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GENERAL PREFACE

Design of optimal structures with specified dynamic and aero-
elastic performance has, for almost ten years, constituted a principal
interest of the small research group at Stanford led and advised by
former Assistant Professor Samuel C. McIntosh, Jr., and myself. The

products appear in some seven doctoral dissertations as well as in

numerous archival publications and contributions to the "sub-literature."

The last three of these dissertations have not hitherto been widely
circulated in extenso. Each contains several original discoveries, and
requests for copies are regularly received. Accordingly, it seems both
desirable and economical that they be combined and distributed as a

single large SUDAAR.

The investigations described herein are quite distinct and are
the work of three individualists: Drs. Solly A. Segenreich, Erwin H.
Johnson, and Paulo Rizzi. Except for minor proof corrections, their
dissertations are reproduced without modification as parts A, B and C
of this report. My decision to proceed in this manner accounts for
the differences in format, notation, organization and style that a
careful reader will detect. The curious scheme of page numbering is

another consequence, for which no apology need be made.

These documents speak so well for themselves that no elaborate
effort to tie them together seems necessary. They are linked by more
than just close personal and professional bonds that existed among

their authors and others in the group during their periods of gestation.
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The reader will find certain continuities in both the subjects addressed

and in the methods of problem formulation and optimal search. Segenreich
and Johnson adapted search procedures that fall in the category known

as mathematical programming. Building on the less efficient efforts of
predecessors, Segenreich brought to a high degree of sophistication the

process of practically designing the minimum-weight structure for a

lifting surface whose flutter speed is constrained to exceed some pre-

scribed value.

By contrast to constraints on structural-dynamic eigenvalues,
Johnson chose to examine designs where forced dynamic excitation con-
stituted the environment to be satisfactorily withstood. His results
cover both simplified and more practical structures, as well as harmonic
and random sources of forcing. As a very rich diversion, he began the
analysis of a continuous, one-~dimensional structure under sinusoidal
excitation at one end and constrained as to allowable stress amplitude.

This same problem was picked up by Rizzi, generalized and extended.

The focus of Rizzi's dissertation is the development and application

of search methods based directly on properties of the optimal design
the so-called "optimality criteria." His examples include certain
statically~loaded structures, but these were chosen to permit direct
comparison with previous solutions by mathematical programming methods.

The more demanding cases among those he successfully analyzed again

involve flutter and forced dynamic constraints. Quite an elegant effort,
his dissertation strikes me as a fitting final product of all our activity,

which now goes temporarily into abeyance because of changing interests

among my students.




One message appears repeatedly in this report: our expression of

appreciation for continuing, enlightened research support from AFOSR

and NASA. Without both of them, neither these contributions to knowledge

nor the education achieved during their creation would have been possible.

Holt Ashley
Professor
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ABSTRACT

A new approach to the weight minimization of wings subjected to a flutter
speed constraint is the main topic of this dissertation.

The use of the flutter speed directly as a constraint is replaced by the
vanishing of the damping factor condition. Besides the computational advantages
of such an approach, especially in the treatment of compressible aerodynamic
models, relatively simple optimality condition equations valid for both incom-
pressible and compressible flows can be easily derived.

A second topic of the dissertation is the implementation of a hybrid
structural optimization algorithm which attempts to combine the simplicity of
the optimality criteria methods with the monotonic weight decrease behavior of
the direct descent methods. Encouraging results are presented.

Finally, the viability of using assumed modes in static optimization is

briefly discussed and one comparative example is given.
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1. INTRODUCTION

Structural synthesis in general and structural optimization in particular
are new fields in applied mechanics as opposed to structural analysis, which is
relatively old, The principal reason for this is that synthesis is much more
complex and actually encompasses the analysis. Structural design has always
been guided by intuition and aesthetic factors, whereas structural analysis was
used only to check whether the design would resist the prescribed loading system,

More recently, however, as weight and economic factors became
increasingly important and as large computational facilities became accessible,
new trends toward synthesis and optimization became apparent.

Surprisingly enough, one of the most important theoretical papers was
written in 1904 by Michell (Ref. 1), who considered the optimum configuration
of trusses. His work, which for a long time was not considered applicable in
practice, is again receiving great attention as a basis for configuration
optimization.

From the very beginning, the objective function in structural optimization
has been mass (weight) or volume of the structure. This type of objective function
has many attractive features. For instance, it is simple to understand, is almost
directly related to the cost and is often linear in the design variables. The last
feature renders the problem mathematically easier.

While the objective function is usually the mass, the constraints imposed
on the behavior of the structure assume a variety of forms. Common constraint
conditions involve limits placed upon static compliance (in the sense of work done
by the external loading system), buckling loads, fundamental frequency of free-
vibration, dynamic response, divergence and flutter speeds. References 2 and 3
present a thorough review of the work done in structural optimization before
1968,

Since the beginning of the 1960's, two important trends can be distinguished
in structural optimization. One involved research into the basic principles

governing optimum structures; references 4-10 exemplify this trend. The other
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emphasized the investigation of methods and algorithms for optimizing

realistic structures. Although the problems associated with the latter under-
standing were difficult, mathematical programming techniques led to highly
encouraging results. References 11-16 exemplify the application of relative!'s
standard concepts of mathematical programming to structural optimization.
Although these techniques showed clearly how to handle practical structures, a
weakness became apparent by the late 1960's. For configurations with
increasingly many design variables, computationtimes grew sofastthat 150 design
variables were considered in 1970 as an upper limit for practicality.

In an effort to reduce compuational effort and simultaneously accommodate a
large number of design variables, optimality criteria methods, which represent
a departure from the classical mathematical programming techniques, began
to be investigated. The initial inspiration came from the fully-stressed design
concept (Ref. 17). Later work by Berke (Refs, 18, 19), Gellatly (Refs. 20, 21)
and Venkayya (Refs. 22, 23) brought out the full advantages of the method.

The central idea of optimality criteria methods is to perform the redesign
step with the aid of simple recursion formulas, derived from properties of the
final optimal solution, rather than to use more complicated and therefore time-
consuming strategies. Kiusalaas (Refs. 24, 25) advanced the original concept
by introducing a modified parameter-dependent resizing formula, with the aim of
improving the rate of convergence of the redesign algorithm. In the field of
optimization with constraints on aeroelastic eigenvalues, early work was published
in the 1950's by MacDonough (Ref. 26) and Head (Ref. 27). More recently, the
papers by Ashley and McIntosh (Refs. 28,5) applied newer concepts of structural
optimization to the aeroelastic-constraint case,

Methods carried over from optimal control theory were used for aeroelastic
optimization by Armand and Vitte (Ref. 29) and Weisshaar (Ref. 30). These
methods have the advantage of being useful for finding exact solutions to simple
problems, but they are not efficient for most practical structures, which are too
complex for this type of approach. The first attempt to obtain a numerical solution

for a flutter optimization of a fairly complex structure was made by Turner (Ref. 31).
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His work was followed by that of Rudisill and Bhatia (Ref, 32); Fox, Miura and

Rao (Ref. 33); Gwin and Taylor (Ref. 34).

A simplified optimality criterion method, which uses an approximate
optimality condition as a basis for the derivation of a redesign formula, was
developed in 1972 by Siegel (Ref. 35). A method that solves the optimality
condition equations in an iterative way was presented by Pines and Newman
(Ref. 36). Haftka, Starnes and Barton (Ref. 37) compare flutter optimization
results using diverse methods. An assessment of the state-of-the-art as of
mid-1974 was given by Stroud (Ref. 38).

The research that led to the present dissertation started in early 1973,
with the aim of applying an optimality criterion method to the flutter problem

using rigorous optimality conditions. It was believed that a successful

application of this method might significantly improve the efficiency of aero-
elastic optimization of large scale structures, while at the same time advancing
the general state-of-the-art in this field. In an attempt to establish rigorous
optimality conditions for a flutter constraint, a new concept of constraint
evaluation was developed. Since most optimization algorithm work iteratively,
several reanalysis steps are necessary as the optimization proceeds, In the
case of flutter speed constraint, such reanalysis (i. e., the evaluation of the
current flutter speed) calls for considerable computation and is therefore slow.
One way to overcome this difficulty is to make an approximation in order to
estimate the flutter speed of the modified structure from its value known for a
previous design. Since several evaluations are needed, a significant error
may build up during the process.

The concept proposed here involves the notion that there is no reason to use
the flutter speed directly as the constraint. The same design problem can be
properly posed by regarding the vanishing of the damping factor as the constraint,
where the aerodynamic forces are calculated at an airstream velocity equal to
the required flutter speed. Throughout the rest of the work, g will be viewed
as the damping factor in a standard V-g analysis (Ref. 39). In other words,

the fact that a given structure flutters at a given airstream velocity VFO is

A-3
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equivalent to the vanishing of g when the aerodynamic matrix is calculated for

this same VF o and equal values of other governing parameters,

The primary advantage of the suggested approach is that it is not necessary
to evaluate, either in an exact or in an approximate way, the flutter speed of each
successive design, Rather, for the aerodynamic matrix calculated at a known

and fixed speed VF the current value of g is determined, This is an easy

and exact calculatiox? since g is nothing but the ratio of the imaginary to the
real parts of the complex eigenvalue of the flutter eigensystem (Ref. 39). The
aerodynamic matrix also depends on the fluttering frequency and this frequency
will, in general, be changing as the optimization progresses. The way in which
this change is accounted for will be fully discussed in Chapter 3. However, we
may anticipate that this will be done by means of an auxiliary iterative procedure
(in all examples one iteration per design step proved sufficiently accurate), where
the initial point is given by the first-order approximation of a Taylor expansion
in the frequency.

Another advantage of the present approach becomes apparent when flight
Mach numbers are so high that compressible-flow aerodynamics must be used.

In this case, the aerodynamic matrix depends on the Mach number, and the
determination of the flutter speed derivatives as well as the evaluation of a current
flutter speed must reflect this dependence. This added complication requires
further computational effort besides introducing a new source for potential
imprecisions., In case g is used as primary constraint, the dependence of the
aerodynamic matrix on airstream velocity (and hence on Mach number) is
completely elminiated along with all the troubles that this may cause.

Another cause for concern in the early stages of this research was
associated with the convergence characteristics of the optimization procedure
to be used. Although it is known that optimality criteria methods have
demonstrated very good convergence when applied to static structural problems
and even conservative dynamic problems, nothing can be said with respect to

complex non-conservative situations like the flutter constraint, As a matter of




fact there is no formal proof of convergence even for static conservative problems

with the remarkable exception of statically determinate structures, where
convergence to the optimum structure is obtained in a single step. All that is
known is the ""experimental' fact that the method converges satisfactorily to what
seems to be the desired optimum design.

Enforcing convergence characteristics for a general constraint was
recognized as highly desirable. The following possible solution was proposed
by the author: Instead of using a fixed recursion formula as a means for
proceeding from one design step to the next, the formula should vary from
iteration to iteration in such a way that monotomic weight decrease would be
assured. In that way, if the problem were properly posed, convergence to a
local stationary point would be enforced no matter how complex the constraint.
In order to achieve this extra flexibility in the redesigning formula, a
parameter-dependent formula was needed. The one developed by Kiusalaas
(Ref, 24) was selected.

A numerical algorithm, called "hybrid'" in the sense that it combines a
monotonically decreasing characteristic of the objective function typical of
"direct descent methods' with a simple resizing formula peculiar to the
""optimality criterion' approach, was implemented.

In the second Chapter, the main concepts of optimality criteria methods
and direct descent methods are briefly reviewed and contrasted., The hybrid
method is then fully developed and numerical examples are given.

Fluter optimization is treated in Chapter 3, After a review of the V-g
method rigorous optimality conditions are derived. The concept of g = 0
constraint serves as basis for this derivation and later is tested with the hybrid
algorithm of Chapter 2 in two numerical examples, The first is a 27-design
variable rectangular wing (for incompressible aerodynamics). The second is
a 90-design variable swept wing (for compressible aerodynamics).

The fourth chapter, which is relatively unrelated to the others, deals with

the concept of using assumed modes in static optimization problems with the aim
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of reducing the order of the linear system one has to solve during the analysis

step. An example is performed and the error in relation to the full order

analysis is computed.

Concluding remarks as well as a discussion of the results are given in

Chapter 5,




2.1

2, A HYBRID OPTIMIZATION ALGORITHM

OPTIMALITY CONDITIONS AND DIRECT DESCENT METHODS

Most of the optimization problems that occur in structural design can be

formulated in the following form:

Find Min M(x) (2. 1. 1)

subject to,

where

g% <0 i=1,2,... k
hy(x) = 0 i=1,2,...m

x is a (nx1) design variable vector.

The problem stated above is very general in its form and most of the actual

problems solved up to now are, in fact, sub-problems of this general formulation.

The necessary conditions for local minimum are the well known Kuhn-

Tucker conditions (Ref. 40) and are given by,

A and

m k
IM(R) + A.vh, (X) + AVE.(R) = 0 2, 1.8

j=1 ji=1
szo G=1,2,... k (2. 1. 4)
S

A\g.(X) = 0 (2. 1. 5)

= )
gj(::c)zo U= 2 K (2 1. 6)
hj(&) 0 (= 1 2 o 05 (2. 1.0

x represent Lagrange multipliers and X represents the point of minimum.

In order to illustrate the difficulties underlying such a minimization

problem, let us consider the problem with equality constraints only, which is

simpler than the one with inequality constraints. We immediately discover that
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we face a n+m system of equations which in general are highly nonlinear and
whose solution, even approximate, is very difficult to obtain, There are even
more complicated situations, for instance, in the case of a flutter speed con-
straint, where we cannot even write the constraint equations in an analytic form,

To overcome this unhappy situation, certain researchers involved with
optimization started to approach the problem from a different viewpoint. Instead
of trying to locate the solution point by dirvectly satisfying the necessary conditions,
they proposed to locate this point by a step-by-step search. This search is
terminated according to some criterion by which the final point is declared the
solution,

Among the diverse search methods currently in use, the so-called "direct
descent methods' are most popular. Their very common characteristic is that
they proceed in a step-by-step search in such a way that the algorithm enforces
a monotonically decreasing objective M(x). A broader discussion of these
methods c¢an be found in Refs, 40 and 41,

One of the primary advantages of all direct descent methods is their
logical simplicity and the fact that they are convergent, in principle at least, by
virtue of their own definition. On the other hand, however, the high dimensionality
of any pructical problem increases dramatically the amount of computation
necessury to locate the optimum and is a strong limiting factor. Actually,
multidimensional problems present an intrinsically more complicated structure

to which Bellman (Ref. 42) refers as ''the curse of dimensionality. "

2.2 OPTIMALITY CRITERIA APPROACH

Unless the reader is deeply familiar with the history of structural
optimization in recent years, he will be puzzled by the names "mathematical
programming' and "optimality criteria” as they are used today in numerical
structural optimization. His confusion will grow when he discovers that under
the name mathematical programming technique he may find such different
methods as feasible directions, penality functions, sequence of linear programs,

ete, The confusion is legitimate and as so often happens in o quickly developing
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discipline, the consistency of the nomenclature trails behind the scientific
i achievement itself.
The name ""mathematical programming' had its origin in operation research,
The word ""programming' was used in the context of scheduling, since the initial
task was to find efficient and even optimum schedules for operations in industrial
‘ organizations, In a short time, the concept of optimization grew as an independent
and quite general discipline, and hence the name "mathematical programming'' for
any mathematically based optimization algorithm. In order to characterize better

some specific problem, names like linear programming, integer programming,

etc., were introduced. In any event, mathematical programming still retains
its original meaning, and any optimization algorithm can be considered as being
a mathematical programming algorithm.
The fruitful combination of mathematical programming techniques, already

in an advanced state of development, and computer oriented structural analysis,

SAn il aa s ol e e el o aane oo 4

mainly finite element methods, extended the concept of optimization to the field of
structural design, and mathematical programming techniques became familiar as
related to numerical procedures for finding optimum structures. ;
As was pointed out in Chapter 1, the initial enthusiasm caused by the J
straightforward application of existing optimization techniques in structural
optimization began to decrease by the end of the 1960's due to the increase of
computational effort as more realistic structures were considered. It is in this
context that Berke (Ref. 18) suggested a new philosophical approach to the :
structural optimization problem by introducing the concept of redesigning by means |
of simple recursion formulas derived from the optimality conditions, which were
known to work very well for fully-stressed designs. Berke argued that the lack of
mathematical rigor and any proof of convergence was fully compensated for by the
experimental fact that the method worked verywell. Since the recursion formulas
for the redesign are derived from the optimality conditions, it is natural that the
name "‘optimality criteria' became associated with such an approach.
However, it is evident that optimality criteria methods are in a broad

sense mathematical programming techniques, since after all they have the same

’|
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goal, namely, the optimization of a structural system, At the same time as
optimality criteria methods began to be studied, a parallel interest arose in
discovering what physical properties distinguish optimum structures from
others, and determining to what extent these properties serve as a basis for
obtaining analytical solutions or asa basis for further development of numerical
algorithms. In this context, the term "optimality criteria' also characterizes
the work by Prager (Ref. 43). By means of a dual development, he has shown
that when the structural problem is governed by a minimum principle, sufficient
conditions for global optimality can be obtained. In addition to the theoretical
implications of such results, they have the practical effect of ensuring that the
designs obtained by a numerical algorithm are in fact global minima when such
duality is valid.

For completeness, the optimality criteria recursion formulas will be
rederived since they are used in our later development. The work of Berke
(Ref. 18) is loosely followed for the derivation.

Consider a structural system having m design variables and subjected to
a single constraint equation h = ho. Note that h may have any general physical
connotation, such as static compliance, fundamental free vibration frequency,
flutter speed, etc.

The problem is to minimize the total mass M. Assuming that m, is the
mass associated with each design variable and that the design vector is given by

x , the optimality conditions reduce to

~

i oh
Pt a H ¢ 2
x t Aax. 0 {E=11 52 gy ) (2.2.1)
1 1
Equations (2. 2. 1) can be rewritten as,
(—-—mi + A = T:l 0
ok, Mom Gk )
i i
or
oh 1
S (= 1, 2w 10 (2. 2. 2)

irmi A




The main idea in the optimality criteria methods is the use of simple
recursion formulas, based on the optimality conditions, for the resizing process.

In general, the resizing formula can be written as

D - (M) (i-1,2,...m) (2. 2. 3)
i S

where Cgv) is the resizing factor.

(v)

L

—X(&l/ami) as the resizing factor. His justification was that for a statically

The problem is how to choose C Berke has suggested using

determinate structure, the optimum would be obtained in a single step. In order

Q

to show this, consider two sets of external loads FP and F°. The problem is
to minimize the mass of the structure subject to the condition that the work done

P
by the loads F in the displacements caused by the loads FQ remains constant,

Q
i
to the load systems Q and P respecrively. The constraint equation can be

Define S." and SiP as the generalized internal forces in member i due

written as
m sips? 2
h = < AiEi Li-ho (2. 2. 4)
where
Ei = Young modulus of element i.

Ai = cross sectional area of element i.
Li = length of element i.
h0 = fixed value for the constraint

Differentiating equation (2. 2. 4) yields

o an Yy
om ’aA]_ amj

b
or s, S
P Q i qQ | 1
oA S, 8, m  0A, i m i 0A,
é———l--jjlaz—l——l“z—-——l—l (2. 2. 5)
om om, 2 j AE, i A E i
j i A;P i=1 i1 i=1 i




Since the external loads are fixed, EJSip/aAj and E)SiQ/aAj are self-
equilibrating stress systems, and by virtue of the principle of virtual work, their

work is zero in any virtual displacement. Hence, equation (2.2, 5) is reduced to

L PR
UL s U 2.9.6
; > , L. (2. 2. 6)
om, om, 2 j

j j Aj Iuj

We further assume that,

m, = ApL,. 2.2.7)
j R

where p. is the specific mass of element i

In view of eq. (2.2.7) we can write eq. (2. 2. 6) as

QP
‘]h_ v g (-) 2 8)
- o Lo L, L
s PO 5 )
J 1)
Substituting Bh/amj into the optimality condition (2. 2. 2), we get
D
S,I SQ 1
Ll - G-1,2,... m (2. 2. 9)
Ap.E.
15 B

Equation (2. 2. 9) states that the ratio of the energy in each element to its
mass has a constant value for the optimum structure. Besides this interesting
conclusion, we can actually obtain the unknown Aj from the relations (2. 2. 9) as

follows.

(2. 2. 10)

The multiplier A is determined in such a way that the constraint

condition is satisfied:




(2. 2.11)

Q

If the system is statically determinate, S],P and S.° do not depend on the
areas Aj and can be obtained from static considerations, so that relations
(2. 2. 12) give the optimum structure at once.

In order to see how this concept is extended to statically indeterminate
structures, recall eq. (2.2.10). In order to emphasize that the internal loads

correspond to the unknown structure, we write

PQ

Aj‘”l’ = W (2. 2.13)

Jd
where, again, A is such that the design (v+1) meets the constraint condition.,

We can rewrite equations (2. 2. 13) as

(2.2.14)

We recognize that if there is no internal force redistribution, equation

(2. 2. 14) can be written as

(v+1) oh (v) .
A - [-Aaz), A 2.2.15
j (;m]" v j ( 15)
)
Berke suggested that this equation could be used as a recursive resizing
formula for statically indeterminate structures that would lead to the optimum

structure when applied iteratively.




For relation (2. 2. 15) be meaningful as a recursion formula, it is
important to show that if at the step v we have the optimum structure, the
structure will not change when the recursion formula is apphed.

The multiplier A is given from eq. (2.2, 11) as

or
1 (V65 PQ
JA = 5 Z AipiLi (2. 2. 16)
o i=1 A Jp F

For the optimum structure, the quantity in parentheses [which is
—(8h/8mi) ] is known to be constant. Therefore, we can write (2. 2, 16) as

2 (S.PS.Q)
b 6 1
2

>
Il
IE

(2.2.17)
h

[o 2N V]

A pE,
3D

Substituting (2. 2. 17) into the recursion formula (2. 2. 15), we have

sP Q
Afl'*l) * h _l_u Afl’) 2. 2.18)
J s Ap )
i
Recalling that
m (SPSQ)
o Z AE, I‘i
i-1 i
or
& (Si S?)v |
ho Z _2—— Aipil,i 2. 2.19)
i=1 ;\iklpi

and, again, using the fact that for the optimum structure the term in the brackets

is constant, we have

D




¢ ——

880
h =ik K, g (2. 2. 20)

.E.p.
J )}

Combining eqs. (2. 2.20) and (2. 2, 18) we finally obtain

A(,V+1) » Afu)

] J

Although the recursion formula is only approximate, as has been seen, it
is known to converge quite rapidly.

Venkayya (Refs. 22 and 23) has used a similar recursion formula and
extended its use to different types of constraints.

In order to obtain greater flexibility, Kiusalaas (Ref. 24) proposed a

recursion formula containing a relaxation factor a:

(v) _ (v) Sh
Ci = a+ (1-a)A (8mi)1l (2. 2. 21)
The idea here is that a good choice of « could improve the convergence.
Again, for the optimum structure all the derivatives f:)h/ami are equal and have
the value 1/A. Therefore, for the optimum structure

c‘i") = at(l-a) = 1 (2. 2. 22)

which implies that for the optimum structure, the design remains unchanged no
matter what « is chosen.

As has been shown, optimality criteria methods have the advantage of
redesigning by means of simple recursion formulas and their name comes from
the fact that they are derived directly from the optimality conditions. Their
major weakness is that a rigorous proof of convergence does not exist.

The concept of changing dynamically the resursion formula from step to
step in order to achieve a monotonic weight decrease is introduced next in an
attempt to overcome this weakness, The hybrid character is related to the
combination of the concept of monotonic decrease and the concept of redesigning

by means of recursion formulas derived from the optimality conditions,
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2.3 A MODIFICATION OF THE OPTIMALITY CRITERIA RECURSIVE

RELATION

Consider the problem of minimizing the mass M of a structural system
subject to a constraint h - ho’ where h is any type of behavioral constraint

(compliance, natural frequency, buckling load, etc.).

Let
m
2.3.
M lz; m, 2.3.1)

and consider the iterative resizing process given by

D ), 2.3.2)
1 1 1

Now, we take for the resizing factor the same expression adopted by
Kiusalaas (Ref, 24):

(5 SRR L
c; a+ (1-g) A (Bmi)v

(2.3.3)

We further assume (although it is not essential) that the mass m,
associated with each design variable is linearly related to the design variable
itself. So,

m, xizi (2. 3. 4)

where L’i is constant.
From eq. (2. 3. 2) we have,
’ 1 )
x!' e xf’ ) X, = [C!V)-l]xfu) (2. 3. 5)
i i i i i
and in view of eq. (2. 3.,4)
om, [(‘Q”—\]mg") (2. 3. 6)

()

; in (2. 3, 6), we obtain

Substituting for C
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(v) % )

(v
<am) Jm,

Ami = [a~1-(a-1)A

or
e (v) oh (v)
= (a~1) [1—7\ (E i)V] mi (2.3.7)

The value of 7\(”) is chosen, at each step, so that the new design still

satisfies the constraint. To first order, the change in the constraint is
m
(v+1) (V) _ oh
h h = iz_l (ami) Ami (2.3.8)

If we substitute the values for Am, as given by relation (2. 3. 7) we obtain

m
) < @y Y N’(;) & =) m!") (2.3.9)
i1

Solving for A(V) from eq. (2.3.9) yields

m (v+1) (V)
oh h -h
2 ey m % 1
(v) i=1 i il
A = (2.3.10)

Since we want the design v+1 to be as close to the constraint as possible,

and since h‘v) will in general be different from h_ because of the first order

approximation used above, we make h(l‘ﬂ) = h0 and rewrite relation (2. 3. 11) as
(v)
h__ (v) o_h
v) ~ (ami)u i a-1
A = = (2.3.11)

Z (8h )2 (v)

4 om, v i

i-1 i

Substituting this relation for A“') in eq. (2.3.7), we have
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()
P, am
&t Oom v i -1

- i=1 i oh (v)
Ami = (-1 | 1- s ‘ (Wv mi 2. 3. 12)
3 LI S, i
¢ om, p i
i=1 i

In order to simplify the notation, we write

s
5

AM (2. 3.13)
i=1
or
? 2
(@-1)8, - [ho-h(u)]ﬁl
AM = (a-1)M - (2. 3. 14)
82
Solving eq. (2. 3. 14) for o gives
th -h g,
AM -
32
a =1+ 5 (2. 3. 15
Bl
M — —
By

Relation (2. 3. 15) is of central importance in our development, It relates
the overall change in mass in one iteration to the value of the parameter a. We
can use this fact to our advantage by choosing « in each iteration in such a way
that it will cause a certain reduction of mass,

Since at the beginning of each iteration h( V), M, /31 and [32 are fixed

and known, we see from eq. (2. 3. 15) that « depends linear and uniquely on the
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intended mass reduction AM and can always be determined with the only

exception when M = (ﬁ?/ﬁz). Recalling the definition of [31 and [32 and taking
into account that all mi are non-negative, it is seen (Appendix A) that
M = (Bi/Bz) if and only if all the constraint derivatives are equal. But that is

exactly the stationary condition so that we may state that unless we are at a

R B -2

stationary point, given an intended AM, the parameter « can be obtained from

{ eq. (2.3.15).

It now becomes clear that a good strategy would be to use the redesigning

formula (2. 3. 2), with « being dynamically updated at each iteration in order to
achieve some mass reduction. In that way, we can enforce a monotomic mass
decrease and consequently ensure convergence independently of the nature of the
constraint. Note that the continuous updating of « is equivalent to a feedback
procedure, since « is controlled by the intended output AM,

Looking at expression (2. 3. 15), one could argue that any amount of mass
reduction could be achieved in a single step and therefore that some inconsistency
does exist. The inconsistency is removed by recalling that expression (2. 3. 15)

—h(v). This in turn

was derived by assuming a first-order approximation for hO
implies that (2. 3. 15) is only valid for relatively small Ami and hence the overall

mass reduction at each step cannot be made to large.

2.4  THE BASIC WEIGHT REDUCTION ALGORITHM 1

We present in this section the basic logic and flow chart of the weight
reduction algorithm based on the dynamic updating concept developed in Section ;
2, 3.
Besides the primary equality constraint, the algorithm also handles
minimum-gage constraints by holding a design variable fixed at its minimum
value if this condition is reached during the optimization.
As a result of this simple way of treating minimum-gage constraints, the
final design may not be optimum in the sense that Kuhn-Tucker conditions may not

be satisfied for some design variables that reached their minimum-gage constraints
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during the design process. Described in Appendix B is the action that may be

taken when these conditions are not satisfied.
In the flow chart presented below, the nomenclature is the same as in the
previous discussion, and « is calculated according to expression (2. 3. 15).

From Egs, (2.3.11) and (2. 3. 3) C:V) is given by

( -h")-(-1)8
(v) _ o 1| &b
Ci = o+ ﬁz ( .,V (2.4. 1)

@

Calculate L'Il and

2

for x| # (%) nin

AM = -0. 1M
NP =1

Calculate «

AM = -0. 08M
NP =2
Calculate o

AM = -0. 06 M
NP =3
Calculate o

NP =4
Calculate o

AM = -0. 02M
NP =5
Calculate o

AM = =0. 01M
NP =6
Calculate «

=0
{5
——0
——0
———(2)
——®
AM = -0. 04M | < (:)
——0©
(2
——®
b (3)
@

A=20
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iterate for i=1,m

bypassing when

X, is already at
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| conTINUE

iterate for i=1, m
bypassing when
X, is already at
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In summary, the algorithm works by choosing « at each step in such

a way that a predetermined proportion (104, 8%, 6%, 4%, 2%, or 1%) of the total

current mass is reduced. Ituses the highest possible reduction that will not

cause any design variable to change by more than 25% or to fall below its

minimum-gage value.

i)

ii)

2.5

i value,

Two possible situations arise:

A 2¢ reduction is not possible without at least one design variable dropping
below its minimum value. In this case, the minimum value is assigned

to this variable and a new iteration starts.

A 1% reduction is not possible without at least one design variable having
to change more than 10%4. In this case the procedure stops and the last

design is declared optimum within the present framework.

NUMERICAL EXAMPLES

The four numerical examples that are presented in this section were

selected from among the problems used in the debugging and development stages
of the algorithm. Because of this, mass-reduction sequences different from the
one shown in the flow chart have been used. The actual sequences are given

with the code explained below:

[10.0, 8.0, 6.0, 4.0, 2.0, 1.0 - 10. 0]

AI:/[ = 10. 0% of total M
AM = 8.04 of total M

4
All/l 6. 0¢ of total M
AM = 4.0% of total M
4

Al\‘i = 2.04 of total M
AM 1. 0% of total M

Maximum variation of a design variable in a single step - 10% of its current




and the

where

(K]

K], -

(a) Rod in Axial Free-Vibration (Fig. 1)

Sequence =[5.0, 4.0, 3.0,7°2.0, 1.0, 0.5, 0.3, 0.2, 0.1-5.0].
Number of design variables = 4
Number of degrees of freedom =4 (nodal).

The stiffness matrix is given by

4
K] = > A[K]
i=1

inertia matrix by

4
M = 20, + My
i=1
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0 0 0 0 0 0 0 0
E p. 1
= 0 0 0 0 4 = 0 0 0 0 44
K1, - ) m, - G
0 0 0 0 4 0 0 0 0
_ 0 0 0 1 0 0 0 2
0 0 0
[ my
= 0 0 0 0
“]tip y
0 0 0 0
0 0 0 OJ
Li = 1.0 i=1,2,3,4
pi = 0.6 i=1,2,3,4)
E. = 1000.0 (i=1,2,3,4

The free-vibration frequencies are given by the solution of the eigensystem

_ 9 L
Kot = «“mia 2. 5. 3)
Rewrite eq. (2.5. 3) as
2 1
(IK) - w (i} = o (2. 5. 4)
Differentiating eq. (2. 5. 4) with respect to m., one has
2 I8
B ; :

(%m-g?m-wzg,in-‘li){am[m-wzum;?n—i} -0 (2.5.5)

sl - T
By pre-multiplying eq. (2.5.5) by {q} and taking into account that [K]
and [I] are symmetric matrices, the second term of eq. (2. 5. 5) vanishes and

we find for the constraint derivatives

= poem (2. 5. 6




Since piLi is the same for all four design variables we can substitute
9
zu“/aAi for Eio.‘z/ami in the redesigning formulas. Using expressions (2, 5. 1)
and (2. 5. 2) to evaluate derivatives of [K] and [I], we finally have
S 2 =it
B {a}" (K, - o"mylal

—r (2. 5.7}
o (gt mia}

In order to compare the numerical results with known analytical solution,

we define two non-dimensional parameters

g = wL/% (2. 5. 8)

M

e

M,
1

'y:

where Mf and Mi are respectively the final and initial total masses of the
structural system. In order to be able to vary the fundamental frequency and
also to avoid meaningless optimal solutions, a controlling tip mass was
introduced.

The optimization results are shown below:

Table 1. Results for Axial Rod Optimization Under Fundamental

Free-Vibration Frequency Constraint.

number of
m, .
tip w B 5 iterations
5. 00 6.55 . 642 . 982 3
3. 00 8. 05 . 791 . 958 4
1. 00 11. 52 1. 132 . 809 9
0.50 13. 33 1. 309 . 620 16
0. 25 14. 61 1, 430 . 409 23




Figure 2 shows a plot of vy versus B for the example above and it
compares very well with the analytical result by Turner (Ref. 9). Figure 3
shows a plot of y versus the number of iterations. Its roughly linear behavior
pattern reveals that as the starting point becomes more distant from the optimum,
the number of iterations grows in a proportional way which is a positive quality
of the procedure.

In a later step, in order to obtain a better graphical comparison between
the optimum thickness distribution given by the algorithm and the analytic solution,

the rod was divided into ten elements and Fig. 4 shows this comparison.

(b) Built-Up Bending-Torsion Box in Free-Vibration (Fig. 5)

Sequence = [10.0, 8.0, 6.0, 4.0, 2.0, 1.0, 0.6, 0.4, 0.2-25,0].
Number of design variables 27

Number of degrees of freedom = 72 (nodal)

A full description of the dimensions, structural constants, finite element
definition, design variable definition, etc. is given in Chapter 3 where this
same structure is optimized for the flutter speed constraint.

In the optimization procedure, only the first nine free vibration modes of
the initial structure were retained as modal degrees of freedom.

The final design has all the design variables at their minimum values with

the following exceptions:
tr(7) = 0. 02645 in,
t(8) = 0.02645 in,
Additional optimization results for this problem are given below:
w, - 48, 8 rd/sec (initial design)
we = 48. 8 rd/sec (final design)
number of iterations - 29
Mi 195 1b

4¢
Mf 19 1b




CPU time per iteration = 0. 075 min/iter.

The final design satisfies Kuhn-Tucker conditions in the sense of
Appendix B. Figure 6 shows a plot of the optimization history and reveals that
the optimum was basically reached after only thirteen iterations. Further

comments on the results will be given in the final chapter.

(c) Built-Up Bending Torsion Box for Static Compliance (Fig. 7)

Sequence = [10.0, 8.0, 6.0, 4.0, 2.0, 1, 0-25, 0]
Number of design variables = 27

Number of degrees of freedom = 72

The static compliance constraint is enforced by requiring that the work
done by the applied force is constant.

The initial structure is the same as in the previous example,

The final design has all the design variables at their minimum values with

the following exceptions:
tf(7) = 0.147 in,

t.(8) = 0.410 in.

tf(9) 0. 091 in,
t(10) = 0.197 in.
t(11) - 0.021 in.
t(12) = 0.048 in,
Additional results are give below:

(Comp.)i - 3571 lb-in (initial design)

(Comp. )f 3571 1b-in (final design)
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Number of iterations = 24

Mi = 195 1b

Mf = 69 1b

CPU time per iteration = 0. 042 min/iter.

The final design satisfies Kuhn-Tucker condition in the sense of Appendix

B. Figure 8 shows the plot of the optimization history and reveals that the

optimum was practically reached in 14 iterations,

(d) 30-Bar Plane Truss (Fig. 9)

Sequence = [10.0, 8.0, 6.0, 4.0, 2.0, 1.0, 0.6, 0.4, 0.2-25. 0]
Number of design variables = 30
Number of degrees of freedom = 24

E = 10. 0)(106 psi
The optimization results are given below:

Table 2. Cross sectional areas of the design variables.

\]/)::ilagsle 4 (iriz) & (mz) "min “nz)
1 1. 000 1. 806 0. 600
2 1. 000 1. 260 0.600
3 1. 000 0. 800 0. 600
4 1. 000 0.600 0. 600
5 1. 000 0.600 0. 600
6 1. 000 0.600 0. 600
{f 1. 000 1. 862 0.600
8 1. 000 1. 287 0. 600
9 1. 000 0. 831 0. 600

10 1. 000 0.600 0. 600
11 1. 000 0. 600 0.600
12 1. 000 0.600 0. 600
13 1. 000 0.622 0. 600
14 1. 000 0. 600 0. 600
15 1. 000 0. 600 0. 600
16 1. 000 0.600 0. 600
1 1. 000 0.600 0. 600
A=29




Table 2 - continued

Vla)l(:':g?e ti (in2) tf (inz) tmin (inz)
18 1. 000 0.600 0. 600
19 1. 000 0. 600 0.600
20 1. 000 0.600 0.600
21 1. 000 0.600 0. 600
22 1. 000 0.600 0.600
23 1. 000 0.600 0.600
24 1. 000 0.600 0.600
25 1. 000 0. 747 0. 600
26 1, 000 0.600 0. 600
27 1, 000 0.600 0. 600
28 1. 000 0.600 0.600
29 1. 000 0.600 0.600
30 1. 000 0.600 0. 600
(Comp)i = 2478 lb-in (initial design)

(Comp), = 2478 1b-in (final design)

Number of iterations = 54

Mi = 308 1b

Mf = 212 1b

CPU time per iteration = 0. 011 min/iter.

The static compliance is enforced in the same sense as in the previous
example. The final design satisfies Kuhn-Tucker conditions and Fig. 10, showing
the optimization history, reveals that the optimum was basically reached in 4
iterations which is an excellent result in view of the change in total mass.

The relatively high number of iterations used to reach the final
structure was due to a minor error in the computer code at this time, Its only

effect was to slow convergence; the final design was unaffected.




‘ 3. OPTIMIZATION UNDER FLUTTER CONSTRAINT

3.1 THE V-g METHOD FOR FLUTTER SPEED DETERMINATION

For completeness we present the V-g method for flutter speed determina-
tion although it is standard and well known. A deeper discussion and additional
references are given in Ref, 39.

Consider an aeroelastic system with a finite number n of degrees of
freedom. We say that the system is ''fluttering" if it presents steady state

harmonic oscillations. Namely

{q} = Ref{@le'®" G.1.1)
where

{ q} = vector of generalized displacements

{q} = vector of complex amplitudes

It can be shown (39) that the linearized equations of motion are given in

matrix form as

((m - QK] + (apfal = o (3.1.2)

where

[K] stiffness matrix

(1]

It

inertia matrix

Q = l*_;g_ complex frequency
w

[A] = aerodynamic matrix
Equation (3. 1. 2) may be rewritten as

iclal = olql 3. 1. 3)
where

(€] - K1 (Al

Since [A] is, in general, a complex non-hermitian matrix, so will [C]
be and consequently the solution of the eigensystem (3. 1. 3) give rise to complex

eigenvalues and eigenvectors,
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For the sake of simplicity, we will introduce the V-g method for the
incompressible case, and then, we will extend it to the compressible case.

Let an aeroelastic system, a cantilever wing, for instance, be subjected
to an airstream with velocity V.

The aerodynamic matrix will be only a function of the reduced frequency
k. For a given value of k, the eigensystem (3. 1. 3) can be solved and one gets
n complex eigenvalues ( and n complex eigenvectors {6} P

Recalling the definition of the complex eigenvalues, we obtain

= /ReI[Q] (3. 1. 4)

Im[(]
g = Re[l (3. 1. 5)
_ wb
V = X (3. 1.6)

If we ploton a V-g plane the n (V,g) pairs corresponding to the given
k and repeat the calculation for several different values of k, we end up with
a so-called V-g diagram as shown in Fig. 11.

It is clear that there are n such curves, each one corresponding to a
possible steady-state harmonic oscillation mode, which can occur under the
associated (V,g) pair of conditions, It is also shown in Ref. 39 that the
imaginary part g of the complex eigenvalue can be interpreted as a structural
damping factor. Since actual structures exhibit positive damping, but yet the
factor g is relatively small (0.01 to 0. 04 for metallic structures), it is usually
assumed that the flutter phenomenon exists when g = 0. As a consequence, the
critical flutter speed is the one associated with the first crossing of the g - 0 axis.

Now we turn to the situation where the flutter speed is high enough so that
compressibility effects cannot be neglected. In this case, the aerodynamic matrix
will depend on both reduced frequency and Mach number, and a simple way for

finding the flutter speed is as follows;




i) Plot V-g diagrams for different Mach numbers at fixed altitude.
ii) Find the critical speed for each diagram and plot it versus Mach
number as shown in Fig. 12,
iii) Then, find the "matched point," which represents the flutter speed

consistent with the altitude and Mach number.

3.2 THE g =0 CONSTRAINT SURFACE AND THE OPTIMALITY CONDITION
EQUATIONS

In this section, we derive the optimality condition equations for the flutter
optimization problems and introduce a new approach which will serve as a basis
for our algorithm,

Consider an aeroelastic system and recall the equations of motion in the
form

(M - oK}+Aplat = 0 3.2. 1)

The aerodynamic matrix, as already discussed, depends on reduced
frequency and Mach number.

Consider, now, that the airstream velocity is fixed. We are interested in
changes in the solution of the eigensystem when structural elements are slightly
changed. Inordertomakeour statement more precise, we consider that design
variables are defined over the structure and we are asking for the derivatives of

the eigenvalues of (3. 2. 1) with respect to the design variables, holding V fixed.

Differentiating (3. 2. 1) with respect to the mass associated with the i-th

design variable, we have

2o Bona. ol e Loarlia ikt LY -
(m_ (1 - 5 (K] - Qg (K] mlA]){q% (M - alKF AN -} = 0

1 1 1 1 1 (3. 2.2)
Consider the adjoint eigenproblem

(n - n(KMA])TTE} -0 (3.2.3)

We pre-multiply eq. (3. 2. 2) by {E} J and since transposing does not affect

the eigenvalues, the second term of (3. 2. 2) vanishes. We can thus write,
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LA [ R )3 R Y ) ey
{p} <"’mi aminq nmi+mi>{q} =0 (3.2.4)

Since the airstream velocity and the altitude are fixed, so will the Mach
number be, and we have

oA] _

i g‘;[ lg;n—i i3, 2.5y

_@kl (3. 2. 6)

From this result and the definition of ( we can write eq. (3. 2.4) as,

?-g— 2(1+1g)
— T | 3 om, et ity AK] | [ Alp 2w | (=
{p} - ~ (K] - = {q} - 0

am., 3 ) om. o
1 w w 1

(3.2.7)

Equation (3. 2. 7) represents for each design variable a complex scalar
equation which can be decomposed into two real scalar equations.

Define,

R, - Re [{B}Tglm%{a}] [, - Im [{B}T 3}}{6}]
n, - e (7" gln‘—*'il{a}] f - [ G %{—j}%{&}]

R, - Re [{B}T[KHE}] 1, -~ Im [{5}"}}\-1@]

(8}
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The two real scalar equations can be written as

( 2 g L A & 28 S0 By R0 5
R+ —36m s 2R2+( 2 om. 38m_>13+ 212" §om N O
w 1 w [e3) 1 w 1 W 1
(3.2.8)
T TR S X AR By £ R+
{ L' 3 om B 212+< 2bm, 38m.>R3 2
W 1 (€3] w 1 w 1 W
b dw
I — 2
L reaE N0 (3.2.9)
or,
({2, s, b Yo fahfe i
3R37 "33V /om 2)\ bm._ 5" e
@ w 1 w 1 w <) (3.2,10)
< 2g - 3\og | | 2 g
( R3+_513+VI4)am +<'_z>(a;n) S
M w w i w i w w
(3.2.11)

These two equations form a linear system in aw/ami and Bg/ami. Solving
the system yields

b ' = (8. 2. 12)




The mass of the structure is given by
m
M=m+ ), m (3.2 14)

According to Chapter 2, the necessary conditions for a local minimum with

a fixed flutter speed V as a constraint are given by

FO

oM a
—_— 4 —(V_-V = = 2 g
5 . )\( i(\ -V ) 0 (i=1,2,...m) (2.2, 15)

where \"F is the actual flutter speed of the structure.

Combining egs. (2.3.15) and (3. 2. 14) gives

v
(\,F

eylis % (i=1,2,...m) (3. 2. 16)
1

lxpressions (3. 2. 16) represent the optimality conditions for the problem.
One disadvantage of using expressions (3. 2. 16) is that we have to derive
EWF/ami. Another disadvantage of formulating the problem in the form (3. 2. 15)
appears when we actually perform the numerical optimization, since we have to
calculate (or at least approximately predict) the flutter speed of the modified design
at each iteration step.

An alternative approach, which avoids these difficulties, may be derived

as follows.

Consider the structure subjected to an airstream with velocity VI‘()’ which

happens to be the flutter speed of the structure. To say that V is actually the

FO
flutter speed of the structure is the same as saying that:

a) The V-g diagram for the structure has a g -~ 0 crossing point at \'1-‘()'

b) This crossing point gives the lowest critical speed if there is more
than one.
V.. /a there is a value of k
FO
such that at least one eigenvalue has null imaginary part (g  0), and its associated

The requirement (a) implies that for |
x

velocity V coincides in value with \'l"()'

A-<36
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Let us drop, for the time being, the requirement (b), though we will
return to it later.
If we reformulate our constraint condition, namely that the structure

flutters at an airstream velocity V in terms of saying that g has to vanish

ro’
for V VF()’ we can write the optimality conditions as
oM 0
— —_— e ] = 9
o K?)mi (g-0) = 0 i=1,2,...m) (3.2.17)
f V=V
or FO

Taking into account relation (3. 2. 14), we obtain

® _ _1 i = 3 9

hmi x (1=1,2,...m) (3. 2. 18)

Equations (3. 2. 18) represent the optimality conditions for the alternate
approach,

Upon substitution for ag/f?mi from equations (3. 2. 13), with g - 0 since

the structure satisfies the constraint, the optimality condition equations become

2 2
(I—{g R)(—IS—-——b 1> (Il 1)( s blz) L _ const
z2” 3"V T A LR S AT
w (€3] \/FO S w : w \FO A

i=1,2,...m) (3. 2. 19)

Since R3, R4, 13 and I4 are constant for any particular design, we have

2 2

- — = (LS 4 1 2 Q < 2
(12 Il) C](R2 w Rl) + <, (i=1,2,...m) (3. 2. 20)
Now, we define

=T/ 8 2 9 -1

T = —[K] - w A i 2 oo . . 2 2
li {p} (ami[}\] 8mi [I]){q: =12 m) (3 2. 21)
Thus, we can write eqs. (3. 2. 20) as
Im[U] = ¢ Re[U]+c, i=1,2,...m) (3. 2. 22)




s sl il sa (L L

The optimality conditions in form (3. 2, 22) read that if we plot the
quantities Ui in a complex plane, then for the optimal structure they will be
aligned on a straight line. This interpretation is shown in Fig. 13,

Note that because eqs. (3. 2.22) are necessary conditions, the dropping of
requirement (b) does not change their validity.

It is beyond our knowledge at this time, what further theoretical
implication may arise from the optimality conditions in the form of egs. (3. 2. 22)
and we recognize the particular importance of additional research in this direction.

An unhappy event that may occur in flutter optimization is due to the
possibility of discontinuous behavior of the flutter speed as will be shown.
According to the definition, the flutter speed is associated with the first crossing
of the g - 0 axis.

Now, if we make a small change Ami in the mass associated with the i-th
design variable, we can plot a new V-g diagram for the altered structure
(represented in Fig. 14 by the dotted line) and obtain the new flutter speed V!

o
The constraint derivatives, in terms of flutter speed, may be defined as

oV Vi
e lim A—m— (3. 2.23)
C

i Ami-0 i

and nothing abnormal is observed if the V-g diagram is of the normal type.
Unfortunately, abnormal situations shown in Figs. 15 and 16 may develop,

In both cases, while the local behavior predicts \'l

most critical will be V'I:" Since all practical optimization algorithms depend on

as the new flutter speed, the

local analysis, and ours is no exception, such potential problems should not be
ignored, and periodic checks of the redesigned structure are vital in order to

detect as soon as possible any abnormal behavior. Hence, the requirement of
item (b) previously dropped, is handled by periodically plotting V-g diagrams

and checking for any abnormality.

4
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3.3 FLUTTER OPTIMIZATION ALGORITHM

In this section, we outline the optimization algorithm as it will be used in
the numerical examples. Only the general features of the algorithm will be
discussed here.

The task of the optimization algorithm can be stated as: Minimize the
mass of a structural system holding fixed its initial flutter speed,

The algorithm as used in this work is subject to the following restrictions
and conditions:

a.) The geometry of the structural system is fixed so that the only design
variables are cross sectional areas and thicknesses of structural
components,

b.) Except for minimum thickness (or area), no other constraints are
imposed.

c.) Inertias and stiffnesses associated with a design variable are assumed
proportional to the ass.iciated mass mi.

d.) Non-structural mass can be accounted for.

According to our discussion in the last section, our constraint will be the
hypersurface g =0 for the given V
itself.

FO rather than the hypersurface V =\ FO

The principal steps of the numerical procedure are as follows:

1) Determination of the flutter speed of the initial design.

2) Redesigning by the algorithm developed in Chapter 2 using the flutter
speed calculated in the first step as the constraint. When some design
variable reaches its minimum value, the optimization proceeds holding
the design variable at its minimum value for the rest of the procedure.

Next, we present the basic block-diagrams for step 1 and step 2 as well as

a discussion of their working sub-steps.




SEEP 1

iterate for

Mach number

|

1
Generation of Mass

and Stiffness

2

Free Vibration Analysis

1
3

Polynomial Fitting for
Free-Vibration Modes

3
4

Generation of

Aerodynamic Matrix

6

5
Polynomial Fitting

for Reduced Freq.

Fig,

V-g Diagram Generation

17, Block-diagram of Step 1.
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1

Mass and Stiffness

1
2 6

AERO w/last k Update k

3

Solve Eigensystem - l
Transpose

' 2

4 Eigensystem

Localize Eigenvalue

and Eigenvector of

Interest =
9

Calculate

incorrect
Check w > -

dw/dk
correct
Check Crossing
7
Calculate
1
8 9
Design Variable Resizing Update k

*Check for optimality or assigned
maximum number of iterations.

Fig. 18. Block Diagram of Step 2.
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STEP 1:

1.1 Generation of Inertia and Stiffness Matrices

Generates by means of any standard finite-element technique the stiffness
and the inertia associated with each design variable, as well as the non-structural

inertia matrix. Namely, [E]i and [f]i are generated so that

m

K] = D (K] (3.3.1)
i=1
m —_ p—

m = Y [+, (3.3.2)
i=1

1.2 Free-Vibration Analysis.

Uses the stiffness and inertia matrices generated in 1. 1 and finds the

free-vibration frequencies and modes by solving
—-— 2 —
k1{a} = «“miq} (3.3.3)

After solving the above real symmetric eigensystem, it transforms the
stiffness and inertia matrices associated with each design variable from nodal

to modal coordinates by means of
= s
(K], = [T] [K)[T]
T—
(1], (T) [1],(T] (3.3. 4
= ) o .
(M, - (1) {1][T] *)

where

and

*We retained the same symbols for both coordinate systems,
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q. are the eigenmodes (i = 1, 2 ok

T

4 is the number of degrees of freedom of the transformed problem,

We also assume that in all the cases to be studied [}_\:]i and [ﬁi are

proportional to their associated design variable so that,

—

A

—
)

= Bl

=
I

—*
e x
where [k-]i* and [I_]l* are constants,

1.3 Polynomial Fitting for Free-Vibration Modes

In order to calculate three-dimensional unsteady generalized aerodynamic
forces it is necessary to represent the vertical displacement z of each mode as

a two-dimensional polynomial in x and y:

M ﬁz mﬁllul (3. 3. 5)

Here b is the same reference length used in the definition of reduced
frequency. The present sub-step finds the coefficients Hij of the polynomial
fit.

In the case where incompressible strip~theory aerodynamics (Ref, 44) is
used for the aerodynamic forces, the polynomial fitting is uncessary and the

sub-step is replaced by a numerical integration of the ecigenmodes so that

coefficients fij can be obtained:

f ., 2. i, ] ; ; 3.3.6
i /:/7i7j(lxdy i,j =1,2,...4%) (3. 3. 6)

Xy

e e b i e



These coefficients are used as input to generate the incompressible strip-

theory aerodynamic matrix.

1.4 Generation of the Aerodynamic Matrix

Using the output of the previous sub-step, the aerodynamic matrix [A]

is generated. Further details will be presented with the examples.

1.5 Polynomial Fitting for Reduced Frequency

When three-dimensional unsteady aerodynamic theory is being used, a
polynomial fit is made for a given Mach number in terms of powers of the
reduced frequency, so that the elements of the aerodynamic matrix are

represented by

AL =Y & k" (3.3.7)

where n, is chosen by the user,
When incompressible strip-theory aerodynamics is assumed, the above
polynomiz‘ll fit is already embodied in the previous sub-step.
.,‘\

1.6 “Y-g Diagram Generation

For a gi‘;én Mach number and reduced frequency, the complex eigensystem

(ciat - afal (3. 3. 8)
is solved, where .

(€1 - (K1 an + (A] .

Then, for each complex eigenvalue [, V, g and « are found from the

relations

@ : 3.3. ¢
Rel.] okals
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= Re[q] (3. 3.10)
wb
vV = . (3.3.11)

At this point, an important observation has to be made. From eq. (3. 3. 9)
it can be seen that if Re[Q] <0, « will become imaginary, which contradicts
our assumption of real w.

In order to properly interpret this occurrence, we recall that in a V-g

diagram the dependence of a certain branch on the reduced frequency is as shown

in Fig. 19. As V — 0, we approach the free-vibration case which has a finite

and nonzero frequency. Therefore, as V -0 we have k = =,

| €
k=00
\'
pe——__
decreasing k
Fig. 19. Variation of the reduced frequency along a branch.
Rewriting eqs. (3. 3.9) and (3. 3. 11) we have
1 4 3
Re [(7] = > (3.3.12)
w
wb
L4 3. 3, 18
k v (3. 3.13]
Equation (3. 3. 12) shows that as Re[(}] approaches zero, « approaches
= and from eq. (3. 3.13) we also see that V approaches «, since k is

decreasing. The primary conclusion is that the branches extend to infinity in ‘

the V direction as k approaches some critical value which causes a change in

A= 45




the sign of Re[(t]. When that happens, we can safely ignore the imaginary

frequency, since we know that the limit of this particular branch has already

been reached.

STEP 2:

2,1 Inertia and Stiffness Matrices

m

m - § x [y + M
m —

K] = ) xK; (3.3.14)
i=1

2,2 Aerodynamic Matrix

The flutter Mach number, the updated reduced frequency and the

polynomial fit of (1.3) are used to generate the aerodynamic matrix [A]
2.3 Solution of the Eigensystem
The eigensystem

(ca} = ofql

is solved.

2.4 Identification of Critical Eigenvector

This sub-step identifies, among the ¢ eigenvalues-eigenvector pairs
generated in the last sub-step, the one corresponding to the desired flutter speed
and therefore the one being monitored. This is done in the following way.

Consider a reduced frequency k* defined as

k* = (3. 3. 16)




Since VFO is the constant flutter speed, k* will depend only on the
eigenvalue (. For the critical O, we will have k* approximately equal to k.

Therefore, if we define an error € given by
€ = |k*-k| (3.3.17)

The critical eigenvalue will be the one that gives the smallest value for «.

2.5 Reduced Frequency Matching

Cansider the reduced frequency k used in the generation of the
aerodynamic matrix [A].
If the reduced frequency is correctly matched (which means that the

current flutter frequency is the actual one), then for the critical k* we have,
e = |k*-k| =0 (3. 3. 18)

However, it might happen that the reduced frequency k* calculated from
the critical eigenvalue is different from the reduced frequency k used in the aero-
dynamic matrix, and a reevaluation of the flutter frequency is necessary. This is
accomplished as follows,

Consider the eigensystem for the current design:
(n + (] - axplal = o (3.3.19)

Since the design, the Mach number and the airstream velocity are fixed,
the eigenvalues of the eigensystem (3. 3. 19) will ultimately depend on the frequency

chosen in the definition of k. Let this frequency be r. Then,

k ;b (3. 3. 20)
FO
Differentiating eq. (3.3.19) with respect to r, we obtain
d[A _ @ > = A (_1_._(1_ Q 9 o
(~ler LN {q}t+ (m+ (A] u[}\]){dr} 0 (3. 3. 21)

Upon pre~multiplying by {B}T the second term on the left hand side of (3. 3. 21)

vanishes and




o)t 484G - Y el

But,
d dk d
ar A = g al?]
Thus,
b £ T d -
—{p}t =—ralfa} . dg . . do
do VFO dk lw 35 2(1+ig) o

d =ik = R)
g {pV i{a} w
From the above equation,

do, 2 dow
Relar! =~ 73 ar

Combining egs. (3. 3. 25) and (3. 3. 22), we finally obtain

3 )" Sranal

- Re = —
r 2V | i}

To first order approximation we can write

dw
= (E-F )

o T 2 d
1 rr1

Now, if we enforce point 2 to be the matched point, we have

il N
Thus,
1 Sy P, = W, ~F oy
dr Sl T T
i
1
or in general,
y oy, 28
= idr ri
ri+l : du,‘
1 - —
ar 'r,
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Relation (3. 3. 30) can be used iteratively until w; =¥ and hence the

' matching is completed.
For numerical purposes, the matching was considered completed when

(k*-k) < 0. 01k,

2.6 Updating of Reduced Frequency

See discussion of sub-step (2. 5).

2,7 Calculation of Design Variable Derivatives

This sub-step calculates Bu;/ami and ag/ami using formulas (3. 2. 12)
and (3. 2. 13) respectively.

2.8 Design Variable Resizing

The optimization algorithm as described in Chapter 2 is used. The
constraint condition is g = 0 and Bg/ami derivatives calculated in the last sub-

step are used.

2.9 Updating of Reduced-Frequency

Use the aw/'()mi derivatives and updates the flutter frequency for the new

design by means of a first-order expansion

m
u..new = u.,old ¥ jZ] (Dnl])An]J (-3, 3..31)

The new reduced frequency will be

w b
new

kncw V

"FO
3.4 NUMERICAL EXAMPLES

In this section, we present two numerical examples used for debugging as

well as to check both the validity of the concepts discussed earlier and the

A- 49
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stability of the algorithm when applied to relatively complex structures.
The first example is a 27-design variable rectangular wing, with
incompressible strip~theory aerodynamics (Ref. 44). The initial design is
similar to the one used by Rudisill and Bhatia (Ref. 32).
The second example consists of a swept wing modeled with 90 design

variables and three-dimensional subsonic compressible aerodynamics.

e

All the computational work has been done on an IBM 360/67.

3.4.1 27-Design Variable Rectangular Wings

(a) Dimensions — Fig. 20
(b)  Design variable definition — Fig. 21
(¢)  Finite-element sub-division — Fig. 22
GRS
E = 10.5x10 psi
v = 0,3 3
-3 lb-sec e :
iy 2 0. 262x10 S speicific mass of structural material
in
n = 72 nodal degrees of freedom

L The inertia and stiffness matrices were generated by a standard finite-
element program, Details concerning element geometry, displacement functions
and strain energy functionals are described in Refs. 45-47.

(d)  Aerodynamic matrix

As mentioned earlier, incompressible strip-theory aerodynamics was used
for this first example.

Consider a cross section of the wing as shown in Fig. 23. The coordinates

a(x) and z(x) are respectively torsion and bending displacements at a station X

measured from the root of the wing.
Now, we represent z(x) and o(X) as a superposition of given uncoupled

bending and torsion modes. Thus,
Z(X) '/,]f](x) ‘ ng:‘,(x) R zéfﬁ(x)

¥ X) (ylf’:q(x\ ¢ uzfi‘g(x) . NG (Yl‘fi,‘l‘ (3.4, 1)
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Using the above representation, the aerodynamic matrix can be written .

M

(63

Ck)

and Theodersen's function C (k)

! as (Ref. 44)
A = mp bS[(; £ @, = 1,2, ... 4+5) (3. 4. 2)
ij a ij ij ! ’ -
where
L
i f f.(x)f. (x)dx 3.4.3
i [ 9 () (3. 4. 3)
0
Lh
G_i = if i is a bending mode and j is a bending
1‘
mode
1

Gij La—(§+ a)Lh if i is a bending mode and j is a torsion

mode
3 i l* )1 if i is a torsion mode and j is a bending
ij 5 (2 H a) ‘h i 18 a torsi ode a j 1s a bending

mode
, 1 1 L h2 W L ; 3
Gij = b[Ma_(‘Z + a)(2 + ]‘Gr)‘(g a) I,h] — if i is a torsion mode and j is

a torsion mode

I‘h’ L and M can be expressed further in terms of reduced frequency
! «

(Ref. 44),

1-:111_(‘(14) (3. 4. 4)
1 1 1.2

5= ”F)“ ~2(‘(k)]—2(r» C(k) (8. 4.5)
g 3.4.6
3" l(k (3. 4. 6)

degree polynomials in k (Ref, 47

2
=1

k

5ik-0, 375

9
<

2k -2, 5ik-0, 375

Finally, we represent the Theodorsen's function C (k) as a ratio of second-




Relation (3. 4. 7) enables us to represent [A] and d[A]/dk in an analytic
form,

In the present example, the elastic axis coincides with the axis of the
center of mass, so the free vibration modes will be uncoupled and can be directly
used in eqs. (3.4.1). The only concern is to eliminate in-plane and breathing
modes which are easily recognized. The integrationsinformula (3. 4. 3) were done
numerically using the trapeziodal rule and are represented in the block-diagram
by sub-step 1. 3.

(e) Results

The flutter speed determination and the following optimization procedure

were calculated for the constants shown below:

2 =9 number of free-vibration modes*

2
-7 1b. sec L
P 1. 0x10 ———ie— specific mass of air
; in

From the V-g analysis we obtain

<
il

-
FO 715 fps

k 76

i
e
o

The optimization results are given below,

*The 4th mode is neither a bending nor a torsional one.




Table 3. Optimization Results*

L
t 173 (£
Design B o £ min
i Variables Type Measure in or in in or in” in or in~
1 Q T 0. 040 0.011 0.010
3 2 Q T 0. 040 0. 011 0. 010
3 Q P 0. 040 0.012 0.010
4 Q 2 0. 040 0.012 0. 010
5 Q T 0. 040 0.010 0. 010
6 Q Iy 0. 040 0. 010 0. 010
7 Q 10 0. 080 0.010 0. 010
8 Q i 0. 080 0. 050 0.010
9 Q T 0. 080 0. 022 0.010
10 Q Rl 0. 080 0. 019 0. 010
11 Q T 0. 080 0. 025 0. 010
12 Q 1% 0. 080 0. 013 0. 010
13 R A 2. 000 0.512 0. 500
14 R A 2. 000 0.500 0. 500
15 R A 2. 000 0. 500 0. 500
16 R A 2. 000 0.512 0. 500
17 R A 2. 000 0.500 0. 500
18 R A 2,000 0.514 0. 500
19 R A 2. 000 0.514 0. 500
20 R A 2,000 0. 500 0. 500
21 R A 2. 000 0. 500 0. 500
22 R A 2. 000 0. 591 0. 500
23 R A 2. 000 0. 591 0.500
24 R A 2. 000 0. 500 0. 500
25 Q i 0. 040 0. 040 0. 040
26 Q 1 0. 040 0. 040 0. 040
| 27 Q T 0. 040 0. 010 0. 040

*@ stands for quadrangular membrane, R for axial rod, T for thickness and

A for cross sectional area,




Sequence (r0.0, 8.0, 6,0, 4,0, 2,0, 1,0, 0.6, 0.4, 0.2-25, 0]
Number of iterations = 25

M. = 195 1b
i

CPU time per iteration = 0, 088 min/iter.

Figures 24 and 25 show the V-g diagram at several stages of the
redesigning process and reveal that the present approach is very stable in the
sense of keeping the flutter speed unchanged. The optimization was interrupted
after 25 iterations because the critical mode became tangent (Fig. 25). Figure
26 shows the optimization history diagram and it is seen that after ten iterations

the mass of the structure was already close to its final value.

3.4.2 90-Design Variable Swept Wings

(a) Dimensions — Fig. 27
(by  Design variable definition — Fig. 28
(c) Finite-element sub-division

The finite-element sub-division coincides with the design variables,

6
E 10. 0x10 psi

€y
-3 lb-sec”
p, ~ 0.262x10 —t—)—%
m
v 0.3

n 108 nodal degrees of freedom

A mass of 378 1b. was evenly distributed among the last six nodes
on the tip of the wing as shown in Fig. 28,

(d) Aerodynamic matrix

In contrast to the previous example, three-dimensional subsonic com-
pressible aerodynamic theory was used here. The particular computational
technique employed was the doublet-lattice method (Ref. 48). In order to obtain

the aerodynamic matrix [A], the output matrix [D] of the program has to be

A -H4




’ scaled as shown:

1 31 :
[A] = 3,80 E (D] (3. 4. 8)

where
S = planform area of the wing
b = reference length

o specific mass of air

Furthermore, the elements of [D] were fitted at the flutter Mach number

by a fourth degree polynomial using 5 distinct values of k. Thus,

D] = [, 1yl Ik + [ I + [ Ik (3.4.9)
or

[A —Sb31— 41 +-+k'+k2 3.4.10

= 3PS (Y] kY KTV ) (3. 4. 10)

and

d 1 3 2 1 .

ae (Al = 5P, Sb (- E[Wl]—-k2[w2]+l\+4]-+ K[V, 1) (3.4.11)

Further details on the generation of the [D] matrix are found in Refs.
(45-47.)

(e) Results
The initial design is given in Table 4. The flutter speed determination

and the following optimization results were calculated for the constants shown

below:
y) 11 number of free vibration assumed modes
- 2
P 2 Oxl()_‘ l—b;sit;—(— specific mass of air
‘ :

in
The fluttering condition is

' FO 915 fps




mn 0, 34
k = 0.34

Table 4. Definition of Initial Design and Minimum-Gage Conditions.

Q, R, T and A are defined in Table 3.

: | | SR
Design i & min
Variable Type Measure in or in~ in or in~
1k 0, 0%0 0, 020
Q T
42 0, O%6 0. 020
43 0. 250 0. 250 0, 050
R A
78 0. 250 0. 050
79 0, 080 0, 080
Q P
90 0, 080 0, 0830

The optimum structure had all the design variables at their minimum

values with the exception of those listed below:

Table 5. Final Design. Design Variables Which Are Not at Their Minimum

Values,

Design : SO
Variables in or in”~
==

o 0. 0231

L 0. 20LS

15 0, 0228

23 0, 2032

A5 (. 05506




Table 5. (continued)

x t
Design f
Variables in or in
25 0. 0556
26 0.1769
27 0.2314
28 0. 0405
30 0. 0550

Sequence = [10.0, 8.0, 6.0, 4.0, 2,0, 1.0-25. 0]

Mi = 21301b (excluding tip mass)

Mf = 894 1b (excluding tip mass)

Number of iteration = 41

CPU time per iteration = 0, 368 (Tm_ir_g)

iter

Figures 29-32 show V-~g diagrams of the initial design for different Mach
numbers while Fig. 33 is the matching diagram from which the consistent flutter
speed and Mach number are obtained. The V-g diagrams of the initial, inter-
mediate and final designs are shown in Fig, 34. Again, it is seen that the method
is very stable and the flutter speed of the final design is practically the same as
of the initial. The optimization was interrupted after 41 iterations when the
slope of the critical branch became negative. The optimization history is shown
in Fig. 35 and it is seen that most of the mass reduction has been achieved after

approximately 15 iterations.
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4, THE VIABILITY OF MODAL ANALYSIS FOR STATIC

OPTIMIZATION PROBLEMS

4.1 REDUCTION OF THE NUMBER OF DEGREES OF FREEDOM BY MODAL

DECOMPOSITION

As already pointed out, structural optimization of practical structures
requires iterative techniques and with the present state-of-the-art the number
of analysis is likely to vary between ten and one hundred. For most static
problems, an analysis step is equivalent to the solution of a linear system with
order equal to the number of degrees of freedom of the structural model.

On the other hand, the number of degrees of freedom (understood as
generalized displacements at nodal points) may become relatively large for complex
strucutres and consequently the computational effort spent in each analysis may
rapidly reach very high levels. Based on these considerations, an optimization
problem of a large scale structure may become fantastically time consuming and
usually that will be a limiting factor.

One way of trying to overcome this problem is to perform an "approximate"
analysis with the aim of saving computational effort. Storaasli and Sobieszczanski
(Ref. 49) considered the response of the modified structure as given by a first
order Taylor approximation. Bhatia (Ref. 50) extended the concept and also
studied dynamical problems. Fox and Miura (Ref. 51) considered the response of
a current design as given by a linear superposition of some basic responses
(obtained as responses to some basic designs) with the aim of reducing the order
of the linear system. Noor and Lowder (Ref. 52) proposed to use response
derivatives as generalized coordinates for the reduced basis and present some
comparative results,

In the present Chapter, we investigate the viability of using modal analysis
with the objective of reducing the order of the linear system and comparing the
results with those obtained using standard finite-element analysis. It should be
noted that the use of modal decomposition as a mean for static analysis was

standard before digitial computers made possible the use of finite-element

AGR




techniques and hence, the idea is not new in itself.
Consider a structure with linear behavior, subjected to a given set of

loads. The displacements are obtained from the matrix equation
Ki{q} = {F} (4.1.1)

where

{q} - is a vector of generalized displacements
{F} = is a vector of applied generalized forces

[K] = stiffness matrix

As is usual in finite-element analysis, linear and rotational displacements
measured at pre-assigned points over the structure, are defined as degrees of

freedom and let their number be n.

Consider now a linear transformation of variables given by
{q} = i (4.1.2)

where [T] is the transformation matrix.

Substituting {q} from eq. (4.1.2) into eq. (4.1.1) yields
K[THq} = {F} (4.1.3)

Premultiplying eq. (4.1.3) by [T] I‘. we obtain

ITIT[K][T]{ o} [T]T{ F}

or

[E]{w} - {3} (4. 1. 4
where

= B

(K] = 4T] [K][T]
and

T
5 = (my{F}
The columns of matrix [T] are recognized to be the assumed modes

and [T] is also called modal matrix. The advantage of such a transformation

of variables is that if [T] isa nxi matrix with {<n, we are in fact reducing
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the order of our system.

Let us partition the vector {w} into two parts. {('OR} represents the

first £ components of {(p} and {‘DT} the remaining n-4 components.

{g = {é?{} (4. 1. 5)
T

Substituting representation (4. 1. 5) into eq. (4. 1. 4) yields

|
KRR : KRt R I
—-—':'—_— Tl i e (4. 1. 6)

Kmr 1 Bpr @ “r
From eq. (4. 1.6) we can write
(KppllophiKpdlogt = {0}

or
e = gk

{qg = [Kgg! bR}—[th [hRTﬂmg 4.1.7)

If we assume that the components of {mT} are small enough so that the
second term of the r, h.s. of (4. 1. 7) can be neglected in the presence of the other,

{wR} can be approximated by
e 1
log! = Kggl o] (4. 1. 8)

On the other hand, if the modes are suitably chosen, it is possible to
the actual displacements of a modified structure be approximated by the same
modes used to approximate the actual displacements of the initial structure and
hence, all the analysis would be made on matrices of order gx4. This

corresponds to say that for the modified structure, {mT} continues to be small

RR] K R’I‘]

A major problem is to generate a suitable modal matrix in an efficient

enough so that [}~(- {wT} can be neglected.

way. This problem has not been solved yet and calls for further research.
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4,2 NUMERICAL EXAMPLE

In order to access the applicability of the procedure outlined in Section
4,1 and to obtain an estimate of the error involved in using an approximate
analysis, a numerical example was carried out. The example is identical to the
one used in 2, 5-c and hence will not be restated here.

The assumed modes were chosen as the eigenvectors of the eigensystem
KNHx} = Alx} (4.2.1)

There is no special justification for choosing these vectors as assumed
modes, though their orthogonality property in relation to the matrix [K]
simplifies the computation of the respective components. In general, however,
this approach is not attractive since it requires the solution of an eigensystem of
the same order as of the initial problem and that may involve a very large
computational effort,

The solution of the problem using assumed modes proceeded as follows:

a) Solution of the eigensystem [K]{x} Ax} and construction of the

transformation matrix (T] using these eigenvectors. Note that [K]
is in the original 72x72 nodal system.

by Generation of the n+n transformed stiffness matrix and the nx1

transformed force vector

(K] = [T]  [K](T] @, 2. 2)

E
{F} .

o
w
~

{3} = M
Note that since [T] is obtained using eigenvectors, [K] is
diagonal and the triple matrix product is not actually carried out.

¢) Solution of the static problem in the transformed system
i .50
{of = K13} (4. 2. 4)

P IR i ST F .
and reordering of the components of 17 in decreasing order of

absolute values,




d) Reduction of the order of the system from 72 to 15 by retaining the
15 components of {w} in decreasing order of absolute values.

e) Optimization using the algorithm of Chapter 2,
The optimization results are as follows:

Sequence = [10.0, 8.0, 6.0, 4.0, 2,0, 1.0-25, 0]
Number of iterations = 22

Mi 195 1b

1l

M

£ 69 1b

CPU time per iteration = 0. 148 min, /iter.

The final design has all the variables at their minimum thickness with the

following expcetions:

t(1) = 0.163 in
t(8 = 0.411in
t(9) = 0.087 in
t(10) = 0.163 in
t(11) = 0.017 in
t(12) = 0.039

error - 4, 37
The above error is in the sense of approximate compliance in relation to

exact compliance.
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g Table 6. First Fifteen Modal Coordinates in Order of Decreasing Absolute
Values
! k @ (in)
| 1 9. 6055
i 2 -0. 6534
3 0. 1813
4 -0. 0690
5 -0. 0201
6 0.0172
7 -0, 0103
8 -0. 0052
9 0. 0046
10 -0. 0015
11 -0. 0011
12 -0. 0005
13 0. 0004
14 -0. 0004
15 0. 0003

Table 7. Compliances Using Full and Reduced Analysis

Reduced Space Analysis Full Space Analysis
(Ib. in) (1b. in)
i 3571. 1 3571. 5
design
fine
e 3571. 4 3727, 1
design
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5. CONCLUSION

5.1 DISCUSSION OF THE RESULTS

5.1.1 Optimization Algorithm

The optimization algorithm developed in Chapter 2 has shown the following

characteristics:

a)

b)

)

d)

Very high stability. The constraint was always satisfied at the optimum
within less than 17.

The main characteristic associated with optimality criteria, namely,
the fact that the computation effort does not increase very sharply
increasing the number of design variables, was preserved as seen

by comparing both flutter optimizations.

In all the examples (except in the 90-design variable wing) 807 of the
total weight reduction was achieved in less than ten iterations. For

the 90-design variable wing, this figure was reached after 14 iterations.
Except for the flutter optimization problems, all final structures
satisfied Kuhn-Tucker conditions although the algorithm does not
enforce them. In the case of flutter optimization, the procedure was
terminated due to abnormalities in the V-g diagram rather than

satisfaction of optimality conditions.

On the other hand, the relatively slow convergence near the final design

is mainly due to an over-conservative treatment of the minimum-gage conditions

and that should be improved.

Jd.

.2 Flutter Optimization

The utilization of g - 0 as a constraint for flutter optimization revealed:

a)

b)

C)

A new expression for the flutter optimality condition as given in

eq. (3.2.22) and shown in Fig, 13.

Very high stability in the constrained flutter speed,

Relatively low computation time considering the high number of modes

and design variables used,
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5.1.3 Assumed Modes for Static Optimization

With respect to this problem, the relatively low error of less than 57 in
comparing the approxima te analysis with the full finite-element analysis, indicate

that the method may be attractive. However, the overall efficiency was low.

5.2 SUMMARY

Although the principal subject of this dissertation is structural optimization
under a flutter constraint, two other concepts have also been studied with very
encouraging results.

With regard to the flutter optimization problem, this work advances the
idea of using as a constraint the condition g = 0 rather than using directly
VF = VFO' The advantage of this approach is that it eliminates the need to
calculate either an exact current flutter speed, which is time consuming, or an
approximate flutter speed, which after several iterations may introduce
appreciable error. In this respect, the results of having the flutter speed within
1% of the specified value exceeded all expections., Another advantage of this
approach is that it is simpler to calculate vg than ‘:'\‘F specially when
compressible aerodynamics is used.

It is strongly believed that this is a sound way to handle flutter optimization
problems, no matter what specific optimization algorithm is being used. This
conclusion should be equally valid for multiple constraints.

Because there is a possibility for other modes to become flutter critical
or even for the intial flutter mode to produce instability at a lower speed as the
redesign progresses, there is the need to perform an accurate reanalysis from
time to time, to make sure that no abnormality is occurring. In the present
work, this has been done by stopping the redesign at a given number of iteration
cycles, performing a V-g analysis and, finally, plotting the results by hand.

A future improvement in flutter optimization would be to improve the software
so that at a given number of iterations, the redesigning would stop and a V- g plot

for the current structure would be performed and displayved on a CRT scope.




This would enable the investigator to decide, almost in real time, whether to
continue the redesigning process or not. In other words, the process would be
interactive to a large degree.

A second concept developed during this research was the idea of a hybrid
algorithm, which aims to combine the monotomic weight-decrease property of the
"descent methods' with the simplicity of redesigning by means of recursion
formulas of the "optimality criteria’ methods. This was accomplished by using
a parameter-dependent recursion formula, with the parameter being constantly
readjusted in order to obtain this monotomic weight decrease.

Finally, the use of assumed modes for the analysis of static problems is
discussed in light of optimization and the necessity of repeating the analysis step
several times. The relatively low error of this approximate approach suggests

that the concept is viable and further research in this area should prove fruitful.
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APPENDIX A

We know, by definition, that

m
o T %h
By IZ; <8mi>mi

m
oh 2
2 "'Z%n—,’ e

For simplicity of notation, let (Bh/ami) 'ai. Hence

>
Al E a.m,
/2 4 ¥ LX
i=1
But
M m_ +m_ + m
1 2 m
Thus
2 2 2
Mg m_+m_+ ..., +m a m+am_+...4a m
'(2 ( 1 2 m)(l 12 2 m m
2.2 2 .2 P 2 2 2 2
Mg am +am-+ .., ta m +m m_(a_+a )+m_m_(a_+a_)4
Wy 11 4™y T e e L M e L D B
2 2
LS 35 | m (a L
-1 m m-1 m
On the other hand
2 2.9 2 2 2 2
) am_+a.m t +a m "..’.((I g _m It 48 . a. . m._In 4
! 122 m m R/ A o a (
+ a 1 m m )

(A. 6)

(A, 7)




From eq. (A.7) and eq. (A.8) we have

2
a_)

2
Mﬁz_ﬁl ek m-1 ‘m

(a

2 2
1m2(:11—112) +m1m3(a1-a3) e

m—lmm
(A. 9)

2
Since all mi are non-negative, we conclude that Mﬁo—/il = 0 if and only

if all the derivatives have the same value.
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i APPENDIX B

MINIMUM-GAGE OPTIMALITY CONDITION

Consider that some design variable is at its minimum value,

K., = (X,
1 (l

)

min
If we further assume the linear relation rni = X_ 4. we have that
1 |

m, = (m,
i i

) (B. 1)

min

Let @ be the value of the constraint derivatives with respect to those
variables that are not at their minimum value. We know that a necessary condition
for optimality is to have this value equal for all those variables.

Consider, now, a small change in Ami. From eq. (B. 1) it is required
that Ami > 0. There are two possibilities, = ~0 or @< 0. (@ -0 isa

pathological case which we do not consider)

i) ®>0

Let h = 0 be the constraint equation. We can write,

oh !

th = 2—am +0 ) am, (B. 2)

om, i 4 j
1 JEL
Here I is the set of non-minimum-gage variables. But ah = 0 in order to meet
the constraint condition, Thus,
oh )
= 2 _mj

i jel”
Am

(B. 3)

or

(B. 4)
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Recalling that ® >0 and Ami - 0 we obtain from eq. (B.4) that a mass

reduction is not possible if and only if

e —aahn (B. 5)
1
i) ©<0

Using the same procedure as in (i) we obtain,

_ th
B Z ey
- - lel (B. 6)

om.
i

@

Now, © <0 and Lm, > 0. In view of eq. (B.6) the condition for
impossibility in mass reduction is
~_oh s
O <o (B. )
i
The optimality condition (B.5) and (B. 7) can be used to check the final
design for optimality. If the final design is not optimum in terms of these

conditions and additional mass decrease is desired, a small increase in the

critical variable may be given and the algorithm may be restarted.
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Fig. 1. Fixed-free rod in axial {ree-vibration
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Fig. 2. Plot of y ratio as a function of the non-dimensional frequency g for
the fixed-free rod.
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Comparison between the cross sectional area distribution of the optimum
rod as given by a ten-clement approximation using the hybrid algorithm
and Turner's analytic solution (the analytic solution is given by the

smooth line),




Fig. 5. Fixed-free bending torsion box in free-vibration.

Fig. 7. Fixed-free bending torsion box with an applied load,
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Fig. 11. V-g diagram for an aeroelastic system,
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Fig. 12, Plot of critical speeds versus Mach number showing the consistent
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Fig. 13. Plot of Ui for each design variable i on a complex plane when

optimality condition is satisfied.
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Fig. 14. V-gdiagram. Regular type.
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Fig. 15, V-gdiagram. Tangent type.
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Fig. 22. 27-design variable rectangular wing. Finite element sub-division.
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Fig. 23. Cross section of rectangular wing at station x, showing vertical

displacement and rotational degrees of freedom.
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ABSTRACT

This study investigates the optimal design of simple structures
subjected to dynamic loads, with constraints on the structures' re-
sponses, Previous studies have mainly dealt with static loads, and
their methodology has been extended here to time dependent cases. The
contributions of this work are in the formulation and satisfaction of
the complicated dynamic constraints and in the insights gained into the
nature of these problems.

Three separate analyses search for the optimal designof : (1) one-
dimensional structures excited by harmonically oscillating loads, (2)
similar structures excited by white noise and (3) a wing in the pre-
sence of continuous atmospheric turbulence. The first problem has con-
straints on the maximum allowable stress while the last two place bounds
on the probability of failure of the structure. 1In all of these prob-
lems, approximations are made in order to replace the time parameter
with a frequency parameter. For the first, this involves the simple
assumption that the steady state response is the area of interest. In
the remaining cases, power spectral techniques are employed to find the
root mean square values of the responses. The primary means of search
for the optimal solutions is through the use of computer algorithms that
combine finite element methods with optimization techniques based on

mathematical programming.
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A general conclusion is that the inertial loads for these dynamic
problems can result in optimal structures that are radically different
from those obtained for structures loaded statically by forces of com-
parable magnitude. In the case of the harmonically loaded structure,
it is found that the design space can be disjoint. This makes the task
of finding the global optimum difficult for even the simplest of prob-
lems.

An interesting feature of the optimal designs for cantilevered
structures with a white noise excitation is that there is a tendency
for some mass to be concentrated near the tip. The inertial forces
from this mass tend to relieve the inboard stress.

The wing in a turbulent gust environment demonstrates a possible
practical application of the methods developed in the study. The model
used contains a fuselage and nacelle and permits rigid body plunging as
well as transverse bending. It is felt that the preliminary techniques
developed are of practical value towards the design of aircraft that

have fatigue life as an important design factor.
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CHAPTER I

INTRODUCTION

A. PROBLEM MOTIVATION

The goal of the field of structural optimization can be succinctly

described as one of finding the structure of least weight that satis-
fies certain specified constraints., The combination of more efficient
algorithms with modern computers has expanded the capabilities of this
field rapidly and to the extent that techniques have been developed
that routinely optimize practical, statically loaded structures. Sim-
ilar results for dynamically loaded structures have lagged behind due
to the complications introduced by inertial loads and the time param-
eter. This thesis attempts a partial remedy of this situation by in-
vestigating a series of dynamic response problems in order to find the
least weight structure that can withstand the dynamic loads.

The design of many engineering structures is influenced by the
dynamic loads that act on the structure so that the search for opti-
mal structures is a legitimate exercise. Landing impacts, gust ex-
citation, rotating machinery and acoustic noise create loads on aero-
nautical vehicles that are dynamic in nature and that are of primary
importance in the design of aircraft substructures. Similarly, for

astronautical vehicles, rocket exhausts and atmospheric turbulence




are important design loads. These aerospace applications were the
ones that were kept in mind while the methods of analysis used in this
thesis were developed. However, other disciplines could benefit from
the methods presented here. Specifically, for architectural struc-
tures, earthquakes and winds create loads that are dynamic in nature,
and these loads are playing an increasingly important role in building
design. Further examples could be drawn from naval architecture and
from mechanical design.

Many of the examples mentioned above include loads that are sto-
chastic, or random, in nature. Coupled with the fact that a large
proportion of in-service failure of metal structures are due to fa-
tigue, this provides a powerful motivation for studying the optimal
design of structures under stochastic loading conditions.

While no claim is made as to the direct applicability of the
techniques developed in this work to practical problems in engineering
design, techniques are developed and results achieved that could be a
useful starting point for the more practical problems. The usefulness
is enhanced by the use of constraints in the examples worked that are
of practical interest in actual designs. For instance, constraints
are placed on the maximum stress in the structure or on the fatigue
life in the case of random loads.

Due to the paucity of studies dealing with the optimization of
dynamically loaded structures, it is felt that this work makes sig-
nificant contributions to the basic understanding of these types of

problems. The inertial loads present in these problems can have an
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important effect on the loads a structure is required to withstand.
The results obtained show that the optimal structure can be radically

different from one obtained based on static strength considerations.

B. RELATED WORK

This section presents a survey of studies that have been done
that relate to the present one, pointing out their characteristics
and how they compare with the present study. The thesis uses elements
from a number of disciplines, but the unique portion of this work is
the use of structural optimization and it is in this area that the
survey will concern itself. Even in this specialized field, it would
be impractical to give a comprehensive survey; instead, only the most
relevant works are described. A more general view of the structural
optimization field can be obtained from a survey article by Sheu and
Prager (Ref. 1) while a text by Fox (Ref. 2) serves as an excellent
introduction to the computational aspects of optimal design. Two re-
cent conferences (Ref. % and Ref. !) provide "state of the art” de~
scriptions of various portions of the field.

Structural optimization with constraints on the dynamic behavior
is a more specific area that includes the present study. A survey by
Pierson (Ref. 5) on this subject divided it further into two subdivi-
sions: (1) problems with eigenvalue constraints, and (i) problems
with constraints on the response. The present investigation clearly
falls into the latter category, but problems of the first kind played

an important role in the development of the methodology used in this




report. In particular, references © through 10 are works that place

constraints on the natural frequency or the flutter speed of the sys-
tems to be optimized and that provided a basis from which to attack
the response problem. In fact, as Pierson poiated out, one of the
dynamic response problems solved by Icerman (Ref. 11) has results
identical to a problem with a natural frequency constraint that was
first solved by Turner (Ref. 9).

It is to be understood that the five references cited above for
the eigenvalue constraint studies are in no way inclusive of the con-
tributions made to these problems. An attempt is made below to in-
clude all the significant studies that have been conducted with con-
straints on dynamic response quantities. These papers are a small,
but rapidly increasing, part of the literature.

The relative youth of the field presents difficulties when one
tries to classify the types of problems that have been studied. The
ideal procedure would be to describe the problem that was studied, the
method of solution and a discussion of results. Unfortunately, and
unlike the more developed field of optimization with static loads,
each paper treats a unique problem, usually in a unique way and, of
course, obtains a unique result. Therefore, only the features of the
studies that are relevant to the present work will be stressed in what
follows.

The youthfulness of the field is indicated by the fact that the
earliest papers of this type known to the author were published in

1965, This work, published by Brach in two papers (Ref, 12 and Ref, 1

)




found approximate optimal solutions for some one-dimensional struc~
tures loaded by impulsive or step forces. The problem formulation
for these studies was in terms of finding the structure of fixed
weight that minimized a specified deflection. This is a transforma-
tion of the formulation used in this work: finding the structure of
least weight with a constraint on the size of the maximum deflection.
Fox and Kapoor (Ref. 1%) published another "early" work that de-
veloped a mathematical programming algorithm for finding the optimal
design of truss-frame structures subjected to a half-cycle sine pulse.
The response was estimated by using shock spectral techniques that
gave conservative upper bound limits on the deflection and stress. A
previous work by Fox and Kapoor (Ref. 15) made the important contri-
bution of developing a simple technique for finding the derivatives of
the eigenvalues and eigenvectors with respect to the system parameters.
Levy and Wolf (Ref. 10 and Ref. 17) provide a means of finding the
fully stressed design for one-dimensional structures under dynamic
loading. A fully stressed design is one where all structural elements
exactly satisfy the stress constraints imposed on them. The motivation
for their study comes from the fact that for determinate, statically
loaded structures with constraints on the stress, the fully stressed
design is optimal. For the impulsive loading conditions and the fi-
nite element representations used, the solutions shown in these ref-
erences are found to be optimal. However, fully stressed designs are
usually not optimal in cases where more general dynamic loads are con-

sidered.
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A series of related papers by Venkayya, et al. (Ref. 18 and Ref.

19) describes an optimality criterion that is used to find approximate
optimal solutions for various types of dynamic loading. The criterion
was developed specifically for problems with constraints on the natural
frequency, so that it is exact for that case. Wnen more general dy-
namic conditions are considered, the results obtained have to be con-
sidered as preliminary, qualitative designs.

A specific area of practical interest that can benefit from the
methods of optimization with dynamic constraints is that of the opti-
mal design of structures to withstand earthquake loads. The 5th World
Conference on Earthquake Engineering held in Rome in June, 1973 in-
cluded four short papers on this topic. One of these, by Solnes and
Holst (Ref. 20), replaced the dynamic load by an equivalent static
load, so that it is not a dynamic response problem, strictly speaking.
However, inertial effects are artificially included in the statically
equivalent load. Another paper from the conference, by Nigam and
Narayanan (Ref. 21), considered the excitation to be either a speci-
fied acceleration or a probabilistic acceleration with a given power
spectrum. The techniques employed in the paper and in another paper
by Nigam (Ref. i) to deal with the probabilistic nature of the ex-
citation come closest to the techniques employed in Chapters IV and
V ot the present work to treat similar loadings. Another work of
optimization for earthquake type of loads is given by Kato, et al,

Ret. .%9). The loads in this case are approximated by shock spectra

in a manner similar to that of Ref. 1%, The diversity of models and




techniques used to study the optimization problem for civil engineer-
ing structures indicates that it is a fertile ground for further re-
search and systemization.

A study that is more general in scope, but that has application
to the earthquake problem, is contained in a recent report by Cassis
(Ref. 24). 1In this case, the load is modelled as a half-cycle sine

pulse and the response is obtained by performing a time integration

e e — o

of the equations of motion. The constraints considered include inte-
grals of the time history of the response. This is one of the few
papers dealing with dynamic response that retain the time parameter

in an explicit form. It is also the first report known to the author
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that includes mention of the fact that the feasible design space can
be disjoint for certain types of dynamic excitations. This feature
of such problems is one of the more exciting. The disjoint design
space receives extensive treatment in Chapter III of this report.
Chapter 1I1 deals with the optimization of structures excited by

harmonically varying loads. 1In one sense, this is the simplest of

the dynamic response problems since the time parameter can be removed
by assumiqg that the steady state response is the only response of
interest. By the use of energy methods, Icerman (Ref. 11) was able

to develop an optimality criterion for one-dimensional structures ex-
cited by a point load with an equality constraint on the displacement
directly under the load. In order to develop the optimality criterion,
it was necessary to add the further constraint that the excitation fre-

quency be less than the first natural frequency of the structure. Plaut




(Ref. 9) made a similar investigation but allowed the loading to be
more general. While several examples were analyzed, and their opti-
mality criteria obtained, no explicit solutions were shown in this

second studv. Mroz (Ref. () conducted a mathematically more rigor-

ous study, which replaced the displacement constraints by one on the

dynamic compliance of the structure. This is delined as the integral,
over the entire structure, of the product of the magnitude of the load
times the magnitude of the displacement under it. Despite the successes

reported in these studies, the author knows of no effort that was made

to expand on the results. An obvious, although difficult, extension
would be to find an energy method that allowed the sinusoidal excita-
tion to be applied at a frequency greater than the structures' first

natural frequency.

Finally, a series of papers that deal with static loads should be

mentioned because of their relevance to the problem investigated in
Chapters IV and V. They include some relatively early papers that
sought optimal structures with constraints on their reliability (Ref.

and Ref. . Moses and Kinser (Ref. '¢) extended these results

and used mathematical programming to find the optima. Araslanov (Ref.

developed an optimality criterion that is applicable to simple

beam structures loaded statically by forces whose properties are known

only probabilistically. To do this, he defined the optimal structure
to be the one where all cross sections have the same specified proba-

bility of failure. These problems are the counterpart of the present

study in that they assume that the structure and the load distributions




are described in some probabilistic manner but the loads are assumed
independent of time. In the present work, the structural properties
are assumed to be given and the loads are constant in the space co-
ordinate but vary in a probabilistic fashion with time. Perhaps an

enterprising investigator will integrate these two problems.

C. SCOPE OF WORK

The preceding literature survey omitted a few papers that were
considered redundant or of little importance. It is quite likely that
other papers were inadvertently overlooked. However, the survey at-
tempted to demonstrate the full scope of the field of structural opti-
mization with dynamic excitation and to indicate that this scope is
still quite narrow. In addition, few of the papers cited were pub-
lished, or, if published, were known to the author when this research
began. For these reasons, the work reported on here does not build
on the results of previous investigations to any major extent but
rather attacks new problems. Of course, the tools needed for the
analyses are gathered from existing disciplines, such as structural
optimization, structural dynamics, aeroelasticity and probability.

The core of the thesis is contained in three chapters that deal
with three distinct optimization problems. In addition, a separate
chapter describes the optimization algorithm used for the majority

of the examples studied and an appendix details the finite element

models that feed into each of the three problems.




The first problem is that of the structural optimization of one-
dimensional structures excited by harmonically oscillating loads.
This is similar to the cases dealt with in references 11, &5, and [t,
but a different approach is used that provides added insight into the
problem, In particular, the constraint that the first natural fre-
quency of the optimal structure be greater than the excitation fre-
quency, which was an integral part of developing the optimality cri-
terion of the previous studies, is removed. Another change is that
the equality constraints on the displacewents or the dynamic compli-
ance are replaced by inequality constraints on the allowable stress
within the structure., It is felt that these innovations provide for
solutions of greater physical interest. Another facet of the present
formulation is that the feasible region is disjoint. This provides an
interesting theoretical result and one that may be of physical useful-
ness as well, The major drawback of this formulation is that it is no
longer possible to find an optimality criterion based on energy methods.
This forces the investigator to deal wiih each problem on an ad hoc
basis. One way of combatting this deficiency is the construction of
analytical solutions to the optimization problems by the use of con-
cepts from optimal control, This is a technique that met with some
siuccess when applied to problems with constraints only on the natural
frequencies (Ref. 9), It is introduced, with limited success, in the
present investigation because it holds the promise of providing solu-

tions that analytically detail the effects of the various parameters.




Chapter IV deals with the second problem, which is the structural
optimization of one-dimensional structures excited by white noise uni-
formly distributed along the span. A technical note by Nigam (Ref. [0)

aided in developing the means for dealing with this type of problem,
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although the specific structures and constraints of Chapter IV differ
substantially from those used by Nigam. Since the excitation is ex- |
pressed in probabilistic terms, the constraints also have to be evalu-
ated using probability theory. Much of the chapter is therefore de-

voted to defining the failure criteria used to evaluate a structure's

lifetime. The methods ultimately used were obtained from Chapter O of
a text by Lin (Ref. 31) and include both fatigue failure and first ex-
cursion failure, Further analysis in Chapter IV is devoted to out-
lining how the response quantities and their derivatives, which are
needed in the optimization procedure, are obtained through the use of
superposition of natural modes. Finally, some numerical results are
given and comments are made on points of interest,

The methods of the earlier chapters are applied in Chapter V to
a more practical problem, that of finding the optimal design for a

wing excited by continuous atmospheric turbulence. The turbulence was

represented by a power spectrum so that methods similar to those used
in Chapter IV could be used to obtain the lifetime of the structurec.

A complicating factor is the translation of the atmospheric turbulence

to the loads a wing experiences., A text by Bisplinghoff, et al.

(Ref. %2, Chap. 5), provided the theory that permitted this. This




text also supplied the example (Ref. 32, Example 10.C) that was opti-
mized, a tapered unswept wing that includes a nacelle and a fuselage
and allows rigid body plunging in addition to wing bending.

Finally, the last chapter summarizes the results obtained from

the research and indicates areas that merit further study.
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CHAPTER TI

OPTIMIZATION TECHNIQUES

This chapter provides a description of the optimization methods
that were used for the majority of the examples studied in this work.
It does not attempt to describe alternative methods or to compare them
with the methods used here. As mentioned in the introductory chapter,
references 2, 5, and i collectively provide a good survey of the cur-
rent state\of various methods.

Briefly stated, the methods used here involve coupling an inte-
rior penalty function technique with a variable metric algorithm.
These methods have been described clsewhere; in particular, Fox's text
(Ref., 2) provides an excellent general presentation. Therefore, the
present chapter gives only a brief outline of the method with emphasis
cn modifications developed during the use of the techniques.

The first section defines terms that are common to optimization
studies and are needed when the actual procedures are described in the
following sections. A final section offers some observations on the
algorithm btased on experience gained from exercising it for the prob-

lems cf the thesis.

A. CONCEPTS OF OPTIMIZATION

The general process of optimization entails searchiag for the

design that minimizes some specified function while satisfying all
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the limitations applied to the design or its response. This section
briefly outlines the concepts that put this general concept into quan-
tifiable terms. Since finite elements are used for the majority of
examples presented in this thesis, the development is presented in
terms applicable to a finite element analysis.

The first term to be defined is the objective or cost function.
This is the function (or functional) to be minimized and is desig-
nated by J . For the problems of this thesis, the cost function is
always simply the sum of the design variables.

The design variable is the second concept to be defined. This is
an element of the system that may be changed in the process of seeking
an optimum. The present study is concerned with one-dimensional thin
walled structures whose design variables are the thicknesses of indi-
vidual elements. The design variables are elements of a design vector
that is notationally represented by {t} . A related concept is that
of the design space, which is simply the space of all physically pos-
sible design variables.

Limitations on the design are termed constraints, and it is to
the formulation and satisfaction of these constraints that the bulk
of the effort of this work is directed. The constraints are desig-

nated by the requirement that

8, <= O & (& Ly 2y suey 0y of constraints) (2




where 8; is a function (explicit or implicit) of the design vari-
ables and the time and space coordinates.

The simple two-dimensional example shown in Fig. 2.1 depicts
these concepts plus some additional terms. This figure illustrates

(o)

)
~ + t- subject to
a1 2

il
5L

the problem of minimizing the cost function J

the constraints:

g = ty - 120 )
gy = &5 = 0.5 =0 s
g5 = tt, - 120 .

The circular arcs are lines along which J 1is constant. The
design vector is {tl,tC}T and the design space is given by all real
values of t1 and tg . This design space is divided into two re-
gions by the constraint conditions: the "feasible" and the "infea-
sible" region. The shaded, infeasible region is where the constraints
are not satisfied, while the unshaded portion is the feasible region
from which the optimal design must be found., While the optimal value
of t; = t, =1.0 can almost be found by inspection (or by methods of
ordinary calculus) in this case, it should be obvious that problems
involving a large number of design variables and more complicated con-
straints require considerable effort and ingenuity in the search for
the optimum.

A further concept that can be demonstrated with this two-dimen-

sional example is that of the active and the inactive constraint. At
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the optimum it is seen that constraints 8, and g5 are satisfied
as equality constraints (i.e., 8 = g5 = 0.0 ). These are therefore
designated active constraints. Constraint g, is also satisfied, but
the optimum does not lie on this constraint so that it is designated

inactive.

B. THE INTERIOR PENALTY FUNCTION

When inequality constraints are imposed on the design, penalty
function methods can be used to include the constraint in the objec-
tive function. This strategem converts the problem to one that can
utilize the powerful methods used to solve the unconstrained mini-
mization problem. Reference 2 contains a good description of these
methods, and this presentation therefore focuses on the details of
the particular penalty function used here.

An interior penalty function is one that forces the trial design
always to be in the feasible region. The specific function used in

this work was of the form:

nc
* = E E tn \gl) L \&»
i=1

The modified objective function, & , is seen to become arbi-
trarily large as the design vector approaches the constraint 84 .
As mentioned, this has the effect of forcing the trial design to be in
the feasible region. Note that the form used here requires that the

constraint be in the range S G = 1 . This is accomplished by




redefining a given constraint so that it fits within these limits
(e.g., the constraint g =ty - 1.0 of Fig. 2.1 can be cast into
the equivalent form g = 1.0 = 1.O/t1 . The r wused in equation
(0.2) is a specified scalar. The procedure followed is to minimize
¢  for a chosen value of r and then to reduce r by some factor
and repeat the optimization. In the limit as r -0 , the optimal
result for the modified problem is seen to be arbitrarily close to
the optimum of the unmodified problem.

The extended interior penalty function method is a variation

that was applied in reference 24 to a similar penalty function method.

P

Figure 2.2 depicts an optimization problem that aids in explaining

this refinement., In this diagram the function J = ax is being mini-

mized subject to the constraint that x2b (or g=1 - (b/x) 2 0

While the modified cost function ¢ = ax - r /n (1.0 - b/x) blows up

as x approaches b , the extended penalty function remains finite.

This is done by using the formulation:

nc
: B} ny, o (
“ J r Z (Ji\gl) s \
=1
where:
‘ in I\gl) gi 2 ¢
(v )
G, (8;) : .
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The new expression is a Taylor series expansion of /n (gi‘
about the point /In (gi) = ¢ . The reason for this esoteric con-
struction is that the optimization process can now deal with designs
in the infeasible region. Analysis of designs that are infeasible may
sometimes be inadvertently performed either during the one-dimensional
minimization described in the next section or by starting from an ini-
tial design that is infeasible.

The value used for ¢ was selected by recourse to an argument
similar to one used by Cassis (Ref. ) for a different penalty function.

/&

For the present penalty function, this gives ¢ = exp (- r/d « More

comments on this choice for ¢ are made at the end of this chapter.

C. THE VARIABLE METRIC METHOD

This section describes the particular mathematical programming
algorithm used for the numerical optimizations of the thesis. When
this study was in its early stages, a steepest descent algorithm was
tried. The latter technique simply computes the gradient of the ob-
jective function with respect to the design vector at the design point.
A new design is then found by taking an improving step in the direc-
tion of the gradient ('down the hill"). It is well known that the
steepest descent method has very poor convergence properties but it
was felt that it would suffice for the simple problems to be dealt
with, For designs with more than three elements, this proved not to

be the case.




' Following an investigation of various alternative algorithms, the
% variable metric method (also referred to as the Davidon-Fletcher-Powell

method, after its developers) was settled upon. Reference 2 contains
an excellent description of this method, and what follows is essen-

tially a summary of that description. The variable metric method can

be motivated by looking at a Taylor series expansion, about design

{to} , of an objective function:

o(t) = 0ley) + [V0(e )} {ax)
It i 2
% E{At} Y, <1>(to)] {at}
+ higher order terms 3 (2.4)
where:
n x 1
{ae} = {t - to}
n %1
20 )
! {VQ‘(tO)} = (T— ‘
oty T} = (¢}
l e
(Fie)) = | —— .




At the optimum {0} = {0} , so that, to terms of second order,

near the optimum
(vo(6)] = {V0(e))} + (Fo(e )] {ae} = {o} . (2.5)
Starting from {to} , the indicated correction step is:
{at} = - [Fo(e )1t (wo(e)) . (2.6)

1f this were the actual procedure used to find the new design, it

would be a second-order method. 1In practice, the [\rd] matrix is
often difficult to obtain. This is particularly true for problems
dealt with here since the constraints used are very complex.

The variable metric method was developed to circumvent this prob-
lem by finding an approximation to the [VQQ]-I matrix. The method
is outlined below and is followed by a brief justification of the al-
gorithm.

Directly from Ref. 2:

(1) Start with some initial design vector {t}] and an initial

L

positive definite matrix [H]W (typically the identity matrix). Set

)}

(2) Find {At} = uq{S}q , picking uq so as to minimize

. The q subscript refers to the iteration number.

(s}, = - ml, {ve(c,

v

¢t + xS
( q-1 q q)
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(3) Compute:

], = W+ Al + B, A - |
where, designating
Wl = el ) = (e ,
(A, = lag{s} {8301/ (s} iv] )
(8}, = - (Lom) (v} 300w (V3 }F1/(Cv3 tml (V] )
(1) Then set {s}q+1 = - [H]q+1 {v¢(tq+1)} and return to (2)

until convergence is achieved.
This rather complicated procedure can be heuristically justified

by the fact that, for a quadratic objective function with n design

variables, the procedure yields [H]n = [\7‘\:]'1 s
That is, if ¢ is of the form:
T 1 fe}
o = {t} MI{t} + (NI{t} +C
=1 P
Then: [H]n - [M] P (2.8)

A proof of this statement can be found in Ref. %3. While the
problems dealt with here are not quadratic in the design vector, the
assumption is made that, close to the optimum, the objective can be

approximated by a quadratic.




G Interpolation

A remaining task is the elaboration of the rather innocent state-
ment contained in step two of the algorithm: '"picking uq so as to
minimize @(tq + aqsq) ", This entails performing a one-dimensional
minimization at each iteration, and it proved to be the most diffi-
cult and time consuming aspect of the optimization. The procedure
finally settled on to perform this 1-D search was a rather complex
form of cubic interpolation that will be summarized here.

The goal is to find the value a* that minimizes the scalar
function ¢(t + @S) . Assume that the objective function can be

approximated by a cubic equation in @
® = a+ ba + ca2 + dod - (2.9)

I1f this approximation were exact, the minimum could be readily
found by setting the derivative of ¢ with respect to & equal to
zero and then solving for «

b

— = b+ 2ca + 3da” = O . (2.10)
XX




The choice of sign is resolved by using the additional constraint

that, at the minimum, the second derivative of the function is posi-

tive:

Q/
Le

= 2c + 6dd = 0 . s

%l\)

*
Substituting the solution for «  from equation (2.10) into

(2.11) gives:

6d
2c + —(-ciVCE-Bdb)

3d

& ” \
= t2 4gc“ -3 > 0 p (2.12)

Clearly, the positive sign must be chosen.

To complete the analysis, the values of the coefficients (a ,
b, ¢ and d ) must be obtained. The original design is the value
of the objective function at & = 0O ., The slope of the objective in
the @ direction at « = is given by {\R(tﬂ)}Tis} . Immediately

“)}T{S} . The remaining coefficients

then, a = ¢(t.) and b = {V0(t
are determined by evaluating ¢ at two different values of & . 1In
order to assure convergence, these values were picked so that the min-
imum was bracketed by the three function evaluations,

x

Once is obtained using the above procedure, a test is made to

see if it indeed is at the minimum value of ¢(t + &S) . The test

used was to compute |{V0(t + a 8)}T{s}|/(|{V(t 4 oA331TfI{S)| i S




*
If @ is exactly at the minimum, CI 1is zero. The criterion used

was that if CI was less than some specified © then the optimiza-

tion would proceed. If not, then an additional interpolation must be
* S * P

made utilizing the new values of @(t + @ S) and {Vo(t+a S)} {s]

until the criterion is satisfied.

2. Minimum Thickness Constraints

Under certain design conditions, it is possible, in the absence
of constraints on their size, that design variables may go to zero
and even take on negative values. Since these design variables cor-
respond to element thicknesses, it is physically and computationally
undesirable for this to happen. Various methods have been constructed
to deal with this problem, and this section describes a novel method

used in Chapter III of this work. It is a method that worked quite

well and is not well known in the structural optimization field.
The technique used is a transformation employed by Pierson (Ref.
10) for a continuous design variable. Modified to accept a discrete

design vector, this transformation has the form:

1 _ 1,2 o S
{el = {e i+ 5 o) . (2,153 |

The tmin is a constant minimum thickness constraint while u
is considered the new design variable, The beauty of this transfor-

mation is the {t] remains positive even if {u] inadvertently has

some negative components.




A minor difficulty arises when derivatives are needed with re-
spect to the new design vector {u} . The indicated procedure is to
use the chain rule by first taking the derivative with respect to {t}

and then use

30 3¢ ot 3% |
taeer = d— oo = 14 ot . (‘,‘ lj)
du ot du ot ‘

D. COMMENTS

Despite the analytical underpinnings described above, optimiza-
tion techniques remain very much an art. It is felt that some per-
sonal observation from one who began this work with a limited know-
ledge of optimization techniques might prove of value to others who
are in a similar situation.

First, a disclaimer must be made to the effect that the use of
the variable metric method coupled with an interior penalty function
should not be considered a recommendation of either technique as the
best method for solving a general problem. Each problem must be ap-
proached on an individual basis, with a consideration of the require-
ments and capabilities of each technique. The strong points of the
method are that it is a sophisticated gradient method that proceeds
to the optimum in a deliberate fashion. Other techniques, utilizing
feasible directions (Ref. 3L) or optimality criteria (Ref. %), are

more efficient for certain applications and may even be better suited




for the problems worked here. A further general comment is that com-
puter centers are now likely to contain optimization routines in their
libraries. The first step for anyone embarking on an optimization
problem should then be to determine if these readily available rou-
tines are adequate or can be adapted for their needs,

Given these general comments, specific perceptions gained while
exercising the programs are offered below.

The use of the - /n (gi) as a penalty function is an innovation
with respect to structural optimization problems as far as the author
knows. The more common interior penalty function is one of the form
1/gi . The log function seems to provide a smooth function with an
easily calculated derivative. It would be interesting to hear of
others' experience with different functions.

The values chosen for the penalty parameter r of equation (2.2)
have to be selected in an arbitrary manner. For this thesis, values

7

of r ranging from 10 to 10 ° were used. The reduction Tpiy = ri/lo
was always used until the minimum r was reached.

Texts on this method advocate iterating on each value of r wuntil
an optimum is reached before reducing it. This seems to be an unneces-~
sarily strict requirement and an alterunative was used that reduced r
after it appeared that little improvement would be made at the present

value. This was done by specifying that if ¢ /¢

o/%q1 = 1:0/(1.0 + 10 1)

then r should be reduced by ten and the new optimization problem ini-

tiated. 1If not, iteration continued until the criterion was met, This

Ba ~




approach has the added benefit that the criterion is satisfied quickly
for large values of r and becomes increasingly more stringent as r
is reduced. For the final value of r , a convergence criterion was
employed. The criterion used was obtained from Ref. 2 and entailed

checking if

|{\7¢}T ) {w}|/e < o0.02 .

If the inequality was satisfied, the problem was considered
solved; if not, the iteration continued.

The use of the extended interior penalty function described in
Section 11.B proved to be of marginal value. The main reason for this
is that the values of ¢ were so small that the objective functions
calculated using the extended penalty function were almost always too
large to be of value in the interpolation procedure. This in turn was
due to the way in which ¢ 1is calculated. 1In order to assure that the
transition point (i.e., ¢ ) is between the minimum point and the in-
feasible region it was found necessary to use ¢ = exp (- r/i\ .
Without going into detail, it is recommended that, if the extended
penalty function is to be used, further efforts be made to obtain a
better transition point when using the log penalty function, or that
the l/gi penalty function be used coupled with a transition point
calculated by Cassis (Ref. 2L): ¢ = r/f .

A number of other "tricks" were employed in the optimization and

particularly in the one-dimensional search. However, it seems of
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little value to detail them here. The main thing to be kept in mind
is the nature of the optimization process and the mechanics involved.
Some of the calculations of the next three chapters may appear exces-

sive unless it is remembered why the optimization algorithm makes them

necessary.




CHAPTER III

HARMONIC EXCITATION

A, INTRODUCTION

Among the simplest dynamic response problems to formulate and
solve are those of one-dimensional structures excited by harmonically
oscillating loads. If only the steady state response is of interest,
the time parameter can be removed from the equations of motion by as-
suming that the structure responds at the frequency of excitation. It
was supposed, therefore, that this type of problem would be a logical
beginning to a study of structural optimization in the presence of dyv-
namic loading. The results of this chapter indicate that this suppos-
ition is essentially correct but that there are unanticipated diffi-
culties related to the fact that the feasible region is disjoint. In
order to demonstrate this difficulty, some extremely simple examples
are presented in the following paragraphs.

Consider a uniform cantilevered rod excited by a uniformly dis-

tributed sinusoidal torque. The differential equation and related

boundary conditions for this system are (Ref. %, Chap.

|
?
:




and

glx:‘} = 0 and GJ —

Here, o is the excitation frequency. The amplitude of the

steady state solution of Eq. (3.1) is
) T
gix) = — cos "l'x - 1 + tan "” L sin "? x ’ 3
GJA
where
% el dﬂe {
GJ

A graphical representation of &(L) is presented in Figure %.1.

The points to be made are that the magnitude of the deflection does not
increase monotonically with the magnitude of the excitation frequency and
that, given a specified deflection, there is not a unique value of the
excitation frequency that results in that deflection. In fact, there are
an infinite number of such excitation frequencies. This should provide
an inkling of the problems to be encountered with a harmonic excitation,
To make it more explicit, a further example is presented below that in-

volves a structural optimization problem with only two design variables.
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B. TWO DESIGN VARIABLE EXAMPLE

This section seeks the optimal design of a thin walled canti-
levered rod excited uniformly in torsion by a harmonically varying
load. 1If this system is modelled by two finite elements of equal
length, equations from Section A.l can be specialized to the n -

case to give the steady state equation of motion:

. o)

Pl i
sty Ey ¥ kg £ ’ £ s s F
2hGy | t 2t -t £ 15‘

R < & ' L F ast

The constraints considered are that the magnitude of the stress
be no greater than some specified value. From the Appendix, the stress

can be expressed as:

The motivation for representing the structure by two design vari-
ables is that it is possible to depict the results graphically, thereby
gaining a qualitative description of what would be encountered with a
more realistic representation containing many elements. In this par-

ticular case, an added benefit is that it is relatively easy to compute




| R R

the stress amplitudes explicitly:

2GR (= )
S1 5Tn t2\1 o)
S L DET
max . \
\_-/'.L.
2GR 3\ (1 -~ 2
S, ; y rn() et * tl\l e)
= b e (62 -~ al ) = b
S L DET
max
where:
\ 0 quaOL
% 2heg,
T, = TLR/(ILJO smax> g
DET = . fe (T = BT wea il = %K) .
AT L e 2 e e

The constraints for this problem are that the absolute values of
Si/smax must be less than unity. 1In the notation of Chapter II, these
are written as g = 1 =8, /S Y ke :

Figures 3.2 and 5.5 show the feasible and infeasible regions for
values of A ranging from zero to three and for Tn equal to 0.005.

For the fe case (static loading), presented in Fig. 3.7(a),
the constraints are seen to be two straight lines. The cost function
is simply J = t, + t, so that the optimum is at the intersection of

these two lines. Figure 7.7 (b ) shows the design space for 1
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and it is seen that there are two separate feasible regions. This is
the difficulty that is illustrated by this example and is discussed
further below.

Figure %.%(a) shows the results for Ke = l/b . The constraint

at t1 - 0,04 is a minimum thickness constraint that is included to

eliminate the tl = 0.0 solutions that satisfy the stress constraints

but are physically unrealistic. It is seen that the least weight solu-

tion is in the upper region at tl = 0,04 and t, = 0.25 . Finally,

~

Fig. 3.3 (b) shows that for the le = % case there is again only one
feasible region.
The explanation for this curious behavior is to be found by study-

ing the eigenvalues of the system. Let Xl and X _ denote the non-
dimensional values of the first and second eigenvalues. 1In Fig. %.%(a),

the designs with A equal to the excitation frequency are all on a

k

straight line emanating from the origin with an equation given by
t, = 2.00 t. . This line proceeds directly through the middle of the
infeasible region, dividing the design space into two distinct regions,

Clearly designs that have ?e::ll are infeasible because this repre-

sents a resonance condition with an unbounded response. The region

2\

ty > 2.00 f, contains designs where A while the region

£, = L00 t contains designs where ?1 < )c . Each of these
regions has its own optimum, as is demonstrated by the figure,

Segenreich and Rizzi (Ref. *5) have shown that the eigenvalues of

cantilevered rods modelled in the fashion described in the Appendix
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have prescribed limits. For the specific case of two design variables

of interest here, these limits are given by:

0.5 & k. = 2.0 s (3.5)

=
[3

As a function of the excitation frequency, there are, therefore,

either one or two distinct feasible regions. These regions are given

by:

Excitation No. of Eigenvalue
Frequency Regions Relationships

X =0 1 pan e e
e ‘ 1 e

" 0 <k <h, <A
‘ L e 1L
O < XK. 'S 05
e ' .\} A < A < )
i3 e p
Toh K <= A
0.5 <X, < 2.0 1 e
2ol Ny SR C A
1 2 e
A 2 1 A A A
e e iL
The }e =~ 2.0 case explains why Fig. 5.7(b) contains only one

feasible region; the excitation frequency is greater than any possible

eigenvalue of the system.




It should be clear why this disjoint property of the feasible re-
gion presents a difficult obstacle in the search for a global optimum.
While it is possible to analyze the two design variable case graphi-
cally in a thorough fashion, this is not practical for designs with a
greater number of elements., Figure 5.1 was presented to motivate the
hypothesis that for the continuous case there are an infinite number
of local optima corresponding to the infinite number of distinct re-

gions where Xi < Ke < Xi Dl L2 S A

1
For problems with an arbitrary number of elements, some method
such as that described in Chapter II has to be utilized to search for
an optimum. But such methods have the drawback that the search takes
place inside one feasible region. Therefore, for a given problem, the
global optimum is found by selecting the minimum of all the distinct
local minima. Cassis (Ref. 24) encountered disjoint feasible design
spaces while studying a different dynamic response problem and found
it preferable to search for the optimum in the infeasible region by
using an exterior penalty function method. His thought was that the
solution would be more likely to proceed to the global optimum. But
this technique provides no advantage here since an exterior penalty
function technique still proceeds '"downhill" and would not, therefore,
cross over the infinitely high "ridge" where the excitation frequency

equals an eigenfrequency in order to descend into the 'valley" of the

global optimum. More comments are offered on this problem in Section D.




It might be supposed that the disjoint nature of the feasible re-
gion is due to the omission of structural damping; in a sense, this is
true. The addition of damping gets rid of the infinitely high ridges,
since a damped structure excited at its resonant frequency has a fi-
nite response. A brief study that included damping was made, and a
result from the study is presented in Fig. 3.4, The figure superim-
poses the Ke = 1/6 case of Fig. 5.3(a) and the results from an iden-
tical problem except that the shear modulus was multiplied by (1 +ix)
where « 1is a small structural damping factor. This is a technique
frequently used to take account of the fact that structures have damp-
ing present in them (Ref. 36, Chap. 12). The value of & wused to ob-
tain the results shown was 0.1 — an unrealistically high value, but
one that depicts the damping effect clearly. It is seen that the
damping reduces the infeasible region and prevents it from extending
to infinity. The disjoint character of the design space has been
eliminated, but two minima are still retained as pockets of the uni-
fied design space. The basic problem of finding the global optimum
still remains. Note that the optimal solutions for the damped case
do not differ greatly from the undamped case. Damping was not in-
cluded in the analyses presented in the remainder of this chapter
since it was felt that the benefits gained from added practicality
or realism do not offset the complications introduced by complex

variables,
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C. FUNCTION SPACE SOLUTIONS

Before proceeding to the finite element solutions, another pro-
cedure that is applicable to these sorts of problems is presented:
that of solving optimization problems by dealing with the differen-
tial equations directly. The motivation for this section comes from
the success others achieved while applying optimal control techniques
to structural optimization problems. In particular, Weisshaar (Ref.
and Armand and Vitte (Ref. 8) were able to find optimal thickness dis-
tributions for a number of problems that had constraints on the system
eigenvalues,

This section develops the criteria for an optimal solution for a
harmonically loaded structure and solves some special cases.

Only one-dimensional structures are used in this study; therefore,
the equations can be put into the first order form generally used in

control theory:

{x}" = [F(t,s)){x} + {P} . .
With boundary conditions at s = and s 1 . The terms used
are defined as:
I {x} {x(s)]} = n X1 wvector of state variables
£ = (S = thickness distribution, the control

variable of the problem




and

{p}

n X 1 vector of the load amplitude

)” = denotes a derivative with respect to s

—

s = the nondimensional coordinate and inde-~
pendent variable.

The analysis given below is an application of the methods de-
scribed by Bryson and Ho (Ref. 37). Only the barest outline of the
procedure is presented here,

The problem statement used in this thesis is that of minimizing
the weight subject to constraints on the response. Mathematically,

minimize

1
= ftds i
0
Subject to
{g(x,s,t)} = ’
q X 1 vector . (et

The Hamiltonian is constructed by using standard procedures of

[FIlix} + {P} )+ {u} g

e




where
{A} = n x 1 vector of adjoint states 3
{u} = q x 1 adjoint vector for the constraints .
The value of By is zero when 8; # O and is 2 0 when g; = .

The Euler-Lagrange equations are:

oH o oL
(0 = $(_} T )}T [F] = 11 ‘_’ ) 1
LR lox ’ £ L (“x$
And the '"control equation' is
oH oF S
2_ = 0=t {l}T —= I {x} + {u}T ‘ —il- 11
ot dt lt‘

The transversality condition provides the required boundary con-

ditions:

It is felt that the method is best dealt with here by example.

Hopefully, these examples also clarify the technique.




1% Example: Cantilevered Beam With a Static Load

A cantilevered beam acted upon by a uniform static load has a dif-

ferential equation and associated boundary conditions given by

()]

d” dw
=5 Bl s = P ’ (B35

dx” dx”

Using notation and assumptions given in Ref. 7, the first order

form of this system is

xl 0 1 ) /xl
1 )

X - X ~

= PP
> 1 X
3 3
X), J A\ :

X, ( X x, (1) x) (1 s L1l
where
% w/L y
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DO

and

1 dw
Koy = = e ;
v L dx

t dw
X = [o) N ‘)
> L dx”

(o]

1 d ( dw
Xy S5 el E—= 3
i 1P dx dx )
- PL5
P .

E1

The optimization problem is specified as that of finding the
thickness distribution that minimizes the total weight while satis-
fying the constraint that the magnitude of the stress along the span
of the beam is less than some specified Smax . By use of the fa-
miliar formula S = (Ed/?\(dfw/dxp) , this constraint can be put

into the form:

8 1 - alx, [/t 3 Sl

where a - EdL /7S .
max

Equation (3.9) is then:




Equations (3.10) and (3.11) are evaluated to give:

T 1 ™ 0 ) ST
i 1
-1 ) aju '
M A Pt
A -1/t 0" A, sgn xdl
S PR Y , G.1

iH X ua}x;] X
c—— 1 e + —._.A_ 1 - ——— —_— - .1
t t £ t t
The last substitution is made because if & # e x;l/t] =1 .

The notation sgn ( ) designates that only the algebraic sign
of the quantity is used.

The boundary conditions on the adjoint variables are

Xl F s - 1) )
X P(s< « 28 1 %
b, )

e s i ek it s e
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These results can be placed in Eq. (3.15) to give:

\J e

Since pu 1is zero only when a]xBI/t is less than unity, it is

aPp . 2 s i
clear that t 2 =— (1. - 2s + s°) . Equation (3.20) states that if

u is zero, then t = O and the inequality on t is violated except
at s =1 ., Therefore, p cannot equal zero, requiring alx,‘ft
1.0 across the span. Stated another way, this says that the optimal
solution is the one that creates a fully stressed structure. This is
a well known result for problems of this type with a static loading.

The entire solution can now be written down as:

t = = = a?\l -2s + s°)/
X - s/a as
Ry e=ls /ca ) as . sl

The ease with which this analytical solution was obtained makes
it appear that solutions with a harmonically oscillating load might
also be tractable. The formulation for the same problem as above
except that the excitation is harmonic with frequency b, can be

written in terms of the static problem by adding several terms. The

subscript | ) b in the following equations refers to the static case




™

and is a nondimensional frequency equal to o

(]

m L”/EI

With this notation, the changes in Eqs. (%.14)-(3.12) for the harmon-

ically excited structure are:

Bl = ’f’etxl + P ,
= Ay T ks
H St t !. = ‘(1 )
by T ‘
H oH
st 5
I = 1 1 X = . .
e
t at 4

These additions prevent determining that the optimal structure
is fully stressed. Without this, it has been found impossible to
treat these equations analytically. Numerical techniques that solve
the two point boundary value problem and the associated control equa-
tion have been applied with little success. The main difficulty is
in dealing with the stress constraint. The character of the solution
changes at the value of s where the constraint changes from being
inactive to being active. This requires patching together arcs as
explained in Ref, %/, Chap. 5. If numerical techniques are to be
used, it seems preferable to convert the problem to an unconstrained

mne by using the penalty function method as described in Section T1.B.
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If this is done, Eq. (3.7) becomes

1
5= fre-rm@les
0

and the difficulty in patching arcs is avoided, albeit the formula-

tion beccmes slightly more complex,

2 Example: Torsional Rod Excited by a Harmonically Varying End Load

Consider a torsional rod that is being excited at its tip by a
harmonically oscillating load with frequency o, and constant ampli-
tude T . Pose the problem of finding the thickness distribution
that minimizes the weight of the structure subject to the constraint
that the tip rotational amplitude is equal to a specified value D .
This problem was first solved by Icerman using energy considerations
and with the additional constraint that the first natural frequency
of the structure be greater than the excitation frequency. It is
similar to a problem studied by Ashley and McIntosh (Ref. ©) and by
Turner (Ref. 9) who found the minimum weight structure for a canti-
levered torsional rod with a fixed tip mass and an equality constraint
on the first natural frequency.

With the familiar assumptions that GJ Gt and 1 P T

H

the differential equations can be put into the form (Ref.




And the associated boundary conditions are

xl(G) = 0 :
xl(l} =) 5
xg(l) = T ’
where
= 2
T‘P' = ,De IOCQ - 4
GJO

| Note that the equality constraint and the excitation are con-
. tained in the boundary conditions. The inertial loads appear in the

o E term,

The Hamiltonian of Eq. (3.9) has the form:

Equations (%.10) and (3.11) give the relations

Sal e
|l o R

H ALK

- ) 1

y& 3

(
B

and the boundary condition




A solution is found by noting that X
in that they have the same differential

conditions:

o0
Y N
(t2) + e,

It
o

25(0)

i

e 2
(txl) + Mex) xl(O)

i}
o

Since the differential equations are

X, = = clxl/ T

N

where ¢

1 is an unspecified constant.

Similarly, it can be shown that
Ay = R

Substituting these relations into Eq.

~
pa

]
—
—

~ and X are equivalent
&

equations and similar boundary

@ o ERL(LY = y :
0 , ex(1) = T 1

linear, this requires that

e

(3.26) gives

%-C
1 - ‘ﬂj' i =
- it
Since x, txi , this can be written as




Murphy (Ref. 38) lists three solutions to this differential equa-

tion, but they are essentially equivalent and can be expressed in the

general form

Here C 1is the undetermined constant of the differential equa-

tion. Applying the boundary conditions on X gives

x; = D sinh I's/sinh T . 31
Note that this determines that €y /B T sinh’ r/(or .
| Placing this value for X, in the original differential equation
’ gives
cosh T's = sinh T's dt
t’'p ——— ¢ Tt ——— == — = = 21" tanh Tg ds o (3:32)
sinh T sinh T t

in t - 2 fn cosh I's + ¢

/ P’ v
t ¢, /cosh S .




The relation tx&(l) =T provides a value for ¢, and hence for

the optimal thickness distribution:

T
¢y = —cosh I' sinh T )
2 D
and
T cosh " sinh T
R e e e . (B4

(o)

'D cosh™ s

This is the result found by Icerman while including the constraint
that the first natural frequency must be greater than the excitation
frequency, This constraint was not explicitly included in the present
formulation, but it is clear that the constraint is satisfied since the
solution is identical to Icerman's.

The question of whether additional solutions exist that do not
satisfy the frequency constraint, and, if so, what they are, took up
a large part of the time spent on the thesis. The answer to the ques-
tion of existence is clearly '"yes" and can be demonstrated by looking
at the behavior of the solution as [' becomes large. The total weight

of the structure is proportional to:

1
J f tds T sinh” 7/7°D . 355
J 1increases monotonically and without limit as ' increases.

The curves of Fig. 5.1 show that a uniform rod can also satisfy the




xl\l‘ = D constraint at any number of excitation frequencies. Clearly
then, the uniform rod at some frequency satisfies the constraint and
has less weight than the "optimal'" solution. This indicates that the
solution of Eqs. (3.31)-(3.34) is not a global solution for all fre-
quencies,

Once this fact is established, the unanswered question is: "What
are the other optimal solutions?" At first, it was thought that addi-
tional solutions could be found for Eq. (3.29). After a long fruit-
less search for other solutions, it was determined that the problem
was ill-posed, in a special sense.

The adjective ill-posed has generally been reserved for formula-
tions that possess no solutions or no physically meaningful ones. A
structural optimization example of such a problem is that of finding
the minimum weight thickness distribution for a cantilevered rod with
the constraint that the first natural frequency of the optimum rod
have the same natural frequency as the uniform rod. If the rod is
modelled in the same way as was done at the beginning of this sec-
tion, it is relatively easy to show (Ref. that this problem state-
ment is satisfied by a uniform rod of vanishingly small thickness, a
physically uninteresting solution.

Since Eq. (#.34) gives one solution to the problem at hand, it
cannot be considered to be ill-posed in a strict sense. However, by
modelling the rod with three equal length segments, each with constant

thickness, it is possible to find analytical solutions that satisfy
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all the boundary conditions and constraints and that have a vanishingly

small thickness distribution. The diagram below gives a qualitative
comparison of the mode deflection shape given by Eq. (3.31) and the
mode shape that this physically unrealistic thickness distribution

would have.

As the thickness goes to zero for the second solution, the dis-
placement is unbounded, except for finite values at the root and tip.
A physically meaningful problem statement must, therefore, have
additional constraints on the response or involve changes in the sys-
tem equations themselves. Possible modifications include:
(1) Imposing a minimum allowable thickness constraint.
Additions of non-structural mass along the rod.

More constraints on the response quantitic

constraints on the stress or the displa
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The first two modifications were successfully applied to the opti-
mization problems with natural frequency constraints but have been un-
successful for the forced case developed above. It is felt that, even
with a minimum thickness constraint or a non-structural mass addition,
an optimal structure with the frequency of excitation greater than a
structural natural frequency has discontinuities in thickness. Specif-
ically, it appears likely that the optimal structures have concentrated
masses; i.e., thickness distributions that include terms of the form
tcﬁ(s -sc) , where ® 1is the dirac delta., The motivation for this
speculation comes from solutions obtained using finite element models
and piecewise constant continuous models. More comments on this are
offered at the end of the chapter.

Inequality constraints, such as those mentioned above, can be in-
cluded in the manner described in the original formulation. Unfortun-
ately, the added complexity has made the problems so far insoluble by
analytical means. As mentioned, there is no reason why the equations
could not be solved by numerical means. However, once the decision is
made to go to the computer, the most efficient means of attacking these
problems is by the use of finite elements. The next sections detail
how this can be done.

Before proceeding to this analysis, it should be stressed that
finding additional function space solutions remains as a suitable goal.
Variations on the example above are the only analytical solutions for

harmonically excited structures, as far as is known. Additional analytic
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solutions would aid tremendously in uncovering the special features of

this type of problem.

D. FINITE ELEMENT SOLUTIONS {

The frustration encountered while dealing with the function space
formulation led to efforts utilizing finite elements. In any realistic
problem, the use of finite elements is practically a necessity; but the
generality and elegance of function space solutions makes them the first
choice for preliminary investigations.

Examples are given below that extend the two element case of Sec-
tion III.B to similar structures modelled by up to ten finite elements.
Further examples deal with a cantilevered beam structure modelled by

various numbers of elements.

The constraints used for these examples are inequality constraints
on the stress. The Appendix indicates how the stress can be determined
as a function of the displacements., With this formulation, the aug-

mented cost function has the form:

n n
P
o

4 - - / =
) t, =T Z m[1-(s,/5_ )
i=1 i=1

] . (3.36)

Note that the constraint 'Sil < Smax is handled by squaring the stress

values, thereby obviating the need for absolute value brackets.,

B




The thickness is transformed by a technique motivated and de-
scribed in Section II.C:
P : . (2.11)
j min
The uj are considered the design variables. Derivatives of

the cost function with respect to uj are given by

30 v 8. 38 %,
O—— = uj 1 + ———2— Z = = 1 5 . (5-57)
auj (Smax) i=1 O (Si/smax) ]

The specific examples given below develop the values for

;jsi/ar;:l 4

) Example: Cantilevered Rod

This section deals with a cantilevered rod excited by a uniformly
distributed load in torsion. Figure A.l aids in depicting the nature
of the problem, The steady state equation of motion for the problem
is given by:

2
(- o7 M1 + [K]){e} = (P} . (3.38)

The stresses in the elements are developed in the Appendix:

G ’ (Cont'd)

B - 00 =
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i

and

s, = —lo, -6, £= 8,3 gmt 2 e

By taking the derivative of Eq. (3.38) with respect to tj , an

expression for the {ae/atj} vector is obtained:

. 4 o oMl 3K
(-of Ml + KD {—¢ = - (-w + ) {6} . (3.39)

e
ot; ot ot

Note that {6} and {ae/atj} in Eqs. (3.38) and (3.39) have the
same coefficient matrix. This fact can be exploited by using a sub-
routine that solves [A]{x} = {b} by decomposing the [A] matrix
(Ref. 39). Since the [A] matrix remains unchanged, it has to be
decomposed only once to solve for the n + 1 systems of n simul-
taneous equations to find the separate vectors {6} and {ae/acj} "

) = L2 0ees00 s
With {ae/atj} determined, the stress derivative is found

directly:

[

[}

ok, Loty

aS GRn af o6 2
__i = — _i - _i_l. (5.h0>

at. L atj atj

B = 6] =
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All the tools necessary for a solution using the techniques of
Chapter II are now assembled. The numerical values used in the com-

puter program were

& = 3.5 x 107 pat 3y = onR’ = 1352 in’
L ;B
= i = 1bm
Smax Sieot > EONpSH ps 0.1 /1n
R = 6 inches I = J5 = .2 slugs
L = 120 inches B 35,200 in-1bs/in
B = 0.02 inches
mlin

A check on the algorithm was made by first solving the & =0
case, By using the methods of Section III.C, an exact answer can be
found for the optimal solution for this statically loaded case. With
the values of the structural parameters given above, this solution can

be written as

P, RL

t = —— (1 -s) = 0.3k (1 -35) . (3.41)
S J
max O
Figure %.5(a) shows a comparison of the optimal solution obtained
using ten finite elements with the exact analytical solution. The
agreement is seen to be excellent.
Figure 3.5(b) shows a ten element solution for Jﬁ = mZIOQL“/nLGJW

= 1.0 . It is seen that the effect of the excitation is to make the

B-62 -
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FIG. 3.5--Optimal Thickness Distribution for a Cantilevered
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thickness greater all along the span, compared to the static case.
This is because the inertial loads act in phase with the excitation,
necessitating a stronger structure,

Finally, Fig. 3.6 shows two solutions for the case @ = T
The solution of Fig. 3.6(b) is an example where the fundamental frequency
is less than the excitation frequency and is designated the second sol-
ution. This second solution is lighter than the first solution by a
factor of 1.36 to 3.93.

Table 3.1 compares the rotational displacements and the conscraint
values for these two solutions., The two deflection shapes are seen to
have similar magnitudes but the second solution is 180° out of phase
from the excitation. This allows the inertial load to partially can-
cel the effects of the excitation, with the result that much less
structure is required to satisfy the constraints. These constraints
are presented in the form 8; = [1.0 - (Si/Smax)E] in Table 3.1, With
the convergence criterion used for the particular example, a value of
8; that is less than 0.l can be considered an active constraint. The
root element of the second solution is at its minimum thickness and
the constraint is clearly not tight for this element.

The constraints results for the first solution suggest an inter-
esting question: "Is the first mode solution fully stressed?" The
results presented here are ambiguous with the minimum thickness con-
straint clouding the issue further, One might suppose that it would

be possible to hypothesize that the optimal solution is fully stressed

B..b;._
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Displacement Constraint (gi)
Elenent First Second First Second
Solution Solution Solution Solution
1 0.029 - 0.027 0.024 0.150
1
2 0.058 - 0.056 0.012 0.030
3 0.088 - 0.085 0.010 0.016
L (4P - 0.115 0.006 0.008
5 0.146 - 0.1kL 0.006 0.002
6 i - 0L173 0,006 0.014
i 0.205 - 0.202 0.004 0.0k
8 0.234 - 0.231 0.006 0.018
9 0.26k - 0.2k2 0.006 0.851
10 0.293 - 0.2L6 0.006 0.987

TABLE 3.l--Properties of the Two Thickness Distributions of Figure 3.0,

and use the function space methods on Section III.C to test the hy-

pothesis. However, even for this simple problem, the analytical com-

plications make a closed form result impossible. A much simpler means

B- 0L =




of testing the hypothesis is available, however. This is the two de-

sign variable example of Section III.B. Figure 3.3(a) shows an example

where the first solution is not fully stressed. For this figure, the
local optimum with the thickness values {t} = {1.27 , 0.35} has a

constraint vector given by {O.Qh 9 0.00} ; i.e,, the first element

is not at the maximum allowable stress while the second is,
It should be admitted that the above demonstration is not a rigor-
ous proof that the optimal continuous structure is not fully stressed

and that the question merits further study.

2 Example: Cantilevered Beam

The second calculation examines the structural optimization of a
beam excited transversely by a harmonically oscillating load. As in
the previous example, a stress constraint is imposed, and it is first
necessary to derive an expression for the derivative of the stress with
respect to the design variables.

The Appendix shows that the stress at the center of the element

can be expressed as:

Edn
S — w
1 2L £ ;
Edn
By = sy - W sl 1= 2,5,404yn . (.18




Physically, this equation says that the stress is proportional
to the change in the end slopes of the elements. The analysis of

Eqs. (3.38)-(3.40) can be repeated almost directly to give:

(~a, D) o+ &) =——¢ = = f-af + ) v} , (3.542)
ot atj 3t
oty 2L ot
| e - s (8___‘«721 _ Mai-p ) (3.43)
[ ot 2L atj 3t3
F
(=2, 5, n) .

The parameters chosen for the optimization program were

E = 10,5 % 1® get o, = 0.1 lbm/in’

L = length = 120 inches Eoe = 100 1bs/in

d = depth = L inches t . = 0.02 inches
min

b = width = 12 inches S = 30,000 psi
max

Solutions were found using five elements for excitation frequen-

cies ranging from L2,5 rad/sec to 300 rad/sec. Figure %.7 shows first

. bl it it de il

type of solutions for o L2.5 rad/sec and 1Lo rad/sec . The line
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FIG. 3.7--Optimal Thickness Distribution for a Cantilevered

Beam Using Five Finite Elements.
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superimposed on Fig. 5.7(a) is the exact solution for the statically

loaded structure given by Eq. ($.21). For the parameters given above,
the exact solution is t = 0.5 (1.0 - 2s + saﬁ . Even with the har-
monic excitation, there is close correspondence between the two solu-
tions.

Figure 7.2 shows two solutions for %ezzﬁd rad/sec . The second
solution is slightly lighter for this case. Another second type of solu-
tion is shown in Fig. 7.9(a), while Fig. %.2(b) plots the weight of the
two solutions as a function of frequency. It is seen that the first solu-
tion is the lighter for values of the excitation frequency less than 75

rad/sec and that the second solution becomes significantly lighter for

higher excitation values,

E. CONCLUDING COMMENTS

Cassis (Ref. ©L) reported on the existence of disjoint feasible
design spaces in connection with problems dealing with truss structures
excited by half-wave sine pulses. It is felt that the problems investi-
gated in this chapter add a great deal to the understanding of this phe-
nomenon, primarily because the simplicity of the formulation permits a
minute examination of the behavior of the structure. The main conclu-
sion from this investigation is that the natural frequencies play a
central role in creating the many feasible regions. Structures respond
vigorously when excited near a natural frequency, accordingly, the op-

timal designs try to stay away from these resonant conditions.
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The construction of analytical solutions by the methods of Sec-

tion III.C would further aid in the understanding of these types of

problems because they show the role that various parameters of the
problem (such as load, frequency and the constraints) play for a
range of values rather than the specific values of a particular

| numerical solution. It is currently felt that much of the diffi-
culty in attaining these analytical solutions is due to the fact that
they often contain concentrated masses, At the present time, this is
just a hypothesis that is partially based on the results shown in

Figs. 3.5(b), 3.8(b) and 3.9(a). 1In these figures, it is seen that

T ———

the elements at the tip are significantly larger than the other ele-
ments. Based on further studies that used more elements, it appears

that in the limit as n — « the final element is discontinuous from

T ——

5 the rest of the structure and, in fact, represents a concentrated mass.
This is an area of current research and efforts to prove (or disprove)
the hypothesis have so far been unsuccessful. It is mentioned here to
indicate the quirks these problems can have and to hopefully aid in

further research in this area.




CHAPTER IV

WHITE NOISE LOADING

A. INTRODUCTION

This chapter moves from the area of the previous chapter, where
the structure was excited at a single frequency, to cases where the
structure is excited at all frequencies. 1In particular, this chapter
deals with excitations that possess a Gaussian probability density
function and a power spectrum that has a constant value for all fre-
quencies. The present analysis considers loads that are random in
time only. It is possible to conceive of structures that are loaded
randomly in space as well and of structures whose properties are de-
scribed in a probabilistic fashion, but these complications are not
considered here. The motivation for this type of formulation comes
from the atmospheric turbulence example of the next chapter. The
turbulence wavelengths are frequently so large that any variation in
the turbulence magnitude across the span of the wing can be considered
negligible compared with the time variation due to the aircraft's rapid
penetration of the gust field.

The flat power spectrum mentioned above is a useful analytical
concept and is frequently referred to as a "white noise'" spectrum,

Since the excitation is described in probabilistic terms, it is
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necessary to use probabilistic estimates for the response quantities
as well. The most useful of these, the mean square values of re-
sponses, are obtained by integrating the power spectrum of the re-

sponse over the entire range of frequencies:

0

O‘iR = f g @) @ . (4.1)

-00

It has been shown (Ref. 40) that the quantities that are of in-
terest here, the displacements and the stresses, have finite mean
square values even though the excitation has a finite value over an
infinite range of frequencies, This fact is very important since it
allows the development of analyses using the attractively simple white
noise model. It is, of course, necessary to include structural damp-
ing in the model in order to obtain a finite response.

It is not possible to have a disjoint feasible design space for
this problem. The disjoint properties of the examples in the previous
chapter arose because of the relationships between the excitation fre-
quency and the natural frequencies of the structure. Since the white
noise excites the structure at all frequencies, it is no longer pos-
sible to have these relationships and, in fact, the design space ap-
pears to be very well behaved for these problems. The next two sec-
tions develop the constraint criteria used for the study and the anal-
ysis needed to evaluate the constraints. These methods are then ap-

plied to beam and rod models, and optimizations are performed.




B. FAILURE CRITERIA

A difficulty intrinsic to the analysis of structures excited by
random loads is that explicit values of the response quantities can-
not be obtained. Instead, mean values or expected values are computed
using principles from probability. A further complication is that it
is often unclear what meaning these estimates have relative to the
safe design of a structure. The aim of this section is to describe
and evaluate methods that can be used to estimate the life of a struc-
ture subjected to random loads.

Cyclic loading, characteristic of white noise excitation, can
cause a structure to fail even when the magnitude of the applied
stress is well below the theoretical yield stress of the material
used. These fatigue failures, which are a common source of failure
in actual structures, are quite difficult to predict even empirically.
This is an area of intensive active research that is generally desig-
nated fracture mechanics. Current efforts divide the fatigue process
into three separate areas: (1) crack initiation, (2) crack propaga-
tion, and (3) strength degradation and failure. A recent summary of
this type of analysis is given by Yang and Trapp (Ref. 4l). These
analyses require the definition of parameters relating to load time
histories, crack size, material properties and other factors, in addi-
tion to involving lengthy calculations. While the reliability esti-
mates obtained through the use of these methods should be quite good,

it is felt that the complexity of the calculations involved makes them




ill-suited for the present preliminary analysis. Instead, assumptions
were made that allowed relatively simple calculations and that re-
quired the definition of a minimum number of parameters. These as-
sumptions were obtained from Lin (Ref. 31) with supporting material

from Powell (Ref. 43).

With stochastic excitations, there are two logical failure cri-
teria, corresponding to two separate modes of failure, that could be
used in the optimization procedure., The first type is failure due to
the stress exceeding some specified upper limit. This is commonly
referred to as first passage or first excursion failure. The other
type of failure mode treats the damage to the structure as a cumula-
tive process resulting from the fluctuations in the load. When the
accumulated damage becomes equal to some specified value, the struc-
ture is assumed to have failed. (It should be mentioned that while
this analysis treats these types of failure separately, the more re-
cent fracture mechanics studies combine these two modes by postulating
that the random loading causes damage through crack initiation and
growth which results in the reduction of the failure stress so that
the final failure is of the first type.)

The reader's familiarity with certain concepts of probability
theory is assumed in the following discussion. Papoulis (Ref, k)

was found to be a useful text for reviewing this theory and should

aid in the understanding of the pertinent results described below.
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I First Excursion Failure

In order to determine an estimate of the time to the arrival of
the first stress greater than some specified value, it is advantageous
to make a number of assumptions regarding the nature of the excitation
process. Basic assumptions are that the process is stationary, Gaussian
and with a zero mean. If this process is denoted by x(t) , then the
time derivative of the process, x(t) , is also stationary, Gaussian,
has a zero mean and is independent of x(t) . The joint probability

density function and x(t) and %(t) is

2 o
1 X X
P (%) = exp |- — - — . (k.2)
o 20 0. 20" 20%
X X X X

The parameters O and og in the above equation are the root mean
square values of x(t) and %(t) respectively. These can be evalu-

ated from the power spectrum of @xx(m) by the formula of Eq. (%.1):
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A second assumption is that large values of x(t) arrive inde-
pendently of one another. (Ref. 51 shows that this assumption is quite
conservative for narrow band processes.) This assumption leads to a

Poisson probability function for the number of times, n , that a
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large magnitude, U , is exceeded in time interval, t ,

At
PU(n,t) = — exp (- At) . (b1
n.
The At term is the expected number of times the load will be

exceeded in time interval t . Figure 4.1 helps in explaining this

and in bringing out a further point,

i /) bt
7

FIG. 4.l--Exceedances of U .

In the diagram, an exceedance occurs when x(t) crosses through
U with a positive slope or through - U with a negative slope. In-
cluding the negative exceedances can be justified by the physical argu-
ment that the examples presented later deal with bending stresses in
structures that are symmetric about their neutral axis., Therefore, a

compressive stress of magnitude U is accompanied by a tension stress




of magnitude U on the opposite surface. Note that since the process

has a zero mean, the number of negative exceedances can be assumed
equal to the number of positive exceedances.

With this formulation, Eqs. (4.2) and (L.4) provide the basis for
determining the expected time to the first arrival of value U. The
A  term of Eq. (h.h) is twice the expected number of positive exceed-
ances of U per unit time. After placing x(t) = U into Eq. (%4.2),
the expected number of exceedances can be determined by use of the

formula for expected value:

©0

x
K= E(NU) = 2/ — exp (- UE/QO'i - )'(2/205() dx

2110 0y

0 X X
1. @

X 2. 2
= — Xexp (-U /EUX) . (L.5)

AT O'x

With the use of Eq. (4.4), the probability of failure in time

interval ¢t 1is simply one minus the probability of no failure:

pF(t> = 1 - e..)\t . (h.(l\

The probability of failure at time t is found by differentiating

Eq. (4.6) with respect to t . The expected time to failure is then

found by multiplying this probability density function times t and

B - 80 -
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integrating it over times ranging from zero to infinity:

E(T) :f s gt : (.7)
0

Integrating by parts yields

E(T) = 1/x H

—~~
=
o

Equation (4.8) can now be coupled with Eq. (4.5) to provide the
means for determining the constraint on the life of the structure due
to first excursion failure. 1If it is specified that the stress in the
structure cannot exceed some specified value U in the time period

S

LS , the constraint can be written in the form:

T

— - —~S_ _202 !L‘l
g = 1 -Lgm . exp ( Us/gos) 2 0 ; (k.9
s

Here g and og are the root mean square values of the stress
and the stress rate.

This constraint is applied independently to each element in the
structure. It should be mentioned that the concept of fleet or lot
size has been ignored here. Frequently, first excursion failure is
defined as the time to failure of just one member of a larger sample,.

If the arrival times of the loads are independent from one sample mem-

ber to another, the expected time to first failure of one structure in




a sample size of n is simply 1/nx . This would impose a more
severe constraint on the individual structure, but, as was mentioned,

this concept was arbitrarily disregarded.

2e Fatigue Failure

An evaluation of the fatigue life can be made using some of the
results from the previous section, but it also requires further con-
cepts. An assumption that makes the fatigue life calculation ana-
lytically straightforward is one that has come to be known as the
Palmgren-Miner Theory (Ref. 1S). This "theory” is based on the
physically observable fact that a tension specimen that is loaded

cyclically at a constant amplitude of stress, S , fails in fatigue

after approximately N, cycles. It is postulated that a structure

S
that is loaded at this same stress level for qs cycles (ns < NS)
has been damaged to the extent that it is at the nS/NSth fraction
of being failed. It is recognized that experimental results do not
always support this theory, but it provides a simple general rule
adaptable to analyses of the type presented here.

This theory is applied to a continuous random process by deter-

mining the rate at which peaks of a given magnitude occur. The rate

of damage is then computed using the formula

(8]
n(s) ds
= f i (4.10)
o NG




REREECA S

o

—— SRR O OERE o

where

n(S) = number of stress peaks of magnitude

S occurring per unit time ,
N(S) = number of cycles to failure at stress

magnitude S .,

For the purposes of this work, it is assumed that the damage done
in a time interval T is simply DR X T .

The parameter N(S) in Eq. (4.10) can be obtained from curves

that show the number of cycles to failure as a function of the stress
amplitude, commonly referred to as S-N diagrams. A convenient ana-
lytical expression that is used in this work to represent this relation-
ship, and one that is partially supported by data, is the familiar re-

lation
N(S) Sb = c . (k.11

S 1is the stress amplitude and b and ¢ are positive constants that
must be determined empirically. This clearly gives N(S) = c/Sb

The remaining factor needed for Eq. (4.10) is n(S) . Powell
(Ref. !'3) presents an analysis that can be used to readily evaluate

n(S) . This analysis starts by modifying Eq. (}.5) to obtain the

expected number of times a stress exceeds a specified positive value




S per unit time:

1
ElN'(s)] = —
&

B exp (- S“/Qué) . (k.5a
s
The derivative of this expression with respect to S can be

considered a measure of the number of peaks occurring at the level

S per unit time:

SEIN(S)] 5 o i
n(s) = - ———— = — = exp (- $/26°) . (4,12)
‘ 5 S
38 o og

A point that must be considered here is that it is very diffi-
cult to specify what a cycle is for a random process. Equation (4,12)
counts only the net number of peaks at level S with the "troughs" of
magnitude S subtracted from the peaks. Figure L.C presents the rea-

soning behind this argument.,

S(t) D

- v ] . v .
FIG. %4 ,’==Peaks in a Record of Random Noise,




There are three peaks in this diagram at points A , B, and C ,
plus one trough at D . Powell's method says that the damage done by
this patch of noise is equivalent to the damage done by cycles with the
magnitude of A, B, and C minus the damage resulting for a cycle of
magnitude D ., Without belaboring the point, on physical grounds this
seems to be a better method of counting cycles than one that uses the
gross number of peaks. Lin (Ref. 42) arrives at the same conclusion
as that given below by assuming that the process is narrow band. For
such a process, "troughs'" with a positive magnitude are not likely to
occur so that the problem of net versus gross number of peaks is of no
importance. Finally, Yang (Ref. 46) derives an expression based on the
magnitude of the excursion rather than the peak magnitude; this is
clearly an improvement, but was discovered too late to be included
in the present work.

The final step in the derivation is the substitution of the ex-

pressions for N(S) and 7(S) into Eq. (%.10):

© b+l ; P
S ué exp (- S /:us\ ds
PR = f ’ h,13
: Z’clr:'s’
The integral is evaluated by making the transformation S‘/.‘é v,

leading to

DR




This integral can be evaluated by the use of Eq. |

Ref. b
(o] - : b +2
B MTCO (‘Csxb/( ¥ 4
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where 7 1is the gamma function.

To put this in constraint form, it is specified that the struc-

ture have a fatigue life greater than Lf . The constraint is then

written as

This completes the description of the constraints used for the
randomly loaded structure. [t is seen that the structural response
quantities that are required in order to evaluate the constraints are
the root mean square values of the stress and the stress rate. The
next section details how these can be obtained and also develops
methods for obtaining the derivative quantities that are needed for

the optimization process.

C. RESPONSE TO WHITE NOISE

A finite element representation of the response problem can be

given by

M} W) + (K]} {w] FIE] ’ (%, 1




The right-hand side indicates that the equivalent forcing func-
tion is a scalar multiplying a vector that discretizes the uniform

load. The scalar F has a white noise power spectrum:

¢__(w) = N -® <@ < : (.17
@) = N \

Given this representation, the problem is to find the mean square
values of the stresses, which are in turn a matrix function of the dis-

placement for the examples dealt with here:

{s} = I[T1{w} . (416

The exact form of [T] depends on the structure being studied,
but it is always independent of the excitation frequency and the de-
sign variables for the present study.

In order to make the problem meaningful, it is necessary to as-
sume that the system has damping. Otherwise, the white noise excita-
tion would result in unbounded resonances and an infinite mean square
response. This was done by assuming that the structure has damping
which is manifested by a complex shear modulus or Young's modulus.

This, in turn, means that the stiffness matrix can be represented by:

K] = (1 + 1a)[K.] . (k.19
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[K)] is a real matrix that is developed in the Appendix and
1 1 + ix is a complex scalar with & representing the damping factor

which is much less than unity. This same representation was used in

3 Chapter III and, again, Ref. 36 contains a good discussion of it.

The response is determined by modal superposition. The modes

used are the first mn modes of the system:

wb = ) a {p,} = I[pla] ; (4.20)

where the {pi}'s are the mode shapes and the a,'s are the modal
participation factors. The mode shapes are independent of the exci-
tation while the ai's are not, so the next step is to determine
power spectra of the ai's .

At a given excitation frequency, «, , Eq. (k.16) becomes:
2 . .
(- o M] + [K]) [Pl{a} = F{E} . (b.21)
By premultiplying Eq. (4.21) by [P]T , the equation for {al can

be determined as a function of the generalized forces, masses and

stiffnesses:

e Mm] + 1) {a} = FLPIT (B} . (4.22)




The eigenvectors are normalized so that the generalized masses

are unity:

M) (p1T M1 (P (1] A

Il
Il

] (p1T (k] [p) 1+ 1) [\ ] . (4,23

)
Il

[ » ] is a diagonal matrix containing the eigenvalues of the system.
This is a system of mn uncoupled equations that can be solved

independently for the modal participation factors:

2

S(1 + ia)] a; = F{pi;T{E} == a,

.
[- ® +»
e i

= F{pi}T{E}/[- mi 4 mf(l + ia)] . (4,24)

The term multiplying F 1is the transfer function H jo) that

a.F(
it
relates a, to F . This makes it possible to form the power spectra

for the a's

a.a

¢ . '((n) = Ha.F<jm> Nw Ha'F(jm]\ L (4.25)
1] 1 J

The bar signifies the complex conjugate.
The most direct route to attaining the variances of the stress and

stress rates is to express them in terms of the covariances of the




a;'s . For computational purposes, this report distinguishes four

separate covariance integrals:
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where Re designates that only the real part is of interest.
The integrals can be evaluated by making a centour integration
around the upper half plane. Combining terms from Eqs. (4.17), (&.24)

and (L,25) into (L.26) gives:




For convenience and clarity, set £ =®. .

The integrand has no zeroes and four poles:

1
2, = B(1 + ia)= ”
z, = - zy )
1 o
25 = Bl = ia)® = 25
= - = - z \/1
z), z5 z1 . (

Only poles zy and z) are inside the contour. The relation-

ships between the roots given by Eq. (4.28) and standard contour in-

tegration give

(z]. i Z;\)(Zl s Z5)<Zl = Z);)

+ )
(2, - 21)(zh - zu)(zh -z,)

, Tp 112
where C, = Nw([pi} (E}) . Continuing:
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The magnitude of z, is calculated directly:

2

-

|z = 62(1 +a2) 2

1|

The &n(zl) calculation is a bit more difficult;

=

= Re(zl) + i Jm(zl) = B(1l + im)*

V|

I

z

1

By equating the real and imaginary parts of zf

that can be used to solve for Jm(zl) are formed:

2
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2 Jm(zl) Re(zl)

Re(z;) = po/l2 dm(z))]
>, () £y Bhae
Re(z,)]° - [dm(z,)])" = B° = ———= - [In(z
1 1 h[&n(zl)]Q 1

This results in a quadratic equation in Jm(zl)

solution
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R
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Since Jm(zl) is real, the minus sign can be rejected and
Ve 2.3 . ‘
dm(z;) = —BIQ1 +a7)% - 1)]° . (b.3k)
2
By substitution of Eqs. (4.3%) and (4.30) into the final result

of Eq. (4.29)

Clﬂ
I, = =T T T . (4.35)
b N2l + 07 - 112 82(1 + oF)2

Since @ < 0.1 , it is appropriate to make the approximation

that

> & k
1 + = 1+ —+0() 5 (%.36)
m

=

The substitution of the first two terms of Eq. (L.36) into Eq.

(L.35) gives:

Clﬂ
1, = (b.35a)

b%l“ + «F/PH

n

It is now possible to neglect the & /0 term compared with unity

to get the final result:




The remaining integrals are evaluated in a similar fashion. Since

the calculations are lengthy, but straightforward, only the final re-

sults are presented:

Nw{Pi}T{E}{E}T{pj} o @ni + mj)

) [®)
3D{Dj[¢ui -(nj)L b (ag/h)(mi o1 mj)cl

T 2 ) oo
o= N} (E) o a G

;. ) .
o N {EHEY {p ) o () + ) : P
C[@ni = mj)“ + Qni + mj)‘(a“/h)]

—
-

The variances of the stresses are obtained by a linear combina-
tion of the covariances that have just been calculated. The examples
in the sections to follow use the explicit relationships between the
stress and the displacement. The general form of Eq. (4.18) is ade-

quate for the present derivation:

(8} = [Tliw} = ([T]irl{ial :

The power spectra of the stresses are, therefore, related to the 1
power spectra of the modal participation factors by the simple rela-

tion:

' Trms T \
[bgg @)1 = [T1(PIIe, (@)1 (P]"(T] . (441

B - Ob -




The complex conjugate is included in the above equation because
the [T] matrix contains a complex structural parameter. Since
neither [T] nor [P] are functions of the excitation frequency,
the stress variances are found by replacing ¢aaQD) with the covar-

iance matrix for the a's in Eq. (L.Lk1),

[xSS]

1]

T =T e
(t1(p](x_,1 (P17 [T] : (4.5

Similarly,

|

T T
(T]{P][X,,][P]"[T] :

The square roots of the diagonal elements of [X_..] and [X

SS §g!

are the rms values of the stresses and stress rates needed in order to
evaluate Eqs. (4.9) and (k.15).

It is readily shown that these diagonal elements are real and that
they involve only the real parts of the [Xaa] matrix. To prove this,
some preliminary notations must be defined.

Express [T] as (1 + ia)[T,] , where [T.] 1is real.

as

]

De fine tp;. as the i,jth element of [T ][P] , and Pt
J

h
the i,jt element of [P]T[T\\]T .
Note that ¢tp,, = pt,, and that X X .
P ) JE a.a, a.a
& J &
B - &




The diagonal elements of the stress covariance matrix can there-

fore be explicitly expressed by:

mn mn
2
xs.si = Gy F Py Z Xa.akptki
= 3=1 k=1 3
mn
= () Z (tplj) - N
o1 S
mn
B tPy 4 EPype Xa.ak
k=1 J
k#3
mn
o} o)
ol y = \(~
= (I +a) E (tpij, xa'a’
§=1 i3
mn
i
+ 2 Z tpijtpik Re Xa,s&( % (L.43)
k=j+1 ]

All the elements in the equation above are real and, as was to be
proved, only the real parts of the [Xaa] matrix are included. This
explains why only the real parts of the integrals IF and I), of
Eq. (L.00) were required.

This concludes the derivation of the terms needed for the con-

straint evaluation. A remaining task is the calculation of the de-

rivatives needed for the gradient in the optimization algorithm.




130 Derivative Calculations

The design variables for these problems, the structural thick-

nesses, are manifested in the mass and stiffness matrices. The gra-

dient technique of the optimization algorithm requires that the deriv-

ative of the constraints be calculated., This in turn requires that the

derivatives be calculated for all the quantities used to compute the
constraints and that are a function of the design variables.

The first step is the calculation of the derivatives of the eigen-
values and eigenvectors of the system. Fox and Kapoor (Ref. 15) pre-
| sented a straightforward method for calculating these quantities, and
this method is summarized below.

Consider the unforced system with a given eigenvalue and eigen-

vector:

(- A M1+ [K]){p,! {0} A (4 k)

For ease of notation, set [Fi] = - A, [M] + [R] .

The derivative of Eq. (L. L) with respect to the design variable

tE. 1s
i
3IM]  3IK] A, ) ‘:‘p. )
- X, + - —= M) ) {p.} + [F,1 | —} o (s
( - IR S 1 S DY

3 e i el




j
|
.

The system given by Eq. (4.4l) is self-adjoint so that if Eq.

(4.145) is premultiplied by {pi}T , the last term drops out, leaving

P R T Y N TR TNy

P K] 5 M)
i 1l T § o :
{pi} [M]{pi} T {pi} = ‘A‘i tpl’.} . {.L'“'

at. at. o .

25 25 7

Since the eigenvectors have been normalized to make the general -

ized masses equal to unity, the eigenvalue derivative can be expressed

as:

o 5lK] o [M]

1 I T () \
an = ipi} e )‘i —— {pi} ” ( L U4ba)
ot ot ot

From Eq. (4.hlL), with the eigenvalue derivative calculated, the

eigenvector derivative can be solved for:

[Fi] l\*‘ti ’ = Dt] {Pi) . e

But since lFi] is singular, another equation is needed to specify
the magnitude of 7Wpi/;tj3 . This equation comes from differentiating

the generalized mass:

\P.,
~f 3 WT
= o I ip =D tp,} [M] ‘ *-L'
% 4 i (‘ ‘
VE . (P
1 ]
DS | ?T ;lﬂl 5 L .1
Pi. ll . .
at.
]




Equations (4,47) and (4,%8) can be combined to give:

[F,] $5Pi ' 5[Fi]/;tj

=i ip,d o« (%,
~f 1t l\t ‘ e . . 1
atpi} [M] C ] {pi} (C‘[M]/Utj'

In order to obtain a square, non-singular matrix, both sides of

Eq. (4.%9) are premultiplied by [Fi, T[M]{Pi}] to obtain

o i oP. 5[F, ]
(£, 17 + bi{p, 3 {p; 3 (] : :ZL{ s =R ] ,tl
o 3
o[M]
- 2m){p Hp, )t — | ip,) . (k.5
St
i

This is a matrix equation that can be used to solve for the eigen-
vector derivatives {api/atj} . Note that since the matrix multiplying
the eigenvector derivative is not a function of the design variable, it
is necessary to decompose this matrix only once to solve for the n de-
sign variable derivatives. A further note is that experience with this
method has indicated that it is frequently helpful t» multiply Eq. (L.h
by A; as a scaling procedure.

The remaining steps in the derivative calculation are much less
complicated. The derivatives of modal covariances 1 and 1 are

1

given below as an example, but it seems of little purpose to show the
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entire analysis here. A few terms must be derived first:
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This should indicate that the remaining derivative calculations
are tedious, but uncomplicated. It is mostly a matter of the contin-
uous application of the chain rule until the final derivatives that
are required are reached. These are the derivatives of the constraints,

the first of which is given in Eq. (4.9);

2 2
=N = ii e-US/LOS 2 )
e A g C ‘ :
Oy
The derivative is:

o8 11 U, 8] 1 e
——l— . \gl . 1\‘ i ( __Sr = 1) S S S 5 K“'l}‘ )
;‘ g '7‘ -t. O -' .
5 g 1% y -8 95

Similarly for g. , from Eq. (%1

And the derivative is

9p]
w

ot P~ —— “___M



D. EXAMPLES

As in the previous chapter, cantilevered rods and beam examples
were optimized. Figure 4.3(a) shows the power spectrum of the white
noise excitation while Fig. 4.3(b) is a qualitative depiction of a
response quantity. The peaks on the latter figure represent struc-
tural resonances which are the main contributors to the mean values
of the response.

1t is perhaps necessary to justify the use of a finite number of
modes to represent the response of a structure excited by loads with
a white noise spectrum. As mentioned in the introduction to this
chapter, Bogdanoff and Goldberg (Ref. 40) show that the mean square
values of the stress and displacement in an Euler-Bernoulli beam are
finite when the beam is excited by the noise., They do this while
taking into account an infinite number of modes and by assuming con-
stant viscous damping. A further indication that a finite number of

L ol

modes suffice is given by Eqs. (4.04) and (%.25) which show that the

peaks of the spectra for the modal participation factors are inversely
proportional to mi . This indicates that thie contributions to the
rms responses from the separate modes die off quickly as the mode num-
ber and, therefore the natural frequency increases. Finally an empir-
ical justification for using a finite number of modes is given by the

results below which show that solutions found using four modes differ

only marginally from solutions using two modes.
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‘a White Noise Excitation

d . (w)

b Representative R sponse

FIG. “.?--Representative Power Spectral Density Shapes for
a Structural System with a White Noise Input,




1 Torsion Rod

The thin walled rod of Section III.D.l is used again in this sec-
tion, except that a white noise excitation is now present. The fol-
lowing list of parameters repeats some of the previous values and adds

new ones for the special requirements of this problem.

Gl = 3.5 X 1O6 psi R 5 0.1 lbm/in5
= 6 i = lio
R 6 inches IaO slugs
B = 20 inches & = 005
J, = 27TR5 =552 in3 b= 8
N “'l.
N, = 12Lo (1b)“/rad/sec c = 10
U= Lo,000 psi

The parameters b and ¢ are from the equation NSb = ¢ and
were obtained by fitting an S-N curve for aluminum given in Crandall
and Dahl (Ref. l©, Sec. 5-1%). The value chosen for « is rather
high and it is recognized that an important part of an actual design
process using the methods described here would be to obtain more ac-
curate and justifiable values for the « , b and ¢ parameters.

The constraint placed on the fatigue life was that it be no less
than one year, and the expected time to stress value U, was set to

S

be no less than one-half year.




The results of the optimization algorithm are presented in Figs.
L.k and 4.5, Figure 4.4 compares the optimal thickness distributions
when two, three and eight elements are used to represent the structure.
It is seen that as more elements are used, the total weight remains
nearly constant while there is some qualitative difference in the dis-
tributions. For the eight element structure, more mass tends to be
concentrated near the tip. More will be said about this later.

All the results presented in Fig. L.k used two structural modes
in their solution. Figure L.5 compares results of analyses using two
modes and four modes. It is seen that there are some minor differ-
ences at the tip, but they have to be considered negligible. Table

4.1 gives numerical results for the two cases.

Elenent Thickness Fatigue Constraint
Rusber 2 Modes i Modes 2 Modes L Modes
- =3
1 1."?’)‘ 1.698 9.5 ° 10 2 5.93 « 10
1.58: 1577 1.8 « 107 5,00 * 107
% 1.382 1.392 k,0 « 107 1.04 « 10°
L 1.128 1.129 )el ¢ 10~ 78 ¢ 10”
5 .859 875k 4.8 » 10° )37 * 10°
' H111 617 5.0 « 10" 1.l6 « 10~
526 «5: 925 87k
561 ) SO j } i |
=1

TABLE % ,1--Comparison of Two and Four Mode Solutions.
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This shows that although the four mode solution took 507 more

computer time to converge, it did not appreciably change the results,

eay SEE AEE =

The fatigue constraint values are presented to show that the optimiza-
tion proceeded to the same level in determining the active constraints. ’
The values given are those computed using Eq. (4.15); therefore, the
numbers near zero indicate that the constraint is almost exactly satis-
fied (i.e., it is active).
The optimization seems to have found that placing some weight at
the tip provides an inertial load that relieves the inboard stress.
Since this phenomenon is exhibited in the beam results as well, it is

appropriate to consider this in somewhat more detail.

24 Effect of a Tip Mass

This section presents some findings of a brief study that was made
to justify the optimal solutions that included a large finite thickness
at the tip. In particular, the study sought to determine what effect a
concentrated mass at the tip would have on the maximum stress in a can-
tilevered beam. The hypothesis was that the effect would be to reduce
the stress. Obviously, this would not be the case for a static loading
or for a low frequency harmonic excitation, but the results of the op-
timization indicated that something different was happening for the
white noise excitation.

The model studied was a uniform cantilevered beam with a point mass

at the tip. The excitation was assumed to be uniform across the span

B~ 108 -




and random in time with a white noise power spectral density. The mass
of the beam was kept constant while the tip mass was varied as the only
independent parameter.

The problem could be solved by a differential equation approach
coupled with modal superposition as was done in Ref. !0, However,
since a computer program that analyzed this type of problem using
finite elements already existed, it was more expedient to use it.

The next section presents the structural parameters and the excita-
tion spectrum used for the analysis. The thickness distribution was
held fixed for all elements at a value of one. A nonstructural point
mass was added to the last element and was varied through a range of
values.

Figures 4.0 and %.7 present the results for the rms stress and
stress rate, respectively, for four values of the concentrated mass,
nondimensionalized by the mass of the beam. It is seen that the mass
has the effect of reducing the maximum rms stress, which always occurs
at the root. The effect on the rms stress rate is to increase its
peak value, but since the stress is of far more importance in the
evaluation of fatigue life than the stress rate, this increase is
relatively unimportant. It is interesting to note that the higher
modes are obviously present in the stress rate distribution but that
the first two modes seem to dominate the stress distribution,

The main finding is that the addition of mass at the tip can im-

prove the fatigue life. 1In hindsight it is clear what has happened:
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the added mass acts as an inertial force that resists the excitation
and, in the limit as the mass becomes very large, acts as a simply
supported boundary.

For the cantilevered rod, a similar effect takes place in that a
mass would act to restrain the tip rotation and in the limit act as a
fixed boundary.

This is an interesting and unanticipated result. A further study
that could be done is a two design variable optimization study using
the concentrated mass and the uniform thickness as the variables.
Constraints could be placed on the rms stress or on the fatigue life.
The above analysis shows that the optimal concentrated mass would not

be zero.

He Cantilevered Beam

-,

A beam example was optimized to see if it had any new, interesting
characteristics. The methods of Section IV.B are directly applicable
to the beam example so that the only changes necessary are the inclu-
sion of the proper forms for the finite element representation of the
beam structure. Since the Appendix and Chapter III are quite thorough

in these aspects, they are not repeated here,

The properties chosen for the beam and the load are

Length = 2Lo inches E 1k 5 o psi
Width 50 inches 0 .1 1bm/in

Depth 5.0 inches Y 5




)y
b = 3 c = 1_,’1

N = 0.01 (1b/in)“/rad/sec U. = 40,000 psi

The large width to depth ratio was chosen because of a future
anticipated application of the model to aeroelastic problems where
it would represent a wing.

The constraints were continued at one year for the fatigue life
and one-half year for the expected time to failure.

A comparison of the results obtained using two elements and eight
elements is presented in Fig. h.ﬁ, while Fig. k.9 compares results ob-
tained from an analysis that used four modes with one that used two,
The concentration of mass near the tip is more pronounced for the prob-
lem, but the qualitative effects are the same as for the rod example.

Table .2 compares the four mode and the two mode solutions.

o (S
: ratigue First Excursion
s T— AHicinens Cinstiaint Failﬁrexcgnstraint
’ Modes i Modes 2 Modes L Modes - Modes i Modes
1 ). 175 k51 .0l 03k .99 gels
1335 135 L0kg 961 9
5, «101¢ w103 L05¢ .06k .ok1 O
5 )59 +060 wll folel «999 «999
0381 16° La s
| 0.0554 .059 I is ¥ &
|
[ ) 6Lk 6l 1 1 1 1
L J, . . . . . J .
; Total ‘ » (Ot 1171

ABLE . --Cantilevered Beam: Comparison of Two and Four Mode Solutions
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The four mode solution is 1.3% heavier than the two mode solution;
a disparity that is probably less than the percentage by which these
solutions differ from the true optimum. It is possible that further
iteration would make some of the constraints tighter, but it is felt
that little information would be returned to justify the added com-

puter time.

B CONCLUDING COMMENTS

The results of the two examples tend to show that, as in some of
the harmonically forced solutions of the previous chapter, there is a

tendency for some of the mass to be concentrated near the tip. In fact,

the solutions obtained for the white noise examples could perhaps be
thought of as a superposition of the two solutions given for a single
harmonic excitation, such as those of Fig. 3.0. It is not known whether
this observation has any practical significance for the solution of
this class of problems.

It is felt that a formulation of this type makes a useful con-
tribution in that it presents new results and extends the methods of
structural optimization into an almost unexplored field. Obviously,
however, the examples studied in this chapter are mainly of theoreti-
cal interest. Methods of fracture mechanics combined with load spec-
tra that are of great practical interest would aid greatly in the ap-

plication of the techniques to more applied studies.




The next chapter does attempt to perform an optimization on a

structure that is of more interest: an aircraft wing in the presence

of atmospheric turbulence. |
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CHAPTER V

CONTINUOUS ATMOSPHERIC TURBULENCE

A, INTRODUCTION

Structural fatigue and failure resulting from stochastic loads
are one of the most commonly occurring maintenance and safety prob-
lems for aircraft structures. The nature of these vehicles is such
that there is a very high payoff in terms of performance and operating
economy for savings made in the structural weight. These two facts
combine to provide a powerful motivation for finding optimal struc-
tures under the condition of random derodynamic excitation with fa-
tigue life as one of their constraints, Specifically, this chapter
deals with the minimization of the structural weight of an aircraft
wing that is subjected to continuous atmospheric turbulence.

The formulation used in this study is, in keeping with the scope
of the thesis, of a preliminary nature with a continual tradeoff made
between physical realism and computational simplicity. The main ob-
jectives in the development of the mathematical models that are pre-
sented in the next section are to obtain a representation that is
consistent in terms of level of sophistication and to retain the
important elements of the problem., After the presentation of these
models, it is necessary to develop the analytical tools needed for

the constraint evaluation and then some results are presented.

B- 118 -




B. COMPUTATIONAL MODELS

There are three distinct areas that have to be considered in the
development of the mathematical representation of a wing excited by
turbulence: (1) the structure of the wing, (Z) the aerodynamic oper-
ators and (%) the disturbing gust forces. Before dealing with each of
these separately, some general limitations on the analysis should be
mentioned here.

The motion of the wing was constrained to consist of rigid body
plunging motion plus transverse bending. A more general formulation
would include at least rotational deformation and perhaps rigid body
rotations as well., While it would not be impossible to include these,
it is felt that the present formulation is the logical place to start.

A similar decision was made to limit the constraints to those
dealing with the life of the structure., 1t is realized that an ac-
tual design has to meet a myriad of criteria so that the results pre-
sented here represent only the specific designs obtained for aspecifi-

cally posed problem.

i Structural Model

Many of the mathematical aspects of the present problem were pro-
vided by Ref, 47, 1In selecting a structural model to use in this study
it seemed natural, therefore, to choose a wing that is used extensively
in the examples of that text. In particular, Example l10.t of that text
presents an analysis that parallels much of what is presented below,

Figure 5.1 shows a planform of that wing with its important dimensions,

B=- 11 =
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As the figure shows, the structural model chosen includes anacelle
and fuselage. The masses of these two elements were held fixed during

the optimization at the values of

I

mFUS 430 .4 slugs 5

=
Il

163 .0 slugs .
NAC - &

The assumption regarding linearity between the design variables
and the structural inertia and mass was retained in this chapter. By
fitting data given in Ref. %2, the following factors of proportionality
were obtained:

~

m(y) = mass/inch = 2.2 t(y) slugs/inch ;

£ 7 2
t(y) lbs-in. .

EI = stiffness = 5.94 « L

The taper of the chord adds complexity to the numerical calcula-
tions that determine the mass and stiffness matrices. Section C of
the Appendix details corrections that are made to the untapered re-
sults to account for this fact. In addition, the Appendix describes
how the non-structural masses representing the nacelle and the fuse-

lage are incorporated into the mass matrix.




2 Turbulence Model

The previous chapter dealt with the responses to a random excita-
tion whose power spectrum was constant over all frequencies. Numerous
studies have shown that this white noise assumption is inadequate as a
model for atmospheric turbulence. Chapter 13 of Ref. 47 and Ref. 45
contain excellent discussions of the procedures used and the approxi-
mations made in the development of alternative models. From these
references it was decided that the analytical expression for the tur-
bulence spectrum that is best suited for the present study is the one
designated the von Karman model. The power spectrum of the vertical

component of the atmospheric turbulence given by this model is

7 8 -
o, Lyl + 3 (1.339 L 0)°]
(@) = —& : (5.1)
b 2.11/6
£ m {1+ (1.339 L5

The terms of this equation are defined in the list of symbols.

A number of crucial assumptions have to be made about the nature
of the turbulence in order to arrive at this form (e.g., that the tur-
bulence is homogeneous and that it has a Gaussian distribution). The
adequacy of these assumptions are evaluated quite well in Ref. 43 and
will not be discussed here.

Values for the turbulence scale and the mean square value of the

turbulence had to be selected. From Ref, 45, values were chosen that

B=- 100 =
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were typical for severe thunderstorm conditions. These were

L = F5000 £k, s

o = 14 ft./sec. .

The scale length (which is a measure of the turbulence wavelength
is considerably greater than the 3% ft. span of the wing used for this
study. This large difference in scale reinforces the approximation
that the turbulence is one-dimensional with a uniform value across
the span at any instant.

Figure 5.2 compares the von Karman spectrum used in the present
study with the spectrum used in Example 17.6 of Ref. . It is neces-
sary to present the comparison here because a later figure compares
two bending moment spectra that were obtained using the two different

excitation spectra. It is seen that the von Karman spectrum has a

considerably higher proportion of its energy in the lower frequencies.

Do Aerodynamic Operators

The most important difference in the nature of the present problem
compared to those of the previous chapters is in the manner in which
the loading is exerted on the structure. In the previous chapter, the
random disturbance was assumed to be transferred directly to the struc-
ture in some unspecified manner. In the present example, the aerody-
namic loads that result from the unsteady gust differ in phase and

magnitude from the gusts themselves, This is due to the fact that
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the loads on the structure, which are a function of the circulation,
do not respond instantaneously to the gust. A further complication
is the fact that the motion of the wing moving in response to the
gust's excitation gives rise to additional forces.

This study is restricted to vertical motions only; therefore,
the relevant load acting on the wing is the 1ift. As the previous

paragraph indicates, this load can be separated into two components:

Lg is the direct 1ift associated with the impingement of the
gust while Hn is the added lift resulting from the wing's motion.
Values for these two components are developed in Chap. 5 of Ref. *.
for a two-dimensional airfoil in incompressible flow that is en-

countering a sinusoidal gust. These values are given by

L
~& - 2 ‘ ) k) -1iJ, (k)] +1iJ.( ' (5D
2mo U, lC(kJ[J>( ) 1 k)] 1J1\k)‘ 5 (5
w
g
k I UL [kL - 2ik C(\k\]h y S
m a
where:
h = wvertical displacement ,
Clk Theodorsen's function 5
J and J Bessel functions of the first kind .
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Theodorsen's function is a complex function of the reduced fre-
quency and is an analytical representation of the change in amplitude
and phase of the circulatory lift due to a vertical oscillation., It
can be expressed explicitly in terms of Hankel functions, but for the
low magnitudes of k of interest to this study, it was deemed ade-
quate to use an approximation that is given by Fung in Section ©. of

Ref, Lo

-1'~\5 o 5

[1.0 - (0.0455i/k)] [1.0 - (0.3i/k)]

Perhaps it is in order to point out here that the complex nature
of the aerodynamics makes it unnecessary to include structural damp-
ing. This damping was required in the previous chapter in order to
obtain finite response, but the out of phase component of the aero-
dynamics acts as a damping mechanism that limits the structural re-
sponse to finite values regardless of the excitation frequency,

In order to apply these results to the problem at hand, a number
of additional assumptions must be made. These are mainly the approx-
imations that are used in aerodynamic strip theory:

L The incompressible results are valid for the analysis. (The
example considered has a free stream Mach number of .t so that com-
pressibility effects could be constructively considered.

The reduced frequency is computed using a reference chord,

as opposed to the local chord, resulting in a Kk that is constant




across the span. While this is not strictly necessary, it greatly
simplifies the calculation. The range of actual reduced frequency
values across the span is small enough so that the error introduced
by this assumption is not large.

Loy \

(%) The loads on the three-dimensional wing are the same as
would occur at that wing station in a two-dimensional flow (except
for the disparity in k values mentioned in the previous assumption .

It would be interesting, and not too difficult, to determine what
effect these assumptions have on the final results. However, these
were considered to be secondary matters that did not require evalu-
ation for the present study.

Once these aerodynamic loads have been evaluated, it is necessary
to put them into a form consistent with the finite element models de-
veloped for the mass and stiffness matrices. Again, the Appendix pro-
vides the details of how this is done.

Finally, values of the parameters necessary for calculating the

aerodynamic loads are:

L 696 ,8 ft/sec 5

25038 x 1 = slugs/fr' 5




C. RESPONSE QUANTITIES AND GRADIENT EVALUATION

The end result of the development of the models in the previous

section is the construction of an equation of motion in the form:
(- o) M)+ [K] - [A]) {w) = {¢] .

Some new terms have been added to the formulation used to study

white noise. These are

‘G} = Vector representing the load due to a unit sinu-
soidal gust of frequency ﬂe &
[A] Matrix relating the loads on the aircraftt due to

the aircraft's oscillation at frequency ®,

The general method used in the previous chapter can be repeated
here to find the root mean square response values for the stresses and
the stress rates. However, the new elements of the problem necessi-
tate going through a brief description of these methods. While it is
not explicitly emphasized, it must be remembered that the analysis
presented below is in terms of a unit gust excitation,

Modal superposition can again be used to obtain the response of

the wing at a specified frequency:

w Z Pi .‘li [P] {a . D




The {pi} vectors are the eigenvectors of the system

(- %i[M] + [K]){pi} = 0.0 and the a 's are the modal participation
factors that are to be determined for the forced response. The next

step is to premultiply Eq. (5.0) by [P]T

(-oS L1171+ (2] - [cal) {a} = (oG] . (5.8

The mode shapes have been normalized so that the generalized

masses are unity. The new terms of Eq. (5.8) are clearly

[cA] = [P1T(allP) ,

fee} = p1%c) ;

In the previous chapter, multiplying the equation of motion by
the transposed eigenvector matrix uncoupled the equations in the ai’
by diagonalizing the mass and stiffness matrices. The generalized
aerodynamic matrix is not diagonal, however, so the svstem of equa-
tions for the {a} vector have to be treated simultaneously.

Also, since [GA] and {GG} vary in a complex fashion with the
reduced frequency, it is necessary to evaluate Eq. (5.0) at a number
of discrete reduced frequency values,

Once the modal participation factors have been found for a large
enough number of reduced frequency values to represent the complete

range of interest, it is possible to move on to the calculation of

S



the stresses. Once again, the methods of the previous chapter are
inadequate for this problem. The difficulty now is that since the
model permits rigid body motions, the bending moments cannot be cal-
culated from a derivative of the displacement vector. Instead, ex-
ternal and inertial loads are summed and the bending moment is found
from these forces and from the fact that the shear force and bending

moment at the wing's tip are zero. The force acting is given by

B o= T mmlw 5
2 m e

Or in matrix notation:

F} = ([A] + o M])) {w} + {G} : (5.9
The [F! vector represents concentrated forces and moments acting

at the node points., From this vector, it is possible to calculate the
bending moment acting at any specified location on the wing. For the
purposes of this analysis, the bending moments were computed at the
center of each element plus an additional calculation at the wing's
root.

Performing the moment summations at these points gives:

n
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and
n
B = F + F iL' = |
Moot 23+1 2j n S &
j=1
This can be summarized by a matrix equation: {BM} = [T]{F} .

The vector of bending moments calculated in this way can be
thought of as the admittance functions for the structure. The fac-
tor that is of prime interest is the mean square bending stress.
Given the bending moment, the remainder of the calculation is quite
straightforward. First, the admittance of the bending stress is
calculated using the standard S = Mc/l formula. Proper account
has to be made of the tapered property of the wing in this calcula-
tion as it enters into both the ¢ and 1 terms in the stress equa-
tion. With the bending stress admittance calculated at a number of

frequencies, the mean square response is calculated from:

The mean square stress rate is computed in a similar fashion:

ogé Jr o [s]° b, @) & g 5 1

g

Simpson's rule was used in performing the numerical integrations,




Once these two parameters have been determined, the analysis of
Section IV.B can be used to determine the fatigue life and time to
first excursion failure at the wing stations of interest. This anal-
| ysis will not be repeated here.

The changes in formulation described above also create some dif-
ferences in the way the gradients are calculated. Again, only the new
details are described in this section, since the previous chapter is
available to provide added detail.

The eigenvalue and eigenvector derivatives are found in the same

manner as previously except that the rigid body mode allows certain
simplifications. Specifically, since the rigid body frequency is zero,

the derivatives of this frequency are trivally zero:

il § o= APy asst : 5,17

i € 'l‘ 3 i \
E’ iPllv = M1,1,0,1500ey51,08 i U'I . 5014
L

f where 1 1is the normalizing tactor used to obtain ~p1k][M]ip1}

| 1.0 = 7 {U}T(M}(U: 5

Since the mass matrix varies with the design variables, the

rigid body mode does have a derivative with respect to the design
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variables that can be evaluated by the use of the relationship just

obtained:
3 5[M]
- e o 2¢ 2T
en{u} " Ml{u} — = - n°{u} {u} )
ot. ot
] 9
("q 4 (\)[M]
— - {u’t {u}/e . 5.15
at ot.
j ]
T

The matrix triple product (U] (@[M]/;tj} {u} can be shown to
be equal to the structural mass of the jth element, mj , divided
by the design variable tj . The derivative expression for the mode

shape then becomes:

Mplk = —zir. ul e 1 n_l.l. fu}
St St -l
] J 1

The next step is the determination of the derivative of the modal

participation factors. Recall Eq. (5.C

(s 0 [ 20+ (% T = [Ghl) (a3 = ¢{cE] -

Taking the derivative with respect to the thickness of the j[h
element gives:
1
: () 15
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As in previous cases of this type, the matrices on the left-hand
sides of Eqs. (5.8) and (5.16) are the same, regardless of which de-

sign vector is of interest. Therefore, the matrix decomposition of

\

,é [T ]+ [ *x] - [GA]) needs to be evaluated only once for the
1 systems of ©n + 1 simultaneous equations,

Another note is that the derivative of the generalized aerody-
namics matrix involves only the mode shapes since the aerodynamics
matrix, [A] , is not a function of the design variable. This is
different from flutter optimization problems, where the aerodynamics
are indirectly a function of the design variable because the flutter
frequency is contained in the matrix (Ref. 50).

Finally, note that even though matrix [GA] 1is symmetric, the

derivative '\[GA]/'ti is not.

The remaining derivative calculations can now be evaluated:
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Another new derivative that must be evaluated is:

E

5184
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where the bar indicates the complex conjugate.
Since the bending stress is proportional to the bending moment
and inversely proportional to the element thickness, fSi ;cpiBMi/ti >

where cp; is the constant of proportionality), the bending stress |

derivative is given by

S BM, ¢
(e . p
e gy s e BB , (5.19
\¢t . \t t J

j j i

where aij is the Kronecker delta.

Finally,

and similarly for the stress rate. The remaining derivatives for the
constraints and the objective function are identical in form to those

of the previous chapter and are not repeated here.

D. RESULTS

As the above descriptions have perhaps indicated, the function
evaluation and gradient calculation require a considerable amount of

computation. Consider an example that has N elements and a mesh of




NF discrete frequencies used in the response calculations. Further
specify that MN natural modes are used for modal superposition.
Then each function evaluation requires the solution of a 2N + 1
eigenvalue problem. In addition, the MN 1linear simultaneous
equations given by Eq. (5.8) must be solved NF separate times,

If gradient information is desired, the MN simultaneous equations
given by Eq. (5.15) must be solved NF x N times. An additional
factor is that unless one is very clever or sacrifices programming
speed and clarity, the arrays needed for the computation quickly fill
the computer's available core. E.g., a reasonable way to dimension
QS/Otj of Eq. (5.19) is DS(N+ 1,NF,N) signifying that each of the
N + 1 stress values for each of the NF frequencies has derivatives
with respect to N different design variables.

For these reasons, the examples done for the thesis were kept as
simple as possible while retaining the capability of obtaining mean-
ingful results.

The first example used three structural elements and retained the
rigid body mode plus one bending mode. Twenty-nine reduced frequency
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