
STRUCTURED PLANNING AND DEB

- -

MASSACHUSETTS INST OF TECH

U

p

UNCLASSIFIED

REPORT DOCUMENTATION PAGE
~~~~~~~~~~~~~~~EFORE COMPLETING FORM

SECURITY CLASS IcICAT ION OF THIS PACE (W1i.~ Oaf . Ene.~.d~
READ IN~TRU~ T1ON S

~~~~~ 

I. REPORT HUMBE~ ,
— _____________________________

~~~ 
~A IN 387 

rGOVT ACCESS . 3 RECIPIENT S CATA L OG NUM3ER

d~~.~~~jII~~ 5. TYPE OF REPORT 6 PERIOD COV~ REO

Structured Plan ning and Debugging ,
A Linguistic Theory of Designj 

.. PERFORMING ORG.or) -.
~~( ~~~~~~~~~~~~~~~~~~~ ‘?__~~~._~

~~~~~~ 
o l M ~~~~~~~ C

~~~~~~~T RA C T O R GRA NT NUMIER(.)

NMO l4_ 75_C_ø6~~lç_______________________________ R~ F - .  c -I1~ 94~
~~~~ 5. PIRFORMING ORGANIZATION NAME AND ADDRESS 10. PRp5~~AM E1.EMENT. PROJI’.CT . ASK

Art i f ic ial Intefligencé Laboratory ‘
AREA I WORK UNIT NuMDERS

545 Techno l ogy Square
Cambridge, Massachusetts 02139

fl . CONTROL LING OFFICE NAME AND ADD RESS i2. r~ j~T DATE

~~~ Advanced Research Projects Agency Dec~~~~~
1400 W I lson  Blvd
Arlington , Virg inia 22209 

__________________________

14. MONITORING AGENCY NAME & AODRESS(ij ~~W~~.ntJro.n ConteOIlSnJ GlUe.) IS. SECURITY CLASS. (.1 thI. t.po,t )

I nformation Systems 
__________________________

Office of Naval Research UNCLASSIFIED

Arl ington, Virg ini a 22217” ”~~ 
I$•. OECLA SS IFICATI ON/DOWNGRA OING

SCHEDULE

de. DISTRIBUTION STATEMENT (*1 thu R.pon)

f l U~~~ N STATEME T M

_  

911

str tio this ent
nhirnitf

.~~~~~~~~~~~~~O

IS. SUPPLEMENTARY NOTES COPY ~~~~~ DC
rr l ’r i  r ~~~~~~~None PERMI T flJLLY L L ~L~ U~IUI~OM

IS .  KEY WORDS (ConIMu. on ri~ a~•• .id. U n.c...~~ ,d Sd.nttly by block numb.t)

Prob lem Solving,  Theory of Desi gn , Planning and Debugg i ng , Artificia l In telli-
gence , Augmented Transi tion Networks , Structured Programing , Computationa l
Lingu i s t ics

ABSTRACT (Cunhlnu. on r.. ~~.. aid. if n.c.a. y id Id.nuty by ~ioc& nu.ib.v)

A unified theory of plann i ng and debugging is explored by desi gn i ng a prob lem
solving program called PAIN. PAIN uses an augmented transition network (ATM)
to represent a broad range of planning techniques , including identification ,
decomposition , and reformulation . (The AIN 4Ue&ds 1~ 7O}- is a s imple  yet
powerful formalism which has been effective l y utilized in computational
linguistics).

DD , ~~~~~~~ 1473 EDITION OF I NOV 61 IS OBSOLETE LASS
~~~~~~~~~~L

S/N O1O2 Ol4 S6O~ I SSIFICATION OP THIS PAGE (USu al D.f•

I— - .--
~

- — —
— — - _____

—

20.

~~ PATPV s plans may manifest
’”~a t i o n a l bugs~~~.,hi ch result from heur stically

justifiable but incorrect arc transitions in the plannin g ATN . Th i s as-
pect of the theory is developed by designi ng a complementary debugging
module called DAPR) which would diagnose and repair the errors in PAIN ’s
annotated plans.

The Investigation Is incomplete: PAIN has not yet been implemented . But
sufficient detail is presented to provide a theoretica l framework for re—
conceptual izing Sussman ’ s -[i17-3-]—HACKER research.

Since a detailed study of planning and debugging techniques is a pre-
requisite for complete fulfillmen t of Dijkstra ’s objectives of program
r~~ i a b i l i ty , readabili ty, portab ility , and so on , the theory is called ,

1”
~tructured Planning and Debugging

1,~~to emphasize i ts potential role
in this enterprise.

_ _ _ - -

Massachusetts Ins titute of Technology
Artificial Intelligence Laboratory

Al Memo 387 ‘
~ December 1976 Logo Memo 34

~IrucIured Pl~nntng ~nd Debugging

fl Linguistic Theory ot Design

Ira P. Goldstein and murk k. miller

A unified theory of planning and debugging is explorc i by decigning a problem
solving program called PATN. PATN uses an augmented tr~nsitioii network (ATN) to
represent a broad range of planning techniques, including identification, decomposition,
and reformulation. (The ATN (Woods 1970) is a simple yet powerful formalism which
has been effectively utilized In computational linguistics.)

PATN’s plans may manifest “rational bugs,” which result from heuristically
justifiable but incorrect arc transitions in the planning ATN. This aspect of the theory
Is developed by designing a complementary debugging module called DAPR , which
would diagnose and repair the errors in PATN’s annotated plans.

The Investigation Is incomplete: PATN has not yet been implemented . But
sufficient detail is presented to provide a theoretical framework for reconceptualizing
Sussman’s (1973] HACKER research.

Since a deta~led study of planning and debugging techniques Is a prerequisite for
complete fu!f lllmcnt of Dljks tra’s objectives of program reliability, readability.
portability, and so on, the theory Is called, “Structured Planning and Debugging,” to
emphasize Its potential role In this enterprise.

4
This report is a revised version of Al Working Paper 125 (Logo Working Paper 55). It

describes research done at the Artificial Intelligence Laborator y of the Massachusetts Institute of
Technology. It was supported In part by the National Science Foundation under grant C40708X.
In part by the Advanced Research Projects Agency of the Department of Defense under Office of
Naval Research contract N00014-75-C-0643, and in part by the Division for Study and Research in
Education, Massachusetts Institute of Technology.

________ -4
_ _ _ _ _ —

S

Structured Planning and Debugging 2 GoldsteIn & Miller

Contents

I. Introduction

2. Structured Planning
2.1. An Augmented Transition Network for Planning
2.2. PATN’s Plan Node
2.3. Problem Identification
2.4. Problem Decomposition
2.5. Decomposition by Conjunction
2.6. PATN’s Sub graph for Conjunction
2.7. Composition by Sequential Refinement
2.8. Decomposition by Repetition
2.9. Problem Reformulation

03. SearchIng for the Plan ~~~~~ ,~~~
.

~~~

3.1. Lookahead -

3.2. Least Commitment .

3.3. Differential Diagnosis
3.4. Lemma Libraries

-‘S4. Structured Debugging ,~.
1 . \

4.1. Model Diagnosis
4.2. Process Diagnosis
4.3. Plan Diagnosis
4.4. Repair
4.5. LimitatIons of the ATN Theory of Bugs.

5. Reconceptualizing HACKER
51. Bugs Arising from Incomplete Plans
5.2. Bugs Arising from Incorrect Conjunctive Plans
5.3. Bugs Arising from Incorrect Disjunctive Plans
5.4. Generalizing the HACKER Paradigm

6. Conclusions
6.1. Limitations and Extensions of Structured Planning
6.2. Summary of the Structured Debugging Viewpoint
6.3. Protocol Analysis
6.4. Structured Programming
6.5. Al-based Computer Aided Instruction
6.6. The Science of Heuristic

7. Notes -
8. References

Thanks are due to M. Genesereth, B. Kulpers, D. Marr, D. McDermott and S. Rosenberg, for
carefully criticizing an earlier version of this paper; and to Carol Roberts, for help with the
illustrations.

___________________ 

~~ ~~~~~~~~~~~~~~~~~



- - - -  _ ____________~~~~~~~~~~~~~~~~ S

Structured Planning and Debugging 3 GoldsteIn & MIller

1. IntroductIon

Though it is difficult to prescribe any Thing in these Sorts of Cases, and every
Person’s own Genius ought to be his Guide in these Operations; yet I will
endeavor to show the Way to Learners.

Newton, Universal Arithmeticlc (translated by Ralphson, 1769, p. 198),
from (Polya 1965, p. 89].

The structured programming movement (DahI et al. 1972] has focused the concern of

computer scientists on the process of creating programs. Work in artificial Intelligence (Al) has

developed a complemen tary theory of debugging (Sussman 1973; Goldstein 1974). But, except for

Sacerdotl’s (1975] work on p rocedura l nets, a comprehensive approach has not yet been attempted.

This Is a preliminary report on a theory called Structured Planning and Debugging which we

believe to be a step towards an integrated theory of design.

Our task has two aspects. First, we hope to understanó certain intricacies of planning and

debugging, such as are encountered In the design of programs which must take Into account

Interactions in achieving dependent subgoals. The second aspect of our task is to seek a

representational framework In which to elucidate these subtleties, and In which to structure a wide

variety of planning techniques. Our methodology is to begin with simple but clear formalisms,

studying their virtues and limitations. Our research plan Is then to InvestIgate a series of

progressively more powerful and elaborate representations, after we have reached a solid

understanding as to where the extra power is needed, and why.

In earlier work , we have studied one particularly simple representation for planning

knowledge: context free grammars (e.g., (Miller & Goldstein 1976b]). In this essay we pursue the

Investigation by exploring the use of a more elaborate formalism. We utilize an augmented

(Ymnilt ion networ k (ATN) (Woods 1970]2 to represent an hierarchical taxonomy of planning

methods. We are exploring ATNs as a representation for planning concepts because they directly

generalize context free grammars, and because work in computational linguistics has shown them

—.



- - - 

Structured Planning and Debugging 4 GoldsteIn & Miller

to be both perspicuous and rich in express ive pov’er.3 
‘., 

—

An ATM Is a f in ite state trans ition graph with labelled states and arcs , augmented -by

recursion and a finite number of registers. Associated with each arc may be conditions on

following the arc, and actions to be executed If the arc Is followed. Typically the conditions are

restricted to Bootean predicates over the contents of the registers. The actions are restricted to.

structure building and modifying the contents of the registers. -

We apply the ATN formalism to planning by representing possible planning decisions as

transitions between nodes of the network. The semantic context, including the problem description,

is defined usIng the ATN’s registers. Pragmatic knowledge, specifying which planning strategies

to apply in which situations, Is modeled by arc transition constraints. The ATN constructed in this

fashion defines a problem solving program ~alled PATH (Planning ATN). S

CAV EAT: to simplify the dIscussion we speak of PATN as if it were a

workin g program. However, at this point in time, PATN is only a design.

This design Is sufficiently precise to be hand-simulated on simple problems, but

thorough testing must await implementation.

The possibility of ratio nal errors makes debugging an important part of any problem solving

theory. Rational errors are defined as mistakes In planning that arise from the use of reasonable

heuristics. This aspect of our theory is developed by designing D 4PR (an acronym for Debugger

of Annotated PRograms), a debugging module for use with PATN. In DAPR terms, diagnosis is

the Isolation of incorrect or incomplete transitions made between ATN states during the planning

process. Rep a ir consists of re-plannIng, guided by advice from the diagnosis. A description of

basic bug types in terms of specific errors in the planning process Is undertaken. DAPR would

dIagnose and repair annotated programs, In that a record of PATN’s planning decisions (the

derivation tree) is expected to be associated with the code.

Throughout the paper, we employ examples from two benchmark Al domains: the blocks

_ _ _ _ _ _  ~~~~~~~-—~~~~~
-—~~~~~~~~~~~



- .-
~
- .  -.

~~
--

~
-- - — ---

~~~~
——--.,-.

~~~~
--—--

Structured Planning and Debugging 5 Goldstein & Miller

world and the Logo turtle world (Papert 1971a, l971b, 1973]. Blocks world problem solvers Include

SHRDLU (Winograd 1972], BUILD (Fahlman 1974], HACKER (Sussman 1973] and NOAH

(Sacerdotl 1975]. Hence, applying PATN to the blocks world provides a common set of problems

for comparIson. The virtues of the Logo graphics world are: (a) graphics is an environment In

which multiple problem descriptions are posslbk, ranging from Euclidean geometry to Cartesian

geometry; (b) the possible programs range over a wide spectrum of complexity; and (c) extensive

documentation exists on human performance in thIs area (C. Goldstein 1973; Okumura 1973).

Section two presents a taxonomy of planning techniques, and uses this taxonomy to construct

the planning ATN. This defines a basic problem solver which, due to Its reliance on exhaustive

backtracking search in traversing the ATN, would be inefficient. The third section addresses thla

drawback , discussing subtleties In planning when viewed as a search process. Since certain

heuristically justifiable planning choices can nonetheless lead to bugs, section four develops a

complementary theory of debugging. This allows for reconceptualizing Sussman’s (1973] HACKER

In section five. The concluding section consIders limitations, extensions, and applicatIons of the

Structured Planning and Debugging approach.

_



.- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~

Structured Planning and Debugging 6 GoldsteIn & Miller

2. 3tructurcd PI~nrnnp

For a fortnight I had been attempting to prove that there could not be any
function analo gous to what I have since called Fuchsian functions. I was at that 

S

time very ignorant. Every day I sat down at my table and spent an hour or two
trying a great number of combinations, and I arrived at no result. One night I
took some black coffee , contrary to my custom , and was unable to sleep. A host
of ideas kept surging in my head; I could almost feet them jostling one another,
until two of them coalesced, so to speak, to form a stable combination. When
morning came, I had established the existence of one class of Fuchsian functions...

Poincare, IL , Mathematical Discovery, in (Rapport 1963, p. 132]

In this passage, Poincare seems to suggest that human problem solving relies heavily upon

laborious consideration of numerous possibilities. Is Poincare correct, or Is there a well orggnhzed

collection of planning concepts to guide the problem solver? Polya’s many insightful analyses (1957,

1962, 1965, 1967] support the assertion that planning knowledge Is highly structured. This section

pursues a view closer to Polya’s, by classifying plans, and by develo ping that classIfIcatIon Into a

procedural theory of design.

Figure I shows an hierarchical taxonomy of common planning techniques.4 We shall

illustrate how an ATN can be used to represent this planning knowledge procedurally, by

scrutinizing solution by (a) identification with previous solutions and (b) decompositio n into

conjunctive subgoals. The taxonomy shown in the figure Is more extensive than thIs, In order to

IndIcate the context in which our discussion takes place. Repetiti on and reformulation are

considered , briefly, near the end of this section.

In the taxonomy, planning begins with a choice between three methods -- IdentificatIon, 
S

decomposition and reformulation. By identif ication , we mean recognizing the problem as one

which has previously been solved, or noticing that the current problem is a direct special case of

one which has previously been solved. By decomposition, we mean dividing the current problem

into sub-problems which are (hopefully) easier to solve. The third category, reformulation , refers to

transforming the problem description into an alternative form whose solution Is equivalent to, or a



_ - -.

r~ .-

Structured Planning and Debugging 7 Golds tein & Miller

PRIMITIVE

I
— IDENTIFY_H

PREVIOUSLY DEFINED P ROCEDU RE

I-SEP
F.LINEAR—J

I I SEQUENTIAL
—.CONJUNCTION—_~

I— DECOMPOSITION
-NONL I NEAR_j

COMPOSITION
PLAN — DECOMPOSE—

~ ROUND

—REPETITION—--4

kECURSION

t_REGR

—€QUIVALENCE H

I- GENERIC (-) EXPLICIT
— REFORMULATE-

I-SPECIALIZE
_SIMPLIFY 

f GENERALIZE

f—ANALOGY

FIGURE 1
TAXONOMY OF PLANNING CONCEPTS

_ _ _ _ _ _ _ _  ~ --~~~~~~~~~~~~~~~~~~~~~~
-

_ _ _ _ _ _ _ _ _ _ _ _ _ _



—
~ —--.—---—--~

- 
--.S.----S--,

~ 
‘S

Structured Planning and Debugging 8 GoldsteIn & Miller

least a stepping ~tone towards, the solutIon of the original problem.

2.1. An Augmented Transition Network for Planning

Before presenting additional details concerning our classification of planning techniques, It

may be helpful to introduce the manner In which our definitions are formalized via representing

them In an ATN. Figure 2 provides a global view of PATN, showing the connections between the

various planning states. The stage is set by conceptualizing our planning taxonomy as a decision

tree of alternative plans. The decision process is modeled by a corresponding f inite state transit ion

diagram: each named plan type in the taxonomy becomes a state in the transition graph; each

“subset link” becomes an arc.

This planning taxonomy (decision tree) is converted to procedural form by the followIng 
S

augmentat lons:

(I) Registers: Several registers are introduced to carry the semantics of the problem
solving process. This includes the specifications for the procedure currently
being constructed (Model), and the currently proposed solution (SJ. Figure 3 Is
a list of the registers which are used in this report.

(2) Arc Order ing The arcs emanating from each node (representing alternative
planning decisions) are ordered, thereby defining a backtracking algorithm.
The default ordering from a given node is clockwise, beginning at the entrance
point of the incoming arc. This ordering embodies prior judgments about the
relatIve simplicity and probabIlIty of success of alternative planning methods.

(3) Arc Predicates: The basic arc ordering is supplemented by assocIating
conditions (predicates) with arcs. In the ATN formalism, arc predicates are
employed to determine the legality of a transition. By examining the contents
of the registers, these arc predicates can make planning choices more sensitive
to the problem context.

(4) Arc Actions: The contents of the registers may be modified by actions
associated with various arcs. The actions are performed if and only if the arc
is followed.

(5) LI neari zation Cycle: The nature of nonlinearity Is carefully examined, and , as a
result , a linearization cycle is Introduced. This involves the arcs from the
CONJ state to the NLC and NLD states in fIgure 2. lIthe arc from CONJ to
NLD Is followed, for example, the M register is altered to reflect a non-linear

_ _  - - .



~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 
-- -

Structured Planning and Debugging 9 Goldstein & Miller

.
~~~~~

: 4
-& I.I C~3 .C.~ ~

~I.4 C0 
~~~~~ ~~~— o r

1~. C) - ~ •S.~~~~(~
— oC) ~ , C)
05—’ C)~~~~~0 O U ~~~~~~O

U) _ _ _ _ _ _ _ ~ 1 C ~~~~C
.~~~~~~~~~~ L) . s ’4

..~~
.—.~ .~~ 4~) Cl ~~ ~~ U) 3 .4 .,,—l ,..

~ 0 ~~. 0.. C) C) ,.. .
~

tfl 43
C~ C~~O~ ~4 ’—’ U) .)~~~ ~ j
0 O ~~) 0.. ~~~~~~~

C)
o ~~tJ) ,.—. ~~~~‘4-’

_ _ _ _ _ _ _ _ _ _ _ _ u o o u c
.r4 . . 4 C) ~~~

_.4
~ .5.-,

I ~I 0~~~~~G) 0~~~ C)
s-i .- ., v E t.C ;.~ Cl 4-’ U~ 4.-)- 0

4-’ ~ .o .C~ C) C) C)

Z ~4~~~~~ s 4 - ~~~~~~C) O C)~~c.. (lU~~~~U~) 4-) U~~~~~4-’‘-.4
_ _ _ _ _ _ _ _ O~~ -4 U) U ~) ~~~ C)

(-4 I i c 1~~L) U) 0 : .
~~~:I C) .

~~
43 1  I 4-) I Cl i ‘—‘01 ~.
~4 ~~~ 

U) 0 -C~ >. ~~~ •~-‘r 
v—’0 

~~~~~~~ ‘.~~~ 4 J S C ~ >.
—.5)~~~~4~~~~.4 O c I U;Q ~

~~~~~~ C ) ’ .~ c.~~~~ ci < -~~ Cl
.0 .~.4

~1 
Cl) 

~
.. C );  .0 0 -

U) I ,..-
~ ~~~ 

4-’ .—, .- — .
,
~~ ~o bC, ~ o., 1. ç-~

5 —~0 I,-, ~~~~ C~~r4 ~~~~~~~ -~~H I ~ ~ Cli
43 l ’ s- .5 

~~ ><
C) I i.u ~~ ~~i ~ fl-
Cl j 4-)

1’ ~ U)

I • 0— Cl) ‘ 05-’ (“l P. -.-
s s 1  I’ ..I C) I’ 0

I I I
‘SI
, ~~~ 

I I  Cl I

11 ~~~~~~~ _ _ _

_ _ _ _ _ _ _  T T
‘-.5 c::’ .—

~

I: I LL[fl_L 
_ _

~~
_ _

_ 
L~

]

~



Structured Planning and Debugging 10 Goldstein & Miller 

— - — - — — . - — — —— — --

Figure 3. Registers Used by PATPJ

11 -- The problem specification or model.

S -- The current solution.

CAVEATS -- A list of warn ings regarding possible errors generated during
planning to aid in later debugging.

ADVICE -- A list of recommendations to guide the planner in subsequent
decisions . Constraints on the order of invoking subprocedures,
for example , are recorded in this register .

GOALS - - The set of subgoals wh- se solutions are currently pending.

0 -- The current subgoal, which is about to be solved by a recursive call to
PAIN.

_ _  ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ .— ~~~~~~~~~~ ._—. _ _ _ _ _ _ _ _



— -5-.-. —-- —-.• . - --_---~~~~~~~~~~ S -  
~
-.. _

Structured Planning and Debugging II Goldstein & Miller

decomposition (as explained shortly).

(6) Refinement Loop: A sequential refinement loop Is Introduced, which selects a
solution order for subgoals and recursively solves for them.

The result of this metamorphosis is the augmented transition network for planning (PATN).

2.2. PAIN’s Plan Node

Method consists entirely in properly ordering and arranging the things to which
we should pay attention.

Descartes, OEuvres, vol. X, p. 379; “Rules for the Direction of the Mind,”
(Rule V)1 from (Poly. 1965, p. 77]

PATN ’s first planning choice Involves selection between the major categories of identificatIon,

decocr~posItion, and reformulation. We now consider how this first part of the planning process Is

represented in the ATN (figure 4). The arcs in the figure have been labelled by small letters to

facilitate discussion. Arc a begins the planning process by setting Fl to the formal descriptIon of

the problem. Arcs b, c and d are the possible transitions from the PLAN state. The default

ordering Is for IDENTIFICATION to be attempted before DECOMPOSITION or

REFORMULATION. This reflects the heuristic j udgment that It Is preferable to check If the

answer Is already known before attempting to decompose the problem Into subgoals or reformulate

the problem description.

Arc b from PLAN to IDENTIFY has an arc constraint. Identification is pursued only if the

problem model 11 can be found in the answer library. if it can, PATN will execute arc e. Here, S

the solution register, is set to the answer found in the lIbrary. The POP causes PATN to return

with this answer. There are no arc predicates on arcs c or d because DECOMPOSE and

REFORMULATE are Intended to be applicable to any model. SectIon 2.3 pursues the discussion

by following arc b. 

5-  ___



- - .- -

Structured Planning and Debugging 12 Goldstein & Miller

M~ LIBRARY IDENTIFY 

~~~~
RYJ

~EOP

M~~.MODEL [~~~~~~~~~~~~ DECOMPOSE

(3)

______________- REFORMULATE -

d

FIGURE 4
PATN ’s PLAN NODE

Structured Planning and Debugging IS Goldstein & Miller

2.3. Problem Identification

From desire ariseth the thought of some means we have seen produce the like of
that which we aim at; and from the thought of that, the thought of means to that
mean; arid so continually, till we come to some beginning within our own power.

Thomas Hobbes, Leviathon (Chapter III), in (Polya 1965, p. 22].

Problem identif ication is the minimal technique required for solving problems: retrieval from

a library of known solutions. (This Is not to say that there are no subtleties involved In designing

this component of a procedural problem solver.) The power of the technique arises from: (a) the

extensibility of the library; and (b) the manner in which solutions are Indexed by their problem

descriptions, to facilitate retrieval in appropriate situations.

The answer library is initialized with the primitives provided by the problem domaIn of

interest, described by their effects. Each problem which is subsequently solved is added to the

library.5 The answer library thereby grows in breadth with each successful problem solving

episode. As a result, a problem which could not have been solved In reasonable time Initially may

become realistically solvable later, when one or more of Its sub-problems have been solved and

added to the library.

To develop problem identificatIon rIgorously, a precise description of primitives and problems

Is required. For our purposes in this report, a problem is represented as a conjunction of assert ions

about a set of objects, their p roperties , and their relationships. Th is formal problem specifIcation Is

called the model.6 This is ~ traditional method: although we use a different notation which we

find more convenIent, our models could be straightforwardly translated Into statements in the

predicate calculus.7

Entries in the answer library have two parts: a Pr . Model , and a Post Model. The Pre

Model Is a conjunction of assertions which are prerequisites for the entry: the entry is not

guaranteed to work If these assertions are not satisfied. The Pon Model is a conjunction of

assertions whIch describe the c/f tc: of the entry: the goal which it is to accomplish. (This

--5--- ~~~~~~~~~
—- .

Structured Planning and Debugging 14 Goldstein & Miller

approach is analogous to the definition of operators In STRIPS Fikes et al. 1972].) For PATN,

prImitives and problems are indexed by their Post models only.8

To Illustrate the use of predicate models for indexing the answer library, let us consider the

primitives for the Logo turtle world. The turtle is a graphics cursor on a display that is moved

primarily by two commands: FORWARD and RIGHT. The former moves the turtle display In

the direction of Its current heading. The latter rotates the turtle around Its own axis. Like any

problem, the primitive FORWARD is described In the answer library by a Post Model that

Indicates its effects , i.e., what It can be used for , and a Pre model that states Its prerequIsites.

Pre Mod .1 for (FORWARD X)

To execute (F O R W A R D X) , two objects must exist: a turtle and a display .
These two objects must satisfy the relationship that the new position for the turtle
(as specified by the Post Model) lie within the bounda ries of the display.

• (EXISTS TURTLE)
(EXISTS DISPLAY) -

(< I (XCOR (FORWARD X)) l Xmax)
(I (YCOR (FORWARD X))l Ymax)

Post Model for (FORWARD X)

The result of executing (FORWARD X) is that there exists a vector with lengt h
X , whose direction is the previous heading of the turtle and whose visibility is the
previous state of the pen. (Dots (“1’) are used to Indicate the previous value.)

(EXISTS VECTOR V)
(— (LENGTH V) X)
I— (XCOR TURTLE)

(+ :(XCOR TURTLE) (* X (COS ~(HEAOING TURTLE)))))
(. (YCOR TURTLE)

(+ :(YCOR TURTLE) 1* X (SIN :(HEAOING TURTLE)))))
- (. (HEAD ING VI :(HEAOING TURTLE))

(— (VISIBILITY VI :(VISIBJLITY TURTLE))

Problems are represented similarly. Figure 5, a “wlshlngwell picture,” Is a typical scene that a

Logo student might attempt to accomplish by manipulating the turtle. This kind of project Is

commonly undertaken by beginners after two to five hours of experience with the computer

Structured Planning and Debugging 15 Goldstein & Miller

FIGURE 5
WISHINGWELL PICTURE

AN ELEMENTARY LOGO GRAPHICS PROJECT

- .~~~~~~~~~~~~ - - —

Structured Planning and Debugging 16 GoldsteIn & Miller

(G. Goldstein 1973, p. 23]. An English statement of the problem might be: draw a wlshlngwell with

a square well and a triangula r roof To allow formal treatment of this problem, we use a predicate

(Post) model of the desired picture as Input to PATN. The model is expressed In a simple

assertlonal formalism developed by Goldstein (l974].~
MODEL WISHINGWELL
1 PARTS ROOF POLE WELL
2 TRIANGLE ROOF; 3 LINE POLE; 4 SQUARE WELL
5 ABOVE ROOF POLE; 6 ABOVE POLE WELL
7 CONNECTED WELL POLE (AT P1

8 (. P (MIDDLE (UPPER (SIDE WELL))))
9 (- P (LOWER (ENOPOINT POLE)))

18 CONNECTEO POLE ROOF (AT 0)
11 (. 0 (MIDDLE (BOTTOM (SIDE ROOF))))
12 (- 0 (UPPER (ENDPOINT POLE)))

13 HORIZONTAL (BOTTOM (SlOE ROOF))
14 HORIZONTAL (UPPER (SIDE WELL))
END

• Later we attempt to show that the particular choice of model is not critical: PATN has been

desIgned to utilize a variety of heuristIcs for reformulating the model if necessary.1°

For the blocks world, the basic instruction to the one-armed robot Is (PUTON A B) , where A

and B are blocks. The Pre Model is:

To execute (PUTON A 8). A must have a clear top, in order to be
picked up, A must be at some known old position. Also , the top
of B must have enough room for A.

(CLEARTOP A)
(ON A OLD-POSITION)
(SPACE -FOR A B)

The Post Model assert s:

Block A is no l onger on ite old positi on, A is on B. Als o, the
top of B i s not clear .

(NOT (ON A 010-POSITION))
(ONAB)
(NOT (CLEARTOP B))

—•

~

-
-
—.-.•-•—----•

— - -5~ -5___~~•_ ~ •~~~~~ —

Structured Planning and Debugging 17 Goldstein & Miller

For basic blocks world problems, the model is simp ly a conjunction of ON relationships. For

example, a tower of three blocks would have the model:

(ANO (ON A B) (ON B C)) .

24. Problem Decomposition

Divide each problem that you examine into as many parts as you can and as you
need to solve them more easily.

Descartes, OEuvres (vol. VI), p. 18; “Discours de li Method.” (Part II).

This rule of Descar tes is of little use as long as the art of dividing ... remains
unexplained By dividing his problem into unsuitable parts. the unexperienced
problem-soWer may increase his difficulty.

Leibnitz, “Philosphische Schriften,” edited by Gerhardt, vol. IV, p. 331.

From (Polya 1965, p. 129).

Our theory of planning addresses Lelbnltz’ crIticism of Descartes by developing more

precisely the nature of decomposItIon techniques. The planning taxonomy Identifies two Important

methods: conjunction and repetit ion. The fIrst type of plan Is appropriate for achieving a goal

which is described as a simple conjunction of predIcates (such as the three-high Tower above).

The second plan type Is appropriate for achieving a goal which Is described as a particular

subgoal repeated some number of times (such as a Tower of arbItrary height). In conventional

programming languages these plan types are implemented using sequencing and Iteration (or

recursion), although other language constructs are possible (such as parallelism).

PATN’s decision to pursue CONJUNCTION versus REPETITION Is based on the form of

the model. For our purposes here, a gIven sub-model Is restricted to being either explicit or generic.

The former has an explicit list of parts. Wlshlngwell is an example of such a model. The latter

uses quantification to describe the overall model In terms of a wgeneric part . EQ!JITRII and

EQJJITRI2 given below are two equIvalent models for an equilateral triangle. The first Is ex plicit

whIle the second is generIc.

I
~

--5— — ~~~ - - • ~~—• -~~~~~~~~~~~~~~~~~~~

.

- ~~~~~~~

-~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~
-.- -.—-——- —•.—-. —

~1

Structured Planning and Debugging 18 Goldstein & Miller

MODEL EQUITRI1 MODEL EQUITRI2
1 PARTS Si 52 S3 Ri R2 R3 1 PARTS (S 3) (R 3)
2 LINE Si; LINE S2; LINE S3 2 FOR-EACH I , LINE 5(1)
3 ANGLE Ri , ANGLE R2. ANGLE R3 3 FOR-EACH I, ANGLE R (I)
4 Si — S2 • S3 4 FOR-EACH I, 1.1,3,
S R 1 - R2 .R3 9(11 - 9(1+1 1100 3)
6 CONNECTED Si S2 S FOR-EACH 1 , R(I) • 128
7 CONNECTED S2 S3 6 FOR-EACH I ,
8 CONNECTED S3 Si CONNECTED S(I) S(I+1 MOO 3)
END END

Because of the simpllficat ions we have introduced, generic models can be t r i v ia l ly

distinguished from explicit models by the presence of the quantifier “FOR-EACH.” In the general

case, models could be arbitrary logical expressions with mixed existential and universal

quantification. The elementary blocks world tasks and Logo pIcture problems which we are

considering do not require this complexity. (A dIrection for future research Is to extend PATN’s

• design to handle these more complex problem descriptIons.)

The ATN representation for thIs decision Is illustrated by figure 6. Examine the

DECOMPOSE node. The transition to CONJUNCTION is made only If the problem is

described by a model with ex plIcit parts such as EOJJITRII or WISHINGWELL. If the model is

constructed from a generic description as in EQ~JITRI2, then REPETITION Is selected. Thus, In

terms of arc predicates, the alternatives at the DECOMPOSE node are mutually exclusive. It is

possible that a REPETITION plan, for example, might eventually be produced for a problem

Initially described by an explicit model. However, this would occur only through an Intermediate

REFORMULATION in which EQUIVALENCE converted the original model to generic form.

This in turn would allow a recursive call to PATN in which DECOMPOSITION would then

choose REPETITION.

_ _ ------- - - --_---~~~~~~ • - -

-~~
- - -

Structured Planning and Debugging 19 Golds tein & Miller

EXPLICIT CM) CONJUNCTION - • .. j
b

-

a
DECOMPOSE

GENERIC (M)
~~PETITION — ...

C

FIGURE 6
PATN ’s DECOMPOSE NODE

Structured Planning and Debugging 20 Goldstein & Miller

2.5. Decomposition by Conjunction

For conjunctive plans, PATN’s next design decision Is whether the con juncts are to be treated

Independently, or, alternatively, whether notice must be taken of InteractIons. For example, a linear

plan for the wishlngwell of figure 5 would solve for the three sub-pictures -- ROOF, POLE and

WELL -- as separate subprocedures, each constructed Independently of the others. A nonlinear

plan might attempt to take account of the potential Interactions between POLE and the other parts

-- modifying the specifications for ROOF and WELL so as to start and stop In the middle of a

side -- facilitating connection with the POLE. However, since such an optimization requires that a

given subprocedure Incorporate knowledge regarding the Implementation of another subprocedure.

a linear plan would not do this.

Let us be more precise In our classlflratlon of nonlinearltles. The goal is to construct a

procedure to accomplish a conjunction of assertions. Nonlinear itles I n decomposition are those that

add constraints to the design of the subprocedures. Nonlinear ities in composition (I.e., in putting

the parts back together) are those that add constraints to the desIgn of the superprocedure.

For the whhingwell example, adding the constraint to the design of the subprocedures for the

ROOF and WELL that they start in the middle of a side Is an example of a nonlInear

decomposition. Another example for the Logo world -- which involves more than optimization —
occurs for problems which specify that one object, X, Is to be INSIDE another, Y. V must be larger

than X , If the required topological relation is to hold. This means that a linear decomposition that

Ignores the INSIDE relation and draws Y to some default size Is likely to fall. The correct

approach Is to add a SIZE property to the descriptions of both X and V.

A nonli nea r composit ion adds constra in ts to the design of the superprocedure. For the blocks

world, the most common form of this nonlinearity is the existence of a p artial ordering on the

sequence I n which the subgoals should be achieved. The ordering constraints arise f rom the use of

some temporary resource (such as space), by one subgoal, which Is eventually used in a conflictIng

.-:_~~~~_ w~~

Str uctured Plannin g and Debugging 21 Goldstein & Miller

way by another. An example dIscussed by Sussman (1973] and Sacerdotl (1975] is the construction

of a tower of three blocks, I.e., (AND (ON A B) (ON B C)) . The tower must be built from the

bottom up If the subgoals are not to conflict. The constraint (BEFORE (ON B C) (ON A B)) must

be added to the design of the superprocedure.

The same kind of nonlinearity can arise in Logo animation. To create a “snapshot” of some

picture which can be displayed anywhere on the screen, the picture must first be drawn and

photographed.” This process, called “snapping,” Involves first drawing the picture, next snapping

it, and then erasing It. Now the erasure is of an entire screen region. If another shape is present it
-

-

will be destroyed. Hence, no shapes Intended to appear in the final scene should be present. Thus,

a constraint must be asserted that requires that the snapping subgoal be achieved before any

subgoals that draw a permanent shape in the critical screen region.

NonlInear decomposition and composition constraints are not mutually exclusIve. A given

problem can exhibit both kinds of interactIons. In the next sub-section, we take account of this by

Including a cycle in the ATN that progressively linearizes each interactIon detected in the model.

2.6. PAIN’s Subgraph for Conjunction

Figure 7 shows PATN ’s subgraph for conjunction. Arc b from CONJUNCTION to

LINEAR decomposes the model into sub-models that will be solved for Independently by recursive

calls to PATN. Th is is done as follows. Two classes of sub-models are created . One class

describes the individual objects. The second class describes Interactions between pairs of objects.

• For each object XI in the model M, Ml is the sub-model composed of all the
assertions In M describing properties of Xi.

• For each pair of objects X I and Xj In the model M, MI,J is the sub-model
composed of all the assertions describing relations between Xl and XJ.

We speak of accomplishing the object X i described by Mi as a main step in the overall procedure.

Relations between two objects described by Mlj are accomplished by interface Ste f ’s.

- -~~ ~~~~~~~-~~~---- -~~~~~~~~~- .- •

_ --~~~~~~~~~~ w~~~~~~~~~~~-

Structured Planning and Debugging 22 Goldstein & Miller

— •———— •--•———— . ________________ .

z

~~~~~~~~~~~~~~~ ~~~~~~~~~~

--- - -

~

- _ _ _  .
~~-- --~~~ - - - -~~~~~~~

- - — - ——-
~
-- •---- •



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

\

Structured Planning and Debugging 23 Goldstein & Miller

As an example, a linear decomposition of the wlshingwell Is:

111: TRIANGLE ROOF ;
HOR I ZONTAL (BOTTOM (SIDE ROOF))

112: LINE POLE ;

113: SQUARE WELL;
HORIZONTAL (UPPER (SlOE WELL))

111,2: ABOVE ROOF POLE;
CONNECTED POLE ROOF (AT 0)
(- 0 (MIDDLE (BOTTOM (SIDE ROOF))))
(- 0 (UPPER (ENDPOINT POLE)))

112,3: ABOVE POLE WELL
CONNECTED WELL POLE (AT P1
(• P (M IDDLE (UPPER (SIDE WELL))))
(— P (LOWER (ENDPOINT POLE)))

We def ine linear sequential ref inement as solution by the following process:

(I) organize the mainsteps Into a sequential procedure, choosIng an ordering that satisfies any
linearization advice;

(2) solve for the mainsteps independently;

(3) solve for the interfaces In the order In which they occur In the procedure.

A linear decomposItion Is valid if a corresponding solution via linear sequential refinement Is

possible. Implicit Interactions can invalidate a linear decomposition.

The linearization cycle consists of arcs c,f and arcs d,g. These aru attempt to linearize the

model by checking for known types of Interactions. The nonlinear decomposition node adds

properties to the descrIptIons of individual subgoals that take account of Interactions. The

nonlinear composition node sets an advice register that will be accessed by the SEQ operator

(explained below) in constructin g the superprocedure.

NLD Is a conjunction of conditions (predicates), each of which checks the model for a

particular relation or pattern of relations that have nonlinear consequences for the decomposition.

_ _ _ _ _ _ -~~~~~~~~~ -,-—-~~ -- _ _ _ _ _ _ _ _ _ _ _ _

Structured Planning and Debugging 24 GoldsteIn & Miller

If any of these predicates detect their kind of Interaction, properties are added to the description of

indlv~dual ob jects that ex plicitly account for the dependency. The objective is that with these

additional properties an Independent treatment of the modified object specifications will be

successful .

For examp le, as discussed above , INSIDE is a relation in the turtle world that has

consequences for the properties of the objects involved. Thus, NLD-INSIDE checks for the

existence of (INS IDE X Y) in the model. If found, SIZE properties , describing X in terms of V,

or V In terms of X , or both, are added to the properties of these objects. The result is that an

Independent solution for (the revised versions of) X and V will not prevent the INSIDE relation

from being accomplished.

NLC checks for patterns In the model t~at have consequences for the eventual composition of

the subgoals. If such propertIes are detected, then explIcIt relations are added to take account of

the interactions. An example is NLC-ANIMATION that checks for a Logo animation that creates

snapshots and, shows them. If detected, (BEFORE SNAP DISPLAY) is appended to the contents of

the ADVICE register. Similarly, for the blocks world, NLC-TOWER adds (BEFORE (ON B C)

(ON A B)) to ADV ICE.

The NLC and NLD constraints arise from two sources. The first is that they may be

supplied by the creator of the Planning ATN. Alternatively, following Sussman (1973], PATN can

be designed to summarize bugs by classifying the nature of the nonlinearity and adding It to the

NLC and NLD constraints. In these terms, the acquisition of skill Is, at least partly, the growth of

more elaborate recognition routines for implIcit Interactions. Sussman called this process the

compilation of critics. The theoretical advance of Structured Planning over Sussman’s HACKER

paradigm is to make clear that these critics are simply additional arc constraints in the planning

transition graph. They are not different in kind from any other plannIng constraints.

To summarize, implicit dependencies are handled by the ATN’s linearization loop. If the

~~~—-~~~~~~~~~~~~ —



-
~~~~~~~~~~ 

- - -
~~~~ ~~~~~~~

—
~~~~~~~~~~

-
~~~~~~~

-
~~
—- -

~~~~~~~~~ 
.-

~~~~
—

~~~~~~~
- - -

~~~~~~~~~~~~~

Structured Planning and Debugging 25 Goldstein & Miller

problem Is Identif led as involvIng some kind of nonlinearity, then the model or advice registers are

modified to make the interaction explicit. Processing then returns to the CONJUNCTION node.

Further processing of interactions occurs, un til no more are detected. Control then passes to the

LINEAR node for actual decomposition. If an interaction still exists, but has gone undetected,

subsequent debugging will be necessar y .

2.7. ComposItion by Sequential Refinement

Once the nonlinear ity loop has been completed, PATN would go on to solve the individual

subgoals and compose a complete solution. In this section, we discuss a composition technique we

term sequential refinement. A generalization of this approach, net ref inement , based on the

procedural net representation for programs, is discussed In section three.

FIgure 8 illustrates the ATN subgraph for the sequential refinement cycle. The basic process

Is cycling through the subgoals identif led by the linear decomposition and solving for each by

recursive applica tion of the ATN. Arc b enters the sequential refinement loop. The solutIon

register S is set to a sequential superprocedure for the malnsteps Mi and interf ace steps Mlj

identified by the decomposition. The SEQ operator on the arc chooses an order for this

superprocedure that is consistent with any ADVICE recorded by the linearization loop. SEQ

might also bring additional criteria to bear on the organization of the superprocedure, such as

imposing an order that mirrors chains of predicates in the model, such as X connected to V

connected to Z. This often simplifies interfacing.

As an example, for the wish lngwell problem, given the MI and Mij specified above, a

plausible sequence of mainsteps would be:

TO WU
10 ROOF
20 POLE
38 WELL
END

I 

~~ --~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .-~~~ -~~~-~~~~—-- .- .



— —.——-~~~~ - .. --—--,--—-- .-- - -~~~ - -

Structured Planning and Debugging 26 Goldstein & Miller

U)
‘-4 Cfl C.~

8~~~4J -

i~i U)
U

4

~U Q l
z

co~~~

:11 

LI

__
~

_ _
~

__i:i

•

~I



-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~— 

Structured Planning and Debugging 27 Goldstein & Miller

The ORDER operator on arc b of figure 8 chooses the sequence in which the sub-problems

are solved. This may not be, Indeed , probably Is not, identical to the order of occurrence of the

sub-problems in S. A criterion for the order of solution, for example, is to solve for the malnsteps

before the interfaces. Another criterion is to order the mainsteps with respect to their complexity.

Looka/t ead (section three) can estimate this. F r  the wishingwell, It makes sense to solve for the

POLE first since lookahead can Identify this as a primitive. Criteria for ordering the relations

can exist as well, although the default ordering is usually the order of occurrence in the procedure.

Arc c Is a cycle that recursively solves for the subgoals in the order selected by ORDER. The

solution for each subgoal is attached to S at that subgoal’s node. The solved subgoal Is then

deleted from GOALS. When all subgoals have been solved, the cycle is exited via arc d. The

ATN pops, returning the solutIon.

For Increased effectiveness, PATN’s initial Logo world answer library would contain both

primitives with their associated models as well as schemata for accomplishing particular model

relations. Thus, if the sub-problem Is to achieve (ABOVE X Y), where X and V are malnsteps

that have already been solved , then the answer library would contaIn specific procedural

knowledge for designing an interf ace, relative to the adjacent mainsteps, that satisfies that

relatIonship. The nature of these Imperative schemata Is discussed in (Goldstein 1974, Appendix

Dl We do not give details here.

For the wlshingwell, the mainsteps for the ROOF, POLE and WELL would be solved first.

Then, pursuing the default order for relations, first the interface between ROOF and POLE and

then between POLE and WELL would be constructed. Figure 9 shows PATN’s solution (as hand-

simulated by the authors) and the sequence of ATN states involved in its generation.

Besides generating the program, PATN would generate Its annotation, an hierarchical trace of

the ATN states passed through In generation. In this derivation tree , each node has a copy of the

values assigned to the registers at the time the node was generated. This serves as a description of

____________________ ______________________________________________________________________ _ _ _  ~~~- --- ~~~~~~~~~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
~~



Structured Planning and Debugging 28 Goldstein & Miller

— PLAN (M ÷ WW)

-‘DECOMPOSE

-‘CONJUNCTION

-‘LINEAR

~.SEQ*

-,~POP(S)

WH ER E S I S :

TO WW

10 M 1
÷ TRI ÷ ROOF 4-

20 M
1,2 

-~~ BELOW, CONNECTED ÷

30 M2 ÷ LINE ÷ POLE 4-

40 ‘
~2 3  ~ BELOW CONNECTED ÷

5 0 M 3 
4- SQ ÷ WELL 4-

FIGURE 9

SOLVING THE WISHINGWELL PROBLEM



Structured Planning and Debugging 29 Goldstein & Miller

the purposes of the code in the form of the MODEL assignments , ADVICE for future

modifIcations and CAVEATS regarding possible bugs. Caveats are generated by the planner

when making possibly erroneous heuristic decisions; these are discussed in a later section on

debugging. The derivation tree for the wishIngwell procedure (abbreviated slightly) is illustrated

in figure 10.

2.8. DecompositIon by Repetition

Before concluding this section, we briefly consider other planning technIques which were

illustrated in our taxonomy bu t have not been elaborated in the discussion so far. Repetition plans

correspond to the problem solving method of structuring the solution In terms of either the same

goal applied to simpler arguments (recursive plans) or another simpler goal repeated some number

of times (round plans). The former technique is more powerful than the latter in the sense that

every round plan can be accomplished by means of a recursion, while every recursion cannot be

accomplished by iteration (Hewitt 1972]. But Round plans are differentiated because the problem

formulation which would trigger them for PATN differs from that of Recursive plans. In the

former case, the problem P Is described as n repetItIons of problem Q,, where QJP, while in the

latter P Is descrIbed in terms of repeated occurrences of problem QuiP.

Round plans are the natural planning technique for generic models. We Intend to handle this

in the ATN via an arc operator ROUND that formulates a sub-model for the generic part and

advice for the composition requesting an Iterative control structure. Having decomposed the

problem In this fashion, control would then pass to the Sequential Refinement Loop. Figure II

Illustrates this subgraph.

EQUITRI2 was an example of a generic model. The ROUND operator would isolate

subgoals for accomplishIng a SIDE and a ROTATION. The repetition advice would be for three

iteratIons. The result would be a program of the following form:

t

-~~ ~~ -—-~~~~~~~ - — -~~~~~ --~~~~~~~ ---~~~~ - -  -



— -~ -- -.- . ———--- — ----- -~--~~~ -- -.--~~~~~~~ ~~~~~~~ — —~~~~~~~,.--- ,-—-- -

Structured Planning and Debugging 30 Goldstein & Miller 
-

~~

o
C) “ 0 0
o H in in 0

0 ‘—I ” (N

~i 0 ~~~~ 0 ~~ r-4
0~ c•u C~~ c~ ~ o

.U Z

~~ 1L4 ~~~~ r~ 0 H
H C~~~~~ 0 ~~ C 0 ~ C’ H

I. -.j I I

: :
04 • 04

U) Z • E-i ~~04 U~ Z
H ~~ ~ Z ~E4 H j~i~I ~ o ~
I

I
I P ~~~~

_
~?

0’ 0:
U) Cl) U)
H

z z
H H

• >
(~)

_ _ _ _ _ _ _ _ _  •~i• ~~~~~~~~• •~~~~~ 

-

~~~~~~~~~~~~~~~~~


-
~~a-~~~

Structured Planning and Debugging 31 Goldstein & Miller

-

~~~~a1s~ ROUND(M) 7
REP ROUND 3 SEQ j

L

FIGURE 11
ROUND PLANS

_ _ _ _ _ _ _  - -~~~~~~~~~ --- —--~~~~- - ~~~~~~~~~~~~ - - - -  



- 
_

_ _ _ _ _ _ _  _ _ _  - -

Structured Planning and Debugging 32 GoldsteIn & Miller

TO TRI
10 REPEAT 3 20, 30
20 FORWARD 100
30 RIGH T 120
ENO

2.9. Problem Reformulation

When a problem arises, we should be able to see soon whether it will be
profitable to examine some other problems first , and which others, and in which
order.

Descartes, OEuvres (vol. X), p. 381; “Rules for the Direction of the
Mind” (Rule VI), from (Polya 1965, p. 36].

The final category of plans which we consider consists of techniques for problem

reformulation.U The Importance of these methods can be understood by recognizin g that all of the

problem solving strategies mentioned above are tri ggered by pattern matching against the

description of the problem. The reformulation techniques, however, are designed to alter the

problem description. PATN would apply these reformulation techniques should solution by

identification or decom position fail. Their actIon Is to reformulate the problem description, and

then to pass the new description back to the Planner.

Our taxonomy includes two reformulation techniques.12 The first attempts to find an

equivalent problem that will be easier to solve, and whose solution wilt satisfy the original task.

The second searches for a simpl ~f icat ion that can be used as a stepping stone to solving the original

problem.

The difficulty in applying reformulatIon plans ties in recognizing which reformulation will

aid the solution progress- For equivalency, we envision PATN as capable of reformulatlons that

move between descriptions given in terms of multiple objects to equivalent descriptions in terms of

a sing le generIc object , thus changing from a Conjunct ive decomposition to a Repetitive

decomposition, or vice versa . An exa mple is moving between the EQUITRII and EQUITRI2

triangle models. Another reformulation technique involves regrouping the parts. Figure 12 shows

-- - --- --—
- - -  

-~~. ~~~~~~~~~~~~~~~~~~~~~~ 
-~~~~~ . - - ~~~~~~~~~~~~~~ 

-
~~--- --, -~~~~~~~~~--~~~~~~~~~~~ - -~~~~~~~~~~~~~ - —-



Structured Planning & Debugging 33 Goldstein & Miller

tree 

r A ~~~~~roof

— pole

we11~~~~~ ~~~~wel1

FIGURE 12
REFORM U LATING THE WISHINGW ELL IN TERM S OF A TREE 

.~~~~ — ~~~~~~~~~~~~~~~~~~ ~~
--



~-~i,;
--- 

~~~~~~~~

Structured Planning and Debugging 34 Goldstein & Mil ler

an example of par ts regrouping for the wlshlngwell. The virtue of regrouping is that it might

produce a model whose parts are already In the answer library.

For Simplification plans, we have analyzed elementary techniques based on generalization,

specialization, and analogy. (a) Specialization typically involves Instantiating varIables in a model

by specific constants or restricting their range. (b) Generalization would Include the opposIte

processes. Other non-equivalent reformulations involve adding or deleting model predicates. (c)

Analogy often amounts to first generalizing and then specializing. Thus, for the Logo world, if

the original model were for a triangle with sides of a certain size, generalization might produce a

model for a polygon, or for a triangle of arbitrary size. Analogy might then respecialize to a

square, perhaps, or a triangle of another size. The vIrtue of these reformulation techniques Is the

possibility for reaching a problem descriptlun whose solution Is known. We envision that each

technique would have associated with It an inverse mapping on the solution so that It can be

mapped back to suggest a plan for solving the original problem.

I

t ~~ ~~~~~~~~~~

Structured Planning and Debugging 35 Goldstein & Miller

3. 3earchinq b r the Plan

It you see several plans, none of them too sure, if there are several roads
diverging from the point where you are, explore a bit of each road before you
venture too far along any one -- any one could lead you to a dead end.

Polya, Mathematical Discovery1 (vol. II), p. 27.

The most straightforward plan generation algorithm for PATN is to attempt arc transitions

in dep th first order, with alternatives stored on a backup list. If some plan leads to a subgoal that

cannot be solved, failure occurs. Control backs up to the more recent choice point, and planning

s esumes by pursuing the next untried alternative for that choice point (provided that it is allowed

by any arc transition constraints which may be present).

This depth first search would apply to both explicit and ImplIcIt choice points in plannIng.

An example of an expl icit choice is the decision between decomposition and reformulation for a

given problem. By imp licit choice po int, we mean those decisions which arise which are not

represented as mutually exclusive arc transitions in the ATN. Implicit choices occur in identifying

past solutions (more than one previously solved problem may match the Post model for the current

problem>, creating super-procedures (there may be more than one reasonable sequence); and, in

general. whenever knowledge on the transition arcs sets registers and makes decisions. We have

discussed arc ordering and predicates assocIated with the transition arcs to direct explicit choices in

the planning ATN. For each imp licit decision, a similar approach is possible. The decision

process locally determines the order of the alternatives, pursues the first, and pushes the remainder

onto a failure stack. Thus the overall plannIng process would remain a depth first search.

Ultimately, all plans which PATN Is capable of generating would be tried in this mode. Of

course, exhaustive backtracking search is not a practical planning technique. One way of

decreasing aimless search which has been discussed Is to provide additional constraints on the

transition arcs. This section outlines further techniques germane to resolving planning decisions.

-i-— -—-‘

_ _ ~~~— ——-

-~~- _
~~~~

.--~~~~
---- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~

— - . -

Structured Planning and Debugging 36 Goldstein & Miller

These techniques operate by superImposing an executive search process on the ATN so as to

Improve the eff iciency of plan generation. The techniques represent four milestones In the

development of a successful planning theory. These Improvements, designed to make the planning

process more directed and less susceptible to blind search, are: (a) lookaFtea d (e.g., (Aho &

Ullman 1972]); (b) least commitment (e.g., (Sacerdoti 1975)); (c) diffe rential diagnosis (e.g.,

(Rubin 1975]); and (d) lemma libraries (cf . , macro ps (Fikes et at. 1972], well-formed substring tables

(Kuno 1967], (Wood s et at. 1972]). We intend to incorporate these strategies into the basic PATN

problem solver, following its initial Implementation.

3.1. Lookahead

Lookahead consists of a limited search of available alternatives, with associated static

plausibIlIty criteria for judging the probable success of a given non-terminal state. An elementary

but useful form of lookahead could be accomplished in PATN by pushing the planning process

forward some fixed number of recursive levels, looking to see if a solution arises via identification.

Thus, a decomposition that can solve most of its subgoals in terms of the answer library would be

preferred to a decomposition that must recursively apply decomposition techniques to its subgoals.

In effect , such lookahead attempts to select those plans that accomplish the goal with a mInimum

number of recursive calls to the problem solver.

For example, reconsIder the wishlngwell scenario. Suppose the answer library contains, not a

TRIANGLE program, but a TREE procedure. Lookahead could prevent the planner from blindly

pursuing a decomposition In terms of ROOF , POLE, and WEL L, over a refor mulation that

describes the wishingwell as a TREE and a WELL (figure 12). ThIs would be accomplished by

observIng that the reformulation produces a problem description whose decomposition can be

partly solved by means of the answer library; whereas the standard decomposition results in two

subgoals (the ROOF and the WELL) that require further analysis.

_
- -

_
_ _

Structured Planning and Debugging 37 Goldstein & Miller

Lookahead could be Implemented In the usual fashion (see, e.g., (Aho & OIlman 19723). A

static plausibility function might assign a plausibility of one to problems that can be solved via

identification, and zero to problems that require decomposition or reformulation. Lookahead

would push the analysis through a fixed number of levels of recursion, and then estimate the

dynamIc plausibility as the sum of the static plausibitities of the subgoals appearing as the tips of

the problem tree, divided by the number of these subgoals. The division serves the purpose of

resolving the following situation: given two situations in which the same number of subgoals are

known, the problem tree with fewer unsolved subgoals Is to be preferred.

A refinement of this plausibility computation might assign greater weight to those plans that

led to identifications for more complex subgoals. The complexity of a subgoal could be

approximated by syntactic criteria such as counting the number of predicates involved.

3.2. Least Commitment

Least commitment is the problem solving technique of avoiding premature decisions. It is

elegantly developed by Sacerdott (1975] In the f orm of p~ocedural nets. Sacerdoti observes that

some bugs In planning can arise from premature commitment to a particular sequence. when the

available evidence does not in fact require such a determination. His solution Is to represent the-

program, not in the usual sequential format, but as a net.13

Figure 13 illustrates a procedural net for building a tower from three blocks. Sacerdotl’s

planning system, NOAH, proceeds by successIvely expanding subgoals, committing the system to a

sequence only when a conflict in ordering arIses. At levels 1, 2 and 3, no order has been chosen for

the sequence of accomplishing (UN A B) and (ON B C) . ft Is not until af ter criticism at level 3

that NOAH commits itself to an order for placing the blocks.

This technique could be Incorporated Into PATN by replacing the sequential refinement 1oop

with a net ref inement cycle (figure 14). Instead of SEQ, organizing the subgoals into a sequential

i i
L - - -

-

__ ~~~ -

Structured Planning and Debugging 38 Goldstein & Miller

LEVEL 1
Achieve (AND(ON A B)(ON B C)~~

(a)

LEVEL 2
____ Achieve (ON A B)

[S
_ _

Achieve (ON B C)

(b)
TA-740622- 14

LEVEL 3 1
(Before Criticism)

[111
1

(c)
TA-740522- IS

LEVEL 3 1
(After Criticism

~~~~~~ 

Clear A 
—

by Resolve Conflicts) S L J ~j—I Put A on BI
“(

~Clear BJ(
[ s  

~~ 
~~ 

~~~~::: ~~~~~~~~~~~~~~~~ ~~ 
B on

TA-7405fl-16

~n~ut~ 13
SUCCESSIVE REFINEMEN T OF A PROCED URAL NET FOR BUI LDING A TOWER

FROM (SACERDOTI , 1975 , P. 15)

- ~. -~

—----- —

- - -. - - __ i~~. -
-

I .
Structured Planning & Debugging 39 Goldstein & Miller

N
HC)

____________ HEl
H

C)

U)
r.I U) 4.

(I)

N 4.1 ~~~
H U).1.J P~iU ~4 U) 4
H C)
H

C)
U)

4
Cl)

0 0

El

F

I a)
I I cJ7~N El _ _ _ _ _ _

I l
~~ -~~~~~~~~~~~ --— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~-— — - - -~ ~~~~~~~~~~

-
~~~~~~

-— -



~ —-‘-—-- -

Structured Planning and Debugging 40 Goldstein & Miller

procedure, NET would org~ -~ e the subgoals Into a procedural net. This leads to a generalization

of Sacerdoti’s approach. We would represent In the net, not only the main subgoals as a lternative

branches unless ordering is required, but also the relations between these goals. Figure 15 shows

the general form for such a “Structured Planning Net.”

PATN would solve for each subgoal, following the procedural net technique of node

expansion. But eventually the planner would also solve for the relations. When all subgoals, both

to construct individual objects, and to satisfy their relations, were satisfied, the result would be an

executable net. Any remaining branching could be executed In arbitrary order. Figure 14

illustrates this process. The operator NET on arc b sets the solu tion var iable S, not to a

superprocedure , but to a net of the form given in figure lb. COALS is the set of subgoals,

ordered for planning attention in the same fashIon as for sequential refinement.

Arc c recursively calls the planner to solve for a subgoal. If the subgoal is a mainstep. it is

spliced into the net as a refinement. But if the subgoal Is a set of relations, then its solution may

involve establishing a specific interface. If so, a sequence Is enforced on the mainsteps adjacent to

this Interface. The effect would be that, In figure 16, A Is transformed to figure B. If there are no

relations between two mainsteps that require interfacing, then no additional ordering will be

imposed and the net will preserve its branching. The result would be executable under the

interpretation that parallel branches may be executed in any order. If there are a great many

relations, then the net will ultimately reach its most constrained form -- a sequence.

Following Sacerdoti, Arc d would criticize the procedural net, checking for interactions that

became apparent only after expansion. A typical example is noticing that the prerequisites of one

subgoal are “clobbering” a brother subgoal. For the blocks world, this involves observing, by

means of a table of muUl pi e effects (Sacerdoti 1975, p. 209], that the prerequisites of one goal are

clearing a block that was placed by another goal. We shall not go Into detail regarding these

critics. The Interested reader should consult (Sacerdotl 1975). However, it is worth not Ing that If 

-~~~~ -—-~~ —---  -~~ - ~~ -~~~~ -~~~~~~~-- ~~r-



“1

Structured Planning and Debugging 41 Goldstein & Miller

M~

Mi~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~L

>
~~~~~J

~ /

M
3

FIGURE 15
GENERALIZED PROCEDURAL NET



Structured Planning and Debugging 42 Goldstein & Miller

_ J

A B

FIGURE 16
SOLVING FOR RELATIONS

_____



__ 
‘- ,  -- - ___

F

Structured Planning and Debugging 43 Goldstein & Miller

the original linearization was completely successful, criticism should find no hidden InteractIons.

But ft is probably a useful heuristic check on the linearizatIon cycle to include thIs criticism process.

There are subtleties in handling relatIons between non-adjacent mainsteps. For such cases, a

relation such as R(Xl,X3) might have to be replaced by an equivalent description In terms of

objects accomplished by ad lacent mainsteps, say (AND R 1(X1, X2) R2(X2 ,X3)). We shall not

discuss this further here. Our purpose here Is only to indicate the direction our research would

take In linking the ATN representation for planning concepts to Sacerdoti’s procedural net

representation for programs.

PATN’s design represents an extension of NOAH, Sacerdoti’s program for refining

procedural nets, in that NOAH’s primary planning technique Is successive goal expansion. This

corresponds to PATN’s decomposition-by-conjunction. But PATN also represents a variety of

other planning strategies. including repetition and the major category of reformulation. NOAH

Improves the representation of the procedures produced (by using nets), but does not emphasize

PATN’s central concern of how this goal structure Is arrived at. Hence NOAH makes an

important contribution, for the fashion in which it captures the principle of least commitment; but

it Is not a total theory of program composition.

3.3. Differential Diagnosis

Differential diagnosis ref ers to a collection of strategies which gather specialized selection

knowledge at crucial choice points. CrItIcs belong in this category. CrItics analyze the problem

description, and advise PATN as to which transitions are permissible and which are prohibited. A

Block ’s World examp le Is HACKER’ s cri t ic (which could be at tached to PA TN’s

CONJUNCTION node), that diagnoses (AND (ON )( Y) (ON V Z ))  problems as involving non-

linear relations between the subgoals.

_ _  _ _ _  _ _ _ _ _ _ _



~
•1

Structured Planning and Debugging 44 Goldstein & Miller

3.4. Lemma Libraries

Whenever a sub-problem is successfully solved, It can be added to the answer library, even If

the overall approach falls.’4 This allows the problem solver to avoid repeated attempts to solve

the same subgoals. Strips (Fikes et al. 1972] used macro p5 and triangle tables to achieve similar

economies. This planning technique Is analogous to the use of well-formed substring tables

(Kuno 1967; Woods et al. 1972] In applying ATN’s to natural language parsing, Including their

generalization to charts , as utilized by Kay (1973] and Kaplan (1973].

In the remainder of the paper , we consider the rati onal bugs that can arise In PATN’s

planning and how they can be dIagnosed and repaired.

- i 
___________________ _______________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _— —~~~~~~~~~~~ --~~~~~ 

-
- -~~~ -~~~ -—~~~~~~ -- .— ~~~~~~~~~~~~~~~~~~~~~~~~~~



r ~~

Structured Planning and Debugging 45 Goldstein & Miller

4. ~tructured D2bUQQInQ

Let us locus on one particular component of (general heuristic knowledge]: the
art and techniques of ... debugging. The school experience is dominated by the
normative attitude implied by “right answer vs. wrong answer ”. The
mathematician ’s experience of mathematics is dominated by the purposeful-
constructive attitude implied by the struggle to “make it work”. He abandons an

. idea not because it happened to go wrong, but because he has understood that it
is untixable. DwellIng on what went wrong becomes a source of power rather
than a piece of masochism (as it would appear to most fifth graders in traditional
math classes).

Papert, The Uses of Technology to Enhance Educetio,~ p. 10

We agree with Papert in hIs assessment that debugging Is an essential part of problem

solving. A powerful debugging system frees the planner from the necessity of always producing

entirely correct plans. Bugs arise from heuristic choices made in constructing the plan. From the

Structured Planning and Debugging standpoint, such heuristics are embedded in the default

ordering of transition arcs. In the absence of specific arc constraints, PATN would prefer linear to

non-linear plans, round repetitions to recursion. Such heuristics can lead to bugs. But we also

expect these heuristics to ptovide several significant advantages to the planner, such as:

(a) allowing the planner to attempt new problem types with which it has had no
experience;

(b) often being successful (because the default choice happens to be correct);

(c) in those cases where an error arises, regarding the nature of the difficulty as a
specifIc dIagnostIc as to the locus of the incorrect decIsion and the alternative
choice required;

(d) should subsequent experIence lead to bugs, abstractIng the problem description,
embedding it in a critic at the point In the planning ATN where the incorrect
choice was made, and thereby preventing future occurrences of the same error.

We call the class of mistakes that arise from reasonable heuristic judgments made in planning

rational bugs. In this section, we show how this class of diffIculties can be exp lained with

reference to the planning theory. We introduce strategies for Structured Debugging. i.e., technIques



Structured Planning and Debugging 46 GoldsteIn & MIller

for diagnosis and repair of rational bugs, based on identifying incorrect or Incomplete plans. We

organize these strategies as a design for a Debugger for Annotated PRogr ams (DAPR) . 15

For DAPR , debugging consists of diagnosis and repair. If we envIsion repair knowledge

being associated with various classes of error, then once the underlying cause is identified,

correcting the program is straightforward. Hence, the critical problem Is diagnosing the

underlying cause of the bug from its surface manifestation. We define a bug as being manifest if

the program produced by a plan falls to satisfy the problem specifIcatIon or model. The model

consists of a Boolean combination of predicates over a set of objects: unsatisfied predicates are

termed violations (following GoldsteIn (1974]). This definition subsumes the special case in which a

program falls to run to completion due to an unsatisfied prerequisIte of a primitive operation, since

operators have Pre and Post models.

In terms of the ATN planning theory, the underlying cause of a bug Is either an Incompl ete

plan , In which a-step Is missing (e.g., the sequential refinement loop has failed to identify a

subgoal), or an ina~prop r ia1e plan, in which an incorrect arc transition has been made. Underlying

causes can also be categorized as s,nta ctic, semantic , or pragmatic , according to whether the

malfunctioning planning knowledge lies in the topology of the ATN, the semantic arc constraints,

or the pragmatic selection criteria (e.g., critIcs), respectively. (For additional details on this aspect of

- 
- the bug taxonomy, the reader is referred to (Miller & Goldstein 197k], in which these distinctions

are made with respect to a context f ree grammar mirroring the topology of the ATN.) DAPR’s

goal in diagnosis is to identify where In the planning process an incomplete or Incorrect choice was

made.16

DAPR is designed to employ three diagnostic techniques: model, process, and plan diagnosis.

Process diagnosis Is the traditional kInd of program analysis in which the programmer examines

the state of the process at the point where the error is noticed. Model diagnosis goes beyond

traditional programming environments and draws upon the formal specifications definIng the



-~ - 
-

Structured Planning and Debugging 47 Goldstein & Miller

purpose of the program. Hence, It is a natural extension of work on verification. Plan diagnosis

is new. It Is made possible by a derivation tree being associated with the program, which represents

the planning decisions made in creating the code. A diagnostic technique we shall not discuss that

is useful in analyzing human code, but not especially appropriate for programs written by PATN,

Is code diagnosis. This amounts to having a list of rational form criteria, and examining the code

to find If any are violated (Goldstein 1974, pp. 137-138]. As currently designed, PATN’s set of

planning techniques would not lead to this kind of mistake.

4.1. Model Diagnosis

Model diagnosis is the basIc diagnostic technique, in that it Involves the determination of

whether the program has succeeded or failed in accomplishing its Intended model. In logistic

terms, it amounts to a verification in which the model predicates are applied to the structures —

pictures or block arrangements -- produced by the program.17

The particular set of model predicates which are violated provides strong evidence regarding

whether the underlying cause Is an incomplete plan: this is determined by checking If any code

was generated whose purpose is to accomplish those predicates or their prerequisites. If the plan Is

Incomplete, then repair can be accomplished by Invoking the planner to supply the code.

For example, suppose that after solvmg the wlshingwell problem, PATH is asked to

generate code for a scene consisting of two wlshingwells, as shown In figure 17. This scene might

be specified by the followin g model:

MODE L 11W-SCENE
1 PARTS 11141 1142
2 WISH INGUELL liii . 11112
3 RIGHT-OF 11142 11141
4 PARTLY-BELOW 11.12 WIll
END

( Both wishingw ells would be accomplished by IdentIficat ion , that is , by calls to the existi ng

aub procedure. PATN would initially generate a plan for this proble m corres pondin g to the

- -~~ -~~ --~~~~~~~~~



- —-~~~~~~~~~~~~~~~~~~~~~~~~ -~ -~~~~~

Structured Planning and Debugging 48 Goldstein & Miller

FIGURE 17 - DEBUGGING A WISHINGWELL SCENE USING MODEL DIAGNOSIS

Intended Picture Actual Picture

A A

_ _ _ _  _ _ _ _  L F ~~~~~~~~~

r here

Manifest Violations :

WW2 does not sat isfy the wishingwell model , because the
bottom side of the roof is not horizontal.

Cause of the Bug:

The plan is incomplete . There is a Missing Prerequisite
for this runtime environment . Wishingwell incorrectly
assumes that turtle starts out facing north .

Repair Technique :

Use imperative knowledge of violated predicate (horizontal)
to compute missing initial rotation .

~

-- - — -~~-~~~~----~~~ —-- ~—l~~ ~~



Structured Plannin g and Debugging 49 GoldsteIn & Miller

following code:

TO 11W-SCENE
18 1114
20 PENUP
30 FORWARD 180
40 PENDOUN
50 WU
END

Lines 20, 30, and 40 constitute an Interface to accomplish model assertIons 3 and 4. This code has a

bug: the second w ish ingwe li does not correspond to the wtsh ingwell model , because the ROOF is

not HORIZONTAL. Model diagnosi s determ ines thit , in fact , code exists in WW to accomplish

this property . However , the plan for thIs code implicitly assumes that the turtle starts out facing

NORTH. No code was generated to accomplish this prerequisite. since In previous uses of the

procedure It happened to always be satisf led In the initial environment. Hence the underlying

cause of the bug Is Incomplete planning arising from an unex pected runtime envIron ment. The

repaIr technique Is to use imperative knowledge associated with the violated predIcate to compute

the missing code: an i~tterface rotation step.

EDIT 11W-SCENE -

45 LEFT 98
END

Model diagnosis can succeed In cases such as this, where some predicate can be found for

which no code exist s to accom plish it. Alternatively, if the plan Indicates that code was created to

accom plIsh every applicable predicate , then fu rther diagnosIs Is necessary. Perhaps there are

unexpected Interactions. Process diagnosis is the next stage.18

_ _ _ _ _ _ _ _ _ _  - __ .___.4



Structured Planning and Debugging 50 Goldstein & Miller

4.2. Process Diagnosis

Examining the state of the execution process at the point where the bug became manifest, is

often helpful in diagnosing unexpected interactions. This Is the diagnostic technique used by

HACKER. Conflicts between goals are diagnos ed as non-linearities and reflect the underlying bug

of having applied an inappropriate (i.e., pragmatically incorrect) plan. The essence Is observing

that one goal has violated a model predicate descrIbing the Intended effects of a prior step. The

HACK ER bugs of Prerequisite Clobbers Brother Goal, Strategy Clobbers Brother, and

Prerequisite Conflicts with Brother are all of this type.

Sussman (1973] develops elaborate process state patterns for classifying kinds of Interactions

which we shall not repeat here. The essence Is observing that a model predicate is being undone

within a scope during which it is expectea to be true. For example, consIder the blocks world

problem of building a tower of three blocks: (AND (ON A B) (ON B C)). Part a cf figure $8

(from (Sussman 1974], pp. 10-Il) diagrams HACKER’s process state for a buggy first attempt on this

problem. Each box represents a stack frame; the horizontal axis represents time; the vertical axis

represents depth of procedure calls. This diagram matches the pattern (part b of the fig ure) for

the bug type . Prerequisite Clobbers Brother Goal. Once the difficulty Is thus classified, repair

knowledge associated with that type of bug may be applied.

A predecessor of this diagnosis technique can be found In the PLANEX capability of

the STRIPS problem solver (Pikes 1972]. In executing a plan, PLANEX checked for model

predicates being accidentally undone. HACKER generalized this by checking for situations In

which previously satisfied predicates are intentionally undone, I.e., where the plan itself is flawed.

Process diagnosis can fail when the subgoal interaction is too complex for the debugger to

recognize. DAPR would next resort to plan diagnosis, a new debugging technique not previously

formalized, to aid in isolating the culpable design decision. 

~-- ---~~~- - - -- “ -— .~-_ _ _ _ _ _ _ _



Structured Planning and Debugging 51 Goldstein & Miller
FIGURE 18

Debugging (AND (ON A B) (ON B C ) )  Using Process Diagnosis

_ 9/ 
_ _

H 
_ _ _r~3 i - >  _

J I l
l

8

a. Schematic Diagram of  HACKER ’s Buggy Process

L ~ 
_ _ _  

-

b. The General Pattern for PCBG Bugs

[ f rom Sussman 1974 , pp.  9 — l O ~

_________________ 

I -i 
~.- - ~~~~~~~~ ,~~,



- - —.-- - - .- ---.,—.-~- .— —~-~.-~“w-— - -~~
--.

~-—~~~~~~ - .
~~~~

‘,— ~~~~~~~~~~~~ - - -
~
- -

~~

Structured Planning and Debugghng 52 Goldstein & Miller

4.3. Plan Diagnosis

Plan diagnosis is based on the fact that the planner has available knowled ge of various

heuristic decisions it has made which may prove unsuccessful. Associated with each node of the

derivation tree for a PATN plan would be a specification of the values for a set of semantic

variables. The values of these semantic variables correspond to “snapshots” of the contents of the

ATN ’s registers at the time that the node was generated. The CAVEATS variable Is the

repository for advice regarding heuristic planning choices, for use In plan diagnosis.

Were PATN to decompose a model linearly, for Instance, wE~ho~t any actual proof that no

interactions existed, that fact would be recorded in the CAVEATS variable associated with the

appropriate node of the derivation tree. Of course, such a simplification may turn out to have

been incorrect. Consider, as a specific e~amp le, the task of drawing a face on the basis of the

following model.

A FACE consists of two EYEs , a NOSE , a MOUTH , and a HEAD. (The two
eyes are called LEPT .E YE and RI GHT.EVE.) The HEAD and EVEs must be
CIRCLEs. T~e NOSE must be an equilater al TRIANGLE. The MOUTH must
be a L I N E . The E YEs , NOSE , and MOUTH must be I nside the HEAD. The
EYEs are to be above the NOSE. The MOUTH should be below the NOSE.

MODEL FACE
1 PARTS LEFT.EYE RIGHT. EYE NOSE MOUTH HEAD
2 CIRCLE IHEAD LEFT.EYE RIGHT.EYE)
3 EQ1JITRI NOSE
4 LINE MOUTH
5 INS I OE (LEFT.EYE RIGHT.EYE NOSE MOUTH) HEAD
S ABOVE (LEFT.EYE RIGHT.EYE) NOSE
7 BELOW MOUTH NOSE
END

In the absence of specific critics (i.e., before PATN had learned of the peculiarities of INSIDE)

PATN would design the eyes and the head Independently. But If the head and eyes are all circles

of the same default size, then satisf ying the relation that the eyes should be inside the head will be

impossible. A linear plan that solves for the main steps Independently of the relations leads to a

bug.

— ~~~~~ ~~~~~~~ ______ ___ A

Structured Planning and Debugging 53 GoldsteIn & Mtller

DAPR Would localize this difficulty using plan diagnosis. The key step is noticing the

-
. existence of a caveat, stating that the linear treatment of the subgoals for EYES and h EAD was

justified only on heuristic grounds. in the absence of other guidanc?, this signals a potential bug.

A closer investigatIon of the semantics of’ INSIDE would indicate a non-linearIty with respect to

the size property, which would then be recognized as the source of the problem: failure to observe

a relevant pragmatic arc constraint on exit from the CONJUNCTION node (due to prior

ignorance of that constraint).

PATN need not continue to make such mistakes in the future. Future performance could be

improved by associating a critic with the conjunction plan node of the ATN. Thus, in subsequent

problems. if two parts were described by the INSiDE relation, non-linear planning would be

chosen immediately. In particular, the model would be modified to impose size properties on the

parts so that, in terms of the revised problem description, linear decomposition would then be

possible.
-

Caveats for use ~n plan diagnosis would also be generated when heurIstic~ are emp loyed

during problem reformulation. The planner might construct what it believes to be an equivalent

problem statement, but not in fact rigorously prove the equivalency. For example. two problem

descriptions might be equivalent only over a subset of the possible inputs, but the planner might

postpone determination of whether inputs outside of that range are ever possible or allowable.

Such an heuristic approach, though frequently successful, can cause trouble. Hence, this too is

recorded in the plan derivation and potentially noticed during debuggIng by plan diagnosis. In

the case of allegedly equivalent reformulation , the CAV EATS variable associa ted with the

equIvalent-reformulation node of that derivation tree would contain the warning that the

reformulation relied upon heuristic assumptions which were not rigorously demonstrated.

When such warnings are noticed during bug localization, DAPR’s action would be to call

upon more thorough analytic techn iques -- such as formal demonstration of equivalency -- to see II

i~A
_ _ _ _ _ _ _ _ _ a

Structured Planning and Debugging 54 Goldstein & Miller

the heurIstic assumption involved was In fact incorrect, thereby leading to an inappropriate plan.

Some critics could Involve such costly processing of the problem specification that, even though

already learned from prior encounters, they might not be applied during Initial planning. If plan

diagnosis points to a possible error, these critics could subsequently be invoked.

4,4. Repair

DAPR ’s overall repair strategy for buggy PATN plans, once the culpable decision has been

local ized, Is to undo the faulty choice and resume planning from that point. Selection of an

alternative arc transition would be facilitated by procedural knowledge associated with:

a. the violated model predicate;

b. the bug type;

c. the plan type;

d. code caveats such as rational form criteria.

Some of this knowledge is domain specific (primarily knowledge of repair techniques for model

predicates: GoldsteIn (1974) characterized knowledge of this kind for the Logo world.) The

remaining knowledge Is of the sort suggested In the discussions of the respective bug and plan

types. For example, one repair strategy for a faulty equivalence reformulation, which failed to take

into account the full range of inputs , Is to design ~ cond it iona l plan which separates the

equivalence-preserving and non-equIvalence-preserving inputs, and then to supply a separate

solution for the non-equivalent case as well.

- --~~~~~~~ .—-—~~~~~~~~~~
- - -~ -- -

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-— — - - . - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~~~~



- - 
_
~~~ 

---.
~~~

--. -
~

-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ —‘I,

Structured Planning and Debugging 55 Goldstein & Miller

4.5. LimItations of the ATN Theory of Bugs

There are, of course, other kinds of bugs that arise in human programming that do not fall

under the heading of rational planning errors. These range from execution errors to the

Construction of irrational plans. Execution bugs consist of those errors due to mistypings.

misspellings. Incorrect programming language syntax , noise on the computer line, and other such

failures to successfull y execute a statement of code. They are often diagnosed by the conventional

computing environments, simp ly as a result of the code being unrecognizable. Repair is

accomplished by correcting the side effects , If any, of the erroneous command , and then re-

executing an edited version of the line. The plan is not affected.

Irrational plans can be precisely defined with respect to PATN. They correspond to making

transitions that are not allowed in the planning network or failing to make transitions that are

required. An example would be pursuing a repetItion plan and failing to handle the terminal

cases. PATN , as a theory of rational planning, does not ex plain these kinds of errors, and we shall

not discuss them further here. (However , some potential implications of this distinction for

structured programming are touched upon In the concluding section.)

Another source of dissatisfaction with programs (which we mention for completeness but do

not pursue) arises from efficiency considerations. The Planning ATN is not a compiler and does

not attempt to optimize the programs which are produced. As outlined here, DAPR would be

- restricted to correcting programs that fail to achieve their specifications. Programs that are far

from optimal, but are nevertheless successful in terms of their models, are correct with respect to

rational bugs. However, an interesting question for future research Is to explore the extent to

which PATN-like hierarchical annotation could provide guidance to an optimizing compiler.

In the next section , we elaborate the Structured Debugging approach to categorizing,

diagnosing, and repairing rational errors, by analyzing the debugging behavior of HACKER,

Susaman ’s (1973) blocks world problem solver.

I

-- -
— ~~ —~~~~~~~

—i- -

Structured Planning and Debugging 56 Goldstein & Miller

5. RgconceptuaLizrnQ 1I1~CKE1~

the current bug classif ier in HACKER is an ad hoc program and thus, the body
of knowledge (called Types of Bugs in the Overview flowchart) on which it
operates is difficult to separate out and display. This, of course, makes Types of
Bugs aiso very difficult to extend. The hope is, however, that Types of Bugs is
essentially independent of the problem domain and need only be expanded when
new problem solving methods (the Programming Techniques Library) are
introduced. An important area for development of HACKER-like problem solving
methods would be the systematization of the knowledge in Types of Bugs in a
more modular way.

Sussman, A Computational Model of Skill Acquisition, pp. 103-104

Sussman’s HACKER program represents a landmark in Al theory for its emphasis on

debugging as an important constituent of learning. However , HACKER is theoretically

incomplete. in that it falls to integrate debugging expertise with a theory of plans. The underlying

bug types In HACKER appear as a miscellany of debugging knowledge with no underlying

regularity. The classification algorithm that maps manifestations to causes Is ad hoc.

We shall extend the HACKER paradigm by developing debugging knowledge in the context

of a coherent theory of planning. From this vantage point, the undetlylng causes of bugs are seen

as specific errors In plan synthesis. The types of causes follow straightforwardly from the possible

failings in traversing an ATN: failing to make an arc transition (Incomplete plans), or making an

Incorrect arc transition (Inappropriate plans). For example, failure to generate code to achieve the

prerequisite conditions for a primitive constitutes a semantically Incomplete plan.

In this section , we analyze HACKER from the PATN standpoint . The purpose Is to

demonstrate how PATN provides:

(I) greater theoretical clarity, by means of a unified planning and debugging
theory;

(2) greater depth and breadth, by means of natural extensions to HACKER’s set of
- bug types and debugging techniques.

There are four bug types In HACKER: Prerequisite Missing, Prerequisite Clobbers Brother

-
-

- _____ —I

Structured Planning and Debugging 57 Goldstein & Miller

Goal, Prerequisite Conflicts with Brother, and Strategy Clobbers Brother. We analyze each in

turn.

5.1. Bugs Arising from Incomplete Plans

The HACKER bug type, ‘Prerequisite Missing. is a special case of incomplete planning.

This bug commonly arises In situations wherein the accomplIshment of a model predicate depends

critIcally on the particular environment in which the procedure is executed. Sometimes failure to

generate code to satisfy a prerequisite (because It will happen to be true already In the expected

initial environment) will be recognized as such during planning, and recorded as a caveat. The

Issue of dependency on the initial state was discussed In (Goldstein 1974, pp. 85-88] in which

ASSUMPTION commentary was used to record known dependencies between the program and Its

initial environment. For the blocks world, Sacerdoti (1975] used what he termed phantom nodes to

represent goals which happen to be true In the initial state, but which would otherwise need to be

accomplished.

A rational planner may not realize (or be prepared to take the extensive time necessary to

deduce) all potential Interactions between the model and every possible (or Intended) initial

environment. For examp le, a plan may be used because the Post Model in the answer library

matches the problem statement; but the planner may not prove that all the statements in the Pre

Model must be true for all run-time environments. Hence, the plan might not be complete with

respect to a new environment. In this situation, debugging consists of modifying or extending the

plan to satisfy the set of newly violated predicates.

During careful eva!uation,l9 missing prerequisites are manifested by primitives generating

complaints. In the blocks world, for example, the robot will complain If asked to move a block to a

position that some other object already occupies, or to grasp a block whose top is cluttered.

Analogous complaints are generated by Logo turtle primitives. Logo will complain if the turtle is

- - -- ~~~

___ —---- ,-..-- — -~.-— ~~~ —- -

Structured Planning and Debugging 58 Goldstein & Miller

asked to move off the screen or If a turtle command is executed prior to the display being created

by a start-display function.

A unifIed approach is possible, which subsumes both the complaints generated by primitives

and the broader class of model violations (referring to a program’s failure to accomplish its goals).

This synthesis is obtained by the use of Pre Models. If a Pie Model Is associated wIth each

primitive, then unsatisfied prerequisites simply become model violations. For example, as

explained in section two, the Pre Model for the HACKER operator Move block X onto block)‘

would contain the assertions:

(CLEARTOP X) ;X must have a cleartop to be picked up.
(ON X OLD-POSITION) ;X must be at some known old position.
(SPACE-FOR)(Y) ;The top of V must have room for X .

The inclusion of unsatisfied prerequisite manifestations In the class of model vIolatIons, and

the classIfication of prerequisite missing bugs as semantically Incomplete plans allows a unif ted

treatment of diagnostic and repair techniques. Each model predicate, whether part of a primitive

operator’s Pre model or a problem’s model, has procedural knowledge associated with It that aids in

Isolating the bug locus, proposing repaIrs, and thereby completing the plan.

5.2. Bugs Arising from Incorrect Conjunctive Plans

Prerequisite Clobbers Brother Goal and Nonlinear Composition

Prerequisite Clobbers Brother Goal (PCBG) and Prerequisite Conflicts with Brother (PCB) bugs

both arise from a linear plan being applied to a non-linear problem. PCBG is the underlying

cause when attempting to build towers incorrectly from the top down. In HACKER terms, the goal

is (MAKE (AND ON x V) (ON V Z))) . HACKER’s default solution is to achieve the conjuncts in

the order in which they appear. That is, this bug arises In situations In which the planning system

ignores the possibility that one conjunct may have to be accomplished prior to the other. From the

PATN standpoint, this bug is caused by the planner following the (pragmatically InapproprIate)

L ~~~

Structured Planning and Debugging 59 GoldsteIn & Miller

linear arc from the conjunction node. PATN’s default, as explained previously, is to choose a

linear plan except when non-linear compositIon or decomposition critics detect an interaction.

in these terms, it is clear how debugging Is to be accomplished. DAPR would re-apply PATN

to the problem with the advice that a linear plan Is prohibited. This knowledge is represented as

an NLC predicate on the arc from the CONJUNCTION node to the NONLINEAR

COMPOSITION node.2° (See figure 7.) The predicate checks for patterns of the form,

(AND (ON X Y) (ON V Z)) , in the problem model. If they occur, planning control Is transferred

to the NONLINEAR COMPOSITION node, with composition guidance being appended to the

ADVICE register. This advice, computed by the NLC pred ica te, d irec ts the order of re-

composition when planning eventually reaches the Sequential Refinement loop. (See the overall

ATN flowchart of figure 2). For the tower example, the effect of the advice Is to ensure that the

plan for achieving (ON)(Y) Is executed after the plan for (ON V Z) .

Sussman analyzed these bug detection patterns, but had no coherent place for them in an

overall theory . From the standpoint of an ATN planner, they represent constraints on arc

transitions, and their effects are to set registers to guide subsequent planning.

Prerequisite Clobbers Brother and Nonlinear Decomposition

PCB arises in the following problem: HACKER Is asked to find space for both blocks A and

B on base block C, i.e., to accomplish figure 19b. In attempting this problem linearly, HACKER

first places A on the center of C (figure l9c), with no consideration of the brother goal of placing

B on C. When the time comes to place B on C, there is insufficient room and block A must be

pushed left (figure l9d). This results In a Double Move (rational form) manifestation.

HACKER’s debugging strategy Is to construct a plan that simultaneously takes account of both

prerequisites: (PLACE-FOR A C) and (PLACE-FOR B C).

The PATN-DAPR approach Is to have the debugging episode produce a non-linear

Structured Planning and Debugging 60 Goldstein & Miller

GOAL : (AND ON A C)
-

(ON B C))
- —________

a b
A 1 B I

~~~~~~ [ B I 1 A I  
_ _ __ _ _

Initial State Goal State

t i  _ _ _  

d 

A j  
_ _

I c 
J B )  

— 

C 
J J B J

A puton C A moved lef t to make room
for B. Double move of A..

FIGURE 19
PREREQUISITE CONFLICTS WITH BROTHER

L ~~~~~~~ 
—

~~~~
-
~~~

- 
- --~~ - • ~ .~~-~~ — — - --



- 
— -  -~~

---
~~ --

~~ - -~~~~~~~~~~~~~

Structured Planning and DebuggIng 61 GoldsteIn & Miller

decomposItion critic that triggers on multiple SPACE-FOR predicates: (SPACE-FOR )( Z) .

(SPACE—FOR V Z) . After triggering, the critic’s action Is to append to the problem description

register, M, location predicates for X and Y with respect to Z. Given explicit locations, a linear

decomposition can take place.

PATN does not go beyond HACKER In handling this difficulty. The only claim here is that

the ATN representation helps in understanding the issues involved. The planner’s classification of -

conjunctive non-llnearlties into non-linearitles in the decomposition or in the composition (e.g.,

their order) makes both PCBG and PCB understandable -- and even to be expected — given a

default preference for linear plans.

5.3. Bugs Arising from Incorrect Disjunctive Plans

The bug Strateg ’, Clobbers Brother (SCB) arises when two different strategies are attempting to

accomplish the same goal, but conf lict with each other. The particular blocks world example

discussed In HACKER involves the finds pace strategy “remove block from surface” conflicting

with it.s brother strategy “compact by pushing to the left” (figure 20). Removal can undo a prior

compacting. HACKER notices the conflict and debugs by Imposing an ordering on these

strategies. Removal ought to be accomplished before compacting.

SCB can be understood in PATN terms as arising from an incorrect transition at the node

for disjunction plans. The disjunction Is In the set of alternative strategies for accomplishing the

FIN DSPACE goal. Although disjunction plans were not covered in section two, extending the

basic PATN design to handle this additional logical operand Is not difficult. Figure 21 illustrates a

planning taxonomy for the decomposition of disjunctions.

The first major decisiun Involves resolving whether the dIsjuncts are exclusive or additive.

Exclusive disjunction refers to a set of options in which only one can be chosen. Exclusive

disjuncts cannot “partially” succeid. Crossing the Atlantic by steamer or plane are mutually

-- -- —~~~~~~~~~ -~~ - 
-



Structured Planning and Debugging 62 Goldstein & Miller

GOAL: (AND (ON C A) (ON D A))

_ _  1~1FL  [~ T~~~

D f A comPact
> 

A

Compacting : Blocks pushed to leftmost position

_ _  r n r~  r~iD A remove
> 

D ) I A 1 r~i
Removing: Blocks not required on A are removed

_ r~~ iD I [ A

c o>~~~~~~~~

_ _  

B J C J  
_ _  _ _ _

A ~~~~~~~~~~~~~~~~~~ 
[D H A

Top of A is compact Conflict: Top of A no
longer compact

Compacting then removing leads to conflict. The removing strategy
has undone the compacting .

FIGURE 20
STRATEGY CLOBBERS BROTHER

k — -  ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _



1

Structured Planning and Debugging 63 Goldstein & Miller

I-- linear

I-- EXcLUSIVE --~~

I I
~~—- non—linear

OECO(IPOSE -- OR --I

I ~~—— linear

~~—— AOO I TIVE -— I

~~—- non-linear

Figure 21.. A Planning Taxonomy for Disjunction



~~~~~~~~~~~~~~~~~~~ -.~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~

I
Structured Planning and Debugging 64 GoldsteIn & MIller

exclusive travel strategies. One does not travel half way by plane and then switch to ship.

Additive dlsjuncts can partially succeed and indeed may behave cooperatively. Strategies for

finding space are of this kind. However, after deciding that the disjuncts are cooperative, the

question of whether there are possible Interactions Is still open. We Intend to implement this in

PATN in a similar fashion to the handling of conjunction, with linearization cycles.

Relative to this taxonomy, the underlying cause of SCB is an inappropriate arc choice, similar

to PCBG and PCB. The difference is only that the nonlinearity which has been ignored Is

relative to alternative disjuncts , rather than conjuncts. The planner may have chosen, by default,

to treat subgoals as Independent additive disjuncts, when In fact they are dependent: sub ject to a

non-linear constraint on their order of application. The appropriate debugging techniques are also

similar, with corrective knowledge being .atached to the arc transitions out of the DISJUNCTION

node of the ATN.

5.4. Generalizing the HACKER Paradigm

This section has argued that analysis of the faults in plans as Incomplete or inappropriate arc

transitions provides a unifying framework In which to understand the miscellany of HACKER

bug types. We conclude this aspect of the discussion by summarizing the dimensions along which

PATN allows a broader view of program planning and debugging than is present in HACK ER.

I. HACKER contains an Implicit theory of planning, consisting of an assortment of

programming techniques. A program is written through successive macro expansion using these

techniques. We think that the PATN framework surpasses HACKER along this dimension,

bringing greater organizatIon to planning. Rather than as a “bag of tricks” (Sussman 1973, p. 57).

PATN would organize programming know ledge as decomposition techniques that convert the

standard logical operators -- AND, OR, FOR-EACH -- into procedural form. From this

standpoint. HACKER ’s program writing capability Is a subgraph of the planning ATN. consisting



—
~ --‘~ . 

~~~~~~~~~~~~~~~~~ ~~
--

~~
-.-—.-‘--—-----— ~~~~~~~~

_
__ - —----

Structured Planning and Debugging 65 Goldstein & Miller

of the IdentIfication and decomposition portions, but excluding problem reformulation.

2. HACKER Is critically dependent on the annotations associated with the programs it writes;

but no clear theory of annotation is present. The linguistic analogy underlying PATN leads to a

concept of program annotation as the hierarchical derivation tree that the ATN generates,

augmented by semantic variables associated with nodes in the derivation tree (which specify such

contextual Information as the problem specification, debuggIng caveats , and re-composition

advice). The set of semantic variables available during debugging Is not arbitrary or ad hoc, but

corresponds to snapshots of the contents of the ATN’s registers during planning. PATN’s notIon

of commentary follows from the structure of its grammar, and from the semantics and pragmatics

of Its augmented transition network.

3. By having a comprehensive set of planning constructs, it is possible to predict additional

types of bugs. For example, just as the wrong choice between linear and non-linear con jc.incUort

plans leads to bugs, so too does the wrong choice between any set of mutually exclusive planning

arcs emanatèng from a given node. Thus, a similar class of bugs can be ex pected to arise in

deciding between round (simple tail recursive) and fully recursive repetition plans; and, indeed, In

human problem solving, this confusion is often displayed. Another class of bugs arises when one

conjunct does not completely “clobber” another, but partly Interferes. The potentiality for this Is

apparent when it is remembered that problem descriptions may be more complex logical models

than those addressed by HACKER. An example of this in the blocks world is, “build two green

towers. There may be no interference between the choice of color, but there may be interference

in the choice of blocks, as would occur if only a limited number of blocks were available.

4. HACKER’s critics can be characterized as transition constraints on ATN arcs. From this

broader viewpoint, one ImmedIately notices the possibility for positive as well as negative critics,

which argue for or against particilar plans. More generally, given the situation of choosing a

transition arc out of a given state in the planning network , a critIc is simply some selection function

,-.. -
~‘—,,~~

- -- ---.~
,,— ,-- .,—,..-—-‘.---

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -- ~~~~~~~~~~~~~~~~~~~~~~

Structured Planning and Debugging 66 Goldstein & Miller

on the arcs.

- 5. Unsatisfied prerequisite manifestations c~n be considered instances of the more general class

of model violations. All that is needed Is to include operator models as well as problem models.

This is not an added burden, since operator models are necessary anyway as part of the primitive

library used by the Identification planning technique.

In concluding our discussion of HACKER, we must stress that we agree with the overall

HACKER philosophy that problem solving consists of both planning and debugging. Our

objection Is that HACKER treats these two complementary activities in an isolated fashion.

HACKER does not pay sufficient attentIon to the theory of description for problems, for operators

and for plans. We have tried to Illustrate how our linguistic theory of planning and debugging

remedies this.



- —.-.- — —-~ -— ~ -~~~-- ~~~~~~~~~~~~~~~~~~~~~~~ -

Structured Planning and Debugging 67 Goldstein & Miller

6. ConcIu~iona

The proper study of those who are concerned with the artificial is the way in
which that adaptation of means to environments is brought about -- and central
to that is the process of design itself . The professional schools will reassume
their professional responsibilities just to the degree that they can discover a
science of design, a body of intellectuall y tough, analytic , partly formalizable,
partly empirical teachable doctrine about the design process.

Simon, The Sciences of the Artj~c~ l p. 58

In striving to achieve a rigorous, unified theory of planning and debugging, we have used

concepts from computational linguistics to characterize the problem solving process. Planning

concepts were represented using an augmented transition network , resulting in a structured theory

of planning which appears to be both powerful and clear. Debugging was analyzed as the

diagnosis and repair of incorrect or Incomplete plans, which Inevitably arise in the course of

rational but heuristic planning. We conclude by summarizing the limitations, extensions, and

potential applications of the Structured Planning and Debugging theory.

6.1. Limitations and Extensions of Structured Planning

My mind was struck by a flash of lightning in which its desire was fulfilled.
Dante, Paradiso (Canto XXXIII), in (Polya 1965, p. 54]

Of course, there are many aspects of human problem solving and Its flashes of lightning that

we have not touched upon. What follows Is some of the specific limitations that we perceive In the

theory embodied by PATN , and possible extensions to remedy them.

In section three, we discussed how the generation algorithm running over the ATN could be

Improved. These Improvements could obtain better performance within the boundaries Implied by

the knowledge present In the network. They do not address those limitations Inherent in the

particular subset of planning knowled ge present, I.e., the basic taxonomy.

Bearing In mind that our problem descriptions are composed of logical operators, it Is readily

apparent that the network currently contains techniques for solving conjunctions and universal



rIp_
~

_ 
-

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—~~~

-
~
---

~~~~
- --

~~~~~~~~~
-- _.--—- -

Structured Planning and Debugging 68 GoldsteIn & Miller

quantifications over a finite domain (repetitions); however, the network does not contain strategies

for handling disjunctions, negations, or existential quantifications. These clearly could be

Incorporated using the ATN formalism, but we have not addressed the last two in this paper.

(Disjunctions were briefly discussed in section five.)

Moreover, with techniques for all of the logical operators, the planner would still remain

Incomplete. Even if a problem is described as a conjunction, the planner may not find the

constructive solution necessary to accomplish the conjuncts. Interactions might exist that make It

impossible, or the particular technique for resolving a certain Interaction may be unknown.

Nevertheless, we believe that the logistic framewor k for describing problems at least gives a super-

structure on which to build more elaborate planning techniques. The success of this super-

structure can be evaluated by the exten. to which future research allows the collection of

decomposition and linearization techniques to be extended within the ATN framework.

Another PATN limitation lurks in the ad hoc nature of its reformulation techniques.

Theoretically, a general theorem prover could enumerate all equivalent models. But such a, strategy

would be computationally too costly to be useful. Instead, we enumerated a small number of

heuristics. Future research might attempt to find a middle ground between general deductive

strategies and specific procedural heuristics. Such an accommodation Is suggested by recent work

on theorem proving (Kowalski 1973; Moore 1975].

In designing PATN , we have emphasized an hierarchical approach to planning. Such a

philosophy is a simplification in that it does not take account of possible heterarchy (Minsky &

Papert 1974]. By this we mean that in some planning situatIons, a person clearly takes advantage

of bottom up evidence to guide an ordinarily top-down analysis. Information and decisions do not

inevitably flow in a single direction. A robot that trips over a bag of money on its way to rob a

bank should not kick the money aside and continue with the caper. Figure 22 Illustrates an

Heterarchical Refinement loop, in which goats can be reordered after each recursive solution for a

- - 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 



I
Structured Planning and Debugging 69 Goldstein & Miller

(fl 4J Z
oU
~ 

U

U ) O
o ,—I

__
z_~ J fl

r~~~I
1]
~~~~~~~~~~

~~—- . - - --- - - ~~~~~~~~.- - -

~•1

Structured Planning and Debugging 70 Goldstein & Miller

subgoal. Eventually this sort of complexity must be addressed. However, our research plan Is first

to construct and experiment with a clearly top-down structured planner. In order to better

understand its limitations as well as its virtues.
-

6.2. Summary of the Structui~ed Debugging Viewpoint

In designing DAPR, bugs and debugging were analyzed in the context of the Structured

Planning theory underlying PATN. Since PATN represents planning knowledge using an

augmented transition network, It is possible to describe the underlying causes of bugs as specific

classes of erroneous arc transition decisions during planning. The general form of a bug can

either be failure to Include a needed constituent, or inclusIon of an inappropriate constituent.

These failures can be caused by Ignorance of or failure to obey ATN arc transitions and the

constraints on those transitions.

DAPR’s debugging consists of diagnosis and repair. These activities are characterized by the

various data structures on which they operate. PATN employs four representations for a

procedure: the problem descrIption (“model”), the process (“chrontext”), the code, and the plan

derivation. The theory provides a notion of annotation as derivation trees, which summarize the

design decisions leading up to the actual code. This thorough. hierarchical representation of the

history of the solution allows for a deeper analysis of debugging which we believe wilt be of

practical value: for example, in the construction of programming environments.

The ideas In this essay have developed from those of Papert (l971a,b; 1973), Sussman (1973),

and Goldstein [1974]. To provide perspectIve on its relationship to earlier work, the current theory

was contrasted with Sussman’s HACKER. The claim that the present approach subsumes that of

HACK ER was defended by several specific arguments. The relationship of HACKER’s bug types

to the current classification scheme was discussed.

- — -.- —-- -~~~ - - ~~--- —- —-—- . -- - - -——-- — r n— -.--~~~~~~~~~~~~ —-- -
~~~~



- - r  ..~~~a.

I

Structured Planning and Debugging 71 Goldstein & Mtfter

In the remainder of this section, we describe various applications of the Structured Planning

and Debugging paradigm: to protocol analysis, structured programing, and computer aided

instruction.

6.3. Protocol Analysis

In (Miller & Goldstein 1976b], an earlier version of the planning grammar was applied to the

task of parsing elementary programming protocols. The recognition process was performed

manually, by the authors. Continuing our strategy of applying concepts from computational

linguistics to problem solving, we plan to experiment with the application of various algorithms

for natural language comprehension to the task of automated protocol analysis.

A critical question that arises is whether PAT N provides a spanning “todd for elementary

human problem solving. By this we mean: if PAIN is put in a mode wherein it generates all

possible solutions to a given problem (primarily through successive reformulations), will the set of

programs produced include most of the successful solutions generated by people? More critically,

can PATN’s solution frrocess -- at an appropriate level of abstraction -- mimic that undergone by
human problem solvers? More specifically, is the protocol analysis task profitably approached

from the standpoint of determining which of PATN’s possible plans for a given problem Is being

used?

We do not know whether PATN will be sufficiently powerful to include all of the plans

typically pursued by students in elementary Logo programming tasks. If so. it w ile represent a step

forward in Information processing psychology (Newell & Simon 19721.21 Our preliminary analyses

of many Logo protocols have been encouraging. But extensive experimentation is needed before a

definitive answer w ill be avatiable. Fortunatel y, we are in a good position to attack this set of

psychological questions because the Logo project has collected extensive data on student

performance (G. GoldsteIn 1973; Okumura 1973).

— ~~~~~~~~~ •-—— .‘.—. ~~~~~~~~~~~~ ~ g4



______- - - - - 
—

Structured Planning and Debugging 72 Goldstein & Miller

(Miller & Goldstein 1976d] presents a preliminary design for PAZATN , a PATN-based

automatic protocol analyzer. In applying PATN to protocol analysis, we envision modeling the

individual by Inducing, from previously analyzed protocols. a personalized (modified) version of

the Planning ATN. The success of these models will be judged by the extent to which they

successfully predict subsequent behavior on the task. Again , ex perimentation is needed to

determine whether this approach is viable.

The parsing problem Is complicated In analyzing human protocols by the possibility of

irrational planning errors and execution errors, in addition to the rational planning bugs discussed

earlier. Because of the increased uncertainty Introduced by possible mistakes in executing a

statement of code or constructing an ungrammatical plan, we envision taking advantage of the

powerful search procedures created for p~trslng speech utterances (such as those described by

Allen (1975), Wood s et al (1975], Paxton & Robinson (1975), and Lesser et al. (1975]), in which

uncertainty in the auditory interpretation similarly complicates the parsing process.

6.4. Structured Programming

the new reality is that ordinary programmers , with ordinary care , can
consistently write program segments which are error free from the start .

Harlan 0. Mills, “On the Development of Large, Reliable Programs,” Proc.
IE EE Sy mp . Computer Software Reliabi lity, 1973, p. 155.

It is sometimes argued by proponents of structured programming that discipline In coding can

eliminate all bugs. The Structured Planning and Debugging theory sheds some light on this issue.

Rational bugs are unavoidable (or, at least, not worth avoiding). They correspond to heuristic

planning judgments made when no better crIteria were available , as often occurs when

j programmers are solving new problems. It is probably through the experience of whether their

default heuristics succeed or fail on a new class of problems that Individuals acquire skill. On the
t

other hand , irrational errors and syntactic planning bugs must surely be increased by unstructured,

careless programming. It is this class of errors, not rational bugs, that we believe the structured

_______ 
___________________________________ _________ 

________________I

~

.

~~~rl. i. .s- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -


Structured Planning and Debugging 73 Goldstein & Miller

programming movement as a whole has In mind, in calling for more disciplined planning and

coding.

Hence, a potentIal application of our theory is to the design of improved environments for

programming. In (Miller & Goldstein l976c] we have presented the design for a programming

editor called SPADE-O, which encourages articulate, structured planning, using a context f ree

grammar. The virtues of working within such an editor, in which programs are specified In terms

of their plans, include: (a) expressing one’s programming ideas In this fashion can lead to

increased clarity, by drawing the programmer’s attention to the nature of the plan being applied;

and (b) articulating the plan Increases the system’s leverage to aid in the diagnosis and repair of

bugs.

However, context free grammars have limitations which prevent SPADE-O from exceeding a

certain plateau of utility. These limitations can be overcome by representing plans, not in terms of

context free rules, but in terms of an ATN. Consequently, we envision using PATN to extend the

capabilitIes of the SPADE editor, creating an Improved version, SPADE-I. One might instruct this

improved editor to change a particular subgoal from being accomplished by means of

IDENTIFICATION to a plan based on DECOMPOSITION by CONJUNCTION. The reason

might be that the original subprocedure fetched from the library had unacceptable side effects.

SPADE-I, the PATN-based editor, could then lead the programmer through a sequence of top-

down planning decisions that would realize the new plan. Because of the availability of PATN,

SPADE-I could, among other Improvements, assume greater responsibilities concerning low level

coding decisions.

PATN Is a top-down structured programmer. As a result, the SPADE-I editor could assist the

programmer in exactl y this process. The advantages of such an editor over conventional

programming environments derive frnm a broader and deeper taxonomy of planning concepts.

-
-

Thus, while we believe that Dljkstra and his colleagues have pointed in the right direction, in

I

L _ __ __ _

Structured Planning and Debugging 74 Goldstein & Miller

calling for a structured approach to programming (see, e.g., (DahI et al 1972]). we also believe that

the type of research involved in constructing PATN provides an essential next step: detailing

exactly what rational planning involves.

In future research, we plan to construct the PATN-based SPADE-I editor, and to experiment

with Its performance as a programming tool. The criteria by which it may be judged are the

extent to which programmers find It useful, and Its effect on program writing and debugging time.

6.5. Al-based Computer Aided Instruction -

In designing Al-based CAl programs, three critical problems are~ (a) inducing a model of the

student; (b) having a model of the expert; and (c) generating a tutorial plan for guiding the

student toward expert competence. PATN may aid in the resolution of these three problems In the

design of CAl systems for tutoring programming and problem solving.

We have discussed how PATN may provide an important modeling tool. Implicit in PATN

is also a theory of learnIng. From the PATN standpoint, learning is the acquisition of new

grammatical rules, new semantic variables, and new pragmatic constraints for deciding between

alternative plans. Hence, a PATN-based tutor could compare the topology of the personalized

ATN induced for the student to the full PATN grammar, and choose a difference as the issue to

be taught. Alternatively, the tutor could parse a given protocol, compare it with how PATN would

have solved the problem, and utilize the differences as the specific issues to be discussed with the

student In analyzing his or her performance on the problem. For example, a pragmatic planning

bug might b. attributable to the absence of a relevant critic. In this fashion, we attempting to

extend the Issu es and Examples paradigm, developed by Burton and Brown (1976] for an

elementary arithmetic world, to the more complex environment of programming and problem

solvIng (Goldstein & Miller I976a].

Of course, there are many other subtleties in designing intelligent computer tutors not touched

- ________________________
_ _ _ _ _ _ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Structured Planning and Debugging 75 Goldstein & Miller

upon here, such as: (a) in what sequence should the knowledge be taught? (b) how intrusive

should the tutor be? (c) how can the tutor’s behavior be explained to the student, so that its actions

are not mystif ying? and. (d) can sufficiently powerful natural language capability be provided so

that the student can interact comfortably with the tutor? Nevertheless , PATN Is a necessary

Ingredient, as It provides a model of the planning expertise which is to be conveyed by the tutor.

It Is also worth observing that automatic protocol analysis and student modeling, even without

automatic tutoring, could be valuable to a human teacher. The parsed protocol and student model

might allow the teacher to notice more easily when the student is relying on a limited lexicon of

planning strategies , and whether the strategies that are known are organized in a successful

fashion. This kind of detailed description of the reasoning process offers the possibility of

escaping from the tyranny of standardized tests, whose outcome is an uninformative numerical

score.

6.6. The Science of Heuristic

Polya has called heuristic the study of the “means and methods of problem solvingu (1962.

p. vi). His various books (1957, 1962, 1965, 1967] offer Insight into the nature of problem solving.

dIscussing skIlls and abilities far In advance of the most Intelligent Al programs. But heuristic, as

Polya develops It, Is not yet a science. There are no formal representations for problem solving

concepts; no rigorous means for experimenting with alternative theories. The use of the computer

to Implement and experiment with such theories makes the study of heuristic a science. PATN

represents a small contribution to this enterprise by experimenting with a particular procedural

representation -- the augmented transition network.

The most common criticism of even the most insightful analyses of problem solving is -- “but
how can I realize when a particular problem solving strategy is appropriate?” The gap that exists

between informal, intuitive discussion. of thinking, and specific, useful guidelines, is illustrated by

- —- -

Structured Planning and Debugging 76 GoldsteIn & Miller

the self-description of the great mathematician Poincare cited in section two:

Every day I sat down at my table and spent an hour or two trying a great
number of combinations, and I arrived at no result. One night I took some blac k
coffee, contrary to my custom, and was unable to sleep. A host of ideas kept
surging in my head; I could almost feel them jostling one another, until two of -

them coalesced, so to speak, to form a stable combination.
Poincare, 14., “Mathematical Discovery,” in (Rapport 1963, p. 132]

Surely we can do better than advising a student to drink coffee before going to sleep.

Attempting to structure the skills of various fields, whether mathematics or carpentry -- in a

form that provides useful, precise guidelines to students -- is the fundamental task of education.

Research in computer science, computatIonal linguistics, and artificial intelligence is finding

representations for active knowledge that are precise, powerful, and perspicuous. Ultimately,

PATN’s most Important contribution is as an experiment in this vein: exploring whether a

particular computational formalism Is useful as a representation of problem solving skill. As such,

it is a vital part of that Investigation of the design process which Simon calls for In the quotation

with which we began this section.

- _ _ _ _ _ _ _ _ _ _

j

-

~

-~~~~~~~~~~~~ ,--~~~~~~ -—~~ —~~~~~~~ - - - ~~~ - “- .

Structured Planning and Debugging 77 GoldsteIn & Miller

‘i. 1t01g5

1. The name Structured Planning and Debugging emphasizes several themes. One theme is
that the use of concepts from computational linguistics has been helpful to us in structurin g our
theory. Expressing a cognitive theory In terms of a computer program, while perfectly rigorous, Is
not necessarily perspicuous. For examp le, in the current essay the use of the ATN helps us to
organize the procedural knowledge we are trying to characterize. A second theme is that problem
solving consists primarily of two complementary activities: planning and debugging. Previous
research has typically emphasized only one or the other, at the expense of both. A goal of our
theory is to provide an Integrated understanding of both processes. A final theme Is that detailed
study of the problem solving involved In program design is a prerequisite for completely fulfilling
the stru aured programming movement’s objectives, such as program reliability. We wish to
emphasize the potential role of our research in this enterprise.

2. See also (Wood s, Kaplan & Webber 1972]. Woods’ (1970) definItion was an elaboration and
formalization of earlier work by Bobrow and Fraser (1969], and by Thorne, Bratley and Dewar
(1968). Woods attributes some aspects of the ideas to Kuno (1965] and Conway (1963).

3. While the emphasis of the current essay is on investigating the appropriateness of an ATN
formalism for planning concepts, we have also found the context free grammar representation to
be a fruitful description of planning concepts for certain purposes , such as parsing human
programming protocols. This suggests that 1-feidorn ’s (1975] ACFG (augmented context f ree
gram mar) formalism might be an effective alternative to the ATN . Its virtue is that the
relationship to the CFC characterization of our ideas would be more direct. Moreover, our actual
implementation of PATN might turn out to be closer in spirit to an ACFG model than an ATN.
To some extent , the distinction is secondary , since ACFG’s and ATN’s are not only formally
equivalent in power , but also structurally comparable in a straightforward manner . In any case,
while ACFG’s suggest interesting possibilities, resolution of this Issue goes beyond the current
paper.

4. We should emphasize that we do not regard this taxonomy as being either complete or
unique. In later sections we discuss particular ways in which it is incomp lete. In (Miller &
Goldstein 1976b] we presented a different version, in the context of parsing a student protocol.
The earlier taxonomy emphasized examining the directions from whence a planner could obtain
guidance; the current one emphasIzes examining the logistic description of the problem at hand.
While our intuition suggests that our current version is an improvement , persuasive evidence for
favoring a given classification of planning concepts must await implementation and systematic
ex perimentation. The reader is referred to (Miller & Goldstein 1976a) for an overview of our
research project as a whole.

5. This is an oversimplification. If every solved problem were added to the answer library,
the ex perienced problem solver might be overwhelmed by tremendous numbers of uninteresting
solutions. The possibility of “intelligent forgetting” is a subtle Issue which we are not currently in
a position to address.

6. Our use of the term model should not be confused with its use in model theory. The name
(clash is unfortunate , resulting from historical ~c ident . In most cases our term model can be

replaced by the phrase problem specification without ~lte’ trig the meaning.

- -

~

--

~

--—--.-—-

~

- - L~


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~- --~~~~ -~

Structured Planning and Debugging 78 Goldstein & Miller

7. The predicate calculus is the problem description language of mathematics as well as a
variety of Al programs, most notably the STRIPS series of problem solvers (Fikes & Nilsson 1971;
Flkes 1972; Flkes et al. 1972). Alternative problem description languages, based upon such concepts
as frames (Minsky 1975; Winograd 1975; Goldstein 1975), might provide increased expressive power;
we have yet to thoroughl y ex plore this issue. For our purposes in this article , the problem
descriptions are simply a conjunction of properties and relations about some set of objects. As
such, they are common to most descriptive schemes Including the predicate calculus, frames, and
semantic nets (O~uilIian, 1968; Winston 1975; Woods 1975). In practice , of course , our problem
specification language is actually LISP: but the subset of LISP which is used can be viewed In a
variety of guises.

8. It is possible that problems should also be indexed by their Pre Models, if any. This would
enable the system to support a kind of forward clial ”ing. At the present time, the additional
overhead which this would entail does not seem justified by Its possible utility, at least for the
simple blocks world and Logo picture problems we are considering.

9. For a more detailed discussion of the link between turtle primitives and model descriptions.
see chapter sIx of (Goldstein 1974). A glossary of primitive predicates for describing elementary
Logo pictures may be found in Goldstein’s Appendix B.

10. Only implementation and experimei.tatlon can ultimately determine whether a given set of
reformulation techniques will be adequate. A related problem for future research is to construct a
program that attempts to induce the model from a sketch. The potential ambiguity introduced by
such a module would place an even greater burden on the ref ormulation strategies.

II. See (Polya 1965, ch. 9] for a relevant discussion of Problems within Problems.

12. There are of course many additional reformulation techniques. Many complex issues
involving change of representation arise , suggesting rich areas for further research.

13. Strictl y speaking, what Sacerdoti terms procedural nets are actually partiall y ordered
program steps. The authors are indebted to B. Kuipers for reminding them that such par:ial
orders are restricted cases of networks , with additional properties useful to both NOAH and
PATN.

14. An alternative Is to save the solutions to subproblems only in a working lemma library .
The Issue Is whether each lemma is permanently stored for future reference, or only saved for the
duration of the problem at hand. Techniques for determining the potential future relevance of
subproblems are not discussed In this paper.

IS. We Introduce DAPR here because we have found that the metaphor of designing a
program as a useful way to organize our ideas, We do, in fact , Intend for this design to serve as
the basis for implementing a debugging module. At the same time, we are aware that the set of
ideas presented are Incomplete: the architecture of the debugging module, DA PR , is only partially
specified in this report. 



Structured Planning and Debugging ‘79 Goldstein & Miller

16. This view of the causes of bugs is a simplification. Some bugs have multiple underlying
causes, a situation which greatly complicates the troubleshooting process. Nevertheless 1 the
techniques developed here are useful , in that proceeding under the heuristic assumption of a single
cause Is often reasonable even in cases where the assumption turns out to be false.

17. In the general case, model diagnosis requires addressing difficult problems of symbolic
evaluation (see. e.g., (Yonezawa 1976]). For most of the programs discussed here , a simpler
approach, pe rformance annotat ion (Goldstein 1974] is possible. A direction for research is to extend
the range of programming constructs which can be verified by the model diagnosts module.

18. DAPR’s three diagnostic techniques are presented in roughl y the order in which they
would be applied. It is conceivable that this strict ordering would not be adequate. That is, there
may be debugging situations for which process diagnosis should be app lied prior to model
diagnosis, or even situations for which the most effective debugging strategy would be alternate
applIcatIons of both strate gies , and so on. In the first implementation of DAPR we will
experiment with the simpler approach.

19. Careful evaluation [Hewitt & Smith 1975; Goldstein 1974; Sussman 1973] Is a diagnostic tool
whereby a program is tested by interpreting It in an extremel y cautious mode, with extensive
checking of argument types , prerequisite satisfaction , etc. During normal evaluation it would be
prohibitively expensive to routinely include such checks.

20. PATN’s default arc ordering and arc constraints are designed to ensure that non-linear
planning is pursued if and only if a specific pattern of interaction is detected. The local decision
process may be described as follows. PATN first tries the two nonlinear arcs. Control transfers to
the corresponding states only when an NLC or NLD predicate “accepts” the model. Otherwise, the
linear decomposition is pursued .

21. It is worth considering the relationship between Newell & Simon’s [19721 production system
model and PATN. Strictly, ATNs are Isomorphic to production systems in formal power; they are
also directly analo~c.nis in internal structure . A production system consists of a set of
(pattern ~~> action] rules which operate over a finite number of short term memory (STM) locations.
An ATN may be thought of as a production system in which a particular slot in STM, the state , Is
distinguished. The arc transitions correspond to rules, where arc contraints map onto ~ie left hand
sides, and arc actions map onto the right hand sides. Distinguishing between the “state” register
and other (“data”) registers seems to have the virtue of imposing greater structure on the otherwise
homogeneous collection of productions. All the reputed advantages of rule-based systems , such as
modularity, still apply. The other STM slots directly correspond to the registers of the ATN
model. Moreover, the ATN model suggests a natural decomposition of the knowledge in a ‘given
rule. into syntax , semantics , and pragmatic constraints . One application of this breakdown is in
teaching: rather than tutoring an entire rule, it may be that only one part need be taught. (The
authors are indebted to B. Kuipers for emphasizing the importance of this comparison.)

-~~~~ 

~~~~~~~~~~~~~~~~


-
~~~~~~~— -~~~~~—~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _

Structured Planning and Debugging 80 GoldsteIn & Miller

8. Reierenc~~~

(Aho and Oilman i972]
Aho. A.V., and J .D . Ulhna n. The Theory of Parsing, translation , and Compiling (Volume I:
Parsing), Prentice-Hall, tnglewood Cliffs, N.J. 1972.

(Allen 1975)
Allen, James F. “A Speech Understanding System Based Upon a Co-routine Parser,” Advance
Papers of the Fourth international J oint Conference on Artificial intelligence, Tbilisl , Georgia,
USSR, September 3-8 1975. pp. 455-460.

(BobrQw and Fraser 1969]
Bobrow , D.C., and J.B. Fraser. “An Augmented State Transition Network Analysis
Procedure,” Proc. internat . Joint Conf on Art4ficial intelligence, Washington D.C. 1969, pp.
557-567.

(Burton & Brown 1976]
Burton, Richard R., and John Seely Brown, “A Tutoring and Student Modelling Paradigm
for Gaming Environments,” In R. Colman and P. Lorton Jr. (eds.), Computer Science and
Education (Advance Proceedings of th~ Association for Computing Machinery Special Interest
Groups on Computer Science Education and Computer Uses in Education Joint Symposium.
Anaheim, Cal.), SIGCSE Bulletin, Volume 8, Number I (SIGCUE Topics Volume 2),
February 1976, pp. 236-246.

(Conway 1963)
Conway, ME. “Design of ~ Separable Transition-Diagram Compiler,” Communications of Me
ACM , Vol . 6, No. 7 (July 1963), 396-408.

tDahl et al. 1972]
Dahl. Ole-Johan, Edsger Dljkstra and C.A.R. Hoare, Structured Programming, London,
Academic Press, 1972.

(Fahlman 1974]
Fahlman , Scott, “A Planning System for Robot Construction Tasks,” in Artificial Intell igence,
vol. 5, 1974, pp. 1-49.

(Pikes 1972]
Fikes , Richard E., “Monitored ExecutIon of Robot Plans Produced by STRIPS,” In
Information Processing, Vol. 71, 1972.

(Fikes & Nilsson 1971)
Fikes, Richard E. and Nils J. Nilsson, “STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving,” in Artificial IntellIgence, Vol. 2, 1971, pp. 389-208.

(Pikes et al. 1972]
Fikes, Richard E., Peter E. Hart and NtIs J. Nilsson, “Learning and Executing Generalized
Robot Plans,” in Artificial Intell igence , Vol. 3, 1972, pp. 251-288.

ii

—_~—i: 1W Ti 1~T__ . -~~~~~~~~~~
I&.~~~_~~ - _ _ _ _ _ 4

. ~~~
- -. _

~~~-—
_ _ -

~
--

Structured Planning and Debugging 81 Goldstein & Miller

(C. Goldstein 1973)
Goldstein, Gerrianne, LOGO Classes Commentary, Massachusetts Institute of Technology,

t Artificial Intelligence Laboratory, LOGO Working Paper 5, February. 1973.

(Gold stein 1974]
GoldsteIn, Ira P.. “Understanding Simple Picture Programs,” In Arti ficial Intelligence, Vol. 6,
No. 3, 1975; and Massachusetts Institute of Technology, Artificial Intelligence Laboratory,
Technical Report 294, September 1974

(Goldstein 1975]
Goldstein, Ira P., “Bargaining Between Goals,” in Advance Papers of the Fourth International
Joint Conference on Artificial intelli gence, Tbilisi, Georgia, USSR, September 1975, pp. 175-180.

(Goldstein & Miller 1976a]
Goldstein, Ira P., and Mark L. Miller. Al Based Personal Learning Environments: Directions
for Lon g Term Research , Massachusetts Institute of Technology, Artificial Intelligence
Laboratory, Memo 384 (LOGO Memo 39, December l976a.

(Heidorn $975]
Heidorn, George E. “Augmented Phrase Structure Grammars,” Theoretical issues in Natural
Langua ge Processing , Cambridge, Mass., Association for ComputatIonal LInguistics, June 1975.

(Hewitt 1972]
Hewitt , Carl, Description and Theoretical Analy sis (Using Schemata) of PLANNER: A
Languag e for Proving Theorems and Manipulating Models En a Robot, Massachusetts Institute
of Technology, Artificial Intelligence Laboratory, Technical Report 258, April $972.

(Hewitt & Smith 1975]
Hewitt, Carl, and Brian Smith. “Towards a Programming Apprentice,” IEEE Transactions on
Software En gineering, Volume SE-I, Number I, March 1975.

(Kaplan 1973]
Ka plan. R. “A General Syntactic Processor,” in R. Rustin (ed ), Natural Language Processing,
Algorithmics Press, New York , 1973.

(Kay 1973]
Kay,  Martin, “The MIND System,” in Randall Rustin (ed ), Natural Language Processing,
Courant Computer Science Symposium 8 (December 20-21, 1971), New York. Algorithmics
Press, 1973, pp. 155-188.

(Kowalsks 1973)
Kowalski, Robert, Predicate Logic as a Programming Language, University of Edinburgh,
Department of Computational Logic, School of Artificial Intelligence. Memo 70, 1973.

~ ‘i”-’

~ m o .  S A System for Transformational Analysis ,” In Report NSF-1 5 , Computer
I atwwaior v . Harvard University., Cambridge, Mass., 1965.

- . _  
~~~~~~

. - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~

-~~~~ —- — — -- - ~~~~~~~ —--~ ~~~~~~~~~~~~~~

Structured Planning and Debugging 82 GoldsteIn & Miller

(Kuno 1967]
Kuno, S. “Computer Analysis of Natural Languages,” Proceedings of Sym posia in Applied
Mathematics , Volume 19, AmerIcan Mathematical Society, 1967.

(Lesser et al. 1975]
Lesser, V.R., R.D. Fennell, L.D. Erman and DR. Reddy, “Organization of the Hearsay II
Speech Understanding System,” In IEEE Transactions on Acoustics , Speec h, and Signal
Processing, Vol. Assp-23, No. 1, February 1975, pp. 11-24.

(Miller & Goldstein 1976a]
Miller, Mark L.. and Ira P. Goldstein. Overview of a Lin guistic Theory of Design ,
Massachusetts Institute of Technology, Artificial Intelligence Laboratory, Memo 383 (LOGO
Memo 30), December I976a.

(M iller & Goldstein 1976b)
Miller , Mark L., and Ira P. Goldstein. Pars ing Protocols Using Problem Solving Grammars ,
Massachusetts Jnsti tute of Technology, Artificial Intelligence Laboratory, Memo 385 (LOGO
Memo 32), December 1976b.

(Miller & Goldstein 19’76c)
Miller, Mark L., and Ira P. Goldstein. SPADE: A Grammar Based Editor for Planning and
Debugging Programs . Massachusetts Institute of Technology, ArtifIcIal Intelligence Laboratory,
Memo 386 (LOGO Memo 33), December 1976c.

(Miller &. Goldstein I976d]
Miller, Mark L., and Ira P. Goldstein. PAZATN: A Linguistic App roach to Automatic
Analysis of Elementary Programming Protocols , Artificial IntellIgence Laboratory, Memo 388
(LOGO Memo 35), December I976d. -

(MIlls 1973]
Mills, Harlan D. “On the Development of Large Reliable Programs,” IEEE Sym posium on
Computer Software Reliabilit y, New York, AprIl 1973, pp. 155-159.

(MInsky 1975]
Minsk y, Marvin , “A Framework for Representing Knowledge.” in P. Winston (ed.), The
Psychology of Computer Vision , New York, McGraw-Hill, $975, pp. 211-277.

(Minsky & .Papert 1974]
Minsky, Marvin and Seymour Papert, Arti ficial intellIgence, Con& n Lectures, Oregon State
System of Higher Education, 1974.

(Moore 1975)
Moore, Robert , Reasonin g from incomplete knowledge in a Procedural Deduct i ve System ,
Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Technical Report
347, December 1975.

—-.---- - - _
~~~~ -  _ _ _ _ _ _



Structured Planning and Debugging 83 GoldsteIn & MIller

- - (Newell & Simon 1972]
Newell, Allen and Herbert Simon (eds.), Human Problem Solving, Englewood Cliffs, New
Jersey, Prentice-Hall, Inc., 1972 .

(Okumura 1973)
Okumura, K., LOGO Classes Commentary, Massachusetts Institute of Technology, Artificial
Intelligence Laboratory, LOGO Working Paper 6, February 1973.

(Papert l97la]
Papert , Seymour A., Teac hing Children to be Mathematicians Versus Teaching About
Mathematics , Massachusetts Institute of Technology, Artificial Intelligence Laboratory, Memo
249, 1971.

[Papert 1971b]
Papert, Seymour A., Teaching Children Thinking, Massachusetts Institute of Technology,
Artificial Intelligence Laboratory. Memo 247 (LOGO Memo 2), 1971.

(Papert 1973]
Papert . Seymour A., Uses of Technology to Enhance Educat ion , Massachusetts Institute of
Technology, Artific ial Intelligence Laboratory, Memo 298 (LOGO Memo 8), June 1973.

(Paxton & Robinson 1975]
Paxton , Wi lliam and Ann Robinson , “System integra tion and Control in a Speech
Understanding System,” In American Journal of Computational Linguistics . Vol. 5, 1975, pp.
5-18.

(Polya 1957)
Polya, George. How To Solve it , New York, Doubleday Anchor Books, 1957.

(Polya 1962)
Polya , George, Mathematical Discovery (Volume I), New York, John Wiley and Sons, 1962.

(Polya 1965)
Polya, George, Mathematical Discovery (Volume 2), New York, John Wiley and Sons, 1965.

(Polya 1967)
Polya, George, Mathematics and Plausible Reasoning (Volumes I & 2), New Jersey, Princeton

- , University Press, 1967&8.

(Quillian 1968]
i~ j il$ian, M. Ross, “Semantic Memory,” In M. Minsky (ed ), Semantic Information Processing,
Cambridge. Massachusetts , The MIT Press, 1968.

(Rapport $963)
Rapport. Samuel and Helen Wright (eds.), Mathematics , New York University Press, 1963.

~

- -

~

.- --- - - -.  .—~~~~- — - -,--~~---~~~ - - — _ _ _ _ _ _ _



Structured Planning and Debugging 84 Goldstein & Miller

(Rubln $9753
Rubin, Andee, Hypothesis Formation and Eval uation in Medical Diagnosis . Massachusetts
Institute of Technology, Artificial Intelligence Laboratory, Technical Report 316, January 1975.

(Sacerdotl 1975]
Sacerdotl, Earl , “The Nonlinear Nature of Plans,” in Advance Papers of the Fourth
Internatlonal Joint Conference on Artificial IntellIgence, Tbllisi, Georgia. USSR, September
1975, pp. 206-218.

(SImon 1969]
Simon, Herbert A. The Sciences of the Artificial, Cambridge, Mass., MIT Press, 1969.

(Sussman $973)
Sussman , Gerald Jay, A Computational Model of Skill Acquisition . New York , American
Elsevier, 1975; and Massachusetts Institute of Technology, Artificial Intelligence Laboratory,
Technical Report 297, 1973.

(Sussman 1974]
Sussman , Gerald Jay. “The Virtuous Nature of Bugs,” A/S B Summer Conference, July 1974,
pp. 224-237.

• - (Thorne et al 1968)
Thorne, J., P. Bratley and H. Dewar, “The Syntactic Analysis of English by Machine,” In D.
M ichie (ed ), Machine Intelligence ) , New York, American Elsevier, 1968.

(Wlnograd $972]
Winograd. Terry, Understa nding Natural Language, New York , Academic Press, 1972.

(Wlnograd 1975]
Winograd. Terry. “Frame Representations and the Declarative-Procedural Controversy.” In D.
Bobrow and A. Coffins (eds.), Representation and Understanding: Studies in Cognitive Science,
New York , Academic Press, 1975, pp. 185-210.

(Winston 1975]
Winston, Patrick , “Learning Structural Desaiptions from Examples,” In Patrick Winston (ed.).
The Psy chology of Computer Vision , New York, McGraw-Hill, 1975, pp. 157-209.

(W oods 1970]
- - 

Woods, William A ., “Transition Network Grammars for Natural Language Ana lysis ,”
- - Communications of the ACM , Vol. 13, No. 10, October, 1970, pp. 591-606

(W oods 1975)
Woods, William A., “What ’s in a Link: Foundations for Semantic Networks,” in 0. Bobrow
and A. Collins (eds.), Representation and Understanding: Studies in Cognitive Science, New
York , Academic Press, 1975, pp. 35-81. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~-- - — - —~~~~~~~~~~~~~:~~~~~-— ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~ i.~ _



_ _ _ _  
_ _ _ ____ 

_ _ _ _ _ _ _ _

Structured Planning and Debugging 85 GoldsteIn & Miller

(Woods et al. 1975)
Woods, William A., Madeleine Bates, Geoffrey Brown, Bertram Bruce, John W. Klovstad and
Bonnie Nash-Webber, Uses of Higher Level Knowledge In a Spee~h Understanding System,
Bolt, Beranek and Newman, Report 3240, December 1975.

(W oods et al. 1972]
Woods, William A., R.M. Kaplan and Bonnie Nash-Webber , The Lunar Sciences Natural
Language Information System (Final Report), Bolt, Beranek and Newman, Report 2378, 1972.

(Yonezawa 1976]
Yonezawa, Akinori. Symbolic-Evaluation as an Aid to Program Synthesis , Massachusetts
Institute of Technology, Artificial Intelligence Laboratory, Working Paper 124, AprIl $976.

~~~~~~~~~~~~~~~~~~~~~~~


