AFWL-TR-76-98

6729

ApAO 3

S ey
- e B - S U

|
.4 -
-
ki
2

76-98

APPROXIMATIONS FOR TERMS RELATED TO THE
KERNEL IN THIN-WIRE INTEGRAL EQUATIONS

Colof

Lawrénce Livermore Laboratory
Livermore, CA 94550

January 1977

Final Report

Approved for public release; distribution unlimited.

AIR FORCE WEAPONS LABORATORY
Air Force Systems Command

Kirtland Air Force Base, NM 87117

AFWL-TR- |/




- . L < o —T ———— T T
i i B B A i i 5 AN v Bt S 5 e AR i 3 e oo s AR ey i s A9 K B S 8 S . ki g

Bl e s

2

—

This final reported was prepared by Lawrence Livermore Laboratory, Livermore
CA, under Project Order 74-212, Job Order 37630114, with the Air Force Weapons 2
Laboratory, Kirtland AFB, NM. TSgt Harris A. Goodwin (ELA) was the Laboratory
Project Officer-in-Charge.

When US Government drawings, specifications, or other data are used for any
purpose other than a definitely related Government procurement operation, the
b | Government thereby incurs no responsibility nor any obligation whatsoever, and
& | the fact that the Government may have formulated, furnished, or in any way
E | supplied the said drawings, specificatitns, or other data is not to be regarded
o by implication or otherwise as in any/manner licensing the holder or any other
i person or corporation or conveying ahy rights or permission to manufacture, use,
or sell any patented invention that'may in any way be related thereto.

This technical report has been reviewed and is approved for publication.

This report has been revézééd by the Information Office (0I) and is
releasable to the National Technical Information Service (NTIS). At NTIS, it
will be available to the general public, including foreign nations.

LAl Y

HARRIS A. GOODWIN
TSgt, USAF Technical/Advisor
Project Officer

.'i éVCg I§

» ‘l §§ ,_;\Qs i

A e &

1 bl

" { ‘/- oy / g
b /,Z z’%f? e 7 P2~ /—.,:‘_’;’1,’;7—-) 13
{ i 7>

ALBERT G. CUPKA Col, USAF JAMES L. GRIGGS, JR., Col’, USAF

Chief, Aircraft and Missile Branch —Chief, Electronics Division

% §
|
i . ’ »
!
|
!

) DO NOT RETURN THIS COPY. RETAIN OR DESTROY.




L e e el o WG R e i o e e S A O

? UNCLASSTFIED
_SCCURITVMIFN:ATION OF THIS PAGE (When Data Entered)
REPORT DOCUMENTATION PAGE R e e

F-_TI'TY

] 2. GOVT ACCESSION NOJ 3. CIPIENT'S CATALOG NUMBER
il o-39/ 5

- =%
APPROXIMATIONS FOR,TERMS RELATED TO THE KERNELL

~IN THIN-WIRE INTEGRAL EOUATIONS.

Final Repert .

ORT NUMBER

e ——— C—————"

-,/w‘n‘mh___, 3. CONTRACT OR GRANT NUMBER(3)
A. J.lPoggio / :
,/69 R. W /Adams | e 74-212 - Project Order
3. PERFORMING ORGANIZATION NAME AND ADORESS 0. PROGRAM ﬁmzuﬁm

Livermore, CA 94550
11. CONTROLLING OFFICE NAME AND ADDRESS \rg._aunn.nm—/
Air Force Weapons Laboratory (ELA) <:2§:2 Januawy 1977

Kirtland Air Force Base, NM 87117 =55§FEEEE§?‘1E!fT

T%. MONITOR NG !NCY NAME & ADORESS(if different from Controlling Office) 1S. SECURITY CLASS. (of this report)
Unclassified

- -—-"" ; 1Sa. DECLASSIFICATION/ DOWNGRADING
SCHEOULE

mmmzw 7ot this Report)
Approved for public release; distribgtion unlimited.

Lawrence Livermore Laboratory
P. 0. Box 808 égi%m @ 7L |

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, it different from Report)

18. SUPPLEMENTARY NOTES

>
r

{
]
¥
1
!
!
‘
{
1

19. KEY WORDS (Continue on reverse side il necessary and identify by block number)
Kernel
Thin-Wire
Model

S

20. ABSTRACT rContinue on reverse side if necessary and identify by block number)

Difficulties can arise in the evaluation of elements in the impedance matrix as-
. sociated with a moment-method solution of the thin-wire electric field integral
equation. The results of a detailed study are preésented and several representa-
tions are considered and compared. From information regarding errors, regionsg
of acceptability are obtained. The deficiencies in the thin-wire kerne1 are
clearly illustrated and remedies are suggested.

DD ':2:",, 1473  £oiTion OF | NOV 83 1S OBsOLETE \ UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE 'When Data Entered)

-, -




i P A i i, . SR £ LR L L AR A S S v TR Ve S PRSI o v e e b e A R 1 SR S i Bk o e

|
&
| Contents’
‘Q : . Section Page
b | - ABSETACE v e Waie etal e Pe ) e el e et W sl W e e e s own L
;% I Introduetion s S LIRGEIGEL Sl SRS TR U RS v e T
Tj II Raprassatations for QE) .. . 4 i viiie s W W Ve s s s o &
“\1 The Clagsical Approach . Jiiife o v Wi & ol i o o 4
;‘ An Alternative Approach . v o e S 0 ol e de o s 6
' An Extended, Thin-Wire Kermel . . . « « « « « « + v « « « . 8
The Small Distance Limit of the Thin-Wire Form . . . . . . 11
III A Numerical Comparison of Various Kernels . . . . . . . . . . . 13
4 Relative Errors in the Self Terms . . . . .« . . . . « .« . . 14
] Relative Errors in the Adjacent and Next-to-Adjacent
BOEHE & i e e e e e e R e s o
Representations for a Sinusoidal Current Distribution . . . 23
v Concluadona o b & SN RS G e SR s v s e 2D
AcknowledgretteV o sk S5y I NER G T 2 R ST N e .‘. '25
;J{ Appendix A: A Classical Approach to the Kernel Approximation. . 27'
3;3 o S R S T IR 1
'} Derivation of Approximations . ¢« « « « + « v & s o ¢« s « & 27
ii Comparison of Approximations to the Kermel . . . . . . . . 30
& A Criticism of the Thin-Wire Kernel . . . . . + o + + . . . 32
L; i‘ Concluslon® « « ¢« v v v ¢ s # o 3 % 9 3 @ % v s % @ v ¢ v IS
{
'{ Appendix B: An Alternative Approach to the Kernal

APPEORIMALION v '« v v » v ¢ + 5 % w w v v wow e v ow S

REMGLRCHE 75 v 5 % v F e s A v e A A e Ay 0O

{
g
A
1
1
.A :

T R A R S

=28




Illustrations

Figure
| b | Relative errors in various Qi's (self term) for ka = 10—4 2
: 2 Relative errors in various Qi's (self term) for ka = 10“3 .
"E > 3 Relative errors in various Qi's (self term) for ka = 10-2 -
;;? 4 Relative errors in various Qi's (self term) for ka = 10-1 .
: ? 5 Relative errors in various Qi's (self term) for ka = 0.2 .
i | 6 Relative errors in various Qi's (self term) for ka = 0.3 .
;' 7 Relative errors in various Qi's (self term) for ka = 0.4
% 8 Relative errors in various Qi's (self term) for ka = 0.5 .
h 9 Representations that lead to éelf-term errors less than 1%
| 10 Relative error in adjacent term for ka in the range
MRt e R L ey L
11 Relative error in adjacent term for ka = 0.1 . . . .
12 Relative error in adjacent term for ka =0.2 . . . . . ..
13 Relative error in adjacent term for ka =0.3 . . . . . . .
14 Relative error in adjacent term for ka = 0.4 . . . . .
15 Relative error in adjacent term for ka =0.5 . . . . . . .
16 Representations that lead to adjacent term errors less
CHBI IR o o ie om0 v e e e e ek e e R s e
17 Representations that lead to next-to-adjacent term errors
1080 CBEt IR 5 o o 5 v v v @V N AT ey m e
18 Representations leading to kernel evaluation with less than
I BEBOL  « v o v o & v v v e MW %oy e ey e
19 Representations leading to derivative evaluation with less
than 1% €rror « . « « « . : VoW e w e e e e % e
ii

Page

15
15
15
18
16
16
16
16
17

-+ 19

19
19
19
20
20

21

22

24

25

s ool




" - e T R I A i G N AR
& "
E | i
1 Illustrations (Continued) ‘
k| :
|
E | 4 Figure Page
‘ = A-1 A comparison of various approximations to the kernel
A '
% fora/k-loa........................30
.’,‘
3 f A-2 A comparison of various approximations to the kernel
1 s
| o A O R e W v s B
: A-3 Relative errors (el and 82) resulting from the use of :
thin=wire kerfiel ¢ o o '5 0 o vli vile e v e e e e e e 32
3 ! 3

.‘}
§

T




S A o i o A A R R A

Tables

Table Page

1 Approximations to the kermel . . . . « . « « ¢ ¢+ o o . 5 .

2 Functions of Q(Z) . « o v & o o mo & o o @ha o« el e s @ 13

s

e By it

e

N s

B
-

on

s L ke R

L — Y 22 g ©

iv

’ a“
| !




- - S, AT

LI SRR RS T

IR TR

Sl C G N L e ot A it s el B B .

s EE e s RS

.*:
)
i

o4 S &

T e e 3 S NI < iy S AR N R AR N S 5 e A N

SECTION 1
Introduction

The kernel used in integral equations can often represent the analyst's
greatest difficulty. In electromagnetics, it contains a singularity over
which an integration must be performed, and as a result, extreme care must be
exercised in performing the integration.

In this report, the defining integral equation in terms of electric field

for problems involving conductors is

=)

AxEMC@ = - —2—ax | T - @7 +PDg (r,7) dr' (Fes). (@)
4Tjwe s
Thus, for a cylinder of radius a with azimuthally symmetric excitation that is

axially aligned (Z), one must have

Einc(z) -

z Anjme

J. (I(z") [—-—E'+ k ] e & (r,r") d r' (zes), (2)
8 1

with the azimuthally directed component of current density existing only as
the solution of a homogeneous equation. In this expression, k = 2R Lves

the wavenumber in the ambient medium. Hence, for a circular cylinder,

2 2T
inc 1 9 2 i
EC(z) = - [ dz' 1(z") +k —f o' g(z,z' 6,0') (zec),  (3)
7 Jwe (32'2 > gn® Jo

with

e-jké—z')2+4azsin2¢'/2
g(zyz') ¢ = 0’¢') e . (&)
/(z-z')2+43231n2¢'/2

Equation (3) with Eq. (4) is an exact representation in this case, as
there are no approximations involved in the derivation, and, hence, there

are no restrictions on any parameters in the problem.

1

2 2 " T r———— e Gl
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In this report, we define the kernel of Eq. (3) to be

1 2m
G(z,2") = = d¢'g(z,z', ¢ = 0,¢') d¢', (3)
0

that is, a term proportional to the azimuthal integral of the free-space
‘ Green's function. There is a great deal of interest in not only the
£ approximations of the kernel G(z,z') but also in the value of the double

f integral in Eq. (3). However, the integral

g 514
J. dz' 1(z'") =+ k° ) G(z,2") (6)
2z 3z

has an analytical solution in terms of values at the end of the range of

2
integration in z' when I(z') is of sinusoidal (sin kz' or cos kz') form.™
Therefore, we initially restrict our attention to the evaluation of the
integrals in Eq. (3) for the case where I(z') is a constant this gives rise

to nonanalytically integrable integrands. We are interested in the value of
Q(z), 1.e.,

8 1 2m
Q(z) = f az' =5 [ as' g(z,z', ¢ = 0,0"). @
o 8m J0

Because the major difficulties in the evaluation of Q(z) occur when the

singularity in g(z,z', ¢, ¢') is in the range [a,B], we focus most closely on

e —

this range. However, difficulties have also been observed when the

singularity is outside, but close to, this range. We comment on this

e s R

difficulty where appropriate.
Two basic options exist in the evaluation of Q(z). Specifically, they
involve the order i. which the ¢' and z' integrations in Eq. (?) are performed.
In this report, we will deal with three different approaches to the evaluation,
two of which evaluate the integrals in the order indicated in Eq. (7).
Alternatives also exist regarding the manner in which g(z, 2', ¢, ¢') is
written. One of the basic goals of this report is the definition of some L

forms for Q(z) that satisfy certain accuracy requirements over ranges of the !

ﬂ . |
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variables a/A, B/A, and the radius of the cylinder normalized to

wavelength
(a/A). It is evident, both in the derivations and the numerical computations,
that the particular representations used for g(z, z', ¢, ¢') can affect the
ultimate accuracy in Q(z).

Fo- purposes of comparison, we derive three distinct approaches that lead
to three different forms of Q(z). Naturally, each approach includes several
different results, each of which is the outcome of retaining higher-order
terms in series representations. Also, because the values of G(z,z') and
3G/3z are needed in certain cases, these functions are considered when
appropriate. For certain approximations, the results of numerical computations

are analyzed and the attendant errors studied.

is




SECTION II
Representations for Q(z)

THE CLASSICAL APPROACH

The classical approach has been the most widely used and was one of the
first introduced in the study of the kernel of the integral equations with
which we are concerned. The essence of the method is described in Schelkunoff :
and Friis,2 and is explicitly carried out to various orders of approximation
in Poggio and Mayes.3 In the latter work, g(z, z', ¢, ¢') as given by Eq. (4),
is written in the form j

8(2,2':4?,‘1") 3%—+ ’ (8)

with

. L}
R = 43251n2 %r + (z—z')2 .
Attention is_then focussed on the evaluation of the kernel

2m 4
G(z,2") = =5 [ dd'g(z.z',0 = 0,8"). ©) ‘
8m

when the last term in Eq. (8) is expanded in a Maclaurin series about kR = 0.

A derivation and comparison of the various approximations to G(z,z') are

% a2

provided in Appendix A and are given in Table 1.

|
3
b, |
1
-
i
{
i

1
2

J. A. Stratton, Electromagnetic Theory, (McGraw Hill, New York, 1941).

S. A. Schelkunoff and H. T. Friis, Antenna Theory and Practice, (John Wiley
and Sons, Inc., New York, 1952).

3A. J. Poggio, and P. E. Mayes, Numerical Solution of Integral Equations of
Dipole and Slot Antennas Including Active and Passive Loading, Air Force
Avionics Laboratory Rept., Wright-Patterson Air Force Base, Ohio (1969).
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Table 1.

Approximations to the kernel.

al

a2

a3

[Zle(kl) - 1 &% a/A]

8a

1 2
8n%a <Zk1 Gl aM>

1 8a L
8n%a <2 ST a/>\>

S K} = § 40% afk - 16"
2 g Ry
8T a l

16n

1 (zk K(k,) - § 47% a/A -
2 1 1
8T a |

) -Jka z z'
|
14 z 2
-Jka | &= |
1
211
81a |2 =4 |
a

2
2 L (z-z')
. 2 jka\/;sin i
d 1
8‘rr2 j(; i z-2"'\2 :
& & ity e e (——)

2 a

(a/}) E(k ' e Lo

i 2a

2 /"__—
l.a.2+(z-z')2

(a/X) E(k )]

16W (a/A)

N2
+j%Tr4 (a/)\)3 . (z-: ) ]
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Using any of these approximations, one is still faced with the z' integral
Gal’ Ga2’ and Ga3'

are independent of a/\A and the first term in the approximation of G(z,z') for

1

indicated in Eq. (7). The first three representations,

~

z X z2' represents a static interaction. These three approximations derive
from the decomposition of ¢(z,z', ¢ = 0,6"'), in the form given in Eq. (8),
with the retention of only the first term of the MacLaurin series in the
Q- e-ij)/R term. The 1/R term yields an exact form, namely, an elliptic
integral, while the second term is 0(l/A). The representations are written in

an ascending series in 1/AT.

AN ALTERNATIVE APPROACH

The foundation for the derivation of an alternative representation of
Q(z) for small (z-z') has been provided by Tesche.4 The approach consists of
first evaluating the z' integral in Eq. (7) and then performing the ¢'
integration.

In this representation,

1 2T
Q(z) = —7[ d6' P(z,0"), (10)
8m 0
where
8
P(z,0') = f dz' g(z,z',6 = 0,5"). (11)
o

The derivation, detailed in Appendix B, requires an expansion of g(z,z', ¢, ¢')
about kR = 0 and yields, for P(z,9'),

m=-1

B8 ' 2
dg <4a2 sin2 %— + 52) €12}

, o (—.k)m Z-
Plz,9') = = ), dsar—
m=0 ' Z=0Q.

The case where the singularity is at the center of the range in £ is of
particular interest because, in a collocation solution of the integral
equation, the observation points are usually placed at the center of the

F. M. Tesche, Evaluation of the Surface Integral Occurring in the E-field
Integral Equations for Thin-Wire Antennas, Air Force Weapons Laboratory,

Kirtland Air Force Base, New Mexico, Mathematics Note 29 (1973).




intervals. For this case, a = z = A/2 and B = z + A/2, and the results for
Q(z) are somewhat simplified._ We include below a tabulation of the representa-
tions of Q(z), denoting them Qm(z) to indicate the order of the terms retained
in the derivation. Details are in Appendix B.

T/2 2 ‘
-jkA 1 A 2 A !
Ql(z)s—%ﬁ—+ﬁ'£n2+—2 4 dy Rn[[‘—a+ \/sin v+ (Z:)] - (13) ;

m

2 2
Q,(2) = —-&A- La2 [1 4 —(l‘i] + s—lw Gajs - —1—2 (kD) (ka)\ /1 + (—A—)

4m ZTT 2 La
4 (14)
m/2 [ 2
f dlp(l-kza2 sinZW) ln[l‘% + sin2w+ (ﬁ;) ]
0
202
k°A n2 k"a
Qy(2) = 72> * o <1 2 >
2 1 A - 3
— (ka)” - o (k4) (ka) 1+ <—-> Ef ———— :
™ 4a ; i
4m ( A>2 » |
1+ (— i
4a :

m/2 2
+ ﬁ%fo d0(L = K°s" sta’y) In [% + 4 jetn"y + (—f—a) ] . (15) |

Note that Ql(z) is independent of ka but dependent on kA and the ratio A/a;
that Qz(z) has terms of order ka and (ka) ; and that the integrand in Q3(z) is
only slightly more complicated than that in Ql(z) Furthermore, all the

integrands are nonsingular and can be evaluated numerically with ease.
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AN EXTENDED, THIN-WIRE KERNEL

Deficiencies have been observed in the thin-wire kernel, as illustrated

in Appendix A. There, the thin-wire kernel given by

e-jk /(z-z')2+a2
G(z,z') = (16)

4 /(z-z')2+a2

is not a suitable representation of the exact G(z,z') of Egs. (4) and (5) for
small values of |z-z'|/a.

In our investigation of representations of G(z,z') or Q(z), we rederived
and extended the thin-wire kernel. An integral representation of the function
g(z,z',0 = 0,0') is available in the form5 .

7

il 22

=k V(z-2')"+p pre

e 21 l P e Hé” p/kz_uz :
N J U

z=-z"')"+p

where

]
P = 2a sin %f .

The cofresponding integral form for G(z,z'), with an interchange in the order

of integration, is therefore

' 2T '
Gz, 2") = —= r av e3Vlz-2'| f Ty Hc()Z) (Za sin %— /{2—\»2) . (18)
L 0

16n2j

The ¢' integral has a well-known result so that

G(z,z2') = e dv ejv]z-z'l J (a/kz—vi) H(Z)(a/kz-vz) . (19)

8% L o o

5

I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and

Products (Academic Press, New York, 1965).

8
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This approach to obtain the exact integral representation of G(z,z') is
outlined in Hallen.6
The substitution of the series representation for the zeroeth-order Bessel

function, i.e.,

® 20 4
R I R e a?-h 20) 4
o i

i=0 2771 T(i+l)

allows Eq. (19) to be written as

8Tj 2i

°° 4 e :
8la,2") = e _ﬂla__f v JVlzz'| 2 201 () (e (rr ) (21)
i=0 277! T(i+l) Y- °

Furthermore, one can introduce the series representation

i i
2 3.t uy § i 20 =22
R 12:6 1) gra-nr Y k (22)
and obtain
® 21 1 ;

1 i (ka) ') - oo
G(z,2") = === (-1) : (-1) (WZEN

o1 & 241 sy £0 e

5 r dw® ejvlz-z'l HCEZ) (a/kz-vz) . (23)

N i

e o S S SR S

However, the V integral is nothing more than

l 1 22 it
b -0t r av o3Vl uom (a»'{z-\f) ' (24)

3222

6E. Hallen, Electromagnetic Theoryv (John-Wiley and Soms, 1962).

. R TP —— — "IJ‘
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and, using Eq. (17),
: o 2i i
1 i (ka) i! =24
Gla,at) m F (=]) g ey &
m {6 2%y rsn) gm0 HHETDS
“,: 322 -jk/(z—z')2+az
; = ? (25)

29
9z «z-z')2+az

This expression for G(z,z') can be written in the compact form

21 i

1 i (ka) 1 .2

G(z,2') = — 2 (-<1) —————{1+=D g > (26)
&r 18 22151 r(i+1) K2 hin

where

e-jk/(z-z')2+a2
g =
thin
v/(z--z')2+a2

and

5 e
D I
9z

In Eq. (25), the 7 = 0 term corresponds to the common, thin-wire . form

(27)

Sl i oo e s bl
C USSR S R

1
1) & =
GO(Z’z ) 4m 8thin v

while retaining the 7 = 0 and 7 = 1 terms corresponds to the "extended"

thin-wire kernel

b 4
1S m e
Gl(z,z e
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Expanding the terms in Gl(z,z') yields

/|

/ A2
e-jk\/(z-z' )2+a2 1+jka 1+(z': )

Gy (x,3") = '41? 1- 2
V(z-z')2+a2 le+(z:: ) J
1\ 2 X 2
¥ 1 3 {3jka 1+(z'z ) $3 =K [1+(z'z ] (29)
z-z"'\2 . .
z.[u(_.a )] V

The extended thin-wire kernel derived above dves not exhibit the

appropriate singularity at z = z' and, hence, cannot be expected to yield
suitably accurate results for Q(z) near that point. We can expect however,

that its range of validity will exceed that pertaining to the thin-wire kernel.

THE SMALL DISTANCE LIMIT OF THE THIN-WIRE FORM

The thin-wire form for G(z,z') was derived in the previous section. We
now consider an approximation to Q(z) that is obtained by expanding the
exponential in a Maclaurin series. This approach is presented by Harrington
and used for comparison by Tesche.4

We are interested in the approximation

1 T e-jkV(z—z') +a
QA(Z) = dz' s jl do' :
SN V (z=-2')"+a

Using the Maclaurin series, one obtains the integral

3
Q(2) = %x

7R. F. Harrington, Field Computation by Moment Methods (MacMillan, 1968).




which can be evaluated to yield

z-0 + V(z-a)" + 32

z-B + V(z-B)” + a

- jk (B-a)

1
Q4(2) - n

For B = z + A/2, a = z - A/2, and A >>a,

e A
Qufz) =gy ing~ 37 IR .




| 4 SECTION III
' A Numerical Comparison of Various Kernels

To compare the various kernels or the functions Q(z), numerical computa-
| tions are necessary. We performed these computations for selected representa-
"' tions and can therefore suggest forms that satisfy certain accuracy constraints.

In the numerical studies, we included the functions Q(z) shown below.

Table 2. The functions and their definitionms.

Q(2) Eq. (7) and Eq. (4)(Exact)
Qo(z) fdz' Go(z,z') Eq. (27)
Ql(z) Eq. (13)

Q2(z) Eq. (14)

Q3(Z) Eq. (15)

QQ(Z) Eq. (32)

Q. (2) J.dz' G,(z,2') Eq. (28)

The relative error is used as a criterion of accuracy in the study of the
representations and is defined as

Q-Qi
Relative Error = SRR (34)

where Q is the exact representation [Eqs. (7) and (4)] and Qi is the respective
approximation. Because the error is dependent on 2z, a, 8, k, and a, we

restrict our attention to

s e, B e o el B B o 4 .

e Self terms: o=2z2=-A40/2, B=2z+A/2
> e Adjacent terms: a=2z+04/2, B=2z+ 34/2
! o o Next-to~adjacent
! 2 terms: o =2z + 340/2, B =z + 54/2,
&
5 - with variations in wavenumber k and radius a. In this manner, the dependency

of Q on z is contained implicitly in the specific term we are considering and
in the range [®,8]. Therefore, we have parameterized our curves with respect

to the term considered and to ka, and have plotted the relative error versus

Ala.
13
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RELATIVE ERRORS IN THE SELF TERMS

The relative errors in the evaluation of the self terms, Q(z) for o = z -
A/2 and B = z + A/2, have been calculated. The results afe shown in Figs. 1
through 8: the relatjive errors are plotted vs A/a, kA, and N/A. The latter
abscissa is the number of intervals contained in one wavelength. Note that
kA = (ka)(A/a) and N/XA = 2m/kA. 1In Figs. 1 through 5 there is a region
denoting error bounderies for certain representations. The relative error
curve for each representation oscillated within these boundaries and the
detailed nature of the curves themselves did not convey any seemingly useful
information.

The range of values of A/a shown in Figs. 1 and 2 do not in reality
correspond to the values 1iké1y to be encountered in practice. Because one
generally uses on the order of five to tens of intervals per wavelength,
most of the representations will suffice. In fact, most will provide relative
errors less than 1% in the commonly used range of N/A.

For thicker wires, the relative accuracies begin to deteriorate.
Although the onset is seen in Fig. 3, it is more clearly seen in Figs. 4
through 8 where the relative errors over the indicated range of A/a are not
monotonic functions and often show a decreasing, and then an increasing,
relative error as A/a decreases. The deficiency in Q4 is evident in Figs.

4 through 8. Furthermore, the relative inaccuracy in Ql’ Q2, and Q3 is

seen to increase with increasing ka, and kA (in general). Inspection of the
thin-wire representation also indicates a problem as its relative error
curves exhibit minima. However, the relative error in the extended thin-
wire representation is reasonably constant with respect to variations in

ka and the relative error is less than 1% for A/a > 2.

A careful study of Figs. 1 through 8 allows us to establish the set of
representations that will yield relative errors less than 1% over the ranges

1074 < ka < 0.4, and 0.01 < kA < 1.0 (Fig. 9).
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RELATIVE ERRORS IN THE ADJACENT AND NEXT-TO-ADJACENT TERMS

The various representations used for Q(z) can yield errors even when
the interval of integration does not contain the singularity. Because the
representations Ql’ Q2. Q3, Q4 are for small displacements, this may not
be surprising. However, the user must be aware that difficulties can be
encountered. In Appendix A, we show that sizeable errors in‘adjacent terms
can arise by using the thin-wire kernel Go(z,z’). We now investigate a
similar occurrence in representations of Q(z). In this portion of the study
we include only those representations appearing in Fig. 9, i.e., Qo, Qe’ Q3.
Figure 10 shows the range of relative errors induced by the various
approximations as a function of A/a with the parameter ka varying from 10-&
to 10—2. The relative error is almost insensitive to the variation.
However, Figs. 11 through 15 show the relative errors for QO and Q3,
as well as the relative constancy of the relative error in Qe as ka increases.
The results presented in Figs. 10 through 15 allow us to plot the range of
applicability for the various representations when evaluating the adjacent
terms (Fig. 16). Finally, because we have considered the adjacent terms,
it is appropriate to consider the next-to-adjacent terms, o = z + 34/2, and
B =z + 5A/2, Having performed a similar study as that preceding, we present
here only .the encapsulated result, namely, the plot ¢f the ranges of
applicability. Figure 17 depicts the ranges in the ka = kA space. It is
evident in this plot that the region is enlarged where the extended thin-wire
representation provides a relative error less than 1%. Naturally, the region
of validity for Q3 is shrinking because it is a small distance approximation.
The results of our investigation of the various representations of

Q(z) are summarized as follows:

e If A/a > 10.0, the thin-wire representation can be used everywhere.

e If A/a > 2.0, the extended thin-wire representation can be used
everywhere.

o If A/a < 2.0, Q3 should be used for the self and adjacent terms and
for the next-to~adjacent if A/a < 1.0.

e For 1.0 < A/a < 2.0 Q3 is used for the self and adjacent terms and

the extended thin-wire for the next-to-adjacent term.
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REPRESENTATIONS FOR A SINUSOIDAL CURRENT DISTRIBUTION

Several commonly used basis functions for conducting wires include
sinusoidal components. Hence, the linear current demsity in Eq. (3) is
written as

sin
I(z') = cos [k(Z'-zi)]-

However, the axially directed electric field of such a current distribution

can be simply written asl

‘ 3 g5
x ~ a8 12 2L 2 .,
. SR LY = & : (35) |

Hence, it is seen that one requires for calculations only the values of |

1 2T ;
G(z,z") it dé g(z,n,¢z=0,¢') (36) |
n Swz 4] |
and
27
! i
Blzz) | -2 40" =2r g(z,n,0=0,0"), (37) |
3z 2 3z
n 8m ]
or, in expanded form,
k| m/2 -jkr
b | o2 | = [ w e (38)
H o 2% 9
;‘
- and
-
3G(z,2") o il fﬂ/z ;-‘N) jkr+l z-n e Jkr (39)
9z' n 2TT2 b = 5 ¥
where
r =""(Z-"“)z + Aazsin2 TR




e e ey -y = oy wree o Gl g R R T

These integrals can be performed easily using a numerical scheme as
there is no singularity. Also, to circumvent the numerical integration,
one can use approximate forms. For instance, for large |z - z'|,r =

Kz-n)? + a2,
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For small |z - z'| the approximations in Appendix A can be used. Naturally, due

regard must be paid in both cases to the errors involved in these approximations.

Figure 18 shows the region for which the relative error realized in
approximating G(z-z' = A/2) [Eq. (37)] by the thin-wire and extended thin-
wire representations are less than 1%. A similar plot is provided in
Fig. 19 for the derivative at the end of the interval.

It can be concluded that G(z,z') as given by Eq. (36) can be evaluated
numerically for A/a < 4.0, by using the extended thin-wire version for A/a >
4.0, and the thin-wire version for A/a > 14.0. For the derivative term,

these limits become A/a > 4.0 and 30.0, respectively.

0'4 ] ll‘l ¢ T B

0.1 A/a=7.0

ka.

ll‘

:

a

] f A/a =30

E (Thin wire

i extended)

‘ ; 0.0t s A

: 0.01 0.1 1.0 Fig. 19. Representations leading to

E : : : derivitive evaluation with

kA less than 1% error.

SECTION IV
Conclusions

The widely used thin-wire representation has been shown to be deficient,

particularly when displacements from the singularity are small. Alternative

i

representations have been provided and regions of validity have been

delineated. Constant and sinusoidal representations for current have been

-
R R
C R S e I

considered and the errors in evaluating self terms, adjacent terms and

next-to-adjacent terms have been evaluated. Using the results contained here,
a user can employ the form that is consistent with his accuracy requirements,
yet, in most cases, without having to numerically evaluate the integrals !

containing singularities.
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Appendix A. A Classical Approach to the Kernel Approximation
Introduction
An integro-differential equation for the current distribution I(z) on

a cylindrical dipole antenna of length 2L and radius a with general but
azimuthally symmetric excitation E:(z), as given by Ref. 1, is

2 3
(Li* kz) fL I(z') G(z,2',a) dz' = -jue E. (2), (a-1)
0z L .
where the kermel G(z,a',a), because of the assumed symmetry, has the exact
representation
-jka 2 y' T
1 2T e 4 sin %r BRES e
G(z,z',a) = 5 2 —aqy'. (a=2)
8m"a *0 e e
4 gin® L 4 222
2 a

The characteristics of G(a,a',a) near its singularity (¥' = 0, z = z') play
an important role in establishing the solution for I(z). The solution of

Eq. (A-l1) or alternative forms (e.g., Hallen's integral equation) by approx-
imate numerical techniques, such as point matching (discretization and
collocation),8’9 requires (for efficiency) the knowledge of the valid
approximations to G(z,z’',a) that do not require ay' integration. Also, the
ranges of validity of the approximations must be known and observed to ensure
accurate solutions. We derive here various representations and graphically
compare them to establish their respective regions of validity. An error

that arises when a particular approximation is used will be considered.

DERIVATION OF APPROXIMATIONS

The kernel G(z,z',a) can be written as the sum of two integrals:1 one

containing a phase-stationary, singular integrand, and the other, a regular

21 . T -
G(z,2',a) ._l_ ﬁ‘_‘L- .L:.__dw' :
2 T
8m 0 0

SK. K. Mei, IEEE Trans. Ant. and Propag. AP-13, 374 (1965).

integrand:

9S. A. Schelkunoff, Advanced Antenna Theorv (John Wiley and Sons, New York, 1952).
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where

r =\/;a2 sn'.n2 %'+ (z-z.)2 2

By performing a simple transformation and substituting a Maclaurin series

about kr = 0 for the exponential and integrating the terms to order k3r3 in

the integrand, the kernel can be written as

202
- | i _ 4k"a =
G(z,z',a) Snza [Zle(kl) 2mjka kl E(kl)
%; jk3a3 +-% jk3a (z-z')2 A .] . (a-3)

where

kl = 2a/ \/432 + (z-Z')2 ’

and K(kl) and E(kl) are complete elliptic integrals of the first and second
kind, respectively. Equation (A-3) is an exact expression for the kernel
when all the terms in the series are included. However, for ease of com-
putation, we consider various approximations for the kernel for limited
ranges of the variable [z-z'|/a. 3

An approximation valid for kr << 1 results when the first two terms of
Eq. (A-3) are retained. This approximation, referred to as Gal’ contains
the result of the first integral and the integral pertaining ton = 1 in
can be realized by making

1
use of the first term of the series expansion for K(kl),lo vig.

K(k) = 1a V1 - ki )

the Maclaurin series. A simplification of Ga

For a small |z-z'|/a, we have 1 - ki x |z-z'|/2a, so that a second

approximation is obtained:

1 8a
G32 sﬂza Zkl n —T;:;TT— - 2mjkal , (A~4)

lOE. Jahnke and F. Emde, Tables of Functions (Dover Publications, New York,

1945).
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and because kl * 1, a third approximation follows:

8a

1
2 n - 2mjka} . (A-5
8ﬂ2a Iz-z'l ;

Ga3 G

Let Gb be the kernel that results from keeping the first three terms of Eq.
(A-3), i.e., up to the n = 2 term in the Maclaurin series. This approximation

can be written as

4k232
G = —— Zle(kl) - 2mjka - .

87"a it

E (kl) : (A-6)

The approximations Gal’ Ga2’ Ga3’ and Gb have been written for kr << 1. From

the definition of r, we see that this requires ka v/4 + (z-z'/a)2 << 1. For

ka << 1, the inequality may be satisfied for quite large values of Iz—z'l/a.

The kernel can also be approximated over the remainder of the range of
|z-z'|/a. One such approximation, which is generally referred to as the
thin-wire kernel, is obtained by a physical approximation in which the source
point z' is considered to be on the surface of the cylinder and the observation
point z to be on the axis of the cylinder, so that the approximate kernel

can be written as

§ o-ka\/1 +L"——az )
Gy = =% fom . (A-7)
81" a iy 2
1 +( ;z )
L J

Another approximation can be derived by letting [z-z'[/a >> 4 sin’ Y'/2 for

all Y' in Eq. (A-2). Then,

= !
-jka| 2|
G & b for® - ) (A-8)
o 81T28 IZ-Z'I
a

This kernel is identical to the one that results from placing both source and

observation points on the axis of the cylinder. It can also be derived from

Eq. (A-7) by requiring that |z=2'/a] >> 1.
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COMPARISON OF APPROXIMATIONS TO THE KERNEL

The various approximations to the exact kernel G (normalized to 8Trza) are

plotted as a function of normalized displacement in Figs. A-1 and A-2. The
Y' integration indicated in Eq. (A-2) was performed numerically to establish
the regions in which the approximations most accurately represent the exact
kernel. The figures are for radius-to-wavelength ratios (a/A) of 10-4 and
10-2, respectively, and show the dependence of the regions of wvalidity on
the dipole thickness.

Figures (A-1) and (A-2) show that a single approximation, adequate for
the entire range of |z-z'|/a, does not exist. They also indicate that G,y
Gb’ and Ga3 are excellent approximations for small values of the normalized
displacement |z-z'|/a. It is also evident that the accuracy of the approxi-

mations, especially for the imaginary part, deteriorates as the ratio

1210 1 ] 1 'j_r T 1 T T T L B ) I PRy § L T 1 PN T v
\ -4
Exact G \ a/A=10
10.0 Ge—'\ - Imaginary part
! Ga]'GQZ'Gc3’ e
o 8 O \/GbIGC’Gd’Ge’G é
& :
) \ -0.003948 O
\ S i
O . .
% 6.0 g
t g
2 g
] E;
& 4.0 £
2.0
0.0 TR Ve, ) I prsianl S diocs LR, CHN O | 1°3 4 | \I'N..I..l. O
0.04 0.1 1.0 10.0
Normalized displacement [(z-z')/al

Fig. A-1l. A comparison of various approximations to the kernmel for a/* = 10
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a/\ increases.

Because it is necessary to use different approximations

over various ranges of |z-z'|/a, one can, in view of the simplicity of the

expressions, choose

G(z,z',a) =

The first entry is
singularity at z =
The restriction on

establishing these

8a

( 2 n TE:;TT - 2mjka

|z-z"|/a <0.3

2 kiK(k;) - 2mjka |z-2'|/a <3.0

\

8T a

2m |z-z"|/a >3.0 .

¢ feez)’

included because it has an analytically integrable
lz-z'|/a >6.0.

the radius-to-wavelength ratio should be observed when

z'. The approximation Ge serves well for

regions of validity.

]2.0 ¥ s b b | T T T »\r e r[ i -\ i T i ‘0-3]
\ —=0.32
10.0 a/n =102 —-0.33
—-0.34
° 8.0 \,/Ge ' 0.3
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G /- \ \ G{],G 2, Gb,G 3 _0.40 -
- X Real part
2.0 G >\ gt oot
i, Wi N P
c———— —_— -,
G‘:'3 \
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Fig. A-2. A comparison of various approximations to the kernel for a/\ = ].O-2
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A CRITICISM OF THE THIN-WIRE KERNEL

Although the thin-wire kernel Gd has generally been used over the entire
range, this approximation suffices only for |z-z'|/a <3.0. For normalized
distances less than 3.0, this kernel is clearly deficient because its real part
does not exhibit the proper singularity. However, because we are generally
concerned with its integral rather than its functional value, the thin-wire
kernel can be used over a wider range than Figs. A-l1 and A-2 indicate.

It is interesting to consider the relative error that arises when the
thin-wire kernel is used in evaluating the integral on the right hand side for

z, = zj. Figure A-3 plots the relative error given by

i
z +A/2 /2
«/.J Gd(z ,z',a)dz' - ~f¢3 G(z.,z",a)dz"
z.-0/2 & bty

(G
&1 z +0/2

J{ J G(z.,z',a)dz"'
zj-ﬁ/Z J

vs the normalized interval half-length 50.0

A/2a. Also plotted is the relative
error €, for evaluating the integra-
tion over the adjacent interval,
5 A/2 <z, + 3A4/2. 1In the matrix 10.0
solution of the integral equation,

these plots of the relative error in

Relative error — %

the diagonal and first-off diagonal

terms in the coefficient matrix.

The relative error in the diagonal 1.0 ! e byl
e 1.0

A/2a

and first-off diagonal elements can

be unacceptably large for small

intervals (A/a<2.0). The €2 is not a
d ¢ 1 Fig. A-3. Relative errors (£l and =2)

monotonically decreasing function, resulting from the use of

but rather suffers a sharp minimum the thin-wire kernel.

when the interval contains the

crossover of G, and G at |z-2'|/a%0.4.

The relative errors (el and 82) can be

reduced by increasing the interval




length. For intervals on the order of six radii (A/a%6.0), the relative ervors
are less than 2%.

CONCLUSIONS

Various approximations for the exact kernel G have been compared and a
deficiency in the thin-wire kernel pointed out. A consideration of the errors
involved in the integral of the kernel leads to the conclusion that the thin-
wire kernel should be used only for sufficiently large intervals (A/a<6.0). A

matrix solution of the integral equation for the dipole using G, might not

d
converge as the number of segments N increases indefinitely, but rather might

begin to diverge beyond a certain number No. To increase the number of

segments, other approximations for the kernel near the singularity must be

used.
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Appendix B. An Alternative Approach to the Kernel Approximation

An alternate representation has been provided by Tesche.7 There, Q(z) is

written as

% ™
Qz) = =3 fz d9' P(z,4"), (B-1)
8m 0

where

P(z,¢') = f dz' 8(2,2',4’ - 01¢')’

3 ]
Expanding on his derivation, with R =\JQ;2 sin2 %;-+ (z—z')2 , we obtain
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The first two terms are independent of ka, as in the previous form, and the
first term is static. Tesche uses these two terms in his approximate

representation, in which he sets o = z - A/2 and B = z + 4/2, and obtains
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Hence, the first-order approximation to Q(z) becomes
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which is again, as expected, independent of ka but dependent on kA.

Let us now write Q(z) with higher-order terms included, i.e.,
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Thus, including terms up to order pertaining to m = 2, we obtain a second-

order approximation
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which has terms of order ka and (ka)z.
For o« = z = A/2 and B = z + A/2, we have
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The last term can be analytically integrated:5
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where E(m/2,k') is an elliptic integral of the second kind, so that
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It is well known that
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Then, we have
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We now introduce the m = 3 term in Eq. (B-2), which can be written as
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This expression should be more than adequate for most self-term evaluations.
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The required integral is only slightly more complicated than that given by
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