N AD=A036 721 POLYTECHNIC INST OF NEW YOKK BROOKLYN DEPT OF FLECTR==ETC F/6 9/2
» SUMMARY OF TECHNICAL PROGRLSSs SOFTWARE MODELING STUIDES. (U)
JAN 77 M L SHOOMAN: H RUSTON raoeoz-n-c-oaw
UNCLASSIFIED POLY-EE/EPT76-013 RADC=TR=76=40%

END

DATE
FILMED

AT

Jlis £

- ||_'§-'_ g

2

o HEZS s

=

o

NS

- SR

e T Sy

aﬂp TITLE (and Subtitle)
Q SUMMARY OF EECHNICAL ;ROGRESS SOFTWARE HODELIFE

UNCLASSIFIED

SECURITY C ASSIFICATION OF THIS PAGE (When Data Entered)

;" REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM

2. GOVY ACCESSION NO.! 3. F7 TIRIENT'S CATALOO NUMBER

~—-—.—-———'f

STUDIES . i ' -
TS

MBER(s)

3 /tuschoomn Sl F36g2-74-c-8294 /

. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJEEIEST' TASK

Polytechnic Institute of New York S O

333 Jay Street 62702F

Brooklyn NY 11201 55500806

11. CONTROLLING OFFICE NAME AND ADDRESS W B

Rome Air Development Center (ISIS) /0| sanamy ®77

Griffiss AFR NY 13441 - S
36

. MONITORING AGENCY NAME & ADDRESS(/f ditferent from Controlling Office) 15. SECURITY CLASS. (of this report)
UNCLASSIFIED

éi 15a” DECL ASSIFICATION/ DOWNGRADING
N/ASCNEDULE

EMENT (of this Report)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Same

18. SUPPLEMENTARY NOTES
RADC Project Engineer: Capt Alan N. Sukert (ISIS)

19. KEY WORDS (C. on reverse side il y and identity by block ber)
Software Modeling Programming Techniques
Software Errors Software Reliability

Program Testing

——— 1

20. ABSTRACT (Continue on reverse aide y and Id fy by block ber)

)

During the period of time 1 Jan 76 to 30 Jun 76, Polytechnic Institute of
New York conducted resealch under RADC contract F30602-74-C-0294 in the area
of software reliability. is report presents the progress of this research.
Subjects of investigati ere error generation and seeding/tagging models,
measures for the evaluation of software, analytical data selection methods
for program testing, modular programming techniques, methods for finding

feasible program paths, statistical program testing and proving, and methods

DD ‘Z‘.’.'.‘";. 1473 E0ITION OF 1 NOV 68 1S OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

<08 777 Vo

-

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

\

for automatically testing every program path.

Work has been completed on development of error generation/manpower deployment
models to describe the error correction process in terms of error generation
and correction rates as well as the number of man-months spent in debugging.
Work has also been completed in the development of seeding/tagging techniques
to estimate the number of software errors and related statistical quantities;
measures for comparing programs, such as accessibility, testability, and tested
ness, based on defining a program as a set of executible modules; and a method
for selecting test data sets for a program based on determining the‘}nterre—
lationships among program variables.

Work still in progress includes development of techniques to interactively
write programs using stored library modules and/or user supplied code, in-
vestigation of a satisfactory algorithm to estimate the number of feasible
paths in a program, development of a statistical theory for program testing and
proving based on using a strategy of both testing and journal proving using
Black's model, and implementation of a PL/1 driver to automatically test every
possible path and catch errors of any PL/1 program, subject to some minor con-
straints.

Ll

I
g ol g A7 S

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SECTION I
INTRODUCTION

This interim report summarizes the effort expended from January 1,
1976 to June 30, 1976 on RADC Contract No., F-30602-74-C-0294, The ma-
jor topics investigated and participating personnel during this period are
listed in Section II. Summaries of these topics appear in Section III, Sec-
tion IV indicates the planned direction of the research for the immediate
- future., Section V reports on the professional activities of the staff during

the reporting period.
SECTION I1I
PERSONNEL AND WORK AREAS

The following personnel participated in the research activities during
this reporting period

M. Shooman

H. Ruston
M. Adamowicz S. Mohanty
D. Baggi S. Natarajan
S. Habib G. Popkin
A. Laemmel B. Rudner
E. Lipshitz

and worked in the following areas:

1. Shooman and Natarajan:

Prediction models for estimating the number of errors in computer
software. The models incorporate the error generation present during the
debugging process, The analysis also compares the cost of debugging with

the cost of rewriting for software in which the error removal proceeds at
a small rate.

2. Shooman and Popkin:

Ammo A Sy

Continuation of the work on establishing feasible program test paths,

3. Shooman and Lipschitz:

Further work on automatic programming techniques for the construction
of reliable programs,

4, Ruston:

Planning of tests for the collection of data to verify the theoretical stud-
ies, and to collect statistics needed for model parameters.

1/2

m—— e —— % - < E -
) w— e
> pad 2R T -

e

5. Adamowicz and Mohanty:

Completion of two studies, one on quantitative software measures and
the other on the selection of program test data.

6, Laemmel:

Completion of the study on hierarchies of computable functions with ap-
plication to determination of program complexity. Continuation of the work
on probabilistic models of program testing.

7. Rudner:

Completion of studies on the seeding and tagging estimates of the initial
number of program bugs.

8. Baggi

The construction of a driver program for verification of Shooman's
model of an exhaustive test,

SECTION III
SUMMARY OF PROGRESS

In this section we summarize the work performed, Upon completion of
each task, a report on the task's results will be issued. Several technical
reports which document either the completed or continued research are in
various stages of preparation,

3.1 Effects of Manpower Deployment and Error Generation on Software Re-
liability - by M. Shooman and S, Natarajan

This phase of the modeling effort has been completed, and the detailed
technical report is in typing, The abstract of the report is presented below.

Abstract

Several previous models in the literature have discussed how the num-
ber of errors in a large software system is related to the rate of error re-
moval. Similar probabilistic models for the error removal rate were pro-
posed in 1971 in two papers, one authored by Shooman and the other authored
by Jelinski and Moranda. The models proposed by Shooman were based on
error data on 7 different large operating systems and application programs
and collected by Hesse, and these models also fit the data of Akiyama which
was collected on small programs. Expressions for the number of remaining
errors as the software undergoes debugging were formulated and additional
assumptions were made to relate the number of residual errors to the oper-
ational system reliability.

A key assumption in the above models is that the sum of the errors re-
moved and the errors remaining in the program is a constant. Thus,

3
Sl
(PAGE ; BLANK. yorp FIDED
T —— R bt . 20 i

if we can estimate the initial number of errors in the system at the start of
debugging and keep careful records of those removed we have a good esti-
mate of the number of remaining errors. In 1973 Shooman described a test
procedure for estimating the initial number of errors.

In this work we add a major refinement to the above models by introduc
ing the possibility of error generation during debugging. A generated error
is due to one of two causes: (1) a bug whose correction is invalid and fur-
ther debugging on the same statements is essential, (2) a new bug which is
generated as the result of the correction of a different error. The error
generation terms are modeled in several different ways: proportional to the
number of detected errors, corrected errors, the number of remaining
errors, or some function of these effects, The correction rate is assumed
to be a function of the manpower deployed on the project, thus, one can use
the model to investigate optimum manpower deployment strategies. The ef-
fects on the economics of debugging due to error growth have also been ana-
lyzed.

3.2 Seeding/ Tagging Estimates of the Number of Software Errors - by
Beulah Rudner

The theoretical part of this effort has been completed and the technical
report is in typing. The tests for experimental verification are now being
planned. The abstract of the technical report is presented below.,

Abstract

Seedling /tagging estimates of the number of software errors are com-
puted from s, t and ¢ where: t is the number of errors either inserted de-
liberately in a program (seeded) or found by debugging (tagged); s is the
number of errors found by a debugger unaware of the contents of the first
set; and c is the number of errors appearing in both sets.

Two types of questions can be raised. One type relates to the method
and procedure: the introduction of new errors, the changing of a program
by debugging, etc., The other relates to possible estimates, and their eval-
uation and comparison. This report concerns itself with questions of the
second type. Estimates based on 3 models are discussed, The models are
defined by assumptions regarding the equal or unequal difficulty of uncover-
ing individual errors. Model 1 assumes all errors are equally open to dis-
covery at all times. Models 2 and 3 assume categories of difficulty to be de-
fined for all programs. In Model 2 the error distribution among categories
is unknown; in Model 3 it is known. Estimates for Models 2 and 3 are shown
to be closely related to those for Model 1.

The mean and mean - squared error of a maximum likelihood estimate
and a modified maximum likelihood estimate are given, It is shown how
these quantities vary with certain relations among the total number of er~
rors, size of tagged or seeded set and size of accompanying sample set,
Curves are drawn which can be used to determine optimum values for s and
t and a procedure is outlined for doing so,

More precise estimates can be obtained with several trials rather than

one as described above. Several such estimates are examined and discussed,

4

It is concluded in general terms that a reasonable investment of time
will produce adequate estimates.

3.3. Measures for the Evaluation of Software - by S, N, Mohanty and
M. Adamowicz

This effort has been completed and the final technical report is being
prepared for typing. The abstract of the report is presented below.

Abstract

In this report an attempt has been made to define and quantify the struc-
tural qualities of computer programs for the purpose of comparing program
structures. Three software quality measures (accessibility, testability,
and testedness) have been developed and applied to determine how well a
program has been tested.,

A program is defined as a set of executable modules which are either
segments or nodes; a node being a decision point and a segment being a se-
quence of executable statements, The accessibility of each of these modules
is defined in terms of the probability of accessing the module from the pre-
vious modules and the probability of successful execution of the previous
modules, The testability of each executable module is a function of the ac=-
cessibility and the complexity measure of the module, The testability of a
logical path is given as an average of the testabilities of the program mod-
ules constituting the path, and the program testability is given as an average
of the testabilities of the paths constituting the program. The measures pro-
vide a quantitative means of comparing programs,

3.4. An Analytical Data Selection Method for Program Testing - by
S. N. Mohaaty and M, Adamowicz

This work has been completed and the final technical report is being pre-~
pared for typing. The abstract of the report is shown below.

Abstract

A method is presented for determining the interrelationships among
variables in a program, These interrelationships provide the constraints
for the input space, i.e., the space formed by the set of all possible data
sets, Under this method a program statement is broken up into many basic
statements, The set of all variables which consist of the set of all primary
or independent variables and secondary or dependent variables are found,
and the initial constraints for the primary variables are determined. The
interdependencies among the variables are then tabulated in the form of a
matrix called a Dependency Matrix (DM) The initial constraints for the vari-
ables are then determined locally, i.e., from the information in each basic
statement and are tabulated in the form of a matrix named an Initial Attribute
Matrix (IAM). To determine the dependencies among the variables, we mod-
ify the IAM and arrive at the modified IAM,

A set of algorithms have been developed for analyzing programs with

i

arithmetic operators (i.e., **,%, +, -, /) and certain functions, namely
SORT, LOG, and EXP, so as to determine the numerical bounds of the vari-
ables which are forced by the use of these operators of functions. From the
DM and modified IAM, we find the numerical bounds for primary variables
by making use of these algorithms,

This forms the desired input~-space from which the data sets can be se-
lected for testing the program.

3. 5. Modular Programming Techniques - by Elan Lipshitz

3. 5.1, Introduction

The objective of this effort is to find ways to write more reliable pro-
grams. To this end we raise questions in the following three areas:

"1. Computer Language Can we develop a high level language that
is less susceptible to bugs? Can we prove that any one of the existing lan-
guages is better in the sense of having less bugs?

2. Structural Programming and Complexity of Programs Can we
derive a sequence of steps in writing programs that will result in more re=
liable programs ? Is there a correlation between the structure and content
of a program and the number of bugs in it? If yes, which areas or state-
ments or programming techniques are more bug-manifested? Can we elimi-
nate or replace them?.

3. Automatic Programming Will the use of pre-written and tested
modules of code reduce the number of bugs? How can they be best incorpo-
rated into the programs?

This project will investigate both structural and automatic programming
with the emphasis on the latter,

3.5.2., The Program: Auto - Programming

The program '"'Auto-Programming' is divided into two parts - "Flow'
and "Auto, ' both of which are interactive on-line programs that, by communi-
cating with the user, generate his program. Currently, they are written and
generate programs in Fortran,

A, The Program Flow

"Flow' receives the information about the flow-chart of a program
from the user. 'Flow' recognizes only four different types of blocks which
are sufficient to generate any flow-chart. They are:

1. Control Block. This is a conditional decision block, similar
to the statement IF () GO TO ___» The user will write the code for this
block.

2. Functional Block., This block will perform a task that is avail-
able in the computer library, The program ''Auto' will generate the cor-
rect code for this block,

‘

3. Stop Block, This block indicates the end of the path; and
is coded by the STOP statement.

I STOP l
STOP | !
4, User's Code Block, The user inserts the desired code into

this block. This block is used whenever the library cannot perform the
needed task,

Fig. 1 illustrates how the above blocks can be used to construct the flow
chart of a given program. The program first builds a table "Clas" with the
names of the students in a class, and then enters their grades into the table
"Grad." Note that the GO TO A is a user's code block (i.e., type 4).

The flow chart generated using only the above blocks is always a binary
tree in structure, while the transfer of control during the execution might
behave like a graph,

Upon completing the flow-chart control passes to the program '"'Auto',
to be discussed next.

B. The Program: Auto

The user will specify to '""Auto' what he would like to do, and "Auto" will
advise him which methods are available for the solution, as well as their
characteristics, The user then will choose the method he prefers, and
""Auto' will generate the needed code,

o

M\-%

e o

INITIALIZE {

CLAS, GRAD & _ _
@ READ J |*

CLASS IS THE ARRAY OF STUDENTS' NAMES
GRAD IS THE ARRAY OF STUDENTS' GRADES

J IS A VARIABLE HAVING TWO VALUES; 0AND 1

FOR J=0 WE GENERATE THE ARRAY CLASS
FOR J=1 WE ENTER THE GRADES

NO

{

|

j READ STUDENT'S
@ ' NAMES
L

SORT

! CLAS
oo g

@ STOP

Fig. 1:

®

READ STUDENT'S
NAME & IGRD

NAME IS THE STUDENT'S NAME
IGRD IS THE STUDENT'S GRADE

SEARCH
FOR STUDENT'S
NAME

ENTER
HIS IGRD

YES

GO TO A

STOP

PRINT
CLAS, GRAD @

STOP @

END

Record of Student's Grades

vl

B

HEamucEws,

o ol

"Auto'" is divided into four parts:

1. Dictionary, which advises the user of tasks available in the
computer library.

2. Communicant, which supplies and receives from the user all
the information needed to generate the code. In addition, it will sort the
labels generated by the user,

3. Code generator, which uses information obtained with the
help of the communicant, and generates the final code. It will resolve
any conflicts in the labels generated by the user, and the duplicates
generated by '"Auto."

4. Library, which contains a collection of code modules
needed for the different tasks, e.g., input/output, solution of mathe-
matical problems, inventory and banking programs, etc.

"Autd' was revised to allow dynamic label generation. The communi-
cant scans the user's statements looking for labels. The labels found are
stored in a table '""Lab'" in descending order. Before the code generator
writes a label it searches '"Lab' to see whether this label is already in use.

The library is being expanded. Code has been written and tested for
the following mathematical tasks:

2n+1
- _.!'... ..__x-l .
Ln(x)-—Z ng; Snil | 5<x< 2.0 (1)
xn
;zx:i o -2.0<x<2.0 (2)
n= ¥
1 nx2n+1
Sin (x) =), dekipde. -2m <x S 2w (3)
n=)
d 2n
Cos (x)= 1 C2.1 i - 27 <x < 27w (4)
as D (2n)! - =
. " 2x4x6.,.., 2n 2n+1
Arc Sin (x) -x+n=g; Txoxt 2n¥1) X 0<x<.5 (5)

m is chosen so that the magnitude of the last term in the truncated power
series (for the gpecific value of x) is the first term which is just less than
or equal to 1077,

LI 25PN s e

The following is an example of code generating for a program. The pro-
gram is the same as in Figure 1.

Figure 2 shows the interaction needed between '"Flow'' and the user to
generate his flow chart, as well as the flow-chart generated.

Figure 3 shows the communication between "Auto' and the user. ""Auto"
either allows the user to input his own code or to enter the information it
needs to generate the code.

Figure 4 is the final code "Auto Programming'" has generated. It is im-
portant to notice that the final code uses the user's variable names and
their correct size, and that the labels generated by ""Auto' do not conflict
with that generated by the user.

3.5.3. Conclusion

The "Auto-Programming'' package offers the following three advantages:

1, Ease of Operation The software package is self-explanatory,
The user needs to know only how to gain access to the system. Once a con-
nection is established, the system will ask the user for all the information
needed to generate the correct program.,

2. Reliability The code stored in the library will be pre-tested
and debugged.

3. Time and Cost All indications are that both time and cost of
writing and debugging programs are reduced. An attempt will be made this
summer to substantiate the above statement. The example discussed in
this paper required 10 min. of terminal time and 18 sec. of C.P. U. time.

3. 6 Application of Logical Operations to Finding Feasible Paths in a Pro-
gram Flowchart -by Gary S. Popkin

In [1], a flowchart was given in which it was desired to find all the
feasible paths. The flowchart is reproduced here as Fig. 5. The matrix
P, introduced in [1], displayed all feasible and infeasible paths in a flow-
chart. The matrix P is reproduced here as Table 1.

10

WHAT EBLOCK DO YOU WANT 7
INFUT 1 FOR CONTROL ELOCK

INFUT & FOR A FUNCTION ELOCK
INPUT 3 FOR STOF ELDOCK
INFUT 4 FOR OTHER ELDCK
INPUT S FOR END ELOCK
INFUT A FOR AN ERROR

4

1

4

2

=

4

2

4

1

4

3

4

2

FLOW CHART OF FROGRAM

a
C‘——_‘
o

o
F F
= o
Lo |
0 o
s £
€
Fig. 2: Flowchart Generation
11
":"‘\"Q""::" - s S —

T

EACH LINE ENDS WITH ¢
LAST LINE ENDS WITH +
INTESER CLAS (10D e
INTESER GRADLIOY e
READ (S 20 Je
3 FORMATIL) +
EACH LINE ENDS WITH ¢
LAST LINE ENDS WITH +
IF(J.E@. 1" 30 TO T+
ERACH LINE ENDS WITH ¢
LAST LINE ENDS WITH +
o & 1=1s10e
READ LSS cLAS (1)
FORMAT (Al +
inPuT 10 FoOR sORT
NFUT 11 FOR =EARCH
10
WHICH SORT DO vOU WANT
INFUT 13 FOR INTERCHAMGE sSORT
INFUT 12 FOR =HELL =0ORT
INFUT 14 FOR EBEUCKET =0ORT

L]

12
INFUT TARELE MAMEsSIZE
cLas 10

EACH LIMNE ENDS WITH ¢
LAST LINE ENDS WITH +
¥ READ “Se2VMNAMEs IGRDe
2 FoRMAT (A4 130 +
iNFUT 10 FOR =arT
INFUT 11 FOR =ERRCH
11
INFUT 1S FOR LINERR SEARCH
IMNFUT 16 FOR BINARY SEARCH
15
INFUT TAELE NAME SIZE AND WORD EEING SEARCHED FORs
cLAs 1 0nAMEK
EACH LINE ENDS WITH ¢
LAST LIMNE ENDS WITH +
GRAD (K)=1GRD®
READ (TSI Je
9 FORMAT(R1) +
EACH LIME ENDS WITH ¢
LAST LIME ENDS WITH +
IF(J.eER. 121> o0 To 10+
EACH LINE ENDS WITH ¢
LAST LINE ENDS WITH +
30 TO 7+
EACH LIME ENDZE WITH ¢
LAST LINE ENDE WITH +
10 o 12 1=1s10e¢
12 uRITE(Es 1S cLAS (1) s GRAD (I ¢
15 FORMAT(IH sA4s 1 0%y 130 +

LOCATION INDEX

Fig. 3: Illustration of the Communication Between

the Program Auto and the User

12

" S —— - e ——————— -

A

o

NN

n

n

N

[4

11

16
13

14

0

INTEGER CLAS 10D
INTEGER GRADC1 0D
READ 'Sy 30
FORMAT (I1)
IF(J.ER. 1) 30 T 7
o 2 1=1s10
READ LSSV CLAs VLY
FORMAT (ad)
EHELL SD0ORT
INITIALIZE
M= 10
ID=N
ID=CIp+ld A2
1=1
1l=1p+1
1IFLE=0
COMPRARE s REFLACEY SET FLAG
IFCLAS (1) . LT.CLASCI12 350 To 1
ITEMF=CLAS (1)
CLRSCIVI=CLAS(IL)
CLAS LI =ITEMR
1fLis=1
FICK P MEXT FAIR IF HOT REATHED END OF TARELE
11=11+1
IF{1l.37T.M3 30 TO 4
1=1+1
0 To 11
IS TAELE =DRTED
IF(IFLG.GT.0) 30 TO [
IF(ID.NE. 1) G0 TO)
=TOF
READ (S B NAME s IGRD
FORMAT CAds 130
LINEAR SEARCH
po 16 1=1s 10
IFCCLAS (L) .ER.NAME? GO0 TO 14
COMT INUE
WRITE (S 13D
FORMAT (1H 16Xy SEARCH FARIL 2
=TOF
K =1
GRAD (K) =1GRAD
READ (S g
FORMAT (R1)
1F(J.em. 121> 0 7o 10
0 YO 7
sTAP
po 12 1=1,1v
WRITE (65 15)cLAs (1) sGRAD (1)
FORMAT (1H sAds LUxy 13D
sTOP
END
13

e S 2l e 2l B)

Fig. 4: The Final Code

Y

.

o LA

Fig. 5: A Flowchart

14

- — i e A—— e A 45 M

(123456 78 9 10 11 12 13 14 15 16 17 18 19 20\
1) W IS D) RS R T S T s GRS S | S 1.k 1 1

2 Y RUECE 0490 'eTecer g g 9 0 00 e 0 D8
3) S) T S R B TR T (R R s I s S SR R R S R
4 1000 00 xd 0 0 0 0 0 0 1.0 0 90
5 0o ee & 6o L 00 0 F- -9 0 0 1 0 0
6 @ 9'1 600661000 P @ @ 1 A4 60 -1"0
7 000300000 @ =0, -0 .00 1, 6:90 0 1
8 i e (13aa(1 20 GRAD SR S0 it il (BT MR TR GRS IR < (SO ¢ e O B « TS IR (SEE |
9 00000 0002 2 1T 0.0 0 0. .0 0. 0 0
10 g 050 0000 1 E EEge-tgl 2 e 9 -0 g
11 o S SR sl JRT 0 > 0 TR TR0 SR S g+ S o TR o SR « SN ¢ SEERNE A (R R |
12 g0 @0k LY d 000 g 00 0" 0 0 0 0 0
13 (0 R05(S = S8 D 1L U i Lt (NS L A (SO M Rl TR A AN (R |
14 000 00 0000 b SBEEe i ke el il @ sl

15 ko 00000 00l - F o b= Feat b Y 0 0 -0 .0 /

Table 1, The path matrix for the flowchart in Figure 5.

The flowchart in Figure 5 is small enough so that the feasible paths
can be tound by inspection, as was done in | 17 It is desirable to have a
more methodical way of finding the feasible paths for larger flowcharts. The
method proposed in [1] was to find the feasible paths by logical operations
upon P, and then to remove the corresponding columns from P. If the
method of finding infeasible paths was imperfect, as it promises to be, and
some infeasible paths remained undetected, then the remaining matrix would
contain not only all the feasible paths and but also some infeasible ones.
The infeasible paths would then be found and removed by methods described
n[1], as the matrix remaining from P was used in further reductions.

The approach followed for finding the columns of P (which represent the
infeasible paths), was to establish vector functions of feasible paths. Sub-
sequently, logical operations were performed between the vectors and the
columns of P. For example, from the flowchart it can be seen that any
feasible path containing segment 2 must also contain segment 3, and con-
versely. This can be expressed as a column vector C, whose transpose is
C' = (o, 1,1,0,0,0,0,0,0,0,0,0,0,0,0). Also, any feasible path containing
segment lZ must alao contain segment 8, but not conversely, Perhaps this
could be expressed as C' = (0,0,0,0,0, 0 0,1,0,0,0,1,0,0,0). In any case,

15

e, My

L

the tester of the program could construct a number of such vectors describ-
ing the relationships existing the flow-chart. Unfortunately, this approach
was not fruitful.

It may be possible to perform ANDing operations between the C. and the
columns of P and to find columns which represent infeasible paths, 'For
example, the following was tried and found wanting: Any column of P, say
kj, represents an infeasible path if and only if

o .
Ci kj # Ci all i (1)

Using just C1 and C,, it so happe.:s that (1) would correctly detect paths
3,4,5, and 6 as infeasibfe. It would incorrectly call paths 11 and 12 infeasi-
ble. (1) could be made to work for path 11 and 12 by adding to the set of the
Ci a vector which says that any path containing segment 9 must also contain
segment 8, namely C! = (0,9,0,0,0,0,0,1,1,0,0,0,0,0,0), But for this pro-
cedure to be workable it cannot depend on the set of the C, being complete.
While it is not fatal if the procedure leaves some infeasible paths undetected,

it must not under any circumstances incorrectly call a feasible path infeasi-
bleo

In an attempt to remedy the defect involved in needing a complete set of
the C.,, ANDing with single vectors C, instead of the complete set was tried,
Unfor]tunately this approached also failed.

Another approach would be to change the inequality in (1) to an equality
and search for feasible paths instead of infeasible ones, but there still is the
risk in that method that some feasible paths would be called infeasible be=
cause of the set of the Ci being incomplete.,

Also, an approach using ORing was tried, with results that were even
less acceptable than those from ANDing.

The above summarizes the approaches undertaken, and the difficulties
that surfaced. Current effort on this problem involves: (1) further search
for a satisfactory algorithm to estimate the number of feasible paths, and
(2) methods for constructing an automatic test driver, where the number of
inputs will equal the number of feasible paths (see Section 3. 8. 6).

REFERENCE
1, Gary S. Popkin, "Program Paths and the Number of Tests Needed to

Verify a Computer Program," "Summary of Technical Progress, Soft-
ware Modeling Studies," RADC-TR-76-143, pp. 40-49, May, 1976,

16

- A —

B e e e

]
:

3. 7 Statistical Theory of Program Testing and Proving - by
Arthur E. Laemmel

3.7.1 Introduction

The purpose of this work is to extend the results on program testing,
reported in the preceding progress report.

The usual approach to proving program correctness has so far been
applied successfully only to small programs. The practical approach to
large programs is to run a number of tests. The larger the number of such
tests, completed without errors, the greater is our confidence in the pro-
gram.

The method presented here is to combine both these approaches, this
being partially theoretical program proving, and partially experimental
testing.

3.7.2 A Model of Test Strategy

Observe that the result of testing a program is one of the following
two outcomes:

1) The program failed on input x.
or
2) The program operates correctly on n inputs.

The same approach is often followed to investigate in a preliminary
fashion the validity of a conjectured mathematical theorem. By analogy, we
choose parameter values, substitute into the postulated theorem, and cal-
culate the output. The result of this process is completely analogous to the
two outcomes stated above. In a mathematical theorem, once we satified
outselves that no counter example exists for a great number of tries, we
may proceed and try to prove the postulated theorem. In a program we will
not try to establish the validity of the program by proof, but be content with
the confidence achieved after a large number of tests. In fact, M. Rabin
challenges the notion of mathernatical proof in the context of computational
algorithms. He states that it is sufficient to establish that a statement is
true to a very high probability (e.g., 1-2-100) rather than to demand an
exact proof I,

We can model the above test process and optimize it by analogy with the
well-known, elementary probability example of drazwing a ball from a box.
We will follow the model suggested by W. L. Black®.

A version of the model might be rephrased in traditional terms as
follows: a single red ball is in one of two boxes, each of which contains a
very large number of white balls. Let

p; = a-priori probability that red ball is in box i
m, = probability that if red ball is in box i then a single look will

miss it
¢, = cost of a single look in box i

17

T —— N— B e —

s

S,

Black has given a simple way to find the minimum expected cost strategy
for searching for the red ball. Arrange the numbers

=). 2
n= 1,2,3.0.

n

C.
1

in decreasing order, If the k'th number in this arrangement is one with i=1
then the k'th look should be in box i, otherwise in the other box.

In order to get a feeling for this strategy in the present application, let

box 1 represent possible proofs that a certain computer program works cor-
rectly and box 2 represent various sets of input data,

Choose parameters:

Py = « 9e—(program probably OK) —e Py = . 1

m, = ,999)computer search for m, =, 2 one
€)= 100 | a proof time-consuming c, = 5 program
and not likely to succeed test is easy
py (lem,) p,(l-m,)
it Sestatins GRE R 9E TN i A =.016
c c

1 2
py(l-m,)m p5(1-m,)m
b KX 00000899 SRR A, 002

<, c,y

2 2
Py {d~m, e, Pyli-mq iy

<, = , 00000898 , = ,00064
. 00000897 . 00128
. 00000896 . 0000256
. 00000895 . 00000512

According to this, looks 1, 2,3,4, and 5 should be in box 2, then looks 6,7,
8 (for several hundred looks) should be in box 1, This strategy simply says
to look in the box which has the highest ratio of a-posteriori probability to
cost at any stage., It is intuitively satisfying that the first looks were for

18

counter examples, and (perhaps) that the sixth look was for a proof, It is not
too satisfying that these looks are to be followed by o attempts at a proof,
where a is given by

. 000009 ml"’= . 00000512
.57 = (1-,001)% 1-.001e

If the first series above decreased more rapidly, and the second series
decreased more slowly, the strategy would go back and forth between proof
and counter example more frequently, The main difficulty is that successive
trials, either for proof or counter examples, are not satistically indepen-
dent as is required in Black's model.

Each attempt at a proof can build on the last attempt because any partial
results obtained in the previous attempt can be used in the next. This
means that m, should decrease with n instead of remaining constant. On
the other handl, if a computer program is tested with 10 random inputs, and
if no failure occurs for the first 9, than the 10th trial certainly gives less
information than the lst trial, This means that m., should increase with n,
i,e. that errors are harder to find with a single test later on in the testing
sequence. Such a result can be derived from formulas given in the previous
report, since these represent a way to describe statistical dependence among
test outcomes,

Incidentally, the same approach was successfully applied to the opti-
mization of a rgliability structure under cost constraint by M. Messinger and
. L. Shooman®. The algorithm allocated redundant components to the
structure in a sequence in such a way that each addition of a component
maximized the gain in reliability per dollar.

3. 7.3 Conclusion

The work is continuing in this area. The object is to formalize the
interactive part-proof, part-test procedure to program verification with a
prescribed confidence level.

References

1. M. Rabin, Carnegie-Mellon Symposium on New Directions and Recent
Results in Algorithms and Complexity, April 7-9, (reported in Paper
Crisis, SIAM News, Vol. 9, number 4, August 1976).

2. W, L. Black, "Discrete Sequential Search" Information and Control,
vol. 8, pp. 159-162, 1965.

3, M. Messinger and M. Shooman, "Optimum Allocation of Spares

Redundancy: A Tutorial Survey," IEEE Transactions on Reliability,
July 1071.

19

. T oy T . —

3.8 Implementation of Shooman's Model of Exhaustive Testing - An Auto-
matic Type 1, A Tester - by Denis L. Baggi

3,8.1 Introduction

In an internal paper '""Analytical Models for Software Testings' Martin L,
Shooman describes a scheme for implementing a driver program to auto-
matically test each path of a given program. An implementation of this
scheme in PL/ 1, with a few revisions, is described here, along with two
examples of programs, which were run with normal analytical debugging
techniques - i.e., with some testing data - and through the testing program,
Comparisons among man-hour efforts and computer time in both cases are
made,

3.8.2 The Testing Driver Program

A program, referred to as driver program, has been developed and run
in conjunction with two programming examples. Its purpose is to allow auto-
matic testing of all possible paths of any given program, A description of
its functioning follows.

The driver program requires a data card containing an integer, N=
TESTS, i.e., the number of IF statements, plus the number of repetitive DO
groups, in the program and subroutines, to be supplied by the programmer.

he next data item has to be an 'order,'" i.e., a character string such
as 'NORMAL OPERATION, ' or 'TEST, ' or any other string. If the order is
'NORMAL OPERATION, ' then the driver allows normal functioning of the
program to be tested, e.g., with a set of data designed, by the programmer,
to test some cases - a normal debugging practice.

If the order is 'TEST, ' no data set is needed for the tested program,
but an array, T, with lower bound 1 and upper bound N-TESTS (the number
of tests, as read in previously), will be constructed to represent, in ascend-
ing order, all possible bit combinations of binary numbers from 0 up to 2 **
N-TESTS - 1; this array is called testing word, and it thus consists of the
bits of a binary counter with N=-TESTS bits, Notice that the value 0 is in fact
represented, in the corresponding T, by - 1, while 1 is represented by 1,
Eventually the program to test is run for any such binary combination,

For any other order string, such as 'ENOUGH, ' as well as in the case
of absence of data, the whole system stops.

3.8.,3., The Tested Program

Although no particular care has been taken to make sure that the driver
program is fully compatible with all possible programs to test it is believed
that, at its present state, the invariant part is flexible enough to accept a
large class of programs with no modification, requiring for other programs
only minor, sensible changes,

20

o L e Rale SRR T T

Shooman indicates (in p. 5-1 of his paper), a strategy for implementing
the driver program, namely, a revised way of writing 1F statements and
DO loops in a program to be submitted to testing; however, since such
schemes lack generality (-i,e.,only conditions of the type "exp > (' are al-
lowed in IF statements, and only limits from 1 up to an upper bound > 0 in
DOloops -), the scheme described here has been developed as a natural de-
rivative of these suggestions; hence, the only restrictions to be obeyed in
writing a program will be the following:

la) instead of IF cond THEN statementl; ELSE statementz;

write IF F(cond) THEN statementlz ELSE statementz:
lb) instead of DOI = LIMIT 1 TO LIMIT 2 BY INCR ;

write DO I = GL (LIMIT 1, LIMIT 2) TO GH BY INCR;
lc) instead of DO WHILE (cond) ;

write DO WHILE (H(cond)) ;

(where: F, GL, GH and H are described in the forth coming tech-
nical report)

2) function and subroutine procedures are possible but should be in-
ternal to the program

3) variables used in the program which are assigned a value through
a read (GET LIST) statement should be initialized, for instance through a
DCL INIT statement,

All these restrictions could be removed. To remove 1), one could con-
struct a subprogram in the operating system which automatically supplies F,
GL and GH, and H, Subroutines could be external, as long as a mechanism
is provided for passing back and forth T - e.g., COMMON statements
in FORTRAN -, hence removing 2). And point 3) is a direct consequence of
the read=-in scheme described by Shooman, which could be modified at will.

3,84 The Two Examples

For illustration two programs were chosen at the two ends of a spectrum:
one with many IF statements, and input data, and the other with DO groups
and one subroutine, and no input data,

A, First Example : Computer Solution of a Card Game

This is a very slightly altered version of Shooman's algorithm of Fig.
4-3 in his paper, The algorithm appears in Fig, 8. It determines the win=
ner of a card game, in which player A is dealt two cards, Al and A2, and B,
similarly, gets Bl and B2, (four integers read in with a GET LIST statement).
If both winners have a pair, the highest pair wins, or if they are equal it is

21

- m————

Pt T

| Prin:
'A Wias | | Tie i

j
Yooy s

| ign_3 High 3=B2 |
' LowB=3B1 |

False

Fig. 8: Flow Chart for Com{uter Solution of a Card Game
2

o i T —

comane o

a tie; if only one player has a pair, he wins; otherwise the highest card wins,
or if they are equal, the highest second card wins; identical hands are ties.
At first the system was run under 'NORMAL OPERATION' conditions, The
results are shown in the forth coming report. The system was next run
under 'TEST' conditions. The tested program has 12 IF statements, hence we
have a 12-bit testing word.,

Since the program is fully debugged, no error can be seen in the output
listing; should one error appear, however, it would be easy, from the test-
ing word, to reconstruct the path and detect the deficient statement.

B. Second example: A Program Which Prints the Prime Factors of
all Integers from 1 to 100

This is a simple pragram which tests each integer from 1 to 100, prints
it, and its prime factors, or the word PRIME if it is prime, Its algorithm
is presented in Fig. 9.

The internal subroutine PRINTOUT prints the results; this procedure
has been incorporated to show the generality of the scheme including sub-
programs. Notice that, although it is called only once from the main pro-
gram, it could be invoked as many times as needed, because of the design of
the internal procedures of the driver program, which know by themselves
how to select a new bit in the testing word each time they are used.

3.8,5 Efficiency of the System

Program Example A,

- it took 30 minutes to design the program

- it takes no extra time to redesign a program according to the
specifications expressed in section 3.8.3

- it took 10 minutes to find a data set to test some well-choosen paths

- the program ran in 2,41 minutes under 'NORMAL OPERATION' with
that set of data

- the program ran in 4. 12 minutes under '"TEST' conditions, explor-
ing all paths

Program Example B

- it took 20 minutes to design the program
- there is no data
- the program ran in 3,81 minutes for 100 integers

the program ran in 1, 76 minutes under TEST conditions

23

— e ———— - 1 T————— ———— - - P———

MAIN PROGRAM

SUBROUTINE
PRINTOUT

Fig. 9: Algorithm for
Printing Prime
Factors from
1 to 100

N =1 DO NO
N =N+l N < 0o
YES
FACTOR «0
M= N, L2
L=l
DO NO
M>1&
L* L<M]

) e ol S 0 §

M -M/L

FACTOR (I) = L

G|

PRINTQUT

N, FACTOR, M

-«
START
PRINT N
i DO
FACTOR
I=1+1 () 40

PRINT
FACTOR (I)

PRINT
PRIME

24

RETURN

v ——

=

Hence the system provides the following: '

Advantage

No time is spent in finding a data set to debug a program,

Dis advantage

Running time may increase exponentially with the number of IF state-
ments and DO loops. For instance, Program A contains 12 IF statements,
and therefore the testing word has 13 bits and 8192 runs through the program
were needed to test its 100 paths (hence, with this blind mechanical approach
many tests are meaningless). However, if the program becomes too large, it
can be separated in portions to be tested individually, along with the inter-
connecting data sets, Furthermore, this disadvantage is compensated by
those cases of programs with many DO-loops and few IF statements. Pro-
gram B, for instance, required almost four minutes for a hundred integers,
and would use a lot more for, say 10, 000 integers, but it took less than two
minutes to go through all paths as defined, and would still take the same
amount of time no matter how many integers it would have to consider.
Hence a TEST run is, in these cases, very time saving,

3.8.,6 Conclusions

A possible implementation for an automatic program tester of type 1, A
has been discussed. The tester ignores the semantics of the tested program,
but is able however to run through all possible paths present in a program
and catch a possible error.

This implementation, rather than representing an ultimate result, is
meant to be an illustration of the method and techniques proposed by Shooman
in his paper; it would be easy, for instance, to make the driver program
more flexible or suited to other styles or programming languages.,

It was rewarding to discover that even within the limited development of
these techniques some goals have been achieved, namely, the realization of
a system which has already proved its usefulness in debugging the described
programs,

25

-

4,0 Directions for Next Period's Work

In the next period we plan to work on the following:

1,

2,

3.

Adamowicz:

Bagpgi:

Laemmel:
Marshall;

Ruston and

Berlinger:

Shooman and

Popkin:

Shooman and
Ruston @

Further work on measures for the evaluation of
software,

Completion of a report on the construction of an
automatic driver for Shooman's model of test cover-
ing each program. path,

Continuation of studies on statistical program test-
ing.

Application of graph theory to statistical sampling
approaches for software reliability,

Applications of software physics to complexity
measures,

Continuation of work on levels of program testing

Experimental tests for (1) validation of seeding/
tagging estimates (2) Shooman's extended debugging
models (incorporating errors generated during the
debugging process), and (3) obtaining data for
verification of software physics and other complex-
ity measures,

5.0 Professional Activities

This section summarizes the professional activities of the research
personnel working on this contract,

5.1 Published and Submitted Papers and Reports

1,

3.

C. L. Hsu and L. Shaw, "Downtime Distributions Based on a
Multivariate Exponential Distribution," Report No. Poly EE/EP
76-002 EER 120, Polytechnic Institute of New York, Feb. 1976,

C. Marshali,

""Contributions to the Theory of Avaiilability, "' Re=

port No. Poly EE/EP 76-004 EER 121, Polytechnic Institute of
New York, Feb, 1976,

S. N. Mohanty and M, Adamowicz, "Proposed Measures for the
Evaluation of Software,' to appear with Proceedings of the Sym-
posium on Computer Software Engineering, 1976,

26

e —

8.

9.

lo.

11,

12,

13,

L. Shaw and M. Shooman, ''Confidence Bounds and Propagation
of Uncertainties in System Availability and Reliability Computa -
tions, " Technical Report N00014-67-A-0438-0013, Poly EE/EP
75-002 Polytechnic Institute of New York, Jan., 1976.

L., Shaw and S. Sinkar, '"Redundant Spares Allocation to Reduce
Reliability Costs, ' Naval Research Logistics Quarterly vol. 23,
No. 2, pp. 179-194, June 1976,

M. L. Shooman, "Recent Developments in Software Reliability -
The State of the Art,'" To appear in the Proce=dings of the
Thirteenth IEEE Computer Society International Conference,
Washington, D.C., Sept. 1976.

M. L. Shooman "Structural Models for Software Reliability Pre-
diction, "' Second National Conference on Software Engineering,
October, 1976, San Francisco, Calif.

M. L., Shooman and M, I, Bolsky, '"Types, Distribution, and Test
Correction Times for Programming Errors, " IEEE Transactions
on Reliability, vol. R-25, No. 2, pp. 69-70, June 1976.

M. L. Shooman, M, Horodniceanu, and E, J, Cantilli, '"System
Safety Applied to Transportation Systems, ' To appear in the Pro-
ceedings of Inter Society Conference on Transportation, Los
Angeles, Calif, July 1976,

M. L. Shooman and S, Natarajan, "Effect of Manpower Depoly-
ment and Error Generation on Software Reliability, ' to appear in
the Proceedings of the Symposium on Computer Software Engineer-
ing, 1976,

M. L, Shooman and H. Ruston, ''Cost Reducing, High Reliability
Programming Techniques, ' accepted for the 1976 ORSA/TIMS
Joint National Meeting, November, 1976,

M. L, Shooman and S, Sinkar, '"Generation of Reliability and
Safety Data by Analysis of Expert Opinion,' accepted for the 1977
Annual Reliability and Maintainability Symposium, Philadelphia,
PA.,

M. L. Shooman and A, K, Trivedi, ""A Many-State Markov Model
for Computer Software Performance Parameters, ' IEEE Trans-
actions on Reliability, vol. R-25, No. 2, pp. 66-68, June 1976,

5,2 Talks and Seminars

1.

2,

- .

-,

vl

S. Habib, "An Overview of Microprocessors, ' Seminar, PINY,
February 1976.

H. Ruston, ""Top-down Design, ' Computer Seminar, PINY, March
1976,

27

o "‘" vl

D. Baggi, '""Design of Automatic Test Drivers, ' Seminar, PINY,

M. L. Shooman, H. Ruston, A, Sukert, E, Berlinger A, Laemmel,
E. Lipshitz C. Marshall, B. Rudner, '"Software Engineering
Topics, " Oral Presentation of Progress on Studies Supported by

S. Habib, "User Services in Remote Entry Environment, "' National
Science Foundation Conference on Computers in Undergraduate Edu-

M. L. Shooman, Chairman, Program Committee, MRI Symposium
on Computer Software Engineering, New York City, April

M. Adamowicz, S, Habib, A, Laemmel and H, Ruston, Members,
Program Committee, MRI Symposium on Computer Software En-

M. L, Shooman, Member, IEEE ADCOM (Administrative Commit-

M. L, Shooman, Member, Executive Committee, IEEE Computer

M. L. Shooman, Member, NASA Advisory Committee on Guidance,

S. Habib, Chairman, National Lectureship Committee of the As-

% June 1976,
4,
the RADC Program, PINY, June 1976,
5.
cation, Binghamton, NY June 1976.
5.3 Symposia and Technical Societies
1,
1976.
2,
gineering.
5.4 Committees
1.
tee) of the Group on Reliability,
2.
Society Technical Committee on Software Enginee ring.
3.
Control and Information Systems,
4,
sociation for Computing Machinery.
5.

S. Habib, Chairman, SIGMICRO (Sepical Interest Group on Micro-
programming) of ACM,

28

METRIC SYSTEM

BASE UNITS:
—Quantity Unit S1 Symbol Formula
length metre m
mass kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous-intensity candela cd
SUPPLEMENTARY UNITS:
plane angle radian rad
solid angle steradian sr
DERIVED UNITS:
Acceleration metre per second squared m/s
activity (of a radioactive source) disintegration per second (disintegration)/s
angular acceleration radian per second squared rad/s
angular velocity radian per second rad/s
area square metre m
density kilogram per cubic metre : kg/m
electric capacitance farad F A-sV
electrical conductance siemens S AN
electric field strength volt per metre Vim
electric inductance henry H V-s/A
electric potential difference volt A WA
electric resistance ohm VIA
electromotive force volt \' WIA
energy joule J N-m
entropy joule per kelvin JK
force newton N kg-m/s
frequency hertz Hz (cycle)'s
illuminance lux Ix Im/m
luminance candela per square metre " cdim
luminous flux lumen Im cd-sr
magnetic field strength ampere per metre A/m
magnetic flux weber Wb Vs
magnetic flux density tesla T Wb/m
magnetomotive force ampere A
power watt w Jis
pressure pascal Pa N/m
quantity of electricity coulomb C A-s
quantity of heat joule] Nemr
radiant intensity watt per steradian Wis.
specific heat joule per kilogram-kelvin Jkg-K
stress pascal Pa N/m
thermal conductivity watt per metre-kelvin - Wim-K
velocity metre per second mis
viscosity, dynamic pascal-second Pe-s
viscosity, kinematic square metre per second m/s
voltage volt v WI/A
volume cubic metre m
wavenumber reciprocal metre (wave)m
work joule) N:m
SI PREFIXES:
Multiplication Factors Prefix SI Symbol
1 000 000 000 000 = 10'? tera T
1 000 000 000 = 10* Rige G
1000 000 = 10* megs M
1000 = 10° kilo k
100 = 10? hecto* h
10 = 10’ deks* de
0.1=10"" deci* d
0.01 = 10-? centi® «
0.001 = 10~ milli m
0.000 001 = 10~ * micro I3
0.000 000 001 = 10-* nano n
0.000 000 000 001 = 10~ '? ico r
0.000 000 000 000 001 = 10~ omto
0.000 000 000 000 000 001 - 10 '™ atto L]
* To be avoided where possible.

. Ty .

s .
-~ B o P

MISSION
of
Rome Avr Development Center

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and communications
(«c3) activities, and in the C? areas of informatiorn sciences
and intelligence. The principal technical mission areas

are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence

data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave g
physics and electronic reliability, maintainability and
compatibility. 3

S

