
‘7A 0-A036 721 POLYTrCHNIC rwST OF NEW YOHK BROOKLYN DCPT OP FL!CTh—rtc ~~~ 9/2SUMM*RT OF TECHNICAL PR0rRtS$. SOFTWARE MODELING STUIOES.(UI
IJAN 77 M I. S$400NAN. H RUSTON F3O6O2 tIe.CeO29~UNCLASSIFIeD POLY CC/EP7S—013 IADC—TR—7b—1i05 P4.

a

I c~
~ 28 I~2 5

L

~:I.’ ~ 2O

• _ _

• liii!’ .25 llU~i•~ IfflI~
~ i 4 j J I

:~.

Tichnicil $sport
JInusr) s 1977

i .~~ ‘r

~~~ SWIVRY OF TEC~~!CAI. PROGRESS,
V ~SOFV~~ E $OO(L!NG STUDIES

?o1yt.~h,4e Institut. of $0, Tork
~~~~~~~~~•~~~~~~~‘•

.4

~J1
_

_ _

_
-1-

~

~~~~~~~~~~~~~~~~~~



This report ha. been r.vi .d by the *ADC Inforastion Office (01) and
i• releasable to the National Technical Isforaition Service (NTIS) . Lt NTIS
it viii be releasable to ebs ~enerai pi~~iic including foreign nations.

Thi, report has bean teviured sad is approved for publication.

APP*~VID: 01L vi .
ALA$ N. SWV1? ~~pt , USA? ________

Proj ect In ias.r

APP~~~ED: ,e~,1;/D ~~~~~~~~ D. Wrz, , USA?
chief , Iiifoxaat ion Sci.ec.s Division

• ~7 JC~~~P. WSS
C”~ Mtiag chief , ?]..~. Of flc*

r;~ ~~~i~—.————
~~~~

~~ e~ss D~Di

.;~ j \ k ~
;
~v

- . ii~
..
~4

~~~~~~~~~Jk
Do ant r.t~~e this cep~ • Ni tatp dS~ 4s.trsy. 

_____

~~ •
~
. _______

~ ~~ • r . t  . . .
. — 

. . . .
.

44~ _ _ _



• UNCLASSIFIED 
- _____________________________

SECURITY C IFICAT ION OF THIS PAGE (IThw Data Ent. .d)

~&~~
EPORT DOCUMENTATION PAGE 1 BEFORE COMPLETING FORM

L ~~~ 2. GOVT ACCESSION ~o. P E T ’ S  C A T A L ~~” NUUPER

Ii ’ RAD R-76-4$ i
~ 4. TITLE (ond S.thtItt.) V 

—
• - r _..,.~~, ~~~

~TUDIES 
OF ~ ECHNICAL ;ROGRESS , SOFrWARE M0~~~~~~ ~~~~~~~~~~~~ Ufl 

~
j

_____________________________________________ Pol EE/EP76~~ 1~
j__________________ ~~~~~~~ MeER(.)C ~i. .d ~hooman /

R/tuston J ~~~~~~~~~~~~~~~~~~~~~

If l i~~~ORNINO ORGANIZATION NAM E AND ADDRESS 10 PROGRAM ELEMEN T . PROJECT . T A S K
AREA & WORK UNIT NUMBERS

Polytechnic Institute of New York
333 Jay Street 62702F
Brooklyn NY 11201 55500806

I t .  CONTROLLING OFFICE NAME AND ADDRESS ~~~. flE’ SflT

Rowe Air Development Center (ISIS) / Jan~~~~ •77
Griff iss APP NY 13441 1~~~ NUMWER O~~ PAG S

36
II. MONITORING AGENCY NAME & AODRESS(II dSll•~.t~I Iron. ControltinC OIII c. )  ¶5 . SECURITY CLASS. (of SAl. roport)

,~~~~ ~~~~ UNCLASSIFIED) 
~~~~~~~ 

I
~~~ ! I ~~

I
~~

ICAT IO NIDOW NGRA OING

EMENT (ol thl. Rsport)

Approved for public release; distribution unlimited.

(
~~ 2is~cJ 

~~~~~~2I~~~~17
I?. DISTRIBUTION STATEMENT (ol A. ab.t,acl .nt.r. d I,. Block 20, II dlii .ront Ira. , R.porf)

Same

IS. SUPPLEMENTA RY NOTES
RADC Project Engineer: Capt Alan N. Sukert (ISIS)

IS. KEY WORDS (Contlnu. en ‘sV.,a• aId. Si onc... y end SdsntlIy by block n.onb.r)

Software Modeling Prograiimting Techniques
Software Errors Software Reliability
Program Testing

20. ABST RA C T (C.ntlnu. on ,•o’raa aid. n.c...ary end Sd.ntiIy by block monk.,)

During the period of ti 1 Jan 76 to 30 Jun 76, Polytechnic Institute of
New York conducted resea h under RADC contract F30602—74—C-0294 in the area
of software reliability, is report presents the progress of this research.
Subjects of investigati crc error generation and seeding/tagging models,
measures for the evaluation of software, analytical data selection methods
for program testing, modular programing techniques, methods for finding J
feasible program path., statistical program testing and proving, and methods

DO , ~~~~~~
1413 EDITION OP I NOV SS IS OSSOLET E UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Ent.,.d)

j
_ _

_ _

_ _ _ _ _ _ _ _ _ _ _ _ _

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(IThw Data Ent.r.d)

f or automatically testing every program path.

Work has been completed on development of error generation/manpower deployment
models to describe the error correction process in terms of error generation
and correction rates as well as the number of man—months spent in debugging.
Work has also been completed in the development of seeding/tagging techniques
to estimate the number of software errors and related statistical quantities ;
measures for comparing programs, such as accessibility , testability , and tested
ness, based on defining a program as a set of executible modules ; and a method
for selecting test data sets for a program based on determining theCinterre—
lationships among program variables.

Work still in progress includes development of techniques to interactively
write programs using stored library modules and/or user supplied code, in-
vestigation of a satisfactory algorithm to estimate the number of feasible
paths in a program , development of a statistical theory for program testing and
proving based on using a strategy of both testing and journal proving using
Black’s model , and implementation of a PL/l driver to automatically test every
possible path and catch errors of any PL/l program, subject to some minor con-
straints.

UNCLASSIFIED
SECURITY CLA SSIPICATIO N OF THIS PAGEI’ITh.n bata Int.r.d)

V
. •~ ~~~~~

~~~~~~~~ - - -



SECTION I

INTRODUCTION

This interim report summarizes the effort expended from January 1,
1976 to June 30, 1976 on RADC Contract No. F-30602-74-C-0294. The ma-
jor topics inves tigated and participating personnel during this period are
listed in Section II. Summaries of these top ics appear in Section III. Sec-
tion IV indicates the planned di rection of the research for the immediate
future. Section V reports on the professional activities of the staff during
the reporting period.

SECTION II

PERSONNE L AND WORK AREAS

The following personnel partici pated in the research activitie s during
this reporting period

M. Shooman
H. Ruston

M. Adamowicz S. Mohanty
D. Baggi S. Natarajan
S. Hab ib C. Popkin
A. Laemznel B. Rudne r
E. Lipshitz

and worked in the following areas:

I. Shooman and Nataraj an:

Prediction models for estimating the number of errors  in compute r
software. The models incorporate the error  generation present during the
debugging process. The analysis also compares the cost of debugging with
the cost of rewriting f o r  software in which the errc’tr removal proceeds at
a small rate .

2. Shooman and Popkin:

Continuation of the work on establishing feasible program test paths.

3. Shooman and Llpschitz:

Further work on automatic programming techniques for the construction
of reliable programs.

4. Ruston:

Planning of teats for the collection of data to verif y the theoretical stud-
ies , and to collect statistics needed for model parameters.

1/2

_ _  

-V .-—— . . 
- -



5. Adamowicz and Mohanty :

Completion of two studies , one on quantitative software measures and
the other on the selection of program test data.

6. Laemmel:

Completion of the study on hierarchies of computable functions with ap-
plication to dete rmination of program complexity. Continuation of the work
on probabilistic models of program testing .

7. Rudne r:

Completion of studies on the seeding and tagging estimates of the initial
numbe r of program bugs.

8. Baggi

The construction of a drive r program for ve rification of Shooman ’s
model of an exhaustive test,

SECTION III

SUMMAR Y OF PROGRESS

In this section we summarize the work pe rformed. Upon completion of
each task, a report on the task’s results will be issued. Several technical
reports which document either the completed or continued research are in
various stages of prepara tion.

3. 1 Effects of Manpowe r Deployment and Er ror  Generation on Software Re-
liabili ty - by M. Shooman and S. Natarajan

This phase of the modeling effort hac been completed, and the detailed
technical report is in typing. The abstract of the report ia presented below.

Abstract

Several previous models in the literature have discussed how the num-
ber of errors  in a large software system is related to the rate of error  re-
moval. Similar probabilistic models for the error removal rate were pro-
posed in 1971 in two papers, one authored by Shooman and the other authored
by Jelinski and Moranda. The models proposed by Shooman were based on
er ror data on 7 different large operating systems and application programs
and collected by Hesse , and these models also fit the data of Akiyama which
was collected on small programs. Expressions for the number of remainin g
errors  as the software undergoes debugg ing were formulated and additional
assumptions were made to relate the number of residual errors to the oper-
ational system reliability.

A key assumption In the above models is that the sum of the errors re-
moved and the errors remaining in the program is a constant. Thu s .

3 • V~~~~~~~ ..

S -

~~~~~~~~

—---, -
~~~~

--
. - -~~I PRICtD~~~ p~~~ FIZj€~

— 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



if we can estimate the initial numbe r of e r ro r s  in the system at the s tar t  of
debugging and keep careful records of those removed we have a good esti-
mate of the number of remaining e r ro r s.  In 1973 Shooman described a testprocedure for estimatin g the initial numbe r of e r rors .

In this work we add a major refinement to the above models by introduc-ing the possibi lity of e r ror  generation during debugging. A generated e r roris due to one of two causes: ( I )  a bug whose correction is invalid and fur-the r debugging on the same statements is essential , (2) a new bug which isgene rated as the result of the correction of a different error.  The er ror
generation terms are modeled in several different ways: proportional to the
numbe r of detected e r ro r s, corrected errors , the number of remaining
e r r o r s , or some function of these effects. The correction rate is assumedto be a function of the manpowe r deployed on the project, thus, one can use
the model to investigate optimum manpower deployment strategies. The ef-
fects on the economics of debugging due to erro r growth have also been ana-
lyzed.

3. 2 Seeding/ Tagging Estimates of the Number of Software Errors - by
Beulah Rudne r

The theoretical part of this effort  has been completed and the technical
report is in typing. The tests for experimental ve rification are now being
planned. The abstrac t of the technical report is presented below.

Abstract

Seedling/tagging estimates of the number of software errors are com-puted from s, t and c where: t is the numbe r of errors either inserted de-
liberately in a program (seeded) or found by debugg ing (tagged); s is thenumbe r of e r rors  found by a debugger unaware of the contents of the firstset; and c is the numbe r of er r o r s  appearing in both sets.

Two types of questions can be raised. One type relates to the methodand procedure: the introduction of new e r rors , the changing of a programby debugging, etc. The other relates to possible estimate s, and their eval-uation and comparison. This report concerns itself with questions of thesecond type . Estimates based on 3 models are discussed. The models aredefined by assumptions regarding the equal or unequal difficulty of uncover-ing individual errors.  Model 1 assumes all er rors  are equally open to dis-cove r y at all times. Models 2 and 3 assume categories of difficulty to be de-fined for all programs. In Model 2 the error distribution among categoriesis unknown ; in Model 3 it is known. Estimates for Models 2 and 3 are shown
to be closely related to those for Model 1.

The mean and mean - squared error of a maximum likelihood estimate
and a modified maximum likelihood estimate are given. It is shown howthese quantities vary with certain relations among the total number of er-rors , size of tagged or seeded set and size of accompanying sample set.Cu rve s are drawn which can be used to de te rmine optimum values for s andt and a procedure Is outlined for doing so.

More precise estimates can be obtained with several trials rathe r thanone as described above. Several such estimates are examined and discussed.
4

V 

—~~ VV~~ V - V -- — - V ~ V~~~-



— — — V

It is concluded in general terms that a reasonable investment of time
will produce adequate estimates.

3. 3. ~4~ asure s for the Evaluation of Software - by S. N. Mohanty and
M. Adamowicz

This effort  has been completed and the final technical report  is being
prepared for typing. The abstract  of the report  is presented below.

Abstract

In this report an attempt has been made to define and quantify the struc-
tural qualities of compute r programs for the purpose of comparing program
struc tures • Three software quality measures (acces sibility, testability,
and te stedness) have been develope d and applied to dete rmine how well a
program has been tested.

A program is defined as a set of executable modules which are eithe r
segments or nodes; a node being a decision point and a segment being a se-
quence of executable statements. The accessibility of each of these modules
is defined in te rms of the probability of accessing the module from the pre-
vious modules and the probability of successful  execution of the previous
modules. The testability of each executable module is a function of the ac-
cessibility and the complexity measure of the module. The testability of a
logical path is given as an average of the testabilities of the program mod-
ules constituting the path, and the program testability is given as an average
of the testabilities of the paths constituting the program. The measures pro-
vide a quantitative means of comparing programs .

3. 4. An Analytical Data Selection Method for Program Testing - by
S. N. Mohanty and M. Adamowicz

This work has been completed and the final technical report is being pre-
pared for typing. The abstract  of the repo rt is shown below.

Abstract

A method is presente d for dete rmining the interrelationships among
variables in a program. These interrelationships provide the constraints
for the input space , i. e., the space formed by the set of all possible data
sets. Unde r this method a program statement is broken up into many basic
statements. The set of all variables which consist of the set of all primary
or independent variables and secondary or dependent variables are found,
and the inItial constraints for the primary variables are dete rmined. The
inte rde pendencies among the variables are then tabulated in the form of a
matrix called a Dependency Matrix (DM). The initial constraints for the vari-
ables are then dete rmined locally, i.e., from the information in each basic
statement and are tabulated in the form of a matrix named an Initial Attribute
Matrix (lAM). To determine the dependencies among the variables , we mod-
if y the LAM and arrive at the modified 1AM.

A set of algorithms have been developed for analyzing programs with

_  

_



arithmetic operators (i.e., **, *, 4,-, / )  and certain functions, namely
SORT, LOG, and EXP, so as to determine the nume rical bounds of the vari-
ables which are  forced by the use of these operators of functions . From the
DM and modified lAM, we find the nume rical bounds for pr imary variables
by making use of these algorithms.

This forms the desired input-space from which the data sets can be se-
lected for te sting the program.

3. 5. Modular Programming Techniq~çs - by Elan Lipshitz

3. 5. 1. Introduction

The objective of this effort is to find ways to write more reliable pro-
grams. To this end we raise questions in the following three areas:

- 1. Computer Language Can we develop a high level language that
is less susceptible to bugs ? Can we prove that any one of the existing lan-
guages is better in the sense of having less bugs ?

2. Structural Programming and Complexity of Programs Can we
derive a sequence of steps in writing programs that will result in more re-
liable programs ? Is the re a correlation between the structure and content
of a program and the numbe r of bugs In it? If yes , which areas or s tate-
ments or programming techniques are more bug-manifested? Can we elimi-
nate or replace them?.

3. Automatic Programming Will the use of pre-written and tested
modules of code reduce the numbe r of bugs? How can they be best incorpo-
rate d into the programs ?

This project will investigate both structural and automatic programming
with the emphasis on the latter.

3. 5. 2. The Program: Auto - Pr~&ramming

The program “Auto-Programming ” is divided into two pa rts - “Flow”
and “Auto,” both of which are interactive on-line programs that , by communi-
cating with the user , generate his program. Currently, they are written and
generate programs in Fortran.

A. The Program Flow

“Flow” receives the information about the flow-chart of a program
from the user. “Flow” recognizes only four different types of blocks which
are sufficient to generate any flow-chart. They are:

6



1. Control Block. This is a conditional decision block, similar
to the statement IF ( ) GO TO 

- -  -
. The user will write the code for this

block.

2. Functional Block. This block will perform a task that is avail-
able in the compute r library. The program “Auto ” will gene rate the cor-
rect code for this block.

3. Stop clock. This block indicates the end of the path; and
is coded by the STOP statement. 

_______

_ _ _ _ _  
I- sTo

_
~1

[~TOP 1 
_ _ _ _

I ENb 1
4. User ’s Code Block. The user inserts the desired code into

this block. This block is used whenever the library cannot perform the
needed task.

‘I,
Fig. 1 illustrates how the above blocks can be used to construct  the flow

chart  of a given program. The program first builds a table “Clas ” with the
names of the students in a class, and then enters their grades into the table
“Grad. ” Note that the GO TO A is a user ’s cod e block (i. e. , type 4).

The flow chart  gene rated using only the above blocks is always a binary
tree in structure, while the transfe r of control during the execution might
behave like a graph .

U pon completing the flow-chart control passes to the program “Auto”,
to be discussed next.

B. The Program: Auto

The user will specify to “Auto” what he would like to do, and “Auto” will
advise him which methods are available for the solution , as well as their
characte ristics. The user then will choose the method he prefers , and
“Auto” will generate the needed code.

7

V -



CLA SS IS THE ARRA Y OF STUDENTS’ NAMES:N:TIALIZE ORAl) IS TIlE ARRAY OF STUDENTS G RADES4 CLA S , GRAD ,. — ~~~ .7 IS A VARIABLE HAVING TWO VALUES; O AND 1R E A D  .7 I FOR .7.0 WE GENERATE THE ARRA Y CLASSL_~ 
FOR .7= 1  WE ENTER THE GRADES

• 

NO 
A: 

REA D S T UD EN T  S

READ STUDENT ’S
NAMES

SEARCH
f 5 ’~ FOR STU DEN T ’S

NAME
SOR T
CL-AS

ENTER PR~NT
HIS IGRD CLAS , GRAD

STOP

ANY MORE STOP

YES

E N D
GO TO A

STOP

Fig. 1: Record of Student’s Grad es

8 

- V~~~~~~~~~~~ V~~~~~~~~~



“Auto ” is divided into fou r parts:

1. Dictionary, which advises the user of tasks available in the
compute r library.

2. Communic ant, which supplies and receives from the user all
the in format ion  needed to generate the code. In addition , it  will so r t  the
labels generated by the user.

3. Code generator, which uses information obtained with the
help of the communicant, and generates the final code. It will resolve
any conflicts in the labels generated by the user, and the duplicates
generated by “Auto. ”

4. Library, which contains a collection of code modules
needed for  the different  tasks , e. g . ,  input/output , solution of mathe-
matical problems , invento ry and banking programs , etc.

“Autd’ was revised to allow dynamic label generation. The communi-
cant scans the user ’s statements looking for  labels. The labels found are
stored in a table “Lab” in descending order.  Before the code generator
writes a label it searches “Lab” to see whethe r this label is already in use.

The library is being expanded. Code has been written and tested for
the following mathe1~nati cal tasks:

Zn+ 1
L (x) 2 

~~~~~~~~~~ (:;~ ) 
‘ 5 < x < 2 . 0 (I)

VQ
X

=
rl:

~~; ~~
- 2 .0< x < 2 . O (2)

n 2n+j
Sin (x)~~~~~ (Zn+j)!

21T < x < 2~r (3)

Co s (x)
~~

L_ l
~;n;~

- 27T < x < 2,r (4)

Arc Sin (x) x +~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ O < x < .5 (5)

m is chosen so th.at the magnitude of the last term in the truncated powe r
series (for the ~ peclfic value of x) Is the first term which is just less than
or equal to 10

9

~~~~~~~~~~~~~~~~~~~~~



The following is an example of code generating for a program . The pro-
gram is the same as in Figure 1.

Figure 2 shows the interaction needed between “Flow” and the user to
generate his flow chart, as well as the f low-chart  generated.

Figure 3 show s the communication between “Auto” and the user. “Auto”
ei ther  allows the user  to input his own code or to ente r the information it
needs to generate the code.

Figure 4 is the final code “Auto Programming” has generated . It is im-
portant  to notice that the final code uses the user ’s variable name s and
their correc t  size , and that the labels generated by “Auto ” do not conflict
with that generated by the user.

3. 5 .3 .  Conclusion

The “Auto-Programming” package offers  the following three advantages:

1. Ease of Operation The software package is self-explanatory.
The user needs to know only how to gain access to the system. Once a con-
nection is established, the system will ask the user  for all the information
needed to generate the correct  program.

2. Reliability The code stored in the l ibrary will be pre-tested
and debugged.

3. Time and Cost All indications are that both time and cost of
writing and debugg ing programs are reduced. An attempt will be made this
summer to substantiate the above statement. The example discussed in
this paper requi red 10 m m .  of te rminal time and 18 sec. of C. P. U. time.

3. 6 Application of Logical Operations to Finding Feasible Paths in a Pro-
gram Flowchart -by Gary S. Popkin

In [1] , a flowchart was g iven in which it was desired to find all the
feasible paths. The flowchart is reproduced here as Fig. 5. The matrix
P . introduced in [1] . dis played all feasible and infe asible paths in a flow-
chart. The matrix P is reproduced here as Table 1.

10



WHAT BLOCK DO YOU WA NT ?

INPUT 1 FOP CONTROL BLOCK

INPUT 2 FOP A FUNCTION BLDC~~
I N P UT  3 FOR STOP BLOCK
I N P U T  4 FOR OTHER BLOCK
I N P U T  5 FOR END BLOCK
INPUT 6 FOP AN ERROR

4
I
4
2

4

4
1
4
3

FLOW CHART OW PROGRAM

I ’

ci a
F F

5 0

a a

Fig. 2 : Flowchart Gene ration

11

_ _ _  — 
.

~~~~~~~~~~~~~

- — . -

~~~

-- —



EACH L I N E  E N D S  W I T H  •
LAST LINE ENDS WITH +

INTEGER CLA S (1 0.) •
I N T E GE R  GRAD (1 Q:’ •
R E A D  (5, 3:i j •

3 FORMAT ~~I1’+
EACH LINE ENDS WITH •
LA ST LINE ENDS W I T H  +

‘30 TO 7+
EACH LINE ENDS W I T H  •
LAST LINE ENDS WITH +

DO c I = l , 1 0•
2 READ’S .S)CLAS (I)•

S FOpMAT~~A4 :. +
IN P U T  10 FQ~~ SORT
INPUT 11 FOR SEARCH
1 0
WH ICH SORT DO Y OU W A N T

INPUT 1$ FOR INTEPCHANG~~ SORT

INPUT 1~ FOR SHELL SORT
INPUT 14 FOR BUCKET SORT
12
IN P U T  T A B L E  N AM E ~~S I Z E
CLAS 10
EACH LINE ENDS WITH •
LAST LINE ENDS W I T H  +

7 READ (5 ,8) N A M E,  I’5RD•
9 FDRMAT (A4 ,  i3:i +

INPUT 10 FOR SORT
INPUT 11 ~~~~~ S E A R C H
11
I N P U T 15 FOP LINEAR SEARCH
I N P U T  16 FOR BINARY S E A R C H
15
INPUT TABLE NAME SIZE AND WORD BEING SEARCHED FOR, LDCATIDN INDE x:

CLAS 1 ONAMEK

EACH L I N E  E N D S  W I T H  ~
LAST LINE ENDS WITH +

GRAD (K) = I GPD•

R E A D  (5,9) 3k
9 F O RM A T (R 1V I+

EACH L I N E  E N D S  W I T H  ~
LAST LINE ENDS WITH +

I F < J . E ~~. 12 1)  GD TO 10+
EACH L I N E  E N DS  W I T H  ~
LAST LINE ENDS WITH +

GD TO 7+
EACH LINE ENDS WITH ~
LAST LINE ENDS WITH +

10 DO 12 1 1,10•
12 W RITE (6, 15, CLAS (I : ’  ~‘3p~~~(~~~•
15 FQRMA T(1H ,R4 ,10’<,I3) +

Fig. 3: Illustration of the Communication Between

the Program Auto and the User

12

V :_. V _______V

~~~

:V

~

VV

~

,

~~~~~

__

~~~~~


INTEGER cLAS~~1O)
INTEGER GRAD <1 - :

READ (5, :3 :’
3 F DR MA T ’ I l)

X F ’ ~J . E~~ . 1) GO TO 7’

DO 2 1=1,111
2 REATS (5 ,5)C LA S ’V I ”

5 FOPMAT (A4)

C SHELL SORT
V C INITIALIZE

N lii
ID=P4

6 1 D ’ . ID+l’/d

I 1 = I D+ 1
IFL’5=0

C COMPA PE~~REPLACE~~SET FLAG
11 I Fc : CLA S (I .) .L T . C L A S(I1 . ’) G O TO

I TEMP CLAS Ci)
CLAS (i) CLAS (I i l

CLAS (I 1) = I TEMP

IFLG=1

C PICK UP NEXT PAIR IF NOT REACHED END OF TABLE

1 11= 11+ 1
IF (II.GT.N) GO TO 4
1 1 +1
GD TO 11

C IS TABLE SORTED
4 I F (I F LG .G T .0) 50 TO 6

IF(ID.NE . 1) ‘30 TO 6
STOP

7 REAt’ (5,8) NAME,IGRD
8 FORMAT (A 4 ,1 3)

V

C LINEAR SEARCH
Dci 16 i 1 , 10
I F (C LA S(I) . E~~ .NAME) ‘30 TD 14

16 CONTINUE
WPITE (6, 13)

13 FORPIAT (1H ,6X,SEAPCH FAIL)
STOP

1 4 K I

GRAD (K) IGRD
READ (5, 9’

9 FORMAT (p1)
IF(J.EEI.121) GD TO 10
GD TO 7
STOP

10 DO 12 I 1 ,1U

12 WRITE (6, 15)cL~~s(1 ~GPAD (I)
15 FOPHAT(j I.4 ,R4 ,lUx ,13) Fig. 4: The Final Code

STOP
END

~TDP 13

-
~~~~ 

.~ ~~~~~~~~~ 

— — _____ —— — T11 -



START

I R.&d A

V 

T A > i .

M z t  13
2

14

I2

IS M z 3
II

9 10
M z 5  M = 4

M >t  T 8

3

4 8 7’

slop

Fig. 5: A Flowchart

14

~~~~~~~~~~~~~~ 

•

~~~~~~~~~~~~~ V~~~~~~~~~~ — ~~~~~~~~~~~~~~ 
:~~~~~~~~~~

-
~~~- 

-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 1 0 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0
4 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

5 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

6 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0

7 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

P = 8 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

9 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 . ~~~1 1 1 1 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

12 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

15 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

Table 1. The path matrix for the flowchart in Figure 5.

The flowchart in Figure 5 is small enough so that the feasible paths
can be found by inspection , as was done in [lJ . It is desirable to have a
more methodical way of finding the feasible paths for larger flowcharts. The
method proposed in [1] was to find the feasible paths by logical ope ration s
upon P . and then to remove the corresponding columns from P. If the
method of finding infeasible paths was imperfect, as it promises to be, and
some infeasible paths remained undetected, then the remaining matrix would

V contain not only all the feasible paths and but also some infeasible ones.
The Infeasible paths would then be found and removed by methods descr ibed
in [1], as the matrix remaining from P was used in furthe r reductions.

The approach followed for finding the columns of P (which represent the
infeasible paths). was to establish vector functions of feasible paths. Sub-
sequently, logical operations were performed between the vectors and the
columns of P. For example, from the flowchart It can be seen that any
feasible path containing segment 2 mus t also contain segment 3, and con-
versely. This can be expressed as a column vecto r C 1 whose transpose is
C ‘

~
(0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). Also, any feasible path containing

segment 12 mus t also contain segment 8, but not conversely. Perhaps this
could be expressed as C~ = (0 , 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0). In any case ,

15

the tester of the program could construct a number of such vectors desc rib-
ing the relationships existing the flow-chart. Unfortunately , this approach
was not fruitful.

It may be possible to perform ANDing operations between the C. and the
columns of P and to find columns which represent infeasible paths. ‘For
example, the following was tried and found wanting: Any column of P, say
k., represents an infeasible path if and only if

C. ° k. ~ C. all i (1)

Using just C1 and C , it so happt~~~ that (1) would correctly detect paths
3,4, 5, and 6 as infeasib~e. It would incorrectly call paths 11 and 12 infeasi-
ble. (1) could be made to work for path 11 and 12 by adding to the set of the
Ci a vecto r which says that any path containing segment 9 must also contain
segment 8, namely C = (0 , 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0). But for this pro-
cedu re to be workable it cannot depend on the set of the C. being complete.
While it is not fatal if the procedure leaves some infeasible paths undetected,
it must not unde r any circumstances incorrectly call a feasible path infeasi-
ble.

In an attempt to remedy the defect involved in needing a complete set of
the C., ANDing with sing le vectors C. instead of the complete set was tried.
Unfo r1tunately this approached also failed.

Anothe r approach would be to change the inequality in (1) to an equality
and search for feasible paths instead of infeasible ones , but the re still is the
risk in that method that some feasible paths would be called infeasible be-
cause of the set of the C1 being incomp lete.

Also, an approach using ORing was tried , with results that were even
less acceptable than those from ANtflng.

The above summarizes the approaches undertaken , and the difficulties
that surfaced. Current effort on this problem involves: (1) furthe r search
for a satisfactory algorithm to estimate the number of feasible paths , and
(2) methods for constructing an automatic test driver , where the number of
inputs will equal the number of feasible paths (see Section 3. 8. 6).

REFERENCE

1. Gary S. Popkin, “Program Paths and the Number of Tests Needed to
Ve rif y a Compute r Program, ” “Summary of Technical Progress , Soft-
ware Modeling Studie s, ” RADC-TR-76- 143, pp. 40-49, May, 1976.

16

- V
V 1’ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~._ -_ ~~~~~~~~ -

3. 7 Statistical Theory of Program Testing and Provi.ng - by
Arthu r E. Laemmel

3. 7. 1 Introduction

The purpose of this work is to extend the results on program testing ,
reported in the preceding progress report.

The usual approach to proving program correctness has so far been
applied successfully only to small programs. The practical approach to
large programs is to run a number of tests. The larger the number of such
tests , completed without e r rors , the greater is our confidence in the pro-
gram.

The method presented here is to combine both these approaches, this
being partially theoretical program proving , and partially experimental
testing.

3. 7. 2 A Model of Test Strategy

Observe that the result of testing a program is one of the following
two outcomes:

1) The program failed on input x.
or

2) The program operates correctl y on n inputs.

The same approach is often followed to investigate in a preliminary
fashion the validity of a conjectured mathematical theorem. By analogy, we
choose parameter values, substitute into the postulated theorem, and cal-
culate the output. The result of this process is completely analogous to the
two outcomes stated above. In a mathematical theorem, once we satified
outselves that no counter example exists for a great number of tries, we
may proceed and try to prove the postulated theorem. In a program we will
not t ry to establish the validity of the program by proof , but be content with
the confidence achieved after a large number of tests. In fact , M. Rabin
challenges the notion of m athem atical proof in the context of computational
algorithms. He states that it is sufficient to establish that a statement is
true to a very high probability (e.g. , l_ 2 ~~ 00) rathe r than to demand an
exact proof 1~

We can model the above test process and optimize it by analogy with the
well-known, elementar y probability example of dra~wlng a ball from a box.We will follow the model suggested by W. L. Black

A version of the model might be rephrased in t raditional terms as
follows: a single red ball is In one of two boxes , each of which contains a
very large number of white balls. Let

Pj = a-priori probability that red ball Is In box i
V

m1 = probability that if red ball is In box I then a single look willmiss it
c1 = cost of a single look in box i

~~~ . - - V~~~~~~

’

~~~ : ~~~~~~~~~~~~~~~~~~


Black has given a simple way to find the minimum expected cost strategy
for searching fo r the red ball. Arrange the numbers

n i = 1 2p. in. (1-in,)
1 1 n 1, 2, 3...

in decreasing order. If the k’th number in this arrangement is one with i 1
then the kt th look should be in box i, othe rwise in the othe r box.

In order to get a feeling for this strategy in the present application, let
box 1 represent possible proofs that a certain compute r program works cor-
rectly and box 2 represent various sets of input data.

Choose parameters:

p 1= .9 ..—(program probably OK) p2 = .1

= . 999 compute r search for m2 . 2 one

c 1 = 100 a proof time-consuming c2 = 5 program
and not likely to succeed test is easy

p 1 (i—rn 1) p2 (l-m 2
)

= ,000009 = .0l6c 1 c2

p 1 (1-in 1)m 1 p2 (l-m 2)m 2
= . 00000899 = . 0032

C
l

C
2

p 1(1-rn 1)m~ p2
(1~m2

)m~
— = . 00000898 = .00064C l C

2

.00000897 .00128

.00000896 . 000025 6

00000895 . 000005 12

According to this, looks 1, 2, 3, 4, and 5 should be in box 2, then looks 6, 7,
8 (for several hundred looks) should be in box 1. This strategy simply says
to look in the box which has the highest ratio of a-poste rlori proba bility to
cost at any stage. It is intuitively satisfying that the f i r s t looks were for

18

_________ _____________ _____________ — —- — __
~_~__ __~~ V -

counter examp1e~~, and (pe rhaps) that the sixth look was for a proof . It is not
too satisf ying that these looks are to be followed by a attempts at a proof ,
where a is given by

.000009 m 1~~ = .000005 12

.57 = (l- . O O l) a
= 1- . OOla

If the f i r s t series above decreased more rapidly, and the second series
decreased more slowly, the strategy would go back and for th between proof
and counte r example more frequently. The main difficulty is that successive
trial s, either for proof or counter examples , are not satistically indepen-
dent as is requi red in Black’s model.

Each attempt at a proof can build on the last attempt because any partial
results obtained in the previous attempt can be used in the next. This
means that m 1 should decrease with n instead of remaining constant. On
the othe r hand’, if a compute r program is tested with 10 random inputs , and
if no failure occurs for the first 9, than the 10th trial certainly gives less
information than the 1st trial. This means that m3 should increase with n,
i.e. that errors are harder to find with a sing le test late r on in the testing
sequence. Such a result can be derived from formulas given in the previous
report, since these represent a way to describe statis tical dependence among
test outcomes.

Incidentally, the same approach was successfully applied to the opti-
mization of a rq liabillty structure under cost constraint by M. Messinger and
M. L. Shooman). The algorithm allocated redundant components to the
structure in a sequence in such a way that each addition of a component
maximized the gain in reliability per dollar.

3. 7. 3 Conclusion

The work is continuing in this area. The object is to formalize the
interactive part-proof, part-test procedure to program verification with a
prescribed confidence level.

Refe rences

1. M. Rabin , Carnegie -Mellon Symposium on New Directions and Recent
Results in Algorithms and Complexity, April 7-9, (reported in Pape r
Crisis . SIAM News, Vol. 9, number 4 , August 1976).

2. W. L. Black , “ Discrete Sequential Search” Information and Control,
vol. 8, pp. 159-162. 1965.

3. M. Messinger and M. Shooman , “ Optimum Allocation of Spares
Redundancy: A Tutorial Survey. ” IEEE Transactions on Reliability.
July 1071.

19

V ‘• ~~~~W~~~

3. 8 Implementation of Shooman’s Model of Exhaustive Testing
-

An Auto-
mat ic Type l.A Tester - by Denis L. Baggi

3,8. 1 Introduction

In an inte rnal paper “Analytical Models for Software Testings ” Martin L.
Shooman describes a scheme for imp lementing a drive r program to auto-
matically test each path of a given program. An imp lementation of this
scheme in PLI 1, with a few revisions, is described here , along with two
examples of programs, which we re run with normal analytical debugging
techniques - i.e., with some testing data - and through the testing program.
Comparisons among man-hour efforts and compute r time in both cases are
made .

3.8.2 The Testing Driver Program

A program, refe r red to as driver program, has been developed and run
in conjunction with two programming examples. Its purpose is to allow auto-
matic testing of all possible paths of any given program. A description of
its func tioning follows.

The driver program requireR a data card containing an inte ge r , N-
TESTS, i.e., the numbe r of IF statements , plus the number of repetitive DO
groups , in the program and subroutines , to be supplied by the prog rammer.

~~ he next data ite m has to be an “orde r , ” i.e., a character string such
as ~NORMAL OPERATION,’ or ‘TEST,’ or any other string. If the orde r is
‘NORMAL OPERATION, ’ then the drive r allow s normal functioning of the
program to be tested, e.g. , with a set of data designed , by the programmer,
to test some cases - a normal debugging practice.

If the orde r is ‘TEST , ’ no data set is needed for the te s te d program,
but an array, T, with lower bound 1 and upper bound N-TESTS (the numbe r
of tests , as read in previously), will be constructed to represent, in ascend-
ing orde r , all possible bit combinations of binary numbers from 0 up to 2 **N-TESTS - 1; this array is called testing word, and it thus consists of the
bits of a binary counte r with N-TESTS bits . Notice that the value 0 is in fact
represented, in the corresponding T, by - 1, while 1 is represente d by 1.
Eventually the program to test is run for any such binary combination.

For any other orde r string, such as ~~~~~~~~~~~~~~~ as well as in the case
of absence of data , the whole system stops .

3.8. 3. The Tested Program

Although no particular care has been taken to make sure that the drive r
program Is fully compatible with all possible programs to test it is believed
that, at Its present state , the invariant part Is flexible enough to accept a
large class of programs with no modification, requiring for othe r programs
only minor, sensible changes .

20

Shooman indicates (in p. 5-1 of his paper), a s t ra tegy for implementing
the drive r program, namely, a revised way of wr i t ing IF statements and
DO loops in a p rogram to be submitted to te s ting; howeve r , since such
schemes lack generality (-i.e. , onl y conditions of the type “exp > 0” are al-
lowed in IF state ments , and only limits f rom 1 up to an uppe r bound > 0 in
DO loops -), the scheme descr ibed he re has been develope d as a natural de-
riv~tive of these suggestions; hence , the only restrictions to be obeyed in
writing a program will be the following:

la) instead of IF cond THEN statement
1; ELSE statement2

;

write IF F(cond) THEN statement 1; ELSE statement 2;

lb) instead of DO I = LIMIT 1 TO LIMIT 2 BY INCR

write DO I = GL (LIMIT 1, LIMIT 2) TO GH BY INCR;

lc) instead of DO WHILE (cond)

w rite DO WHILE (H(cond));

(where: F, GL, OH and H are described in the forth coming tech-
nical report)

2) function and subroutine procedures are possible but should be in-
te rnal to the program

3) variables used in the program which are assigned a value through
a read (GET LIST) statement should be initialized , for instance through a
DCL INIT statement.

All these restric tions could be removed. To remove 1), one could con-
struct a subprogram in the operating system which automatically supplies F,
GL and GH , and H. Subroutines could be exte rnal, as long as a mechanism
is provided for passing back and forth T - e . g . , COMMON statements
in FORTRAN -, hence removing 2) . And point 3) is a direct consequence of
the read-in scheme described by Shooman , which could be modified at will.

3.8.4 The Two Examples

For illustration two programs we re chosen at the two ends of a spectrum:
one with many IF statements, and input data , and the othe r with DO groups
and one subroutine, and no input data.

A. First Example : Compute r Solution of a Card Game

Thi s is a very slightly altered version of Shooman ’s algorithm of Fig.
4..3 in his pape r. The algorithm appears in Fig. 8. It determines the win-
ner of a card game, in which playe r A is dealt two cards , Al and A2, and B,
similarly, geté B1 and B2 , (four integers read in wi th a GET LIST s ta tement) .
If both winners have a pair , the highest pair wins , or if they are equal it is

21

c~~DA .~~ A, S t, 32

!P~~i _ . A = ~~~~~~~~~

True 31=52 F V 1~~~~e

~~ _ _ _ _

Tr~ e i ? lir_ 3 .V~~ ~~~~~~~~~~

—

T r

~~~ 

al ~ e

________ 

T rue~~~~~~~~ B= Fa 1ie

‘
p—I _______

~~~B Wir ~d

‘~~{~~ h A = A
_________________ Hi~ h _ A= A2

Low_ A. AZ] LLow_~ = A 1 I

T rue ..~i ? 3 Z F’~~

Hi~ h B ~
J
~

~~~~~~~~~~~~ Hi~ L.3=32

A ___________

I ~~~
~ v a .

-;-
c~ o p

Fig. 8: Flow Cha rt for  Compute r Solution of a Card Game
22

_ _ _ _ _ _ _ _ _ _  - 

~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~


a tie; if onl y one playe r has a pai r , he wins; o therwise the hi ghes t card wins ,
or if they are equal , the highest second card wins; identical hands are ties.
At f i r s t the system was run under ‘NORMAL OPERATION’ conditions. The
results are shown in the for th coming report . The system was next run
under ‘TEST ’ condit ions. The tested program has 12 IF statements , hence we
have a 12-bit testing word.

Since the p rogram is fully debugged , no e r ro r can be seen in the output
listing; should one e r ro r appear, however, it would be easy, from the test-
ing word , to reconstruct the pa th and detect the deficient statement.

B. Second example: A Program Which Prints the Prime Factors of
all Integers from 1 to 100

This is a simp le prqgram which tests each intege r f rom 1 to 100, prints
it , and its prime factors , or the word PRIME if it is prime. Its algorithm
is presente d in Fig. 9.

The inte rnal subroutine PRINTOUT prints the results; this procedure
has been incorporated to show the generality of the scheme including sub-
programs. Notice that, although it is called only once f rom the main pro-
gram, it could be invoked as many times as needed , because of tne desi gn of
the internal procedure s of the drive r program, which know by themselves
how to select a new bit in the te s ting word each time they are used. V

3. 8. 5 Efficien~ y of the Syste m

Program Example A.

- it took 30 minutes to desi gn the program

- it takes no extra time to redesign a program according to the
specifications expres3ed in section 3. 8. 3

- it took 10 minute s to find a data set to t es t some well-choosen paths

- the program ran in 2. 41 minute s unde r ‘NORMAL OPERATION ’ w i th
that set of data

- the program ran in 4. 12 minutes unde r ‘TEST ’ conditions , exp lor-
ing all paths

Program Example B

- it took 20 minute s to design the program

- the re is no data

- the program ran in 3.81 minute s for 100 in tegers

- the progr am ran in 1. 76 minutes unde r TEST conditions

23

- ‘. . - - - —-

4
_______________(ST A R T
—

N . 1 DO NO

N • N ÷ 1 N < 100

YES

rFACTOR — 0

1 — 0

DO 1N 0
I M > I &[

YES

MAIN PR OGRAM ~
1

~~M/ ~~
’
~~~~~~~~ES

~~~~~~ NO {~t~~ 1 + 1
FACTOR (1) —

L~_. - L ÷ 1 I M — M /L

[PRINTOUT
N , FACTOR , M

~~~TO~ID
( START _)

~~~~~~~~~~ T N

SUB ROUT INE DO
PRINTOUT I FACTOR

U)
~~~YES 

V

I PRINT
FACTOR ( I )

M > t  NO

Fig. 9: Algor ithm fo r
Printing Prime M < N NO
Factors from
1 to 100 YES 

___________

PRINT I PRINT

~~~~~ PRIM E

24

~~~~~~~~~~~ .:: --- - -——- _VV VV~~~~~~~~~~~~~~~~~ V _ 
V~~~~~~ ~~~~~



1~

Hence the system provide s the following:

Advantage

No time is spent in finding a data set to debug a program.

Dis advantage

Running time may inc rease exponentially with the number of IF state-
ments and DO loops. For instance , P r ogr a m  A contains 12 IF statements ,
and the refore the testing word has 13 bits and 8192 runs through the program
were needed to test its 100 paths (hence , with this blind mechanical approach
many tests are meaningless) . However, if the program becomes too large , it
can be separated in portions to be teste d individually, along with the inter-
connecting data sets . Fur thermore, this disadvantage is compensate d by
those cases of programs with many DO-loops and few IF statements . Pro-
gram B, for instance , required almost four minute s for a hundred integers ,
and would use a lot more for , say 10, 000 integers, but it took less than two
minutes to go through all paths as defined , and would still take the same
amount of time no matte r how many integers it would have to consider.
Hence a TEST run is , in these cases , very  time saving.

3 .8 . 6 Conclusions

A possible implementation for an automatic program tester of type l.Ahas been discussed. The teste r ignores the semantics of the tested program,
but is able however to run through all possible paths present in a program
and catch a possible error.

This implementation, rathe r than represent ing an ultimate result, is
meant to be an illustration of the method and techniques proposed by Shooman
in his paper; it would be easy, for instance , to make the drive r program
more flexible or sui ted to othe r styles or programming language s .

It was rewarding to discove r that even within the limited development of
these techniques some goals have been achieved, namely, the realization of
a system which has already prove d its usefulness in de bugging the described
programs.

25



4. 0 Directions for Next Period ’s Work

In the next period we plan to work on the following:

1. Adamowj cz: Further work on measures for  the evaluation of
software.

2. Baggi: Completion of a report  on the con st ruct ion of an
automatic drive r for ~~~~~~~~~~ model of test cove r-
irig each program. path.

3. Laemmel: Continuation of studies on statistical  program test-
ing.

4. Marshall: Application of graph theory to statistical sampling
approaches for software reliability.

5. Ruston and Applications of software ph ysics to complexity
Berling~~~: measures.

6. Shooman and Continuation of work on levels of program tes t ing
Pqpkin:

7. Shooman and Expe rimental te s ts for ( 1) validation of seeding/
Ruston. : tagging estimates (2)  Shooman ’s extended de bugging

models ( incorporat ing e r ro rs  generated dur ing the
de bugging process ) ,  and (3) obtaining data for
verif icat ion of 8oftware physics and othe r comple x-
ity measures .

5. 0 Professional Activities

This section summarizes the professional activities of the research
personnel working on this contract .

5. 1 Published and Submitted Papers and Repo rts

1. C. L. Usu and L. Shaw, “Downtime Dis t r ibut ions  Based on a
Mult ivar iate  Exponential Dis t r ibut ion , ” Report  No. Poly EE/  EP
76-002 EER 120 , Pol ytechnic Institute of New York , Feb. 1976 .

2. C. Marshall , “Contributions to the Theory of Avaii labil i ty, ” Re-port No. Poly E E/ E P  76-004 EER 121, Polytechnic In s t i tu te  ofNew York , Feb. 1976.

3. S. N. Mohanty and M. Adamowicz , “Proposed Measure s for the
Evaluation of Software,” to appear with Proceedings of the Sym-
posium on Compute r Software Engineer ing,  1976 .

26



4. L. Shaw and M. Shooman, “Confidence Bounds and Propagation
of Uncerta int ies  in System Availability and Reliabil i ty Computa -
tions , ” Technical Report N00014-67-A-0438-0013, Poly E E / E P
75-002 Polytechnic Institute of New York , Jan. 1976 .

5. L. Shaw and S. Sinkar , “Redundant Spares Alloc ation to Reduce
Reliability Costs , ” Naval Research Logistic8 Quarter l y vol. 23,
No . 2, pp. 179- 194 , June 1976.

6. M. L. Shooman, “Recent Developments in Software Rel iabi l i ty  -
The State of the Art , ” To appear in the Proc~~~dings of the
Thirteenth IEEE Compute r Society International Conference ,
Wa shington, D. C . , Sept. 1976.

7. M. L. Shooman “Structural Models for Software Reliability Pre-
diction , ” Second National Confe re nce on Software Engineering ,
Octobe r , 1976 , San Francisco, Calif.

8. M. L. Shooman and M. I. Bolsky, “T ype s, Distribution, and Test
Correction Time s for Programming E r r o r s , “ IEEE Transact ions
on Reliability, vol. R-25 , No. 2, pp. 69-70 , June 1976.

9. M. L. Shooman, M. Horodniceanu, and E. J. Cantilli , “Syste m
Safety Applied to Transportat ion Systems, ” To appear in the Pro-
ceedings of Inte r Society Conference on Transportat ion, Los
Angele s , Calif. Jul y 1976.

10. M. L. Shooman and S. Natarajan , “Effect  of Manpower Depoly-
ment and E r r o r  Generation on Software Reliability, ” to appear  in
the Proceedings of the Symposium on Compute r Software Engineer-
in g, 1976.

11. M. L. Shooman and H. Ruston , “Cost Reducing, High Reliability
Programming Techniques , ” accepted for the 1976 ORSA/TIMS
Joint National Meeting, November , 1976 .

12. M. L. Shooman and S. Sinkar , “Generation of Reliabil i ty and
Safety Data by Analysis of Expert  Op inion , ” accepte d for  the 1977
Annual Reliability and Maintainability Symposium, Philadelphia ,
PA.

13. M. L. Shooman and A. K. Trivedi , “A Many-State Markov Model
for Compute r Software Performance Parame ters , “ IEEE Trans-
actions on Reliability, vol. R-25 , No. 2, pp. 66-68 , June 1976.

5. 2 Talks and Seminars

1. S. Habib , “An Overview of Mi c roprocessors, ” Seminar , PIN Y,
February 1976.

2. H. Rus ton, “Top-down Design, ” Compute r Seminar, PINY , March
1976 .

27



3. D. Baggi , “Desi gn of Automatic Test  Drivers , ” Seminar, PINY ,
June 1976.

4. M. L. Shooman, H. Ruston , A. Suke rt , E, Berlinger A. Laemmel,
E. Lipshitz C, Marshall, B. Rudner , “Software Engineering
Topics , ” Or? 1 Presentation of Progress  on Studies Supported by
the RADC Program, PINY , June 1976 .

5. S. Habib , “User  Services in Remote Entry Environment , ” National
Science Foundation Conference on Computers in Undergraduate Edu-
cation , Bing hamton, NY June 1976.

5. 3 Symposia and Technical Societies

1. M. L. Shooman, Chairman, Program Committee, MRI Symposium
on Computer Software Engineering . New York Cit y .  April
1976.

2. M. Adamowicz, S. Habib, A. Laemmel and H. Ruston , Members ,
Program Committee , MRI Symposium on Compute r Software En-
ginee ring.

5.4 Committees

1. M. L. Shooman, Membe r , IEEE ADCOM (Administrative Commit-
tee) of the Group on Reliability.

2. M. L. Shooman, Membe r , Executive Committee, IEEE Compute r
Society Technical Committee on Software Engineering.

3. M. L. Shooman , Membe r , NASA Advisory Committee on Guidance,
Control and Information Systems.

4. S. Habi b, Chairman, National Lectureship Committee of the As-
sociation for Computing Machinery.

5. S. Habib, Chairman , SIGMICRO (Sepical Interest  Group on Mic ro-
programming) of ACM.

28

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ V__ - ~~ — ~VV~ - - . 
-

f V ~
V

METRIC SYSTEM

BASE UNITS:

~~~~~~~~~ Unit SI Sy~tbol 
- 

Formula

length metre m
mass kilogram kg
time second a
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous~4ntensity candela cd ...

SUPPLEM ENTARY UNITS :
plane angle radian Tad
solid angle steradian at

DERIVED UNITS:
Acceleration metre per second squared ... rn/s
activity (of a radioactive source) disintegration per second ... (diaintegration)is
angular acceleration radian per second squared .. radii
angular velocity radian per second .. rad/i
area square metre .. m
density kilogram per cubi : metre kgim
electric capacitance farad F A-a/V
electrical conductance siemens S AN
electric field strength volt per metre ... Vim
electric inductance henry H V.a/A
electric potential difference volt V WIA
electric resistance ohm VIA
electromotive forte volt V WIA
energy joule J N.m
entropy joule per kelvin V . .  J/K
force newton N kg.m/a
frequency hertz Hz (cycle)/a
illuminance lus lx lm/m
luminance candela per square metre V cd/rn
luminous flux lumen Im cd.sr
magnetic field strength ampere per metre V V A/m
magnetic flux weber Wb V.a
magnetic flux density teals T Wb/m
magnetomotive force ampere A V

power watt W Is
pressure pasca l Pa NIm
quantity of electricity coulomb C A.s
quantity of heat joule I N.,r
radiant Intensity watt per steradian ... WIs.
specific heat joule per kilogram-kelvin - . .  J/kg.K
stress pascal Pa Nirn
thermal conductivity watt per metre-kelvin .. WIrn.K
ve locity metre per second . . -  rn/s
viscosity, dynamic pascal-second . - .  Ps-s
viscosity, kinematic square metre per second . .  In/s
voltage volt V WIA
volume cubic metre .. m
wavenumber recIprocal metre V O •  (wav e~ m
work joule I N.m

SI PR~~UES:

Multiplication Factors I’reflx SI Symbol

1 000 000 000 000 = 10” t,,ra
1 000 000 000 = 10’ giga (;

1 000 000 .. I0~ meg. M
1 000 10’ kilo k

100 = 10’ hectn h
10 10’ deka da

0.1 1 0 ’  dad’ d
0.01 1 0 ’  canti ’ I:

000 1 1 0 ’  mlIIt m
(1000 001 10 • mk:m

0.000 000 001 l(r’ n.no
0.1*10 (tOt) 000 (101 — 1(1— “ pk~I_)0.000 (100 000 Q00 001 1u1 ”

(1.0(X) 000 000 00(1 (tOO 001 1 0’  .ttc, a

To be avoided where possible.

- 
- .:~ . . 

- _— - — - - - - - - - — V V 
V



MISSION
of

Rome Air Development Center

RA.X plans and conducts research, exploratory and advanced
developmsnt program s in c~~~aisd, control , and coamtunications
(C3) activities , and in the C3 areas of inf ormatioz~ sciences
and intelligence. The principal technical mission areas
are conununicat.ions, electromagnetic guidance and control ,
surveillance of ground and aerospac e objects, intelligence
data collection and handling, inf ormation systms technology,
ionospheric prop agation, solid sf ; ate sciences, microwave
p hysics and electronic reliability, asintainab ilitg and
compatib ility.

‘I~~~~ .I~gt~

~ •w~., -v~ - 

V



A ; , ’ .



_ V _ -I
V 

A
pr4 

~

. 
_ _

_I~

-I

~~~~ 

-

-

V

-

