Consequently , the execution
of these commands must be well guarded. Typically , category 3
commands are executable only by CPU’s, the ICU, the SMTJ, and the
BU.

The selection of which categories of commands are allowed
a particular unit is determined by the value of the S—field in
the control word for that unit , in accordance to the following
scheme:

~s j
S = 00 — category 0 commands only

S = 01 - categories 0 and 1

S = 10 - categories 0, 1, 2

S = 11 — all commands

3.4.3 Data Transfer Protection

Data transfer protection is provided by subdividing the
entire unit into sequences which lie on binary boundaries. The
smallest set of subdivisions is 4. That is, memory is divided
into four regions corresponding to character addresses : 0-16,383;
16,384—32,767; 32,768—49,151; and 49,152—65,535. The M—field
specifies how many partitions there will be in accordance to
the following values :

M = 00 — The R/A field is interpreted as four protection
fields. The memory is divided into four quad-
rants , each with their own 2 bit protection

55

-
5 specification , which separately specifies read

and write protection . This is called the “direct
- protection mode” . All other values of M are

- indirect protection modes.

M = 01 - The R/A field is interpreted as a cache memory
- i address of a pair of control characters which

contain 8R subfie].ds. The memory is subdivided
into 8 octants- .

S M = 10 — The R/A f ield is interpreted as an address of a
set of 4 control characters. These specify 16

S
subdivisions for protection purposes .

M 11 — The R/A field is interpreted as an address of a
set of 8 control characters which provide 32
subdivisions of the memory .

V-6

L 1I~~ _______ _________

r e r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ £_~~~ __________________
_ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ -

S From the above, it can be seen that read/write operations
can be protected in segment sizes ranging from a minimum of 2048
characters to a maximum of the entire memory unit. These speci-
fications are made by declarations in the source code.

3.4.4 Control Memory Layout

The assembler performs the assignment of the indirect
addresses (where specified) In an optimum manner to achieve a
maximum packing of the control memory . In most cases, the direct
mode is sufficient . Usage of the indirect mode should be re—
stricted since the control memory cannot be expanded beyond 512

S characters.

Control memory space can be conserved through a judicious
assignment of logical identities. All passive units (including
memories) should be given high order LID’s. Ordering of LID’s

— should follow the scheme depicted below:

(1) Units which can have access to all memories.

(2) Units which can have access to some memories.

(3) Units which cannot have access to memories .

(4) Passive units other than memories.

(5) Memories.

With this assignment , the MID (maximum logical identity)
is set not to the MID of the system , but to the highest value ID
that can have access to that logical memory unit. Thus, If
there were 175 units in the system, but units with LID’s above
120 were not allowed memory access, then the MID would be set to
120 rather than to 175. This allows the use of 270 characters
for indirect specifications as compared to 160 had 175 been -

S specified as the maximum . If there were very few indirect sped —
fications , setting the MID to 120 could allow the use of a 256
character cache memory rather than a 512 character cache memory
to store the same specification.

-
1 3.5 Priority Control

Priority contro l rules are established as follows :

(1) If the SID’s of the two commands are not equal , then
priority is established by the priori ty in the P—field .

(2) If the P-field priorities are the same, the priority - S

is established by the port order.
-S
’

S

V-7

- - - - - ~~ —
—

.

(3) If the SID’s are the same, the priorities are neces—
sarily the same since the same unit is involved . In
this case, the following scheme holds :

a. Category 3 commands have priority over 2 , 1, and 0.

b. Category 2 commands have priority over 1 and 0.

c. Category 1 commands have priority over 0.

d. If two or more commands for the same SID are in S

the same category , they are serviced in strict -;

FIFO order.

3.6 Memory Command Stack

A stack entry consists of four characters. The number of
stack entries provided is double the number of memory ports.
Stack entries can be used for any commands from any port - that
is , a particular stack entry does not have a built—in association
with a particular port, A stack entry consists of the following :

(PORT), SID, OPCODE

(PORT), SID, OPCODE, OPCODE CONTINUATION

(PORT), SID, OPCODE, ADDRESS

The OPCODE could take one to four character spaces. If the
total command requires two characters , then two commands can be
stacked in one entry .

Commands are stacked only when they are received on a port
which is in the locked state. Control line signaling by the
source unit is used to specify that a new command is on the way.
Commands are stacked in accordance to the priority scheme dis—

N cussed in paragraph 3.5 above. The new SID is compared to the
- I previous SID for that port — if they do not match , all stacked

commands for that port are aborted. A port could be in the
locked state either as a result of an explicit lock command or
because it is waiting for the completion of an ongoing memory
operation. The port remains locked as long as there is a corn-

S mand stacked for that port . Instruction stacking operations -

are transparent .

S S
S
~~ _-

_ _
S

_ _
S -S _

_ S ~~~~~S 5

--
s I ~S

- - -
S

V—8 H,
:

S S

~~~~--  5 5 5 - —

_________ ~~~~~~~~~
-~~~ A _ _ _



SECTION VI

SPECIFI CATION FOR THE
S 

MEMORY-TO-MEMORY TRANSFER UNIT (MMTU)
OF THE

CPS CENTRAL PROCESSOR

1~

L
1

S’S JS4~ -S - S

vl—i

~~~~~~~~~
4 S

5-S ~~~~~ :~~ .. - ~~~~~~~~~~~~~~~~~~ - - - 55. - 5 - - - - 5 5. sS5.5.—5--5 ~~~~~~~~~~~~~~~~ ~S55~S~S- 55 ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
-

~~~~~~~~~~~~~~~~~~~~~~ _____  __________

SPECIFICATION FOR THE
MEMORY-TO-MEMORY TRANSFER UNIT (MMTU)

OF THE
CPS CENTRAL PROCESSOR

TABLE OF CONTENTS

PARAGRAPH TITLE PAGE

1.0 Scope VI—l

2.0 Applicable Documents VI—l
2.1 General CP Specification VI-l

3.0 Memor y—to—Me mory Transfer Unit  ( MMTU ) VI— ] .
S 

Specification

3.1 General VI—]. S

3.2 Differences Between MMTU and Channel VI—l
3.3 Method of Use VI—].

S.

~~~~

- - -t
S S~ ~~ 5- S~ ~~~~ 5

‘~~5~~-S - S~~
—

S

- —
S ~~~~~~~~~ S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 55s-s - - 5 - - _ .S—_ ~~ —— ~~~~~~~~~~~~~~~

S--S — ~~-S _ S 5~~ S-S~~ _~-S~S _ _ .~~~~~~~ .. 5S. th~~~ _. ~~~ 5. —.5S s. .s-~s*-s~~~~ S~~~~~-S ‘5~~~~~~~~~~~~ s. . S S ~~~~~~~~~~

- S._-S5~~~L.=~
-~~ ~~~~~~~~~~~~~ 5— - ~~~~~~~~~~~ ~~~~~~~~~~~ —

-
, - - S - --- ---- S-

S -S

1.0 SCOPE

This section is the specification for the Memory-to-Memory
Transfer Unit (MMTU) of the CPS Central Processor.

2.0 APPLICABLE DOCUMENTS

2.1 General CP Specification

(Section I of the CPS Central Processor Specification)

3.0 MEMORY-TO-MEMORY TRANSFER UNIT (MMTU) SPECIFICATION

3.1 General

The MMTU is named such because this is expected to be its
primary use . In fact , its functions are somewhat broader. It
is used for all passive unit to passive unit transfers. Func-
tionally , it can be viewed as two interconnected channel units,
with a more limited set of capabilities.

3.2 Difference Between MMTIJ and Channel

-S
- (1) Fixed speed transfers - always at maximum matrix speed.

(2) Master Master mode only .

(3) No HOLD , GO , HALT IN , HALT OUT , GO IN, GO OUT , HALT IN
DATA , HALT OUT DATA , commands.

(4) No buffer control; four character mode is always used.

- 5
(5) No dual input transfers .

(6) Functionally a half—duplex rather than a full—duplex S

unit .

In all other respects , it corresponds to a pair of inter-
connected channel units.

3.3 Method of Use

The MMTU is used by issuing a third person command to the
S MMTU to establish the transfer from the passive unit which is to

be the source unit. A second third person command establishes
the connection to the destination unit. The transfer is not
initiated until the second command of the pair has been received.

_ ‘ $

vI—l

A

S
~~ _ r _ _ _ 55.~~~

SECTION VII

SPECIFICATION FOR THE
SYSTEM MONITOR UNIT (SMU)

OF THE
CPS CENTRAL PROCESSOR

A S

I

VII—i

- S

- - - S

- -

S~Ss

SPECIFICATION FOR THE
SYSTEM MONITOR UNIT (SMU)

S OF THE
CPS CENTRAL PROCESSOR

TABLE OF CONTENTS

PARAGRAPH TITLE PAGE

- 1.0 Scope vu —i

2.0 Applicable Documents vu -i
2.1 General CP Specification VII—].

3.0 System Monitor Unit (SMU) Specification VII—].
3.1 General vii—].

— 3.2 PROM Layout VII—1
3.3 SMU Input Operation VII—3
3.4 SMU Self—Test Operation VII—3
3.5 The SMU as a Unit VII—3

H 3.6 Control Memory V II —4
H 3.7 Application Notes Vii—4

~~~~ ~~~ 5

5
5 5 

~~~~~~

VII— ii

L
—

-5 -5 --- — -
-
- 5- — — -

—
- 5 5 5~~~~ 5 -

LIST OF FIGURES

FIGURE TITLE PAGE

VII-l SMU PROM Layout
S

VI I- 2

j 4

I

- - ~~- -.~~-

--*~-~ ~~
S
-

- r .~-ç -
-

5 S S

-J - vu —u i

1.0 SCOPE

S

This section is the specification for the System Monitor
Unit (SMU) of the ~PS Central Processor.

2.0 APPLICABLE DOCUMENTS —

2.1 General Specification for the Central Processor

(Section I of the CPS Specification)

3.0 SYSTEM MONITOR UNIT (SMUIS SPECIFICATION

3.1 General

The SMU is the watchdog unit over the CP. The SMU contains
a PROM (Programmable Read Only Memory) whose contents specify
the response of the SMU to various conditions. Basically , the

S
- SMU expects various units to transmit a test signal periodically.

Should the unit in question fall to transmit the proper signal ,
S or transmit it in the work order, the SMU will react by alerting

a unit which is specified in the PROM.

3.2 PROM Layout

Figure VII-l shows the layout of the control PROM of the
SMU. The contents of this memory are specific to the system.
The PROM may have anything from 16 to 512 characters. The char-
acters are interpreted as follows:

“MIN THD” — the identity of the minimum valued LID to
which the SMU will respond.

“MAX UID” — the identity of the maximum valued LID to
which the SMU will respond.

“SMtJID” — the logical identity of the SMU itself.

“UID X , Y, Z”- various LID to which the SMU will report
should a malfunction be detected.

“Ti , T2” — time period indicators , as taken from a
-

-
clock signal. These are specific to the
unit in the table.

“TJID” — the logical ID of the unit to which the SMU
will respond should a particular unit fail
to report on time.

-~

-- S.--

V I I —l

S.
—

S—-

~ ~~~~~~

—
~~~~~~~~~~~~



~~~~~~~~~~
---—-.----

~~~~
-- ~~-~

-
~~r~~~

--: i. -: — ---.
~~~

-—-

MIN Wi) V~
(UI]) .

~l
J_ I1) UI]) X

S UIu Y _ _ _ _ _ _ _

UID Z
-

s Ti 12 UID S
MIN urn (0) U 12 ULD

5

1 11 12 ULD
2 Ti 12 UID• 12 UID

~~~~~~~~~~~~UID

I

; 

~~~~~~~~~~~~~~~~ . > R~Giow 1

Ti T2 UID

~ X UID Ti___ T2
_ _ _ _ _ _

ULD
_ _ _ —

P P P P P _ P ~ P ~~~~~~~~~~~

— REGION 2

:~~~~~

I

Fl GIJI~ VII -1 S!’iJ PR~ LAYOUT
. ~~~~~~~~~~~~~~

‘ -S i

VII—2

• - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - .
~
;-;; - -. ~~~~~~~~~~ ~~~ - -

55——---. ~~~~~~~~~~~~~~
ss~ -_ - •5S5-~ S.~~ S55~ SS ~~s S.S 555- 55SS~~~5-~~~~~~~~ 555

~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ _ ~~~

P — the P-fields following the MAX UID entry
are two bit port priority fields, with 00
interpreted as not allowing the specified
unit to access the SMU.

3.3 SMU Input Operation

The SMU is tied directly (not via the matrix) to a clock
source. Typically , a 100 millisecond period , although this is
arbitrary . A period of not less than 5 milliseconds and not
greater than 1 second is recommended. The same clock source is
used for all monitor functions. The Tl, T2 entries specify

• the number of clock intervals that should take place between
each signal transmitted by the unit to which that set of Ti, T2
entries correspond. The LID of the unit is established relative

- I to the MIN UID stored. For example, if the MIN UID were 44,
then the entry labeled MIN UID In Figure VII-- l would be for unit
44, the next for unit 45, etc. Assume that the second entry
(labeled 2) in the PROM corresponded to unit 46. Furthermore,

S - that Tl = 7 and T2 = 13. The SMU would then expect a signal -
from unit 46 every 7 units of time, and every 13 units of time
(as established by the clock). If either or both of these sig—

j  nals should fail  to arrive , within the specified time period , or
if signals should arrive at a higher rate than specified by Ti
and T2, the SMU will respond by transmitting an alarm to the
unit whose LID is stored in the second character of the pair for

F 
unit 46. A value of Tl or T2 of 0 means that that period is
ignored. If both Ti and T2 are zero, and a signal from that unit
does arrive, then the alarm will be sent to the specified UID.

If the SMU should not be able to reach the specified UID
for alarming, then it will attempt to alarm the unit specified
as UIDX . If the clock signal should fa i l  to arrive within the

S specified time boundaries for the clock , the UNIT identified
as UIDY will be alerted. In addition to transmitting the alarm

-: to the specified unit , upon repetition of the alarm condition ,
the SMU will transmit an alarm message to the unit specified as
UIDZ. The identities of TJIDX, UIDY , UIDZ , or for that matter
any of the UID’s is arbitrary and could be one and the same.

3.4 SMU Self—Test Operation

The location marked “5” in Figure VII—]. establishes two
time intervals and a UID for the SMU ’s self—test . At periods

- I Ti and T2, the SMU will send itself a test message . Should
either or both of these test messages fail to get through , the
SMU will alarm UID’s.

3.5 The SMU as a Un it

The SMU is a two port unit . Both ports must be operational
5 

- at all times. The SMI) responds to the following commands :

V II— 3

Ii

L - - - S~~S 

I 5- 
:i ~~~~~:: :



- - i—-- -~~~~

GOOF — it goes off-line.

CLOS -

OPEN-

XORO — the normal test signal transmitted and received by
the SMU for monitoring purposes.

FINT-

INXT-

In addition , it has the following unit specific commands :

RESET Ti. NNNN - causes the Ti counter for unit NNNN to be
- - reset. Does not affect the PROM value Ti.

RESET T2 NNNN — causes the T2 counter for unit NNNN to be
reset. Does not affect the PROM value T2. -

S

RESET ALL - resets all counter values for all units.

3.6 Control Memory S

The SMU contains a control memory of one character per UNIT
which is represented in the PROM . This memory contains a counter
for the accumulated Ti and T2 counts.

3.7 Application Notes

The size of the UID PROM and the extent of the checks to be
employed depends upon the details of the system design and the
extent to which on—line tests are to be implemented. Typically ,

S 
only a small fraction of the units in the system would be tied -

to the SMU . As a minimum , we would have the following: clock S

units, SMU, ICU, alternate ICU, system executive CPU, all other
CPU ’s. One might wish to also tie the various MU’s and XU’s to

S I the SMTJ . However, since these units cannot initiate I/U commands
in the normal mode , one would have to use the third person mode
to get them to contact the SMU. Ti and T2 would be chosen as
two relat ively prime numbers — e.g. , (2 , 3 ) ,  (2 , 5) ,  (2 , 7 ) ,  (2 , 11) ,
(2,13), (2,15), (3,4), (3,5), (3,7), etc. This minimizes the
possibility of getting into a looping situation which could cause
the SMU signal to be transmitted in the right period. Two rela-
tively prime signals are used since a single signal could be

-5 properly generated in a loop. The UID to which the SMU responds
is typically the standby CPU for the particular function. For
example , the UID used for the ICUX would be the alternate ICU. S

The UID used for the alternate ICU would be ti~e primary ICU.

VII-4

S~~S -55 ~~~~~~~~~~ — ---s5Ls~~~~ - S 
-— 

1r~~~~~~ 
5 - s s A s5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ -



— —~~~~-~~~~~——--~~~~~~~~- 
—..---.-. -—

UIDX could be chosen as the standby CPU, while UIDY might be F 
-

the system executive processor. UIDZ should be a channel con-
nected to the systems operations console, designed to give a
visible and audible alarm. The UID to which the SMU responds
should it fail to react to itself should be the system executive
processor or a manual control position.

V11 5 ;

5 5
5

S~~ ~~~~~~ ~~~~~~~~~~~~~~~ 
-- S ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ - -S - S ~~~~~~~ -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S.S



- 
_ _ _ _ _ _  _ _ _ _ _

~~~~~~ S S -

-
~~~~~~~~ - 5

S 

- 

SECTION VIII

S SPECIFICATI ON FOR THE
SYSTEM TIMING AND CLOCK UNIT (SCTJ)

OF THE
CPS CENTRAL PROCESSOR

~; ~~
.

1 
- -

55

~~~55SS 
~

vuI I—i. 4

5- . -S - 55 - -~~~~~ -~~ 555

4

~ - ‘ - -S ,S-
~~~~~~~ 

5s555=.~~~~~~~~ 5555~ 
~~~~~~~~~ - _~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SPECIFICATION FOR THE
SYSTEM TIMING AND CLOCK UNIT (SCU )

- 

OF THE
CPS CENTRAL PROCESSOR

TABLE OF CONTENTS

S PARAGRAPH TITLE PAGE

1.0 Scope VIII—l

2.0 Applicable Documents VIII-l

2. ] .  General CP Specification VIII-l

3.0 System Timing and Clock Unit (SCTJ) VIII—]. S

Specification 
- 

S~ 
- -

3.1 General VIII— ].

3.2 Control Memory Layout VIII—l
S 

3.3 Wired Timings VIII—3 I

3.4 Programmed Timings VIII—3

3.5 Time of Day VIII—4

3.6 Synchronization VIII—4

3.7 The Clock as a Unit  V I I I —5 S

3.8 Alarm Detection VIII-5

3.9 Clock Display VIII—5

-

-- 5

- -

VIII—j i

-SS-
.S~~~S• •.

555 55 ~~S-S-S55~~~S5s~SSS~ ~~~~~~~~~~~~~~~~~~ - - - - - - -- - - -- .—~~s -~~~~~~ ~~~~~~~~~~~~~~~~



p. 
6~ __

5—— • S- —-—55 — _.5 - -

LIST OF FIGURES

FIGURE TITLE PAGE

- 

VIII—l Clock Control PROM Layout VIII-2

5
- ;

I

Vill—ili

_ _ _- -_ _  

-



5-—•~~ 5-5. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-5 ~~~~~~~~~~~~~~~~~~~~~ 55555S5~~ 

~~~~

SS

~~~
5’ ~~~~~~

~~ 5 p . 5  - ---55- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~

1.0 SCOPE
[S 

This section is the specification for the System Timing
S and Clock Unit (SCU) of the CPS Central Processor.

2.0 APPLICABLE DOCUMENTS

2.1 General CP Specification

i 

(Section 1 of the CPS Central Processor Specification)

3.0 SYSTEM TIMING AND CLOCK UNIT (SCU) SPECIFICATION

3.1 General

The system timing and clock unit provides precise time
intervals for use by the rest of the complex. It maintains a
time—of—day clock which is accessible to all units in the com-
plex. Time of day information is available by the normal inter—
unit communication method. The time intervals are wired to all
units that require them . The system generally will have two S

clock units which are logically locked to one another . Timings
are distributed from both clock units to all units that require S

them. In addition , the clock unit can be programmed to provide
the distribution of “clock interrupts” to such units as might
require them.

3.2 Control Memory Layout

The control memory of the clock unit is contained in a PROM.
The fields of this PROM are interpreted as follows : (see Figure
VIII—l) t

MAX UID — maximum unit LID for units which are allowed
to access the clock via the matrix.

S MIN UID — minimum unit LID for units which are allowed 
S

-
S

-

i 

to access the clock via the matrix.
S 

- SELF TJID — the logical ID of the clock unit.

ICU-ID - the logical ID of the primary ICU .

ICU—ID(s) — the logical ID of the back—u p ICU .

ALARM ID — the logical ID of the unit which is to be
notified for self—detected alarm conditions.

-
S 

-~~~~ P-field - two bit port priority/validation field.

S 1
553

ii

VIII— l

k. ~~ ~~~~5~~~~~5-SS~ 5 5 - S  S S S S  — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5 55 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S5 .5 5-_ - -

S - S I - - 5 5 5 -  5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- ~~~~~~~~~~~~~~~~~~~~~~~ -.- __.-

__
~~~S —~~-- s~~-S-S~5.~ ~~~~~~~~~~~~~~~~~~~

—- 5 . —
~1

MAX UID MIN UID
SELF U1D PR IMARY ICU-ID

SECONDARY I CU— ID ALAR’1 UNIT ID

‘
~~~~~~~~~~~~~~~~~~~~~~~~~~JJ~~~~~~~~~ 

— 

~~FIELDS

S
_  

S

I POSITION 
} LINE 0 COUNTDOWN FIELD

PO TION 
- 

} LINE 1 COUNTDOWN FIELD

S 

I POSITION } LINE 2 COUNTDOWN FIELD

T POSITION

S _

S 
I POSITiON 

} LINE N COUNTDOWN FIELD

___________________ POSITION } LINE 1~è+1 COUNTDOWN FIELD

U I D DATA
U I D 

— 
DATA

UID DATA

LJ ID DATA

S 
UID LIsTS

-
55----

--- 

_ _
- - - UID DATA

UID DATA
-. UID DATA

U ID DATA

• - F1GU~ VIII -1 ~ OO( ~~ff~ L P~~ ~~~

V I I I — 2

~~~~~~~~~~~~~~ 

_ _ _ _ _ _ _ _ _

_ _ _ -

~~. s1 . - - ~~~~~~~~~~ .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~~
T ’ 5 3

T~~~~~~ :~~
55t

~~~~~~~~~~ iT T~~~~~~~~~~~~~ TT2T . : - :  ~~~~~~~~~~~ ii.

COUNTDOWN — up to 254 fields of 24 bits each containing
countdown values to be used to develop the
“wired” timings.

POSITION - a character address in the PROM which speci-
fies the first UID to be used in a list of
“Programmed Timings” .

UID LISTS — lists of UID’s to be used in programmed tim-
ings . The total size of the PROM may not
exceed 256 characters.

DATA — specifies three bits to be issued in the C—
field and 5 bits to be inserted in the inter— S

rupt character of the generated interrupt
message .

3.3 Wired Timings

A clock can be equipped with a number of lines which pro—
vide “wired-in” timings. The number of such lines is limited by
the total size of the PROM. If the P fields consumed 10 char-
acters (for a total of 40 units which are allowed to query the
clock), and there were no UID lists , then up to 60 “wired tim-
ings” could be provided. A “wired timing” entry does not neces-
sarily correspond to a physical clock line , but may be used only
in conjunction with the programmed timings discussed below .

A wired timing entry in the PROM is a specification for a
countdown of the basic 1 megacycle clock . The 24 bit entry in
the PROM is counted down in a countdown register and a timing
pulse is produced on the specified line each time the countdown
is completed. At that point , the countdown register is restored
to the value stored in the PROM and a new cycle is started .

At least one “wired timing” for clock synchronization is re-
S - quired. This is typically set up to a one second increment.
• The twenty-four bit countdown field allows this timing to be set

to as high as 16.67 seconds. 
S

3.4 Programmed Timings

Every wired timing entry in the PROM has an 8 bit field
which is a pointer to the head of a list of UID ’s. If the
pointer field has a value of 0, it is interpreted as not point-
ing to any UID’s. Whenever a wired timing counter runout occurs ,

S the clock unit uses the pointer field to point to the UID list ,
5 5 5 and then generates clock interrupts for the units specified on

- 
-

- the list . A unit number of 0 is interpreted as the end of the S 

-

list.

VIII— 3

I

5 5 
~

L. -~~~~~~~~~

-- 
_~~~~~~~~~~~~~ 5~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~S-~~~~~ - S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~-~~~ -. SS S

_

~~~~~~~~~ S~~~~~L~~~~I


—

S The pointer can point to any position on a list. For ex—
ample , a list can be set up specifying units A , B, C, D, E, F,
G. Timer 1 can point to A , thereby producing interrupts for A
through G. A different timer, say 3, can point to F, thereby
producing interrupts for units F a~d G. Unit names can appear
on more than one list , or more than once on a given list. Inter—
rupt messages will be transmitted in the order they appear on

S the list . Failure to communicate with the interrupted device
S will result in an interrupt to the ICTJ or alternate ICU but will

S
not suppress the transmission of the other interrupts on the

H
list.

3.5 Time of Day

The clock unit can be queried to provide the time of day
in a variety of formats:

(1) 32 bit binary time , to the microsecond , with a
maximum range of 1 hour . This is reset every hour . S

(2) 32 bit binary time to the millisecond , with a maximum
range of 28 to 31. days , reset at the end of every
month (witt~ proper corrections for leap years includingthe four year , 100 year , and corrections for the year

S
2000).

(3) 32 bit binary time to the second , not reset , providing
turnover every 236 years.

(4) 32 bit time in four characters ; providing time of day
in 100 microsecond increments , 60 seconds binary , 60
minutes binary , and 24 hours binary.

(5) 32 bit BCD time , providing tenths of hours , hours,
year day , and year from 0 to 99.

S
- (6) 32 bit BCD time providing month day , month and absolute

year .

(7) Various standard HUG formats.

The absolute year is used as a base for all leap year cot’- =
rections.

3.6 Synchronization
-

S

Synchronization is achieved by connecting the clock to a
t iming source , typical ly a one second increment , provided either S .
by another clock (a timing clock) unit , or from a WWV receiver.
The clock is loaded with the proper time data using the SET

-
• S STATE IU micro-command . This is followed by a SYN C command .

~~

VI I I— 4

5 5

— — --- - S

S

•
~~~~~~~ (~~ sZ~~~~~~~~ 5~~~ i •S 

~
s s S

S - -
_ _ _ _ _ _  - S 5 - ~~~~ -



p ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 

— -- 
5~~_~~~~S_~ 5~~ S

S 

The clock oscillator is suppressed until the synchronization
pulse is received. Thereafter the clock continues in the normal

5 fashion. Synchronization is to the nearest microsecond following
the receipt of the sync pulse.

3.7 The Clock as a Unit

The clock responds to normal unit commands. It does not
accept XNXN or XNRN commands. Single character non—transfer
IU micro—commands have their normal interpretation . The two
character non—transfer commands have thier normal interpretation .
In addition , the clock interprets the following unit specific
commands :

-
, HOLD - stops the clock oscillator at the

present value .

START - starts the clock upon receipt of the
- command .

SYNC - starts the clock at the next sync
pulse.

TIME1 — TIME7 — fetches the time of day in one of the
S specified 7 formats.

RESET NNNN - resets the specified countdown timer
to the 24 bit value given as part of
the command.

RTIM1 - RTIM7 - resets one of the seven formats to
the specified t ime . S

RESET AND SYNC NNNN - these commands do the same as the
. 4  RTIMX AND SYNC - RESET NNNN an d the RT IMX commands, S

but resetting is held up until the
next sync pulse.

I 3.8 Alarm Detection
I

The clock expects a sync pulse every second , either from
the other clock , or from a synchronization source . Should this

S signal fail to occur, the clock will generate an interrupt to
the unit whose logical identity is stored in the PROM. In addi-

S tion , a “sync failure” light will blink on the clock display . 
S

5 5 55 
5)

3 9 Clock Display

The clock is fitted with a visible display unit which can
be mounted on the system control console. The display provides

~1 -
‘
~~~~ -~~~~ the following information : Year , Month , Day , Hour , Minute , and

-
~~~~
:
~~ 

Second .

~555 5

VIII— 5
—

5 S~~5-5 - -S

SS~ S
,

S
5
~

5
~

= 
- S -

~

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
_
~~~~~~~~1


- 555 S ,5~~~~~ 55~~~~~55~~~~~~~ - ~~~~~~~~~~~ 5~~~~~ 5 55555~~~~~~~ - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION IX

S SPECIFICATION FOR THE 
-

BOOTSTRAP UNIT (BU)
OF THE

- 
- CPS CENTRAL PROCESSOR

F

~ ~~~

.

-
~ 

S

~~~ S~

S

I Si.

Ix-i
1

_ _ _ _
55

55 --

S

SPECIFICATION FOR THE
BOOTSTRAP UNIT (BU)

—OF THE
CPS CENTRAL PROCESSOR

S . TABLE OF CONTENTS

PARAGRAPH TITLE PAGE

1.0 Scope Ix— i

2.0 Applicable Documents IX-].
S

-

2.1 General CP Specification IX— l

3.0 Bootstrap Unit (BU) Specification IX— 1
3.1 General IX—l 5-

- =1 ,

3.2 Bootstrap Sequences IX— l
3.3 Bootstrap PROM IX—2
3.4 The Bootstrap Unit as a Unit IX—2
3.5 Manual Initiation of Bootstrap IX—2 -

~

3.6 Special Bootstrap Commands

I
.~~ .S

~i;~-

‘
4
’

• I

- 5 5 5 5 - ~~~~~~~~~~~~
- S

£ ~ .
45SSI~~SSS~~~~~~~~I

~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


1.0 SCOPE

H This section is the specification for the Bootstrap Unit
(BU) of the CPS Central Processor.

2.0 APPLICABLE DOCUMENTS

2.1 General CP Specification

(Section I of the CPS Central Processor Specification).

3.0 BOOTSTRAP UNIT (BtJ) SPECIFICATION

3.1 General

The Bootstrap Unit provides automatic bootstrapping of
— selected unit types. Bootstrapping can be initiated either

through the matrix by another unit , or directly and external to
the matrix via operator coninands which are keyed into the unit.

S Bootstrapping consists of a set sequence of operations followed
S

by a program stored in the Bootstrap Unit PROM.

3.2 Bootstrap Sequence

Bootstrap commands consist of: the physical identity of
the unit which is to be bootstrapped , the logical identity that
it is to assume, and the specification of a bootstrap program/
data set which is to be used. The unit is assumed reset to the
0000 LID . The bootstrap sequence consists of the following com-
mands :

CNID - converts the logical ID of the unit to the new S

logical ID.
S

REST - safety reset of the unit.

GART - global abort of all pending commands as a safety
measure.

S QUEP — safety query of unit’s physical ID.

BOOTSTRAP SEQUENCE COMMANDS.

The bootstrap sequence is a set of stored unit micro-corn-
mands and data which are issued to the unit to be bootstrapped. - -

Should any part of the bootstrap sequence fail , the sequence is
aborted. If the sequence was initiated internally , an interrupt
will be transmitted to the ICU . If initiated externally , an

J alarm will be triggered. The conclusion of a bootstrap sequence
S is signalled by an interrupt to the ICU and/or a visual signal -

‘

S

on the BU indicator panel.

L -±

TX-i

55,~ 55
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ SSS — 1- - ~~~~5555555~~~55______

3.3 Bootstrap PROM Memory

The bootstrap PROM is up to 65,536 characters in length.
The first 512 characters contain up to 256 entry points for
bootstrap sequences. A bootstrap sequence is a set of unit
micro—commands and data in the proper order. The bootstrap unit
interprets these commands and sequences properly (character by
character) to the next command which is then issued to the unit
being bootstrapped.

3.4 The Bootstrap Unit as a Unit

The Bootstrap Unit contains a single bit (per unit) cache
S memory which identifies the units which are allowed to issue

bootstrap commands. Once a bootstrap command is issued , ports
are closed and no other commands except GART (global abort) can
be accepted. The logical ID of the Bootstrap Unit is fixed. It
responds to the normal unit micro—commands except for XNRN, SST2,
SST3, SST4, FST2, FST3, FST4, and the three and four character
versions of these commands. SST1 is used to set the control
memory . FST1 is used to dump the content of the control memory .
In addition , it responds to the following unit specific commands :

BOOT PHYSICAL UNIT ID AS LOGICAL UNIT ID WITH PROGRAM
S XXXx.

3.5 Manual In i t i a t ion  of Bootstrap

Manual initiation of bootstrapping is done by keying in the
following sequence from the Bootstrap Unit pane]:

“PID.LID.PRG .’

I Where PIP — three digit physical ID of the unit to be
bootstrapped.

LID - three digit logical ID to be taken by unit.

PRG - three digit program ID to be used for boot— 1~strapping. f

3.6 Special Bootstrap Commands t
The Bootstrap Unit can execute unconditional and conditional 

-

branches within the bootstrap program. These are not issued as
IU micro—commands. The commands are :

- 

- 
SET FLAG 1 RESET FLAG 1 JUMP IF FLAG 1

~ SET FLAG 2 RE SET FLAG 2 JUMP IF FLAG 2
SET FLAG 3 RES ET FLAG 3 JUMP IF FLAG 3

IX—2

55 5 - -  
5 5~ 5 5

5-. 
S
~ g.S~~~~rs~SSaI5~~.I ~5-

— S_St SS~~ — 555-• -S5 55 S555_S •SS55SSSSS_ 55-S 5555 ~~555- 55_ s55~55 55 •-55_



— ~~~~~~~~~~~~~~~~ ss .5 r - _S~~S 5 - . 5555 
~~~~~s’*vq.5r-~ 

55 S5 S S S5 S SJ55Sfl SC5 q~ ,4! ff 5flppp~~Wj.IIflt ~st~~S5S SSS55S SS5 5 .t - ~~~ -

- I
S SET FLAG 4 RESET FLAG 4 JUMP IF FLAG 4

HALT PAUSE

All flags are reset upon the initiation of a bootstrap se-
quence. A bootstrap sequence is halted by the HALT command. A
PAUSE command halts the program at that step in the sequence and
waits until another bootstrap command is issued (either intern—

-
ally or externally). The pause light will be lit on the console

S when this occurs and an interrupt is generated to the ICU. These
commands can be used to advantage to share bootstrap sequences.

S The LID (DID for issued I/U commands) is always supplied as the -

•

- specified LID of the unit being bootstrapped. Each PAUSE pro-
~~. vides an opportunity to change the LID of the unit being boot-

strapped.
I

-S

—

‘-‘~~~—~~~~~--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~

-

SECTION X

SPECIFICATION FOR THE
- PERFORMANCE MONITOR UNIT ( PMU )

OF THE
S CPS CENTRAL PROCESSOR

S i  IS

~

S S~~5 5 S 5

3~5 SS ~5 S -

~~~~~55 ~~~~~~~~ i~c1 
x-i I -

55 5 ~~~~ ~55~~S 5 ~~~~~~~~~~~~~~~~~~~~~ a:~~~~~~~~~ . = ~~
_ _ _ _

_____ - -
~~~~

_
~~~ 55~~~~~~~~~~~

_ _ _ _ - 5 5

-~~
S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5S55~~SS~5S55S55~~_5S5 S - - _________

SPECIFICATION FOR THE
PERFORMANCE MONITOR UNIT (PMTJ)

OF THE
S CPS CENTRAL PROCESSOR

TABLE OF CONTENTS

S

PARAGRAPH TITLE PAGE

1.0 Scope X—l

2.0 Applicable Documents X—l

2.1 General CP Specification X— l

3.0 Performance Monitor Unit (PMU) Specification X—l

3.1 General X—l
S

3.2 The PMU Hardware X—l

3.2.1 General X l

3.2.2 Control Memory Layout X—3

3.2.3 Port Mode X—4

3.2.4 IU Mode X—5

3.2.5 Combined Modes X—6 S

3.2.6 Other Messages X—6 S

3.2.7 Priority and Stacking X—6

3.3 The PMU as a Unit X-7

3.4 PMU Software X-7

3.4.1 General X—7

3.4.2 Port Mode Probe Message Processing X-7

-: 3.4.3 IU Mode Software X—8 S

3.4.4 CPU Monitoring X—8

3.4.5 Use of Flag Instructions X—9

X—ii

5 : 4

_ _

5 5
5~~~~~~~

Wi—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~S. ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~

-~
S -

~~~

LIST OF FI GURES -

FIGURE TITLE PAGE

X—1 PMU Probe Installation X—2

IS 3

ii ~
~~~~~~~-

.

~~

-S :
.J

x-iii ~ -
~~~

_  _ I
S 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~


AO—A036 874 NORTH ELECTRIC CO GALlON OHIO FIG 17/2
Cc*P4(MZCATIONS PROCESSOR SYSTEM. Cu)
JAN 77 K HAGSTROM . B SEIZER F306Q2—73—C—O311s

UNCLASSIFIED RAD C—TR —76— 39q—v o ~ —~ Nt.

3[~3! j i ___I:

—

~~~~~~~~~ ~~~~~~~~~~~~~~~~

1.0 SCOPE

This section is the specification for the Performance
Monitor Unit (PMTJ) of the CPS Central Processor.

2.0 APPLICABLE DOCUMENTS

2.1 General Central Processor Specification

(Section I of the CPS Central Processor Specification)

3.0 PERFORMANCE MONITOR UNIT (PMU) SPECIFICATION

3.1 General

The CP can be equipped with one or more performance monitor
units. These are used to gather and process performance data
with a minimum of perturbation to the on-line programs. The
PMU itself is only a part of a broader performance monitor and
analysis subsystem which includes the PMTJ, CPU’s and memories
as well. This section deals not only with the specialized PMU
hardware, but also with the ways in which CPU’s and other units
are used to accomplish the performance monitoring task.

The hardware that comprises the PMU is basi.~ally a set ofprobes which can be interjected on various ports of the system ,
and which can be programmed to trap inter—unit messages. This
aspect of PMIJ activity does not perturb the on—line configuration
at all , except for the increased matrix load. The rest of the
PMU function is essentially software — both in the programs being
monitored and in specialized performance monitor and analysis
packages.

3.2 The PMU Hardware

3.2.1 General

:1 The specialized PMU hardware, as embodied in the perf or-
mance monitor unit , is a set of high impedance probes that can
be placed on any port of the CP. A probe connector is intro-
duced in the backplane of the port control logic (see Figure
X-l).

t The PMU probe connector can be inserted into any port of
the CP. It can sample all signals at the port interface without
perturbing what is happening at the port or in the unit to which
the port is attached. It is entirely passive and will not, ex-
cept possibly under a failure , inject any signals into a port
that is being monitored. The number of ports which a PMTJ can
monitor cannot exceed 254 simultaneously . However, the ability
to logically terminate that number of ports does not guarantee

x—l



- —

I

— _____ MCKPt.AUE

_____________PORT OR UNIT PORT CONNECTOR
U~GIC 

- ‘

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~ r BACKPLANE

li - PORT CONI’ECTOR

PORT OR UNIT J 
_ _ _ _ _LOGIC - PMJ PROBE

TO PtiJ
“I

FLQJ~ X-j . Ph P~BE D&FPLLATI~t~
• •

X-2

~~~~~~~~~~~~~~ 
—

1’
the ability to monitor that many. The ability to monitor them
simultaneously depends upon the internal matrix traffic.

A probe can be set to monitor in one of two modes: IU
mode and port mode. In the IU mode, the PMU traps and logs
lu commands that are actually executed. In the port mode , the
specific IU operation executed is of no importance ; instead
the attention is focused on path completions , path rejections,
blockages, delays, etc. The IU mode is primarily used to
monitor the utilization of non-matrix units. The port mode is
used primarily to monitor the utilization of the matrix units.

3.2.2 Control Memory Layout

The control memory is split into two sections. The first
S section is indexed by the probe’s physical number. The second

section is indexed by either the SID or the DID of the matrix
transmission. The probe indexed entry is used for all monitoring
functions. It has the following format:

I I • I. ~~~~~~~ I I I I I I ~~T I

• UNIT PIE) I M C P SAMPLE
I i Li L I I I j_ I

UNIT PID - the physical ID of the unit to which the probe
is to be attached.

:1 M - the probe mode - Port, SID, or DID, or any
combination thereof. A 000 mode turns the
probe off.

C — the C—field entry to be placed in the probe
message.

P — the probe priority.

SAMPLE — the sample rate to be used. If SAMPLE 1,
all transmissions are examined, if SAMPLE
14 every 14th transmission is sampled.

The DID or SID indexed entry has the following format :

L TYPE J LENGTH CATEGORY

I

:•• ‘ TYPE - unit type; either Xt, MU , CPU, MMTU, SMU, STCU,
BU. All other unit types.

X-3

~~~~ ~~~~~~~~~~~~~~~~~~~
~~~~~~~-.—~.-—- _ _~_t.________~_ —S- -~-—~~~~-- -


I

LENGTH — maximum length of generated probe message.

CATEGORY — eight categories of instruction types, whose
interpretation depends upon the unit type.

3.2.3 Port Mode

The beginning of a port control line state change signals
• the onset of an IU operation of some sort. The port number is

used as an index in the control memory and the control word is
fetched. A sample counter for that port is incremented , and if
it becomes zero , the sample will be made , and the counter reset

• to the value specified in the control memory . The IU message
being transmitted is captured and a probe message is transmitted
to the CPU which is doing the performance monitoring. The probe
message has the same format as an interrupt message and it is
handled by the PMU—CPU in exactly the same way. The message
structure is:

CONTROL CHAR .

PMU SED COMMAND C L=3 I SEQUENCE #

PROBE # DID S ID LENGTH

STATE I STATE F CODE TYPE TIME CI

The fields have the following interpretation :

PMU SID — the normal SID in an IU message — this
time the ID of the PMU .

COMMAND - the interrupt message command - XXXX.

C - the C-field value used with probe mess-
ages.

L - the length f ield of a probe message , ex—
cept set to 3 for port mode probe messages.

SEQUENCE # - a running sequence number of the message
transmitted for that probe.

PROBE # - the physical ID of the probe.

X-4

L~ _• — ———-•-•—•-•
~~~

- • -



/ ~~~~~~~~~ ~~~~~~~~~~~~~~~ — --——-———~~~~~-

DID — the DID of the IU message that was ex-
ainined .

SID - the SID of the IU message that was ex-
ainined.

LENGTH - the length of the IU message in characters.

STATE I - the port state prior to the receipt of the
IU message (e.g., busy , free, locked , etc.)

STATE F — the port state after the transmission of
the IU message.

CODE — the status of the transmission attempt:
COMPLETE , NO PATH, REJECTED SID, REJECTED
DID, REJECTED OPX, etc.

TYPE — generic unit micro , unit specific micro ,
etc.

TIME — the least significant 8 bits of the milli-
second clock.

CI — the first character of the IV message.

This message, which we shall refer to as a “probe mess-
age”, while having the general structure of an interrupt is not
sent to the ICU or the alternate ICU, but to the CPU that is
handling performance monitoring. The subsequent treatment of
the probe message by the monitor CPU will closely parallel the
treatment of interrupts by the ICU CPU. The C-field combined

• with the values stored in that CPU will be used to place the
probe message on one of 64 (actually , one of 8 since there is

• typically only one PMU) FIFO stacks , etc. The actual transmis-
• sion of a probe message does not occur until the probe has

sensed that the command has terminated.

3.2.4 IV Mode

j The IU mode begins the same way as the port mode. If a
DID mode has been selected , the DID of the IV message will be
used as an index to the control memory , and the contents thereof
together with the interpreted command will determine if this

• message or event is to be sampled. This occurs after the sample
counter. If the SID mode has been selected , the SID is used as
an index instead. The unit type in the control memory specifies
the way in which the command should be interpreted. The command 

•

is categorized and if the control memory specifies that it should
be reported, a probe message is generated. If the category is 

•

not interesting, the probe ignores further activity on that port f •
~

-

~~~

X-5

_ _ _
:~~~ ________

_ _ _ _

• r ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ •• • • • -• • •

until a new IU command is initiated or received. Then the
sample counter is checked and the cycle begins anew. The struc-
ture of the probe messages for the SID or DID IU modes is:

CONTROL CHAR.

PMU SID COMMAND XXXX C J L SEQUENCE #

PROBE # TIME DID SID

.

DATA

• The fiele~ are interpreted the same way as the fields of• the port mode messages, except that the length can be variable.
The DATA is the first 4—8 characters of the IU message that was
intercepted. The transmission of the probe message is held up
until it has been confirmed that the monitored IU message had
been accepted by the destination .

3.2.5 Combined Modes

If the port mode and one of the two IU modes has been
selected , then two different probe messages may be sent. If
both the SID and DID mode has been selected , then the control
memory will first be accessed using the DID as the index . If
this results in a probe message , the SID entry will be ignored.
If the DID index did not result in a probe message, the SID in-

• dex will be tried.

3.2.6 Other Messages

Whenever a probe sequence number “turns over” the PMU
sends a message in interrupt format , to the monitor CPU con-
tam ing the binary time of day in millisecond format , along with
the probe number. Additional messages of a diagnostic nature
are also transmitted. These are discussed elsewheres.

3.2.7 Priority and Stacking

Completed probe messages are stored on a stack prearatory
to transmission to the PMU CPU. Generally , this port and the
associated path should be kept locked at all times in order to •

minimize perturbations to the rest of the complex . The stack
• ~•

• ••

X-6

—

contains 256 characters. Priority plays no role unless the
stack is more than half full. In such cases, messages are placed
on the stack in decreasing priority order. If a.message should
fail to get stacked, and if a new IU transmission should be
monitored by that probe, it will overwrite the old message, that
had not yet been transmitted. In this case, a “missed message
counter” will be incremented for that probe. A diagnostic mes-

4 sage bearing the probe number , the time, and the number of
missed messages will be transmitted to the PMU CPU at the first
opportunity . If the missed message counter for that probe should
run out, the diagnostic message will be transmitted with the

• highest priority. A message is “missed” in this context only
if the sample interval criteria was not met , and if the type

• criteria was not met for the IV mode.

• 3.3 The PMU as a Unit

The PMtJ responds to the generic unit micro-commands with
•

-
SST instructions being used to load and the FST instructions
used to fetch the control memory contents. The PMU does not
have a validation memory and will accept commands from only the
designated PMU CPU , which is determined by the SMID (SET UNIT
MAX) command , and another CPU defined as the MIN UID. ICU ID’s
are also specified and are used for diagnostic and alarm pur-
poses. To minimize the perturbations caused by the PMU on the

• rest of the system , the primary ICU ID should be set as that of
the PMU .

3.4 PMU Software

3.4.1 General

PMU software can be divided into two categories: (1) the
• software required to process probe messages , and (2) the software

• required to process software probes. It Is not the Intention
of this section to discuss either software set in detail as this
may differ from application to application . The intention here
is to indicate the ways in which the various facilities of the
CP can be used to advantage in creating such software packages.

3.4.2 Port Mode Probe Mes~~ge Processing

The port mode probe messages should be reserved almost
exclusively to the determination of internal matrix traffic and

H general statistics on the kinds of JU operations that are per-
formed , without tying things down to specific application depen-

3 dent characteristics. The port mode messages can be used to
determine (statistically) the percentage of all IU messages that
were rejected and the reason for their rejection. Path conflicts

J and blocking probabilities can be determined in this manner.
8imilarly , we can determine if a particular memory unit is being

Li X-7

_____________ _______ 1

overloaded with requests, without however identifying the sped -
fics of the overload.

• •
Because the port mode has relatively little discrimina-

tion powers, It can be readily overloaded. That is, if the
sample interval is set too low (e.g., every I/U message) any one

• port could be reporting at approximately memory speed. Ulti—
• mately , every probe message ends up in a memory unit. If a

probe was set to each of four ports on a given memory unit which
was to be monitored, and all messages were sampled , we would have

• a three word probe message generated for every IV message mon-
itored. This would effectively mean that we would have to do at
least 4 memory fetches/loads for every memory fetch/load moni-
tored . This is clearly a non-converging approach. Sampling is
the key to the use of the port mode , especially when tied to a
CPU, memory or matrix .

The number of ports of a given unit to which a probe is
attached is another way of sampling . If it is known that
(statistically) ports are being used with equal frequency , then
by attaching a probe to only one port rather than four , we can

• cut the sampling rate by four again. Since it is relatively
easy to overload the PMTJ when using the port mode , the number
of ports that are simultaneously sampled should be minimized.
Alternatively , we can sample on one port for a few seconds ,
shi f t to another for the next few seconds , etc. If such sanrnles
are taken periodically over a period of t ime , good (stable)
statist ics can be gathered without overloading the PMU or its

• contro l CPU . Where the application warrants intensive high
frequency samplings in the port mode , more than one PMU and CPU
can be used for monitoring.

The application level software typically will consist of
examining the contents of the probe message , categorizing it in

• accordance to the features of interest , and ta l lying a counter
corresponding to that condition . More elaborate statistical
messaging should be done off—line , or on—line at low priority.

3.4.3 IV Mode Software

The same general philosophy that applied to the use of
• the port mode should be applied to the IV mode probe message

processing. However, because the IU modes have a finer discrimi—
nation capability , it is possible to set the sample rate rela—

~~~~ 
tively high. IU modes should be used to detect the time at
which fairly specific events took place, such as the initiation
and termination of I/O operations.

3 4 4 CPU Monitoring

H The PMU CPU can act just like an ICU and consequently can
sample the program state of any CPU, can examine the PC, etc

x-s



— 

••,_•
~ 

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
• __________ - -

• —-~~~~~ -~•-•

If this is done (with caution) and at relatively infrequent
intervals, time spent in each program state, time spent accessing
tables, time spent accessing data, net number of instruction
executions per second, etc., can be determined. However, since
most of these operations block processing, they should not be
overdone lest the monitoring function overwhelms the processing.

3.4.5 Use of Flag Instructions

The various flag instructions are the key to software
monitoring. A number of flags should be reserved for exclusive
use in performance monitoring. If the specified flag is not
set, the instruction effectively behaves as a NOOP and the only
penalty paid is the execution of that Instruction . If the condi-
tion for the specified flag is set, the CPU will transfer to the
software probe region, where appropriate instructions will be
executed to record that which is being monitored. The flag• conditioned subroutine return instruction is the key software
monitoring instruction. It allows the programmer to jump to a
software monitor area if a flag is set, but imposes no penalty
if the flag is not set . Therefore , it Imposes no penalty on a
program or subroutine which is not being monitored.

~~

X-9

2

r~ w~~
-

~~~~~~~~~~~~~~~~~~~~~~~~~ 
— - •

• _ _ _— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •• • ••~~~~ -~~~ — _ .  - .LL ~~~

•

I: 1
I

I

SECTION XI

• SPECIFICATION FOR THE
MATRIX AND MATRIX UNIT (XV)

OF THE
CPS CENTRAL PROCESSOR

I
~~~

;

J9

— ~~ —— 
— — —



SPECI FI CATION FOR THE
MATRIX AND MATRIX UNIT (XU )

OF THE
CPS CENTRAL PROCESSOR

TABLE OF CONTENTS

PARAGRAPH TITLE PAGE

1.0 Scope X I— l

2 .0  Applicable Documents XI—l
2.1 General CP Specification XI— 1

3.0 Th e Matrix and Matrix Unit  (XV ) Spec if i— XI— l
Cation

3.1 General XI-l
3.2 Matrix Structure XI—2

H 3.3 Connection Conventions XI—2

• 3.4 Links, Link States , and Crosspoint State XI—4

3.4. 1 General XI—4
3 .4 .2  Free Links XI—6
3 .4 .3  Reserved Links XI — 6
3.4.4 Bu sy State XI—6
3.4.5 Locked State XI-6
3 .4.6 Error State XZ-6
3 .4 .7  Dead State XI—7
3 .4 .8 Additi onal Link States X I—7
3.4.9 Crosspoint States XI-7

3.5 Saturation Signaling and Unit  Control XI— 7
Sequences

3.5.1 General XI-7

3.5.2 Signaling Procedure XI-7

3.6 Unit Generic Commands for the Matrix XI-17
Unit (KU )

3.6.1 General XI—17

3 6.2 Interpretation of Generic Unit Commands XI—17
r • ,~ 

for XU ’ s
3 6 3 Priority/Validation Cache Memory XI—18

:~ ~~~~~~~~

—ii — 

•~-.•••--~ 

— —••• — —•—



-—•~~ --~•••—-—~• •~
••
~•,.— ~“‘~~~~ ‘~ •~

-
~ ~~~~~~~~ •-•---—-—-—*

—

—

LI ST OF FIGURES

FIGURE TITLE PAGE

XI — l Matrix Schematic XI —3
X I—2 Submatrix Structure X I—5
XI—3 First Stage of Link Set Up XI—9
XI —4 Link Set Up 1 XI-l0
XI—5 Link Set Up 2 XI—ll
XI—6 Link Set Up 3 XI— 12
XI—7 Link Set Up 4 XI-14
XI—8 Link Set Up 5 XI-15

• X I— 9 Link Set Up 6 XI— 16

I

..•
‘-

F Xl iii

==~~ :: ~~ ~~~~~~~~~~~~~~~~ - •• - .~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_________ • 
•

• 

• -•— -

~ 

• •  — --- — - - - -  —•-—

1.0 SCOPE

This section is the specification for the Matrix and the
• Matrix Unit (XV ) of the CPS Central Processor.

2.0 APPLICABLE DOCUMENTS

2.1 General Central Processor Specification

(Section I of the CPS Central Processor Specification) .

3.0 THE MATRIX AND MATRIX UNIT (XU) SPECIFICATION

3.1 General
• /

The operation of the matrix is transparent to the programmer.
• Functionally , it plays the same role as the more common bus

system . However , for any particular application , the system
architect has a wide choice of matrix configurations which he
can construct out of the same basic submatrix units. The struc-
ture of the matrix for any specific application depends upon the
following factors :

(1) The total number of active and passive units imple-
mented.

(2)  The number of matrix ports required for each unit.

(3) The total number of memory units  implemented.

• (4 )  The amount of active unit  to passive unit t r a f f i c .

• (5) The required path availability — degree of graceful
• degradation required.

(6)  The processing load on the system .

Units can be implemented with one to four ports into the
• matrix . Typically , a CPU will have 2 or 4 ports , as will memory

units. Channels which serve critical functions or high traffic
functions such as discs and trunk lines, would be implemented
with two ports. Low speed lines , service lines , VDU’s, etc.,

i . would be implemented with a single port channel. If the unit’s
operation is to be retained despite a single matrix unit  fai lure ,
then two ports are required for that unit. Otherwise , the choice

• of more than one port is based on the speed and traffic handled
by that unit. Note that in this context “traffic” refers to
system internal data transfers through the matrix and not the
external t r a f f i c  handled by the system.

Matrix sizing affects speed and reliability , but not func-
tional capabilities . If the matrix is too small , the system

- 

XI — l 1

:

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~



—

• r e l iabi l i ty  and throughput will  suffer .  If too large , the
system cost will suffer .

3.2 Matrix Structure

Figure XI-l shows the overall structure of the matrix.  The
matrix consists of three stages , called respectively, the “ active
unit state” , and the “center stage” , and the “passive unit

• stage”.

The center stage is further divided into two types - the
passive unit interconnect center stages, and the active unit
interconnect center stages. Each stage consists of a number of
component switching submatrices , typically with 8 inlets and 4
outlets. A submatrix allows any inlet to be connected to any

• free outlet without interferr ing with pre—existing connections
4” in that submatrix. A submatrix is said to be “non-blocking ” for

this reason. Each inlet or outlet provides a fu l l  duplex char-
acter serial interface . In addition , there are a number of con-
tro l lines which follow the same path.

The matrix employs a distributed control which has inherent
graceful degradation . The contro l scheme is based on saturation
signaling .

A path through the matrix consists of an active or passive
stage path , followed by a center stage path. If the connection
is to a passive unit , a rectangular center stage is selected.
The path then continues through the passive stage to the appro-
priate memory unit. If the connection is to be made to another
active unit , a triangular stage is selected and the path is con-
tinued to the appropriate receiving unit by means of another
active unit stage. Memory—to—memory transfers are accomplished
by selecting a path from the memory unit , to the passive stage

• submatrix , through a rectangular center stage to an active stage
submatrix to a memory-to-memory transfer unit , back through
(p ossibly, but not necessarily ) a d i f fe rent  active unit stage
submatrix , a rectangular stage submatrix , a passive unit stage
submatrix , and f inally , to the other memory unit .

3.3 Connection Conventions

From the point of view of the matrix , there are two types
of units. Units which can and do normally ini t ia te  transfers
(active units) and units which do not normally initiate transfers
(passive units). Memory units and matrix control units do not

• normally initiate transfers. A connection between units is al-
ways a ful l  duplex connection . Every unit has both a physical
and a logical identity. The identity is established by the unit

~~~ - number (ID). The physical identity (DID) of the unit is a
strapped number (wired—in). The logical identity of the unit
(LID) is an eight bit unit number stored by the unit itself.

XI—2

-~~~~

- —

~~

-

UP TO 254 UNITS
2 PORTS EACH

• TYPICALLY
• • 32 2 PORTS PASSIVE UNIT

ISO I PORT ACTIVE UNIT STAGES CENTER STAGES UP TO 64 MU’S• S ERLANGS UP TO 64 (6 X 4) STAGES UP TO 64 (4 XS) 2 PORTS

• [UNITl~~
~~~~~~ 

1_~ _j u~6~4
o 

X 64 ~~ • b~ ,.J 
Mu 1

~~~~~~~~~~~~~~~ 

8 X 4 TYPICALLY UP TO

~~~~~~~~~~~~~~~~~~~~~~ 

MU 1
I~~T ~~~ ~\( _________  

MU

CENTER 
______

~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

L

APPEARNCE• Of SUB.
MATRICES

_ _ _ _ ~~ ITS
I TRIANGULAR

[UNIT UP TO G4X XLI

• IPJP~T xul
TYPICAL. lB

TYPICALLY TYPICAL MU’S lB MU’SUNIT
_________ I 6X 0 ERLANGS 4 (4 X 8) S ERLANGS

20 XU ’SI 0TYPICAL

1
[~~1IT 2 4 (8x 4)

FIGU RE XI —I MATRIX SCHEMATIC

• X I— 3
—‘.

• • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
-‘-~~~~~~~• • • .“_..,_. ..i. es• _nI.._.,j1_••~ ••••~ l

~
â1Sá

~••••_•~ ,•_ _ __• •••~~ •__ •••~•~~~~~ _ ••~~~•~ •~•(_______

r i~~~ ~~~~~~ ~~~~~~~

— -

• _____________

A unit can change its logical identity, or have Its logical
identity changed for it. It cannot change its physical identity .
Logical identities are established by the programmer and are
generally used to identify functional elements of the complex.
Physical identities are wired—in. The failure of a unit will
result In the reassignment of its logical ident i ty to a non —
failed unit of the same type. This is done under program con-
trol. Addressing of units and the interconnection of units is

• done by means of the logical rather than the physical identity.

Thus , if physical CPU- 7 has been allocated the logical
ident i ty 005 , corresponding to , say , message retrieval proces—
sing , any transfer between a unit and logical unit 005 will be
to physical unit CPU-7. If , however, CPU— 7 should fail and be
replaced by CPU—i , the logical identity of CPU—7 will be changed
to , say , CPIJ—O , and the logical identi ty of CPU—i will be
changed to 005 to effect the replacement of CPU—7 by CPU—i.
Thereafter (e.g., on the next memory cycle) access of logical
unit 005 will be to physical CPU-i. The same relation holds for
all other interchangeable units of the complex. Matrix sub—units
are never replicated. Consequently, the corresponding XU ’ s have
unique logical identities which correspond exactly to their
physical identities .

Units are interconnected through the matrix. Subsequent
interconnections (e .g . , the next memory cycle) are not necessarily
via the same physical path. This fact is transparent to the pro-
grammer.

3.4 Links, Link States, and Crosspoint States

3.4.1 General

• 1 Figure XI—2 is a schematic rendition of a submatrix. The
examp le shown is a typical 8 x 4 submatrix. Each line shown in
reality corresponds to a fu l l duplex path plus a number of addi-

• t ional parallel control paths in each direction . Since the sub—
matrix is full duplex , the terms inlet and outlet are inter-
changeable , depending on which side of the matrix is ini t ia t ing
the connection. For the sake of discussion assume that the
ini t ia t ion side is the 8 inlet side and the 4 inlet side is
the outlet side . Remember , however , that there are parallel
paths in the opposite direction. Any one inlet link Is capable
of being connected to one or more outlet links simultaneously .

• 1 However , while a transfer is actually in progress, inlets are
• connected to exactly one outlet (and vice versa). Telephony

jargon is used to distinguish between links by calling them
horizontal and vertical. A horizontal link can be in one of
the following states:

FREE : not latched to any vertical.

XI-4 Hi
• •• •• ~~~ •• ~~. -•-- ••—~ ----••-•—•- -•••-~~ ~~ ‘ ‘~~~~~~~~~‘

•
,-

~~~
•- -- -

— ~~- • • —~~••—.-• ‘• -. • ••• • - ••• •—., •- • • --— ~ -—•—•---• • • -• • • • • • • • —.-•.• •-.“-••—•.•--~~•-—— •—— •—• - -••~~ — • -•---- ••~~•

< > _~~~~~~~_~~3p __
~~~lI_ _ ~~~~.

i•j ()

H HORIZONTAL
<

~~~~~~~

( >

< )

( >
• 

,
~~~ > - - -

~~~~~~~~
-

~~~
.-

<

~
•

VERTiCAL LINKS

FIGURE X I—2 SUBMATRIX STRUCTURE

XI-5

_ _ _ _ _ _ _ _ _ _ _ ~

•
-‘

RESERVED : connected to at least one reserved vertical
but not to any busy or locked vertical.

BUSY: connected to at least one busy vertical but
not to any locked vertical links .

LOCKED : connected to exactly one locked link and to no
busy link.

ERROR : connected to more than one locked link or to
one locked link and at least one busy link .

DEAD : a forced state arising out of a malfunct ion or
because the link in question is not connected
to anything.

3 .4 .2 Free Links

A free link is one which can be used to establish a path
• between units. There are no restrictions on the use of free

• l inks . Free links are employed in paths on a f i r s t—come—fi rs t—
• served basis .
:~ 3.4.3 Reserved Links

• A link is put into the reserved state in the course of
setting up a path. It is a t emporary state. Reserved states
exist to prevent more than one path seizing the same link. Once
a path has been established , links go to either a busy state,
locked state , or free state.

3.4.4 Busy State

A link is in a busy state if it has been used in esta-
blishing a path to a busy unit (def ined below). Normally , the
busy state is a temporary situation lasting no more than one
memory cycle. Thereafter , the link reverts to either the free
or the locked state.

3.4.5 Locked State

A link is locked if it is used in a path which is pre— - •

sentiy involved in a transfer. It remains locked for the dura— •tion of the transfer and reverts to the free or reserved status
thereafter . A link can be locked by means of an explicit link
lock command. It will then remain locked until unlocked.

3.4.6 Error State

An error state is a temporary state occurring upon the
•

•
detection of an error condition . The detection of an error state
results In the generation of an interrupt.

XI— 6

LL~~.. ___________

3.4.7 Dead State

A link in the dead state may not be used for any purpose
whatsoever. A link remains in the dead state until it is forced
to the free state by means of an explicit command .

3.4.8 Additional Link States

• There are additional link states intermediate to these
• which occur during the course of setting up a path. These are

totally internal to the operation of the matrix.

3.4.9 Crosspoint States

Connections between horizontal and vertical links are
made by activating the appropriate crosspoInt (an automatic
action , not a programmed action). A crosspoint is basically in
one of two states - latched or unlatched .

3.5 Saturation Signaling and Unit Control Sequence

3.5.1 General

Unit interconnection is accomplished by a technique
called “Saturation Signaling ” . In a telephone network , this
would be analogous to the following :

• You wish to call a specific party , say “JOE” , whose name
is unique . You pick up the telephone - your telephone is im-
mediately connected to all non-busy telephones in the network .
The recipients pick up their handsets, whereupon you shout “JOE?” .
Everybody but JOE hangs up; he confirms the connection . Some
telephones could have been busy. If JOE has answered , you signal
the busy telephones to stop trying. If JOE was busy , you keep
all paths open to all busy telephones until JOE does answer.

• 3.5.2 Signaling Procedure

The following steps are employed in establishing a con-
nection between a source and destination unit:

(1) The unit selects a port (assuming that it has more
than one) on which the transfer is to occur. The
specific port chosen is a matter of concern to the
unit and not to the matrix or other units. The
selection procedure for ports are particular to unit
types and will be discussed in that context.

• (2) The source unit transmits the DID to the matrix
along the link between the chosen port and the active •

stage submatrix. The DID is propagated in parallel

XI-7 N
j

_________ -

~~~~1

• 

1!

throughout the matrix along all free links en-
countered. This propagation proceeds through all
matrix stages creating a tree which fans out as it
goes. A branch of the tree ends when either the
branch reaches a free port , or all available vertical
links are busy , reserved , or locked. Ports use the
same conventions with regards to busy , locked , free,
or reserved that links do; however, the reason for
selecting a particular state may differ from unit
to unit .

This stage of the set up is shown schematically in
Figure XI—3. The source unit is unit A . Since no
other units are busy , all paths are free , and the
request (DID) goes to all destination units.

(3) Assume that the destination port was free , and that
the destination unit was willing to accept a transfer• command. All free units that receive the DID examine
the DID and compare it with their own logical identi-• ties. If the identities do not match , the free unit
transmits a path kill signal, which will release all
links used between the source unit itself that were
not used in any other path. If the DID matches the
logical ID of the destination unit , the destination
will respond by echoing the DID back to the source
and transmitting a BUSY or LOCK signal back along
the path. The choice depends upon the destination
unit .

This sequence of events is shown pictorially in
Figures XI-4 through XI-6. In XI—4 , various desti-
nation units have responded with a NO. This signal
frees the links that were in use. In XI—4, the
freeing has progressed through the destination

• stage. At the same time, A’s destination has pro—
• perly matched the DID and is simultaneously sending

a reserve link signal and the DID echo.

In Figure XI—5, the signals have continued to the
• center stage, and in Figure XI—6, the path reserva-

tion is complete.

• (4) The echoed DID traverses the matrix back to the
source unit. At the same time, the BUSY or LOCK

• signal traverses back to the source unit. As it
• does so, it switches all links in the tree which are

not directly involved in the source to destination
path back to the FREE state. The end result will be
that a single path has been established between the

• source and the destination. •

J • • I
XI—8 

:~

L ______________ _ _ _

• • • • •- —~• ‘-- -••‘-•~—.—~•• •••—•• • ~~~~~~~~~~~~~ ~~~~~~~~ 
_

~ ••
a1 — La.. •— -~ —— _.• .•••—•-- — •- •-•• —•—-•• ••.•.— a—.— 

________________________________________________



I ~‘~
•- i— - • ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SOURCE STAlE CENTER STAGE DESTINATION STAGE

H 
_  

_

/

/ . RESERVE LINk

/ ~ LATC$IW cROSSPOINT
X SLOCKED CROSSPOINT

j FIGURE XI— 3 FIRST STAGE OF LIII SET—UP

• 
~~- • XI—9



• ~~~~~~~~•. 

- •
__—• • . •

~~~~~

• • • •

~~~~~~~~~

•- 

~ ~T~T I ~ ~~i

SOURCE STAGE CENTER STAGE DESTINATION STAGE

1

SOURCE I I NO

UNIT A ~~~~~~~ I I DESTINATION
_.__J I p~ 

FOR A
YES

NO

~ DESTINATION

:: NO FOR S

-
~~~~~~~~~~~~~~~~ i 

_(N O

— FREE LINK
• RESERVED LINK

SUSY LINK
LATCHED CROSSPOINT

I i

FIGURE X I—4 LINK SET— UP I

•‘ •,.~~•

xI-lO •
•

- f l. • •
•

— ~~~~~~~~ __

__
~. II~~~~~~~~~~~~~~ _ ~~~1

SOURCE STAGE CENTER STAGE DESTINATION STAGE

SOURCE I I I \ / V I \ \ I / 1 1 4
UNIT A D—J I I \1 X ! \ \I I I I ‘~~~~~~~1JDESTINATION

4 I— FOR A
YES

I

SOURCE — —• UNIT B DCSTINMION— — FOR B

, FREE LINK
- i . t - RESERVED LINK

S S a BUSY L I N K
F LATCHED CRO$SPOINT

L
FIGURE XI — 5 LINK SET-UP 2

XI—”

• .• • •
~•I~~~

• • • •
--•-.-•.---•.-— ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

•-
~~

— -
~~~~~ ‘~



‘j— •• • — •-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~

F

r SOURCE STAGE CENTER STAGE DESTINATION STAGE

L 1 I . 1 _ _ _ _ _ _ _ _ _

I

‘ I

so cE 
DESTINATION

I ::
SOURCE — —
UNIT A — 

DESTIONATION
FOR B

FREE LINK
LOCKED LINK

~ FIGU RE XI— 6 LINK SET-UP 3

XI—l2 ;.::



r ~~~~
—

~~~~~~~~~~~~~ .. • •
‘

• • ;
~~~~~~~~~~~~~~~~~~~~~~~~~~

Figures XI—7 through XI-9 show the same thing re-
peated under the assumption that a path had already
been set up.

(5) If either all paths from the source to the destina-
tion were blocked (because they were in use in some
other source—destination pair) or if the destination
unit of interest was busy or locked , there would have
been no LOCK or BUSY command propagated back along
the matrix and hence, the part of the tree connected
to blocked or busy links would not have reverted back
to the FREE state. The parts of the tree leading to
improperly selected units would have been killed by
the action described in 3 above. The links thus
Involved (in the BUSY or BLOCKED paths) remain in the
reserved state until something happens. Eventually,
paths are unblocked and/or BUSY or LOCKED units be-
come free , in which case they respond with a kill

• signal, or the destination unit becomes free in which
• case the action proceeds as before , with the path

being established.

(6) If the source unit received a no—path signal , de-
pending upon the nature of the unit and the desired

• t ransfer , one of the following alternatives may be
taken :

a. Retry until a connection is made.

b. Try the cobnection via an alternate port (if H

there is one).

c. Try the connection with a usurpation mode.

(7) The usurpation modes are used to force connections
for important signals such as interrupts. Connec-
tions are made in the normal manner , except that
reserved links will be usurped.

(8) Once the path has been established , the source unit
examines the echoed DID and compares it to the one
that was sent. If they do not match, an error condi-
tion has occurred and an appropriate interrupt is

• manufactured and transmitted.

(9) If the reflected DID matches , the source unit trans-
• mits its own ID (SID) to the destination unit. This

• is necessary because the mere establishment of a
• 

.
~~~~~ j path does not guarantee that a transfer will be al—

lowed. The priorities with which a transfer will be
allowed is up to the destination unit and depends

• • • - XI-13

p
LIL. ‘ __•. _ _ _ _

_ _ _~~~~~~~~~~~~~~ ~~~~~~~
—-- — ________


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ 
• 
~~~~~~~~~~~~~~~~~ 

_
‘~~~~~~~

‘
~~- •

~~~~~~~~~~

.

~~~~~~~~

_ _--______

SOURCE STAGE CENT ER STAGE DESTINATIO N STAGE

UNIT B DESTINATION
FOR A

SOURCE — —
UNIT A DESTINATION— — FOR B

FR EE LINK
LOCK ED LINK
LATCH ED CROSSPOINT

F I G U R E XI—? LINK SET-UP 4

XI—14
1~ • •V •~~.

.-••~-—— ‘—~~~~~~~ ~~~~~~~~~~~~~~~~~~~ •~~--- •—-~~~~ —~~~~~••.- ._
~~~~~~~~~~~~~~~~~~~~~~ ~

••—,
~~• --—-. •, —II,

SOURCE STAGE CENTER STAGE DESTINATION STAGE

• 
UNIT B DESTINATION• 

~~
‘ ~~~~~~~ FOR A

• 

~

• 

~~~
J
T
RC

~ DESTINATION

FREE LINK
- a RESERVED LINK

LOCKED L I N K
P LATCHED CROSSPOINT
X BLOCKED CROSSPOINT

FIGURE XI—8 LINK SET—UP 5

I. .:

XI—15
~

5

I~~~~~~~

—

~~~ 

•--. --•. --- -. • .  •_ _

• .~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ •_•• • • . .  ______ . ~~~~~ ~~~~~~~~~ • ~

-

~

---

~ ~~~
—-

~~~~~~~
~-


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-- •

~~ “ ‘

(

SOURCE STAGE CENTER STAGE DESTINATIOh ,IAGE

SOURCE
UNIT B DESTINATION

FOR A

SOURC E — —
• UNIT A — — DESTINATION

FOR B

:L~
FREE LINK

- RESERVED LINK• _________ LOCKED LINK
P LATCHED CROSSPOINT

A

FIGURE X I—9 LINK SET-UP 6

V

• XI—16



• rr ‘r - - ‘ - ( ~~~ -.•—•.,..~~ -—‘~~~•-‘——

• upon (in general) the SID, the internal state of
the destination unit, and the priority structure
employed by that unit . This is particularly true
for memories and CPTJ ’s. Channel units will typi-

• cally accept any request.

(10) The destination unit then changes the state of the
path to LOCKED, BUSY, RESERVED, or FREE, depending
upon what action it intends to take. Typically , the

• 
• 

state is changed to LOCKED. A FREE state might
occur as a result of receiving an improper SID rela-
tive to that destination — for example , an attempt
to connect two clock units to each other, say. An
improper SID will result in an interrupt being gen-
erated.

(11) If the SID is correct, the source unit then transmits
a command to the destination unit , describing the• kind of transfer or action which is to take place.
Command validity is checked by the destination unit
and if correct, is acted upon.

(12) If the command is valid , data (if any) is transmitted
possibly in either or both directions.

(13) At the conclusion of the transfer , the state of the
path is changed to RESERVED , holdi ng the path open

* 
for future transfers, unless usurped . Other termi-
nation states are possible , if explicitly commanded.
In all cases , the status of the path following the
t ransfer is the lower priority (FREE is lower than

• LOCKED ) of that established by the source and desti-
nation units.

3.6 Unit Generic Commands for the Matrix Unit (XU)

3.6.1 General

Each submatrix of the matrix is itself a unit , with a
normal unit interface to the matrix. The ports of an XU should

- not be terminated on the self—same XU. XU’s are not normally
treated as units. There is no reason to issue a unit command to
an XU save in the interest of testing, diagnosing , or bootstrap-

• ping the system. The XU commands described here are from the
• point of view of the appearance of the XU as a unit and not from

• the point of view of Its function as part of the matrix. The
LID of the XU is identical to its PID.

a. 3 6 2 Interpretation of Generic Unit Commands for XU’s

Most commands operate in the normal manner and need not

• ~~~~~~~~~~ XI-1 7

—~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I



- • •- .•~~~~~~~ ~~~~~ •- -•
~~~~=~~~~ 

• -•- • ••
•

_ _ _

be discussed again. Since the XU’s have no data memory (as
distinct from a cache memory) memory referencing commands and
the indirect mode are forbidden . The specific action for various
commands are given below:

GO OFF-LINE - all links are marked DEAD. All cross-
points are unlatched, Reset requires
operator action .

RESET - all links are marked FREE. All cross—
points are unlatched.

CLOSE - normal CLOSE commands. Link states and
• crosspoint states remain unchanged. The

unit will not respond to control line
signals on matr ix links.

RETURN STATUS - responds with a uni t wide control state
(OPEN , CLOSED , POWER DOWN , etc.).

LOCK PATH - normal LOCK PATH command for the XU con-
tro l links . This does not a f fec t the
XU matrix links .

UNLOCK - normal UNLOCK command for the XTJ control
links .

SET STATE — the major control state of the XU is set
as specified .

FETCH STATE - norma l operation.

SET STATE 1 - sets the bits in the validation memory.

SET STATE 2 - sets the crosspoints in accordance to
the prescribed pattern .

SET STATE 3 — sets the link states in accordance to
the prescribed pattern .

FETCH STATE 1 - dumps the bits of the validation memory .

FETCH STATE 2 - dumps the crosspoint states.

FETCH STATE 3 - dumps the link states.

• 3.6.3 Priority/Validation Cache Memory I ~Each XU has a 256 or 512 bit priority/validation memory .
The two bit code (P—field) is interpreted as follows:

X I— l8

-• -

~

- - - • • -..~~ • - • -- • — —• • • • •—_ — ---- - ••

- —~~---—-----•~~~~~~~ -----
•

•

I

P — 00 - named unit cannot function as source for
this XLI.

P 0], 10, 11 — named unit has priority P with respect

- •
to execution of XU unit commands.

The XU does not have command stacking. Priority operation
• • and rules are as discussed in Section I, the CP Specification

.

~ ~ ;.

XI-19

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~~~~iI~

--

—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - -•--- 5- -5 .,-

/

~~ T1JC nYlIU4

- f IA U~~Th

lu.gth sti, a
— klloçum kg

second
electric cununt empire A
thsiaodysomlc tempUeshu. kelvin K
emount ci substance mole moP

• • luudaous intensity cand.Ia cd

SUPPLDIVJTAIY UNITS:
plan. angle radian rid
solid angle steradian it

• DUWW UNITS:
Acceleration metre per second squared ••• mis
activity (of . ,sdiosct*vo source) dlsIntsgrstlon per ascond ••. (dlslntspatlouiYS
angular scosleretion radian per second squired ••. radis

• angular velocity radian per second ••• ,sdis
ares square metre •.. a
densIty kilogram per cubIc metre • • •  kglm
electric capecitance fetid F A.sN
electrical conductance stamens S AN
electric field strsngth volt per metre ••• Vim
electric Inductance henry H V-iSA

• electric potential difference volt V WIA
•Iectrlc resistance ohm VIA

• I electromotive force volt V WA
loule P Nm

entropy )oule per kelvin •.. Jlk
force newton N kg.mls
frequency hertz Hz (cycleYs
Illumlnance Iux Ix lmltn
luminance candels per square metre •.  • cam
luminous flux lumen Irn cd sr
magnetic field strength ampere per metre •• •  Aim

• magnetic flux weber Wb V-s
magnetic flux density tesla T Whim
magnetosnotlve force ampere A
power watt W )ls
pressure pascal Pa Nm
quantity of electricity coulomb C A-s
quantity of heat poule I N.m

• radiant intensity watt per stersdian •• •  Wssr
specific heat ioule per kllogram.kelvin • • •  

)lkg.K
stress pascal Pa Nsa
thermal conductivity watt per metre-kelvin • •• W1m K

• velocity mitre p.r ascend •.• wile

viscosity. dynamic p.scal-sscond • • • P s
viscosity, kinematic MU~~ met,. Pir sec~~d •

voltage volt V W A

volume cubIc metre .. a t
wsvenumber recIprocal metre • .• lwevePuIi
work loule I N.m

C

SIPWUES:

• . 
I Multiplication Factors P,~ lx SI Sy.bul

I 
1 000 000 000 000 - 10” lets T

P 1 000 000 000 = 10’ gigs
1 000 000 — 10’ mep M

• 

• 1 000 — 10’ kIlo k
1 100= 10’ hedo b

10 — 10’ dSkI ds

:~ 0.1.10 ’ dad’ d

~~~~~ 
0.01 — 10’ moti’ C

0.001 — 1 0’ mull a -•

0 000 001 — 10’ mImi
0.000 000 ooi — to-’ U.. . a

•
•
‘. ~ I 0.000 000 000 001 — 10 ’s

• ;j. Z~’• .~
0.000000 000 000 001 10 ”

~
• ~~~~~

0.000 000 000 000 000 001 - iir’ sIlo 5

4 To be ...Jdsd where pessible.

- _____________
~~~~~~~~~~~~~~~~~ 

•
~~

•-
~~~~~~~~~~~ -— • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —


_ _ _ _ _ _ _ _ _ _ _

_______________________ - - ________________

— ~~••~~~

p

1

1

.

I

• MISSION

of
Rome Air Development Center

RAX plans and conducts research , exploratory and advanced
d.v.lopJ *f lt pro gra ms Lit coira..n d, control , and coginunicatiof ls
(C3) activities , and .jn the C3 areas of jnfermatiOr~ sciences
and int.lligwtce . The princip al technical mission areas
are coi,r,un.icatiof ls , •lectrexr.agnetic guidance and centzo21~
surv.illanCe of ground and aerospace obj ects, Lnt.lligattce
da ta collection and handling, inf ormation system technology ,

ionospheric p rop agat ions solid state sciwtces, iuczOvaVe
physics and .l.ctronic r eliability, ~ginta inability and
compatibility.

I

I
.3C~~~ O4’J

I
‘~~~ “~

— —

_ _ _ _ _

